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Quaternion modeling of the helical path for analysis
of the shape of the DNA molecule

A.F. Muterko
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The three-dimensional shape of a DNA molecule is a key pro-
perty influencing its functional specificity and the nature of its
molecular interactions. The characteristic shape into which a
DNA molecule folds under certain conditions is a manifesta-
tion of its micromechanical and structural features, which

are sequence-dependent. DNA shape-related properties can
therefore be determined in a predictable manner. A number
of models have been designed to describe intrinsic DNA
curvature, incorporating a set of helical parameters which can
be applied to operative three-dimensional reconstruction of
the DNA structures. Alternatively, desired base pair parameters
can be computed based on publicly available information
about atomic DNA structures. Further, taking the base pairs as
rigid bodies, their relative location in space can be estimated
based on these parameters. Matrices are a common method
to implement any rigid body transformations and are widely
used in the modeling of DNA structures. Quaternions are the
more straightforward and robust alternative for matrices. Unit
quaternions can represent only a rotation, whereas dual qua-
ternions combine rotation and translation into a single state.
In the present guide, the algebra of unit and dual quaternions
is applied for the first time to modeling of the DNA helical
path, based on conformational parameters of the base pair
steps. Although dual quaternions are preferable for modeling
of DNA structure in detail, the use of unit quaternions is suffi-
cient to predict the DNA trajectory and all calculations of DNA
shape features. In order to analyze DNA shape and chain sta-
tistics, and predict the micromechanical properties of DNA
molecules based on coordinates of the helical path, the wide-
ly used as well as original algorithms for computing DNA
curvature, radius of gyration, persistence length and phasing
of DNA bends are described. Taken together, these algorithms
will be useful both in the in silico analysis of relatively short
DNA fragments as well as in topological mapping of whole
genomes.
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KBaTepHMOHHOE MOJeIMMpOBaHue
TPAaeKTOPUM CIIpaIn O aHaams3a
¢opmbl Mmosiekyibl JTHK

A.D. MyTepxo

QepepanbHbIN UCCnefoBaTeNbCKUIA LEHTP MIHCTUTYT unuTonorum
1 reHeTnkn Cbmpckoro otaeneHrs Poccninckon akagemmm Hayk,
HoBocnbupck, Poccusa

MpocTpaHcTBEHHAA opraHu3auus, opma monekynol AHK
ABNATCA KIIOYEBOW XapaKTepCTUKON, onpeaensioLen ee
bYHKLMOHaNbHY0 cneundUYHOCTb 1 MPUPOAY MEXMOSEKY-
NAPHbIX B3aumogenctamin. Cneuynduyeckas Gopma, KOTopyio
monekyna IHK npuHumaeT npu onpeaeneHHbIX yCIoBUsAX,
o6ycnoBieHa ee MUKPOMEXaHNYECKUMU U CTPYKTYPHbIMU
0COBGEHHOCTAMM, 3aBUCALLUMM OT NOCIEef0BaTENbHOCTMN HYK-
neotmpoB. CrieloBaTeNlbHO, OTAENbHbIE XapaKTePUCTUKN pop-
Mbl IHK MoryT 6bITb NporHo3upoBsaHbl. [peanoxeH pag moae-
new gna onncaHuA BHyTpeHHen KpnsusHbl JHK, Bkntovatowmin
Habop reomeTprYeckrx NapameTpPoB ABONHOW Civpanu, npu-
MeHAEMbIX NMPY KOMMbIOTEPHOWN PEKOHCTPYKLMMN NPOCTPaH-
CTBEHHbIX CTPYKTYp. C ApYyroi CTOPOHbI, HeobXoAVMble Napa-
METPbI Nap OCHOBaHMIA MOXHO PaccymTaTb UCXOAA 13 obLle-
LoCTynHoW nHGopmaLuy atomHon cTpykTypbl AHK. MprHumas
napbl OCHOBaHWI KaK TBepAble Tena, UX OTHOCUTeNIbHOe pac-
Nosno)KeHne B NPOCTPAHCTBE MOXXHO OL€HUTb MO MOJTyYEHHbIM
napameTpam. Matpuubl ABAIOTCA Hanboee pacnpocTpaHeH-
HbIM CNOCObOM peanusauuy npeobpasoBaHM TBEPAOrO TeNna
1 LIMPOKO UCMOoSb3ytoTca B moaenupoBaHuy dopmbl JHK. bo-
nee NPOCTan 1 HafieXHanA anbTepHaTUBa MaTpuLam — KBaTep-
HWOHbI. EAMHNYHbIE KBaT@PHMOHbBI MPeACTaBAAIT TONbKO No-
BOPOT, TOrfa Kak ABOHble KBAaTEPHMNOHbI 06BbeVHAIT B cebe
1 NMOBOPOT, 1 CMelleHue. B HacToALlem pyKkoBoacTBe anrebpa
e[VIHNYHbIX 1 [BOMHbIX KBaTEPHNOHOB BNepBble NPUMeHeHa
AnAa MoaenvmpoBaHuA TpaekTopun monekynbl IHK ncxoasa us
KOHbOPMaLMOHHBIX MapamMeTPOB ANHYKNEOTULHbIX LIAroB.
XoTa ncnonb3oBaHyie ABOVHbIX KBaTEPHNOHOB ONTUMasbHO
ONA feTanbHOro MOAENNPOBAHNA CTPYKTYPbI, eANHNYHbIE
KBaTEPHVOHbI JOCTaTOYHbI A1 MPOrHO3MPOBaHMA TPpaeKTopumn
[BOVIHOM CNMPanu 1 NocsiefyoWwmx pacyeToB ee NpoCcTpaH-
CTBEHHbIX XapakTepuctrk. O6Cy>KAaloTCA LNPOKO NCMOMb3Y-
emble, a TakXKe OPUrMHaNbHble aNnrOPUTMbI BbIYNCIEHUA KPU-
BUW3HbI, paanyca rmpaumm, NepcucTeHTHOM ANnHbI 1 Gasnpo-
BaHUA CTaTUYECKUX U3rMOOB Ans aHanm3a GOopMbl MOSIEKYSIbI,
BbIYMCNEHNA CTaTUCTUKN NOJIMMEPHON Lieny 1 NPOrHo3npo-
BaHMA MIKPOMEXaHMNYECKNX CBOMCTB Ha OCHOBE KoopAanHaT
TpaekTopun AHK-cnupanu. MpuBeaeHHble anroputmbl 6yayT
nosnesHbl Kak B xofe in silico aHann3a oTHOCUTENBbHO KOPOTKNX
¢dparmeHToB [IHK, Tak 1 B TONONOrMYeCKOM KapTMpOBaHMM
NOJIHbIX FEHOMOB.

KntouyeBble cnoBa: KBaTePHUOHHOE MOAENNPOBaHUE; CTPYKTY-
pa OHK; KpuBM3Ha; paguyc rupaumm; nepcucTeHTHas ANnHa;
npeobpaszosaHue Oypbe; pasmpoBaHmne; N3rmbaemocTb.



y the intrinsic curvature and flexibility of the molecule,
which is driven by external forces. DNA bending and
curving play a crucial role in many important biological pro-
cesses, including recombination, replication and the excision
of damaged nucleotides. They are also important for tran-
scriptional regulation of numerous prokaryotic and eukaryotic
genes, as well as DNA-protein recognition and interactions. By
now it is definitively known that intrinsic DNA curvature is a
major determinant of nucleosome organization and position-
ing, facilitating chromosome folding and DNA packaging in
the nucleoid, promoting the appropriate mode of supercoiling
and protecting the prokaryotic genome from phage integration
(see References in the Supplementary material)!.

Predictions of sequence-dependent mechanical properties
of DNA are important for understanding many biological
processes associated with the various DNA-protein interac-
tions, including the phenomenon of “indirect readout”. The
micromechanical characteristics of the DNA molecule can be
described by a variety of models, including the remarkably
effective worm-like chain (WLC) model for semiflexible
polymers (Kratky, Porod, 1949). In this model, the bending
stiffness of a molecule is described by its persistence length.
However, the WLC model is valid only for isotropic, intrinsi-
cally straight, homogeneous polymers and cannot be applied
in its original form to DNA molecules, which contain non-
Gaussian deformations, such as the intrinsic bends (Schellman,
Harvey, 1995; Rivetti et al., 1998).

The intrinsic curvature of DNA is mainly determined by
the length and localization of adenine tracts (A-tract, A T, ,
n+m > 4). The helical phasing of A-tracts and other bent
DNA-related sequences for a long time formed the basis of
the central concept of intrinsic DNA curvature. More than
30 years ago it was demonstrated how localization of local
bends affects the global curvature of a DNA molecule (Wu,
Crothers, 1984; Hagerman, 1985; Koo et al., 1986). In par-
ticular, it has been shown that macroscopic DNA curvature is
strongly affected by the phasing of local bends. Since the bends
produced by A-tracts have directional preference, their system-
atic alternation in phase with the helix screw add coherently
and significantly increases the macroscopic DNA curvature,
whilst for “straighter” DNA molecules the systematic bends
are nearly exactly out of phase (Koo et al., 1986). The Discrete
Fourier Transform (DFT) is used to detect the periodicity of
any property along a sequence, through calculation of the
Fourier transform power spectrum. However, this method is
valid only for planar systematic bends, which are oriented in
the same direction or, often, the bends, which are determined
by repeats of a sequence motif. It is important therefore to
predict the macroscopic DNA curvature based on the phase
of local bends, regardless of their origin.

Since DNA conformation has been shown to be sequence
dependent, this has led to the development of series of models
for in silico prediction of DNA shape based on sequence-
dependent parameters of base pair steps in di-, three- and tetra-
nucleotide contexts. These base pair steps (or often wedge)
parameters were chosen through many different methods,
such as circularization, gel-mobility, DNAse I digestion and

_|_he shape of DNA is sequence-dependent and determined
b

T Supplementary materials are available in the online version of the paper:
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nucleosome positioning data, X-ray crystallography, nuclear
magnetic resonance (NMR) spectroscopy, conformational
energy minimization and computer simulation (see References
in Supplementary material). Nonetheless, there is no complete
consensus on sequence-dependent parameters that are optimal
for accurate prediction of DNA shape.

Base pair orientation in the DNA helical structures is de-
scribed by a set of intra and inters parameters, each including
of three rotational and three translational parameters. Internal
parameters determine the conformation of bases in the local
coordinate frame of a base pair, hence, they do not affect the
trajectory of the DNA helical path. The set of inter base pair
geometrical parameters consists of the three rotations by
tilt (1), roll (p) and twist (Q2), and three translations shift (Dx),
slide (Dy) and rise (Dz) about X, Y and Z axes, respectively
(Fig. 1), in the standard coordinate frame approved by the
Cambridge convention (Dickerson, 1989). In this manner, the
inter base pair parameters are used to construct low resolution
(coarse-grained) three-dimensional DNA structures. Such
translational parameters as shift and slide define the local
displacement between adjacent base pairs (Vslide? + shift?).
The magnitude of twist characterizes the degree of torsional
twisting of the double helix. Only the parameters of roll and tilt
make the main contribution to bending of the DNA molecule,
herewith the total local bend of each dinucleotide step can be
represented as Vtilt? + roll?. Thus, the DNA trajectory, model-
ed in this way is a spatial curve, the shape of which is mainly
determined by the accumulation of local bends (of specific
magnitude and direction), local displacements, translation by
rise and rotation by twist. In a recent study, the genome-scale
computational analysis of DNA curvature based on three-
dimensional trajectories of DNA molecules calculated from
a set of inter base pair conformational parameters was carried
out for Arabidopsis and rice (Masoudi-Nejad et al., 2011).

The rigid transform includes six degrees of freedom, con-
sisting of three translational and three rotational components.
The most popular method of storing and combining these
transforms are matrices. Use of the matrix transformation
technique is a standard method for calculation of the DNA
path (De Santis et al., 1990; Bolshoy et al., 1991; Babcock et
al., 1994; Liu, Beveridge, 2001). Quaternions are the more
straightforward and robust alternative for matrices. They are
more compact, reduce the volume of algebra and minimize
computation. However, the unit quaternion can represent only
a rotation without translation. Dual quaternions allow us to
unify the translation and rotation into a single state.

In the present guide to DNA shape analysis the use of unit
and dual quaternions to coarse-grained modeling of three-
dimensional DNA structures is described in detail. Proven
algorithms for efficient prediction and analysis of the shape
of DNA molecules are described as follows. The discussed
methods are fast and robust making them appropriate for
operative prediction of curvature- and bendability-dependent
DNA shape at any scale.

1. Obtaining base pair step parameters

The calculation of the DNA helix trajectory is performed based
on the average values of local helical parameters. These para-
meters can be obtained from various sources, such as scientific
papers, the base pair parameters database (DiProDB, http://
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Fig. 1. Base pair orientation parameters, following the Cambridge con-
vention. Three rotations (twist, roll, tilt) and three translations (rize, slide,
shift) of a base pair about the Z, Y and X axes are indicated.

diprodb.leibniz-fli.de) or alternatively, they can be deduced
from three-dimensional DNA structures. This last method
is optimal, since it allows us to choose the most suitable or
desirable to resolve specific problems the DNA structures
(with specific nucleotide content or conformation, obtained
in different conditions etc.) to deduce base pairs parameters.
This significantly increases the flexibility of DNA molecular
modeling and expands the possibilities for further investiga-
tions. In particular, specific sets of base pair parameters can
be used for modeling and analysis of unusual DNA structures
that are different from canonical B-DNA.

As the Protein Data Bank (PDB) is the largest current source
of information about the three-dimensional structures of bio-
logical molecules (Berman et al., 2003), including nucleic
acids, its will be enough to obtain primary data for further
estimation of DNA base pair geometry. Currently, more than
1700 DNA structures are publicly available in the PDB data-
base. They are represented in different conformations obtained
using a range of methods, such as X-ray crystallography (of
various resolutions), solution NMR spectroscopy, neutron
diffraction and others. However, many DNA molecules are
chemically modified or represented in complex with ligands.
It seems quite clear that DNA conformation is substantially af-
fected by crystal packing, bases modification and interactions
of the DNA with the other molecules or ions. Thus, the most
suitable base pair conformational parameters for modeling of
the DNA structures are provided by NMR in water only solu-
tions. Previously it was shown, that distinct from the X-ray
crystallographic analysis, helical parameters derived from
NMR structures can correctly predict the curvature of DNA
molecules (Gabrielian, Pongor, 1996). However, it should
be noted that until the late 1990s the accuracy of the NMR
method was not sufficient to evaluate small intrinsic bends
of the DNA axis (Vermeulen et al., 2000). A full set of helical
parameters from the selected DNA structures can be deduced
using the Curves+ (Lavery et al., 2009) or 3DNA (Lu, Olson,
2003) programs.

As arule, each DNA structure from PDB is represented by
5-10 conformers possessing the lowest energy. For this rea-
son, base pair parameters deduced from individual structures
should be averaged over all conformers, and the standard
deviation for each parameter should be evaluated (further, the
standard deviations can be used for estimation of the dynamic
persistence length). To eliminate errors associated with “end
880

Vavilov Journal of Genetics and Breeding - 2017 - 21 -8

A.F. Muterko

effects”, only the central base pairs should be used in computa-
tion. Since structural properties of dinucleotides in the DNA
molecule depend upon the flanking base pairs, the parameters
of base pair steps should wherever possible be applied in
tetra-nucleotide context. (The base pair step parameters used
here for reconstruction of the DNA trajectories are provided
in the Supplementary material.)

2. DNA path modeling

According to quaternion algebra, the vector function of the
DNA sequence describing the position of the n-th base pair
in the DNA path in the Cartesian coordinate system can be
represented as:

n i — i -1
P(ﬂ) _, Zz{k B [QQAPI(TI(] V(";*Dx,’}’ﬁDy,’Zi*Dzi) ° {kg[QQmTJ} ]’ M

i
here [ ] is the consistent quaternion multiplication
w kI:Tz QQkpktk qu ultip

of the quaternion Oy, , . realizing rotation about the Z, ¥ and

Xaxes consistently by angles, defined by the twist (Q), roll (p)
and #ilt (t) parameters of the neighboring base pairs (k— 1, k):

—COS%COS%COST + s1n% sm% s1n7
cos%cos%smT - sm% sm%cosT

QQkPka B cos% sm% 0057 + s1n% cos% smT ’ @
- cos%sm% SmT + sm% cos%cosT_

Vector V contains the coordinates of the

(x;+Dx,,y;+Dy,,z;+Dz,)

i-th element (atom molecule, point or any structure) in the in-
trinsic coordinate frame of the dinucleotide step (for example,
the coordinates of the idealized phosphate of the first strand are

contained in the vector V( Dx,8.914Dy,2.08+ Dz))" The quaternion

of rotation and translational vector together calculate the rigid-
body transformation between two successive base pair steps.

The initial displacement on shift (Dx), slide (Dy) and
rise (Dz) for each transformation can be simplistically repre-
sented using dual quaternions:

_ LU A A%
P (n)_lEZ[QTRi ° Qe, -0 TR,]
A 1
QTR[: Qr‘. + EEQri ° Qd[

Q"i - kEIz[QQkPkT/J ' (3)
Qd,» =[0,Dx,,Dy,,Dz,]

0r=0,-[s20,-0,]

The dual quaternion Q contains the coordinate of any ele-
ment, which is associated with the i-th base pair (for example,
the coordmakes of the base pair center are contained in the dual
quaternion Q . =[1,0,0,0][0,0,0 0] coordinates of the idealized
phosphate of the first strand in Q =[1,0,0,0][0,0,8.91,2.08]).

The use of dual quaternions is a fast, simple and robust
way of molecular modeling. For example, to model base pair
conformation, determined by such local (inter base pair) pa-
rameters as shear (Sx), stretch (Sy), stagger (Sz), buckle («),

Structure and interaction of macromolecules
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propeller (n) and opening (o) the dual quaternion Q for each
base in the i-th pair can be represented as:

Q .: QG-T[-K + SlQG K, QS[
: “)
QS [0,8x,,Sy,,5z,]

Similar to dinucleotide step parameters, the local geomet-
ric parameters of base pairs can be obtained from articles or
deduced from published three-dimensional DNA structures
using Curves+ or 3DNA programs. The atomic coordinates
for each base and sugar phosphate backbone can be obtained
from relevant publications (Clowney et al., 1996; Gelbin et al.,
1996; Parkinson et al., 1996; Olson et al., 2001) or structure
databases.

Although displacements by slide and shift do not contribute
to DNA bending, they make the main contribution to noise in
further measurements. For this reason, these parameters can be
ignored in subsequent in silico estimations of the DNA curva-
ture. If for subsequent measurements only the DNA trajectory,
excluding displacement by shift and slide is required, the use
of dual quaternions is redundant and the equations above for
unit quaternions can be simplified to:

P(n) lé:Z[ XppYis ]
=1 Z"(2Q3Q1+2Q2Qo)
Yi— I "(2Q3Q2 2Q Qo) . (5)

oo [0 [0+ (0T

Qi:kljz[QQkPk’k]

Calculation of the three-dimensional DNA structures was
carried out in the local Cartesian coordinate system in ac-
cordance with the transformations defined by the Cambridge
convention on the definitions and nomenclature of nucleic
acid structure components (Dickerson, 1989). The center of
the first base pair is located at the origin of the coordinate
frame, at point 0.

3. Features of DNA molecule estimation
from helical patch

Curvature
Overall, the curvature vector of a spatial line is defined as the
derivative of the tangent unit vector along this line. Its modulus
is the inverse of the curvature radius and its direction is the
direction of the main normal to the curve (Landau, Lifshitz,
1970). In terms of a DNA molecule this means the angular
deviation between the local helical axes of the successive base
pairs. The curvature forms the basis for further estimations of
the shape of the DNA molecule. For this reason, there are many
ways in which it can be measured. As a rule, the curvature is
estimated in DNA curvature units, where one curvature unit
is defined as the average curvature of DNA in the nucleosome
core particle, 1/42.8 A (Trifonov, Ulanovsky, 1987).

The DNA curvature of a segment can be calculated from
the inverse of the radius of a circumscribed circle of a triangle
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with vertices on helix axis coordinates at the center and both
ends of this segment. If the sliding window has a length of
2hw bp, the DNA curvature C in the i-th position is given by:

{C =4~/(P(P—a)(P—b)(P— c))/abc
P=(a+b+c)/2 ©)

where a, b and c are the distances between the points (i—Aw, i),
(i, i+hw) and (i—hw, i-+hw), respectively.

Curvature estimation during the least square circle (LSC) fit
is based on the fitting of a circle to the coordinates of the DNA
molecule curved in a plane. The radius of this circle is taken
as a measure of the curvature of the DNA fragment (Kanhere,
Bansal, 2003). In order to evaluate the planarity of the bend
and further projection, the best fit (least squares) plane (LSP) is
calculated to a set of base pair centers of the analyzed segment.
The possibility of applying this method should be grounded
by low values of the root-mean-square deviation (RSMD),
estimated for LSC and LSP (RMSD values of distances from
the reference and fitted feature (circle or plane)).

The original interpretation of DNA curvature was proposed
by De Santis (De Santis et al., 1988). Since DNA curva-
ture C(n) is a local property of the DNA axis and represents
its directional change along the sequence, the distortions of
the B-DNA axis along the chain gives the value of curvature
per turn in modulus and phase, calculated for recurrent turns
along the sequence (De Santis et al., 1988):

2mis

C(n) = v(n,— nl)IZ [P;”J -, (7)

where C(n) is the average curvature vector, characterizing the
orientation deviation of the helical axis between #,, and n,
sequence numbers, per turn of DNA with helical periodicity v
(v =10.4), assigned to the position of the average sequence
number of the tract (n = (n,+n,)/2), the local deviation of the
s-th base pair plane from the canonical B-DNA represented
as a complex vector in terms of the o/l and tilt angles. This
is the most popular method for estimation of DNA curvature
from the nucleotide sequence directly, without modeling of
the helical path in advance.

The local bend angle characterizes the deflection of the
helix axis and is calculated as the angle between the tangent
vectors in the direction along the contour of the DNA molecule
(or as arccosine of a scalar product if these tangents are unit
vectors). The tangent vectors can be represented as the unit
vectors, indicating orientation of the base pair centers, or as
the vectors, connecting n and n+s bp (s <[3, 15]), or alterna-
tively, as the unit vectors (normals) averaged over 11-15 bp
(centroids of helical turns). Some authors distinguish the bend
angles estimated using of tangent vectors obtained in the lat-
ter two ways as successive and cumulative (Kanhere, Bansal,
2003). The cumulative bending angle between the averaged
normal vectors >15 bp apart is often used in the estimation
of DNA curvature (Goodsell, Dickerson, 1994; Gabrielian,
Pongor, 1996).

DNA curving can be estimated based on radius of gyration
(see Supplementary materials for detail). When comparing
DNA molecules of identical sizes the radius of gyration will
be smaller for curved and larger for extended molecules
(Dlakic, Harrington, 1998). Furthermore, information about
the different shape properties such as symmetry, anisotropy,
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asphericity, acylindricity and more can be extracted from
the various combinations of the orthogonal components of
the radius of gyration tensor (Jernigan et al., 1987; Olson et
al., 1993; Dlakic, Harrington, 1998; Kanhere, Bansal, 2003;
Rawat, Biswas, 2009).

The d-max (Tung, Burks, 1987) is the maximum orthogonal
distance from the base pair center to the straight line con-
necting the ends of the analyzed segment, evaluated over all
base pair centers of this segment. This value is estimated as
the maximal perpendicular distance (p-dist) over all base pair
centers. In its turn, the perpendicular distance is the minimal
distance from the i-th base pair to the straight line connecting
the ends of the segment.

Lastly, the curvature of the DNA molecule can be simply
characterized by the ratio of the curvilinear distance (contour
length) to the linear distance between the ends of the segment
(SD value) (Eckdahl, Anderson, 1987; Tan, Harvey, 1987) and
vice versa (Qc, (Dlakic, Harrington, 1998; Kanhere, Bansal,
2003; Matyasek et al., 2013)). Large values of C, d-max and
SD indicate a more curved DNA fragment.

The sliding window technique is a common way for ana-
lyzing this distribution. Reducing the size of the sliding win-
dow increases the resolution and magnitude of the curvature
measurements, but also increases the noise that is determined
by local bends (by roll and tilf) and displacements (by shift
and slide) of adjacent base pairs. In order to reduce the noise,
the size of the sliding window as a multiple of a helical turn
(10 or 10.4 bp), from 20 bp is recommended. Furthermore,
since local bends during a helical turn, as a rule, are mutually
compensated, when the curvature is estimated for a position
in the center of sliding window, the size of a half window
should be a multiple of 10 (for example, see the analysis of
the “Hagerman paradox”, below).

Persistence length
Persistence length is a key parameter for quantitative inter-
pretation of the conformational properties of DNA. Theoreti-
cally, the persistence length can be formulated in terms of the
magnitude of the projection vector and the tangent-tangent
correlation function. In previous studies, both methods were
successfully applied to estimation of the persistence length
of DNA molecules from the reconstructed 3D trajectories of
helical paths (Shpigelman et al., 1993; Bednar et al., 1995;
Schellman, Harvey, 1995; Vologodskaia, Vologodskii, 2002).
In terms of projection vector, the persistence length (P)
can be defined as the average projection of the end-to-end
vector (/) onto the unit vector of the first segment (/,) in the
limit of infinite chain length (Flory, 1969). It is likely that for
a long heterogeneous chain with average link angle the more
statistically significant is the average projection of end-to-end
vector on the direction (unit vector) of each segment along the
chain. Thus the persistence length is averaged over position
and direction is given by:

a1/ I_N'Tj>
Potmyl s o/ ®
Persistence length, measured in this way characterizes
the chain length through which the memory of the initial
orientation persists. So that its will be strongly dependent on
the direction, length, homogeneity and shape of molecule.
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Nevertheless, for the cases when L>>P this method can be
effectively used for the operative estimation of the DNA
persistence length.

According to the tangent-tangent correlation function
(Landau, Lifshitz, 1958):

SR _Siisy

<cos(6)> - <1(s,.) -1(s,,+1)> e P, ©)
where (cos(0)) is the average cosine calculated from the com-
plete set of local bend angles (8) measured between the unit
vectors (/) tangent to the chain at the points s; and s, ., (spaced
of contour length 7 (s;,,—s,)) collected over the entire chain.
Tangent vectors can be calculated in the various ways de-
scribed above keeping in mind that the method employed will
dramatically affect the deflection angle and, hence, persistence
length estimation. In particular the persistence length strongly
depends on the scale of measurements, i. e. when unit segments
of'the DNA chain are bonds between base pairs, or when they
are centroids of helical turns (see Supplementary materials).

The average cosine 0 is a multiplicative function of segment
length /, assuming that the average directional correlation
between two segments decays exponentially along the chain.
The distribution of —In{cos(0)) is evaluated for the segments
of different length /, where / is the average curvilinear distance
between base pair centers, separated by the n bp window,
moving along the sequence with a step of >1 bp. Since cor-
relation in the orientation of segments decays exponentially
to their distance, the —In{cos(0)) will be linear. The persistent
length can be calculated from the inverse of the regression
slope of the —In{cos(0)) distribution plot. Application of this
method should be justified by a good linear fit of the —In(cos(6))
distribution (coefficient of determination, R? > 0.9).

The equations above are suitable only for intrinsically
straight, homogeneous polymers. However, in most cases the
analyzed DNA is not straight, but contains numerous planar
and coplanar static bends as well as segments with different
flexibilities, located at any position along the chain. For such
heterogeneous polymers, the persistence length strongly de-
pends on the starting position, the direction, and the length
of the fragment. One of possible solutions is the division of
the DNA path into a set of large fragments between the bends
and a set of small fragments overlapping these bends, then
estimation of P can be conducted for each of these fragments
separately (Supplementary material contains examples for dif-
ferent cases). Following that, the average persistence length
of a chain can be derived from summation of P over all frag-
ments (N) with length / (Rivetti et al., 1998):

L Y1
7= EIE. (10)

Thus, the resultant persistence length (averaged over all
fragments of molecule) will be mainly determined by the
minimal P among all fragments. Furthermore, it seems that the
contribution of intrinsic bends to persistence length calculated
in this way will be decreased.

The apparent persistence length (P,) of the DNA molecule
includes contributions from both static (P,) and dynamic (P,)
persistence lengths, which are related as follows (Trifonov et
al., 1988; Schellman, Harvey, 1995):
11,1
P, P P

a s

(11)

Structure and interaction of macromolecules



KBaTepH1OHHOE MofenpoBaHne TpaeKTopum
cnvpanu ans aHanusa ¢opmbl monekynbl HK

Static persistence length is determined by the intrinsic DNA
curvature (shape) at the minimum energy conformation, with-
out accounting for thermal fluctuations. The equations above,
applied to the predicted DNA trajectories, estimate the static
persistence length. Conversely, the dynamic persistence length
characterizes the rigidity of the DNA molecule in thermal
fluctuations of the angles between adjacent base pairs. As-
suming crystal packing, interactions with proteins and thermal
fluctuations as external perturbing force fields, eliminating
correlations in the bend directions, the dynamic persistence
length can be estimated from the DNA sequence using a set
of dispersions of roll (p) and #ilt (t) angles (which can be ob-
tained from the same sources as for the base pair parameters
or during averaging of base pair parameters, see Section 1)
for all dinucleotide steps (Vologodskaia, Vologodskii, 2002):

(12)

where p; is the probability of dinucleotide i, the length of
segment / << P is an average rise (~3.38 A) and 9 is the vari-
ance of the local bend angle (in radians) of i-th d1nucle0t1de
(6 = Apl + Ar , p and 1 in radians, 0, << 7/2).

However it should be noted that whereas flexibility of base
pair steps in overall correlates well with local bends, as deter-
mined by roll and tilt (Olson et al., 1998; Packer et al., 2000;
McConnell, Beveridge, 2001), the bends produced by A-tracts
are highly stable with a midpoint of structural transition near
30 °C (Chan et al., 1993) and a melting temperature above
37 °C (Chan et al., 1990; Jerkovic, Bolton, 2000). Thus, al-
though the static persistence length of A-tracts-produced bends
is very small, the dynamic persistence length of these bends
will be very large. Since P, is always less than either P or P,
the correlation between apparent pers1stence length, calculated
from the summation of P;' and P,', and the stiffness of DNA
containing A-tract induced bends will be lost. The extremely
low static (P) and exceptionally high dynamic (P,) persistence
lengths at relatively large apparent persistence length (P, ) were
noted in a recent study of DNA molecules containing A-tract
related large intrinsic bends (Mitchell et al., 2017).

Helical phasing. DFT analysis

Discrete Fourier transform is extremely useful for macroscopic
DNA curvature analysis. This is due to its ability to reveal
periodicity in analyzed DNA properties, such as local curva-
ture in sliding window, as well as the relative strength of any
periodic components. Subsequent DFT frequency spectrum
analysis allows us to detect and quality evaluate the regular
alternation of DNA bends along the molecule. The discrete
Fourier transform is defined as:

N-1 »

Fk:jgoxjesz N ke[0,N-1], (13)
where x; is a property value in the j-th position, represented as
a complex number with a zero-valued imaginary part, and & is
the frequency domain (for positive frequencies & € [0, N/2—1]).

In the case of DNA analysis, the sampling frequency (fs,
sampling rate) is the ratio of the data set size (V) to the step of
the sliding window. The minimal frequency (frequency resolu-
tion) is given by Af = fs/N and maximal frequency (Nyquist
frequency) is f5/2. Since this DFT spectrum is N-periodic, each
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frequency domain characterizes the distribution of values of
the analyzed features with frequencies of f per N bp and a
maximum 1/2 bp~! (f=Afx =x, x € [0, N/2]).

The magnitude of the frequency domain for the real input
data is calculated as:

2 2

e2mifkI(N12)

NI i it S
— T T
| onzje D) +e onzjﬂ

. (14

The phasing of systematic bends can be evaluated from
the data of distribution of the local curvature in the course of
frequency analysis of the DFT power spectrum. The frequency
of helix turns (/%) in the DFT spectrum is N/10 (where 10 is
the floor of average twist, 10.4 bp) and the initial phase is 0°.
The local bends repeated with a frequency multiple of /4 or
with variations around this are phased with the helix screw:
they have the same direction and progressively increase the
macroscopic curvature of the DNA molecule. The fractional
part of the ratio of f% to the frequency of local bends repeated
in antiphase is near to 0.5: these bends are oriented oppositely
(phase shift is 180°, 2z-0.5) and mutually compensate each
other.

In order to demonstrate how phasing of DNA bends affects
the shape of molecules, the trajectories of the (A;N;), (curved
DNA, local bends in phase) and (AsN,,), (straight DNA,
local bends out of phase) sequences were modeled and the
DFT power spectrum of curvature distribution was analyzed
(Fig. 2). If sampling is 128, the f/ =13 (128/10). The (AsN,,),
DNA fragment contains systematic bends, repeated with a
frequency between 8 and 9 that corresponds to {f%/8.5} =0.5.
Hence, the phases of neighboring bends will be opposite and
the molecule is almost straight (see Fig. 2). The systematic
bends of the (A;N;), DNA fragment repeated with a frequency
of 13 corresponds to fh, hence, the local bends alternate in
phase with the helix periodicity, and the resulting global cur-
vature of DNA molecule will be large (see Fig. 2).

For operative estimation of the phasing of DNA bends, the
DFT power spectrum can be evaluated only for frequencies
near to the frequency of the helix screw (w, average twist
angle, 34.6°) (Gabrielian, Pongor, 1996). In this case, the
period is 2w (360°, one helical turn), hence frequency (k/N)
is 34.6°/360° and the average twist corresponds to angular
frequency © = 2134.6°n/2n180° (in radians). The discrete
Hartley transform (DHT) is an alternative for the real DFT.
DHT for angular frequency o is given by:

| N1
Z x;cas(jo), (15)
where cas(jo) = cos(jo) + sin(jo).

The magnitude of this frequency bin in terms of DHT can
be expressed as:

2 2

1 N-1 . )
+ Njgoxjsm(ﬂo) . (16)

175 .
)=y 2 costio)

The DFT power spectrum should be calculated for frequen-
cies in range of minimal and maximal values of twist angle
(as a rule from 27° to 42° for B-DNA). The supplementary
material contains some recommendations on the use of DFT
analysis in studying of the DNA curvature distribution.
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Fig. 2. Reconstructed DNA paths of the experimental molecules, containing repeated A-tract in phase ((A;Ns),,) and out of phase
((A5N4),)) with the helix screw. DFT power spectral for both molecules were calculated using values of DNA curvature as input
data, estimated in a sliding window of 40 bp and step of 1 bp, using equation (6). The dominant frequencies for each spectrum

are indicated.

Phasing of coplanar and non-periodic bends

It seems obvious that non-periodically bends in phase as well
as bends in opposite directions in antiphase will increase the
macroscopic DNA curvature. Furthermore, the orientation
of bends is not distinguished by the DFT method, so that
coplanar bends will be taken as planar, leading to distortion
of the results. For this reason, the definition of phase relative
to the direction of the DNA trajectory will be useful. In order
to define the relative phase (¢, ,) of the vector position of the
center of bend (“bend vector”, for example this can be the
center of an analyzed segment: vb, . =v . —v ) the “direc-
tional vector” vd, = v, ., —v, was aligned with the X axis and
then the coordinate frame was rotated around the Y axis by
90° to align vd with the Z axis (the direction of this rotation is
determined by the sign of x coordinate of vd). The quaternion
for realizing these rotations is given by Q¢:

= [0.7,0,70.7 Y ,O}Q“‘
|xwl‘
0| 4R [0Fo 4Ry ERy 0R R . 1)
2 @RV 2 @RV 2 @R\ 2
qR = [Oax‘;dsoao] ° Vd
Vdl
where IBLRO equivalent to the cos(acos(qR,)/2), % is

the sin(acos(qR,)/2), and {gR|, qR,, qR;}/qR are the direction
cosines at X, Y and Z axes respectively.
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To align the unit vector with the X axis we can simplify the
calculation of ¢R to:

X X
qR :|:|x ’d|7oaz)d “vd a_y od Vd:|) (18)
! ‘ |xvd| k ‘xvd|
X, .. . .
where the ‘x”d‘ ratio is necessary to get a sign. The phase is
vd|

estimated by all four quadrants as the cosine of the angle
between the projection of curvature vector on XY plane and
the direction of the X axis (1, 0, 0):

vb = Q"Povb ° (Q(P)*l

b (19)
(O [13050] |Vb‘

For example, Hagerman has shown that DNA sequences
containing repeating runs of A, T, in phase were significantly
bent, whereas those with T,A, (A-tract in opposite polarity)
were almost straight (Hagerman, 1986). Thus, there is a fun-
damental difference in the structure of A\ T, and T, A, DNA
segments, despite their identical nucleotide composition and
phased bends. In fact, the distribution of curvature in these
DNA molecules have the same DFT frequency spectrum with
a peak of magnitude for 10.04 bp period, which is multiplied
to the period of helix axis ({10.4/10.04} = 0.036 << 5) that is
also consistent with experimental data (Price, Tullius, 1993).
Thus, at first glance in both cases the phased bends should
increase the macroscopic curvature of DNA molecules sig-
nificantly. However analysis of the phase spectrum makes it
clear (Fig. 3) why in the first case ((CA,T,G),) DNA fragments

Structure and interaction of macromolecules
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Fig. 3. The “Hagerman paradox”analysis using discrete Fourier transform and the phase spectrum calculated by equation (17). Curved ((CA,T,G),) and
“straight” ((CT4A4G),,) DNA molecules have similar frequency spectral, but differ in the phase spectrum of curvature, calculated relative to direction of
the DNA path. The macroscopic bends of the “straight” fragment orient in opposite directions and compensate each other. Curvature was analyzed in

a sliding window of 30 bp and 1 bp step.

are exclusively curved, but in the other case ((CT,A,G),)
the fragments are almost straight (“zig-zag” structure). In
particular its shows that the bends produced by (CT,A,G),
are oriented in opposite directions and mutually compensate
each other (see Fig. 3).

However, it should be noted that magnitudes of DFT power
spectrum of the (CT,A,G),, straight fragment will be relative
high only if the size of the sliding window wherein DNA cur-
vature is estimated is in multiples of an odd number of turns.
If the size of the half window is a multiple of 10 (one helical
turn) the amplitude of curvature of the (CT,A,G), fragment
is near to 0. This is consistent with the fact that oppositely
oriented bends, in this motif, are mutually compensated in
one turn (Stefl et al., 2004). The present example shows how
a change in the size of the sliding window can be adopted for
specific research tasks.

Conclusion

More than 30 years ago it was shown that computer modeling
of DNA sequences is a viable approach to the study of the
biological implications of DNA structure. A lot of research has
been devoted to this problem. The estimation of the intrinsic
curvature of relatively short DNA fragments (<10 kb) can be
useful in investigating various features, such as analysis of
promoter and regulatory regions of specific genes, or the parts
of the genome associated with recombination suppression and
heterochromatin packing, nucleosome positioning, design of
shape-related DNA markers and many others. Furthermore, the
actual aim is the monitoring of DNA curvature and bendabil-
ity over hundreds and thousands base pairs. Similar studies,
previously performed for many prokaryotic and eukaryotic
genomes, provided important information about their spatial
organization and its influence on various biological processes.
The algorithms discussed in the present guide formed the
basis for such investigations and will be useful in analysis

CTpyKTypa 1 B3aMOAeNCTBIE MaKpOMONEKy

of relatively short DNA fragments as well as for topological
mapping of whole genomes.
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