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Abstract. The development of next-generation sequencing technologies has provided new opportunities for geno-
typing various organisms, including plants. Genotyping by sequencing (GBS) is used to identify genetic variability
more rapidly, and is more cost-effective than whole-genome sequencing. GBS has demonstrated its reliability and
flexibility for a number of plant species and populations. It has been applied to genetic mapping, molecular marker
discovery, genomic selection, genetic diversity studies, variety identification, conservation biology and evolutionary
studies. However, reduction in sequencing time and cost has led to the need to develop efficient bioinformatics analy-
ses for an ever-expanding amount of sequenced data. Bioinformatics pipelines for GBS data analysis serve the purpose.
Due to the similarity of data processing steps, existing pipelines are mainly characterised by a combination of software
packages specifically selected either to process data for certain organisms or to process data from any organisms.
However, despite the usage of efficient software packages, these pipelines have some disadvantages. For example,
there is a lack of process automation (in some pipelines, each step must be started manually), which significantly
reduces the performance of the analysis. In the majority of pipelines, there is no possibility of automatic installation of
all necessary software packages; for most of them, it is also impossible to switch off unnecessary or completed steps.
In the present work, we have developed a GBS-DP bioinformatics pipeline for GBS data analysis. The pipeline can be
applied for various species. The pipeline is implemented using the Snakemake workflow engine. This implementation
allows fully automating the process of calculation and installation of the necessary software packages. Our pipeline is
able to perform analysis of large datasets (more than 400 samples).
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AHHOTauumA. Pa3BUTnE TEXHONOMNIA CEKBEHMPOBAHMA HOBOrO MOKOMIEHNA OTKPbISIO HOBblE BO3MOXHOCTU sl FeHO-
TUMMPOBaHWSA Pa3NYHbIX OPraH3MOB, BK/OUasa pacTeHusa. MeToa reHOTUNMPOBaHWA NyTem ceKBeHUpoBaHus (GBS)
NPVIMEHAETCS ANA MAEHTUOUKALMN FEeHETNYECKON N3MEHUMBOCTY U Gosee BbICTPOro reHOTUNMPOBaHKA 06pasLoB, a
TakXe ABnAeTcA 6onee SKOHOMNYECKUN 3PEKTUBHBIM METOAOM B CPABHEHWUNM C MOIHOrEHOMHbIM CEKBEHUPOBAHUEM.
GBS npopeMoHCTprpoBan CBOK HAAEXHOCTb U TMBKOCTb ANA pAfa BUAOB 1 MOMYNAUMA pacTeHNA. DTOT MmeToa 6bin
NPUMEHEH AN reHeTUYeCKOro KapTypoBaHUs, BbIBIIEHUA MOJSIEKYSIIPHBIX MAapKEPOB, FEHOMHOW Cenekuuu, B uccre-
[I0BaHMM TeHEeTMYeCKoro pasHoobpasus, NAeHTUOUKaLUN COPTOB, a TakKe B UCCNIefoBaHMAX B 06nactu bruonorum
OXpaHbl NPUPOAbI 1 3BOIOLMOHHON 3Konorn. OfHAKO COKpalleHre BPEMEHM U CTOMMOCTM CEKBEHUPOBAHUA NpW-
BEJ10 K HEOOXOANMOCTU Pa3paboTKM KauecTBEHHOIo 61oNHGOPMATMUECKOTO aHaM3a ANs MOCTOSHHO paclunpsioLLe-
rocsl KONMyecTBa CEKBEHVNPOBaAHHbIX AaHHbIX. [1A 3TuX Lieneii 6binmn paspaboTaHbl 6MorHpopMaTUUYecKrie KOHBeNepbI
aHanusa faHHbIX, NoslyuyeHHbIX MeToaom GBS. BcnefcTBue cxoxecTr 3TanoB 06paboTKy CyLLecTByOLMe KOHBEEpDI
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GBS-DP: a bioinformatics pipeline for processing data
coming from genotyping by sequencing

B OCHOBHOM Pa3nnyatoTcs KOMOMHaLMed MPorpaMMHbIX NMaKeToB, cneludmnyeckn nofobpaHHbIX Ans 06paboTky faH-
HbIX KaK AnA onpeaesieHHbIX, Tak 1 Ana nobbix opraHn3moB. HecMoTpA Ha KauecTBeHHO NofobpaHHble NakeTbl Mpo-
rpamm, KOHBelepbl MeIOT HEKOTOPbIe HEAOCTATKM, HanprMep OTCYTCTBME BO3MOXKHOCTM aBTOMaTM3aLmMmn npoLecca
pacueTa (Kaxzablil 3Tan HY»KHO 3anycKaTb BPYYHYI0), UTO 3HAUMTENIbHO CHIXKAeT CKOPOCTb MCCnefoBaHuA. B 60nbLwyH-
CTBe KOHBEepoB OTCYTCTBYET BO3MOXKHOCTb aBTOMAaTMYECKOW YCTAaHOBKMN BCEX HEOOXOAUMbIX MPOrPaMMHbIX Make-
TOB, @ TaKXKe HET BO3MOXXHOCTU OTKJ/IOUEHNA HEHY>KHOTO WM NpoAeHHOro aTana. B HacTosALei pabote Hamu Gbin
paspaboTaH 6ronHdopmaTMuecknin KoHeelep GBS-DP ans aHanm3a faHHbIX, MOyyeHHbIX MeTofom GBS. KoHeeliep
npYMeHnM Ana nobbix BUAOB OpraHn3moB. Peanvsauma KoHBelepa Ha nnatdopme Snakemake nossonvna nosHo-
CTblO aBTOMaTV3UPOBATb NPOLIECC pacyeTa 1 yCTaHOBKM HEO6XOAMMbIX MPOrpPaMMHbIX NakeToB. KoHBelep no3sonaeTt
obpabaTbiBaTh 60nblUME 06bEMbI faHHbIX (6onee 400 06pa3sLoB).

KnioueBble cioBa: FeHOTUNMPOBaHME NyTEM CEKBEHUPOBAHUSA; 61OMHPOPMATNUYECKNIN KOHBEEP; AUMEHD.

Introduction

Genetic diversity is the most important basis for studying plant
resistance to biotic and abiotic stresses and for developing new
highly adaptive and high-yielding crop sorts. Study of genetic
diversity is performed using various methods of DNA analysis.
To date, one of the most advanced methods is the use of
molecular markers (Kanukova et al., 2019). Molecular markers
(DNA markers) are genetic markers analysed at the nucleotide
level (Khlestkina, 2013). Their use allows to identify genetic
diversity of populations, subspecies, species, allowing to
effectively determine loci controlling economically valuable
plant traits even at the initial stage of breeding (Sukhareva,
Kuluev, 2018).

Some of the most convenient DNA markers for genetic
analysis are SNP markers (Khlestkina, 2013). SNP (Single-
Nucleotide Polymorphism) is a single-nucleotide position
in genomic DNA for which different sequence variations
(alleles) occur in the population (Sukhareva, Kuluev, 2018).
SNPs are widely used for allelic polymorphism studies, seed
purity testing, haplotype and pedigree analyses, as well as for
genotyping and construction of genetic maps.

Obtaining SNP marker information is now possible
for any plant at a whole genome scale through the use of
next-generation high-throughput sequencing technologies.
Identification of SNPs is possible using whole-genome
sequencing (WGS) and genotyping by sequencing (GBS)
strategies (Scheben et al., 2017). The aim of whole-genome
sequencing is to obtain short random fragments (reads)
of the whole genome DNA. This allows estimating DNA
variation by aligning fragments to a reference genome or by
genomic DNA de novo assembly. This can be challenging and
expensive; price per genome exceeds $2000, also depending
on the size and complexity of the genome, the desired level
of completeness and computational resources (Narum et al.,
2013). For example, sequencing a complete barley genome
to the chromosome level costs around $60,000 (Monat et
al., 2019). There are also specific methods of whole-genome
sequencing with lower read depths that cost much less,
$100-$400 per genome. However, according to the authors
(Bimber et al., 2016), the accuracy of the resulting genotype
data is decreased.

The genotyping by sequencing method is faster and more
cost-efficient than the whole-genome sequencing method.
For example, the cost of single barley genome sequencing by
fragments in a GBS experiment does not exceed $30 (Monat
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etal., 2019). Two sequencing strategies can be applied in the
GBS experiments. The first one uses site-specific restriction
enzymes for fragmentation of DNA samples, after which se-
quencing of the resulting fragments is performed (Glaubitz et
al., 2014). In the second method, unique adapter sequences are
ligated to both ends of DNA fragments during library prepara-
tion (Elshire etal., 2011). Due to the fact that DNA fragments
are only sequenced in the region of restriction sites, the GBS
method does not sequence the full genome DNA sequence.
This makes the sequencing process much cheaper. However,
the number of SNPs that can be identified is lower than that
obtained with whole-genome sequencing. Nevertheless, the
amount of data obtained using the GBS method is sufficient to
characterise the genetic diversity of agricultural plant popula-
tions with acceptable accuracy.

The GBS method has demonstrated its reliability and flex-
ibility for a number of plant species and populations. GBS
has been applied to the identification of molecular markers
for genetic mapping (Poland et al., 2012), genomic selection
(Poland et al., 2012), in genetic diversity studies (Lu et al.,
2013; Peterson et al., 2014), variety identification (Wang et
al., 2020; Rajendran et al., 2022), and studies in conservation
biology and evolutionary ecology (Narum et al., 2013).

The GBS method significantly reduces the cost as well
as the time required for sequencing the samples under
study. This has led to the development of high-quality
bioinformatics methods for the ever-expanding amount of
sequenced data. To date, a number of bioinformatics pipelines
for analyzing the data generated by GBS experiments have
been developed. The workflows for existing pipelines of
the GBS data analysis are similar and include raw reads
preprocessing, data demultiplexing (if needed), mapping
reads to a reference genome, SNP identification and analysis
of genetic diversity.

The reads mapping step depends on the presence or
absence of the reference genome sequence. In the first case,
preprocessed reads are aligned to a reference genome using
existing tools such as bowtie2 or bwa (Glaubitz et al., 2014;
Torkamaneh et al., 2017; Wickland et al., 2017). In the
absence of reference genome sequences, an additional step
of “Mock Reference” sequence generation is applied (Melo
et al., 2016). This method clusters reads by their similarity
to identify consensus sequences (centroids) on the basis of
which the fragments of the genome are assembled (Melo
et al., 2016). These fragments of the genomic sequence are
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used as the reference in subsequent analysis. Due to the
similarity of the data processing steps, existing pipelines
mainly differ in the software tools combined to perform the
analysis. The combination should take into account various
genomic characteristics, such as the number of polymorphisms
detected, genome complexity, degree of heterozygosity, and
the proportion of repetitive sequences in the whole genome.
More advanced pipelines allow the selection of parameters
for the organisms under study (Torkamaneh et al., 2017,
Wickland et al., 2017), whereas earlier pipelines have some
limitations. For example, TASSEL needs specification of the
sequence length upper limit, which may result in the loss of
a significant number of short raw reads (Glaubitz et al., 2014;
Melo et al., 2016). Due to the ever-increasing number of
sequenced libraries, pipelines must provide the capability to
process a large amount of data in a single run. An important
aspect of pipelines is the automation of the processing and
the simplicity of the software installation.

In the present work, we have developed a GBS-DP bio-
informatics pipeline for analysing GBS data. This pipeline
incorporates the GBS data processing scheme proposed in
(Jayakodi et al., 2020). The pipeline is applicable to any
organism species. The pipeline can process large amounts
of data (more than 400 samples) and is implemented using
the Snakemake workflow system (Kdster, Rahmann, 2012).

Materials and methods

Bioinformatics pipeline for analysing GBS data. The GBS-DP

bioinformatics pipeline diagram is shown in Figure 1.
Pipeline input requires the path to the folder with the set

of files with raw read sequences and the path to the reference

genome file. Files with the read sequences should be in

Stage 1: Data preprocessing

FASTA files

samtools
view
FASTQ files cutadapt bwa mem samtools
sort
Raw reads Adapter . .
libraries removal Mapping Sorting

Softwear tools
Input data

Pipeline stage

Fig. 1. The diagram of the GBS-DP bioinformatics pipeline.

Stage 2: Polymorphism identification
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FASTQ format, reference genome, in FASTA format. If the
libraries have barcode sequences, they must be demultiplexed
beforehand by an external tool (the demultiplexing step is not
included in GBS-DP).

The pipeline consists of three main steps: (1) data
preprocessing, (2) polymorphism identification, (3) genetic
diversity analysis. Data preprocessing includes quality
control of raw reads, adapters removal, and construction of
reference genome index files. Polymorphism identification
includes mapping preprocessed reads to a reference genome,
sorting the mapped reads, and searching for single nucleotide
polymorphisms. Genetic diversity analysis is performed
differently depending on whether the total size of files with
polymorphism data exceeds 1 TB. Each stage is described in
more detail below.

Data preprocessing. Quality control and adapter removal
are performed by cutadapt (Martin, 2011). For the reads of
each library, user should provide the list of adapter sequences
in the pipeline configuration file.

The reference genome indexing is performed using the bwa
tool (“index’ option) (Li H., 2013).

Polymorphism identification. Mapping of preprocessed
reads is performed by the bwa tool (“mem’ option) (Li H.,
2013) with the default parameters “~k 19 —w 100”.

The mapping results are obtained in SAM format, converted
into BAM format and sorted using samtools (Danecek et
al., 2021) running ‘view’ and ‘sort’ options, respectively.
Polymorphisms (SNPs, insertions and deletions (indels))
are identified using the sorted BAM by a combination of
samtools (‘mpileup’ option) and bcftools (‘call’ option)
(Danecek et al., 2021). It was previously shown using the
wheat genome as an example (Yuao et al., 2020) that the

Stage 3: Genetic diversity analysis

bcftools bcftools
view merge
Split into Merging
chromosomes VCF
SNPRelate
samtools
mpileup
bcftools >1T8B
call Clusterization
SNP Indel Total _
searching value Construction
SNP of a phylogenetic tree
VCF files <178
Merging
VCF
bcftools
view
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samtools/mpileup + bwa-mem software combination used in

our pipeline outperforms other combinations of polymorphism

mapping and identification software.

Analysis of genetic diversity. The pipeline selects the way
of genetic diversity analysis automatically depending on the
total size of the VCF files obtained at the previous step.

The corresponding option is selected automatically and
associated with increased load on the computer RAM when
working with large data (if the total size of the received VCF
files exceeds 1 TB). The processing option for data with the
total volume less than 1 TB includes three steps. If the total
size of files is lower than 1 TB, the pipeline performs the
following steps:

1. VCF files containing information about polymorphisms
for each sample are indexed using bcftools (‘index’ option)
(Danecek et al., 2021).

2. The indexed files are merged into a single VCF file using
bcftools (“‘merge’ option). This file contains data on
polymorphisms of all samples for all chromosomes.

3. The resulting file in VCF format is converted into GDS
(Genomic Data Structure) format using the SeqArray
package implemented in R (Zheng et al., 2017). This format
allows significantly reducing the amount of RAM required
for processing the results of polymorphism identification.
Ifthe total size of VCF files is greater than 1 TB, the pipeline

performs the following steps:

1. Each VCF file with polymorphism data for a specific sample
is split by chromosome using bcftools (‘view’ option).

2. The resulting VCF files for each chromosome are indexed
using bcftools (‘index’ option).

3. VCF files for each chromosome are merged for all samples.
The resulting set of files represent the polymorphism data
by chromosome for each sample.

4. VCF files for individual chromosomes are converted to
GDS format. The resulting GDS files for each chromosome
are then combined into a common GDS file using the
snpgdsCombineGeno function of the SNPRelate package
(Zheng et al., 2017).

The resulting polymorphism data merged from all samples
are used for genetic diversity. It should be noted that important
information about SNP distribution in the genomic sequence
is represented by the linkage disequilibrium (LD) parameter
(Ponomarenko, 2018). Two alleles of different loci are in
linkage disequilibrium when the frequency of the haplotype
comprising them differs significantly from the frequency
expected under random segregation (Gabriel et al., 2002).
The value of LD depends on a number of factors: the
magnitude and rate of gene drift, genetic admixtures in the
population, mutations and recombinations, and population size
(Aulchenko, Aksenovich, 2006). LD is usually estimated by
the linkage disequilibrium coefficient (D), but this measure
is not always convenient because the range of its possible
values depends on the frequencies of the alleles to which it
refers. This makes it difficult to compare the level of linkage
disequilibrium between different pairs of alleles. Thus,
the D coefficient is normalised on the basis of the Pearson
correlation coefficient r2, which varies from 0 to 1. The closer
the value of r2 is to 0, the more likely it is that the identified
SNPs are random.
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The LD parameter is estimated by the GBS-DP pipeline
using the merged file containing polymorphism information
for all libraries across all chromosomes in GDS format.
The R package SNPRelate (Zheng et al., 2017), function
snpgdsLDpruning, is used for LD estimation.

Additionally, principal component analysis is applied
for filtered SNPs, which is performed using the R package
SNPRelate. The SNPRelate package is also used to build
a phylogenetic tree using hierarchical clustering method.

System requirements and installation. The GBS-DP
pipeline is implemented using the Snakemake v6.0.0
workflow management system (Koster, Rahmann, 2012),
a tool for creating data analysis pipelines implemented in
Python. Pipelines created in this environment can be easily
scaled for server, cluster, network and cloud environments.
Snakemake is compatible with the Conda system, making
it easy to install new programs required for the pipeline.
The pipeline is designed for the Linux operating system.
It requires a minimum of 10 GB of RAM to run (the more
data, the more RAM needed). To run the pipeline, user needs
to specify parameters in the configuration file. The code
and step-by-step instructions for running the pipeline are
available at https://github.com/artempronozin95/GBS-DP-
bioinformatics-pipeline-for-genotyping-by-sequencing-data-
processing/tree/main.

Data for test analysis. For the test application of the GBS-
DP pipeline in the present work, we used project PRIEB39633
from the European Nucleotide Archive (ENA) database (Lei-
nonen et al., 2010), which contains GBS sequencing data
for a barley (Hordeum vulgare) population derived from
a cross between the six-row barley variety Morex and the
mutant line luteostrians-P1 (Ist/LST) (Li M. et al., 2021).
Libraries were obtained using a combination of Mspl and
Pstl restriction enzymes (Wendler et al., 2015). In total, the
PRJEB39633 project contains 679 libraries for 272 genotypes;
there is an average of 3 libraries per genotype, so library
reads for the same genotype were combined before analysis.

We used the H. vulgare reference genome v. 51 sequence
(IBSC v2) downloaded from the Ensembl plants database
(Bolser et al., 2016).

Results
Supplementary Materiall demonstrates the processing time
at different stages of the GBS-DP pipeline execution for
different numbers of barley libraries (10, 50, 100, 150, 200
and 272). The characteristics of the computational node are
as follows: AMD EPYC 74521 processor, 32 cores, | TB
memory capacity. For the analysis, we used 100 GB of
RAM and 20 processor cores. The longest time was spent on
generating a merged file containing polymorphisms. However,
it can be seen that the time taken to generate a merged file for
200 libraries is lower than that for 150 libraries; this is due to
the usage of big data processing mode, which speeds up the
calculation process.

The pipeline provides the results of the basic evaluation
of sequenced libraries. The read length for each library is
107 nt. The average read depth (Fig. 2, a) ranges from 2-8,

1 Supplementary Material is available at:
http://vavilov.elpub.ru/jour/manager/files/Suppl_Pronozin_Engl_27_7.pdf
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Fig. 2. Distribution of average depth of reads mapping (a) and distribution of mapped reads number for libraries (b).

which is an acceptable value for the GBS method. More than
30 % of the libraries contain more than 1,000,000 reads (see
Fig. 2, b). On average for one library, the coverage of the barley
reference genome (4,225,577,519 nt) with DNA fragments is
3 % of the total length.

The pipeline also provides the results of the search for
polymorphisms between the investigated genotypes. For
the 272 samples analysed, 447,409 SNPs were identified.
The total number of indels is 46,557. The median value of
transitions/transversions = 1.75, indicating the predominance
of transitions. The estimate of the LD parameter (r?) is
0.5. After applying the LD filter, 45,402 polymorphic and
independent SNPs remained.

The distribution of the detected SNPs by chromosome
showed that more SNPs were detected for chromosomes 3, 6
and 7 (Fig. 3). The main results of the pipeline are principal
component analysis of genotypes based on the detected SNPs
(Fig. 4) and construction of a phylogenetic tree. The results
of principal component analysis based on 45,402 SNPs allow
identifying three distinct clusters within the population. They
are clearly distinguished in the scatter plot in the space of
the first two components (see Fig. 4). However, the total
proportion of variance attributable to these two components
is small (20 %), which may indicate an overall high level of
genetic diversity in the obtained plant population.

The phylogenetic tree constructed by the hierarchical
clustering method is shown in Figure 5. Samples in the tree
diagram are colored by cluster membership (see Fig. 4). It
allows us to identify three large clusters in the population,
which is consistent with the data presented in Figure 4.

Discussion

The decreasing cost and time required for GBS sequencing
has led to a large number of experiments performed by this
method. For example, the IPK Gatersleben barley genetic
profile database (Milner et al., 2019) contains 22,626 samples
obtained by the GBS method. Such a large number of samples
requires a fast and high-quality data processing method. To
date, pipelines processing GBS results already exist. How-
ever, despite the qualitatively selected software packages and

the possibility to adjust parameters to the organisms under
study, these pipelines have some disadvantages. For example,
GBS-SNP-CROP and TASSEL have no possibility to auto-
mate the calculation process (each step should be started
manually), which significantly reduces the speed of the study.
GB-eaSy does not allow simultaneous research of seve-
ral libraries of raw reads at once. In all existing pipelines,
there is no possibility to switch off an unnecessary or passed
step. For example, if there is no way to provide barcode
data for the libraries being examined, then none of the listed
pipelines will work. Also, in most pipelines, there is no pos-
sibility of automatic installation of all necessary software
packages.

The pipeline we developed is based on the method proposed
in (Jayakodi et al., 2020). In this paper, the bioinformatics
tools are selected in such a way as to provide the most accurate
polymorphism search result. However, this method is well
applicable for small data, up to 50 libraries; as the number of
libraries increases, the load on RAM and the space occupied
on the hard disk increases. This leads to errors and interruption
of the computation process. Thus, we proposed an approach
for large GBS data processing based on (Jayakodi et al.,
2020) method. The results of this approach are summarised
in Supplementary Material and Figure 6.

As can be seen from Figure 6, our proposed approach
significantly speeds up the calculation process for large data,
but for small data, the difference in calculation speed is not
large. Therefore, this mode is activated only for the VCF file
data with the total size exceeding 500 GB.

The proposed pipeline was built using the Snakemake
workflow manager. This method of implementation allows
to automatically take into account the completed tasks for
each sample, which eliminates the duplication of tasks,
and also allows to resume the calculation process from the
moment of its last interruption (for example, due to an error).
Modular structure allows for more convenient functionality
of manipulation of the pipeline steps (exclusion, addition,
switching off some steps). Snakemake also has the ability
to automatically install all the necessary software for the
pipeline.
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X axis is the coordinates of SNPs on chromosomes, Y axis is the number of SNPs corresponding to these coordinates.

02

0.1

PC2 (9 %)

-0.1 F

-0.1 0 0.1
PC1 (11 %)

Fig. 4. Genotype scatter diagram for the barley population resulting from the cross between the variety Morex and the
mutant line luteostrians-P1 (Ist/LST) for the two principal components obtained from the genetic diversity analysis by the
GBS-DP pipeline.

The proportion of the total variance is given in parentheses next to the component names.

Conclusion has allowed even more sequencing to be performed. In this
Genotyping by sequencing methods have demonstrated ~work, we proposed a GBS-DP bioinformatics pipeline,
their reliability and flexibility for a number of plant species ~ Which allows us to process large-scale sequencing data
and populations. They have reduced both the cost and the  performed by the GBS method. The results demonstrate a
time required to sequence the samples under study, which ~ fairly high speed of this pipeline for both large data (more
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Fig. 5. Phylogenetic tree of 272 barley samples constructed by the hierarchical clustering method by their genetic similarity
estimated using the GBS data.

Standard mode Mode for big data
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Fig. 6. Dependence of time spent on the conveyor operation on the number of libraries under study.
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than 400 libraries) and small data (~30 libraries). The pipe-
line also provides analysis of detected polymorphisms.
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