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Abstract. An infrared thermometer was first used to assess drought and heat tolerance in plant breeding more than
40 years ago. Soon afterward, this method became widely used throughout the world. However, Russia has not yet
applied the described method for evaluating stress tolerance. This paper presents an overview of using infrared
thermometry in plant breeding. Taking wheat as an example, it shows major advantages and disadvantages of
canopy temperature depression (CTD) values measured by the infrared thermometer. The paper also demonstrates
that genotypes with higher CTD values, and therefore with a lower canopy temperature, use more available soil
moisture under drought stress to cool the canopy by transpiration. It refers to CTD as an integrative trait that
reflects an overall plant water status. Its coefficient of variation lies in the interval of 10 to 43 %. A large number of
publications illustrate a close relation between CTD values and yield and indicate a high heritability of the former.
Meanwhile, the same works show that yield has a higher heritability. Moreover, some researchers doubt that CTD
should be used in applied wheat breeding as there are many factors that influence it. CTD has a high correlation
with other traits that reflect plant water status or their adaptation to drought or heat stress. Quantitative trait
loci (QTLs) associated with CTD are localized in all chromosomes, except for 3D. These QTLs often explain a small
part of phenotypic variance (10-20 %, more likely less than 10 %), which complicates the pyramiding of canopy
temperature genes through marker-assisted selection. The paper concludes that the evaluation of CTD appears
to be a reliable, relatively simple, labor-saving, objective, and non-invasive method that sets it apart from other
methods as well as shows the best results under terminal drought and heat stress conditions.
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AHHoTayus. Mpowwno 6onee 40 neT C Hayana UCNONb30BaHUA MHPaKPACHOTO TEPMOMETPA A/ OLIEHKM 3aCyX0- 1
»KapOCTOMKOCTY B CeNeKLMN pacTeHN. 3a 3TO BPeMsA MEeTOJ, LUMPOKO pacnpocTpaHmninca Bo Bcem Mupe. OfHako B
Poccun onmcbiBaemblii CNOCO6 OLIEHKM CTPECCOYCTONUYMBOCTM COPTOB A0 CUX MOP He NpumMeHseTca. Hamu caenaH
0630p pe3ynbTaToB MCMOMb30BaHNA MHPPAKPACHOro TePMOMETPa B ceneKummn pacteHrin. Ha npumepe niweHnLpbl
onucaHbl OCHOBHble JOCTOMHCTBA U HepocTaTky nokasatena CTD (canopy temperature depression), oueHvBae-
MOro MOCPeACTBOM UHPPAKpacHOro TepmomeTpa. feHoTUnbl ¢ 6onee BbICOKMM 3HaueHrem CTD, a 3HauuT, 6onee
NPOX/afHbIM MOSIOrOM B YCIOBUMSAX 3aCyXU, UCMOMb3YIOT GOoMbllee KONMYECTBO AOCTYNHON NMOYBEHHOW Bnaru ans
oxnakaeHua 3a cyet TpaHcnupauun. CTD — nHTerpupyoLwmin NpU3HaK, KOTOpbIA AUAarHOCTUPYET TeKYLUMIA BOAHbIN
cTaTyc pacteHuin. KoapduureHT Bapmnauymm nokasatena CTD HaxoauTca B npegenax 10-43 %. B 3HaumTenbHOM Ko-
nuyecTBe paboT NoKasaHa ero TecHasA B3aMMOCBA3b C YPOXKaNHOCTbIO 1 BblCOKasA Hac/leyeMoCTb, OAHAKO B LieNIoM
60nblINi KOIGOULMEHT HACIEQYEMOCTM UMeNa YPoXKainHOCTb. [NprMeHeHne nokasatensa CTD B npakTnyeckoi ce-
neKkuMn MieHNLbl OCNapuBaeTca PAAOM MUCCNefoBaTeNen nU3-3a 3HaYNTENbHOIO KONMYeCcTBa BANAIOLLNX HA HEro
dakTopoB. CTD TeCHO CBA3aH C APYrMMU NpU3HAKaMK, OTPaXKaoLWMMM BOLHbIV CTaTyC pacTeHU Unun pesynstat
ajanTaumm K 3acyxe unam xape. JIOKyCbl KONMyeCcTBEHHbIX MPU3HAKOB, accoummpoBaHHble ¢ CTD, o6Hapy»KeHbl Ha
BCEX XPOMOCOMaX, 3a UCK/oYeHnemM XpoMocombl 3D. BbifiBNeHHble JIOKYCbl YacTO OMNMCbIBAOT HeBOMbLLYIO YacTb
deHoTnnueckor nameHunsoctu (10-20 %, yalye meHee 10 %), UTO 3aTPYAHUT NMPaMUANPOBAHNE FreHOB, CBA3aH-
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MoKkasaTenb CHUKeHNA TemnepaTypbl MoJiora B cenekumm
NweHNLbl Ha 3aCyXOYCTONYNBOCTb U XapOCTONKOCTb

HbIX C TeMMepaTypow nosora, NocpeacTBOM MapKepHo cenekummn. OueHka nokasatena CTD HaaexHa, TeXHUYeCcKn
npocTa v NPOV3BOAUTENIbHA 1 NPY HAf/exXallemM ee 1CMOoJIb30BaHNM NMO3BOJIAET OOBEKTVIBHO OMNPEeReUTb OAHY
13 CTOPOH »apo- U 3aCyXOYCTOMYMBOCTN COPTOB, COXPAHMB PAaCTEHMSA B XKMBOM BUAE, YTO BbIFOLHO OT/IYAET ee OT
Lpyrnx MeTofioB. Havnnyylumii pesynstat onncbiBaeMblil METOL AEMOHCTPUPYET B YC/IOBUAX TEPMIUHANbHOM 3aCyXU.
KnioueBble cnoBa: nokasatens CTD; nweHnua; 3aCyX0yCTOMYMBOCTD; XKapOCTOMKOCTb; KpUTepuin otbopa.

Introduction

Every year 200 million hectares of wheat (Triticum aesti-
vum L.) cultivated worldwide suffer economic losses from
drought and heat (Ortiz et al., 2008) for wheat is very sensi-
tive to heat stress. Optimal temperature for photosynthesis in
wheat is approximately 25 °C (Nagai, Makino, 2009). It has
been estimated that 1 °C increase above the optimal tempera-
ture at the grain filling stage decreases wheat yield by 3—4 %
(Wardlaw et al., 1989).

Breeding drought-tolerant cultivars is one of the possible
ways to reduce damage from drought. However, it requires
much time and effort as it includes the evaluation of a large
number of plants and is complicated by a low and inconsis-
tent correlation between the phenotype and the yield under
drought conditions, with multiple mechanisms of adaptation
being involved. The selection that is based solely on yield
indicators complicates breeding for drought tolerance because
the yield shows low heritability under drought stress (Sofi et
al., 2019). With that in mind, to evaluate many genotypes in
a short period of time, it is important to single out other traits
associated with drought tolerance (Sohail et al., 2020).

The paper suggests several physiological traits to identify
tolerant genotypes. It refers to physiological traits as traits that
contribute to mechanisms playing a role in plant adaptation
to stress (Reynolds et al., 2009), such as coleoptile length,
ability to stay green, stem water soluble carbohydrate, leaf
water potential, canopy temperature, and so on.

This paper presents an overview of using infrared thermo-
metry in plant breeding.

CTD and method of its measuring

Canopy temperature is an integrative trait that reflects the
plant water status or the resultant equilibrium between the
root water uptake and shoot transpiration (Berger et al., 2010).
Under the high solar radiation and drought conditions, stoma-
tal conductance decreases, soil moisture deficit reduces normal
transpiration rate, which in turn increases canopy temperature
(Rebetzke et al., 2013). Thus, canopy temperature can be used
to study drought and heat tolerance in plants. Instead of canopy
temperature, researchers often calculate canopy temperature
depression (CTD) that refers to a metric, indicating the dif-
ference between air temperature and canopy temperature
(Jackson et al., 1981). If the canopy temperature is lower than
the air temperature under the influence of transpiration, then
CTD is expressed as a positive value, but becomes negative
if the reverse is true. Genotypes with higher CTD values and
a cooler canopy temperature under drought stress use more
available soil moisture to cool the canopy by transpiration.
Given that Russian research lacks an established definition
for ‘canopy temperature depression’, the paper refers to it as
CTD defined in English research.

Canopy temperature is measured by a handheld infrared
thermometer or thermal camera (Yousfi et al., 2019). It is
done in the afternoon in clear weather conditions on windless
days. The most considerable genotypic differences in CTD are
reported from 2 to 3 p. m. (Thapa et al., 2018) at high tempera-
tures and low relative humidity (Zhang X. et al., 2018). The
researcher should stay close to the plot not to cast shadow on
the place of measurement (Pinto et al., 2010). If a plot is sown
in rows, it is best to stand to one side of it so that the infrared
thermometer is pointed at an angle to the rows. If ground
cover is low, it is best to point the thermometer at a low angle
to the horizontal to minimize the likelihood of viewing soil
(Reynolds et al., 2001). The infrared thermometer is held at
approximately 50 cm above the canopy, and the measurements
are taken at 1 m from the edge of the plot (Mason etal., 2011;
Sohail et al., 2020). The best phase to perform measurements
is the grain filling period (Thapa et al., 2018).

The infrared thermometer was first used for scheduling crop
irrigation in the 1970s (Jackson et al., 1977) and for studying
drought tolerance in the 1980s (Blum et al., 1982). In late
1980s, CIMMYT began to use CTD measurements as selection
criteria in breeding for drought and heat tolerance in various
experiments. Bulks showing high CTD values are selected
in F; generation (Blum, 2005). Canopy temperature mea-
surements can significantly improve the selection of drought
tolerant genotypes because of their high speed (=10 seconds
per plot), simplicity, and relative economic efficiency. CTD
is also integrative of the whole canopy due to scoring many
plants at once, thus reducing error associated with plant-to-
plant variation (Cossani, Reynolds, 2012).

Factors influenced

on the measuring accuracy of CTD

However, this method has some limitations. First, the measur-
ing accuracy depends on microclimate of the plant stand. Se-
cond, rapid changes in environmental conditions, for example
on cloudy days, demonstrate high variability of the results
(Chaves, 2013). Third, CTD is influenced by many biological
and environmental factors, such as air temperature and relative
humidity, soil moisture, wind, solar radiation, evapotranspira-
tion, leaf adjustment to water deficit (Bahar et al., 2008), plant
density (White et al., 2012), spike size, color and size of leaves
(Balota et al., 2008), angle of leaves (Zhang Y. et al., 2011),
peduncle length and awns (Bonari et al., 2020). Finally, plant
organs differ in their self-cooling abilities, and thus, canopy
temperature with spikes is 2 °C higher than the one without
them (Olivares-Villegas et al., 2007).

The fact that these limitations have already been identified
allows us to conclude that CTD and its features are well re-
searched. Some environmental flux during the measurement
period is inevitable, but correcting data against reference plots,
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use of replication, and repetition of data collection during the
crop cycle can compensate for this (Reynolds et al., 2001).

Association of CTD with other traits of wheat
CTD values demonstrate a significant correlation with yield
under drought and heat stress in a large number of experiments
(Gaoetal., 2016; Liang et al., 2018; Sohail et al., 2020). They
have regression relationships: if CTD decreases by 1 °C, the
yield declines by 1.5 and 1.7 g/ha (Kaur et al., 2018). In this
regard, the trait should be considered as a significant selection
criterion in breeding programs not only in Mexico, but also in
other countries of the world (Al-Ghzawi et al., 2018; Thapa
et al., 2018). Newer cultivars of wheat have cooler canopy
(Thapa et al., 2018), although the cultivars that are released
in different decades under favorable growing conditions or
irrigation do not show this correlation (Balota et al., 2017).
Various studies identify high correlation between CTD and
other traits that reflect plant water status or their adaptation
to drought or heat, including stomatal conductance (Bonari
et al., 2020), delay in the senescence of leaves (Fang et al.,
2017), leaf and stem wax (Mondal et al., 2015), depth and
distribution of root system in soil (Pinto, Reynolds, 2015),
spike sterility (Sohail et al., 2020), and 1000 grain weight
(Gulnaz et al., 2019).

Variation and heritability of CTD

The coefficient of variation of CTD in different studies ranges
from middle (10-14 % (Sharma P. et al., 2017; Jokar et al.,
2018)) to high (2643 % (Kumar et al., 2017; Sharma D. et
al., 2018)). Dryland conditions make CTD values negative
(Thapa et al., 2018) and increase genotypic differences (Pinto
et al., 2010). In this respect, CTD value appears to be a bet-
ter parameter for drought tolerance than yield under drought
stress. Some research suggests that canopy temperature
has a larger genetic value — if compared to direct selection
based on yield and other traits — as it is an indirect index to
the selection of certain types of cultivars and shows higher
heritability and genetic correlation with yield (Rebetzke et
al., 2013). Although some studies put CTD heritability at
0.65—0.80 (Kumar et al., 2017; Khan et al., 2020), there is a
vast amount of research that calculates heritability for both
CTD and yield and concludes that the latter has the larger
heritability (see the Table).

One of the possible reasons for the low heritability of CTD
value is environmental influence (Gao et al., 2016). Thus,
literature review demonstrates that CTD cannot be referred
to as the better selection criteria if compared to yield criteria
under drought stress. This indicator is better used as an ad-
ditional parameter in measuring drought tolerance in cultivars.

Genetic basis for canopy temperature depression

CTD genetic control has been extensively studied during the
last two decades. For example, in their study, Acufia-Galindo
etal. (2015) analyzed 30 pieces of research from 2002 to 2011
and identified four meta-QTLs (MQTLs) containing two or
more QTLs for the trait that were associated with drought
and heat tolerance, including CTD value that was identified
in independent studies, populations, or environments. These
MQTLs were localized on chromosomes 1B (34+2 cM),
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Heritability coefficient for CTD and yield of common wheat
in different studies

Heritability coefficient References
CTDYIEId ...................
025,032,067 074,082,085 Olivares-Villegas etal, 2007
082,011 056and060  Reynoldsetal, 2007

and 0.34,0.81
049065_090 ............. P mtoemlzmo .....................
051061 ....................... R atteyetalzon ....................
081066 ....................... P a“waletalzmz ..................
066095 ....................... B e”undagleta|2013 ............
024029059 ....................... |_ opeseta|2013 ....................
022062 ....................... S UkumaranEtalzms ...........
083091 ....................... R ahmaneta|2016 ................
052_061066 ....................... S harmaDetalzms .............

2B (682 cM), 3B (139+4 cM), and 7A (100£6 cM). The
research also described single QTLs for CTD: these MQTLs
were localized on chromosomes 3B, 4A, 7A, while chromo-
some 5A contained three MQTLs. QTLs associated with CTD
were co-localized with QTLs that controlled other adaptive
traits (yield, biomass, days to heading, grains per spike,
1000 grain weight, and water-soluble carbohydrates). While
summarizing the results of their and prior research, Pinto et
al. (2010) suggested that QTLs for canopy temperature were
localized on chromosomes 1A, 1B, 1D, 2A, 2B, 3A, 3B, 4A,
4B, 5A, 5B, 6A, 6B, 6D, 7A, and 7B. The research undertaken
after 2011 discovered QTLs for CTD on almost all chromo-
somes, except for 1D, 3A, 3D, and 6D (Paliwal et al., 2012;
Lopes et al., 2013; Mason et al., 2013; Rebetzke et al., 2013;
Mondal et al., 2015; Sukumaran et al., 2015; Awlachew et al.,
2016; Gao et al., 2016; Mohammed et al., 2021).

Some research showed that QTLs associated with CTD
were co-localized or closely localized with genes Rht-Bl
(Gao et al., 2016), Rht-D1 (semi-dwarf wheat with warmer
canopy), Ppd-D1 (Rebetzke et al., 2013), Vrn-A1 (Mondal et
al., 2015), and transcription factor Dreb1 (Khalid et al., 2019).

These loci for canopy temperature are responsible for 10—
20 % of'the phenotypic variation (Paliwal et al., 2012; Mondal
et al., 2015; Awlachew et al., 2016) or even less than 10 %
(Rebetzke et al., 2013; Sukumaran et al., 2015), and this is
understandable as CTD is an integrative trait that is correlated
to many mechanisms of drought tolerance (Lopes et al., 2013).
Moreover, canopy cooling at different stages is controlled by
loci with different localization (Lopes et al., 2013; Gao et al.,
2016); therefore, the result of CTD measurements depends on
the plant growth stage (Gulnaz et al., 2019). It is likely that
the small genetic effects of multiple QTLs combined with the
smaller population sizes commonly used in breeding will limit
the pyramiding of multiple alleles for CTD through marker-
assisted selection (Rebetzke et al., 2013).
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Problems of using CTD in applied breeding

CTD indicates any kind of stress: high temperature, water
or nutrient shortage (Kaur et al., 2018). Nitrogen fertilizers
increase CTD values (Yang et al., 2018). Thus, this parameter
shows not only water, but also a nitrogen nutrient status of
plants (Guo et al., 2016). CTD is also related to NDVI (Yousfi
et al., 2019), and canopy temperature may increase due to
Zymoseptoria tritici infection (Wang et al., 2019). At the
same time, high canopy temperatures provide unfavorable
conditions for the development of stripe rust (Cheng et al.,
2015). As the environmental factors have the aggregate effect
on plants, CTD measurements that are performed for screen-
ing of drought tolerance without drought stress may produce
incorrect results.

In addition to the well-studied negative correlation be-
tween yield and CTD values under drought or heat stress, the
researchers highlight the controversy of their relationships in
various environments (Balota et al., 2017). For example, in
a high-yielding environment, cultivars with relatively high
CTD values tend to produce higher yields than those with
low CTD values, while in a low-yielding environment, the
relationship between these traits disappears (Lu et al., 2020).
However, it is explained by the fact that differences in plant
tolerance become noticeable only if limiting factors are in-
tense (Udovenko, 1973). Some studies show insignificant or
positive correlation between CTD and yield (Rahman et al.,
2016; Bala, Sikder, 2017), while others identify that under
drought stress, high-yielding genotypes have both positive
and negative CTD values (Sofi et al., 2019).

The research shows that a relatively large proportion of
yield phenotypic variation under drought stress can be ex-
plained by a small number of traits, including CTD values.
In most cases, they would be amenable to reliable quantifica-
tion in parents and verification of expression in segregating
progeny (Reynolds et al., 2007). However, it was impossible
to accurately measure CTD values in some research because
the plant canopy failed to cover the ground (Liang et al., 2018)
or the yield was highly dependent on limited amounts of soil-
stored water (Royo et al., 2002). Thus, Balota et al. (2017)
identified the difficulty of using CTD values in applied plant
breeding, for in that work a potential effect of neighbor plots
plant height on canopy temperature was present.

More than that, a certain amount of caution is advisable in
selecting genotypes with high CTD values in water-limited
environments as more vigorous, later-flowering wheats may
produce more biomass by the time canopy temperature is
measured. Biomass and transpiration are physiologically
linked, so that higher-biomass lines seem to deplete soil
water faster, causing stomata to close and canopies to warm.
Selection of cooler canopy temperature under conditions of
soil-water depletion could favor the development of lines with
low yield potential and smaller biomass (Rebetzke et al., 2013)
or identification of specific genotypes (Jokar et al., 2018).

Conclusion

All things considered, the paper suggests that in general the
evaluation of CTD appears to be a reliable, relatively simple,
labor saving, and objective method that may be used to as-
sess plant tolerance to heat or drought stress. Moreover, it is
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a non-invasive method, and this sets it apart from others. To
better evaluate cultivars tolerance to drought or heat stress,
a substantial number of traits should be considered, there-
fore making CTD a meaningful contribution to knowledge
on drought tolerance. Still, it is important to realize that this
method shows the best results under terminal drought and
heat stress conditions.
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