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Abstract. Leaf spot, leaf scorch and phomopsis leaf blight are the most common fungal diseases of strawberry in 
Western Siberia, which significantly reduce its yield and quality. Accurate, fast and non-invasive diagnosis of these 
diseases is important for strawberry production. This article explores the ability of hyperspectral imaging to detect and 
differentiate symptoms caused to strawberry leaves by pathogenic fungi Ramularia tulasnei Sacc., Marssonina potentil-
lae Desm. and Dendrophoma obscurans Anders. The reflection spectrum of leaves was acquired with a Photonfocus 
MV1-D2048x1088-HS05-96-G2-10 hyperspectral camera under laboratory conditions using the line scanning method. 
Five machine learning methods were considered to differentiate between healthy and diseased leaf areas: Support 
Vector Machine (SVM), K-Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), Partial Least Squares Discrimi-
nant Analysis (PLS-DA), and Random Forest (RF). In order to reduce the high dimensionality of the extracted spectral 
data and to increase the speed of their processing, several subsets of optimal wavelengths were selected. The follow-
ing dimensionality reduction methods were explored: ROC curve analysis method, derivative analysis method, PLS-DA 
method, and ReliefF method. In addition, 16 vegetation indices were used as features. The support vector machine 
method demonstrated the highest classification accuracy of 89.9 % on the full range spectral data. When using vegeta-
tion indices and optimal wavelengths, the overall classification accuracy of all methods decreased slightly compared 
to the classification on the full range spectral data. The results of the study confirm the potential of using hyperspectral 
imaging methods in combination with machine learning for differentiating fungal diseases of strawberries.
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Аннотация. Белая, бурая и угловатая пятнистости являются наиболее распространенными грибными болез-
нями земляники садовой в Западной Сибири, значительно влияющими на ее урожайность и качество. Точная, 
быстрая и неинвазивная диагностика этих заболеваний имеет важное значение в промышленном производ-
стве земляники. В настоящей статье исследуются возможности применения методов машинного обучения и 
гиперспект ральной визуализации для обнаружения и дифференциации на листьях земляники симптомов, вы-
званных патогенными грибами Ramularia tulasnei Sacc., Marssonina potentillae Desm. и Dendrophoma obscurans 
Anders. Спектр отражения листьев регистрировали гиперспектральной камерой Photonfocus MV1-D2048x1088-
HS05-96-G2-10 в лабораторных условиях методом линейного сканирования. Для дифференциации здоровых 
и пораженных областей листьев изучено пять методов машинного обучения: метод опорных векторов (SVM), 
метод К-ближайших соседей (KNN), линейный дискриминантный анализ (LDA), дискриминантный анализ ча-
стичных наименьших квадратов (PLS-DA) и случайный лес (RF). С целью уменьшения высокой размерности из-
влеченных спектральных данных и увеличения скорости их обработки было отобрано несколько подмножеств 
оптимальных длин волн, несущих наиболее важную спектральную информацию. Рассмотрены следующие ме-
тоды сокращения размерности: метод анализа ROC-кривых, метод анализа производных, метод PLS-DA, метод 
ReliefF. Кроме того, 16 вегетационных индексов задействовано в качестве информативных признаков. Наиболь-
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шую точность классификации, 89.9 %, показал метод опорных векторов на полном спектре значений. При ис-
пользовании вегетационных индексов и наборов оптимальных длин волн общая точность классификации всех 
методов снизилась незначительно по сравнению с классификацией на полном спектре значений. Результаты 
исследования подтверждают перспективность применения методов гиперспектральной визуализации в соче-
тании с методами машинного обучения для дифференциации грибных болезней земляники садовой.
Ключевые слова: гиперспектральные изображения; грибные болезни земляники; методы машинного обуче-
ния; сокращение размерности

Introduction
Strawberry is one of the most popular fruits among con sumers 
by flavor, nutritional value and health benefits (Zheng et al., 
2021). Strawberry has high productivity and profitability and 
is capable of rapid vegetative reproduction. One of the limit-
ing factors for increasing the production of strawberries is the 
significant damage to cultivated varieties by fungal diseases, 
which leads to a decrease in yield and economic losses. The 
most common fungal diseases of strawberries in Western 
Siberia are leaf spot, leaf scorch and phomopsis leaf blight 
(Govorova, Govorov, 2015). Early detection of these diseases 
is crucial for targeted application of appropriate plant protec-
tion measures.

Traditional disease diagnostic methods such as visual as-
sessment and microbiological laboratory analysis are time-
consuming, error-prone and labor-intensive, which limits their 
application in precision agriculture. Recently, hyperspectral 
image analysis (Mishra et al., 2017; Mahlein et al., 2018; 
Cheshkova, 2022) has demonstrated great potential as an ef-
fective and non-invasive method for monitoring plant biotic 
and abiotic stress. The influence of pathogens causes changes 
of the physiological and biochemical parameters in the pro-
cess of disease occurrence, creating a reflectance spectrum 
that is different from the spectrum of healthy plants. Modern 
optical sensors register up to several hundred bands of the 
electromagnetic spectrum over a wide range of wavelengths 
and form a spectral profile for each pixel combining spectral 
and spatial information (Mishra et al., 2017). Hyperspectral 
imaging combines the advantages of computer vision and 
optical spectroscopy, allowing simultaneous assessment of 
both physiological and morphological parameters. Currently, 
scientific publications provide examples of the successful 
use of hyperspectral imaging for the recognition of various 
strawberry diseases, such as powdery mildew (Mahmud et 
al., 2020), anthracnose (Lu et al., 2017; Jiang et al., 2021), 
verticillium wilt (Cockerton et al., 2019), gray mold (Wu et 
al., 2023), and spotting (Cheshkova, 2023).

Machine learning is one of the most effective ways to 
process and analyze the vast amounts of data obtained by 
remote sensing techniques (Nagaraju et al., 2020; Benos et 
al., 2021). Numerous studies show that using vegetation indi-
ces as features for building machine learning models allows 
achieving good results in identifying and recognizing diseases 
of agricultural crops (Mahlein, 2013; Lu et al., 2017).

Hyperspectral data has high collinearity. A large number of 
wavelengths complicates models and reduces performance. 
Dimension reduction is specific and significant for hyper-
spectral-based plant disease analysis, the purpose of which 
is to remove spectral redundancy while preserving important 
information. Optimal waveband selection has always been 
a primary concern in hyperspectral data analysis (Liu et al., 

2014; Sun, Du, 2019). Уменьшение размерности может 
быть достигнуто за счет выбора определенных длин волн 
либо выделения информативных признаков.

The objective of this study was to determine the efficiency 
of  hyperspectral imaging techniques for differentiating sym-
p toms on strawberry leaves caused by pathogenic fungi Ra
mu laria Tulasnei Sacc., Marssonina potentillae Desm. and 
Dendrophoma obscurans Anders.; to assess the accuracy of 
different machine learning methods for identifying fungal 
diseases of strawberry; to explore the possibility of using 
dimensionality reduction methods and vegetation indices to 
optimize the machine learning models.

Materials and methods
Plant material and fungal diseases. In our study, three types 
of fungal diseases of strawberry, most common in Western 
Siberia, were considered: leaf spot, leaf scorch and phomopsis 
leaf blight.

Strawberry leafspot is caused by Mycosphaerella fragariae 
(Tul.) Lindau (conidial stage: Ramularia Tulasnei Sacc.). The 
disease is first noticed as small, purplish circular spots on the 
surface of young leaflets. As the lesion enlarges, the center of 
the spot becomes gray to white and is surrounded by distinct 
reddish-brown borders.

Strawberry leaf scorch is caused by Diplocarpon earliana 
(Ell. et Ev.) Wolf (conidial stage: Marssonina potentillae 
(Desm.) Р. Magn., M. fragariae (Lib.) Ohl.). The marks of 
the disease consist of many small irregular purple spots that 
appear on the outward leaf’s surface. The lesions may enlarge 
to 5 mm across and appear irregular.

Phomopsis leaf blight is caused by Dendrophoma obscurans 
(Ell. et Ev.) H.W. Anderson (synonym: Phomopsis obscurans 
(Ell. et Ev.) Sutton). Lesions begin as circular to elliptical, 
purple spots that can appear identical to those of common 
leaf spot or leaf scorch. The purple spots develop dark brown 
centers as they enlarge. Some infected leaves display large 
V-shaped lesions, with the widest part at the leaf edge.

The strawberry plants grown at the experimental field of 
Siberian Federal Scientific Centre of Agro-BioTechnologies of 
the Russian Academy of Sciences (Krasnoobsk, Novosibirsk 
region, Russia) in 2021–2023 were used in the overall experi-
ment. During the growing seasons, 120 plants were selected, 
including 30 healthy plants and 30 plants for each disease: 
with visible symptoms of leaf spot, leaf scorch or phomopsis 
leaf blight. One leaf from each plant was detached for further 
research in the laboratory. Identification of the disease was car-
ried out through visual expertise by symptoms of the disease 
(Garrido et al., 2011; Govorova, Govorov, 2015).

Image acquisition and calibration. Imaging was per-
formed by a Photonfocus MV1-D2048x1088-HS05-96-G2-10 
hyperspectral camera, with an IMEC CMV2K-LS150-VNIR 
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Fig. 1.   ВROI selection: a – healthy regions, b – regions with symptoms of leaf spot, c – regions with symptoms of leaf scorch,  
d – regions with symptoms of phomopsis leaf blight.

b d
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sensor (Photonfocus AG, Switzerland, wavelength range 
470–900 nm, spectral resolution 3 nm, spatial resolution 
2048 × 1088 pixels) by the linear scanning method using a 
moving platform. The software and hardware equipment as 
well as related parameters can be referred to article (Maxi-
mov et al., 2023). The strawberry leaves were placed on a 
white platform for imaging. The illumination source was 
two halogen lamps. The scanning step, exposure time and 
camera mounting height were determined experimentally. 
Additionally, reference images were created for radiometric 
correction. The dark image was obtained by covering the 
camera lens with a non-reflective opaque black cap, and the 
white reference image was obtained by surveying the spectral 
image of the Teflon white board with 99.9 % reflectance. The 
calibrated image was calculated using the following formula:

R= ,IS – ID
IW – ID

where IS – intensity value of the sample image, ID – intensity 
value of the dark reference image, IW – intensity value of 
the white reference image, R – the corrected hyperspectral 
reflectance image. 

Three-dimensional data sets (hypercubes) containing two 
dimensions of spatial information and additionally one dimen-
sion of spectral information (2048 × 1088 × 131) were formed 
from the scanning results.

Spectral features extraction and processing. The result-
ing image files were divided into two groups: 96 leaf images to 
form a training set (24 in each of the four classes) and 24 leaf 
images to form a validation set (six in each of the four classes). 
Spectral data extraction was performed using ENVI 5.2 (NV5 
Geospatial Solutions, Inc., USA). In each strawberry leaf 
 image, regions of interest (ROIs) corresponding to healthy leaf 
tissue and to color spots of the diseased tissue were manual-
ly selected (Fig. 1). From each region, 250 pixels were ran-
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domly selected. As a result, a training dataset of 24,000 spec- 
trum values (6,000 px for each class) and a validation data-
set of 6,000 spectrum values (1,500 px for each class) were 
formed.

To smooth the spectrum and correct for scattering, the 
Savitzky–Golay filter (Savitzky, Golay, 1964) and standard 
normal variate normalization (Vidal, Amigo, 2012) were ap-
plied to the spectral data.

Optimal wavelengths selection. In order to decrease the 
dimension of the raw spectral information and to find the 
optimal wavelengths for classification we examined the fol-
lowing dimensionality reduction methods:
– receiver operating characteristic (ROC) analysis (Luo et al., 

2012); in this method, the area under curve (AUC) value is 
used as a metric that determines the variable importance; 
from the entire data spectrum, those wavelengths are left 
for which the AUC exceeds a certain threshold value;

– the derivative analysis (Savitzky, Golay, 1964); in this me-
thod, the most important wavelengths are selected as the 
high peaks and low valleys in the second derivative plot;

– partial least squares discriminant analysis (PLS-DA) (Meh-
mood et al., 2012); in this method, the wavelengths that 
correspond to the highest absolute values of β-coefficients 
are considered optimal wavelengths;

– ReliefF algorithm (Kononenko, 1994; Urbanowicz et al., 
2018); it’s a feature weighting algorithms that assigns dif-
ferent weights to features based on the category and correla-
tion of each feature; features with weights below a certain 
threshold value are removed.

Vegetation indices extraction. Vegetation indices are 
algebraic combinations calculated from reflectance spectrum 
values for two or more selected wavelengths.

For our study, 16 vegetation indices (Table 1) were selected, 
characterizing the photochemical reflectance (PRI), physio-
logy (NDVI, RENDVI, RVSI, PhRI), content of chlorophyll 
(MCARI, TVI, VOG1, VOG2, VOG3), pigments (PSSRa, 
PSSRb, CRI, ARI), nitrogen (NRI) and carbon (PSRI) in plant 
leaves (Wu et al., 2023).

Machine learning methods. Five machine learning me-
thods (SVM, KNN, LDA, PLS-DA, RF), most commonly used 
in hyperspectral data classification (Singh et al., 2016; Benos 
et al., 2021), were considered in our study to differentiate 
healthy and diseased regions of strawberry leaves.

The Support Vector Machine (SVM) method. The main 
idea of the SVM method is to transfer the original vectors to 
a higher-dimensional space and search for the separating hy-
perplane with the largest gap in this space. The Gaussian radial 
basis function was taken as the classifier kernel.

The K-Nearest Neighbors (KNN) method. The classifica-
tion is achieved by assigning the test object to the class that 
is most common among its K-nearest neighbors, the classes 
of which are already known. It applies the Euclidean distance 
in the multidimensional space as a similarity measurement to 
separate the test objects.

The Linear Discriminant Analysis (LDA) method. The 
high-dimensional data are projected into a lower-dimensio-
nal space to promote class separability. The optimal projec-
tion in classical LDA is obtained by maximizing the distance  

Table 1. Vegetation indices used as features 

No. Index Equation

   1 NDVI (normalized difference vegetation index) (R800 – R670)/(R800 + R670)

   2 RENDVI (red edge normalized difference vegetation index) (R750 – R705)/(R750 + R705)

   3 PhRI (physiological reflectance index) (R550 – R531)/(R550 + R531)

   4 RVSI (red-edge vegetation stress index) [(R712 + R752)/2] – R732

   5 MCARI (modified chlorophyll absorption ratio index) [(R700 – R670) – 0.2∙(R700 – R550)](R700/R670)

   6 TVI (triangular vegetation index) 0.5∙[120∙(R750 – R550) – 200∙(R670 – R550)]

   7 VOG1 (Vogelman index 1) R740/R720

   8 VOG2 (Vogelman index 2) (R734 – R747)/(R715 + R726)

   9 VOG3 (Vogelman index 3) R715/R705

10 PSRI (plant senescence reflectance index) (R680 – R500)/R750

11 NRI (nitrogen reflectance index) (R570 – R670)/(R570 + R670)

12 PSSRa R800/R680

13 PSSRb (pigments specific simple ratio) R800/R635

14 CRI (carotenoid reflectance index) 1/R510 – 1/R550

15 ARI (anthocyanin reflectance index) 1/R550 – 1/R700

16 PRI (photochemical/physiological reflectance index) (R531 – R570)/(R531 + R570)
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Fig. 2. Average reflectance spectrum of healthy and infected regions of strawberry leaves.
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between different classes and minimizing the distance within 
a class.

The Partial Least Squares Discriminant Analysis (PLS-DA) 
method. It is a variant of combining Partial Least Squares 
regression (PLSR) and discriminant analysis (DA). Unlike 
classical discriminant analysis, which searches for hyperplanes 
of maximum variance of independent predictors, PLS-DA 
builds a linear regression model by projecting predicted and 
observed variables into a new reduced space.

The Random Forest (RF) method. It is a non-parametric 
method that uses multiple decision trees to classify data and 
is well suited to spectral data analysis.

The overall accuracy, calculated as the percentage of cor-
rectly classified objects to the total number of objects, was 
used as a metric to evaluate the quality of the models.

All calculations and data analysis were performed in the 
R software using the caret, kernlab, randomForest, klaR, pls, 
CORElearn, class, MASS and terra packages.

Results

Spectral behaviors
Figure 2 shows the averaged reflectance spectra of healthy 
and fungal disease-affected regions of strawberry leaves. The 
spectral curves are typical for plants (Mishra et al., 2017). 
A common feature of all spectral curves is a lower reflectance 
in the visible wavelength range, compared to the near-infrared 
range. At wavelengths around 670 nm, a decrease in reflec-
tance is observed, which is due to the strong absorption of 
light by chlorophyll in the leaves. In the range of 670–760 nm, 
the reflectance of leaves increases sharply due to light scat-
tering in the intercellular space. In the wavelength range of 
760–900 nm, the reflectance remains high.

Certain differences between the spectra are observed. 
Thus, healthy green leaf regions have a characteristic peak 
at a wavelength of 550 nm (nitrogen absorption zone), while 
diseased regions have a decline in this area. In the range of 

720–810 nm, healthy regions and regions affected by leaf 
scorch have a higher reflectance, compared to regions affected 
by leaf spot and phomopsis leaf blight. And in the range of 
810–900 nm, on the contrary, it is lower. The reflectance of 
leaves affected by leaf spot disease increases uniformly over 
the entire wavelength range.

Optimal wavelengths selection
Analysis of variance (ANOVA) revealed the statistically 
significant differences between mean reflectance by disease 
type for each of the wavelengths, according to the F-criterion 
with a p-value < 0.001. In addition, a recursive feature elimi-
nation method was applied to each of the considered models, 
which also revealed that all wavelengths were significant for 
classification.

To reduce the dimensionality of the data, four different 
techniques were considered, which determined four different 
sets of optimal wavelengths (Figures S1–S4 in Supplementary 
Materials)1.

Using ROC curve analysis, 23 wavelengths (nm) were 
identified for which the AUC exceeded the threshold value 
of 0.99: [541.39, 545.04, 548.92, 550.41, 553.99, 557.94, 
561.3, 565.18, 568.58, 745.48, 748.98, 751.75, 756.45, 759.36, 
763.0, 765.97, 769.44, 772.39, 775.92, 778.56, 781.11, 784.53, 
787.2].

Using the second derivative analysis method with a thresh-
old value of 1.0, the following 15 wavelengths (nm) were 
selected: [677.11, 680.47, 682.99, 685.28, 688.76, 691.62, 
695.25, 697.97, 709.54, 712.19, 729.07, 732.25, 736.15, 
739.20, 742.67].

Using the PLS-DA method, the following 16 wavelengths 
(nm) were selected for a threshold value of regression coef-
ficients of 0.4: [498.68, 502.7, 505.97, 510.11, 513.5, 517.33, 
522.39, 526.49, 529.98, 533.99, 541.39, 680.47, 682.99, 
688.76, 691.62, 722.02].
1 Figures S1–S5 are available at:  
https://vavilov.elpub.ru/jour/manager/files/Suppl_Cheshkova_Engl_29_2.pdf

https://vavilov.elpub.ru/jour/manager/files/Suppl_Cheshkova_Engl_29_2.pdf
https://vavilov.elpub.ru/jour/manager/files/Suppl_Cheshkova_Engl_29_2.pdf
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Fig. 3. Sets of optimal wavelengths determined by different methods.

RelifF method 

Derivative analysis

PLS-DA method

ROC-curve analysis

Wavelength, nm
500 600 700 800

Using the ReliefF method, the following 24 wavelengths 
(nm) were selected for the weight threshold of 0.5: [537.27, 
541.39, 545.04, 548.92, 550.41, 557.94, 561.3, 565.18, 
657.08, 662.06, 664.83, 668.35, 670.93, 674.46, 677.11, 
680.47, 682.99, 685.28, 688.76, 691.62, 751.75, 756.45, 
759.36, 763.00].

A comparison of the sets of optimal wavelengths selected 
by different methods (Fig. 3) allows us to conclude that the 
most informative wavelength ranges for classification are 
[542–565 nm] and [680–691 nm].

Vegetation indices calculation and analysis
Sixteen vegetation indices were calculated using the cor-
responding formulas (Table 1) for each pixel in the dataset. 
Analysis of variance (ANOVA) was performed for each index 
to determine the statistical significance of differences between 
mean values of indices by disease type. All 16 indices had 
statistically significant differences between means with a 
p-value < 0.001.

Classification results based  
on the full range of wavelengths
In our study, five different models (SVM, KNN, LDA, PLS-
DA, RF) were applied to differentiate healthy and fungal 
disease-affected strawberry leaves. First, models were built 
for the full spectrum of wavelengths (131 wavelengths in the 
range 470–900 nm). The following optimal hyperparameters 
were selected using the cross-validation: SVM (sigma = 0.03, 
C = 6), KNN (K = 9), RF (mtry = 11), PLS-DA (ncomp = 38). 
The classification results are shown in Table 2. Analysis of 
the results allows us to conclude that the main errors in clas-
sification occur when differentiating between leaf scorch 
and phomopsis leaf blight, since these areas have a similar 
reflectance spectrum. 

The support vector machine method on the full range of 
wavelengths demonstrated the highest classification accuracy 
(90 %), while the K-nearest neighbors method showed the 
lowest accuracy (85 %).

Classification results based on sets  
of optimal wavelengths and vegetation indices
Each of the five classification models (SVM, KNN, LDA, 
PLS-DA, RF) was trained on sets of optimal wavelengths 
obtained by applying four different dimensionality reduction 
methods (ROC curve analysis, derivative analysis, PLS-DA, 
ReliefF), as well as on a set of 16 vegetation indices (Table 3). 

As can be seen from the results presented in Table 3, the 
overall classification accuracy of all methods decreased com-
pared to the classification using the full spectrum. The highest 
classification accuracy for all models was obtained for the set 
of vegetation indices and for the set of wavelengths selected 
by the PLS-DA method.

Identification of fungal diseases of strawberry 
Trained and optimized models can be used to detect and dif-
ferentiate fungal diseases of strawberry. Figure 4 shows an 
example of the application of the SVM model for the diagnosis 
of different types of fungal diseases.

Discussion
The analysis of hyperspectral images by machine learning 
methods has already been successfully applied in scientific 
research to detect strawberry diseases. For example, G. Wu 
et al. (2023) focused on the potential of using hyperspectral 
imaging (HSI) combined with spectral features, vegetation 
indices (VIs), and textural features (TFs) for the detection of 
gray mold on strawberry leaves under laboratory conditions. 
Three machine learning models (ELM, KNN, SVM) were 
trained and optimized. The overall classification accuracy of 
the models reached 96 %.

In (Jiang et al., 2021) six machine learning methods (SVM, 
ELM, KNN, PLS-DA, RF, NB) were developed based on the 
selected spectral fingerprint features for early identification 
of anthracnose and gray mold in strawberries using a hyper-
spectral imaging system. Most classification models obtain 
relatively good accuracy (100 %) and robust performance, 
recognizing asymptomatic fungus infections classes before 
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Table 2. Confusion matrices for hyperspectral image classification by different methods using the full spectrum

Predicted Actual Overall  
accuracy, %

Healthy Leaf spot Leaf scorch Phomopsis leaf blight

SVM 89.90 

Healthy 98.07 0.73 0.07 0.00

Leaf spot 0.73 95.13 1.07 1.27

Leaf scorch 0.33 3.20 92.67 25.00

Phomopsis leaf blight 0.87 0.93 6.20 73.73

KNN 85.17 

Healthy 98.73 1.13 0.33 0.00

Leaf spot 0.27 90.80 1.27 1.73

Leaf scorch 0.27 5.33 92.13 39.27

Phomopsis leaf blight 0.73 2.73 6.27 59.00

RF 86.93 

Healthy 98.20 0.87 0.20 0.00

Leaf spot 0.40 93.27 0.67 0.47

Leaf scorch 0.27 3.53 90.40 33.67

Phomopsis leaf blight 1.13 2.33 8.73 65.87

LDA 89.15 

Healthy 99.00 1.00 0.07 0.0

Leaf spot 0.07 93.07 0.93 0.4

Leaf scorch 0.93 3.53 89.53 24.6

Phomopsis leaf blight 0.00 2.40 9.47 75.0

PLS-DA 87.63

Healthy 99.93 1.87 1.07 0.00

Leaf spot 0.00 94.60 1.87 0.33

Leaf scorch 0.00 1.47 81.13 24.80

Phomopsis leaf blight 0.07 2.07 15.93 74.87

Notе. SVM – the support vector machine method; KNN – the K-nearest neighbors method; LDA – the linear discriminant analysis method; PLS-DA – the partial 
least squares discriminant analysis method; RF – the random forest method. 

Table 3. Overall classification accuracy (%) for different models using selected wavelengths and vegetation indices

Model Dimensionality reduction method 16 vegetation indices

ROC curve analysis Derivative analysis PLS-DA ReliefF

SVM 77.37 83.03 85.13 78.32 89.75

KNN 76.40 81.60 83.27 77.48 82.65

RF 77.55 82.67 83.50 78.57 84.25

LDA 74.32 80.55 85.88 76.93 84.62

PLS-DA 69.00 75.45 85.60 77.15 84.70

Notе. SVM – the support vector machine method; KNN – the K-nearest neighbors method; RF – the random forest method; LDA – the linear discriminant analysis 
method; PLS-DA – the partial least squares discriminant analysis method. 
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Fig. 4. Visualization of strawberry disease classification using support vector machines on a full range of values.
The left column shows the original color images of the strawberry leaves and the right column visualizes the classification results after applying the SVM model 
to the full spectrum in every single pixel in the images.

the obvious signs of disease appear notably in the strawberry. 
In our study, the obtained accuracy of disease classification 
did not exceed 90 %. This result can be explained by several 
reasons. First, three types of disease were considered at once, 
rather than one or two as in other studies. Secondly, successful 
differentiation of diseases requires a difference in the spectral 
characteristics of plant leaves affected by pathogens. Our study 
revealed that the main errors in classification occur when 
differentiating leaf scorch and phomopsis leaf  blight, since 

these diseases have a similar reflectance spectrum. A possible 
way to improve classification accuracy is to use convolutional 
neural networks that take into account not only spectral but 
also textural characteristics of the affected leaves, such as 
shape and location of spots.

The choice of classification method depends on the diseases 
under study. Among the five popular machine learning models 
we considered (SVM, KNN, LDA, PLS-DA, RF), the support 
vector machine (SVM) demonstrated the best classification 
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accuracy, which is in agreement with the results of other stu-
dies (Benos et al., 2021).

In order to reduce dimensionality and select optimal wave-
lengths for model building, researchers have applied various 
methods. Thus, the CARS, CARS-RF, ReliefF, and ROC 
algorithms were used in (Luo et al., 2012; Jiang et al., 2021; 
Wu et al., 2023). In many studies, dimensionality reduction 
does not reduce the accuracy of the models, but in our case, all 
wavelengths were significant and the classification accuracy 
decreased slightly compared to the full spectrum.

The obtained results of laboratory studies indicate the po-
tential of using hyperspectral imaging methods for diagnosing 
fungal diseases of strawberries in agricultural production. 
Scientific publications have already described examples of 
successful application of hyperspectral sensors mounted on 
UAVs for diagnostics of biotic and abiotic plant stresses (Yang 
et al., 2017).

In our further research, we plan to test the application of 
hyperspectral imaging methods in field conditions to automate 
the diagnosis of fungal diseases of strawberries.

Conclusion
This study explored the feasibility of using hyperspectral 
imaging technique combined with machine learning for 
the detection and identification of leaf spot, leaf scorch and 
phomopsis leaf blight diseases on strawberry leaves in the 
presence of visible symptoms. In order to identify the straw-
berry leaves disease effectively, diverse classifiers (SVM, 
KNN, LDA, PLS-DA, RF) were developed and evaluated 
using the full spectrum. The Support Vector Machine (SVM) 
demonstrated the highest classification accuracy of 89.9 % 
on 131 wavelengths in the range of 470–900 nm. In order 
to simplify the models and increase the speed of data pro-
cessing, four different dimensionality reduction methods 
were con sidered (ROC curve analysis, derivative analysis, 
PLS-  DA, ReliefF). Moreover, 16 vegetation indices were 
used as features. The overall classification accuracy of all 
methods decreased slightly compared to classification  using 
the full spectrum. The set of 16 optimal wavelengths obtained 
by the PLS-DA method and the set of 16 vegetation indices 
had higher classification accuracy than the other wave- 
length sets.
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