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Abstract. Plant diseases cause signif icant economic losses in agriculture around the world. Early detection, quantif ica­
tion and identif ication of plant diseases are crucial for targeted application of plant protection measures in crop pro­
duction. Recently, intensive research has been conducted to develop innovative methods for diagnosing plant diseases 
based on hyperspectral technologies. The analysis of the ref lection spectrum of plant tissue makes it possible to classify 
healthy and diseased plants, assess the severity of the disease, differentiate the types of pathogens, and identify the 
symptoms of biotic stresses at early stages, including during the incubation period, when the symptoms are not visible 
to the human eye. This review describes the basic principles of hyperspectral measurements and different types of avail­
able hyperspectral sensors. Possible applications of hyperspectral sensors and platforms on different scales for diseases 
diagnosis are discussed and evaluated. Hyperspectral analysis is a new subject that combines optical spectroscopy and 
image analysis methods, which make it possible to simultaneously evaluate both physiological and morphological pa­
rameters. The review describes the main steps of the hyperspectral data analysis process: image acquisition and prepro­
cessing; data extraction and processing; modeling and analysis of data. The algorithms and methods applied at each 
step are mainly summarized. Further, the main areas of application of hyperspectral sensors in the diagnosis of plant 
diseases are considered, such as detection, differentiation and identif ication of diseases, estimation of disease severity, 
phenotyping of disease resistance of genotypes. A comprehensive review of scientif ic publications on the diagnosis of 
plant diseases highlights the benef its of hyperspectral technologies in investigating interactions between plants and 
pathogens at various measurement scales. Despite the encouraging progress made over the past few decades in moni­
toring plant diseases based on hyperspectral technologies, some technical problems that make these methods diff icult 
to apply in practice remain unresolved. The review is concluded with an overview of problems and prospects of using 
new technologies in agricultural production.
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Аннотация. Болезни растений приводят к значительным экономическим потерям в секторе сельскохозяйствен­
ного производства во всем мире. Раннее выявление, количественная оценка и идентификация болезней имеют 
решающее значение для целенаправленного применения мер защиты в растениеводстве. В настоящее время ве­
дутся интенсивные научные исследования по разработке инновационных методов диагностики болезней расте­
ний, основанных на гиперспектральных технологиях. Анализ спектра отражения растительной ткани позволяет 
проводить классификацию здоровых и больных растений, оценивать тяжесть заболевания, дифференцировать 
виды патогенов и выявлять симптомы биотических стрессов на ранних стадиях, в том числе в инкубационный 
период, когда симптомы не видны человеческому глазу. В обзоре описаны основные принципы измерения спект­
ра отражения растительной ткани. Обсуждаются и оцениваются возможности применения различных типов ги­
перспектральных сенсоров и платформ для диагностики болезней растений. Гиперспектральный анализ явля­
ется новой областью, соединяющей в себе методы оптической спектроскопии и методы анализа изображений, 
которые позволяют одновременно оценивать как физиологические, так и морфологические параметры. Описа­
ны главные этапы анализа гиперспектральных данных: получение и предварительная обработка изображения; 
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извлечение и обработка данных; моделирование и анализ данных. Приведен перечень алгоритмов и методов, 
применяемых на каждом из этапов. Рассмотрены основные области применения гиперспектральных сенсоров 
в диагностике болезней растений, такие как обнаружение болезни, дифференциация и идентификация типа за­
болевания, оценка степени поражения, оценка устойчивости генотипов. Приведен всесторонний обзор научных 
публикаций, подчеркивающий преимущества гиперспектральных технологий при исследовании взаимодей­
ствий между растениями и патогенами в различных масштабах измерений. Несмотря на обнадеживающий про­
гресс, достигнутый за последние несколько десятилетий в мониторинге болезней растений на основе гиперспек­
тральных технологий, остаются нерешенными некоторые технические проблемы, препятствующие применению 
этих методов на практике. В заключение обсуждаются проблемы и перспективы практического использования 
новых технологий в сельскохозяйственном производстве. 
Ключевые слова: гиперспектральные технологии; болезни растений; анализ изображений; спектральный анализ.

Introduction
Plant diseases cause crop losses, reduce the quality of 
agricultural products and can even threaten human health. 
Farmers need modern and effective tools for early detection 
and identification of plant diseases (Mahlein et al., 2019b). 
Traditional diagnostic methods such as visual assessment 
and microbiological laboratory analysis are time-consuming 
and labor-intensive, which limits their application in large-
scale farms.

Currently, new non-invasive methods for diagnosing plant 
diseases using sensor technologies, robotics, computer vi-
sion and machine learning are rapidly developing (Singh A. 
et al., 2015; Demidchik et al., 2020; Zheng et al., 2021). 
These methods are high throughput and provide a real-time 
support for assessing a range of physiological parameters 
(Walter et al., 2015). A large amount of information obtained 
from modern sensors is transformed into new knowledge 
using computer data processing and modeling, reducing the 
distance from fundamental science to practical implemen-
tation (Afonnikov et al., 2016; Tardieu et al., 2017). New 
approaches allow, due to automation, to significantly speed 
up the diagnosis of diseases and increase its accuracy by 
eliminating the human subjectivity (Fahlgren et al., 2015; 
Lobos et al., 2017). 

At present, a variety of imaging methods are being used 
for plant diseases detection, such as fluorescence imaging, 
thermal infrared imaging, visible RGB imaging, imaging 
spectroscopy and other techniques (Bock et al., 2010; Li L. 
et al., 2014).

Among them, hyperspectral imaging technique comes 
with numerous advantages (Mahlein, 2016; Mahlein et al., 
2018; Dubrovskaya et al., 2018). According to the Scopus 
statistics, there are 412 relevant papers from 2005 to 2020 
where ‘plant disease’ and ‘hyperspectral’ are used as key 
words for the search (Fig. 1). Hyperspectral analysis com-
bines optical spectroscopy and image analysis methods, 
allowing both physiological and morphological parameters 
to be evaluated simultaneously.

The aim of the paper is to provide the reader with an 
overview of modern technologies for the diagnosis of plant 
diseases based on the analysis of  hyperspectral images. The 
first part of the article discusses the main principles and tools 
of hyperspectral technologies. Next, algorithms and methods 
for analyzing hyperspectral images are described. Further, 

the main areas of application of hyperspectral sensors in 
the diagnosis of plant diseases are considered. The paper is 
concluded with some problems and prospects of using new 
technologies.

Basic principles and tools  
of hyperspectral technologies

Interaction of light  
(electromagnetic radiation) and plants
Light can interact with plant tissue in the following ways: 
reflection, scattering, absorption and transmission. The 
reflectance characteristic of a plant results from the bio-
chemical compounds present in the leaves, and the physical 
characteristics of leaves (Mishra et al., 2017). The interaction 
between light and plants also depends on the wavelength. In 
the visible wavelength range (400–700 nm), the surface of 
the plant has a low reflectivity due to the absorption of light 
by photosynthetic pigments (chlorophylls, anthocyanins and 
carotenoids). In the near infrared (700–1100 nm), the reflec-
tance increases due to light scattering in the intercellular 
space. In the short wave infrared range (1100–2500 nm), 
healthy plants have a low reflectance due to the absorption 
of light by water, proteins and other carbon components 
(Lowe et al., 2017). The green color of the leaf is consistent 
with the characteristic reflection peak at 550 nm.

Spectral profiles of healthy and diseased plants can differ. 
As a result of the impact of biotic and abiotic stressors, the 
biochemical composition of plant tissues changes, which 
is reflected in the change in the color and shape of leaves, 
transpiration rate, canopy morphology, and, consequently, 
in the spectral characteristics of plants (Zhang J. et al., 
2019). Moreover, each individual interaction of a plant and 
a pathogen has certain spatial and temporal dynamics, and 
these processes affect different ranges of the electromagnetic 
spectrum. For example, a change in photosynthetic activity 
caused by pathogens leads to a change in reflectivity in the 
visible range of the spectrum. Changes at the cellular level 
have a large impact on the near infrared spectrum. Tissue 
necrosis leads to increased reflection in the shortwave in-
frared range (Zhang N. et al., 2020).

Such relationships between cause and consequence can 
be used to study the biochemistry of plants and to perform 
controlled experiments.
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Fig. 1. Number of published articles by year on plant diseases with hyper spectral data (Scopus).
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Fig. 2. Acquisition approaches of hyperspectral images.
Scanning directions are shown by arrows, and gray areas show data acquired each time.

Hyperspectral sensors and platforms
The basic principle of  hyperspectral sensors is comparable 
to the principle behind RGB and multispectral cameras (Tho-
mas et al., 2018b). All these systems measure the amount of 
light reaching the sensor and store the information. Unlike 
RGB cameras (3 spectral bands) or multispectral cameras 
(< 20 spectral bands), a hyperspectral sensor measures up to 
several hundred bands of the electromagnetic spectrum in 
the wavelength range of the sensor. Each of these spectral 
bands measures only a few nanometers of the electromag-
netic spectrum, leading to a high spectral resolution of the 
hyperspectral sensor.

There are two main types of sensors: image sensors and 
non-imaging sensors. Non-imaging sensors measure the 
average reflectance spectrum in a certain area of a surface 
without storing spatial information. The size of the averaging 
area depends on the focal length, angle of view and distance 
to the object. Most non-imaging sensors are portable and do 
not require complicated measurement platforms. They have 
a wide spectral range (300–2500 nm), a high spectral resolu-
tion (1–3 nm), and low weight (1–5 kg). The most popular 
among them are spectrometers ASD FieldSpec (Analytical 
Spectral Devices Inc., USA), SVC (Spectral Vista Corpo-
ration, USA), ImSpector (Spectral Imaging Ltd., Finland). 

These devices are widely used in laboratory, greenhouse and 
field conditions (Naidu et al., 2009; Zhang J. et al., 2017; 
Couture et al., 2018; Bohnenkamp et al., 2019; Mahlein 
et al., 2019a). There are also micro-spectrometers such as 
the STS-VIS spectrometer (Ocean Optics Inc., USA) suit-
able for use with UAVs (Burkart et al., 2015). Since early 
symptoms of plant disease often appear below 1 mm, their 
detection with spectrometers is limited. This is due to the 
averaging of the spectrum of healthy and diseased tissue in 
the measurement area (Mahlein et al., 2012).

Hyperspectral image sensors form a spectral profile for 
each individual pixel, thereby combining spectral and spatial 
resolution. The resulting image is a three-dimensional data 
array (hypercube) containing two dimensions of spatial 
information and additionally one dimension of spectral 
information. Depending on the type of sensors used, there 
are four ways to obtain a hypercube of data (Fig. 2): whisk-
broom, push-broom, spectral scanning, and snapshot (Wu, 
Sun, 2013).

Hyperspectral image sensors usually cover a limited spec-
tral range: VNIR (300–1000 nm) or SWIR (1000–2500 nm) 
with a spectral resolution of 1–7 nm. Spatial resolution 
ranges from micrometers to centimeters depending on the 
distance to the object and sensor characteristics.
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In the case of using point or line scanning sensors (whisk-
broom, push-broom), it is necessary to move the object or 
the camera to register the spectrum of each individual point 
or line. In scientific research, the most commonly used scan- 
ning cameras are Specim (Spectral Imaging Ltd., Finland), 
Headwall (Headwall Hyperspec Ltd., Canada), Photonfo-
cus (Photonfocus AG, Switzerland), Pika L (Resonon Inc., 
USA). Most hyperspectral scanning cameras in the la bo-
ratory are installed on specialized mobile platforms that 
provide linear movement and stabilization of the  camera 
(Leucker et al., 2016; Yeh et al., 2016). Stationary rail 
systems are used in greenhouses (Thomas et al., 2018a). 
Vehicles (Vigneau et al., 2011; Williams et al., 2017) or 
UAVs (Huang W. et al., 2007; Abdulridha et al., 2019) are 
used in the field. The disadvantage of scanning sensors is 
the relatively long image acquisition time, depending on the 
size of the measured area, which complicates the shooting of 
moving objects. This disadvantage is eliminated in portable 
Specim IQ camera with a built-in scanner (Behmann et al., 
2018; Alt et al., 2020; Barreto et al., 2020).

Spectral scanning sensors use LCTF filters that pass 
only certain wavelengths changing rapidly during shooting 
(Choudhary et al., 2009; Wang et al., 2012). These sensors 
create 2D spatial images for each wavelength in the spec-
tral range. Their use does not require moving the object or 
camera to obtain a hypercube. The acquisition time is mainly 
dependent on the exposure time, which is generally faster 
than point or line scans. If the object is moving, then this 
measuring principle can lead to inconsistent spectra, since 
the individual bands are observed at different times. 

Recently, snapshot sensors that do not require scanning 
an object to obtain a hypercube have been developed. They 
use the mosaic principle of conventional RGB cameras. 
These sensors provide a significantly higher image record-
ing rate, but lower spatial resolution compared to traditional 
ones. Well-known cameras of this type are Rikola, Senop 
(Senop Ltd., Finland), Ultris, FireFleye (Cubert Ltd., Cana-
da). The compact size, short image acquisition time and the 
ability to create a sequence of hyperspectral images of a 
moving object make them optimal for use in UAVs (Aasen 
et al., 2015; Sankaran et al., 2015; Franceschini et al., 2019).

Hyperspectral image processing methods  
and algorithms
From the data analysis perspective the use of multi-scale 
datasets of hyperspectral images, characterized by a huge 
amount of data with a high level of collinearity, is a very 
challenging, emerging topic that requires non-trivial solu-
tions. To face this challenge, the methods of discriminant 
and cluster analysis, machine learning, and neural networks 
have been successfully adopted (ElMasry et al., 2016; Lowe 
et al., 2017).

Available software tools for hyperspectral image analysis 
process are ENVI (Research Systems Inc.), MATLAB (The 
Math-Works Inc.), Python (Python Software Foundation), 
R (R Software Foundation).

The hyperspectral image analysis process usually includes 
the following steps (Fig. 3): (1) image acquisition and 
preprocessing, (2) data extraction and processing, (3) data 
modeling and analysis.

Image acquisition and preprocessing
The first important step in the analysis of plant diseases is to 
obtain high-quality hyperspectral images that meet the objec-
tives of research. The right choice of sensors and platforms, 
the correct setting of the spatial and spectral resolution, 
lighting scheme, scan rate, frame rate and exposure time are 
prerequisites for obtaining accurate results (Wu, Sun, 2013).

The next step is image preprocessing, which includes cali-
bration and spectrum correction. The goals of the calibration 
process are to standardize the spectral and spatial axes of the 
hyperspectral image, evaluate accuracy and reproducibility 
of the acquired data under different operating conditions, 
eliminate curvature effect and instrumental errors (Rinnan 
et al., 2009; Vidal, Amigo, 2012).

The standard practice is reflection calibration, which uses 
two reference images, black and white. The black image 
is acquired when the camera lens is completely covered 
with its opaque cap. The white reference image is obtained 
 using a white surface board (e. g. Teflon) with a reflectivity 
of about 99.9 % to obtain the highest possible intensity for 
each pixel at each wavelength. These two reference images 
are then used to correct the raw hyperspectral images by 
using the following equation:

R = IS – ID
IW – ID

,

where R is the corrected hyperspectral image, IS is the raw 
hyperspectral image, ID is the dark image, and IW  is the 
white reference image.

To eliminate the effect of surface curvature, spectral 
 image normalization (Polder et al., 2004), adaptive spherical 
transform (Tao, Wen, 1999) or Lambert transform (Go mez-
Sanchis et al., 2008) are used during calibration.

The goal of spectrum correction is to improve image 
quality (Savitzky, Golay, 1964; Barnes et al., 1989; Burger, 
2006; Esquerre et al., 2012). For example, smoothing algo-
rithms (moving average, Savitzky–Golay, median filter, and 
Gaussian filter), as well as Fourier and wavelet transforms, 
are used to reduce noise from the spectral data. The first and 
second derivatives are used to correct the shift of the spec-
trum baseline. Multiplicative scattering correction (MSC) 
and standard normal variate (SNV) are used to reduce the 
spectral variability due to scattering.

Data extraction and processing
At this step of  hyperspectral image analysis process, image 
segmentation is performed and features are selected for 
further analysis.

Image segmentation is used as a pre-processing step and 
is typically performed before the formal spectral analysis 
in order to extract the target objects from the background 
or form a mask for the formation of the region of inte-
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Fig. 3. Flowchart of a series of typical steps for analyzing hyperspectral image data.
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rests (ROIs) for further information extraction. The follow-
ing segmenta tion methods are used: threshold-based (Pandey 
et al., 2017); K- means (Behmann et al., 2014); watershed 
algorithm (Li J. et al., 2019); edge detection (Sun et al., 
2017; Williams et al., 2017).

Feature extraction can be considered to be the most im-
portant step in hyperspectral-based classification. Its goal 
is to extract and form new feature vectors for plant disease 
detection by combining and optimizing the spectral, spatial 
and texture features, then feed them to a set of classifiers or 
machine learning algorithms.

Vegetation indices (VI) or disease indices (DI) can be used 
as features (Huete et al., 2002; Gitelson et al., 2006; Mahlein 
et al., 2013; Candiago et al., 2015). In this case, only a small 
number of wavelengths are required for analysis. When ana-
lyzing the entire spectrum, the following methods are used to 
reduce the dimension and eliminate autocorrelations: princi-
pal component analysis; minimum noise fraction algorithm; 

linear discriminant analysis; stepwise discriminant analysis; 
partial least square discriminant analysis (Steddom et al., 
2003; Delalieux et al., 2007; Naidu et al., 2009; Moshou et 
al., 2011; Yuan et al., 2014b; Zhou et al., 2019).

Data modeling and analysis
The last step in image analysis is to select a model and ap-
ply it to the data. Depending on the objectives of the study, 
these can be classification models (for diagnosing and dif-
ferentiating diseases), or regression models (for predicting 
and assessing the relationship between the target variables 
and the spectral response).

The most commonly used models are:
• classification models of machine learning and neural 

networks: spectral angle mapper, support vector machine, 
k-nearest neighbor, maximum likelihood (Moshou et al., 
2004; Liu et al., 2010; Rumpf et al., 2010; Yeh et al., 
2013; Li Y. et al., 2017);
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• regression models: multiple linear regression, binary lo-
gistic regression, partial least squares regression, Dirichlet 
aggregation regression (Huang W. et al., 2007; Singh D. 
et al., 2007; Yang et al., 2007; Huang J. et al., 2012).

Areas of application of hyperspectral technologies 
in diagnostics of plant diseases
The main tasks in the diagnosis of plant diseases are detec-
tion, differentiation, identification, assessment of the disease 
severity, assessment of the genotypes disease resistance. 
These tasks are solved at various levels of organization of 
living systems in the corresponding measurement scales.

Measurements at the cellular or tissue scales are carried 
out in laboratories using hyperspectral microscopes to ob-
serve fungal spores and detect metabolic changes in tissues 
caused by plant-pathogen interactions. Experiments at the 
cellular level are usually carried out in the context of fun-
damental research and to some extent for the identification 
of pathogens and the assessment of genotype resistance.

Measurements at the level of individual organs (leaf, ear, 
stem, root, fruit) and at the level of the whole plant are car-
ried out in laboratory, greenhouse or field conditions with 
the aim of early detection and differentiation of the disease.

Canopy-level measurements are more often applied in 
plant disease mapping and severity assessment.

Below is a brief overview of scientific publications on 
hyperspectral technologies in plant diseases diagnostics in 
the context of different areas of application (see the Table).

Disease detection
The aim of disease detection is to differentiate healthy and 
infected plants. In this case, the subject of research is only 
one specific disease, its symptoms and dynamics.

A study of Mahlein et al., 2019a compares the feasibility 
of different sensors to characterize Fusarium head blight. 
Under controlled conditions, time-series measurements 
were performed with infrared thermography, chlorophyll 
fluorescence imaging, and hyperspectral imaging. Infrared 
thermography allowed the visualization of temperature 
differences within the infected spikelets beginning 5 days 
after inoculation. Also, on the 5th day, a disorder of the 
photosynthetic activity was confirmed by chlorophyll fluo-
rescence imaging of spikelets. Pigment-specific simple ratio 
derived from hyperspectral imaging allowed discrimination 
between Fusarium-infected and non-inoculated spikelets on 
the 3rd day. Support vector machine method was used for 
classification. The classification accuracy was 78, 56 and 
78 %, respectively.

A study of Abdulridha et al., 2019 compares two methods 
for detecting citrus canker with hyperspectral imaging. In the 
laboratory, a hyperspectral (400–1000 nm) imaging system 
was utilized for the detection of citrus canker at several di-
sease development stages (i. e., asymptomatic, early, and late 
symptoms) by using two classification methods: (i) radial 
basis function (RBF) and (ii) k-nearest neighbor (KNN). 
The same imaging system mounted on a UAV was used to 

detect citrus canker on tree canopies in the orchard. The 
overall classification accuracy of the RBF was higher (94, 
96, and 100 %) than the KNN method (94, 95, and 96 %) for 
detecting canker in leaves. Among the 31 studied vegetation 
indices, the water index (WI) and the Modified Chlorophyll 
Absorption in Reflectance Index (ARI and TCARI 1) more 
accurately detected canker in laboratory and in orchard 
conditions, respectively. The UAV-based technique achieved 
100 % classification accuracy for identifying healthy and 
canker-infected trees.

Diseases identif ication and differentiation
In disease identification, the goal is to determine the type 
of pathogen affecting the plant. The subject of research is 
several types of diseases, their distinctive features.

Mahlein et al., 2013 developed specific spectral disease 
indices (SDIs) for the differentiation of diseases in crops. 
Sugar beet plants and three leaf diseases Cercospora leaf 
spot, sugar beet rust and powdery mildew were used as 
model system. Hyperspectral signatures of healthy and 
diseased sugar beet leaves were assessed with a non-
imaging spectroradiometer at different development stages 
and disease severities of pathogens. Significant and most 
relevant wavelengths and two band normalized differences 
from 450 to 950 nm, describing the impact of a disease on 
sugar beet leaves, were extracted from the data-set using 
the RELIEF-F algorithm. To develop hyperspectral indices, 
the best weighted combination of a single wavelength and 
a normalized wavelength difference was searched. Healthy 
sugar beet leaves and leaves, infected with Cercospora leaf 
spot, sugar beet rust and powdery mildew were classified 
with a high accuracy and sensitivity (balanced classification 
accuracy: 89, 92, 87, and 85 %, respectively).

A study of Bohnenkamp et al., 2019 establishes a method 
for detecting and distinguishing between brown rust (Puc­
cinia triticina) and yellow rust (P. striiformis) on wheat 
leaves based on hyperspectral imaging. The experiment 
was conducted at the leaf scale under controlled laboratory 
conditions. A reference spectrum from sporescale observa-
tions was used. Least-squares factorization was applied on 
hyperspectral images to unveil the presence of the spectral 
signal of rust spores in mixed spectra on wheat leaves. For 
the first time, this study shows an interpretable decom-
position of the spectral reflectance mixture during patho-  
genesis.

Disease severity assessment
Quantitative diagnosis of plant disease severity is one of 
the main directions of hyperspectral disease analysis. The 
evaluation criteria for plant disease severity are often the 
disease index and incidence. In addition, according to the 
pathogens and symptoms they caused, the pigment content, 
water content, and even structural parameters are often 
regarded as indirect evaluation criteria.

Zhao Y.-R. et al., 2016 used hyperspectral imaging to de-
termine the spatial distribution of chlorophyll and carotenoid 
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List of major contributions to different areas of application of hyperspectral images to plant diseases diagnostics

Target Crop Disease Scale/sensor/platform Methods and algorithms Reference

Detection Wheat Fusarium Head Blight Spikelet / ImSpector V10E, 
N25E/ moving platform

Support vector machine 
(SVM)

Mahlein et al., 
2019a

Citrus Citrus canker Canopy/ Pika L/ UAV Vegetation indices, 
k­nearest neighbor (KNN), 
radial basis function (RBF)

Abdulridha et al., 
2019

Onion Sour skin  
(Burkholderia cepacia)

Onion/ SU320KTS­1.7RT SWIR 
camera, LCTF filter/ tripod

Principal component 
analysis (PCA), Fisher’s 
discriminant analysis (FDA)

Wang et al., 2012

Sugar beet Root rot disease  
(Rhizoctonia solani )

Plant/ Specim IQ/ tripod k­nearest neighbor (KNN), 
partial least squares (PLS), 
random forest (RF), support 
vector machine (SVM)

Barreto et al., 2020

Identification Sugar beet Cercospora leaf spot, 
sugar beet rust, 
powdery mildew 

Leaf/ ASD FieldSpec Pro/ 
tripod

Disease indexes, algoritm 
RELIEF­F

Mahlein et al., 2013

Differentiation Wheat Brown and yellow 
rust (Puccinia triticina 
and P. striiformis)

Leaf/ ImSpector V10E/ 
moving platform

Least­squares factorization 
(LSF)

Bohnenkamp et 
al., 2019

Yellow rust, powdery 
mildew, wheat aphid 

Leaf/ ASD FieldSpec/ tripod Partial least square 
regression (PLSR),  
Fisher’s linear discriminant 
analysis (FLDA)

Yuan et al., 2014a

Fusarium head blight 
(F. graminearum,  
F. culmorum)

Spike/ ImSpector V10E, 
ImSpector N25E/ moving 
platform

Vegetation indices, support 
vector machine (SVM)

Alisaac et al., 2018

Severity 
assessment

Barley Powdery mildew Canopy (plot)/ Specim V10E/ 
rail system

Support vector machine 
(SVM), Simplex Volume 
Maximization (SiVM)

Thomas et al.,  
2018a

Potato Late blight in potato Canopy (plot)/ Rikola/ UAV Simplex Volume 
Maximization (SiVM)

Franceschini et al., 
2019

Cucumber Angular leaf spot Leaf/ ImSpector V10/  
moving platform

Partial least square 
regression (PLSR)

Zhao et al., 2016

Wheat Powdery mildew Leaf/ ASD FieldSpec/ tripod Partial least square 
regression (PLSR), 
multivariate linear 
regression (MLR) 

Zhang J. et al., 
2012

Tomato Bacteriosis 
(Pseudomonas 
cichorii )

Leaf/ Hyperspec Headwall/ 
moving platform

Principal component 
analysis (PCA)

Rajendran et al., 
2016

Assessment 
of genotype 
resistance

Sugar beet Leaf spot  
Cercospora

Leaf/ ImSpector V10E/ 
moving platform

Vegetation indices Leucker et al., 2016

Grape Grape downy mildew 
(Plasmopara viticola)

Leaf/ ASD AgriSpec spectro­
meter, ImSpector V10E/ 
moving platform

Vegetation indices Oerke et al., 2016

Barley Powdery mildew Cell, tissue/ Specim V10E 
camera, Z6 APO microscope/ 
moving platform

Simplex Volume 
Maximization (SiVM)

Kuska et al., 2015
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contents in cucumber leaves infected with angular spot. The 
pigment content was measured by biochemical analyzes. 
Partial least square regression (PLSR) models were used 
to develop quantitative analysis of the relationship between 
the disease severity, the spectra and the pigment contents. 
In addition, regression coefficients in PLSR models were 
employed to select important wavelengths for modeling. 
Finally, chlorophyll and carotenoid distributions in cucum-
ber leaves with the angular spot infection were mapped by 
applying the optimal models pixel-wise to the hyperspectral 
images. 

Zhang J. et al., 2012 detected wheat powdery mildew 
disease severity via spectral measurement and analysis. In 
this study, hyperspectral reflectances of normal and pow-
dery mildew infected leaves were measured with a spec-
troradiometer in a laboratory. The severity of the disease 
was determined on a nine-point scale of the disease index. 
A total of 32 spectral features were extracted from the lab 
spectra and examined through a correlation analysis and an 
independent t-test associated with the disease severity. Two 
regression models: multivariate linear regression (MLR) and 
partial least square regression (PLSR) were developed for 
estimating the disease severity of powdery mildew. Based on 
the cross-validation result, seven spectral indices minimizing 
the relative root mean square error were selected. The PLSR 
model outperformed the MLR model, with a relative root 
mean square error of  0.23 and a coefficient of determination 
of 0.80 when using seven indices.

Assessment of genotypes resistance
Analysis of the pathogen-host interaction makes it pos-
sible to determine the resistance of genotypes to a specific 
disease and is an important part of breeding. In breeding 
practice, phenotyping of plant genotypes is carried out by 
means of labor-intensive and expensive visual assessment. 
In this context, hyperspectral analysis is a promising non-
invasive method for speeding up and automating traditional 
phenotyping methods.

Leucker et al., 2016 evaluated the resistance of 5 different 
sugar beet genotypes to Cercospora leaf spot in their study. 
The experiment was carried out under controlled laboratory 
conditions. Lesions of Cercospora leaf spot were rated by 
classical quantitative and qualitative methods in combina-
tion with non-invasive hyperspectral imaging. It was found 
that the spectral characteristics of the affected leaf areas 
depend on the density of pathogen spores on the surface 
and on their spatial distribution. Accordingly, the number of 
conidia per diseased leaf area on resistant plant was lower. 
The assessment of lesion phenotypes by hyperspectral 
imaging with regard to sporulation may be an appropriate 
method for identifying subtle differences of genotypes in 
disease resistance.

Kuska et al., 2015 used a hyperspectral microscope to 
determine the resistance of barley cultivars to powdery 
mildew (Blumeria graminis). The reflection of inoculated 
and non-inoculated leaves was recorded daily with a hyper-

spectral linescanner in the visual (400–700 nm) and near 
infrared (700–1000 nm) range 3 to 14 days after inoculation. 
The susceptible genotypes showed an increase in reflectance 
in the visible range according to symptom development. 
However, the spectral signature of the resistant genotype did 
not show significant changes over the experimental period.

Problems and prospects  
of using hyperspectral technologies  
for the diagnosis of plant diseases
Despite the encouraging progress in monitoring plant 
diseases based on hyperspectral technologies made over 
the past few decades, some technical problems remain 
unresolved that make these methods difficult to apply in 
practice. Studies seeking solutions to these challenges will 
shape future trends.

Currently, low-altitude, airborne and satellite multispec-
tral systems are widely used in agricultural production to 
monitor the canopy based on vegetation indices (Hatfield, 
Pinter, 1993; Huang Y.B. et al., 2013). But reliable remote 
sensing monitoring of plant diseases and pests is usually 
achieved when symptoms are fully exhibited, which may 
be too late for guiding the prevention. Despite significant 
results in scientific research on the use of hyperspectral 
sensors for early detection of plant diseases, their practical 
application in field and greenhouse conditions in precision 
farming systems is still an unresolved problem.

Most of these studies have been conducted in controlled 
conditions, often utilizing artificial illumination and precise-
ly regulating the directions of incoming light and reflected 
light being registered by positioning the camera or sensor 
at a defined angle toward the leaf tissue. The illumination 
conditions in the field are very different from laboratory 
ones, which creates enormous difficulties for reliably quan-
tifying diseases in a natural canopy. Canopy regions located 
in sunlight appear much brighter than canopy layers situated 
in the shade. Tissue color depends on the angle of the tissue 
toward both the incoming sunlight and the reflected out- 
going light. Heterogeneities in image brightness change from 
minute to minute. Therefore, setting a threshold for distin-
guishing between healthy and diseased tissue would mean 
taking the overall brightness of the specific image within the 
location into account, as well as the angle of incidence of 
light, which is currently a matter of intense research (Guo 
et al., 2013; Yu et al., 2017).

Another unsolved problem is to accurately detect a spe-
cific disease under realistic field conditions where several 
crop stressors may occur simultaneously. Currently, most 
monitoring studies or applications are conducted in experi-
mental fields or areas with prior information about the type of 
pathogen. For an area that lacks corresponding information, 
it is challenging to achieve a reliable and accurate monitoring 
result. Many pathogens, as well as abiotic stressors, have 
similar symptoms and, therefore, a similar spectral signature. 
Some state-of-the-art algorithms, such as deep learning algo-
rithms, may play an important role in differentiating biotic 
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and abiotic stressors in field and greenhouse conditions (Liu 
et al., 2010; Mahlein et al., 2019b). Besides, it is necessary 
to promote the establishment of a knowledge base with the 
background information about diseases (i. e., geographical 
distribution, favorable habitats, soil types, climate condi-
tions). The prior information may lower uncertainty in the 
monitoring of plant diseases.

Conclusion
Plant diseases are causing significant economic losses in the 
agricultural production around the world, especially given 
the climate change that has taken place in recent years. 
A promising technology for a non-invasive, fast, efficient 
and reliable way to detect and identify plant diseases is the 
use of hyperspectral sensors and platforms.

New technologies are expanding human perception by 
providing information beyond the visible spectrum. The 
analysis of the reflection spectrum of plant tissue makes it 
possible to classify healthy and diseased plants, assess the 
severity of the disease, differentiate the types of pathogens, 
and identify the symptoms of biotic stresses at early stages, 
including during the incubation period, when the symptoms 
are not visible to the human eye.

Due to the huge amount of information, the most pro-
mising methods for processing hyperspectral data are ma-
chine learning and neural networks. Currently, hyperspectral 
methods for diagnosing plant diseases are still at an early 
stage of development. In addition to its being an expensive 
technology, many technical difficulties limit its application 
in production. However, with advances in sensor technology 
and data analysis techniques, hyperspectral imaging can be 
expected to become one of the important tools for studying 
plant diseases.
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