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Abstract. To systematize and effectively use the huge volume of experimental data accumulated in the field of bio-
informatics and biomedicine, new approaches based on ontologies are needed, including automated methods for 
semantic integration of heterogeneous experimental data, methods for creating large knowledge bases and self-in-
terpreting methods for analyzing large heterogeneous data based on deep learning. The article briefly presents the 
features of the subject area (bioinformatics, systems biology, biomedicine), formal definitions of the concept of onto-
logy and knowledge graphs, as well as examples of using ontologies for semantic integration of heterogeneous data 
and creating large knowledge bases, as well as interpreting the results of deep learning on big data. As an example of a 
successful project, the Gene Ontology knowledge base is described, which not only includes terminological knowledge 
and gene ontology annotations (GOA), but also causal influence models (GO-CAM). This makes it useful not only for 
genomic biology, but also for systems biology, as well as for interpreting large-scale experimental data. An approach 
to building large ontologies using design patterns is discussed, using the ontology of biological attributes (OBA) as 
an example. Here, most of the classification is automatically computed based on previously created reference ontolo-
gies using automated inference, except for a small number of high-level concepts. One of the main problems of deep 
learning is the lack of interpretability, since neural networks often function as “black boxes” unable to explain their deci-
sions. This paper describes approaches to creating methods for interpreting deep learning models and presents two 
examples of self-explanatory ontology-based deep learning models: (1) Deep GONet, which integrates Gene Ontology 
into a hierarchical neural network architecture, where each neuron represents a biological function. Experiments on 
cancer diagnostic datasets show that Deep GONet is easily interpretable and has high performance in distinguish-
ing cancerous and non-cancerous samples. (2) ONN4MST, which uses biome ontologies to trace microbial sources of 
samples whose niches were previously poorly studied or unknown, detecting microbial contaminants. ONN4MST can 
distinguish samples from ontologically similar biomes, thus offering a quantitative way to characterize the evolution 
of the human gut microbial community. Both examples demonstrate high performance and interpretability, making 
them valuable tools for analyzing and interpreting big data in biology.
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Аннотация. Для систематизации и эффективного использования огромного объема экспериментальных дан-
ных, накопленных в области биоинформатики и биомедицины, необходимы новые подходы, основанные на он-
тологиях, включая автоматизированные методы семантической интеграции гетерогенных экспериментальных 
данных, методы создания больших баз знаний и самоинтерпретируемые методы анализа больших разнородных 
данных на основе глубокого обучения. В статье кратко представлены особенности предметной области (биоин-
форматика, системная биология, биомедицина), формальные определения понятия онтологии и графов знаний, 
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приведены примеры применения онтологий для семантической интеграции гетерогенных данных и создания 
больших баз знаний, а также интерпретации результатов глубокого обучения на больших данных. В качестве 
примера успешного проекта описана база знаний Gene Ontology, которая помимо терминологических знаний и 
аннотаций генов (GOA) включает модели причинных влияний (GO-CAM). Это делает ее полезной не только для 
геномной биологии, но и для системной биологии, а также для интерпретации крупномасштабных эксперимен-
тальных данных. Обсуждается подход к созданию больших онтологий с использованием шаблонов проектирова-
ния на примере онтологии биологических атрибутов (OBA). Здесь большая часть классификации автоматически 
вычисляется на основе ранее созданных эталонных онтологий с помощью автоматизированного логического 
вывода, за исключением небольшого числа высокоуровневых понятий. Одной из основных проблем глубокого 
обучения является отсутствие интерпретируемости, поскольку нейронные сети часто функционируют как «чер-
ные ящики», не способные объяснить свои решения. В нашей статье описаны подходы к созданию методов ин-
терпретации моделей глубокого обучения и представлены два примера самообъясняемых моделей глубокого 
обучения на основе онтологий. Модель Deep GONet, которая интегрирует Gene Ontology в иерархическую архи-
тектуру нейронной сети, где каждый нейрон представляет биологическую функцию. Эксперименты с наборами 
данных диагностики рака показывают, что Deep GONet легко интерпретируется и обладает высокой производи-
тельностью для различения раковых и нераковых образцов. Модель ONN4MST, использующая онтологии биома 
для отслеживания микробных источников образцов, ниши которых ранее были мало изучены или неизвестны, 
и обнаружения микробных загрязнителей. ONN4MST может отличать образцы от онтологически близких био-
мов и, таким образом, предлагает количественный способ охарактеризовать развитие микробного сообщества 
кишечника человека. Оба примера демонстрируют высокую производительность и интерпретируемость, что 
делает их ценными инструментами для анализа и интерпретации больших данных в биологии.
Ключевые слова: онтологии; биоинформатика; системная биология; анализ больших данных; глубокое обуче-
ние; интерпретируемость.

Introduction
The term “Big Data” refers to voluminous datasets that are 
characterized by significant size, diversity, and complexity, 
making them difficult to process and analyze using tradi­
tional methods. Moreover, such data are often incomplete 
and uncertain, which complicates the task of controlling their 
quality and accuracy (Qaiser, Ghulam, 2023).

The emergence of qualitatively new research opportunities 
based on high-throughput experimental technologies such 
as massively parallel DNA sequencing, multilocus genotyp­
ing, multiparametric gene expression profiling using DNA 
chips, ChIP-on-chip technology, as well as proteomic and 
metabolomic technologies, has led to the accumulation of 
unprecedentedly large volumes of experimental data and 
knowledge (Stephens et al., 2015). The heterogeneity of mo­
lecular biological information and its complexity complicate 
the analysis, systematization and application of these data 
to solve specific problems in bioinformatics, biotechnology, 
pharmacology and personalized medicine.

New approaches to big data processing are required to 
master, systematize and effectively use huge amounts of 
data. In particular, this includes automated methods for the 
semantic integration of heterogeneous data, one of the key 
stages of which is the harmonization of domain concepts, 
as well as methods for describing and using them. A coordi­
nated description of a specific domain is called an ontology.

Ontologies allow concepts to be represented in a format 
suitable for machine processing and act as an intermediary 
between the user and the information system, as well as 
between members of the scientific community when ex­
changing data. Thus, ontologies are becoming an important 
tool in bioinformatics and systems biology, facilitating the 
semantic integration of experimental data and knowledge 

in order to create a “unified picture of the world”. In addi­
tion, they help solve problems arising in the analysis of big 
data, overcoming heterogeneity and deficiencies in data 
quality, and improving the interpretation of deep learning 
results. Ontologies increase the scalability and efficiency of 
processing large amounts of information, which makes them 
indispensable in modern scientific research.

Earlier, the review (Podkolodnyy et al., 2016) presented 
examples of ontologies describing biological systems at 
various levels of organization of living systems. This article 
will present examples of the application of ontologies for 
the integration of heterogeneous data and the creation of 
large knowledge bases, as well as the interpretation of data 
analysis results.

Formal representation of ontologies
In computer science, the term “ontology” refers to a concep­
tual model that represents objects, their properties, and the 
relationships between them (Chandrasekaran et al., 1999). 
An ontology includes a set of concepts (terms) of a particular 
subject area and their definitions, as well as all the infor­
mation associated with these concepts, such as properties, 
relations, constraints, axioms, and assertions. This informa­
tion is necessary for describing and solving problems in the 
chosen subject area (Podkolodnyy et al., 2016).

Thus, a formal model of an ontology is represented as an 
ordered triple of finite sets O = <T, R, F>, where T is a finite 
and non-empty set of classes and concepts (concepts, terms) 
of the subject area considered in a certain context (in our 
case: bioinformatics, systems biology, biotechnology, and 
biomedicine); R is a finite set of relations between concepts 
of a given subject area; F is a finite set of interpretation 
functions defined by concepts and/or relations of the onto-
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logy O, as well as axioms used to model statements that are 
always true. This constrains the interpretation and ensures 
the correct use of concepts.

One of the most effective approaches to describing and 
using domain knowledge is descriptive logics (DL), which 
define a formal language for describing concepts (concepts, 
classes, categories, or entities) and relationships between 
them (called roles), as well as for formulating statements 
of facts and queries about them, including satisfiability and 
inclusion checking. In addition, DL includes constructors 
(operations) for creating conceptual expressions, such as 
conjunction, disjunction, and relation definition.

From the point of view of descriptive logic, two main 
categories of knowledge can be distinguished in the domain 
knowledge base. The first category includes general know-
ledge about a set of classes of concepts, their properties, and 
relationships between them, which is referred to as termino­
logical knowledge, or T-Box. The second category covers 
knowledge about individual objects (instances of classes), 
their properties, and relationships with other objects, known 
as assertional knowledge, or A-Box. Thus, the T-Box de­
scribes the subject area at the level of abstract concepts, 
while the A-Box focuses on specific data, representing a 
database. It is important to note that both components of 
the knowledge base are interconnected and complement 
each other.

Knowledge graphs (KGs) are often used to systematically 
model complex systems, organisms, and diseases, as well 
as to represent knowledge in bioinformatics and systems 
biology. According to the definition presented in (Callahan 
et al. 2024), a knowledge graph is a data structure that re-
presents multiple heterogeneous entities and different types 
of relationships between them. This structure serves as an ab­
stract framework capable of generating new knowledge and 
identifying and resolving discrepancies or contradictions, 
making it useful for a variety of problems and scenarios.

There are three types of knowledge graphs, depending on 
the complexity of the representation and the functionality 
of use:

Simple graphs are the most common and basic type of 
graphs. In such graphs, entities are represented as nodes, 
and edges are used to model the relationships between them. 
Simple graphs usually lack formal semantics for edges and 
nodes, which makes them easy to use, but limits the pos­
sibilities for deeper analysis and interpretation of data.

Hybrid graph or property graph. Hybrid graphs are 
designed to model entities and their relationships using a 
combination of standard network representations and for­
mal semantics, such as Resource Description Framework  
(RDF: https://www.w3.org/RDF) and RDF Schema (RDFS: 
https://www.w3.org/TR/rdf11-mt). Unlike simple graphs, 
hy brid graphs based on these standards facilitate integration 
with other resources and provide greater opportunity for 
auto mated knowledge inference. This makes them a more 
powerful tool for representing and processing complex in-
formation.

Complex graphs, such as those in the KaBOB system 
(Livingston et al., 2015; Podkolodnyy et al., 2016), are 
often built on top of the Web Ontology Language (OWL). 
Complex graphs are highly expressive, allowing for ef­
ficient knowledge generation through deductive inference 
(Podkolodnyy et al., 2012). Due to its explicit semantics, 
OWL offers significant advantages over RDF/RDFS in 
in tegrating large amounts of biomedical data, making it 
particularly useful for complex problems in bioinformatics 
and systems biology.

As an example, Figure 1 provides a high-level network of 
the core interrelated biomedical concepts needed to model 
knowledge about pathways, genetic variants, diseases, and 
pharmaceutical treatments. At the top level are anatomical 
entities such as tissues, cells, and biological fluids (com-
partments) containing genomic entities such as DNA, 
RNA, mRNA, and proteins. DNA encodes genes, which are 
transcribed into mRNA and translated into proteins, which 
have molecular functions, can interact with each other, and 
participate in pathways and biological processes.

Recently, several software systems have been developed, 
such as KG-HUB (Caufield et al., 2023), Clinical KG 
(CKG) (Santos et al., 2022), RTX-KG2 (Wood et al., 2022), 
 BioCypher (Lobentanzer et al., 2023), and Knowledge Base 
Of Biomedicine (KaBOB) (Livingston et al., 2015; Pod­
kolodnyy et al., 2016), which provide broad functionality 
for creating and using knowledge graphs in bioinformatics 
and biomedicine, including the integration of large hetero­
geneous data.

The work (Callahan et al., 2024) describes the semantic 
ecosystem PheKnowLator (Phenotype Knowledge Trans­
lator) for automating the construction of ontological KGs 
with a fully customizable knowledge representation. The 
ecosystem includes various components for creating and 
using KGs to solve various applied problems, as well as 
pre-built KGs.

Integration of big data and creation  
of knowledge bases based on ontologies
Currently, in the field of bioinformatics, systems biology, 
agrobiology, biomedicine, more than a thousand ontologies 
have been developed that can be used to describe and in­
tegrate knowledge, analyze data, and infer new knowledge 
(https://bioportal.bioontology.org/ontologies).

As an example of one of the most successful projects for 
creating ontologies and, based on this, creating a know-
ledge base, we can cite the Gene Ontology (GO) project 
(http://www.geneontology.org/). GO describes current 
knowledge about the types of functional characteristics 
(more than 40 thousand concepts in total) that a gene pro-
duct may have.

GO consists of 3 sections:
1. Molecular function – an elementary molecular activity or 

role that a gene or gene product can play in any biological 
processes. A total of 10,365 terms are described (https://
geneontology.org/stats.html. Accessed 2024-09-08).
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Fig. 1. Representation of knowledge about the levels of biological organization underlying the description of human diseases (Callahan, et al., 2024).
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2. Biological process (a total of 26,552 terms are described. 
Accessed 2024-09-08) – a “biological program” that 
includes a set of molecular events or activities that act 
in a coordinated manner to achieve a specific result and 
relate to the functioning of integrated living units: cells, 
tissues, organs, and organisms. Unlike a function, a 
process must have several different stages with a defined 
beginning and end.

3. Cellular component – a part of the anatomical structure 
that describes the localization of a gene or its product in 
an organism, at the levels of cellular structures and mac­
romolecular complexes or groups of gene products. A total 
of 4,022 terms are described (accessed 2024-09-08).
The main relationships between concepts used in GO 

include the simple class-subclass relationship (is_a), the 
part-whole relationship (part_of), the regulates, positi-
vely_regulates, and negatively_regulates relationships 
that describe relationships between biological processes, 
molecular functions, or biological properties. The transiti-
vity property of the relationships used in GO allows one to 
construct a lattice of relationships between concepts and 
perform logical inference about the properties of concepts 
and their relationships (Podkolodnyy et al., 2016).

A knowledge base has been created based on GO, which 
in addition to terminological knowledge (GO gene ontology) 
includes the results of GOA gene annotation (Gene Ontology 
Annotation – http://www.ebi.ac.uk/GOA), i. e. knowledge 
about individual objects – genes and their products (Huntley 
et al., 2015). Currently, GOA includes more than 7.6 million 
GO annotations for almost 1.54 million proteins and more 
than 4.4 thousand species of organisms. 

Initially, at the early stage of GO development, annotation 
of a gene or its product (protein or RNA) was carried out 
independently by molecular functions, biological processes 
or cellular components. In order to obtain information about 

the function of a gene or its product (RNA, protein) in a par­
ticular biological process and a particular cellular structure, 
it was necessary to develop another component of the GO 
knowledge base – the GO-CAM model of causal influences 
between gene products (Thomas et al., 2019). 

GO-CAM links several GO annotations together to create 
models of biological processes that connect the activities of 
more than one gene product together into causal networks 
and allow specification of the biological context (e. g. cell/
tissue type) in which the activities occur. As an example, 
the same biological model describing how the E3 ubiquitin-
protein ligase NEDD4 represses RNA transcription in 
response to UV-induced DNA damage can be represented 
in two ways: as a set of disparate GO annotations, each cap­
turing a partial description of the overall function (Fig. 2a), 
and as a GO-CAM scheme linking the GO annotations 
into a structured model of NEDD4 function, including the 
effect of NEDD4 activity on the activity of the RNA poly- 
merase II macromolecular complex (Fig. 2b) (Thomas et 
al., 2019).

The basic unit of GO-CAM is the gene product activity 
unit, which combines the GO MF (molecular activity) an­
notation, together with the GO CC (cellular component) and 
GO BP (biological process) annotations, which provide the 
biological context of the activity. The context can be further 
specified by other ontologies, including Cell Type Onto-
logy (Diehl et al., 2016), tissue/anatomical location (using 
several different ontologies depending on the species, e. g. 
the integrated cross-species anatomy ontology covering 
animals and merging several species-specific ontologies – 
Uberon (https://obophenotype.github.io/uberon/) (Mungall 
et al., 2012), or non-animal ontologies such as Plant ontol­
ogy (https://planteome.org/) (Cooper, Jaiswal, 2016), or a 
description of a time period (e. g. biological phase GO). 
Activity units are related to each other by cause-and-effect 
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Fig. 2. The same biological model of how NEDD4 represses RNA transcription in response to UV-induced DNA damage described in two ways: a – as a 
set of disparate GO annotations, each capturing a partial description of the overall function; b – as a GO-CAM schema linking the GO annotations into a 
structured model of NEDD4 function, including the effect of NEDD4 activity on the activity of the RNA polymerase II macromolecular complex (Thomas 
et al., 2019).

relationships from the Relationship Ontology (Smith et al., 
2005).

Causal networks in GO-CAM models also enable entirely 
new applications, such as network analysis of genomic data 
and logical modeling of biological systems. In addition, the 
models may also prove useful for pathway visualization. 
For example, the activity-based GO-CAM representation is 
compatible with the “activity flow diagrams” of the Systems 
Biology Graphical Notation (SBGN) standard (Bergmann 
et al., 2020).

GO-CAM thus provides the opportunity to use the massive 
GO and GOA knowledge base accumulated over the last 
20 years as a basis not only for genomic biology representa­
tion of gene function, but also for a broader representation of 
systems biology and its novel applications to the interpreta­
tion of large-scale experimental data.

An example of GO analysis of genes  
of the associative gene network  
of rheumatoid arthritis
Earlier, the Institute of Cytology and Genetics SB RAS 
developed the ANDSystem software and information sys­
tem for the automated extraction of medical and biological 
knowledge from scientific publications and a large number 
of biological and biomedical factual databases (Ivanisenko 

et al., 2015, 2019). The ANDSystem knowledge base is a 
unique resource containing formalized information in the 
form of associative gene networks (knowledge graphs) with 
almost 44 million interactions of various types between 
molecular genetic objects.

The original ontology underlying ANDSystem pro­
vides a very detailed description of the subject area. The 
 ANDSystem knowledge base describes molecular genetic 
objects (proteins, genes, metabolites, microRNA), biologi­
cal processes, phenotypic traits, drugs and their side effects, 
diseases, etc., as well as more than 25 types of interactions 
between these objects, including: physical interactions with 
the formation of molecular complexes (protein/protein, 
protein/DNA, metabolite/protein); catalytic reactions and 
proteolytic events involving a substrate/enzyme/product; 
regulatory interactions, functions/activities, transport and 
stability of proteins, metabolites and drugs, regulation of 
protein translation involving miRNA, regulation of bio­
logical processes and phenotypic traits involving proteins, 
metabolites and drugs; associative interactions of genes, 
proteins, metabolites, biological processes, phenotypic traits 
with diseases, etc.

An example of a typical task using ANDsystem is the 
reconstruction of an associative gene network (knowledge 
graph) of rheumatoid arthritis (RA) containing 1,025 genes/
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Genes  
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arthritis network
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Immune response genes 
involved in RA pathogenesis

Fig. 3. Venn diagram describing the intersection of genes of the rheuma-
toid arthritis network and immune response genes (associated with the 
term GO:0006955~immune response).

List of the first 21 biological processes statistically most significantly associated with rheumatoid arthritis

Biological process (Gene Ontology) p-value with Bonferroni correction

GO:0006955~immune response 4.69 · 10–79

GO:0006954~ inflammatory response 2.13 · 10–70

GO:0060326~chemotaxis 2.49 · 10–30

GO:0007267~cell-cell signaling 8.59 · 10–28

GO:0032496~response to lipopolysaccharide 7.41 · 10–27

GO:0070098~chemokine-mediated signaling pathway 3.91 · 10–25

GO:1990256~signal transduction 2.91 · 10–24

GO:0071222~cellular response to lipopolysaccharide 5.45 · 10–24

GO:0050729~positive regulation of inflammatory response 6.31 · 10–24

GO:2001023~regulation of response to drug 1.70 · 10–23

GO:0070374~positive regulation of ERK1 and ERK2 cascade 8.26 · 10–23

GO:0001666~response to hypoxia 9.11 · 10–23

GO:0071864~positive regulation of cell proliferation 2.52 · 10–22

GO:0042102~positive regulation of T cell proliferation 6.90 · 10–22

GO:0045087~innate immune response 2.09 · 10–18

GO:0032729~positive regulation of interferon-gamma production 2.38 · 10–18

GO:0045766~positive regulation of angiogenesis 2.90 · 10–18

GO:0043066~negative regulation of apoptotic process 5.72 · 10–18

GO:0050731~positive regulation of peptidyl-tyrosine phosphorylation 8.13 · 10–18

GO:0007166~cell surface receptor signaling pathway 8.40 · 10–18

GO:0007568~aging 1.28 · 10–17

proteins and more than 20 thousand interactions between 
them. Analysis of the overrepresentation of biological pro­
cess terms in Gene Ontology for many rheumatoid arthritis 
genes, performed using the DAVID system (https://david.
ncifcrf.gov/tools.jsp) revealed 376 biological processes sta­
tistically significantly associated with rheumatoid arthritis 
(see the Table). The p-values were calculated based on the 
hypergeometric distribution. The Bonferroni correction was 
used to account for multiple testing.

Let us consider in more detail the GO:0006955~immune 
response process, which has the lowest p-value, i. e. is 
most significantly associated with rheumatoid arthritis. 
Gene Ontology describes 420 genes associated with the 
“GO:0006955~immune response” term. 158 of them are 
present in the association network of rheumatoid arthritis 
(Fig. 3). For random reasons, such a large number of genes 
can be expected with a very low probability ( p-value with 
Bonferroni correction < 4.69 · 10–79), which indicates a high 
significance of the relationship between rheumatoid arthritis 
and the immune response process and indicates the most 
important role of the immune system in the pathogenesis 
of this disease.

The Table presents the list of the first 21 biological pro­
cesses associated with rheumatoid arthritis and sorted by 
statistical significance ( p-value with Bonferroni correction). 
Most of these terms are somehow related to the immune 
response and inflammation processes, which play an impor­
tant role in the pathogenesis of rheumatoid arthritis. These 
processes are not independent.
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Thus, the term “GO:0006955~immune response” is asso-
ciated with such terms from this table as “GO:0045087~innate 
immune response”, “GO:0032729~positive regulation of in-
terferon-gamma production”, “GO:0060326~chemotaxis”, 
“GO:0042102~positive regulation of T cell proliferation”, 
“GO:1990256~signal transduction” and others.

Similarly, the process “GO:0006954~inflammatory 
response” is associated with the terms “GO:0032496~re-
spon se to lipopolysaccharide”, “GO:0050729~positive 
re gu lation of inflammatory response”, “GO:1990256~ 
signal transduction”, “GO:0001666~response to hypoxia”, 
“GO:0045766~positive regulation of angiogenesis”. And 
even the term “GO:0007568~aging” is related to the term 
“GO:0006954~inflammatory response”, since one of the 
mechanisms of aging is chronic non-infectious inflamma­
tion.

These results on the example of rheumatoid arthritis indi­
cate that the approach to identifying genes associated with a 
specific disease using ANDsystem and further GO analysis 
of this group of genes allows us to identify key biological 
processes involved in the pathogenesis of this disease.

Using ontology design patterns to integrate  
phenotype and biological attributes ontologies
Ontologies with logically rich axiomatization provide pow­
erful capabilities such as automated reasoning, classifica­
tion, and logical queries. However, manually creating such 
ontologies is extremely expensive and requires annotators 
to be not only domain experts but also have knowledge of 
logical modeling (Slater et al., 2020).

A popular approach to solving this problem is to use 
design patterns and template systems for logical axioms 
(Osumi-Sutherland et al., 2017). This allows separating the 
curation of reference terms used for logical definitions from 
their precise axiomatic picture. The central idea is to use a 
small number of axiom templates that implement design 
patterns, which can be created and maintained by logic 
experts, and for content curators to focus on selecting ap­
propriate filler terms (e. g., terms from the Uberon ontology 
for defining anatomical attributes).

The Biological Attributes Ontology (OBA) is a stan-
dardized framework for observable attributes that are char­
acteristics of organisms or parts of organisms (Stefancsik et 
al., 2023). Unlike most phenotypic ontologies, in OBA, the 
logical axioms define general attributes without reference 
to any specific phenotypic changes or states.

OBA was created using the Entity-Quality (EQ) design 
pattern, in which a phenotypic quality (Q), such as “height”, 
“mass”, or “amount” from the Phenotype and Trait Ontolo-
gy (PATO) (Gkoutos et al., 2005), is combined with an en­
tity (E), such as an anatomical or chemical entity, to form the 
concept of a “biological attribute” called a “trait”. For exam­
ple, the concept “blood glucose amount” (OBA:VT0000188) 
includes the class “amount” (PATO:000070), which defines 
the glucose characteristic – “glucose” (CHEBI:17234) in the 
blood – “blood” (UBERON:0000178).

Currently, OBA uses ten feature patterns from the Dead 
Simple OWL Design Patterns (DOS-DP) (Osumi-Sutherland 
et al., 2017). They were chosen because they cover most 
of the anatomical, chemical and cellular attributes that are 
central to genomics data integration.

A rich logical axiomatization based on design patterns 
is needed to ensure compatibility with existing phenotype 
ontologies and other data types, such as anatomical, chemi­
cal and biological data on metabolic pathways and gene 
networks.

Most attributes in OBA are inferred using OWL. These 
inferred definitions use terms from relevant reference ontolo­
gies such as Uberon (Mungall et al., 2012) or Chebi (Has-
tings et al., 2016). Except for a small number of high-level 
concepts, most of the classification in OBA is automatically 
computed based on the classifications of various reference 
ontologies, using automated inference. There are two advan­
tages to this approach: first, no concepts need to be manually 
classified, which significantly reduces the cost of curating 
the classification while increasing its completeness. Second, 
multiple links to reference ontologies can be used for a wide 
variety of applications, including querying (e. g., retrieving 
all data where the morphology of a part of the renal system 
is affected), knowledge graph integration (e. g., automatic 
linking to phenotypic anomalies from widely used ontologies 
such as the human phenotype ontology (HPO) or mammalian 
phenotype ontologies (MP)), and knowledge inference (e. g., 
inferring missing data) (Dececchi et al., 2015).

Application of ontologies  
to interpret deep learning
Deep learning (DL) has clearly demonstrated its effective­
ness in solving problems in the field of genomics, pro­
teomics, biomedicine, including analysis and automatic 
functional annotation of DNA, RNA and protein sequences, 
search for DNA/RNA targets of regulatory RNAs and pro­
teins, prediction of properties and functions of biomolecules, 
search for 3D protein structure, reconstruction of structures 
of biomolecules with given properties, prediction of inter­
actions of biomolecules and identification of potential drug 
candidates on this basis, image processing and analysis, in­
tegration of omics data, analysis of complex, heterogeneous 
and interconnected biological networks (including protein-
protein interaction networks, gene regulatory networks 
and metabolic pathways, semantic networks), modeling of 
biological systems and processes, etc. (Li et al., 2019; Sa-
poval et al., 2022).

One of the key problems of deep learning in bioinforma-
tics, systems biology and modern biomedicine is the lack 
of interpretability of neural network models, which often 
function as “black box” models. 

Interpretability of machine learning algorithms in bio­
informatics and biomedicine is important for three main 
reasons. First, when analyzing complex systems, when 
there is no theory and a clear decision-making algorithm, it 
is necessary to understand why the model predicts a given 
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phenotype. Second, it is important to ensure that the model 
bases its predictions on a reliable representation of the data 
and does not focus on irrelevant artifacts. Finally, a model 
with highly accurate predictions may have revealed interest­
ing patterns that biologists would like to study.

In the formal logical sense, interpretation is the mapping 
of a formal construct onto the entities and their relation­
ships that it represents. In this sense, one can say that one 
understands a formal construct if one can relate it to relevant 
entities and propositions in the real world and reason about 
the consequences. However, it is important to distinguish 
the understandability of a model from the understandabili­
ty of why the model is true or how the model was derived 
from the data, which raises questions about the validity of 
the model and the understandability of the learning algo­ 
rithm.

Two main approaches to interpreting black boxes can 
be distinguished: a posteriori methods and self-explaining 
models (Adadi, Berrada, 2018). In the a posteriori method, 
the black box model is first learned and then an interpretive 
method is used to explain the predictions. However, explana­
tions often do not match how the deep learning algorithm 
arrives at a solution. In addition, the explanation procedure 
is a separate method with its own errors that affect the quali-
ty of decisions made. Therefore, such an explanation is not 
always suitable for biomedicine.

It should be noted that interpretability is a concept spe­
cific to a particular domain, so there cannot be a universal 
definition. Very often, in an interpretable machine learning 
model, constraints are added to the model form so that it 
is either useful to someone or obeys structural knowledge 
of the domain, such as monotonicity (Gupta et al., 2015), 
causality, structural (generative) constraints, additivity (Lou 
et al., 2013), or physical constraints that come from know-
ledge of the subject domain (ontologies).

Currently, several works have been published on building 
self-explanatory neural networks based on gene expression 
data using Gene Ontology (GO) knowledge. For example, 
in the work (Bourgeais et al., 2021), a self-explanatory deep 
learning model called Deep GONet is proposed, integrating 
Gene Ontology into a hierarchical neural network architec­
ture. This model is based on a fully connected architecture 
constrained by Gene Ontology annotations, so that each 
neuron represents a biological function. Experiments on 
cancer diagnostic datasets show that Deep GONet is easy 
to interpret and has high performance in distinguishing 
cancerous and non-cancerous samples.

Another example of an ontology-based self-explanatory 
neural network is ONN4MST, a generalization of the Onto-
logy-based Neural Network (ONN) computational model for 
microbial source tracing (Zha, Ning, 2022). The ONN model 
uses a novel ontology-based approach that rewards predic­
tions that satisfy the “biome” ontology. In other words, the 
ONN model can use biome ontology information to model 
dependencies between biomes and estimate the proportion 
of different biomes in a community sample.

The knowledge discovery capability of ONN4MST has 
been demonstrated in various source tracking applications. 
It enables source tracking of samples, the niches of which 
were less studied previously or unknown, detection of mi­
crobial contaminants, and identification of similar samples 
from ontologically distant biomes, demonstrating the unique 
importance of ONN4MST in knowledge discovery from a 
vast number of microbial community samples from hetero­
geneous biomes.

ONN4MST can distinguish samples from ontologically 
similar biomes, thus offering a quantitative way to charac-
terize the evolution of the human gut microbial community. 
In particular, it is shown that the gut microbiome of centena-
rians differs from that of normal elderly people and shows 
a youthful pattern (Zha, Ning, 2022).

Conclusion
The rapid development of experimental technologies in the 
field of molecular biology has led to the fact that ontological 
modeling is becoming a basic method in bioinformatics and 
systems biology for integrating and analyzing heterogeneous 
experimental data and using them to build mathematical 
models of molecular genetic systems and processes. The 
creation of several hundred basic reference ontologies and 
their verification allows using these ontologies as sources 
of  knowledge for integrating and building complex domain 
models and knowledge bases aimed at solving specific 
problems of biomedicine.

Ontologies are of particular importance for interpreting 
the results of computer predictions obtained using deep 
learning methods. In order for scientists to trust deep learn­
ing, which is often presented as “black box” models, special 
interpretation methods based on additional knowledge about 
the subject area or ontologies should be used. Ontologies, 
patterns of their construction, integration of big data and 
creation of knowledge graphs play a key role in increasing 
the interpretability of deep learning models. These tools 
not only improve the understanding of the results, but also 
provide higher quality data analysis. With the rapid growth 
of information volumes and the complexity of deep learning 
models, the use of ontologies is becoming a necessary step 
towards creating more transparent and explainable systems.

It can be expected that the new generation of interpreta­
tion systems will be able not only to explain the obtained 
solutions in a way understandable to humans, indicating 
the quantitative level of uncertainty, but also to suggest ad­
ditional steps (e. g., additional experiments, clinical studies, 
etc.) necessary to clarify or reliably confirm their decisions.
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