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With the expected development of thousands of molecular markers in most crops, the marker-assisted 
selection theory has recently shifted from the use of a few markers targeted in QTL regions (or derived 
from candidate or validated genes) to the use of many more markers covering the whole genome. These 
genome-wide markers are already used for association analysis between polymorphisms for anonymous 
markers and qualitative or quantitative traits. The condition for success is that a sufficient level of linkage 
disequilibrium (LD) exists between the adjacent markers used for genotyping and the true genes or QTLs. 
This LD is known to vary among species and type of genetic material. In selfing species, particularly among 
breeding lines, LD has been reported to range up to 1 cM or more. In such conditions, uncharacterized 
markers can be used to predict the breeding value of a trait without referring to actual QTLs. We present 
an example applying DArT markers to the INRA wheat breeding material in an attempt to implement 
whole genome selection as an alternative to phenotypic selection. This study assesses different models 
(GBLUP, Ridge Regression BLUP, Bayesian Ridge Regression and Lasso) and their ability to predict the 
yields of genotypes evaluated in a multi-site network from 2000 to 2009 in a highly unbalanced design. 
The prediction coefficients obtained by cross-validation techniques are encouraging, given the small size 
of the training population.
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Introduction

To satisfy the demand of the growing world 
population, agriculture faces the challenge of de-
livering safe, high-quality, and health-promoting 
food and feed in an economical, environmentally 
sensitive, and sustainable manner while maintain-
ing yield and stability across different environ-
ments affected by climate change. Grain cereals – 
mainly wheat, rice and maize- represent a major 
renewable resource and are among the most widely 
grown crop worldwide. Wheat is the most widely 
grown crop worldwide with an average global an-
nual harvest of 621 million tons of grains. Wheat 
demand is expected to increase from 621 mt to 
760 mt in 2020, to 813 mt in 2030 and more than 
900 mt in 2050 (FAO, 2002). This implies annual 
production growth rate of about 2 %, while it was 
limited to 0,9 % from 1985 to 1995. Moreover, the 
rate of yield increase has slowed down from 1995 
to 2005 in nearly every country (Complementary 
strategies ..., 2009; Wheat facts ..., 2009), and it is 

close to 0 in EU, particularly in the major producing 
countries like France, Germany and UK.

This yield increase should be achieved by 
«sustainable intensifi cation». Thus, accelerating 
genetic progress is recognized as a priority in most 
countries. Genetic progress per year is given by the 
general formula:

ΔG = i·h2·σP / L (where i is selection intensity, 
h2 trait heritability, σP phenotypic variability and 
L the duration of selection cycle). 

The utilization of markers has been proposed 
as a means to improve trait heritability and in-
crease selection intensity (by reducing need/cost 
of phenotyping). Marker assisted selection (MAS) 
can be used to accelerate and improve the transfer 
of traits under mono or oligogenic control. For 
example, MAS can facilitate the transfer from an 
unadapted source into an elite genetic background 
through recurrent backcrosses. It has been demon-
strated that the use of markers tightly linked to the 
causal gene can avoid costly and time consuming 
phenotyping, while genome wide markers enable 
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to recover most of the elite background in two or 
three backcrosses instead of 6–7 while limiting 
linkage drag. In the case of complex traits such as 
yield, there are likely many genes with quantitative 
effects (QTLs), which have not all been identifi ed. 
Therefore, the former strategy of marker assisted 
transfer cannot be applied, and is generally replaced 
by marker assisted recurrent selection, whose ob-
jective is to increase the frequency of favourable 
alleles at most QTL. By this way, the probability of 
identifying lines which cumulate favourable alleles 
is also increased.

In their pioneering work, Lande and Thompson 
(1990) proposed an extension of the index selection 
theory by adding a molecular score to the classi-
cal phenotypic score. They introduced the theory 
for optimizing weights given to each component 
and demonstrated that this index is in any case at 
least as effi cient as the phenotypic score alone. 
Note that this approach of marker assisted recur-
rent selection used only markers which have been 
identifi ed as being signifi cantly associated (linked) 
to QTL. The effi ciency of MAS/phenotype selec-
tion is higher when the trait has a low heritability, 
the population size is large and the detected QTLs 
explain a large proportion of the trait variation. 
Thus further studies have shown that effi ciency 
is improved when including QTLs with small ef-
fects, even if they are false positives, rather than 
being too stringent during the QTL detection step 
(Moreau et al., 1998; Bernardo, 2006). This com-
bined index theory has been adapted, particularly 
by removing the phenotypic component. Hospital 
et al. (1997) showed that the use of marker index 
only allows early selection, without trait evaluation, 
thereby shortening selection cycles and accelerat-
ing genetic gain per cycle. However, after several 
cycles of selection, some favorable alleles may 
become fi xed, and recombination will decrease 
linkage disequilibrium between QTLs and mark-
ers. It is then necessary to regularly re-estimate the 
associations between QTLs and markers and their 
effects on the trait (Gimelfarb, Lande, 1994). The 
interest of marker assisted selection for quantitative 
traits has been experimentally demonstrated (e.g. 
Eathington et al., 2007; Blanc et al., 2008) and they 
are currently used in routine by most large plant 
breeding companies. 

However, the effi ciency of these marker assisted 
selection methods can still be limited by the fi rst 

step of QTL detection, whose power can be low for 
QTL with small effects in breeding populations of 
limited sizes. For complex traits, like grain yield, 
the most likely hypothesis is that they are controlled 
by a very high number of genes, most with small 
effects below the detection threshold. Therefore, 
a large number of QTL are not accounted for by 
markers included in the selection index.

A further step was proposed by Whittacker 
(2000), who suggested including all markers in the 
selection index, thus skipping the QTL detection 
step. As the number of markers is generally higher 
than the number of genotypes, classical multiple 
regression with markers as fi xed effects cannot 
be used. Therefore Whittacker (2000) suggested 
using ridge regression models to overcome this 
overparemetrization problem. This method is based 
on introducing a penalization parameter, λ, which 
reduces the space dimensionality. Meuwissen et 
al. (2001) applied ridge regression and several 
Bayesian approaches to animal populations for pre-
dicting breeding values. They proposed the use of 
genome-wide markers to predict the genetic value 
of individuals. Therefore, it is appropriate to name 
these methods «genomic prediction». However, 
as genomic predictions are intended for selection 
purposes, the expression «genomic selection» has 
become common (e.g. Goddard, Hayes, 2007). 

The most effi cient use of genomic selection is to 
replace costly and time consuming phenotyping by 
a prediction of the genetic value of the trait under 
selection (or any multitrait index). Thus, the main 
expected advantage is to shorten selection cycles. 
However, to benefi t from shorter cycles, the genetic 
gain per selection cycle should be close to that 
expected from phenotypic or combined MAS + 
phenotypic selection. 

The relative effi ciency relies on the accuracy of 
prediction of the true genetic value by the marker 
score. Abundant theoretical quantitative genetics 
literature often report the correlation between 
genomic marker predictions and «true» breeding 
value or phenotype. The true breeding value is 
known only in simulated data, in which QTL ef-
fects are given to simulated or real markers, and 
then these effects are summed to obtain the «real» 
genetic value. In real datasets, the true genetic value 
is unknown, and it should be remembered that the 
phenotype is only a predictor of this breeding value, 
but usually the only available to compare perfor-
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mance of marker-based predictors. The quality of 
a prediction, as measured by this correlation, relies 
itself on the level of linkage disequilibrium between 
a QTL and the linked marker. The relevant param-
eter is the rІ, as it was demonstrated that the sample 
size required to detect a QTL by a nearby marker 
is 1/r2 times the size required if we has tested the 
QTL itself (Balding et al., 2007). The quality of 
the global prediction of breeding value will depend 
on the effectiveness of the markers to capture most 
of the information brought by QTLs. Thus marker 
density should be high enough, in order that every 
QTL be in suffi cient LD with an adjacent marker. 
The extent of LD has been extensively studied in 
animal and plant species, and we should keep in 
mind that it is a property of each particular ge-
nepool, and no generalization is straightforward 
among germplasm or breeding programmes. For 
example, this LD range is expected to be large in 
biparental populations, and Lorenzana et al. (2009) 
obtained reasonably good prediction with as few as 
96 markers in simulated maize progenies. But in 
progenies from more complex mating schemes, the 
required marker density will be higher (Bernardo, 
Yu, 2007; Blanc et al., 2008; Heffner et al., 2009; 
Jannink et al., 2010). Moreover, the LD pattern 
changes from one generation to the next, since 
recombination reduces the range of LD.

For practical applications in breeding programs, 
one has to estimate marker effects and add them 
to obtain the genomic estimate of breeding value 
(GEBV). This estimation requires both genotypic 
and phenotypic information in a so-called «refer-
ence» or «training» population. Then, marker ef-
fects can be used to estimate GEBV in a «target» 
population with only the genotypic information, 
and, subsequently, selection can be made on the 
GEBV instead of the phenotypes. Genomic Selec-
tion (GS) can be repeated on the progeny of crosses 
between GEBV-selected individuals and so on. 
However, as the LD between markers and QTL 
decreases from one generation to the next, GEBV 
predictions are less and less accurate. Therefore, 
new phenotypic measurements are needed to re-
estimate marker effects (see Heffner et al., 2010).

In this manuscript, we report on some prelimi-
nary results about the implementation of genomic 
prediction of yield in the INRA wheat breeding 
programme. We used both simulated and real data 
and discus some of the issues related to genomic 

prediction for wheat in France. The presented re-
sults only deal with the initial prediction of target 
populations using marker effects estimated from 
training populations sampled by cross-validation. 

Material and Methods

The INRA wheat breeding program is a carried 
out in three main research units: Clermont-Ferrand, 
Estrées-Mons and Rennes. Each breeder makes 
100–150 crosses every year, using registered variet-
ies (most recently in western Europe) for 50 % of 
parents and breeding lines from previous cycles of 
the program for the remaining 50 %. F2 to F4 plants 
are conducted as bulked families with around 2000 
plants per cross, then F5 grains from selected spikes 
are sown in single rows in a classical pedigree 
design. Bulked grains of F6 lines are sown is two 
replicate trials with randomized 6–10 mІ plots in a 
single location, then the best F7 in 3–4 replicates, 
and the most advanced F8–F9 lines are evaluated 
in a network with 4 replicates in 8–10 locations, 
according to their precocity group. To have a more 
balanced design, we kept data from 6 locations with 
the higher number of common genotypes. There-
fore, 30–50 most fi xed «new» lines enter the most 
advanced evaluation network each year. Some of 
them are evaluated only one year, some two or three 
consecutive years before being presented to offi cial 
registration for the best ones. As breeding lines are 
used as genitors only once suffi cient phenotypic data 
are available, i.e. in F8, the duration of the selection 
cycle can be estimated to at least 8 years, and more 
likely 9–10 to take into account the use of regis-
tered varieties in crossing schemes. In this study, 
we used those lines which have been evaluated in 
the complete multisite network between 2000 and 
2009. After discarding some lines with too few data 
or to many missing markers, this gave a dataset of 
318 breeding lines.

DArT markers were provided by Triticarte 
company (www.triticarte.com.au). After cleaning 
markers with more than 5 % missing data and mi-
nor allele frequency >5 %, we obtained a dataset 
with 2121 polymorphic markers.

As often reported in the literature, we used 
Monte-Carlo methods to simulate «true» breeding 
values to be estimated by GS prediction. For this, 
a subset of 50, 100 or 250 markers were sampled 
and given an additive effect drawn from a N (0,1) 
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distribution. Then the sum of the 100 QTL effects 
was summed for each individual to estimate its 
«true» breeding value (TBV), and its «realized» 
genetic variance σg

2. Finally a random was gener-
ated using a N (0, σe

2) and added to the TBV to 
generate a «simulated phenotype» (simP), where 
σe

2 being set as σe
2 = σg

2 · (1 + h2) / h2 to achieve the 
desired heritability of simP.

For estimating the accuracy of prediction on 
real data, we focused on yield, whose broad sense 
heritability in our design was estimated to 0,37. Be-
cause of the highly unbalanced design, we fi rst had 
to correct for other factor and estimate a corrected 
genetic main effect. This was achieved through the 
use of mixed models, with environments and blocks 
within environments as fi xed effects and genotypes 
as random effects, whose variance being modeled 
by an identity matrix to avoid confusion with 
further BLUP prediction using marker estimates 
of additive relationship matrix. Then the BLUP 
for each of the 318 lines were used as observed 
phenotypes (obsP).

Several statistical models are being compared 
for their prediction accuracy as measured by the 
correlations between GEBV and either TBV, simP 
or obsP.

Four statistical methods have been used to 
predict GEBV

The ridge regression, as described by Whit-
tacker et al. (2000) using a home written 
R programme (R development core team, 
2011). Basically, this methods uses a mixed 
linear model to estimate best linear unbiased 
predictor (BLUP), assuming that markers 
have random effects with common variance. 
RRBLUP uses a penalty parameter, λ2 in 
the estimator to shrink marker effects and to 
avoid over-fi tting (Piepho, 2009). In this study, 
λ2 = σe

2 / σg
2 , where σe

2 is the residual variance 
and σg

2 is the marker effect variance – estimat-
ed from the additive genetic variance divided 
by the number of markers.
The GBLUP (Coster, 2010), using the pedi-
gree library of R. The XX function solve the 
classical BLUP equation (Henderson, 1975), 
using a marker-based estimate of the additive 
relationship matrix.
Bayesian Ridge Regression and LASSO (De 
los Campos, Pérez, 2010; Pérez et al., 2010) as 
implemented in the BRR library of R.

•

•

•

Results

Figure 1 shows the correlations between 
GEBV and either TBV or simP for the 4 prediction 
methods on simulated data with 100 QTL at 3 trait 
heritabilities.

Similar to other publications, the prediction 
accuracy increases with simulated trait heritabilities 
and the correlations with TBV are all higher than 
that with simP at a given heritability. It should be 
remembered that the correlation with phenotype 
cannot exceed h, the square-root of trait heritability, 
which is verifi ed in Fig. 1. Whatever the trait 
heritability and the measure of accuracy, the 4 
methods rank in similar order, the G-BLUP being 
the least effi cient and the Bayesian approaches the 
most, particularly LASSO.

The accuracies of the four methods on the BLUP 
prediction of yield in each of the 6 locations and 
on the overall BLUP prediction are given in Table 
and illustrated in Fig. 2.

On this real trait averaged over environments, 
i.e. the best estimate of the additive main genotype 
effects, the ranking of the 4 methods is quite similar 
to that obtained on simulated data. The two Bayesian 
approaches (RRB and LASSO) clearly outperform 
the mixed model approaches. However the ridge 
regression appears to be less accurate than G-BLUP, 
which was the least effi cient on simulated data.

Prediction accuracies of the 4 methods, i.e. 
correlations between GEBV and obsP obtained 
in six different locations vary from one location 
to another, likely according to the within location 
broad sense heritability. Moreover, in some 
locations all 4 methods gave similar correlations, 
while in others there are signifi cant differences 
among them. More remarkably, the ranking of the 4 
methods according to their accuracy differs from the 
ranking observed on simulated data or even the obsP 
on all environments. This is particularly true for the 
G-BLUP method, which is never worst, and it even 
outperforms the Bayesian methods in two locations. 
It clearly appears that these BLUP estimates of 
yield, using single locations, differ from the overall 
estimate, likely due to GxE interactions.

Discussion

In this preliminary attempt to predict the 
breeding values of elite wheat lines using genomic 
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Fig. 1. Correlation between GEBV and simulated true breeding value (TBV) or simulated phenotypes (TRAIT) 
for 3 heritability values. 

RRB: Ridge regresion BLUP, GB: G-BLUP, BRR: Bayesian Ridge regression, BL: Bayesian LASSO. Mean of 100 simulations 
with 100 QTL with normally distributed effects.

Table 
Mean (and standard deviation from 100 cross-validations) 

of correlations between GEBV estimated from four statistical models 
and yield predicted in each of the 6 locations and using all locations 

Site / Model cf di em lm lu re All sites
RRB .289(.14) .471(.12) .276(.15) .332(.12) .278(.08) .297(.10) .488(.12)
GB .395(.10) .447(.15) .330(.12) .494(.08) .294(.11) .344(.11) .522(.08)
BRR .329(.12) .479(.15) .350(.11) .492(.08) .276(.16) .348(.13) .506(.11)
BL .312(.14) .479(.13) .333(.12) .456(.08) .316(.14) .324(.12) .504(.11)

N o t e s .  RRB: Ridge regression BLUP, GB: G-BLUP, BRR: Bayesian Ridge regression, BL: Bayesian LASSO.

markers, results obtained on real data are in 
accordance with those obtained on simulated traits 
of similar heritabilities. Indeed the correlation 
between GEBV and either simulated or observed 
phenotype is around 0,5. We may assume that 
the correlation with TBV of real data will also 
be similar to that obtained on simulated data, i.e. 
in the range 0,6–0,7. This value is encouraging, 
and compared to those reported by Crossa et al. 

(2010) who reported accuracy values ranging 
from 0,355 to 0,608 according to the method and 
the environment. Heffner et al. (2010) recently 
reported somewhat lower correlation, but they used 
a more conservative approach, as the used yield in 
one year as training data and correlate GEBV with 
yield in another year. If true, an accuracy of 0,6 for 
TBV is encouraging, since phenotype itself cannot 
be viewed as a perfect predictor of TBV. Therefore 
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selection based on GEBV may not be worse than 
that based on phenotypes.

However, all studies published so far have failed 
to obtain very high prediction accuracies. This may 
be due to the small size of the training population, 
which is most often lower than 1000. Hayes et al. 
(2009) gave an estimate of the training population 
required to achieve an accuracy of 0,8, according 
to trait heritability. For a trait with h2 = 0,5, the 
theoretical population size is about 5000, nearly 
twentyfold more than in the present study. Another 
limitation could come from sparse marker coverage. 
However, the average marker density achieved with 
the Dart markers, although unevenly distributed on 
the genome, seems to be suffi cient. This is related 
to the minimal extent of LD range in the studied 
material, which itself depends on the number of 
founder lines and number of generations or the 
effective population size, as discussed by Heffner et 
al. (2010). As we do not have reliable map positions 
for every marker, we do not present the pattern of 
LD in the studied material. However at fi rst glance 
there are some high values of LD between markers 
at a few cM apart. Other parameters which affect 
prediction accuracy have been recently discussed 
(Zhong et al., 2009; Iwata, Jannink, 2011).

The correlation values obtained in this study 
appear high enough to provide prediction accuracies 
of TBV of the same magnitude as that provided by 
replicated phenotypic trials. However, compared 
to dairy cow, the economic advantage of replacing 
phenotype prediction by genomic prediction is 
much less obvious in wheat. Indeed, reliable 
phenotypic prediction of breeding value of a 
bull for milk production requires measuring milk 
production of some or hundreds of its daughters 
(progeny tests). This requires at least 5–6 years, 
and the cost is estimated to be around 40 000 € 
per bull (D. Boichard, pers. comm.). In wheat, 4-
time replicated plots in 8–10 locations are usually 
considered enough to get reliable estimates of mean 
breeding values of a breeding line, which costs a 
few hundred euros. Thus the main interest of GS in 
wheat is shortening selection cycles to accelerate 
genetic gain. This should only be achieved if fast 
pure line fi xation methods are implemented. This 
could be accelerated using single seed descent with 
off season generation in different environments 
(such as the shuttle breeding used in CIMMYT’s 
programmes), or under controlled conditions 
using doubled haploid methods, which allow the 
production of and intermating of GS-selected pure 

Fig. 2. Mean (and standard deviation from 100 cross-validations) of correlations between GEBV estimated from 
four statistical models and yield predicted in each of the 6 locations and using all locations. 

RRB: Ridge regression BLUP, GB: G-BLUP, BRR: Bayesian Ridge regression, BL: Bayesian LASSO.
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lines in only 2–3 years instead of 7–10 in classical 
pedigree selection.

In the framework of the French National 
Breedwheat programme, a fair comparison of one 
cycle of phenotypic selection vs two cycles of 
GEBV-based selection will be carried out on about 
1000 DH lines from 34 breeders’ crosses over a 
6-year period.
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ПРИМЕНЕНИЕ МЕТОДА ГЕНОМНОЙ СЕЛЕКЦИИ НА ПШЕНИЦЕ

Ж. Шармэ, Э. Сторли
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Ввиду ожидаемой разработки тысяч молекулярных маркеров для большинства культур сместились 
акценты в теории MAS-селекции (маркер-опосредованной селекции) от маркирования определенных 
QTL (локусов количественных признаков) несколькими маркерами в сторону так называемой геном-
ной селекции с помощью большого числа маркеров, покрывающих весь геном. Наборы маркеров, 
покрывающие геном, уже используются для анализа ассоциаций между полиморфизмами по маркерам 
и признаками (качественными или количественными). При этом обязательным является условие, 
чтобы ген (или QTL) находился в достаточном неравновесии по сцеплению (LD) с прилегающими 
к нему маркерами, используемыми для генотипирования. Величина LD варьирует от вида к виду и 
зависит от типа генетического материала. Так, сообщалось, что при анализе самоопыляющихся видов 
(особенно селекционных линий таких видов) величина LD составляет до 1 сМ и более. При таких ус-
ловиях для предсказания селекционной ценности признака можно использовать маркеры, не прибегая 
к анализу локусов количественных признаков. Используя DArT-маркеры на селекционном материале 
INRA, мы демонстрируем пример применения метода геномной селекции в качестве альтернативы 
традиционному подходу, основанному на фенотипической оценке. В исследовании проводится оценка 
возможности использования различных моделей («GBLUP», «Ridge Regression BLUP», «Bayesian 
Ridge Regression» и «Lasso») для предсказания урожайности генотипов, оцененных в широкой сети 
испытательных участков с 2000 по 2009 гг. С учетом небольшого размера обучающей популяции в 
ходе перекрестной проверки получены удовлетворительные предсказательные коэффициенты. 

Ключевые слова: геномная селекция, селекционная ценность, метод «GBLUP», метод «Ridge 
Regression», метод «LASSO».


