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Abstract. To systematize and effectively use the huge volume of experimental data accumulated in the field of bio-
informatics and biomedicine, new approaches based on ontologies are needed, including automated methods for
semantic integration of heterogeneous experimental data, methods for creating large knowledge bases and self-in-
terpreting methods for analyzing large heterogeneous data based on deep learning. The article briefly presents the
features of the subject area (bioinformatics, systems biology, biomedicine), formal definitions of the concept of onto-
logy and knowledge graphs, as well as examples of using ontologies for semantic integration of heterogeneous data
and creating large knowledge bases, as well as interpreting the results of deep learning on big data. As an example of a
successful project, the Gene Ontology knowledge base is described, which not only includes terminological knowledge
and gene ontology annotations (GOA), but also causal influence models (GO-CAM). This makes it useful not only for
genomic biology, but also for systems biology, as well as for interpreting large-scale experimental data. An approach
to building large ontologies using design patterns is discussed, using the ontology of biological attributes (OBA) as
an example. Here, most of the classification is automatically computed based on previously created reference ontolo-
gies using automated inference, except for a small number of high-level concepts. One of the main problems of deep
learning is the lack of interpretability, since neural networks often function as“black boxes” unable to explain their deci-
sions. This paper describes approaches to creating methods for interpreting deep learning models and presents two
examples of self-explanatory ontology-based deep learning models: (1) Deep GONet, which integrates Gene Ontology
into a hierarchical neural network architecture, where each neuron represents a biological function. Experiments on
cancer diagnostic datasets show that Deep GONet is easily interpretable and has high performance in distinguish-
ing cancerous and non-cancerous samples. (2) ONN4MST, which uses biome ontologies to trace microbial sources of
samples whose niches were previously poorly studied or unknown, detecting microbial contaminants. ONN4MST can
distinguish samples from ontologically similar biomes, thus offering a quantitative way to characterize the evolution
of the human gut microbial community. Both examples demonstrate high performance and interpretability, making
them valuable tools for analyzing and interpreting big data in biology.
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AHHoTauuA. Ana cuctematnsauum u 3GpGEKTUBHONO UCMONb30BAHUS OrPOMHONO 06beMA SKCMEPUMEHTANIbHBIX AaH-
HbIX, HAKOMJIEHHbIX B 0611acTyi 6uonHdopMaThKi 1 BromeanLViHbI, HeOOXO4MMbI HOBbIE NMOAXOAbl, OCHOBAHHbIE HA OH-
TONOrWAX, BKNOYas aBTOMATM3MPOBaHHbIE METOLbl CEMAHTUUECKOW VHTErpaLuy reTeporeHHbIX SKCnepuMeHTasbHbIX
JaHHbIX, METOAbI CO3[aHVA 6oNbLUKX 633 3HAHWUI U CAMOUHTEPNPETMPYEMbIE METOAbI aHaNM3a 60MbLINX Pa3HOPOLHbIX
[laHHbIX Ha OCHOBE ry6oKoro obyueHus. B cTaTbe KpaTKo NpeacTaBfieHbl 0CO6EHHOCTU NpeaMeTHON obnacTy (6LUovH-
dopmaTrKa, cuctemMHas bronorus, bromennunHa), bopmManbHble onpefeneHrs NOHATAA OHTONOT 1 rPad OB 3HAHWA,
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OHTonorun B moaennpoBaHMnM N aHanmse
60/bLLNX FEHETUYECKIMX AaHHbIX

npviBefieHbl NPYMepPbl MPUMEHEHWA OHTONOTNI A1A CEMaHTUYECKON UHTErpaLum reTeporeHHbIX AaHHbIX 1 CO3AaHNA
6onbluMX 6a3 3HAHWN, A TaKXKe MHTEPMPETALMN Pe3yNbTaToB MyOOKOro obyuyeHns Ha 60NblMX AaHHbIX. B KauecTBe
npriMepa YCrneLHOro NpoeKTa onucaHa 6a3a 3HaHuin Gene Ontology, KOTopas MOMUMO TEPMUHONOTMUYECKNX 3HAHWUIA 1
aHHoTauum reHos (GOA) BkNoyaeT Mmogeny NpuunHHbIX BAnaHun (GO-CAM). 3To genaeT ee None3HoN He TONbKO AnA
reHoOMHoI 61MonorMK, HO M ANA CUCTEMHON BUONOTK, a TaKXKe ANA MHTepMpeTaummn KpyrnHOMacLITabHbIX SKCnepumeH-
TanbHbIX AaHHbIX. O6CYy»KAaeTCA NOAXOA K CO3AaHMI0 60MbLUMX OHTONIOMMIA C UCMONb30BaHMeEM LWabNOHOB NPOEKTMPOBa-
HVA Ha NpuMepe oHToNorMm 6uonornyeckunx atpubytos (OBA). 3gech 6onbluasn YacTb KnaccrdrKaLmy aBTOMaTUYeCKn
BbIYMCIIAETCA HAa OCHOBE PaHee CO3[aHHbIX 3TaSIOHHbIX OHTONIOMMI C MOMOLLbI aBTOMATU3UPOBAHHOIO NIOTMMYECKOro
BbIBOJA, 32 UCK/IOYEHMEM HEOOSBLIONO YMCSIa BbICOKOYPOBHEBbLIX MOHATUI. OfHON 13 OCHOBHbIX MPo6iem riny6oKkoro
06yyeH A ABNAETCA OTCYTCTBME NHTEPNPETUPYEMOCTH, MOCKOSbKY HEMPOHHbBIE CETY YacTo QYHKLMOHMPYIOT KaK «yep-
Hble ALWMKN», He CNOCO6HbIe 0OBACHNTL CBOY pelleHus. B Halel cTaTbe onucaHbl MOAXOAbl K CO3[aHMNI0 METOLOB WH-
TepnpeTauun mofeneii rmyboKoro obyyeHus 1 NpeAcTaBeHbl ABa NpYMepa CamoobbACHAEMbIX MOAeNei rmyboKoro
obyueHna Ha ocHose oHTonoruii. Mogens Deep GONet, koTopas nHTerprpyet Gene Ontology B nepapxuyeckyio apxu-
TEKTYpPY HENPOHHOW CETY, FAE KaXAblil HENPOH NpeAcTaBiseT 6MONOrnyYecKyto GyHKUMIO. IKCMEPUMEHTbI C Habopamm
[aHHbIX ANAarHOCTUKM paKka nokasbiBatoT, uto Deep GONet fierko MHTeprnpeTnpyeTca 1 0bnafaeT BbICOKOW NPOV3BOAU-
TeSIbHOCTbIO ANA Pas3fInyeHnsa PakoBbiX U HepakoBbix 06pa3sLos. Mogenb ONN4AMST, ncnonb3ytowan oHTonorny 6noma
LNA OTCNEXMBaHNA MUKPOOHBIX NCTOYHNKOB 06Pa3L0B, HULIM KOTOPbIX paHee Obliv Mano nsyyeHbl Uy HEU3BECTHbI,
1 0BHapyXeHUst MUKPOOHbIX 3arpsasHuTenein. ONN4AMST MoxKeT oTnnyaTb 06pasLibl OT OHTONOTMYECKU 6I3KKX 61Oo-
MOB 1, TaKM 06pa3om, MpeasiaraeT KONMUYECTBEHHDBIN CNOCO6 OXapaKTepU3oBaTb Pa3BMTME MUKPOOHOIo coobLyecTBa
KULWeYHrKa yenoseka. O6a nprMmepa 4EMOHCTPUPYIOT BbICOKY NPOV3BOAUTENIBHOCTb U MHTEPMPETUPYEMOCTb, YTO
[enaet UX LeHHbIMY MHCTPYMEHTaMy Af1A aHanm3a 1 MHTeprpeTauuy 60blUnX JaHHbIX B 61onormu.

KnioueBble cnosa: oHTONOMMY; 6MonHGoOpmMaTrKa; cmctemHaa 61Monorus; aHanms 6onblKX AaHHbIX; Fybokoe obyuye-

HIIE; IHTEPNPEeTNPYEeMOCTb.

Introduction

The term “Big Data” refers to voluminous datasets that are
characterized by significant size, diversity, and complexity,
making them difficult to process and analyze using tradi-
tional methods. Moreover, such data are often incomplete
and uncertain, which complicates the task of controlling their
quality and accuracy (Qaiser, Ghulam, 2023).

The emergence of qualitatively new research opportunities
based on high-throughput experimental technologies such
as massively parallel DNA sequencing, multilocus genotyp-
ing, multiparametric gene expression profiling using DNA
chips, ChIP-on-chip technology, as well as proteomic and
metabolomic technologies, has led to the accumulation of
unprecedentedly large volumes of experimental data and
knowledge (Stephens et al., 2015). The heterogeneity of mo-
lecular biological information and its complexity complicate
the analysis, systematization and application of these data
to solve specific problems in bioinformatics, biotechnology,
pharmacology and personalized medicine.

New approaches to big data processing are required to
master, systematize and effectively use huge amounts of
data. In particular, this includes automated methods for the
semantic integration of heterogeneous data, one of the key
stages of which is the harmonization of domain concepts,
as well as methods for describing and using them. A coordi-
nated description of a specific domain is called an ontology.

Ontologies allow concepts to be represented in a format
suitable for machine processing and act as an intermediary
between the user and the information system, as well as
between members of the scientific community when ex-
changing data. Thus, ontologies are becoming an important
tool in bioinformatics and systems biology, facilitating the
semantic integration of experimental data and knowledge
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in order to create a “unified picture of the world”. In addi-
tion, they help solve problems arising in the analysis of big
data, overcoming heterogeneity and deficiencies in data
quality, and improving the interpretation of deep learning
results. Ontologies increase the scalability and efficiency of
processing large amounts of information, which makes them
indispensable in modern scientific research.

Earlier, the review (Podkolodnyy et al., 2016) presented
examples of ontologies describing biological systems at
various levels of organization of living systems. This article
will present examples of the application of ontologies for
the integration of heterogeneous data and the creation of
large knowledge bases, as well as the interpretation of data
analysis results.

Formal representation of ontologies

In computer science, the term “ontology” refers to a concep-
tual model that represents objects, their properties, and the
relationships between them (Chandrasekaran et al., 1999).
An ontology includes a set of concepts (terms) of a particular
subject area and their definitions, as well as all the infor-
mation associated with these concepts, such as properties,
relations, constraints, axioms, and assertions. This informa-
tion is necessary for describing and solving problems in the
chosen subject area (Podkolodnyy et al., 2016).

Thus, a formal model of an ontology is represented as an
ordered triple of finite sets O =<T, R, F>, where T is a finite
and non-empty set of classes and concepts (concepts, terms)
of the subject area considered in a certain context (in our
case: bioinformatics, systems biology, biotechnology, and
biomedicine); R is a finite set of relations between concepts
of a given subject area; F is a finite set of interpretation
functions defined by concepts and/or relations of the onto-
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logy O, as well as axioms used to model statements that are
always true. This constrains the interpretation and ensures
the correct use of concepts.

One of the most effective approaches to describing and
using domain knowledge is descriptive logics (DL), which
define a formal language for describing concepts (concepts,
classes, categories, or entities) and relationships between
them (called roles), as well as for formulating statements
of facts and queries about them, including satisfiability and
inclusion checking. In addition, DL includes constructors
(operations) for creating conceptual expressions, such as
conjunction, disjunction, and relation definition.

From the point of view of descriptive logic, two main
categories of knowledge can be distinguished in the domain
knowledge base. The first category includes general know-
ledge about a set of classes of concepts, their properties, and
relationships between them, which is referred to as termino-
logical knowledge, or T-Box. The second category covers
knowledge about individual objects (instances of classes),
their properties, and relationships with other objects, known
as assertional knowledge, or A-Box. Thus, the T-Box de-
scribes the subject area at the level of abstract concepts,
while the A-Box focuses on specific data, representing a
database. It is important to note that both components of
the knowledge base are interconnected and complement
each other.

Knowledge graphs (KGs) are often used to systematically
model complex systems, organisms, and diseases, as well
as to represent knowledge in bioinformatics and systems
biology. According to the definition presented in (Callahan
et al. 2024), a knowledge graph is a data structure that re-
presents multiple heterogeneous entities and different types
of relationships between them. This structure serves as an ab-
stract framework capable of generating new knowledge and
identifying and resolving discrepancies or contradictions,
making it useful for a variety of problems and scenarios.

There are three types of knowledge graphs, depending on
the complexity of the representation and the functionality
of use:

Simple graphs are the most common and basic type of
graphs. In such graphs, entities are represented as nodes,
and edges are used to model the relationships between them.
Simple graphs usually lack formal semantics for edges and
nodes, which makes them easy to use, but limits the pos-
sibilities for deeper analysis and interpretation of data.

Hybrid graph or property graph. Hybrid graphs are
designed to model entities and their relationships using a
combination of standard network representations and for-
mal semantics, such as Resource Description Framework
(RDF: https://www.w3.org/RDF) and RDF Schema (RDFS:
https://www.w3.org/TR/rdf11-mt). Unlike simple graphs,
hybrid graphs based on these standards facilitate integration
with other resources and provide greater opportunity for
automated knowledge inference. This makes them a more
powerful tool for representing and processing complex in-
formation.
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Complex graphs, such as those in the KaBOB system
(Livingston et al., 2015; Podkolodnyy et al., 2016), are
often built on top of the Web Ontology Language (OWL).
Complex graphs are highly expressive, allowing for ef-
ficient knowledge generation through deductive inference
(Podkolodnyy et al., 2012). Due to its explicit semantics,
OWL offers significant advantages over RDF/RDFS in
integrating large amounts of biomedical data, making it
particularly useful for complex problems in bioinformatics
and systems biology.

As an example, Figure 1 provides a high-level network of
the core interrelated biomedical concepts needed to model
knowledge about pathways, genetic variants, diseases, and
pharmaceutical treatments. At the top level are anatomical
entities such as tissues, cells, and biological fluids (com-
partments) containing genomic entities such as DNA,
RNA, mRNA, and proteins. DNA encodes genes, which are
transcribed into mRNA and translated into proteins, which
have molecular functions, can interact with each other, and
participate in pathways and biological processes.

Recently, several software systems have been developed,
such as KG-HUB (Caufield et al., 2023), Clinical KG
(CKG) (Santos et al., 2022), RTX-KG2 (Wood et al., 2022),
BioCypher (Lobentanzer et al., 2023), and Knowledge Base
Of Biomedicine (KaBOB) (Livingston et al., 2015; Pod-
kolodnyy et al., 2016), which provide broad functionality
for creating and using knowledge graphs in bioinformatics
and biomedicine, including the integration of large hetero-
geneous data.

The work (Callahan et al., 2024) describes the semantic
ecosystem PheKnowLator (Phenotype Knowledge Trans-
lator) for automating the construction of ontological KGs
with a fully customizable knowledge representation. The
ecosystem includes various components for creating and
using KGs to solve various applied problems, as well as
pre-built KGs.

Integration of big data and creation

of knowledge bases based on ontologies

Currently, in the field of bioinformatics, systems biology,

agrobiology, biomedicine, more than a thousand ontologies

have been developed that can be used to describe and in-
tegrate knowledge, analyze data, and infer new knowledge

(https://bioportal.bioontology.org/ontologies).

As an example of one of the most successful projects for
creating ontologies and, based on this, creating a know-
ledge base, we can cite the Gene Ontology (GO) project
(http://www.geneontology.org/). GO describes current
knowledge about the types of functional characteristics
(more than 40 thousand concepts in total) that a gene pro-
duct may have.

GO consists of 3 sections:

1. Molecular function — an elementary molecular activity or
role that a gene or gene product can play in any biological
processes. A total of 10,365 terms are described (https://
geneontology.org/stats.html. Accessed 2024-09-08).
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Fig. 1. Representation of knowledge about the levels of biological organization underlying the description of human diseases (Callahan, et al., 2024).

\S]

. Biological process (a total of 26,552 terms are described.
Accessed 2024-09-08) — a “biological program” that
includes a set of molecular events or activities that act
in a coordinated manner to achieve a specific result and
relate to the functioning of integrated living units: cells,
tissues, organs, and organisms. Unlike a function, a
process must have several different stages with a defined
beginning and end.

. Cellular component — a part of the anatomical structure
that describes the localization of a gene or its product in
an organism, at the levels of cellular structures and mac-
romolecular complexes or groups of gene products. A total
of 4,022 terms are described (accessed 2024-09-08).
The main relationships between concepts used in GO

include the simple class-subclass relationship (is_a), the

part-whole relationship (part_of), the regulates, positi-
vely regulates, and negatively regulates relationships
that describe relationships between biological processes,
molecular functions, or biological properties. The transiti-
vity property of the relationships used in GO allows one to
construct a lattice of relationships between concepts and
perform logical inference about the properties of concepts

and their relationships (Podkolodnyy et al., 2016).

A knowledge base has been created based on GO, which
in addition to terminological knowledge (GO gene ontology)
includes the results of GOA gene annotation (Gene Ontology
Annotation — http://www.ebi.ac.uk/GOA), i.e. knowledge
about individual objects — genes and their products (Huntley
etal., 2015). Currently, GOA includes more than 7.6 million
GO annotations for almost 1.54 million proteins and more
than 4.4 thousand species of organisms.

Initially, at the early stage of GO development, annotation
of a gene or its product (protein or RNA) was carried out
independently by molecular functions, biological processes
or cellular components. In order to obtain information about
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the function of a gene or its product (RNA, protein) in a par-
ticular biological process and a particular cellular structure,
it was necessary to develop another component of the GO
knowledge base — the GO-CAM model of causal influences
between gene products (Thomas et al., 2019).

GO-CAM links several GO annotations together to create
models of biological processes that connect the activities of
more than one gene product together into causal networks
and allow specification of the biological context (e.g. cell/
tissue type) in which the activities occur. As an example,
the same biological model describing how the E3 ubiquitin-
protein ligase NEDD4 represses RNA transcription in
response to UV-induced DNA damage can be represented
in two ways: as a set of disparate GO annotations, each cap-
turing a partial description of the overall function (Fig. 2a),
and as a GO-CAM scheme linking the GO annotations
into a structured model of NEDD4 function, including the
effect of NEDD4 activity on the activity of the RNA poly-
merase II macromolecular complex (Fig. 2b) (Thomas et
al., 2019).

The basic unit of GO-CAM is the gene product activity
unit, which combines the GO MF (molecular activity) an-
notation, together with the GO CC (cellular component) and
GO BP (biological process) annotations, which provide the
biological context of the activity. The context can be further
specified by other ontologies, including Cell Type Onto-
logy (Diehl et al., 2016), tissue/anatomical location (using
several different ontologies depending on the species, e. g.
the integrated cross-species anatomy ontology covering
animals and merging several species-specific ontologies —
Uberon (https://obophenotype.github.io/uberon/) (Mungall
et al., 2012), or non-animal ontologies such as Plant ontol-
ogy (https://planteome.org/) (Cooper, Jaiswal, 2016), or a
description of a time period (e.g. biological phase GO).
Activity units are related to each other by cause-and-effect
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Fig. 2. The same biological model of how NEDD4 represses RNA transcription in response to UV-induced DNA damage described in two ways: a - as a
set of disparate GO annotations, each capturing a partial description of the overall function; b - as a GO-CAM schema linking the GO annotations into a
structured model of NEDD4 function, including the effect of NEDD4 activity on the activity of the RNA polymerase Il macromolecular complex (Thomas

etal., 2019).

relationships from the Relationship Ontology (Smith et al.,
2005).

Causal networks in GO-CAM models also enable entirely
new applications, such as network analysis of genomic data
and logical modeling of biological systems. In addition, the
models may also prove useful for pathway visualization.
For example, the activity-based GO-CAM representation is
compatible with the “activity flow diagrams” of the Systems
Biology Graphical Notation (SBGN) standard (Bergmann
etal., 2020).

GO-CAM thus provides the opportunity to use the massive
GO and GOA knowledge base accumulated over the last
20 years as a basis not only for genomic biology representa-
tion of gene function, but also for a broader representation of
systems biology and its novel applications to the interpreta-
tion of large-scale experimental data.

An example of GO analysis of genes

of the associative gene network

of rheumatoid arthritis

Earlier, the Institute of Cytology and Genetics SB RAS
developed the ANDSystem software and information sys-
tem for the automated extraction of medical and biological
knowledge from scientific publications and a large number
of biological and biomedical factual databases (Ivanisenko

et al., 2015, 2019). The ANDSystem knowledge base is a
unique resource containing formalized information in the
form of associative gene networks (knowledge graphs) with
almost 44 million interactions of various types between
molecular genetic objects.

The original ontology underlying ANDSystem pro-
vides a very detailed description of the subject area. The
ANDSystem knowledge base describes molecular genetic
objects (proteins, genes, metabolites, microRNA), biologi-
cal processes, phenotypic traits, drugs and their side effects,
diseases, etc., as well as more than 25 types of interactions
between these objects, including: physical interactions with
the formation of molecular complexes (protein/protein,
protein/DNA, metabolite/protein); catalytic reactions and
proteolytic events involving a substrate/enzyme/product;
regulatory interactions, functions/activities, transport and
stability of proteins, metabolites and drugs, regulation of
protein translation involving miRNA, regulation of bio-
logical processes and phenotypic traits involving proteins,
metabolites and drugs; associative interactions of genes,
proteins, metabolites, biological processes, phenotypic traits
with diseases, etc.

An example of a typical task using ANDsystem is the
reconstruction of an associative gene network (knowledge
graph) of theumatoid arthritis (RA) containing 1,025 genes/
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proteins and more than 20 thousand interactions between
them. Analysis of the overrepresentation of biological pro-
cess terms in Gene Ontology for many rheumatoid arthritis
genes, performed using the DAVID system (https://david.
nciferf.gov/tools.jsp) revealed 376 biological processes sta-
tistically significantly associated with rheumatoid arthritis
(see the Table). The p-values were calculated based on the
hypergeometric distribution. The Bonferroni correction was
used to account for multiple testing.

Let us consider in more detail the GO:0006955~immune
response process, which has the lowest p-value, i.e. is
most significantly associated with rheumatoid arthritis.
Gene Ontology describes 420 genes associated with the
“G0:0006955~immune response” term. 158 of them are
present in the association network of rheumatoid arthritis
(Fig. 3). For random reasons, such a large number of genes
can be expected with a very low probability (p-value with
Bonferroni correction <4.69 - 10-7%), which indicates a high
significance of the relationship between rheumatoid arthritis
and the immune response process and indicates the most
important role of the immune system in the pathogenesis
of this disease.
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Fig. 3. Venn diagram describing the intersection of genes of the rheuma-
toid arthritis network and immune response genes (associated with the
term GO:0006955~immune response).

The Table presents the list of the first 21 biological pro-
cesses associated with rheumatoid arthritis and sorted by
statistical significance ( p-value with Bonferroni correction).
Most of these terms are somehow related to the immune
response and inflammation processes, which play an impor-
tant role in the pathogenesis of rheumatoid arthritis. These
processes are not independent.

List of the first 21 biological processes statistically most significantly associated with rheumatoid arthritis

Biological process (Gene Ontology)

GO:0006955~immune response

G0:0006954~ inflammatory response
G0:0060326~chemotaxis

G0:0007267~cell-cell signaling

G0:0032496~response to lipopolysaccharide
G0:0070098~chemokine-mediated signaling pathway
G0:1990256~signal transduction

G0:0071222~cellular response to lipopolysaccharide
G0:0050729~positive regulation of inflammatory response
G0:2001023~regulation of response to drug
G0:0070374~positive regulation of ERK1 and ERK2 cascade
GO0:0001666~response to hypoxia

G0:0071864~positive regulation of cell proliferation
G0:0042102~positive regulation of T cell proliferation
GO0:0045087~innate immune response
G0:0032729~positive regulation of interferon-gamma production
GO0:0045766~positive regulation of angiogenesis
G0:0043066~negative regulation of apoptotic process
GO0:0050731~positive regulation of peptidyl-tyrosine phosphorylation
GO0:0007166~cell surface receptor signaling pathway
G0:0007568~aging
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p-value with Bonferroni correction
469-107°

2.13-1077°

2.49-107%
8.59-10728
7.41-107%
3.91.10%
2911072
5.45.107%*
6.31-107%
1.70-1073
8.26-107%
9.11.1073
2521072
6.90-10722
2.09-107'8
2381078
2.90-107"8
57210718
8.13-107'8
8.40-107'8

1.28-107"7
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Thus, the term “GO:0006955~immune response” is asso-
ciated with such terms from this table as “GO:004508 7~innate
immune response”, “G0:0032729~positive regulation of in-
terferon-gamma production”, “G0:0060326~chemotaxis”,
“G0:0042102~positive regulation of T cell proliferation”,
“G0:1990256~signal transduction” and others.

Similarly, the process “G0O:0006954~inflammatory
response” is associated with the terms “G0O:0032496~re-
sponse to lipopolysaccharide”, “G0O:0050729~positive
regulation of inflammatory response”, “G0:1990256~
signal transduction”, “G0O:0001666~response to hypoxia”,
“G0:0045766~positive regulation of angiogenesis”. And
even the term “G0O:0007568~aging” is related to the term
“G0:0006954~inflammatory response”, since one of the
mechanisms of aging is chronic non-infectious inflamma-
tion.

These results on the example of rheumatoid arthritis indi-
cate that the approach to identifying genes associated with a
specific disease using ANDsystem and further GO analysis
of this group of genes allows us to identify key biological
processes involved in the pathogenesis of this disease.

Using ontology design patterns to integrate
phenotype and biological attributes ontologies
Ontologies with logically rich axiomatization provide pow-
erful capabilities such as automated reasoning, classifica-
tion, and logical queries. However, manually creating such
ontologies is extremely expensive and requires annotators
to be not only domain experts but also have knowledge of
logical modeling (Slater et al., 2020).

A popular approach to solving this problem is to use
design patterns and template systems for logical axioms
(Osumi-Sutherland et al., 2017). This allows separating the
curation of reference terms used for logical definitions from
their precise axiomatic picture. The central idea is to use a
small number of axiom templates that implement design
patterns, which can be created and maintained by logic
experts, and for content curators to focus on selecting ap-
propriate filler terms (e. g., terms from the Uberon ontology
for defining anatomical attributes).

The Biological Attributes Ontology (OBA) is a stan-
dardized framework for observable attributes that are char-
acteristics of organisms or parts of organisms (Stefancsik et
al., 2023). Unlike most phenotypic ontologies, in OBA, the
logical axioms define general attributes without reference
to any specific phenotypic changes or states.

OBA was created using the Entity-Quality (EQ) design
pattern, in which a phenotypic quality (Q), such as “height”,
“mass”, or “amount” from the Phenotype and Trait Ontolo-
gy (PATO) (Gkoutos et al., 2005), is combined with an en-
tity (E), such as an anatomical or chemical entity, to form the
concept of a “biological attribute” called a “trait”. For exam-
ple, the concept “blood glucose amount” (OBA:VT0000188)
includes the class “amount” (PATO:000070), which defines
the glucose characteristic — “glucose” (CHEBI:17234) in the
blood — “blood” (UBERON:0000178).
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Currently, OBA uses ten feature patterns from the Dead
Simple OWL Design Patterns (DOS-DP) (Osumi-Sutherland
et al., 2017). They were chosen because they cover most
of the anatomical, chemical and cellular attributes that are
central to genomics data integration.

A rich logical axiomatization based on design patterns
is needed to ensure compatibility with existing phenotype
ontologies and other data types, such as anatomical, chemi-
cal and biological data on metabolic pathways and gene
networks.

Most attributes in OBA are inferred using OWL. These
inferred definitions use terms from relevant reference ontolo-
gies such as Uberon (Mungall et al., 2012) or Chebi (Has-
tings et al., 2016). Except for a small number of high-level
concepts, most of the classification in OBA is automatically
computed based on the classifications of various reference
ontologies, using automated inference. There are two advan-
tages to this approach: first, no concepts need to be manually
classified, which significantly reduces the cost of curating
the classification while increasing its completeness. Second,
multiple links to reference ontologies can be used for a wide
variety of applications, including querying (e. g., retrieving
all data where the morphology of a part of the renal system
is affected), knowledge graph integration (e.g., automatic
linking to phenotypic anomalies from widely used ontologies
such as the human phenotype ontology (HPO) or mammalian
phenotype ontologies (MP)), and knowledge inference (e. g.,
inferring missing data) (Dececchi et al., 2015).

Application of ontologies

to interpret deep learning

Deep learning (DL) has clearly demonstrated its effective-
ness in solving problems in the field of genomics, pro-
teomics, biomedicine, including analysis and automatic
functional annotation of DNA, RNA and protein sequences,
search for DNA/RNA targets of regulatory RNAs and pro-
teins, prediction of properties and functions of biomolecules,
search for 3D protein structure, reconstruction of structures
of biomolecules with given properties, prediction of inter-
actions of biomolecules and identification of potential drug
candidates on this basis, image processing and analysis, in-
tegration of omics data, analysis of complex, heterogeneous
and interconnected biological networks (including protein-
protein interaction networks, gene regulatory networks
and metabolic pathways, semantic networks), modeling of
biological systems and processes, etc. (Li et al., 2019; Sa-
poval et al., 2022).

One of the key problems of deep learning in bioinforma-
tics, systems biology and modern biomedicine is the lack
of interpretability of neural network models, which often
function as “black box” models.

Interpretability of machine learning algorithms in bio-
informatics and biomedicine is important for three main
reasons. First, when analyzing complex systems, when
there is no theory and a clear decision-making algorithm, it
is necessary to understand why the model predicts a given
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phenotype. Second, it is important to ensure that the model
bases its predictions on a reliable representation of the data
and does not focus on irrelevant artifacts. Finally, a model
with highly accurate predictions may have revealed interest-
ing patterns that biologists would like to study.

In the formal logical sense, interpretation is the mapping
of a formal construct onto the entities and their relation-
ships that it represents. In this sense, one can say that one
understands a formal construct if one can relate it to relevant
entities and propositions in the real world and reason about
the consequences. However, it is important to distinguish
the understandability of a model from the understandabili-
ty of why the model is true or how the model was derived
from the data, which raises questions about the validity of
the model and the understandability of the learning algo-
rithm.

Two main approaches to interpreting black boxes can
be distinguished: a posteriori methods and self-explaining
models (Adadi, Berrada, 2018). In the a posteriori method,
the black box model is first learned and then an interpretive
method is used to explain the predictions. However, explana-
tions often do not match how the deep learning algorithm
arrives at a solution. In addition, the explanation procedure
is a separate method with its own errors that affect the quali-
ty of decisions made. Therefore, such an explanation is not
always suitable for biomedicine.

It should be noted that interpretability is a concept spe-
cific to a particular domain, so there cannot be a universal
definition. Very often, in an interpretable machine learning
model, constraints are added to the model form so that it
is either useful to someone or obeys structural knowledge
of the domain, such as monotonicity (Gupta et al., 2015),
causality, structural (generative) constraints, additivity (Lou
et al., 2013), or physical constraints that come from know-
ledge of the subject domain (ontologies).

Currently, several works have been published on building
self-explanatory neural networks based on gene expression
data using Gene Ontology (GO) knowledge. For example,
in the work (Bourgeais et al., 2021), a self-explanatory deep
learning model called Deep GONet is proposed, integrating
Gene Ontology into a hierarchical neural network architec-
ture. This model is based on a fully connected architecture
constrained by Gene Ontology annotations, so that each
neuron represents a biological function. Experiments on
cancer diagnostic datasets show that Deep GONet is easy
to interpret and has high performance in distinguishing
cancerous and non-cancerous samples.

Another example of an ontology-based self-explanatory
neural network is ONN4MST, a generalization of the Onto-
logy-based Neural Network (ONN) computational model for
microbial source tracing (Zha, Ning, 2022). The ONN model
uses a novel ontology-based approach that rewards predic-
tions that satisfy the “biome” ontology. In other words, the
ONN model can use biome ontology information to model
dependencies between biomes and estimate the proportion
of different biomes in a community sample.
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The knowledge discovery capability of ONN4MST has
been demonstrated in various source tracking applications.
It enables source tracking of samples, the niches of which
were less studied previously or unknown, detection of mi-
crobial contaminants, and identification of similar samples
from ontologically distant biomes, demonstrating the unique
importance of ONN4MST in knowledge discovery from a
vast number of microbial community samples from hetero-
geneous biomes.

ONN4MST can distinguish samples from ontologically
similar biomes, thus offering a quantitative way to charac-
terize the evolution of the human gut microbial community.
In particular, it is shown that the gut microbiome of centena-
rians differs from that of normal elderly people and shows
a youthful pattern (Zha, Ning, 2022).

Conclusion

The rapid development of experimental technologies in the
field of molecular biology has led to the fact that ontological
modeling is becoming a basic method in bioinformatics and
systems biology for integrating and analyzing heterogeneous
experimental data and using them to build mathematical
models of molecular genetic systems and processes. The
creation of several hundred basic reference ontologies and
their verification allows using these ontologies as sources
of knowledge for integrating and building complex domain
models and knowledge bases aimed at solving specific
problems of biomedicine.

Ontologies are of particular importance for interpreting
the results of computer predictions obtained using deep
learning methods. In order for scientists to trust deep learn-
ing, which is often presented as “black box” models, special
interpretation methods based on additional knowledge about
the subject area or ontologies should be used. Ontologies,
patterns of their construction, integration of big data and
creation of knowledge graphs play a key role in increasing
the interpretability of deep learning models. These tools
not only improve the understanding of the results, but also
provide higher quality data analysis. With the rapid growth
of information volumes and the complexity of deep learning
models, the use of ontologies is becoming a necessary step
towards creating more transparent and explainable systems.

It can be expected that the new generation of interpreta-
tion systems will be able not only to explain the obtained
solutions in a way understandable to humans, indicating
the quantitative level of uncertainty, but also to suggest ad-
ditional steps (e. g., additional experiments, clinical studies,
etc.) necessary to clarify or reliably confirm their decisions.
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