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Abstract. Clonal propagation of conifers using somatic embryogenesis is essential for the selection of tree spe-
cies, and for the implementation of afforestation and reforestation. In combination with cryopreservation, somatic
embryogenesis creates the basis for the development of economically valuable lines of clones and elite genotypes.
The industrial use of such genetically verified clone lines in forestry can significantly increase forest productivity com-
pared to any conventional methods for improving tree crops that are available. Larch is considered as one of the main
conifer candidates for large-scale reforestation, not only due to the vastness of its habitat, but also due to the unique
quality of its wood, rapid growth and high ecological plasticity. However, the vast majority of larch species are charac-
terized by uneven yields and extremely low seed quality. In this regard, obtaining planting material for reforestation
from larch seeds on seed plantations is not advisable, but can be successfully implemented in afforestation programs
using somatic embryogenesis technologies. Research on the somatic embryogenesis of larch has been conducted
for over 30 years, which allowed considerable experience in this field to be accumulated. To date, the conditions for
the initiation and maintenance of embryogenic cultures, as well as for the formation and development of somatic
embryos have been determined. Significant progress has been made in the study of both the factors affecting these
processes and the molecular mechanisms that underlie the various stages of embryogenesis. Nevertheless, despite
the successes achieved, knowledge available today on the somatic embryogenesis of representatives of the genus
Larix is still not enough to develop technologies for producing valuable plant-breeding material in vitro. This review
analyzes the current state of research on the problem of somatic embryogenesis of representatives of the genus Larix.
Particular attention is paid to the choice of explants for somatic embryogenesis, the composition of the media for
cultivation, the dependence of the potential of somatic embryogenesis on the duration of cultivation, and the genetic
control of somatic embryogenesis.
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AHHoOTauusA. KnoHanbHOe pa3MHOXXEHNE XBOWHBIX C MCMOb30BaHNEM COMATMUECKOrO SMOPrOreHe3a MMeeT CyLie-
CTBEHHOE 3HauyeHne AnAa ceneKkummn ApeBecHbIX BULOB, peanu3aLmnmn NporpaMmm necopasseeHns 1 1ecoBOCCTaHoBIe-
HUA. B coueTaHUn ¢ KPUOKOHCEPBALMEN COMATUYECKNIA SMOPUOTreHes CO3AaET OCHOBY ANs NOAYUYEHNA XO3ANCTBEHHO
LieHHbIX IMHWI KNOHOB U 3AIUTHBIX FEHOTUMOB. Icnonb3oBaHMe B MPOMBILLIEHHbIX MacLUTabax B IECHOM X03ANCTBE Ta-
KX FeHeTUYECKY MPOBEPEHHBIX IMHUNIA KIIOHOB MOXKET 3HAUNTENbHO YBEIMUNTL MPOAYKTUBHOCTb JIECOB MO CPaBHEHNIO
CNo6bIMM JOCTYMHBIMY TPAAVNLUOHHBIMN METOAAMM YIYULLIEHWSA PEBECHBIX KYNbTYp. JIMCTBEHHNWLA CYUNTAETCA OOHUM
13 OCHOBHbIX KaHAMAATOB /1A LWMPOKOMACLUTAOHOrO 1eCOBOCCTAHOBIEHUS HE TOMbKO 3a CYeT OOLIMPHOCTIN 3aHMMa-
eMblX apearnos, HO 1 brarofaps YHUKabHOMY KauecTBy ee fpeBECUHbI, GbICTPOMY POCTY 1 BbICOKOI SKOTOMMUYECKON
nnacTMyHocTn. OgHako 60NbLIMHCTBO BULOB NMCTBEHHULIbI XapaKTepu3yeTca HepaBHOMEPHOCTbIO YPOXKaeB 1 upes-
BblYaNHO HN3KMM KauyeCcTBOM CeMsH. B cBA3M € 3TUM nonyyeHrie nocafouyHoro Matepmana s n1eCoBOCCTaHOBNIEHNA U3
CEMSAH IMCTBEHHML, HAa CEMEHHBbIX MAaHTaLUAX HeLenecoobpasHo, HO MOXET ObITb YCMELLHO Peanr30BaHoO B Mporpam-
Max Mo necopasBefeHuio C MPUMEHEHMEM TEXHOMOT I cOMaTUYeCcKoro asmbpuoreHesa. MiccnegoaHua no comaTtnye-
CKOMY 3MOpUroreHesy NMCTBEHHULbI IPOBOAATCA YXKe bosiee TpUALATU NIET, YTO MO3BONIO HAKOMUTb 3HAUNTESbHbBIN
onbIT B JaHHOW obnactu. K HacToALeMy BpeMeHN 1M3yyeHbl YCIOBMA UHULMALMA U NOAAEPKaHUSA SMOPUOTeHHbIX
KynbTyp, GOPMMPOBaHMA 1 Pa3BUTAA COMATUYECKMX 3apoablileit. [JoCTUrHYT 3HaUMUTENbHBIN NPOrPecc B U3yYeHUn

© Shmakov V.N., Konstantinov Yu.M., 2020
This work is licensed under a Creative Commons Attribution 4.0 License



V.N. Shmakov
Yu.M. Konstantinov

Somatic embryogenesis in Larix:
the state of art and perspectives

Kak $aKTopoB, BAMAIOLMX HAa TN MPOLECChl, TaK U MOJEKYNAPHbIX MEXaHV3MOB, NIeXallnxX B OCHOBE Pa3fIMUHbIX
3TanoB a3mbpuroreHesa. OfHaKO UMEIOLLMXCA Ha CEFOAHALIHMI feHb 3HaHUI O COMAaTUYECKOM 3MOpUoreHese npeg-
CTaBuUTenein pofa Larix Bce elle HeJOCTaTOYHO ANA Pa3paboTKM TEXHONOTMIA MOJTyYeHNA CeNeKLUMOHHO-LEHHOTO
pacTuiTenbHoro matepwuana in vitro. B 063ope npoBefeH aHanmM3 COBPEMEHHOTO COCTOAHUA UCCNefOBaHUIA Mo Npo-
6neme comaTyeckoro ambpuoreHesa npepactaButenein poga Larix. Ocoboe BHMMaHMe yaeneHo Bonpocam Bbibopa
3KCMIaHTOB A COMATNYECKOro aMOpuoreHesa, CoCTaBy Cpea AnsA KynbTMBUPOBaHWSA, 3aBUCMOCTM NOTeHLMana co-
MaT1yeckoro sMbprioreHe3a OT NPOJO/HKNTENIBHOCTU KySIbTYBMPOBAHNSA, FTeHETUYECKOMY KOHTPOJTI0 COMATUUYEeCKOro

ambpuoreHesa.

KnioueBble cioBa: Larix; comaTMuecKunii SMOproreHes; reHeTMYecKunin KOHTPOrb.

Introduction

Representatives of the genus Larix are widespread in the cool-
temperate and cold (subarctic and subalpine) regions of the
planet (Gowere, Richards, 1990; Kim, 2015). The genus Larix
includes 10 to 25 species, native to the northern hemisphere
of three continents: North America, Europe and Asia (Dylis,
1981; Koropachinsky, Milyutin, 2013; Paques et al., 2013).
In the forest fund of our country, larch forests are uppermost
both in area (about 37 %, 264 million hectares) and in wood
stock (31 %, 25.2 billion m?); these markers surpass other
species significantly (Efremov, Milyutin, 2010; Rysin, 2010).
The issue of the exact number of larch species is to some ex-
tent controversial due to the ease of crossing in vivo and the
production of hybrids, which, in turn, continue to hybridize
(Wei, Wang, 2003; Koropachinsky, Milyutin, 2013).

Larch is considered one of the main candidates for exten-
sive reforestation not only due to the vastness of its habitat,
but due to the unique quality of its wood, rapid growth, and
high ecological plasticity, too (Gowere, Richards, 1990; Bai-
lian, Wyckoff, 1994). Larch is the only widespread polytypic
deciduous conifer genus. It is a unique characteristic of this
woody plant. Some way due to this quality, many larch trees
can withstand extreme winter temperatures and low humidity
levels (Bonga et al., 1995). The practical use of representa-
tives of the genus Larix for reforestation is very effortful due
to the low production and quality of seeds (Lelu et al., 1994a;
Zhang Y. et al., 2012; Tretiakova et al., 2015). Therefore, it is
not practical to obtain planting stock for reforestation from
larch seeds in seed orchards. This problem can be solved using
the methods of clonal propagation of embryos or seedlings
derived from a limited number of seeds (Munoz-Concha,
2017). With Larix this has been done by grafting and rooting
of stems taken from young seedlings and grown in a green-
house. An alternative to this method is the use of the somatic
embryo cultivation system, which makes it possible to derive
an unlimited number of seedlings with the same genetic com-
position since they are derived from the same seed (Attree,
Fowke, 1993; Isah, 2016).

Somatic embryogenesis can be much more efficient than
traditional grafting. Cell lines produced by somatic embryos
can be maintained in a juvenile state during indefinitely long
time by their cryopreservation. Cryopreservation allows much
longer field testings of cloned lines, while some of these lines
are maintained in a physiological juvenile state until field test-
ings show which of these lines are most preferable for mass
propagation. That makes selection within families possible,
which is not applicable to rooting by cuttings (Park, Bonga,
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1992; Bonga, 2016). Moreover, the technology of using so-
matic embryogenesis can accelerate traditional reforestation
programs by reducing the time required to obtain genetically
improved trees (Kim, 2015). For conifers, unfortunately, the
extensive use of somatic embryogenesis for practical propa-
gation is often limited to only a few selected genotypes, and,
in general, this process is still effortful and expensive. It is
necessary to solve many problems for its universal use (Bonga,
2016; Klimaszewska et al., 2016).

This review is devoted to the analysis of the current status
of research on the problem of somatic embryogenesis in re-
presentatives of the genus Larix. Hopefully, the acceleration
of scientific progress in this area (due to the use of genomics,
transcriptomics, proteomics, and metabolomics) will allow
the development of new, more effective protocols of somatic
embryogenesis for implementation in breeding, afforestation,
and reforestation.

Choice of the explant type

for somatic embryogenesis in larch

For the first time, the method of somatic embryogenesis in
Larix was successfully applied in 1985 for Larix decidua
(Nagmani, Bonga, 1985). Since that time, great progress has
been made in this field for most larch species and its hybrids.
Table 1 shows Larix species in which somatic embryogenesis
was obtained and the first references. As noted in numerous
studies, the formation of embryogenic cultures depends on
the type and stage of development of the explant.

Initial work was mainly carried out using megagameto-
phytes L. decidua, L. leptolepis (=L. kaempferi) and their
reciprocal hybrids L. x eurolepis and L. x leptoeuropaea as
explants (von Aderkas et al., 1987, 1990; von Aderkas, Bonga,
1988; Rohr et al., 1989). Using the megagametophytes made
it possible to obtain haploid embryogenic cultures and, on
their basis, somatic embryos. The plants formed from the
latter were most often mixoploids with a predominance of
diploid cells (von Aderkas, Anderson, 1993; von Aderkas,
Bonga, 1993; von Aderkas et al., 2002). In the same years,
successful attempts were made to initiate somatic embryos
from protoplasts of L. decidua and a hybrid of L. x eurole-
pis (L. decidua x L. leptolepis) (Klimaszewska, 1989a; von
Aderkas, 1992; Korlach, Zoglauer, 1995; Pattanavibool et
al., 1998). However, according to the research carried out in
subsequent years, somatic embryogenesis is initiated most
efficiently in immature zygotic embryos. This fact was de-
termined both for species of the genus Larix and for other
representatives of conifers (Chen et al., 2010; Bonga, 2016;
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Table 1. Larix species, explant type and basal cultural medium used to initiate somatic embryogenesis
Species Explant type Basal medium Induction frequency Reference
L dec, dua .............................. | PCZE .................................... L M ........................................ Na ....................................... C or nUGe offnon'lggo .....................
|CZE ...................................... M SG ...................................... 2 OvonAderkaseta|1990 ...................
M ZE ...................................... M SG ...................................... 5 ............................................ L e |u eta| 1994( ...............................
‘Megagametophyte  MS, 1/2M5,LM,1/2LM 03 | NagmaniBonga, 1985
L/epto/ep,s ............................ | CZE ...................................... M SG ...................................... 15vonAderkaseta|1990 ...................
| P CZE .................................... |_ M |_p MS ............................ 5 9_67 ................................... K ,met a | 1998 ..................................
MZE ...................................... |_ PLM ................................... 2 2_38 ................................... K ,m2015 ...........................................
Megagametothte ............. M SG ...................................... 2 VonAderkaseta|1990 ...................
Lxe U,O/ep,s .......................... | PCZE .................................... M SG DCR LM ...................... 6 _12 ..................................... K |,maszewska 1 . 93 9 b .......................
| CZE ...................................... M SG ...................................... 2 ............................................ |_ e |u eta| 1994c ...............................
LX/ eptoeuropae a ................. | CZE ...................................... M SG ...................................... 2 6 ......................................... |_ e |u eta| 1994c ...............................
|pCZE .................................... M SG ...................................... 6 2 .......................................
MZE ...................................... M SG ...................................... 8 .........................................
S E ) COterdon s ..................... M SG ...................................... 1 2_98 ................................... 5 a|y . e t a| . 2 002 .................................
S E . n e ed|es ........................... M SG ...................................... 3 ............................................ L e |u eta| 1994( ...............................
Lomdenmhs ........................ | CZE ...................................... 1/2|_M .................................. 7 OThompsonvonAderkaS1992 ........
|pCZE .................................... 1/2|_M .................................. 3 0 .......................................
MZE ...................................... 1/2|_M .................................. 1vonAderkaseta|1995 ...................
Ls,b,,,ca ................................ | PCZE .................................... M SG ...................................... 6 7_98 ................................... B elorussovaTretyak ov a 200 8 ........

Lgme,m,, .............................. | PCZE .................................... 1/2MSMSG ........................ 5 0_81TmtyakovaBarSUkovazmz ...........

LSUkaczeW” .......................... | PCZE .................................... 1 /2M5 MS G ........................ 9 8 .......................................

L/a,,cma ............................... | PCZE .................................... M 5G44 ......................................... K |,maszewskaeta|1997 .................

L o/gens, 5 .............................. | CZE ...................................... M 5 5 ..................................... Na ....................................... 5 Ong e t a| . 20 1 6 ...............................

L p,,nc,p,srupp,echt,, .......... | CZE ...................................... 5 B ........................................ Na ....................................... Q , et a| 200 0 .....................................

Note. Explant type: MZE — mature zygotic embryo, IPCZE - immature precotyledonary zygotic embryo, ICZE — immature cotyledonary zygotic embryo,

SE - somatic embryo.

Sarmast, 2018; Shuklina, Tret’yakova, 2019). In this case,
pre-cotyledonary and cotyledonary zygotic embryos are most
often used (Lelu et al., 1994a; Ogita et al., 1999a; Lu et al.,
2005; Lelu-Walter, Paques, 2009), although positive results
were obtained when using zygotic embryos of earlier or
later stages of development (Wang et al., 2007; Belorussova,
Tret’yakova, 2008; Wang, Yang, 2010). There is little progress
in initiating somatic embryogenesis in mature embryos. Thus,
for the L. % leptoeuropaea hybrid (L. leptolepis % L. decidua),
needles of somatic seedlings produced embryonic masses
with a lower frequency (3 %) than mature somatic embryos
of the same genotype (83 %) (Lelu et al., 1994¢c). Much more
data on the successful initiation of somatic embryogenesis in
mature embryos have been obtained to date for representatives
of other taxonomic groups of conifers. Thus, embryogenic
cultures were derived from mature zygotic embryos of Pinus
geradiana, P. kesya, P. koraiensis, Abies alba, A. nordman-
niana, A. balsamea, A. fraseri, Picea abies, P. glauca, P. mor-

risonicola, P. likiangensis, P. omorika, and others (Yeung,
Thorpe, 2005; Vookova, Kormut'ak, 2007; Chen et al., 2010;
Shuklina, Tret’yakova, 2019).

A significant disadvantage of using juvenile material (zy-
gotic embryos) as explants for clonal propagation, including
using somatic embryogenesis, is the impossibility of using
the material from plants whose genetic potential has already
appeared phenotypically (adult trees with strictly defined
characteristics) (Bonga, 2017). Therefore, the use of vegetative
parts of plants (segments of shoots and mature needles) as a
primary explant is of greatest interest. Thus, there are a number
of studies indicating the possibility of obtaining somatic em-
bryogenesis from plant material from adult coniferous plants:
primordial meristems of 2- and 10-year-old somatic plants
Picea glauca (Klimaszewska et al., 2011; Klimaszewska,
Rutledge, 2016), needles of 2-month- to 3-year-old somatic
plants Picea abies (Harvengt et al., 2001), vegetative apexes
of shoots, adventive buds and needles of adult trees Pinus
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kestiya, P. patula, P. roxburghii, P. sylvestris, P. wallichiana,
P, pinea, P. radiata, P. pinaster (Trontin et al., 2016a; Shuklina,
Tret’yakova, 2019).

Difficulties in using plant material from adult trees are
associated with the fact that significant physiological, bio-
chemical, genetic and other changes in plant tissues occur at
the vegetative and reproductive stages of development of adult
trees. That significantly reduces the likelihood and frequency
of embryogenesis from explants of adult trees (Klimaszewska
etal., 2011). While the explant maturity increases, the genetic
program for the induction of embryogenic tissue is gradu-
ally repressed; after the formation of the apical meristem,
the potential for obtaining embryogenic tissue is completely
disrupted (Bonga et al., 2010).

Other negative factors include the following: due to the
presence of many compounds formed and released into nutri-
ent media by plants, cell division and growth are inhibited,
breakages of embryogenic response and normal expression of
genes involved in the induction of somatic embryogenesis are
observed (Isah, 2016; Sarmast, 2018). One of the important
reasons for the above breakages is a change in the genomic
DNA methylation pattern (von Aderkas, Bonga, 2000). To
overcome the inability of the material of adult plants to form
an embryogenic culture, the procedure of tissue rejuvenation
is used in some cases. For this purpose, explants are placed in
various kinds of stressful conditions: fasting, cold treatment
at low positive temperatures, or using heavy metals as part
of culture media (Bonga, 1996, 1997; Wendling et al., 2014).
Rejuvenation is stimulated by a change in culture medium pH,
use of enzymes of cell wall degradation, and decrease in the
level of endogenous antioxidants (glutathione, ascorbic acid,
vitamin E) by changing the content of exogenous auxins (von
Arnold, 1987; Earnshaw, Johnson, 1987; Mo et al., 1996). The
effect of auxin has been shown to increase the level of DNA
methylation, which, in turn, leads to stimulation of cell divi-
sion and their dedifferentiation; thus, it can stimulate the initia-
tion of somatic embryogenesis (von Aderkas, Bonga, 2000).

In addition, tissues of adult coniferous trees contain many
surface microorganisms reducing the tissue’s ability to re-
generate (Tretiakova et al., 2014). Unfortunately, to date,
no effective methods have been developed to combat such
bacterial contamination. Only a few procedures are known
to reduce but not completely eliminate such contamination
in plant tissue culture systems (Sarmast, 2018).

Despite decades of research efforts (Chalupa, 1989; Bonga,
Pond, 1991; Bonga, 1996, 2004; Ewald, 1998), somatic em-
bryogenesis from adult larch trees has not been derived down
to recent times; it remains an urgent task for future research
(von Aderkas, Bonga, 2000; Klimaszewska et al., 2016).

Effect of the parent plant genotype

on the somatic embryogenesis in larch

The genotype of parental trees is much more likely the main
factor (in addition to the explant type) determining whether
somatic embryos will form (Tret’yakova, Barsukova, 2010;
Bonga et al., 2010). In such a case, the initiation of somatic
embryogenesis in many conifers is influenced by additive ge-
netic variability, which provides an opportunity for selection to
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enhance the initiation pattern of somatic embryogenesis (Park,
2002). Somatic embryogenesis can be obtained only from
certain genotypes; that significantly complicates the use of
this technology for practical extensive propagation of conifers.

Experiments to study the genetic control of the initiation
of somatic embryogenesis were carried out on representatives
of several conifer genera, including the genus Larix (Klima-
szewska et al., 2016). In Tretyakova et al. (Tretyakova et al.,
2015), 200 L. sibirica trees were used. However, only one
genotype initiated a stably maintained embryogenic culture.
Further, the analysis of the results obtained indicates a stronger
maternal than paternal effect on the culture initiation (Tretya-
kova et al., 2015; Klimaszewska et al., 2016). The maternal
effect at the initiation stage can be explained by both the
genotype and the stage of development or physiological state
of the maternal tree, as well as inherited maternal alleles of
the zygotic embryo (Niskanen et al., 2004).

Composition of culture media for embryogenic
masses and somatic embryos of larch
The growth and development of the embryogenic culture
of conifers, including representatives of the genus Larix, is
strongly influenced by the nutrient medium composition.
The choice of salts (micro- and macroelements) and organic
components, as well as correction of their balance and con-
centrations play an important role both in the induction of
callusogenesis and in the further maintenance of the resulting
culture in vitro (Paques et al., 2013). Moreover, the choice of
the nutrient media composition often depends on the plant spe-
cies and the type of material used as an explant (Isah, 2016).
The following basal media are used in studies on the so-
matic embryogenesis in larch, depending on the tasks to be
solved and the initial plant material (see Table 1): LM (full or
half strength (1/2 LM)) (Litvay et al., 1985), MS (full or half
strength (1/2 MS)) (Murashige, Skoog, 1962), MSG (Becwar
et al., 1990), LP (Quoirin, Lepoivre, 1977), S (Ewald et al.,
1995), B (Ewald et al., 1997), Al (Tret’yakova et al., 2012),
DCR (Gupta, Durzan, 1985), WPM (Lloyd, McCown, 1980).
During all the stages of cultivation, the basal medium is
supplemented with such organic compounds as: L-glutamine
(0.05-1.5 g/L); myo-inositol (0.1-1.0 g/L); casein hydrolyzate
(0.5-1.0 g/L); ascorbic acid (0.4 g/L) (Cornu, Geoffrion, 1990;
von Aderkas et al., 1990; Lelu et al., 1994c¢; Klimaszewska et
al., 1997; Kim, 2015; Tretyakova et al., 2015).
Phytohormones are key components of the nutrient medium
that control the entire process of somatic embryogenesis (von
Aderkas etal., 2001; Vondrakova et al., 2016). Moreover, their
composition and ratios depend on the development stage of so-
matic embryos. During the induction of embryogenic masses,
the presence of endogenous auxins in combination with cyto-
kinins is necessarily in the medium. The exception is species
Abies, in which only cytokinins are most often required for
the induction of embryogenesis (Pullman, Frampton, 2018).
The use of 2,4-dichlorophenoxyacetic acid (1.0-2.0 mg/L)
in conjunction with 6-benzylaminopurine (0.5-1.0 mg/L) is
shown in the overwhelming majority of studies on embryo-
genesis in representatives of the genus Larix (Klimaszewska,
1989a, b; Korlach, Zoglaue, 1995; Lelu-Walter, Paques, 2009;
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Tretyakova et al., 2019). In a number of studies, naphthylacetic
acid, picloram, or 4-chlorophenoxyacetic acid at 1.0 mg/L
(Qi et al., 2004; Kim, 2015) and kinetin (0.1-5.0 mg/L) as a
representative of cytokinins (Cornu, Geoffrion, 1990; Qi et
al., 2000; Song et al., 2016) are mentioned as auxins. Indole-
acetic acid, as shown for L. leptolepis, plays an important role
in controlling the germination of somatic embryos (Li Z. et
al., 2017a, b).

At the maturation of somatic embryos, abscisic acid be-
comes the most important component of the nutrient medium
(Lelu et al., 1994b, 1995). The optimal content of this phyto-
hormone (0.01-32.0 mg/L) and the cultivation time of somatic
embryos in its presence (1-4 weeks) vary significantly in dif-
ferent larch species (Label, Lelu, 1994, 2000; von Aderkas et
al., 1995,2002,2015; Gutmann et al., 1996; Klimaszewska et
al., 1997; Ogita et al., 1999b; Kim, Moon, 2007; Tret’yakova
etal.,2012; Song et al., 2018). Sometimes, indolebutyric acid
at 1.0 mg/L (Tret’yakova et al., 2012), 5.0 mg/L of auxin
transport inhibitor 2-(p-chlorophenoxy)-2-methylpropionic
acid (PCIB), 5.0 mg/L phloroglucinol (auxin synergist) (Kim,
Moon, 2009) or silver nitrate (2.0-5.5 mg/L) (Saly et al.,
2002; Song et al., 2018) are used together with abscisic acid
to improve the process of maturation of somatic embryos.
Improving the quality of somatic embryos, their germination
and the formation of full-fledged plants is achieved by combin-
ing abscisic acid with activated carbon (0.5-10 g/L), which is
introduced into the nutrient medium during the pre-maturation
of somatic embryos (Harry et al., 1991; Qi et al., 2004; Ume-
hara et al., 2004; Klimaszewska et al., 2016; Tretyakova et al.,
2016). Considering that maturing somatic embryos should be
exposed to water stress, similar to developing zygotic embryos
in vivo, substances such as polyethylene glycol 30004000
at 4-10 %, sucrose at an increased concentration (3—8 %)
or maltose (3 %), and gelling agents gelright or phytagel
(0.3-0.4 %) are introduced into the nutrient medium in order
to reduce the available water (Klimaszewska et al., 1997,
Ma et al., 1998; Qi et al., 2004; Lu et al., 2005; Teyssier et
al., 2011; Tret’yakova, Barsukova, 2012; Tret’yakova et al.,
2012; Song et al., 2018). At the initial stages of the induction
of the embryogenic culture development, the concentration
of sucrose used is 1-3 % (von Aderkas et al., 1987; Lelu et
al., 1994¢; Kim, 2015); agar at 0.7 % is most often used as
a gelling agent (Klimaszewska, 1989b; von Aderkas et al.,
1990; Belorussova, Tret’yakova, 2008).

In addition to studying the positive effect of certain com-
pounds making up the culture media on various stages of
somatic embryogenesis, we also studied substances whose
presence in the medium negatively affects the culture in vitro.
For L. x leptoeuropaea, it was shown that the atmosphere
enrichment with ethylene or the addition of 2-chloroethyl-
phosphonic acid (5.0 and 10.0 mg/L) or 1.0-10.0 mg/L of
1-aminocyclopropane-1-carboxylate to the culture medium
greatly reduced the induction of secondary somatic embryo-
genesis (Saly et al., 2002). In L. leptolepis, vanillyl benzyl
ether and 4-[(phenylmethoxy)methyl] phenol inhibited the
early development of somatic embryos, namely, the differen-
tiation of suspensors (Umehara et al., 2005, 2007). These
substances were shown to be present in sufficient for inhibition
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amounts in a high cell density suspension culture, while they
were at significantly lower, non-deleterious concentrations in
a low cell density culture (Umehara et al., 2004).

To date, extensive experience has been accumulated in the
field under study. However, due to the still low efficiency of
somatic embryogenesis of representatives of the genus Larix,
work on optimizing the nutrient medium composition, in-
cluding specific sugars, vitamins, organic acids and modifiers
of redox potential, etc. continues.

Dependence of somatic embryogenesis potential
of larch trees on the culture age in vitro
In works on the induction and maintenance of an embryogenic
culture, a serious attention is paid to the efficiency of obtain-
ing somatic embryos in culture in vitro during long periods of
time. The issue is of both fundamental and applied importance
for reforestation programs requiring long-term regenerated
trees testing from seperate cell lines to their extensive use.
Consequently, tissue culture lines should be maintained in a
functionally unchanged form until the elite characteristics of
the regenerants derived from them are experimentally con-
firmed (Charest, Klimaszewska, 1995). Although, the age of
the embryogenic culture, i. e., the number of subcultures, can
undermine their ability to regenerate full-fledged somatic em-
bryos (Paques et al., 2013). That may be primarily connected
with an increase in the rate and accumulation of a large number
of mutations and general genetic instability of cultures kept
in vitro for a long term as a result of somaclonal variability
(Krutovsky et al., 2014; Klimaszewska et al., 2016).
Somaclonal variability can appear on morphological, cyto-
logical (number and structure of chromosomes), biochemical
(metabolic disorders) and molecular genetic (nucleus and
organelle genomes) levels (Cyr, Klimaszewska, 2002). Parti-
ally differentiated cultures, such as in vitro embryonic masses,
were found to show less variability than true callus-type
cultures (Cyr, 1999). Moreover, embryogenic coniferous
cultures are considered genetically more stable as opposed
to angiosperms (Isabel et al., 1996). A number of studies
assessing the level of somaclonal variability in embryogenic
cultures of conifers showed the absence of any somaclonal
changes in embryogenic tissues and in somatic embryos of
Picea abies, Picea glauca % P. engelmannii, Pinus pinea, Picea
mariana (Heinze, Schmidt, 1995; Isabel et al., 1996; Cuesta
et al., 2008; Krutovsky et al., 2014). In general, it is seen that
embryogenic cultures of representatives of the genus Larix
have a relatively high stability (Klimaszewska et al., 2016).
Thus, in L. x eurolepis, the embryogenic line was stable after
4 years of subculturing (Paques et al., 2013), and in L. lepto-
lepis it was stable for 9 years (Wang et al., 2007; Lelu-Walter,
Paques, 2009). In the latter case, the embryogenic cultures
became non-embryogenic over the course of time (Li W. et
al., 2013). The embryogenicity of L. decidua cultures derived
from haploid material (megagametophytes) was not lost for
9 years (Pattanavibool et al., 1995). In such case, almost all
lines doubled (2n = 24) their number of chromosomes during
the observation period, but both haploid and dihaploid lines
remained embryogenic. Further studies (17-year-old culture)
showed that none of the lines retained constant embryogenicity
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during the course of the entire cultivation period (von Aderkas
et al., 2003). In several lines, the embryogenic potential was
completely lost, while in others the loss was temporary since
there was an embryogenesis periodic restoration. The proli-
ferative activity of 15 embryogenic cell lines of L. sibirica
persisted for 2-8 years (Pak et al., 2016; Tretyakova, Pak,
2018). The chromosome ploidy of the cells of these lines did
not change until two years of cultivation (Tretyakova et al.,
2017). Further, a scatter of chromosome numbers from 24
to 30 and a large number of mitosis and micronuclei cells pa-
thologies were revealed (Goryachkina et al., 2017). However,
there were separate cell lines, in which the cultures genetic
stability was preserved for up to 7 years. According to mic-
rosatellite analysis, embryogenic lines were characterized by
weak allelomorphic variability (Tretyakova et al., 2017). In
general, nonetheless, the capacity of somatic embryos from
long-term maintained lines for maturation and germination
decreased sooner or later (Tretyakova et al., 2016).
Embryogenic masses long-term cultivation, leading to the
formation of somatic embryos and plants, can lead to rare
phenotypic anomalies in Picea glauca and P. mariana (Isabel
et al., 1996; Tremblay et al., 1999) or to genetic instability in
Pinus sylvestris and P. pinaster (Burg et al., 2007; Marum et
al., 2009). The changes in the relative content of mitochon-
drial DNA were observed in embryogenic tissues in Larix
leptolepsis, L. decidua, and their reciprocal hybrids (DeVerno
etal., 1994). Thus, despite the relatively high stability of em-
bryogenic cultures of representatives of the genus Larix, the
quality and quantity of somatic embryos changes over time.
In this respect, long-term maintenance of these cultures with
the method of regular subcultivation does not make sense.

Embryogenic lines cryopreservation

Aside from the main issue, which is the decrease or loss of
the embryogenic culture potential against the background
of possible genetic changes in the course of the long-term
maintenance in vitro, it is also worth considering high labor
costs if regular subcultivation is necessary; there is also an
increasing risk of material loss caused by the pollution, human
errors or technical failures.

The embryogenic cultures periodic re-initiation can be
the solution to these problems. At the same time, this rather
time-consuming and expensive procedure cannot be used for
the species, including conifers, for which the most suitable
explants for the embryogenic callus induction are available
only during limited time of year (Ozudogru, Lambardi, 2016).

Another approach to overcome the forenamed difficulties is
to use the technique decreasing the growth rate and increas-
ing the subculture intervals by the way of incubation at a low
temperature (45 °C) and low light intensity (for example,
10 umol/m?/s), change of the conservation medium osmotic
potential, reduction of the inorganic nutrients intake, addition
of growth retardants to the culture medium (Hassan, 2017).
Preservation within the minimal growth conditions is a very
simple method to keep the culture in vitro during the periods
from 6 to 12 months, but no more than 3 years, depending
on the plant species (Ozudogru et al., 2010). Longer crops
seasoning under such conditions leads to a sharp drop in the
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plant regeneration frequency and an increase in the genetic
changes number.

For a long-term stable preservation of embryogenic cultures,
cryopreservation is an ideal method ensuring their safety and
stability (Charest, Klimaszewska, 1995). Embryogenic cul-
tures can be kept in liquid nitrogen at —196 °C or at —150 °C
in the nitrogen vapor phase without any time limitations and
the juvenility loss (Park et al., 1998). This method provides
long-term preservation of various types of tissues and organs,
including shoot tips, somatic and zygotic embryos, whole
seeds, pollen, anthers and buds (Vendrame, 2018).

There are different types of cryopreservation methods.
Traditional methods are based on the freeze-induced dehydra-
tion. Among various cryopreservation methods available for
embryogenic cultures, the most common approach is slow
material cooling. In the last few years this approach has al-
lowed developing some effective protocols for the material
preservation without loss or with a slight loss of regenerative
capacity for a long time (up to 20 years) for various species
such as broadleaf (Citrus ssp., Hevea brasiliensis, Fraxinus
excelsior, Quercus suber, Q. robur et al.) and conifers (4bies
cephalonica, Picea abies, P. glauca, P. sitchensis, Pinus
caribaea, P. nigra, P. patula et al.) (Ozudogru, Lambardi,
2016).

Cryopreservation methods are developed and successfully
applied to hybrids of L. x eurolepis and L. x leptoeuropaea
(Klimaszewska et al., 1992; Paques et al., 2013). The use
of these methods made possible the achieving of the growth
resumption of all tested lines after their thawing. In addition,
cryopreservation and its duration (at least 18 years) did not
influence noticeably the somatic embryos productivity (Lelu-
Walter, Paques, 2009). Hybrid larch trees cryopreserved lines
have been routinely used in experiments for many years.
However, until now there is no data on the cryopreservation
methods use for long-term preservation of embryogenic lines
of the main part of larch species, except for their two hybrid
forms. At the same time, the successful experience of the cryo-
preservation methods use for representatives of other conifer
genera creates promising prospects for wider application of
this technology for long-term preservation of larch species
embryogenic cultures.

Genetic control of larch trees

somatic embryogenesis

At present, in order to explore the molecular mechanisms
of the somatic embryogenesis process, a lot of attention is
paid to the study of the entire genome profiling on the basis
of transcriptomics, proteomics, and metabolomics (Trontin
et al., 2016b). Thus, it was shown that during Larix species
cell cultures somatic embryogenesis in vitro changes in the
mitochondrial genome organization and the relative repre-
sentation of some genomic regions occur (DeVerno et al.,
1994). 454 libraries containing cDNA sequences were created
under the study of various stages of somatic embryogenesis of
L. leptolepis using the method of RNA sequencing (Zhang Y.
et al., 2012). It’s shown that 25773 identified transcripts are
connected with 160 biochemical pathways of primary and
secondary metabolism. 78 % of genes connected with embryo-
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genesis were completely homologous to those of Arabidopsis
thaliana. The genes of the transcription factors LaMYB33 and
LaSCL6 are important for the preservation of competence and
maintenance of the state of embryogenicity in L. leptolepis as
a part of the gene expression regulation epigenetic complex
(LiS. etal.,, 2013; Li W. et al., 2014). During early embryo-
genesis, the genes LALECT and LAWOX2 (L. decidua) (Rupps
et al., 2016), LaSERK1 (L. leptolepis) (Li L. et al., 2013)
play an important role. LaNFYAI, LaNFYA2, LaNFYA3, and
LaNFYA4 play an important role during early stages of deter-
mination and at the beginning of somatic embryo maturation
(L. leptolepis) (Zhang L. et al., 2014). At the precotyledonary
stage of somatic embryo development, the expression of an-
tioxidant defense genes (SOD, CAT, and APX (L. leptolepis))
is required (Zhang S. et al., 2010a). At the stages of initia-
tion and late maturation of somatic embryos, the expression
of genes connected with the auxins synthesis or transport
increases: LaHDZ31, 32, 33 and 34 (L. leptolepis) (Li S. et
al., 2013; Li Z. et al., 2017b), LaNIT (L. leptolepis) (Li Z.
et al., 2018). LmAP2L1 (L. x leptoeuropaea) (Guillaumot et
al., 2008), LkBBM (L. leptolepis x L. olgensis) (Li K. et al.,
2014), LdBBM and LdSERK (L. decidua) (Rupps et al., 2016)
are the most active at the stage of somatic embryo germina-
tion. Herewith, the LmAP2L2 gene of the transcription factor
is constitutively expressed at all the embryogenesis stages
(L. x leptoeuropaea) (Guillaumot et al., 2008).
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The highly-productive sequencing strategy was used to
identify miRNAs involved in the corresponding target genes
regulation at certain stages of somatic embryogenesis in
L. leptolepis (Zhang J. et al., 2012). More than 100 target
genes have been identified for 60 miRNAs. Differential ex-
pression of different miRNAs (miR156, miR159, miR160,
miR162, miR165, miR166, miR167, miR168, miR169,
miR171, miR172, miR397, miR398) was found in embryo-
genic and non-embryogenic L. leptolepis cultures (Zhang J.
etal., 2012; Zhang L. et al., 2014; Li S. et al., 2013; Li W. et
al.,2013,2014). In conifers, miRNAs regulate the activity of
most genes of transcription factors, including genes involved
in the embryogenesis process. The transcription factor MYB
(LaMYB33) was identified as a target gene for miR159 (Li W.
etal., 2013). Inits turn, LaHDZ31, LaHDZ32, LaHDZ33, and
LaHDZ34 are regulated by miR165/166 (Li Z. et al., 2016).
MiR169 targets are LaNFYAI, LaNFYA2, LaNFYA3 and
LaNFYA4 (Zhang L. et al., 2014), and the homologue Larix
SCARECROW-LIKE 6 (LaSCL6) is a target for miR171 (Zang
etal., 2019). These genes post-transcriptional regulation with
miRNA can be involved in maintaining the developmental
potential, as described above, at various stages of somatic
embryogenesis in representatives of the genus Larix. The
genes identified in representatives of the genus Larix, playing
an important role in somatic embryogenesis at different stages,
are summarized in Table 2.

Table 2. Genes involved in somatic embryogenesis in representatives of the genus Larix

Species Embryogenesis stage

Competence determination
and maintenance of embryogenic state

Superoxide dismutase (SOD), catalase (CAT),
ascorbate peroxidase (APX)

TAS3/miR390, laccase/miR397, plastocyanin/miR398,
ARF/miR160, miRNA167, class Ill HD-ZIP/miR 166,

Precotyledonary stages
of somatic embryo development

Precotyledonary and cotyledonary stages
of somatic embryo development

Gene identified

Reference

LiS.etal, 2013;
LiW.etal.,, 2013

LiW.etal, 2014;
Zang et al., 2019

miRNA156
All stages of embryogenesis miRNA162, miRNA168
Early embryogenesis LaSERK1 LiL.etal, 2013

Early stages of determination
and beginning of somatic embryo
maturation

Stages of induction and somatic embryo
late maturation

Stages of somatic embryo maturation
and their germination

Stages of somatic embryo germination

L. decidua Early embryogenesis

Late embryogenesis,

stages of somatic embryo germination
L. leptolepis x Stages of somatic embryo germination

L. olgensis

LaNIT

,2018
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Considering the future prospects of genomic studies of
Larix species cell cultures somatic embryogenesis, it is pos-
sible to note the fundamental importance of clarifying such
important theoretical and applicative issues as (1) structural
and functional changes in the mitochondrial genome of
larches occurring in culture in vitro, and the possibility of
their reversion; and (2) genetic regulation of the interaction
of the nucleus, mitochondria and chloroplasts genomes dur-
ing somatic embryogenesis. It is obvious that the success of
the development of this technology for cell culture in vitro
will largely depend on the resolution of the issues mentioned
above.

Work to determine changes in the proteome and composi-
tion of fatty acids at different development stages of em-
bryogenic masses and somatic embryos of a number of larch
species was carried out. Comparative proteomic analysis of
embryogenic and non-embryogenic L. principis-rupprechtii
calli revealed 503 proteins, 71 of which were differentially
regulated (Zhao et al., 2015b). In addition, proteins were ana-
lyzed at three stages of somatic embryo development of the
same larch species: stages of proembryogenic mass, globular
and cotyledonary embryos. 96 proteins differentially expressed
at different stages of development were identified. Functional
analysis showed that the content of proteins involved in the
primary metabolism, phosphorylation, and maintenance of the
cellular redox potential, increases during the development of
somatic embryos. The study of the general profile of L. x euro-
lepis proteins showed significant differences in their content at
certain stages of somatic embryo maturation (Teyssier et al.,
2014). It was found that the 147 proteins found in the work are
mainly involved in the primary metabolism and stabilization
of the resulting metabolites. Thus, storage proteins identified
as legumin- and vicilin-like appeared at the precotyledonary
stage of development.

When studying the fatty acid composition of the lipids of
embryogenic and non-embryogenic L. sibirica calli, a high
content of oleic acid in total lipids of the embryogenic cell
culture was found against the background of a lower content
of linoleic acid compared to the non-embryogenic callus
(Makarenko et al., 2016). The review proposes to use the
concentration of these fatty acids as a marker of embryogenic
potential in the selection of promising cell lines of Siberian
larch during early embryogenesis. Significant differences in
the composition and content of neutral lipids in tissues of
embryogenic and non-embryogenic L. sibirica cell lines were
also revealed (Semenova et al., 2020). Glycerides were found
to be dominant lipids of two types of lines. Triglycerides and
1,2-diglycerides accumulated more actively in embryogenic
cell lines, while the content of sterol esters in these lines was
reduced.

Nevertheless, despite significant advances in understand-
ing the molecular genetic mechanisms underlying somatic
embryogenesis in conifers, in particular representatives of
the genus Larix, there is currently an urgent need to expand
complex research in this field of study in order to get new
knowledge necessary for the development of methods and
approaches to obtaining plant material in vitro and using it in
reforestation and afforestation programs.
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Use of the method of somatic embryogenesis

in representatives of the genus Larix

in reforestation breeding programs

The method of individual conifer species microclonal pro-
pagation by somatic embryogenesis has already begun to
be widely used in various countries of the world, primarily
in France, Canada, Germany, Great Britain, Ireland, Scan-
dinavian countries, China, in plantation forestry and in the
implementation of MVF (Multi Variety Forest) programs
(Park et al., 2016). MVF is defined as the use of a range of
genetically tested woody species in a production forest seed
orchard (Weng et al., 2011). Back in the mid-90s of the last
century, INRA (National Institute for Agricultural Research)
in France organized studies on somatic embryogenesis in
hybrid larch species (Paques et al., 2013). This led to the
development of an improved procedure leading to the routine
production of regenerant plants from somatic embryos. The
new protocol was applied for the hybrid L. X leptoeuropaea
cultivar REVE-VERT propagation (Lelu-Walter, Paques,
2009). In the same years, a program of breeding hybrid
L. xeurolepis was launched at the state enterprise “Staats-
betrieb Sachsenforst” (Germany), based on the achievements
in the field of combining the method of clonal propagation
and the original plant material having an excellent genetic
background (controlled crosses) (Kraft, Kadolsky, 2018).
Breeding programs, including biotechnological approaches
of somatic embryogenesis and genetic engineering, were
launched in China and aimed at improving the existing gene
pool of the local species L. principis-rupprechtii (Zhao et
al., 2015a). Genetic engineering methods in conjunction
with somatic embryogenesis of larch trees were successfully
tested in laboratory conditions a long time ago. At the same
time, both agrobacterial and bioballistic transformation were
used to introduce genes into cells of embryogenic culture
and directly somatic embryos of L. laricina, L. leptolepis,
L. xeurolepis, L. principis-rupprechtii (Klimaszewska et al.,
1997; Levée et al., 1997; Qi et al., 2000; Li Z. et al., 2016).
In the next while, for the genetic improvement of conifers, it is
planned to use the rapidly developing and promising genomic
editing technologies based on the CRISPR-Cas system along
with traditional methods of transformation. These technolo-
gies have already been successfully applied to broad-leaved
tree species, such as grapefruit (Citrus paradisi), orange
(Citrus x sinénsis), apple (Malus domestica, M. prunifo-
lia x M. pumila), poplar (Populus tomentosa, P. tremula % alba,
P. tremula * tremuloides), and others (Sarmast, 2016; Chang
etal., 2018).

The technology of genomic selection has been successfully
used in recent decades in order to increase the efficiency of tree
selection, along with the methods of somatic embryogenesis
and cryopreservation (Park, 2002). This technology, based on
a set of mapping of quantitative traits loci, makes possible the
prediction of the phenotype of an individual (Goddard, Hayes,
2007). Thus, genomic selection makes it possible to identify
elite genotypes at a very early stage of development without
phenotyping through field testing and, thereby, to reduce sig-
nificantly the duration of variety testing within the framework
of afforestation programs (Park et al., 2016).
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In our country, thanks to intensive studies of the conifers
somatic embryogenesis, including Siberian larch species,
conducted for more than 10 years by the staff of the Suka-
chev Institute of Forest SB RAS (Krasnoyarsk) under the
leadership of I.N. Tretyakova, significant achievements have
been made in this area, starting from the conditions for the
embryogenic culture induction up to the carrying out of field
testing of plants grown from somatic embryos — regenerants
(Tretyakova et al., 2018). The results obtained along with the
use of progressive methods of cryopreservation, creation and
selection of elite genotypes based on genetic engineering and
genomic selection can significantly increase the effectiveness
of traditional reforestation breeding programs carried out in
Russia. The international project “Larch” with the participa-
tion of Sweden, Norway, Finland, Iceland, Canada, China,
Japan, and the United States can be considered as the most
ambitious of these projects (Abaimov et al., 2002; Martins-
son, 2002). The aim of this project, launched in 1992, is to
create a collection of seeds of four larch species from Russia
(Larix sukaczewii, L. sibirica, L. gmelini and L. cajanderi),
study the genetics of these species, carry on research on the
breeding and modification of populations created on planta-
tions in different parts of the Northern hemisphere, and select
promising forms and populations.

Conclusion

Somatic embryogenesis is increasingly considered as the
most promising method of clonal propagation of conifers
(in particular, larches) since it has a number of advantages
over traditional afforestation technologies. For more than
30 years since the first successful somatic embryogenesis in
representatives of the genus Larix, considerable experience
has been accumulated in this research area. The conditions
of induction, maintenance of embryogenic cultures, matura-
tion and germination of somatic embryos, regeneration of
full-fledged plants and their growth in field conditions have
been studied. Based on cryopreservation methods, protocols
for maintaining embryogenic cultures in a functional juvenile
state for long periods of time have been developed. Research
is being actively carried out to elucidate the molecular genetic
mechanisms underlying the implementation of individual
stages of somatic embryo development.

Despite the existing successes, today it is required to
intensify comprehensive research in the field of somatic
embryogenesis of representatives of the genus Larix. In the
nearest future, the research will provide the creation of scien-
tific foundations for the development of new approaches and
methods for obtaining high-quality plant material in vitro
and its use in extensive industrial reforestation and afforesta-
tion programs. Hopefully, integrating efforts and closer coope-
ration of individual research teams successfully working in
the Russian Federation on the problem of somatic embryoge-
nesis of species of the genus Larix and other conifer species,
as well as the already begun use of an integrated approach
based on the use of genomics, transcriptomics, proteomics,
metabolomics, cryopreservation, and genomic selection in
these studies will accelerate the resolution of this planetary
biological problem.
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