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Abstract. Genomic selection is a technology that allows for the determination of the genetic value of varieties of agri-
cultural plants and animal breeds, based on information about genotypes and phenotypes. The measured breeding
value (BV) for varieties and breeds in relation to the target trait allows breeding stages to be thoroughly planned and
the parent forms suitable for crossing to be chosen. In this work, the BLUP method was used to assess the breeding va-
lue of 149 Russian varieties and introgression lines (4 measurements for each variety or line, 596 phenotypic points) of
spring wheat according to the content of seven chemical elements in the grain — K, Ca, Mg, Mn, Fe, Zn, Cu. The quality
of the evaluation of breeding values was assessed using cross-validation, when the sample was randomly divided into
five parts, one of which was chosen as a test population. The following average values of the Pearson correlation were
obtained for predicting the concentration of trace elements: K- 0.67, Ca - 0.61, Mg — 0.4, Mn - 0.5, Fe - 0.38, Zn - 0.46,
Cu - 0.48. Out of the 35 models studied, the p-value was below the nominal significant threshold (p-value < 0.05) for
28 models. For 11 models, the p-value was significant after correction for multiple testing (p-value < 0.001). For Caand K,
four out of five models and for Mn two out of five models had a p-value below the threshold adjusted for multiple test-
ing. For 30 varieties that showed the best varietal values for Ca, Kand Mn, the average breeding value was 296.43, 785.11
and 4.87 mg/kg higher, respectively, than the average breeding value of the population. The results obtained show the
relevance of the application of genomic selection models even in such limited-size samples. The models for K, Ca and
Mn are suitable for assessing the breeding value of Russian wheat varieties based on these characteristics.
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AHHoTauuA. [eHOMHasA cenekuma — 3To TEXHONOTA, MO3BONAOLWadA onpenenATb reHeTn4yecKyto LeHHOCTb COPTOB CeJlb-
CKOXO3AICTBEHHbIX paCTean7| 1 nopo *KMUBOTHbIX, ONPaACb Ha |/|H¢opmaumo O reHotTunnax u ¢eHOTMHaX. I/I3mepeHHaﬂ
cenekumoHHaA UeHHOCTb MO OTHOLWEHUIO K LLeneBoMy NPU3HaKy Aae€T BO3SMOXHOCTb FPaMOTHO MNj1aHNPOBATb 3Tarbl Ce-
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OueHKa ceNeKUMOHHON LlEHHOCTN
MArKOMN APOBOI NieHnLbl meTogom BLUP

nekummn 1 BbibrpaTb noaxoaaLme ana cKpewmBaHma pogutenbckme popmbl. B HacToAwen paboTe ncnonb3oBaH MeToq
BLUP anAa oueHKN cenekumoHHON LeHHOCTN 149 pOoCCUICKMX COPTOB Y UHTPOTPECCUBHDBIX IMHUNA (4 n3mepeHns ana
KaX[10ro copta Wiv IMHUK, 596 peHOTUNMUYECKNX TOUEeK) SPOBO MILEHWLbI MO COAEPKAHUIO CEMN XUMUYECKIMX de-
MeHTOB B 3epHe — K, Ca, Mg, Mn, Fe, Zn, Cu. KauecTBO OLEeHK/ CeneKLOHHOM LeHHOCTY BblIo onpefeneHo C NOMOLLbO
KpOCC-BanuaaLymv METOAOM CllyyaliHOro pasfeneHrsa BbI60PKM Ha NATb YacTel, OfiHa 113 KOTOPbIX BbICTyNana B kauecTse
TectoBol nonynaummn. CpefHue 3HaveHNa KoadoduumeHTa koppenaummn NupcoHa AnA nNpefckasaHna KOHLEHTpauum
MUKpo3niemeHToB cocTtaBunu: K- 0.67, Ca - 0.61, Mg — 0.4, Mn - 0.5, Fe — 0.38, Zn — 0.46, Cu — 0.48. [inAa 28 n3 35 nccne-
AyeMbiX MoAenen 3HaueHue p-value 6bi10 HUXKEe HOMUHAJIBHOTO 3HaUYMMOro nopora (p-value < 0.05). ina 11 mopenen
p-value 6b1J10 3HaUMMO MOCIIe KOPPEKLUUM Ha MHOXeCTBEHHOe TecTupoBaHue (p-value < 0.001). YeTbipe 13 naTn mope-
nen pna Cau K, n ge 13 nati ana Mn umenu p-value HuKe nopora, NOMPaBNEHHOIO Ha MHOXECTBEHHOE TECTUPOBAHME.
[ina 30 copToB, NOKa3aBLUMX NyyLLMe 3HaYeHNA COPTOBOW LIEHHOCTH, CPeAHAA cenekuMoHHan LeHHocTb Ana Ca, Ku Mn
6blna Bbllwe Ha 296.43, 785.11 1 4.87 Mr/Kr COOTBETCTBEHHO, YeM CPefHAA CeNEKLUMOHHAn LLeHHOCTb nonynayun. Mony-
YeHHble pe3ysbTaTbl JeMOHCTPUPYIOT BO3MOXHOCTb MPUMEHEHNA MOLesIel FeHOMHOW CeNneKUmMmM Ha OrpaHNYeHHbIX Mo
pasmepy BbibopKax obpasuos. Mogenu ans K, Ca n Mn, nokasaBlune Haunyylwnid pesynbTat, MPUroaHbl AA OLEHKM
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CeneKUNOHHON LLEHHOCTU POCCUNCKIMX COPTOB MLUEHULbI A1 AAaHHbIX MPU3HAKOB.
KntoueBble cnoBa: reHoMHas cenekuyms; BLUP; nweHnLa; MUKPO31eMeHTbI; MaKpO31eMEHTbI.

Introduction

Since time immemorial, classical selection methods have been
used to develop new varieties of agricultural plants and animal
breeds based on the hybridization of samples with economi-
cally valuable traits, followed by selection based on pheno-
type. With the evolution of genome sequencing technologies
and methods for developing molecular markers, it became
possible to use differences in the structure of genomes, find
marker-trait associations, and use the information obtained to
identify the relationship between genotypic polymorphisms
and phenotypic variations. New approaches actively being
developed in plants include marker-assisted selection (MAS)
and genomic selection (GS) (Charmet, Storlie, 2012; Bhat et
al., 2016; Bartholomé¢ et al., 2022; Miller et al., 2023); they
are also used for animals (Kuznetsov, 1999; Melucci et al.,
2009; Suslina et al., 2019; Stolpovsky et al., 2020; Zhumanov
etal., 2021; Johnsson, 2023).

Despite the fact that MAS is quite effective for searching
for and introducing genes with a high contribution to the
phenotypic manifestation of a trait, the main disadvantage
of the method is the insufficient accuracy of predicting traits
with polygenic inheritance. As an alternative to MAS, and
for the purpose of overcoming the limitations of this method,
genomic selection has been proposed. One of its main advan-
tages is the use of predictive models to assess the breeding
value (BV).

Among the main approaches for genomic selection the fol-
lowing methods can be distinguished: BLUP methods (Best
Linear Unbiased Prediction) (Charmet, Storlie, 2012; Hoffstet-
ter et al., 2016; Lozada, Carter, 2020; Plavsin et al., 2022), a
group of Bayesian methods (Juliana et al., 2022) and a group
of methods that use machine learning (Wang et al., 2018). In-
dex methods are also used (Lopez-Cruz et al., 2020). Genomic
selection methods in agriculture can change and increase the
accuracy of the approach to breeding new plant varieties and
animal breeds.

Significant benefits of the use of GS have been observed
in livestock production due to the high cost of reproduction.
The adoption of GS for crop production began much later, but
the general potential of current approaches and the potential
of GS itself has now been explored in major crops such as
wheat, corn, barley and soybean.

KOMMbIOTEPHASA BUONOTUA PACTEHUIA / COMPUTATIONAL PLANT BIOLOGY

Wheat plays an important role in food security around the
world. In addition to nutritional components, wheat grains
contain elements such as calcium, zinc, magnesium, etc.
Elemental deficiency, also known as “hidden hunger,” oc-
curs as a result of consuming food with low concentrations
of elements and vitamins (Liu et al., 2019) and can lead to
various diseases and even death. For this reason, the ability to
intelligently select wheat varieties and increase the concentra-
tion of essential elements in the grain is an important way to
combat nutritional deficiencies around the world. According
to the elements’ content in the human body, elements are di-
vided into macroelements (the content in the human body is
hundredths of a percent or more), microelements (the content
is from hundred thousandths to thousandths of a percent) and
ultramicroelements (millionths of a percent or less). Of the
seven elements analyzed in this paper, macroelements include
calcium, potassium and magnesium, and microelements in-
clude iron, manganese, copper and zinc.

Genomic selection methods are applied to different popula-
tions and varieties of wheat for a variety of traits: from grain
element content and yield to disease resistance (Hoffstetter
et al., 2016). The most actively used method is BLUP and its
various modifications — rrBLUP, gBLUP, egBLUP, wBLUP
and others (Zhao et al., 2014; Martini et al., 2017; Berkner
et al., 2022; Rabieyan et al., 2022). This method has proven
itself over several decades of use in plant and animal breeding.
The Bayesian method and its modifications are also used —
BRR (Bayesian Ridge Regression), BL (Bayesian Lasso),
BA (Bayes A), BB (Bayes B), BC (Bayes C). Recently, ma-
chine learning and deep learning methods have been applied
to genomic breeding of wheat (Sandhu et al., 2021a, b; Sirsat
etal., 2022). Comparisons of results between methods showed
that they mainly overlap and the generally accepted methods
ofthe BLUP group are in no way inferior to Bayesian methods
and machine learning methods (Tsai et al., 2020; Berkner et
al., 2022; Juliana et al., 2022).

Previously, using a panel of varieties and introgressive lines
of bread wheat, we performed associative mapping of genetic
factors that determine the content of seven chemical elements
in wheat grain (Potapova et al., 2023).

The purpose of this work was to study the BV of samples
from this collection based on the content of chemical ele-
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ments and to obtain unbiased estimates of the effects of ge-
netic polymorphisms to determine the BV of other Russian
varieties.

Materials and methods

A panel of 157 Russian varieties and introgressive lines of
spring soft wheat was used in the work. A list of plant mate-
rial, information about the origin of samples and phenotyping
conditions are available in (Leonova et al., 2020; Potapova
etal., 2023).

Genotyping of samples with SNP markers was performed
using the Illumina Infinium 15 K platform (TraitGenetics
Section, Germany, www.sgs-institut-fresenius.de). After align-
ment of markers to the reference wheat genome to determine
their location (chromosome and position), quality control
checks and subsequent data filtering (quality of SNP genotyp-
ing <5 %, minor allele frequency < 1 %, quality of sample
genotyping < 5 %), 149 wheat lines and 11,405 SNPs (single
nucleotide polymorphisms) remained. Detailed information
about the analysis of genotypes is available in (Potapova et
al., 2023).

The content of micro- and macroelements (Zn, Mg, Mn, Ca,
Cu, Fe and K) was determined by flame spray atomic absorp-
tion spectrometry on a Contra 800 D device (Analytik Jena,
Germany), as described in (Potapova et al., 2023). Statistical
processing of the results was carried out using the Statistica
v.10.0 software package.

The assessment of the chemical elements content was car-
ried out using seed material from the collection grown under
the conditions of 2018-2019. At the same time, 4 measure-
ments were performed, 2 for each year. Heritability was cal-
culated using the formula V(G)/V(P) in the plink program
(v.1.90b6.26, Purcell et al., 2007).

For each of these phenotypes (element content in grain),
average values were obtained among 4 measurement points.
The obtained average values were used in further analysis.

BLUP and cross-validation. Each element was analysed
separately, analysis flowchart is presented in Figure 1.

For 149 cultivars, the genetic relationship matrix for SNPs
was estimated with genotyping quality above 98 % using
GCTA software (version 1.94) (Yang et al., 2011). Breeding

The BLUP method in evaluation of breeding values
of Russian spring wheat lines

GREML
function

Kinship
matrix

149 samples > BLUP

Fig. 1. Analysis flowchart.

values were then obtained for each of the accessions using the
--reml-pred-rand option from GCTA. This function estimates
the variance of a trait explained by all analyzed SNPs. To es-
timate the weight of each SNP (SNP coefficients) separately,
the --blup-snp function from GCTA was used.

To check the validity of the obtained results, we applied
a model using the k-fold cross-validation method (Fig. 2).

The sample of 149 units was randomly divided into five
subsamples. Each of the subsamples acted once as a test
population, while the remaining four subsamples acted as a
training population. Thus, for each of the chemical elements,
five models were used to obtain SNP coefficients to assess the
breeding value of the element content in wheat. In each case,
there were 119 varieties in the training set, and 30 varieties
in the test set.

Breeding value assessment was carried out using GCTA
software as described above. Next, the coefficients of single
nucleotide polymorphisms were obtained to assess the breed-
ing value of the content of elements in wheat using the BLUP
method implemented in the GCTA software.

For the obtained coefficients, the BV was estimated for
all accessions from the test population using plink software
(version 1.90b6.26) (Purcell et al., 2007). The obtained values
were used to assess the quality of the prediction by calculating
the correlation coefficients between the estimated BV and the
actual phenotypic data. Confidence intervals for the values of
correlation coefficients were also estimated using the Fisher
z-transformation of the distribution.

For visualization, we used R programming language (ver-
sion 2022.07.0, build 548). The regression line was con-
structed using the formula BV ~ phenotype, where BV is the
estimated breeding value, and phenotype is the real values of
the phenotypes.

Training
N L | GREML

4/5 of dataset >|  Kinship > (mean, 7 traits) BLUP

Test
Mean of 7 traits \
Correlation
1/5of d plink-score Mean PRS /
of dataset 12,829 SNPs ean

Fig. 2. Analysis flowchart using the k-block cross-validation method.
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Results
Table 1 and Table 2 show the phenotypic mean and the herit-
ability of each element in 2018 and 2019, respectively. A graph
of correlations between phenotypic means is presented in
Figure 3.

Data on estimates of BV and mean content of seven ele-
ments for each variety are presented in Supplementary Mate-
rial 11,

Data on the estimated correlation coefficients and confi-
dence intervals, as well as the p-value between the estimated
BV and the actual phenotypic data for all seven elements
studied, are presented in Supplementary Material 2.

Average values of Pearson correlation coefficients were
obtained to predict the concentration of microelements with
real phenotypes: K — 0.67, Ca — 0.61, Mg — 0.4, Mn — 0.5,
Fe — 0.38, Zn — 0.46, Cu — 0.48. The maximum correlation
coefficient was 0.75 (p-value = 1.85¢-07) and was obtained
for model 4 for potassium. The minimum is 0.22 for model 5
for iron (p-value = 0.24).

It was assumed that the prediction of BV for an element
is significant if for at least one out of the five models the
p-value is below the threshold adjusted for multiple testing
(p-value <0.001), and for the remaining four models the p-va-
lue is below the nominal level of significance (p-value <0.05).
Thus, we obtained significant estimates of the BV for calcium,
potassium and manganese.

The absolute values of the correlation coefficient for the
other four micro- and macroelements (Fe, Mg, Zn, Cu) and
models were included in the estimated confidence intervals
of each model for each of the studied elements, and were also
significantly different from zero for 28 out of the 35 estimated
models. For iron, in three out of the five models (models
numbered 1, 4, 5), the p-values were above the nominal sig-
nificance level of 0.05. Also, correlation coefficient values
insignificant at the p-value level were obtained for model 3
for copper, model 2 for magnesium, model 4 for manganese
and model 1 for zinc. The resulting scatterplots are presented
in Supplementary Materials 3-9.

For the 30 varieties with the highest estimated BV, the re-
sponse to selection was assessed (compared with the average
values of BV for the population) (Table 3). A comparison was
carried out for 30 varieties with the highest values of micro-
and macroelements. Response to selection for phenotypes
was adjusted for heritability. Only for calcium, the response
to selection obtained while accounting for the BV was higher
than the response to selection obtained for phenotypes while
taking into account heritability (Table 3). The response to
selection was estimated as (Ptop — Pmean)*h2, where Ptop is
the average value of the phenotype for 30 varieties with the
highest value of the estimated BV, Pmean is the average value
of the phenotype in the study population, h?is the heritability
indicator of this phenotype.

The resulting estimates of the breeding value of Russian
wheat varieties in the form of coefficients for SNP were re-
gistered in the Unified Register of Russian Programs for Elec-
tronic Computers and Databases and are available upon request
to the copyright holder (Institute of Cytology and Genetics
SB RAS) (Supplementary Material 3).

T Supplementary Materials 1-10 are available at:
https://vavilov.elpub.ru/jour/manager/files/Suppl_Potapova_Engl_28_4.pdf

KOMMbIOTEPHASA BUONOTUA PACTEHUIA / COMPUTATIONAL PLANT BIOLOGY

OueHKa ceneKkuMOHHOM LLeHHOCTHN 2024
MATKOW APOBOW MleHnLbl meTogom BLUP 28+4
Table 1. Phenotypic mean values for each year separately

(2018 and 2019) and averaged between years,
the standard error is indicated in parentheses

Element ~ Mean element content, mg/kg

2018 2019 2018 and 2019

Ca 772.67 (18.03) 666.68 (17.53) 719.67 (12.74)

Cu 3.58 (0.06) 4.41 (0.05) 3.99 (0.04)

Fe 43.17 (0.47) 46.61 (0.45) 44.89 (0.33)

K 4025.70(37.10)  4186.73 (48.39) 4106.21 (30.63)
Mg 1588.54 (11.44) 1329.75(11.59) 1459.14 (9.64)

Mn 37.83(0.31) 39.05 (0.46) 38.44(0.28)

Zn 35.89 (0.40) 46.27 (0.64) 41.08 (0.43)

Table 2. Heritability of traits by year (in fractions of one,
where zero is the absence of a genetic contribution

to the trait, one is a completely genetically determined trait)
and for the average between years, the standard error

is indicated in parentheses

Element Heritability of element content
2018 2019 2018 and 2019

Ca 0.66 (0.05) 0.53 (0.06) 0.70 (0.04)

Cu 0.79 (0.04) 0.82 (0.03) 0.81 (0.03)

Fe 0.89 (0.02) 0.75 (0.04) 0.84 (0.03)

K 0.72 (0.05) 0.83 (0.03) 0.89 (0.02)

Mg 0.73 (0.05) 0.55(0.06) 0.72 (0.04)

Mn 0.85(0.03) 0.76 (0.04) 0.83(0.03)

Zn 0.82 (0.03) 0.67(0.05) 0.73 (0.04)
Discussion

In this work, we conducted a study of unbiased estimates of
the effects of genetic polymorphisms and their use to assess
the genomic potential of Russian spring bread wheat samples
for the content of seven micro- and macroelements — K, Ca,
Mg, Mn, Fe, Zn, Cu. The best linear unbiased prediction
(BLUP) was chosen as a method, and an approach of divid-
ing the sample into several parts (k-fold cross-validation)
was selected to check the quality of the model. The choice of
model and method was due to the wide dissemination and ap-
plication of them in genomic selection of plants and animals
(Piepho et al., 2008; Molenaar et al., 2018; Tajalifar, Rasooli,
2022).

The sample was randomly divided into five subsamples.
Correlation was used as a quality metric for the obtained
SNP coefficients to assess the BV. The minimum correla-
tion coefficient value was 0.22 for model 5 for iron content
(p-value = 0.24). At the same time, the p-values of model 5
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Fig. 3. Plot of correlations between phenotypes for 149 varieties.
For each variety, the phenotype value was calculated as the average between the four points.

Table 3. Expected response to selection using 30 cultivars
with the highest estimated BV and 30 cultivars with the highest content
of micro- and macronutrients as parent population

Element Response to selection  Response to selection by phenotypes
by BV (accounting for heritability)
Ca 296.43 262.24
Cu 0.60 0.90
Fe 4.99 7.25
K 785.11 873.41
Mg 88.57 131.66
Mn 4.87 5.95
Zn 6.79 7.54

for all elements were higher than the nominal value of 0.05 for iron in only one
case out of seven. Moreover, out of 35 p-values obtained for the correlation
coefficients of the estimated BV and real phenotypes, only 7 were equal to or
above the nominal significance level of 0.05. This indicates a stable estimate
of BV between different parts of the sample.

It is worth noting that for calcium, potassium, and magnesium, at least one
out of the five models had a correlation coefficient that was significant using
the threshold adjusted for multiple testing (p-value < 0.001), and the remaining
models were significant using the nominal significance level (p-value <0.05).
Based on this, we established that the estimates of breeding value for these
three elements are significant. The lack of significance according to a given
criterion for the remaining four elements can be observed due to many factors,

The BLUP method in evaluation of breeding values
of Russian spring wheat lines

such as small sample size, heterogeneity
of the selected population according to the
estimated BV, etc. We also measured con-
fidence intervals for each obtained value
of the correlation coefficient. For each of
the seven elements studied, all correlation
coefficient values for all models were within
the estimated confidence intervals.

One of the advantages of using genomic
selection, and using BLUP in particular, is
the ability to evaluate the expected increase
in a trait in the next generation (response
to selection). We assessed breeding dif-
ferentials and response to selection for
30 varieties with the highest BV values
and 30 varieties with the highest content of
micro- and macroelements in wheat. In the
case of selection based on BV the expected
response to selection is comparable to the
expected response to selection based on
phenotypes. This statement is appliable
in the case when the response to selection
based on phenotypes is weighted by the
heritability of the trait according to the
breeder’s equation. In our study we showed
higher response for selection based on BV
for calcium. The obtained high values of the
selection differential for selection by pheno-
types may be associated with high heritabi-
lity and heterogeneity in the distribution of
phenotypes in the studied population.

Previously, we conducted a genome-wide
association study for seven micro- and
macroelements in varieties and introgres-
sion lines of wheat (Potapova et al., 2023),
and identified four significant loci. One of
them was associated with the content of
potassium and calcium, two with the content
of iron and manganese, and one with all the
studied elements. The results of this work
demonstrate that, indeed, by using data from
wheat accessions, it is possible to obtain es-
timated BV numbers for predicting calcium
and potassium content (for calcium and po-
tassium, all p-values obtained were less than
the nominally significant threshold of 0.05).
However, for three out of five models for
iron and one out of five for manganese, the
p-values exceeded the nominally significant
threshold. This may be due to a limited
sample size or many other factors, such
as the complex genetic structure of a trait
(for example, polygenicity or pleiotropy),
insufficient data for prediction (number of
varieties or SNPs), etc. At this time, there
is a lack of scientific publications analyz-
ing the breeding value of varieties for the
content of the elements we studied. In this
regard, it is difficult to compare our results
with previous ones.
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The main limitation of this work is a relatively small sample
size. There are currently no reliable estimates of what mini-
mum sample size is needed to create genomic selection mo-
dels. In this article, we empirically showed that it makes sense
to carry out such studies even on small samples (149 varieties
with four measurements for each, a total of 596 phenotypic
points). It is expected that as the sample size increases, the
quality of the models will also increase. The second limita-
tion of our work is the use of microarray genotyping data to
construct models. If the genotyping test data are obtained
using another array or technology, the model we used will
most likely be inapplicable due to low overlap in polymor-
phisms. The use of genetic imputation methods can potentially
solve this problem and increase genotyping coverage (Nyine et
al.,2019; Song et al., 2019; Munyengwa et al., 2021; Bonnett
etal., 2022; Kriaridou et al., 2023), and testing these methods
on wheat is the scope of future work in this direction.

Conclusion

Thus, in this work, estimates of the BV were obtained for Rus-
sian wheat varieties, regarding the content of seven chemical
elements in the grain (K, Ca, Mg, Mn, Fe, Zn, Cu). Our results
can be useful primarily for breeders when carrying out work
on the selection and breeding of varieties with a high content
of micro- and macroelements in the grain. Using the values of
the estimated BV, it becomes possible to rank and select the
best samples from the populations under study. Additionally,
this work can be methodologically useful in creating models
for genomic selection of other agricultural plants. Also, these
assessments can be used in practice developing breeding
schemes and directly breeding new varieties.
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