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Abstract. The paper presents the results of sensitivity-based identifiability analysis of the COVID-19 pandemic
spread models in the Novosibirsk region using the systems of differential equations and mass balance law. The
algorithm is built on the sensitivity matrix analysis using the methods of differential and linear algebra. It allows
one to determine the parameters that are the least and most sensitive to data changes to build a regulariza-
tion for solving an identification problem of the most accurate pandemic spread scenarios in the region. The
performed analysis has demonstrated that the virus contagiousness is identifiable from the number of daily
confirmed, critical and recovery cases. On the other hand, the predicted proportion of the admitted patients
who require a ventilator and the mortality rate are determined much less consistently. It has been shown that
building a more realistic forecast requires adding additional information about the process such as the number
of daily hospital admissions. In our study, the problems of parameter identification using additional informa-
tion about the number of daily confirmed, critical and mortality cases in the region were reduced to minimizing
the corresponding misfit functions. The minimization problem was solved through the differential evolution
method that is widely applied for stochastic global optimization. It has been demonstrated that a more general
COVID-19 spread compartmental model consisting of seven ordinary differential equations describes the main
trend of the spread and is sensitive to the peaks of confirmed cases but does not qualitatively describe small
statistical datasets such as the number of daily critical cases or mortality that can lead to errors in forecasting.
A more detailed agent-oriented model has been able to capture statistical data with additional noise to build
scenarios of COVID-19 spread in the region.
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AHHoOTauuAa. Pa3paboTaH anroputm aHanmsa YyBCTBUTENIbHOCTU U MAEHTUOULIMPYEMOCTU MaTeMaTUUeCcKmx
mMogenein pacnpocTtpaHeHus anugemun COVID-19 B HoBocnbrpcKoi 0651acT, OCHOBAHHBIX Ha cucTemMax and-
depeHUmanbHbIX YpaBHEHUI 1 3aKoHe AencTByowmx Macc. OCHOBY anroputma COCTaBAeT aHanu3 mMaTpuLbl
YYBCTBUTENbHOCTU MeTogamun anddepeHUranbHON 1 NMMHEHOW anrebpbl, NOKasblBalowWen CTeNeHb 3aBUCH-
MOCTV HeU3BECTHbIX MapameTPOB MOAENEe OT 3aflaHHbIX U3MepeHuid. B pesynbtate paboTbl anroputMa Bbl-
ABNAIOTCA HavMeHee 1 Hanbonee YyBCTBUTENbHbIE K M3MEPEHMAM MapameTpbl, YTO CMOCo6CTBYeT NOCTpoe-
HUIO PerynapusyioLero anroputMa pelleHns 3agaun naeHTnenkaumm napameTpoB Ana noctpoeHus bonee
TOYHbIX CLieHapueB Pa3BUTUA SNUAEMUU B PervioHe. AHann3 YyBCTBUTENIbHOCTY MaTeMaTUUYeCKMX MoAenen
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pacnpocTpaHeHus KopoHaBupycHon nHbekumm COVID-19 nokasan, 4to napaMeTp KOHTarMo3HOCTU BUpYycCa
YCTOMYMBO OMpefenaeTcs no KONMUYECTBY eXe[HEBHO BbiABNAEMbIX 3a00NEBLUNX, KPUTUYECKUX U BbleymnB-
LmMxcs 605bHbIX. C APYroi CTOPOHbI, NPOrHO3Mpyemasn fONA FOCMUTANIM3MPOBaHHbIX OOJIbHbBIX, HAXOAALMXCA
B KPUTMYECKOM COCTOAHMUN 1 Tpebytowwmx nofgknoueHns annapata VBJ1, a Takxke Ko3bdprUmneHT cmepTHOCTH
onpenenAlTCA ropasfo MeHee ycTonumso. Ana noctpoeHnsa 6onee peanncTMYHOrO NPOrHO3a HeobXOANMO
[06aBWTb fONONHUTENbHYIO MHOPMaLMIo O Npouecce (Hanpumep, O KOMYeCTBe eXeAHEBHbIX CllyYaeB ro-
cnuTanmu3aumm). 3agaun YyToYHeHUA AeHTUGULMPYEMbIX NapameTpoB Mo AOMONHWUTENbHOW UHOpMaLmuy o
KOMMYEeCTBE BbIABJIEHHBIX, KPUTUYECKMX 11 CMEPTESIbHbIX CllyyaeB B HoBocmbupckoi obnacty 6binv cBefjeHbl
K 3afja4amMm MUHMMM3aLMM COOTBETCTBYIOLLMX LieneBbiX GyHKLMOHaNO0B. 3aaada MUHMMU3aLun Gbina peLleHa ¢
nomMoulbto MeToaa andpdepeHLnanbHOM SBOIIOLUN, WIMPOKO UCMOSb3YeMOro B 3aayax CTOXacTUYeCKO rio-
6anbHo onTMM3aumu. NokasaHo, uto 6onee obLas KamepHasa MOAESb, COCTOALLAA U3 CEMU OObIKHOBEHHbIX
anddepeHLnanbHbIX ypaBHEHWI, ONMCbIBAET OCHOBHYIO TEHAEHLNIO PacnpoCTpaHeHNA KOPOHaBUPYCHOW MH-
deKumn, YyBCTBUTESIbHA K MNKaM BbIABNEHHbIX CJTy4aeB, OAHAKO HEKaueCTBEHHO ONKMCbIBaeT HebobLUne cTaTu-
CTUKYM (KOSIMYECTBO eXXeHEBHbIX KPUTNUYECKIMX, CMEPTESIbHBIX CIIyUYaEeB), YTO MOXKET NMPVBOAUTD K OLUIMOOYHbBIM
BblBOfAaM. bonee nogpobHas areHTHO-OpPUEHTNPOBAaHHAA MaTeMaTMYeCcKasa MOLENb, yUnTbiBatoLLan NoBeAeH e
OTAEeNbHbIX areHTOB, NMO3BONAET YNaBAVBaTh HEOOJbLUME WYMbl B JaHHbIX U CTPOUTb CLIeHApWK Pa3BUTHA pac-
NPOCTPaHeHNA SNMAEMUN B PErMOHE.

KnioueBble cnoBa: UyBCTBUTENIBHOCTb NapaMeTPoB; NAEHTUPNLMPYEMOCTb; OObIKHOBEHHbIe AnddepeHLmnanb-
Hble ypaBHeHNs; obpaTHble 3apaun; snuaemuonorus; COVID-19; nporHo3nposaHue; HoBocnbupckasa obnactb.

Introduction

Many mathematical models in biology (epidemiology, im-
munology, pharmacokinetics, systems biology), medicine
(tomography), physics and chemistry (meteorology, chemical
kinetics), as well as sociology are described by systems of
differential equations, whether they be ordinary (Kermack,
McKendrick, 1927), partial (Habtemariam et al., 2008), or
stochastic differential ones (Lee et al., 2020). Coefficients in
these equations characterize specific features of simulated
processes under given conditions. To build an adequate mathe-
matical model, one needs to refine the coefficients of the equa-
tions based on the known parameters of the process and any
additional information available about it. For example, when
considering epidemiological problems, the parameters such
as the infection transmission rate in the region; the critical
case rates depending on comorbidities, age, and other demo-
graphic factors; the proportion of asymptomatic carriers/latent
infection cases, etc., are unknown or approximately derived
based on statistical data. These parameters are often sensitive
to the measurements prone to errors (rounding, instrument,
and human factor errors), which leads to unstable solutions
of parameter identification problems.

Identifiability analysis of the differential equation systems
modeling biological, medical, and physical processes is an im-
portant step to undertake before developing computational
algorithms (Bellu et al., 2007; Raue et al., 2010, 2014; Miao et
al.,2011; Kabanikhin et al., 2016; Voropaeva, Tsgoev, 2019).
A classification of identifiability types distinguishing between
structural identifiability, practical identifiability, and sensiti-
vity analysis is presented in (Krivorotko et al., 2020a). The
authors also analyze the systems of ordinary differential equa-
tions (ODE) describing epidemiological and immunological
processes in terms of practical identifiability and parameter
sensitivity to measurement errors.

A detailed review of methods and case studies of structural
identifiability analysis in biological problems described by

ODE systems may be found in (Miao et al., 2011; Kabanikhin
et al., 2016). The model structure being as follows:

% =g(t,%,q), te(0,T),x(t)e CL(RN), geRE,
x(0) =Xx,, (1)
x; () = fio ie{l, ., M}, k=1,..,K,

The analysis based on this model makes it possible to verify
the uniqueness of the solution ¢ of the parameter identification
problem and the initial conditions of model X, (or their part)
based on available measurements f;,, while also providing
recommendations on adding new information and modify-
ing the conditions of the parameter identification problem to
ensure the uniqueness of the solution.

In the present paper, the analysis of the semi-relative sensi-
tivity of the mathematical models to describe epidemiological
and social processes is presented. This approach, proposed
in (Adams et al., 2004) for analyzing ODE systems, shows
the degree of parameter sensitivity to measurements and
identifies lacking/excessive measurements based on a cer-
tain reference set of parameters for solving the stated pa-
rameter identification problem. Two mathematical models
of the spread of the new coronavirus infection caused by
the SARS-CoV-2 virus described by ODE systems are used
as examples. A regularization algorithm for numerical solu-
tion of the parameter identification problem is developed for
SEIR compartmental model and agent-based model using the
statistical data from public sources. The modeling results and
the scenario of COVID-19 spread in the Novosibirsk region
are presented.

Parameter sensitivity analysis

in systems of ordinary differential equations
Sensitivity analysis is used for identifiability assessment of
the unknown parameters of the model represented by ODE
system (1) before developing a numerical solution algorithm
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for the parameter identification problem. These methods do
not require real experimental data, but the number of measure-
ments and their time may be a necessity. Sensitivity analysis
for a mathematical model is performed with regard to a set
of nominal parameters g*, whose values are taken from the
literature or statistical data available.

Sensitivity analysis methods are based on a sensitivity
matrix. Assume that #,<¢,<...<f, are the fixed times of
measurements f;, . Then, the sensitivity matrix coefficients for
parameter vector ¢* are calculated as:

BCIAGY Wy @

6qj Y

where, f;,i =1, ..., M, is the ith entry of the measurement
function vector, and q;s j=1, ..., L, is the jth entry of the
parameter vector.

Thus, the sensitivity matrix is determined as follows:

Sij(t)

st $1(8)

S s0)
Swwa™| b witd|

St St

The sensitivity matrix is calculated using the conventional
sensitivity function:

_ox.
qu(t) - aqj(t), J 1, ,L

When the first equation from (1) is differentiated with re-
spect to ¢;, each vector function Sq; should satisfy the Cauchy
problem as follows:

. og, - 0 —
8,0 =323 (6:9).9) 5, (0 + 25 (15 (139).9),
g5 ox 9j 0q;
% ! 3)
5, (1) = 20
420" oq;°
J
So, sqj(t) is obtained by numerically solving the Cauchy
problem.

First, the assessment is performed for the parameters g,
to which the model’s solution is most sensitive. These para-
meters, in turn, are defined by calculating semi-relative sen-
sitivity. Here, sensitivity is considered a time function on the
interval of interest. To obtain a general measure of parameter
sensitivity of the solution, a time norm (over space L,) is de-
rived for each state/parameter combination and the obtained
scalar quantities are ranked to identify the most sensitive pa-

of (1) g
k
0q,

, the less the effect
2

rameters. The lower the value

of g, on f;. This general measure will be referred to as semi-
relative sensitivity.

The orthogonal method is then used for sensitivity analysis.
The idea of the method suggested in (Yao et al., 2003) is to
investigate linear dependencies of the columns of sensitivity
matrix S. In such a way it will be possible to assess parameter
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sensitivity to the input data and parameter interdependence
at the same time.

Sensitivity analysis of COVID-19 spread models

The feature of currently developed COVID-19 spread models

is that they analyze the behavior of asymptomatic cases and the

effect of the incubation period on the epidemiological situation

in the regions. Several open-source suites (Gomez et al., 2020;

Tuomisto et al., 2020; Wolfram, 2020) and web services have

been developed for modeling COVID-19 spread scenarios:

» ona global scale: https://covid19-scenarios.org/ (University
of Basel, Switzerland);

* in Moscow, the Novosibirsk region, and some European
countries: https://covid19.biouml.org/ (Institute of Compu-
tational Technologies, SB RAS, Novosibirsk);

* in Almaty, the Republic of Kazakhstan: http://covid19.
mmay.info/almaty/?fbclid=IwAR20yx7F4AMdWRqwUD
zripUK291WAvoyCSkDPafgpj25ummay23e7o0FHBdXg.
Two fundamental approaches to epidemic propagation mo-

deling may be distinguished:

1. Compartmental approach (top-down modeling). Here,
the interaction between the agents within the population
grouped by similar attributes (susceptible group, (a)symp-
tomatic carriers, hospital admission cases, critical cases,
etc.) is described using the mass balance law within the
compartmental model first suggested in 1927 (Kermack,
McKendrick, 1927). Agents are distributed in time de-
pending on the assigned transition probabilities between
groups such as infection probability, virus contagiousness,
mortality rate, etc.

2. Agent-based approach (bottom-up modeling) is based on
studying the interactions between individuals and their
effect on global parameters (e.g. virus contagiousness,
mortality rate, severe case probability, etc.). Agent-based
models are characterized by random graphs whose arc
lengths describe the probabilities of transition to different
agent states.

The parameters of transition between groups or agent
states are often unknown or broadly defined. For instance,
the incubation period of the disease according to WHO data
varies from 2 to 14 days, which complicates the analysis of the
model and the building of adequate disease spread scenarios.

Let us consider two breakdowns of the population of a par-
ticular age (e. g., ages 20-29) into groups. The transition into
different agent states in the course of the disease caused by
the SARS-CoV-2 virus is presented in Fig. 1. These models
do not take into account such factors as sex segregation, an-
nual birth and mortality rates (since the modeling interval of
less than a year is analyzed), vaccination, passenger traffic,
and comorbidities, which affect the probabilities of transition
to different agent states. Our goal here is to demonstrate the
correlation between dependences of similar parameters on the
same measurements and recommend what parameters can be
determined consistently and based on what measurements.

The ODE system (1) describing COVID-19 spread in the
population is divided into 10 groups (Kerr et al., 2020) based
on the mass balance law and is expressed as follows:
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Fig. 1. Agent-state diagram in (a) the COVASIM package (Kerr et al., 2020) and (b) the SEIR-HCD model (Unlu et al., 2020).
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_ dH 1 B
‘fi—lf A(t)+ p C’”H )+ = M (t)+ ” (), T 1(1) . C(f) T 11D
di{ _ @ erlt 1 —Perit dc _ 8HC
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dC , u
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ap _ p C(t) S(0) =Sy, E£(0) = E, 1(0) = I, R(0) = R,
dt crl
g H(0) = Hy, C(0) = C,, D(0) = D,

with the initial conditions:
S(O) = S()7 E(O) = EO) 1(0) =
R(0) =R, H(0) = H, M(0) =

1y, A(0) = A, Sym(0) = Sym,,,
M,, C(0) = C,, D(0) =D,.

Model (4) characterizes a class of agent states for an age
group within the agent-based model (see Fig. 1, a).

The equation system for the SEIR-HCD model, where the
population is divided into 7 groups (Krivorotko et al., 2020b;
Unlu et al., 2020), is composed in a similar fashion:

Here, S(f) is a susceptible agent at time ¢, E(¢) — a nonconta-
gious infected (not transmitting the virus), /(¢) — a contagious
infected (transmitting the virus), A(f) — an asymptomatic
case, Sym(t) — a symptomatic case, H(f) — a severe case,
C(f) — a critical case (requiring a ventilator), M(¢) — a mild
case, R(f) —arecovered case, and D(¢) —a mortality case. The
averaged parameters of models (4) and (5) for the Novosibirsk
region are presented in Table 1 (Lauer et al., 2020; Verity et
al., 2020; Wolfel et al., 2020).
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Table 1. Averaged parameters used in models (4), (5) for the Novosibirsk region (Kerr et al., 2020; Unlu et al., 2020)

Parameter Description Value/interval
T1 ....................... D a ys before recovery forasym ptoma t,c andm, | d . ca Ses .......................................................................................... 6 _” .......................
Tz ....................... D a ys before recovery forsevereand . c r,t,ca|cases .................................................................................................... 12_17 ....................
psym ................... P rOb ab|||tyof Symptom expre 55|0nafter|nfec t,on ................................................................................................... 0 6 .........................
P Probability of a symptomatic case becoming a severe one (requiring hospital admission) 00072
P Probability of a severe case becoming a critical one (requiring aventilato) 000036
a ....................... P rOb ab|||ty0f V, rustra ns m|55|onto CO nta ct a g ents .................................................................................................. ( 001 0025) ..........
E(O) .................... | n,t,a|qu ant,ty . ofmfecte d agents, n ; thepo pu|at,0n ................................................................................................ ( 1 100) ..................
)" Vandex selfsolation index descrbing the complancewith sl solation rinciiesnthe popuiion 05
on a scale from 0 (lack of isolation) to 5 (complete isolation)
R Contagion probability between the asymptomatic and susceptible groups (g >> @) oy
R Contagion probability between the infected and susceptible groups linked with virus contagiousness ~~ (0,1)
and social factors
[3 ........................ R ecovery p rOba b|||tyfor mfected . c a Ses W|thoutcomp||cat|0n 5 .............................................................................. ( 0 1) ......................
e | Proportion of admitted critical-state patients requiring aventitator | oy
“ ....................... P robab,htyofcovm19re|atedmorta|,ty ................................................................................................................. ( 005) ...................
T ........................ |_ a tent penod . m days (de|ay m vm on : ,50| a t,on) ......................................................................................................... 2 .............................
tmc ..................... | nCUba t,onpe nod, n ; d ays ............................................................................................................................................ 2 _14 ......................
tmf ..................... | nfecn On pemdmda ys ............................................................................................................................................... 2 5_14 ...................
thosp ................... H osp,tahzat.onpenod,ndays4_5 ........................
tcm ..................... D a ys onavenmator ...................................................................................................................................................... 10_20 ....................

Table 2. Semi-relative sensitivities of various model (4) states
to the parameters sorted in descending order

: o S [ L [ J | |
Note that the coefficients £, bt > Dosp> Lories T 5 T1 5 T

at the respective agent states in models (4) and (5) describe

the delay in transition between states (Likhoshvai et al., 2004). Variable, Parameter, g, oF (D) »
Consider the following equation (5): H? x
k 2
dl _ 1 1
al _ _1 E )—— [ B) s
&~ PO Linf ®, R(®) E(0) 8.9-10°
where coefficient £,! (in the linear approximation) indicates o 7.6-10'
Fhe delay of 7, days before the trgnsmon from non-contagious Do) £0) 6.7.10-14
infected group E(?) to contagious infected group /(¢), and coef- e
ficient fti;} — that the agent stays in the contagious infected ... e 60710

group for the infection period of Liny days.
Mathematical model 1 (see the diagram in Fig. 1, a). As-

sume that additional information on recoveries and deaths on  order are presented in Table 2. The lower the value GAY) g >
fixed days is available for the mathematical model (4): 94, 2

R(t)=R,,D(t)=D,, k=1, ...,225. (6)
Here, R, is the number of recovered agents on day &, D, is
the number of disease-related deaths on day 4.

The model analyzes the semi-relative sensitivity of two un-
known parameters, i.e. contagiousness o and initial quantity
of asymptomatic cases £(0) in the model (4) to the measure-
ments (6). It will allow us to determine the possibility of
consistent identification of the unknown parameters based on
the data available for an adequate representation of epidemio-
logical situation in the region. The sensitivities of parameters
(g = (a, £(0)), k=1, 2, to measurements (f;) = (R, D),i=1,2,

of(t) ,«
£ g
0q,

represented by norm and sorted in descending

2

the less the effect of g, on f,.

Figure 2 demonstrates how sensitive function %q*
g, k
changes in time depending on the parameter. Thus, parameters
o and E(0) within the model (4) are less sensitive to vari-
able D(f) and are therefore not identifiable by the mortality
data alone. On the other hand, these parameters are sensitive to
function R(7), and, as a result, are recovered more consistently
based on the recovery data.

Mathematical model 2 (see the diagram in Fig. 1, b). Let
us now investigate the SEIR-HCD mathematical model (5).
Assume that additional information on diagnoses, critical
cases, and mortality on fixed days is available:

86 BaBunoBckuii xKypHan reHeTuku n cenekuum / Vavilov Journal of Genetics and Breeding < 2021 - 25« 1



O.N. KpueopoTbko, C.U. KabaHuxuH
M.N. CocHoBckas, [1.B. AHpopHasn

Parameter E(0) and data R(t)

AHanM3 yyBCTBUTENIbHOCTU U UAEHTUGULIMPYEMOCTH 2021
MaTemaT1yecKknx mogenen pacnpoctpaHeHuns asnuaemmn COVID-19  25.1

Parameter o and data R(t)

ol 1200000 -
E(0) o R
100000 | R4 s
8t /
80000 f Ry
6 ¥
60000 - / N
L /
4 40000 r I,’
7
2r 20000 [/
1e-8 Parameter E(0) and data D(t) Parameter o and data D(t)
4r 000005F el
- E(0) o Tl
3t 0.00004
I 0.00003 | -
2+ /'
L 0.00002 |+ /
1
0.00001 | //
0 C 1 1 1 1 1 1 1 1 0 C ——” 1 1 1 1 1 1 1
0 25 50 75 100 125 150 175 25 50 75 100 125 150 175

of (&
Fig. 2. Sensitive function ﬁqk for model (4) for the period from 12.03.2020 to 09.09.2020 (182 days).
k

aq

I(tk) =(1 _bk)fka C(tk) = Cka D(tk) = Dka
te(ty, 1), k=1,...,205,

where b(¢) € [0, 1] is the proportion of asymptomatic carriers
in the diagnoses, f; — the daily number of diagnoses on day £,
C, — the number of critical cases on day £.

Parameters g = (0, o, B, €40, 1, EO)T R are considered
unknown. To analyze the semi-relative sensitivity of the pa-
rameter vector ¢ to measurements (7) within the mathemati-

(7

cal model (5), we derive ﬁg(t) gt ()=(LC.D)i=1,23,
9k
of(¢t
and analyze the values g’( ) q;|| (Table 3). Consistency of
qr 5

identifying parameters f, &,,, and u as the result of solving
the inverse problem barely depends on the available measure-
ments of the number of infected carriers /(7); however, it is not
the case for the more sensitive coefficients a,, o, £,

AU

0q,

in time depending on the parameter. The more the parameter
changes in time, the higher its sensitivity to the measurements
analyzed, and the more consistently it is identified.

In Fig. 4, the results of parameter sensitivity analysis for the
model (5) at various iterations of the orthogonal algorithm are
presented (see the description of the algorithm in (Krivorotko
et al., 2020a)). Iterations of the orthogonal algorithm, whose
total number is one less than the dimension of the unknown
parameter vector (i. e. the number of columns in the sensitivity
matrix), are plotted along the horizontal axis, and the norms of
perpendiculars for the obtained transformations of sensitivity
matrices — along the vertical axis. It was shown that the con-
tagion between the asymptomatic and susceptible groups a,,

Figure 3 shows how sensitive function g; changes

the contagion between the infected and susceptible groups o,
linked with virus contagiousness and social factors, and the
initial quantity of infected carriers and the agents in incubation
period £, turned out to be the more identifiable parameters.
The ranking of the parameters obtained via sensitivity analysis

Table 3. Semi-relative sensitivities of various states
of the model (5) to parameters, sorted in descending order

Variable, f; Parameter, g, of(t) «
[5l,
/ ....................................... (.1. E .................................... 2 8651014 ...................
/ ....................................... (.1. R 2 396 .i.b.i.‘i ...................
/ ....................................... E 0 .................................... 13541014 ...................
c ..................................... (.1. E .................................... 2 3861012 ...................
c ..................................... (.1. — 19961012 ...................
c ..................................... E 0 .................................... 15441012 ...................
D ..................................... (.1. E .................................... 7 1101011 ....................
D ..................................... (.1. o 5 94710” ....................
D ..................................... E 0460110” ....................
C ..................................... 8 HC4833'|04 .....................
c ..................................... B ..................................... 3 4 28 104 .....................
D ..................................... 8 HC .................................. 3 041104 .....................
D ..................................... u ..................................... 2 982104 .....................
D ............................................................................ 2 1 64104 .....................
c ..................................... u ..................................... 3 695102 .....................
/ ....................................... [3 ..................................... 2 0 310_6 .....................
/ ....................................... 8 HC .................................. 161077 .......................
/ ....................................... u ..................................... 3 10_8 ..........................
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Fig. 3. Semi-relative sensitivity function ﬁ q;‘ for the time interval from 15.04.2020 to 01.10.2020 (170 days).
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Fig. 4. Normalised perpendiculars for each parameter (different colors)
at the different iterations (7-5) of the sensitivity-based orthogonal algo-
rithm (5).

for the model (5) from the most sensitive to the least sensitive
is as follows: ay, £, o, €0, W, .

As a result of identifiability analysis, a conclusion can be
made that model parameters a,, £, and o, are the least sensi-
tive to data variations (errors), i.e. are more identifiable. In
other words, these parameters are identified more consistently
as a result of solving the inverse problem (5), (7). In turn, pa-
rameters &, |, and B are the most sensitive to measurement
errors, i. ., less identifiable (and have the lowest values of the
norms of perpendiculars in the sensitivity matrix). Hence, the
regularization algorithm should be developed to ensure the
consistent identification of sensitive parameters.

Mathematical modeling of COVID-19

spread in the Novosibirsk region

To build a COVID-19 spread model for the Novosibirsk re-

gion, the following publicly reported data were used:

(a) Number of people tested (including the number of diag-
noses f and proportion of asymptomatic carriers b(¢)),
recovered cases (R), and COVID-19 related deaths (D);

88

(b) Duration of incubation period ¢,,., latent period t, infec-
tion period Ling hospitalization period Uhosp> and duration
of ventilation 7, ;

(c) Recovery time for mild T, and severe 1, cases;

(d) Demographic profiles (population size and its age distri-
bution in the region);

(e) Average household size (2.6 people) in the Russian Fede-
ration in 2019, according to UN data (https://population.
un.org/Household/#/countries/840).

Additional information was regularly obtained from the
following websites:

* Ministry of Health of the Novosibirsk region: https://zdrav.

nso.ru/ (d).
» Federal State Statistics Service of the Novosibirsk region:
https://novosibstat.gks.ru/folder/31729 (c).

+ Stopcoronavirus website: https://cTonkoponasupyc.pd (a).

» World Health Organization: https://www.who.int (b).

The modeling was performed taking into account the mea-

sures to contain the COVID-19 spread (Table 4).

Solutions of inverse problems (4), (6) and (5), (7) were

reduced to misfit function minimization (Kabanikhin, 2008):

T
J(@) =X 2w Glejs ().

Here, s is the statistics used for data comparison (cumulative
diagnoses, critical cases, and mortality), w, — the weight co-
efficient, c/%, ¢/ — data (with subscript d) and model values
(with subscript m), T — the modeling interval in days, g — the
unknown parameter vector: ¢, = (B, E,)” for the inverse
problem (4), (6) and ¢, = (0z(7), a,(?), B, €y 1, E)T for the
inverse problem (5), (7). The absolute norm for computational
experiments was set as follows:

i k|
G1 = M
item; and the standard deviation was G,= (c’* — c,izs)z/ T.

, where M = max {c}*} was the normalization
t
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Table 4. COVID-19 containment measures in the Novosibirsk region to be used in the models (4), (5)

Containment measures

July 6, 2020 Opening of outdoor terraces in cafes and restaurants
September 1, 2020 Reintroduction of contact learning in schools and higher education institutions
September 28, 2020

institutions

Minimization of misfit function J(g) was implemented us-
ing the differential evolution method from the SciPy.Optimize
Python library. The general algorithm of global minimum
search was as follows:

1. Creation of the initial generation {Z} eB,i=1...N.
2. Creation of a new generation:

* Mutation:

For all ¢, € B three random vectors were selected as fol-
lows: v},5, v, € B, (v, #4,,j = 1,2, 3).

Mutant vector: v = v, + F(v; —v3), F € [0, 2].

+ Crossover: trial vector 17 was calculated as follows:
vy, if rand < p,
“k:{qk,ifrandip, k=1...Nq.
3. Selection:
> {; ifJ(x)) < J (@),
! Z, else.

The results of COVID-19 spread modeling in the Novosi-
birsk region with the forecast up to December 10, 2020, are
presented in Fig. 5. The model was built using the agent-based
approach relying on the investigation of interactions between
individuals and their effect on global parameters. The model-
ing was performed using Covasim, a simulator for develop-
ing stochastic agent-based models. A detailed discussion of
the model structure may be found in (Kerr et al., 2020). We
also used the statistical data on diagnoses and deaths from
March 12 to October 23, 2020. The following misfit function
was minimized taking into account the identifiability analysis
results for the model (4), (6):

T
)= 7 2 (/5L +100- (D} - D).

Here, /7, f are cumulative diagnoses, and D!, D! are cumu-
lative deaths.

Modeling results /7 and statistics /) of cumulative and daily
diagnoses are presented in Fig. 5, a, b. Modeling results D!
and statistics D} of cumulative COVID-19 related deaths in
the Novosibirsk region are presented in Fig. 5, c. Note that
the second wave of the epidemic may be observed in the No-
vosibirsk region in mid-September in both the statistical data
and modeling results. Its growth will be insignificant (i.e. it
will not exceed 215 new daily diagnoses by mid-December,

Implementation of the face mask regime for all premises and restricted containment measures in educational

Cumulative diagnoses

25000
20000
15000
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b Number of new diagnoses
200} | i ’ i

150 ¢
100

Cumulative deaths

400 -

200 -

0 !
Mar-12  Apr-21

May-31 Jul-10  Aug-19 Sep-28 Nov-07 Dec-17

Fig. 5. COVID-19 spread model for the Novosibirsk region (solid blue line)
using the agent-based approach and statistical data (black dots) with
containment measures (vertical dashed lines).

2020) due to the introduction of stricter containment measures
from October 28.

The inverse problem (5), (7) was reduced to the minimiza-
tion of the following misfit function (Krivorotko et al., 2020b):

K
J(‘]z) :kz‘l (W1|§;1E(tk_1§qZ)*(lfbk)f}J +
+w,|Ct 4,) — Col + w3 D(t; 4,) =Dy ).

Infection rate parameters a,(f) and o,(¢) linked to virus
contagiousness and varying in time were represented as
piecewise constant functions depending on the interventions
(see Table 4).

Based on the identifiability analysis results for the model
(5), (7), more rigid restrictions were imposed for poorly
identifiable parameters (see Table 1). The result of solving
the inverse problem (5), (7) for the SEIR-HCD model for the
period from April 15, 2020, to October 3, 2020, is presented
in Fig. 6.
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Fig. 6. Modeling COVID-19 spread in the Novosibirsk region (solid blue line) from 15.04.2020 to 03.10.2020 and the statistical data (dashed black line)
for (a) daily confirmed cases f; and (b) the critical cases C; requiring a ventilator.

Note that although the rough mathematical model (with
ODE system of 7 equations) captures the general trend based
on the number of diagnoses (the peak of confirmed cases in the
region, see Fig. 6, a), it is still unable to qualitatively describe
highly variable statistics (critical cases requiring a ventilator,
see Fig. 6, b). Nonsmooth solutions in Fig. 6 result from the
use of the Yandex self-isolation index characterized by weekly
seasonality. In this case, smoothing would undermine the use
of the tool. A more detailed analysis of modeling and fore-
casting of COVID-19 spread in the Moscow and Novosibirsk
regions is presented in (Krivorotko et al., 2020b). This case
requires the agent-based approach capable of detailed descrip-
tion of small statistical datasets.

Conclusions

In the present study, sensitivity-based identifiability analysis
has been performed for the COVID-19 pandemic spread
models based on systems of differential equations. The algo-
rithm is based on the analysis of the sensitivity matrix using
the differential and linear algebra apparatus, which shows the
degree of dependence of the unknown model parameters on
the given measurements.

The analysis has shown that the virus contagiousness is
consistently identified based on the number of new daily diag-
noses, critical cases, and recoveries. On the other hand, the
predicted proportion of admitted critical state patients requir-
ing a ventilator and the mortality rate are identified much less
consistently. It has been demonstrated that developing a more
realistic forecast will require additional information about
the process such as the number of daily hospital admissions.

The identifiable parameters refinement problems have been
reduced to the minimization of the respective misfit func-
tions describing the proximity of the modeling data to the
statistics of the diagnoses, critical cases, and mortality in the
Novosibirsk region. The use of absolute and quadratic norms
as measures of deviation between the data and the modeling
results in the minimization procedures has not yielded any
significant differences in terms of analyzing the modeling
results. It has been shown that a rough compartmental model

of' seven ODEs describes the general trend of the coronavirus
infection propagation, as it is sensitive to peaks of confirmed
cases; however, it is unable to qualitatively describe smaller
statistics (daily numbers of critical cases #, and deaths), which
may lead to improper conclusions. A more detailed mathemati-
cal model using the agent-based approach, where a class of
agent states is expressed by a system of ten ODEs, will make
it possible to describe noisy statistical datasets in more detail
and build adequate scenarios of COVID-19 pandemic spread.
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