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Abstract. Many processes in living organisms are subject to periodic oscillations at different hierarchical levels
of their organization: from molecular-genetic to population and ecological. Oscillatory processes are responsible
for cell cycles in both prokaryotes and eukaryotes, for circadian rhythms, for synchronous coupling of respiration
with cardiac contractions, etc. Fluctuations in the numbers of organisms in natural populations can be caused by
the populations’ own properties, their age structure, and ecological relationships with other species. Along with
experimental approaches, mathematical and computer modeling is widely used to study oscillating biological sys-
tems. This paper presents classical mathematical models that describe oscillatory behavior in biological systems.
Methods for the search for oscillatory molecular-genetic systems are presented by the example of their special
case - oscillatory enzymatic systems. Factors influencing the cyclic dynamics in living systems, typical not only
of the molecular-genetic level, but of higher levels of organization as well, are considered. Application of diffe-
rent ways to describe gene networks for modeling oscillatory molecular-genetic systems is considered, where the
most important factor for the emergence of cyclic behavior is the presence of feedback. Techniques for finding
potentially oscillatory enzymatic systems are presented. Using the method described in the article, we present and
analyze, in a step-by-step manner, first the structural models (graphs) of gene networks and then the reconstruc-
tion of the mathematical models and computational experiments with them. Structural models are ideally suited
for the tasks of an automatic search for potential oscillating contours (linked subgraphs), whose structure can
correspond to the mathematical model of the molecular-genetic system that demonstrates oscillatory behavior in
dynamics. At the same time, it is the numerical study of mathematical models for the selected contours that makes
it possible to confirm the presence of stable limit cycles in them. As an example of application of the techno-
logy, a network of 300 metabolic reactions of the bacterium Escherichia coli was analyzed using mathematical and
computer modeling tools. In particular, oscillatory behavior was shown for a loop whose reactions are part of the
tryptophan biosynthesis pathway.
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AHHoOTayua. MHoOrMe NpoLecchl B XMBbIX OpraH13max nofBep»eHbl NeprofnYeckuM KonebaHnsam Ha pasnmny-
HbIX MepPapXMUeCKUX YPOBHSAX MX OPraHM3auun: OT MONEKYIAPHOro-reHeTUYeCKoro A0 NonynALUMOHHOMO 1 KO-
norunyeckoro. OcumnanpyioLime NPoLEecchl OTBEYAOT 3a KNIeTOUHbIE LMKIIbl KaK Y NPOKapyWoT, Tak U Y SyKapuoT, 3a
LMpPKagHble PUTMbI, CUHXPOHHYIO CBA3b [ibIXaHWA C CEPAEYHbIMU COKpaLLeHnAMM 1 ap. KonebaHua uncneHHocTeln
OpPraH13mMoB B MPUPOLHBIX MONYAALMAX MOTYT ObITb 00YCNIOBMIEHbI COOCTBEHHBIMM CBOMCTBAMMU NONYNALMIA, UX
BO3PaCTHOW CTPYKTYPOW, @ TaKXKe IKOTOrMYeCcKMM B3aMMOOTHOLLEHMAMM C APYrMU BUgamMu. Hapagy ¢ akcnepu-
MEHTaNIbHbIMW MOAXOAAMY, ANA NCCNEAO0BAHUA OCLUNMPYIOLUX GUONOrMYECKUX CUCTEM WMPOKO NPUMEHAETCA
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TexHonorum noncka n nccrnefoBaHnAa
noTeHUnanbHO ocunnInpytowmnx C])epMeHTaTVIBHbIX cacTem

MaTeMaTU4YecKoe 1 KOMMbIOTEPHOe MOAenvpoBaHue. B AaHHON cTaTbe npefcTaBneHbl Knaccmyeckre mateMa-
TUYeCKe MOAENN, KOTOPbIE OMUCHIBAIOT OCLMIIIMPYIOLLEe MOBEAEHME B OBUONOTMYECKNX cucTemax. MprBeaeHbl
MeTOZbl MOVCKa OCLMANNPYIOLNX MOSNEKYIAPHO-TEHETNYECKUX CUCTEM Ha MPUMEPE UX YaCTHOrO CJlyyas — oCLuI-
nupyowmx GepmeHTaTUBHBIX cMcTeM. PaccMoTpeHbl hakTopbl, BAMAIOWME Ha LMKIMYECKYIO AVHAMUKY B XMBbIX
CUCTEMAX, XapaKTepHble He TOJNbKO AJI MOMEKYNIAPHO-TEHETUYECKOTO YPOBHS, HO 1 AAns 6onee BbICOKUX YPOBHEN
opraHuzaumn. ObcyxaaeTca NpUMeHeHne pasnuHbiX CNocoboB OMUCAHKA FeHHbIX CeTell A MOAENNPOBaHMA
OCLUNNINPYIOLLMX MONEKYNIAPHO-TEHETUYECKNX CUCTEM, TAE BaXKHENLWNM GaKTOPOM BO3HUKHOBEHUA LIMKIINYECKO-
ro noBeAeHVA ABNAETCA Halmume obpaTHbIX cBA3el. MpefcTaBieHbl TEXHOMOMN MOUCKA MOTEHLMANIbHO OCLUAIN-
pyowmnx pepmeHTaTMBHbIX ccTeM. C NOMOLLbIO METOAA, ONMMCAHHOTO B CTaTbe, MPOBOAUTCA NOSTaMNHbIN NpoLecc
NOCTPOEHWUSA 1 aHanM3a CHavana CTPYKTYpHbIX Mofeneii (rpadoB) reHHbIX CeTeld, a 3aTeM PEKOHCTPYKLMMN MaTema-
TUYECKUX MoLenel U BblYNCIUTENbHbIX IKCMEPUMEHTOB C HUMUK. CTPYKTYpHblE MoZeny naeanbHO NOAXOAAT Afis
3aflay aBTOMATUYECKOro Moucka NoTeHLUMabHbIX OCLUINPYIOLLMX KOHTYPOB (CBA3HBIX nofrpados), CTPYKTypa
KOTOPbIX MOXKET COOTBETCTBOBATb MAaTEMATNUECKON MOAENN MONEKYIAPHO-TEHETUYECKOW CUCTEMBI, AEMOHCTPU-
pytoLen ocuunnvpyollee noseaeHve B AriHamuke. Mpu 3TOM MMEHHO YMCIIEHHOE UCCeloBaHNe MaTemaTye-
CKUX Mofeneit ana oTobpaHHbIX KOHTYPOB NMO3BONAET MOATBEPAUTL HANIMUME B HUX YCTONUMBbLIX MPEAENbHbBIX LK-
NoB. B KauecTBe Npumepa NPUMEHeHUA TEXHONOMMY NMPOoaHann3npoBaHa ceTb 13 300 MeTabonMyecKnx peakuuii
6akTepuu Escherichia coli ¢ ncnonb3oBaHWeM VHCTPYMEHTOB MaTeMaTUYEeCKOro 11 KOMMbIOTEPHOTO MOAENMPOoBa-
HYA. B yacTHOCTW, NOKa3aHo ocLuUNMpyoLlee NoBefeHVE AN KOHTYPa, Peakuym KOToporo BXoAAT B MyTb 61o-
CUHTe3a TpunTodaHa.

KnioueBble crioBa: ocumniaumm; obpaTHas CBA3b; LUKIMYECKUE MPOLECChb; MOAENMPOBaHE OUONOrMYecKmnx

cncTem.

Introduction

Many processes in living organisms are subject to periodic
oscillations at different hierarchical levels of their organiza-
tion: from the molecular-genetic to the population and eco-
logical levels. For example, at the molecular-genetic level,
there are oscillations in the concentrations of p53, a protein
involved in apoptosis or cell cycle delay in DNA damage, and
its inhibitor Mdm2 (Prives, 1998; Lahav et al., 2004). There
are also fluctuations in concentrations of hormones in the
cell, such as melatonin (Boccalandro et al., 2011), prolactin,
total cholesterol (Garde et al., 2000), etc.; concentrations of
low molecular weight compounds, such as intracellular and
intercellular calcium ion concentrations, can also oscillate
(Pasti et al., 1997; Allen et al., 2000).

One well-known example of organism-wide periodic pro-
cesses is circadian rhythms, for the work on which the 2017
Nobel Prize in Physiology or Medicine was awarded (Young
etal., 1984; Siwicki et al., 1988; Hardin et al., 1990; Price et
al., 1998). Jeffrey C. Hall, Michael Rosbash, and Michael W.
Young discovered the period gene in Drosophila melano-
gaster, which is regulated through feedback by the PER pro-
tein underlying circadian rhythm.

In the article (Podkolodnyy et al., 2017), the authors con-
sidered genes located in liver and kidney cells that are over-
expressed with a certain periodicity during the 24-hour cycle.
In a subsequent paper, the authors provided an overview of
various mathematical models used to model the autonomous
circadian clock in mammalian cells (Podkolodnaya et al.,
2017).

At the cellular level, cyclic processes can include cell
cycles in both prokaryotes and eukaryotes (Cooper, 1991).
Such important cyclic processes as heartbeat (Ashkenazy et
al., 2001), respiration, as well as synchronous relationship
between respiration and heartbeat (Yasuma, Hayano, 2004),
photosynthesis (Holtum, Winter, 2003) and other similar pro-
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cesses occur at the level of an individual organ or functional
systems of an organism.

Population waves (Chetverikov, 2009) are a classic example
of cyclic processes at the population level of organization.
Fluctuations in the number of organisms in natural popula-
tions can be caused both by external environmental factors
and by the population’s own properties, its age structure,
and ecological relationships with other species. A natural
factor such as seasonal periodicity plays an important role in
the cyclic processes of the population level, influencing the
migration of birds, falling into anabiosis, the appearance and
fall of leaves, etc.

Thus, in the article (Erdakov, Moroldoev, 2017), the au-
thors considered the cyclicity in the population dynamics
of the red vole, which varies depending on the geographical
habitat and external conditions in the area. And in the paper
(Pertsev, Loginov, 2011), using a stochastic model, the authors
considered how the population size changes when harmful
food resources are consumed. The investigation of population
dynamics, often cyclical, is one of the most studied processes,
both by empirical methods and with the help of mathematical
methods, including modeling (Volterra, 1928; Bazykin, 2003;
Riznichenko, 2017).

Finally, biogeochemical cycles, i. e., processes of dynamic
exchange of chemicals between organisms from prokaryotes
to higher animals and plants and elements of the biosphere
(soil, water and air) can be classified as cyclic processes at
the ecological level (Van Cappellen, 2003; Zavarzin, 2003,
2011; Struyf et al., 2009).

Cyclical processes in biology are investigated using ex-
perimental and theoretical methods. Mathematical modeling
is one of the main methods for their investigation, particularly
in finding areas of stationary, oscillatory, and possibly chaotic
behavior (Romanovsky et al., 1975; Schnol, 1996; Becks,
Arndt, 2013).
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The first works devoted to oscillatory biochemical processes
belong to Alfred Lotka (Lotka, 1910). Lotka described the dy-
namics of biochemical processes using systems of nonlinear
ordinary differential equations. Around the same time, Vito
Volterra, independently of Lotka, developed the same models,
but in application to population-ecological problems. These
models were later called the “Lotka—Volterra models”. Further
study of oscillatory chemical processes led to the discovery
of Belousov—Zhabotinsky type systems, in which oscillations
occur not only in time but also in space, and, therefore, can
be described not only by ordinary differential equations, but
also by partial differential equations (Zhabotinsky, 1974; Field,
Burger, 1988; Mushtakova, 1997; Shnol, 2009).

This article presents a review of classical mathematical
models that describe oscillatory behavior in biological systems
and gives illustrations of methods for finding such systems
using enzymatic oscillatory systems as an example. The role
of gene networks in modeling oscillatory molecular-genetic
systems is discussed. The factors influencing the presence or
absence of oscillatory behavior in various molecular-genetic
systems are given.

Classical models and methods
for modeling oscillatory processes
Among the first mathematical approaches describing oscilla-
tory processes are models that have already become classical
in the field of mathematical biology (Riznichenko, 2002). In
one of the papers devoted to the theory of periodic reactions,
Lotka studied a chemical reaction of the form:
A—>X—>Y—B, (N
where X — Y is an autocatalytic process. Based on the law
of'mass action, Lotka described this reaction by the following
differential equations (Lotka, 1910):

dx

E kO - klxy, (2)
dy

o kxy—kyy,

where k, k,, k, are the constant parameters and x, y are the
concentrations of chemicals.

The following model, described by Lotka (Lotka, 1920) and
then independently formulated by Volterra (Volterra, 1928),
expresses two autocatalytic reactions (i.e. 4 — Xand X— Y).
The Lotka—Volterra model has the following form:

dx _ b
a0
3)
D_ o d
Yy

where a, b, ¢, d are the rates of transformation of some sub-
stances into others, x, y are the concentrations of chemicals.
This model is also known as the “predator—prey system”,
which is used in population dynamics to explain periodic
fluctuations in the abundance of individuals in populations.
In the same period a paper with the van der Pol and van
der Mark oscillator model was published (van der Pol, van
der Mark, 1928). They modeled the heart as three connected
relaxation systems: sinus, atrium and ventricle. As such a sys-
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tem, the authors chose a system consisting of a neon lamp,
a condenser, a resistance, and a battery, which is capable of
producing relaxation oscillations. However, this system si-
mulates only some modes of heart operation due to the com-
plexity of the object under study. The model is described by
an equation of the form:

d?v

L3 —a(l -2+ wtv =0, )

where a is a positive value, which is an oscillator parameter
(responsible for non-linearity and damping of oscillations),
o — oscillation frequency, v — the value corresponding to the
heart rhythm signal.

This model is noteworthy because it has found an applica-
tion not only in biology problems, but also in physics and other
sciences. For example, the review (Kuznetsov et al., 2014)
presented a number of problems in which this oscillator was
applied; in particular, the authors gave details on modeling hu-
man body processes, such as colonic myoelectric activity and
processes of excitation and inhibition of neurons. In the paper
(Rompala et al., 2007), the authors considered three van der
Pol oscillators to study the in-phase mode, which corresponds
to the synchronized periodic behavior of circadian rhythms.
Moreover, two of them correspond to the eye models, and the
third oscillator is a model of the brain (mainly represented by
the pineal gland), through which the interconnection of the
first two is performed. They considered the periodic change
of melatonin concentration under the influence of circadian
rhythms as a possible scheme of connection between the eyes
and the pineal gland.

In 1965, an article by Brian Goodwin (Goodwin, 1965)
was published, which raised the question of the oscillatory
motion role in the organization of cellular processes over
time. For the mathematical study of oscillatory behavior in
model systems involving enzyme regulation processes, he
introduced certain concepts of thermodynamic nature. In
the article, the author cited a model of the process of genetic
control of enzyme synthesis:

%_ ai b

dt A+ kY, 7

N )
a a;X; = b,

where X, is an mRNA concentration of the ith species, Y, is
a protein (repressor) concentration of the ith species, k; — pa-
rameter, which describes the interactions between the DNA
and the repressor.

Another classic example is the Higgins model (Higgins,
1964) of oscillatory reactions in the glycolysis system, the
scheme of which is shown below:

GLU — F6P,

F6P + Ef — E - FOP,

E} - F6P — E + FDP,

FDP + E} o E}, (6)
FDP + E, — E, - FDP,

E, - FDP — E, + GAP.
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Here GLU, F6P, FDP, GAP are designations of biochemical
substances that enter into reactions, £} — the active form of
the enzyme (phosphofructokinase), E; —the inactive form of
the enzyme, £, — the enzyme that is a combination of aldolase
and triose phosphate isomerase.

Higgins considered general pathway types of enzymatic
reactions in glycolysis in which the chemical mechanism
exhibits oscillatory behavior. Therefore, in his work, he takes
into account the following conditions: (1) one of the chemicals
must activate its own production (assuming the concentration
of the second substance is constant); (2) the second substance
must tend to inactivate its own net production; (3) there must
be a cross-coupling of the interaction of substances. If an
increase in the first substance activates the production of the
second substance, then an increase in the second substance
inhibits the production of the first, and vice versa.

Sel’kov in his classic article (Sel’kov, 1968), in accordance
with the mass action law, gave a mathematical model of the
glycolytic system based on the phosphofructokinase (PFK)
transformations:

ds,

o ks ko,

ds, y

dr kX, —kyysye tkx —kys,,

dx, Y

T = Ras Tk k) thss ek, (7)
dx,

T kyysixg = (k. + kip)x,,

d

7‘; =—k,ysye—k 3x,,

where s, — the substrate (ATP), v, — the inflow rate of the sub-
strate from some source, s, — the product (ADP), v, = k,s, — the
outflow rate of the product from the system, e — free enzyme
(phosphofructokinase), which is inactive on its own, but
becomes active when combined with product molecules as
a complex — ES}, x, — the molecule of the complex (ESD),
x, — the molecule of enzyme-substrate complex (S,ES)),
5 — product molecules that enter into a complex with the free
enzyme, y > 1 — the parameter responsible for the number of
the product molecules, k, |, k,,, k,; — rates of direct reactions,
k_,, k_y —rates of reverse reactions, 7 — time.

Goldbeter and Lefever (Goldbeter, Lefever, 1972) presented
amodel of the glycolytic system, which is a generalization of
the models presented by Higgins (Higgins, 1964, 1967) and
Sel’kov (Sel’kov, 1968). The model is based on the mechanism
of positive feedback, namely, the activation of the product by
the enzyme PFK.

In the article (Boiteux et al., 1975), the authors not only
analyzed the allosteric model of the oscillatory reaction of
phosphofructokinase, but also made experimental verification
of theoretical predictions. The data obtained for the model
agreed well with the experimental data.

In 2000, a model of a yeast population consisting of a small
ensemble of individual cells was presented to describe the
phenomenon of synchronization of glycolytic oscillations. In
this case, the communication between the cells was performed
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through the exchange of acetaldehyde (Bier et al., 2000). Gly-
colytic oscillations were also studied using stochastic methods
and chaos theory in (Bashkirtseva, Ryashko, 2017); Selkov’s
minimal model was taken as the basis, and in the article
(Ryashko, 2018) a two-dimensional Higgins model was used.

In biochemistry, the processes of changing the concentration
of ions in cells, which can increase or decrease the activity
of enzymes, participate in the metabolism of carbohydrates,
lipids and proteins, as well as play an important role in signal
transduction through signaling pathways and are responsible
for cell excitability, are actively studied. One of such processes
is periodic changes in calcium ion concentrations. A number of
mathematical models have been developed to study these peri-
odic processes. A model describing calcium ion concentration
fluctuations was first proposed in (Dupont, Goldbeter, 1989):

%:vo+v1[37v2+v3fk2,
dY ®)
PRIt

where Z — the cytosolic calcium concentration, Y — the calcium
concentration in IP; (inositol-1,4,5-triphosphate) endoplasmic
reticulum, v; (i =0, ..., 3) — reaction rates.

They analyzed the conditions for the emergence of stable
fluctuations based on the mechanism of calcium-induced
calcium release (CICR). In a number of studies (Goldbeter et
al., 1990; Dupont et al., 1991; Dupont, Goldbeter, 1993), the
authors continued their researches of calcium concentration
fluctuations based on the same minimal model.

At the same time, papers (Meyer, Stryer, 1988; Meyer,
1991) in which the authors investigated fluctuations in cal-
cium concentrations by considering the mechanism of inositol
cross-coupling (ICC) IP; with extracellular, cytosolic, and
endoplasmic Ca?* have been coming out. Lavrentovich and
Hemkin (Lavrentovich, Hemkin, 2008) proposed a model
for spontaneous Ca?* oscillations in astrocytes that takes into
account the mechanisms presented above as well as IP; pro-
duction in a receptor-independent manner.

After Goldbeter and Dupont had published their results, the
authors of the article (Kraus et al., 1996) tested the hypothesis
that in unexcited cells the amplitudes of oscillatory processes
can be cell type-specific and vary with Ca?* diffusion. They
performed their study using stochastic computer modeling on
a two-dimensional Ca2* oscillation model.

Analysis of oscillatory processes in living systems shows
that the most important factor in the emergence of cyclic be-
havior is a feedback in the system (Kolchanov et al., 2000).
A distinction is made between positive and negative feedbacks,
which was once discussed by Goodwin, Walter, Cardon, Iberall
and other researchers (Goodwin, 1965; Walter, 1969, 1970;
Cardon, Iberall, 1970). Both types of these feedbacks can
influence the emergence of cyclic dynamics in the system, as
has been shown in works (Likhoshvai et al., 2001; Goldbeter,
2002; Tyson et al., 2003).

At the molecular level, the principle of feedback regulates
a huge number of enzymatic reactions simultaneously going
on in a living cell, the rate of which can be affected by such
compounds as inhibitors, activators, cofactors, allosteric ef-
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Table 1. Brief characteristics of a number of classical models with oscillatory behavior

Model name Modeled biological process

Lotka model
(Lotka, 1910)

Biochemical reaction;
population dynamics

Lotka-Volterra model
(“predator—prey”)
(Lotka, 1920; Volterra, 1928)

Heart function,

colonic myoelectric activity,
excitation and inhibition

of neurons, etc.

van der Pol oscillator
(van der Pol, van der Mark,
1928)

Goodwin oscillator Genetic control

Model class

Nonlinear inhomogeneous SODE
with constant coefficients

Nonlinear homogeneous SODE
with constant coefficients

Nonlinear homogeneous second-
order ODE - the Lienar equation,
which can be reduced to a first-
order ODE

Nonlinear inhomogeneous SODE

Type and number of feedbacks

(Goodwin, 1965) of enzyme synthesis

Linear inhomogeneous SODE
with constant coefficients

Sel’kov model
(Sel’kov, 1968)

Linear inhomogeneous SODE
with constant coefficients

Calcium concentration
oscillation

Dupont-Goldbeter model
(Dupont, Goldbeter, 1989)

Note. ODE - ordinary differential equation, SODE - system of ODEs.

fectors, etc. As early as 1913 an article (Michaelis, Menten,
1913) by biochemists Michaelis and Menten was published, in
which the scientists derived the equation for the dependence of
the reaction rates catalyzed by the enzyme on the concentra-
tion of the substrate. Later, the researchers have showed that,
using computational methods, optimizing the parameters of the
equation by approximating the model data to the experimental
data corresponds to the results, which were obtained manually
by Michaelis and Menten for their constant.

Not long ago, a review was conducted of how methods
for quantitative analysis of enzyme kinetics have emerged,
changed, and been modified over a century (Johnson, 2013).
In the same year an article (Goldbeter, 2013) examined
the influence of Michaelis—Menten kinetics on oscillatory
behavior in enzymatic systems, namely, in glycolysis from
phosphofructokinase activity and in the cell cycle from cyclin-
dependent kinases.

Novék and Tyson reviewed examples of oscillatory pro-
cesses and formulated the necessary conditions for oscilla-
tions in the system: negative feedback, time delay, sufficient
‘nonlinearity’ of the reaction kinetics and proper balancing
of the timescales of opposing chemical reactions (Novak,
Tyson, 2008).

In a recent review (Tyson et al., 2019), the authors com-
piled various approaches to modeling the dynamics of the
behavior of biochemical regulatory networks that have been
developed over the past 50 years. Models such as Boolean
(logical) ones, models consisting of piecewise-linear or fully
nonlinear ordinary differential equations, and stochastic mo-
dels (including hybrid deterministic/stochastic approaches) are
considered. The authors focused on two approaches: modeling
genetic control systems as networks of Boolean switches and
metabolic and signaling networks using systems of nonlinear

with constant coefficients

Negative (substrate inhibition),
Positive (product activation).
Negative (9), Positive (7)

ordinary differential equations. They considered only spatially
homogeneous systems. The authors showed the advantages
and disadvantages of each method depending on the type and
amount of available experimental information.

The models, which we reviewed in this section, are sum-
marized in Table 1.

Application of gene networks

in the modeling of oscillatory systems

Modeling of metabolism is often associated with modeling of
genetic regulation (Smolen et al., 2000; Hecker et al., 2009).
The concept of gene networks plays an integrative role in this
case (Kolchanov et al., 2013; Ocone et al., 2013).

The main task of the theory of gene networks is to identify
causal relationships between the structural and functional
organization of gene networks and their dynamic properties
(Chenetal., 2010; Kolchanov et al., 2013). The structural and
functional organization of gene networks is understood as a
set of molecular-genetic and biochemical processes, while the
dynamic properties are understood as the kinetics of changes
in the concentrations of end products over time.

Computer analysis and modeling of small gene networks,
especially hypothetical gene networks, provides very valuable
information for understanding the fundamental features of
the dynamics of regulatory gene networks. Likhoshvai and
his colleagues developed a theory linking the structural and
functional organization of hypothetical gene networks with
their dynamics (Likhoshvai et al., 2001, 2003, 2004; Fadeev,
Likhoshvai, 2003; Demidenko et al., 2004). Namely, the
concept of a hypothetical gene network was defined; rules
for formalizing the description and assembling mathematical
models from them are given. The (#, k)-criterion for predicting
some properties of the models by the structure of the network
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Fig. 1. Relationship between the structural model (graph) of the hypothetical gene network and its dynamics: A, structure of the hypothetical gene
network of 4 genes and 8 negative feedbacks; B, dynamics of the hypothetical gene network A; C, structure of the modified gene network A — to which

an additional negative regulatory link was added -
of the modified gene network B.

inhibition of gene g, expression by the product of gene g; (marked by a blue arrow); D, dynamics

Here, green rectangles (g;) are genes, broken line is RNA corresponding to a certain gene, pink ellipse is polypeptide chain of protein, several pink ellipses are
a complex of proteins performing gene regulation (regulation is shown by a red arrow). Modified according to (Kolchanov et al., 2008).

graph is formulated; 4 classes of the hypothetical gene network
are introduced according to the types of regulatory links in the
network; and analytical and numerical studies of the models
for each class of the hypothetical gene network are given.

In particular, it was first theoretically and then numerically
demonstrated how the appearance of a new regulatory link
leads to a qualitative change in the dynamics of the gene net-
work (Fig. 1). Thus, the addition of another regulatory link
in the gene network cardinally changes the possible modes
of functioning of this network — if only one stationary state
was possible in the initial network, then after adding another
regulatory link, there are already two possible states — station-
ary (as in the previous case) and cyclic mode.

The connection between the structures of gene networks
and the presence of dynamic cycles in them has been studied
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for many years. In particular, the connection between network
structure and cyclic dynamics has been theoretically shown
(Likhoshvai et al., 2003; Demidenko et al., 2004; Novak, Ty-
son, 2008). Elowitz and Leibler designed and studied a genetic
network of a repressilator, in which the network under study
is locked into a cycle of interactions based on the principle
of negative feedbacks. The authors experimentally showed
that this type of network has an oscillatory mode of behavior
(Elowitz, Leibler, 2000).

In the Sobolev Institute of Mathematics SB RAS is studied
the qualitative theory of dynamical systems describing various
gene networks that are regulated by feedbacks. Golubyat-
nikov and his colleagues have studied in their works (Gaidov,
Golubyatnikov, 2007; Golubyatnikov et al., 2010; Akinshin,
Golubyatnikov, 2012; Golubyatnikov, Kazantsev, 2016; Golu-
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Fig. 2. Scheme of the algorithm for searching oscillatory enzymatic systems.

byatnikov, Kirillova, 2018) the existence and uniqueness of pe-
riodic solutions, existence of closed trajectories, cycle stability,
etc. in such systems. The interest in the analysis of the behavior
of such trajectories is to correspond them to the modes of
functioning of gene networks. An article (Likhoshvai et al.,
2020) showed that oscillatory trajectories are present in mo-
dels of the simplest circular gene networks and they are stable.

The method for finding

oscillating molecular-genetic systems

In this paragraph, we describe the algorithm for searching the
oscillatory molecular-genetic systems (the algorithm scheme is
shown in Fig. 2). It uses information resources both developed
by the authors and widely known in systems biology. In par-
ticular, the MAMMOTh database is a source of structural and
mathematical models of Escherichia coli metabolic reactions
(Kazantsev et al., 2018). Cytoscape (cytoscape.org) is a tool
for working with structural models and Copasi (Hoops et al.,
2006) is a tool for reconstructing and investigating mathemati-
cal models. Python (python.org) is both a data processing tool
and a link between the steps.

The input of the algorithm takes a structural model — a gene
network graph with typing of model elements and their rela-
tions. There are two types of nodes in the graph: biological
substances (molecules and their groups) and processes (or
reactions). The edges specify the following relations between
the nodes: substance is a substrate in a reaction, substance is
a product of a reaction, and substance is a regulator of a reac-
tion. This information can be obtained directly from models in
SBML (Hucka et al., 2003), SBGN (Le Novere et al., 2009),
from other tools for building structural models, or from Python
scripts. To date, any database that has information on meta-
bolic pathways and molecular-genetic systems models can be
used as a data source. The best-known databases are KEGG
(Kanehisa, Goto, 2000), GeneNet (Ananko, 2002), MetaCyc
(Caspietal., 2016), EcoCyc (Keseler et al., 2017), BioModels
(Le Novere et al., 2006; Malik-Sheriff et al., 2019), etc.

In this article, we considered a special case of molecular-
genetic systems — the oscillatory enzymatic systems. Analysis
of'the literature (Likhoshvai et al., 2001; Novak, Tyson, 2008;
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Tyson, Novak, 2010; Wong, Huck, 2017) allows us to identify
the following key characteristics of potentially oscillating
contours: (1) the closure of the contour (oriented path from
node 4 to it, through N nodes, where N > 3); (2) the orienta-
tion of the contour in one direction, with the last node having
an edge of regulatory inhibitory influence on the first node
in the contour (as in the contour in Fig. 4, a, for example).

A graph of 300 subsystems (Fig. 3) representing models
of E. coli metabolic reactions taken from the MAMMOTh
database was taken as initial data.

The construction of a mathematical model of a potentially
oscillating contour can be performed both in general-purpose
engineering simulation environments (Matlab, Mathematica or
Scilab) or in specialized environments designed for the simu-
lation of molecular-genetic systems (Copasi, CellDesigner
(Funahashi et al., 2003), VCELL (Schaff et al., 1997; Cowan
et al., 2012), etc.). The advantage of the latter is the ready
library of tools for reconstruction, computational experiments
and model analysis.

Six potentially oscillating contours were found in the ana-
lyzed graph, and during the numerical analysis of the recon-
structed mathematical model oscillatory behavior was shown
for only one of them (Fig. 4). The mathematical model of the
contour was constructed based on the reactions related to the
metabolic pathway of tryptophan biosynthesis:

CHOR +GLN — PYR+GLU+AN; AnthS, Trp, Mg,
AN+PRPP— NPRAN +PPI; AnthSII,
NPRAN — CPADS5P; Phosphoribosyl
o (©))
anthranilate isomerase,
CPADS5P— IGP+CO,; Indoleglycerol phosphate synthase,
IGP+SER — T3P1+TRP; TryptS.

Here CHOR, GLN, PYR, GLU, AN, PRPP, NPRAN, PPI,
CPADSP, IGP, SER, T3P1, TRP — before the semicolon are
the designations of the biochemical substances involved in the
reaction, and after that are regulators of reactions. Full names
of substances are given in Table 2.

The model was built in Copasi and consists of 5 differen-
tial equations.
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Fig. 3. Structural model (graph G) constructed from 300 subsystems of E. coli metabolic pathways taken from the MAMMOTh database (Kazantsev et
al., 2018).

Here and in the Fig. 4 the following notation is used: Blue squares represent substances involved in metabolic reactions. Green hexagons indicate reactions, with
arrows in/out specifying the relations of the interacting substances: green arrows specify the reaction substrates; black arrows specify the reaction products; red
arrows specify the regulatory effects of the substances on the reactions.
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Fig. 4. Potentially oscillating contour and its numeric analysis.

a, studied contour that is a part of the metabolic pathway of tryptophan biosynthesis; b, the plot with the results of the simulation, the
dependence of the concentration of the specified substances on time; ¢, phase trajectory plot based on simulation results, where the
abscissa and ordinate axes are the concentrations of anthranilate (AN) and L-tryptophan (TRP), respectively.
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I . [CPAD5P]
d([1IGP]) _ N 3.1-["Indoleglycerol phosphate synthase”] - 00012
dt | + [CPADSP] | [IGP]
L 0.0012 0.12
1.4-[TryptS]- [(1)(2’)1;] [SOEf]
_ : — (kD _IGP-[IGP)),
1+[IGP]+[T3P1] ) 1+[SER]+[TRP]
0.05 5 0.4 40
[IGP] [SER]
1.4+ [TryptS]-
d([TRP]) _ _ (kD TRP-[TRP]) + 0.05 04 ’
dt - | +[IGP] +[T3P1] 11 +[SER] +[TRP]
0.05 5 0.4 40
_ [CHOR] [GLN] (Mgl
dt | + [CHOR] | [PYR] [TRP] (4 +[GLN] LIGLul) [TRP] TRP_power |+ Mg
L5 150 0.6 0.2 20 TRP_denominator 1
AN_PRPP_kf*[AnthSCII]- [ﬁ” [ng]
—(kD_AN-[AN]),
1 +[AN] 11 +[PRPP]
1.1 29
[AN] [PRPP]
dNPRAND) AN_PRPP_Kf-[AnthSCIT] - === =57
dt [1 +[AN]]_[1 +[PRPP]]
1.1 2.9
J
AN_PRPP_kf-["Phosphoribosyl anthranilate isomerase”] %
_ : —(kD_NPRAN - [NPRAN]),
1+ [NPRAN] " [CPADS5P]
0.007 0.7
e . o .1 [NPRAN]
J([CPADSP]) . AN_PRPP_kf-["Phosphoribosyl anthranilate isomerase”] 0007
dt | + INPRAN] | [CPADSP]
0.007 0.7
3.1-["Indoleglycerol phosphate synthase”]- %
_ —(kD_CPAD5P-[CPAD5P]),
| + [CPAD5P] _ [1GP]
0.0012 0.12

where kD “substance name” are degradation constants of cor-
responding substances, parameters TRP_power and TRP de-
nominator varied in the process of searching for oscillatory
behavior of the system. The given numerical parameters were
taken from the MAMMOTh database.

The mathematical model of only one of the six contours
found exhibits with oscillatory behavior. As we considered,
a network consisting of only 300 enzymatic reactions, which
had mathematical models adapted to the experimental data,
may explain such a small number of contours. In turn, there
are currently not many such mathematical models for describ-
ing the enzymatic reactions of biological systems. Thousands
of existing models presented in databases are often auto-

326

matically generated, as in the Path2Models project for the
biomodels.net database, for example. Experimentally mea-
sured kinetic parameters of biochemical reactions are be-
coming increasingly scarce. Using graphs with higher dimen-
sionality (full-genome models) to study oscillatory behavior
will increase the number of variants to be tested, but this will
require additional consideration of the regulatory component
of genetic synthesis. All of these things present additional
challenges in the study of this problem.

Conclusion
The article gives an overview of a number of biological pro-
cesses of oscillatory nature, as well as mathematical models
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Table 2. List of full names of biochemical substances
used in the model

Abbreviation Full name
CHOR ..................... C honsmate ................................................................
GLN ........................ |_ g|utamme ...............................................................
P YR ........................ P yruvate .....................................................................
GLU ........................ |_ gIUta mate ...............................................................
AN .......................... A nthran I|a te ..............................................................
. Anth S ..................... A nthra n ||a te Syn thase ..............................................
TR P ......................... |_ tryptop han .............................................................
PRPP 5-Phospho-a-D-ribose 1-diphosphate
NPRAN | N-G-phosphoribosyl-anthranilate
. P P| .......................... D I p hospha te .............................................................
Anthscl Anthranilate synthase componentl
‘cPADSP 1-{o-carboxyphenylamino)-1-deoxyribulose-
5'-phosphate
PRAI Phosphoribosyl anthranilate isomerase
. | GP ......................... | nd0| .(.e 3eg c ero|phosphate ...................................
SER ......................... L Serme ......................................................................
. -|-3p1 ....................... D g|ycera|d eh y d e 3ph Osphate ...............................
TryptSTryptophanSynthase ................................................

of these processes. It is noted that the most important factor
for the emergence of cyclic behavior is feedbacks in the sys-
tem. Based on the analysis of these factors, an algorithm for
finding cyclic modes of functioning of molecular-biological
systems is given.
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