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Abstract. A rapid growth of the available body of genomic data has made it possible to obtain extensive results in
genomic prediction and identification of associations of SNPs with phenotypic traits. In many cases, to identify new
relationships between phenotypes and genotypes, it is preferable to use machine learning, deep learning and arti-
ficial intelligence, especially explainable artificial intelligence, capable of recognizing complex patterns. 80 sources
were manually selected; while there were no restrictions on the release date, the main attention was paid to the
originality of the proposed approach for use in genomic prediction. The article considers models for genomic pre-
diction, convolutional neural networks, explainable artificial intelligence and large language models. Attention is
paid to Data Augmentation, Transfer Learning, Dimensionality Reduction methods and hybrid methods. Research
in the field of model-specific and model-independent methods for interpretation of model solutions is represented
by three main categories: sensing, perturbation, and surrogate model. The considered examples reflect the main
modern trends in this area of research. The growing role of large language models, including those based on
transformers, for genetic code processing, as well as the development of data augmentation methods, are noted.
Among hybrid approaches, the prospect of combining machine learning models and models of plant development
based on biophysical and biochemical processes is emphasized. Since the methods of machine learning and arti-
ficial intelligence are the focus of attention of both specialists in various applied fields and fundamental scientists,
and also cause public resonance, the number of works devoted to these topics is growing explosively.
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AHHOTaLMA. BbICTPO HaKanNIVBaLWMIACA MACCVB FreHOMHDBIX JaHHbIX — CEKBEHWPOBAHHbIX FEHOMOB CE/bCKOXO03Ai-
CTBEHHbIX PACTEHWI — MO3BOMWI MOYYUTb OOLIMPHBIE PE3YNbTaThl MO FEHOMHOMY MPOrHO3UPOBAHWIO U BbIABE-
HMIO accoumnaumin OAHOHYKNEOTUAHbIX NOANMOPGU3IMOB C PeHOTUNMYECKMMI NPpU3HakaMmn. Bo MHorux cnyyasx
AN 06HapYKeHVA HOBbIX CBA3el GEHOTMMNOB C FeHOTNaMM NPEANOUYTATENbHO NCMOMb30BaTbh METOAbI MALLMHHOIO
06yyeHus, rMyboKoro obyyeHnsa 1 NCKYCCTBEHHOTO MHTENEKTa, B OCOOEHHOCT OOBACHMMOrO, CMOCOGHbIe pac-
No3HaBaTb C/IOKHble 3aKOHOMEPHOCTU. BpyuHyio 6b110 0TO6paHO 80 UCTOYHMKOB, NPV 3TOM OrpaH1YeHuUs No aate
BbIXO/a He CTaBU/I0Cb, OCHOBHOW MHTEPEC MPeACTaBAna OpUrMHaabHOCTb NPeAnaraeMoro noaxoaa unv mogundw-
Kaunuy onAa npumeHeHnA B 3agavye reHOMHOro NPporHo3npoBaHnA. B ctaTtbe paccMOTpeHbl mogenn aonAa reHoMHoro
NPOrHO3MPOBaHWS, CBEPTOUHbIE HEVPOHHbIE CETU, 0OBACHVMBIN NCKYCCTBEHHDIN MHTENNEKT 1 60bLUME A3bIKOBbIE
mopenu. YaeneHo BHYUMaHMe NoaxoAam K JOMOSIHEHNIO faHHbIX, MePEHOCY 3HaHMIN, METOAAM CHUPKEHMA pa3mep-
HOCTV 1 rMbpugHbIM MeTofdam. lNprBefieH NprYMep COBPEMEHHOrO CMocoba KoAMPOBaHMA GOMbLUNX FEHOMHbIX
AaHHbIX B NCKYCCTBEHHDbIE VI306pa>KeHVIF|, npenmMyLecTBOM KOTOPbIX ABNAOTCA HarnAagHaA BU3syanusaynAa n BoO3-
MO>XHOCTb MCMOMb30BaHNA N3BECTHbIX MOAENen Ana N3BneyYeHns NpusHakos. ViccnegoBaHus B 0651acT Mofenb-
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[eHOMHOE MPOrHO3MPOBaHYE MPU3HAKOB PacTeHN
MonynAPHbIMYA METOAAMM MALIMHHOO 0GyUeHUs

HO-CMeLndUUHBIX N MOAENIbHO-He3aBMCMMbIX METOAOB UHTEPMPETALMMN PELLeHUs MOAeNel NpeacTaBneHbl TpeMs
OCHOBHbIMM KaTeropusaMu: 30HANPOBaHNe, BO3MYLLEHVE 1 CypporaTHas Mofenb. B paccMoTpeHHbIX npumepax oT-
paeHbl OCHOBHble COBPEMEHHbIE TPeHAbI B M3yyaemolt obnacti. OTMeueHbl pacTyLiasn posb 60MbLIMX A3bIKOBbIX
MOAenel, B TOM Y/c/ie OCHOBAHHbIX Ha TpaHchopmepax, Ans 06paboTKy reHeTYeCKoro Koga, a Takke paspaba-
TbiBaeMble METOAbI ayrMeHTaLUuM AaHHbIX. JOMONHWUTENIbHBIM MPEUMYLLECTBOM NMPUMEHEHNWS A3bIKOBO MOAeNnn
MOXET CTaTb BO3MOXHOCTb GOPMYNMPOBaTh 3aMpochl Ha 6IM3KOM K eCTeCTBEHHOMY Ai3blKe 1 MoslyyaTb OTBETbI 3@
OTHOCKTENBHO KOpOTKoe Bpems. Cpean rmbpriAHbIX NOAXOAOB BbiAeneHa NepCneKTVBHOCTb COYeTaHns Mmogenei
MaLUVHHOTO OGYYEHVS N MOLENEN PA3BUTUA PACTEHUI HA OCHOBE BUOGU3NYECKIX N BUOXUMUYECKIX MPOLIECCOB.
MOCKONbKY METOAbI MALUMHHOIO 06YUYeHNs N NCKYCCTBEHHOTO MHTENNIEKTA HAXOAATCA B pOKYCe BHUMAHWSA Kak cre-
LManmnCToB B PasnuyHbIX NPUKIagHbIX 061acTaX, Tak 1 GpyHAAMEHTasIbHbIX YUYeHbIX, @ KPOME TOro, Bbi3blBalOT 06Le-
CTBEHHbIN PE30HAHC, KONIMYECTBO MOCBALLEHHbIX 3TUM TeMaM PaboT MMEET B3PbIBHOMN POCT.

KntoueBble cfioBa: reHOMHOE NMPOrHO3vpOoBaHWe; GeHOTUM PacTeHNIA; MALLHHOE 06yUYeHNe; ryboKoe 0byyeHNE;

I/ICKyCCTBEHHbIVI VHTENNeKT

Introduction

To this day, a tremendous amount of genomic data has been
accumulated and it continues to grow rapidly. These data
include the sequenced genomes of agricultural plants such
as chickpea, vigna, soybean, wheat, rye, flax etc. (Bragina
et al., 2019; Ichihara et al., 2023; Chamorro-Padial et al.,
2024; Tang et al., 2024). Many annotations have been
obtained, classical methods of genomic prediction and
genome-wide association studies have been successfully
applied to these data, and SNPs associated with different
important phenotypes have been identified (Hayes, 2013).

Many phenotypic traits that selection programs are tar-
geted to are correlated and thus require use of multi-trait
models in order to obtain statistically significant predic-
tions. Machine learning methods are suitable for such a
class of problems as well as deep learning models and
artificial intelligence, explainable Al in particular, which
are able to recognize complex patterns in the given data
and generalize extracted knowledge.

The papers for the current review were selected based
on the originality of the proposed approach or modification
for application to the solution of the genomic prediction
problem. The search was performed in PubMed (https://
pubmed.ncbi.nlm.nih.gov/, accessed on November 7, 2024)
using terms “plants genomic prediction machine learning”
and dates from the beginning of the year 2010 to the end
of the year 2024, which showed exponential growth of the
number of manuscripts per year with a small decrease in
the growth rate after the year 2021 (Fig. 1).

Eighty sources were selected manually without restric-
tions on the publication date. The oldest manuscript was
published in the year 1988, the majority of works (60 %)
were published after the year 2020, and 20 % of the re-
viewed papers belong to the last two years (Fig. 2).

Genomic prediction

Genomic prediction (GP) aims to predict the phenotype of
an organism given single nucleotide polymorphism (SNP)
data (Meuwissen et al., 2001). The wide range of genomic
prediction methods can be divided into two groups: linear
and nonparametric. Linear methods such as BLUP work
well for additive traits. They model the phenotype as a
function of the contributions of different factors such as
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SNP - single nucleotide polymorphism

GP - genomic prediction

GBLUP - genomic best linear unbiased predictor

ML - machine learning

RRBLUP - ridge regression with best linear unbiased
predictor

CNN - convolutional neural network

AlO - artificial image object

PCA - principal component analysis

XAl - Explainable Artificial Intelligence

DT - decision trees

RF - random forest

LLM - large language model

GPT - generative pretrained transformer

individual markers, weather parameters, field conditions,
etc. On the other hand, nonparametric machine learning
methods such as support vector machines, random forests,
and gradient boosting can model nonlinear traits, provid-
ing great flexibility to accommodate complex genotype-
phenotype associations (Montesinos-Lopez et al., 2021).

Genomic prediction tools based on statistical methods
such as genomic best linear unbiased prediction (GBLUP)
are widely used in crop breeding. However, these tools
are not designed to account for nonlinear relationships in
high-dimensional datasets or to handle high-dimensional
datasets such as drone images. Machine learning (ML)
algorithms have the potential to surpass the prediction
accuracy of current tools used to predict phenotypic traits
from genomic data due to their ability to autonomously
extract features and represent their relationships at multiple
levels of abstraction (Danilevicz et al., 2022).

The accuracy of prediction depends on the quality and
pre-processing of phenotypic data, the platform used to ob-
tain genomic information, the population breeding scheme,
the internal genetic architecture of the trait, the genetic
structure of the population, how genotype-environment
interactions are treated, and the prediction method (de Los
Campos et al., 2013).
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Fig. 1. The growth of the number of works in PubMed.

It was reported in (Sandhu et al., 2021) that deep lear-
ning models outperformed traditional ridge regression with
best linear unbiased prediction (RRBLUP) and Bayesian
models under all forecasting scenarios. Machine learning
methods were used to increase the statistical power of the
models. To apply multi-stage machine learning, a new
BioM2 package (Zhang S. et al., 2024) was proposed for
the statistical computing system R, which has the ability
to apply stratification and aggregation of multivariate data
based on biological information to improve the training
efficiency of models. In this case, stratification allows
one to build subsets of data, for example, training and test
samples, by controlling the ratio of the number of objects
from different groups, for example, SNPs in genes involved
in different processes.

At the same time, aggregation of multivariate data
makes it possible to use simpler and more easily interpre-
table models that can be refined during multi-stage trai-
ning. An innovative computational framework, PlantMine,
which combines feature selection and machine learning
methods to efficiently identify key SNPs, was proposed in
(Tong et al., 2024), taking critical factors for trait improve-
ment in rice as an example. Various data mining algorithms
were applied to the 3,000 Rice Genomes Project dataset.
The results highlighted the effectiveness of combining
feature selection with machine learning to accurately
identify key SNPs, offering a promising avenue to accel-
erate the breeding of new plant varieties with improved
yield and stress tolerance. The overall model performance
depended more on the prediction algorithm than the pre-
dictor selection method. Among all the models, decision
tree-based machine learning methods (random forests
and gradient boosting) performed the best, while classical
Bayesian methods were prone to overfitting (Sirsat et al.,
2022).
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Fig. 2. The distribution of the selected works over the years.

Convolutional neural networks

and artificial image objects

Among machine learning methods, convolutional neural
networks (CNNs) provide the best ability to discover hid-
den patterns or features from data and are best suited for
image analysis (Pook et al., 2020; Montesinos-Lopez et al.,
2021). Artificial image objects (AIO) are a new concept
for genomic data representation that can be used to encode
large genomic data by treating individual genetic variants
as pixels (Galli et al., 2022). The advantages of AIOs in-
clude convenient, simple visualization, compactness, and
the ability to apply a wide range of methods developed for
image analysis and classification (Chen X. et al., 2021b), in
particular CNNs (Chen X. et al., 2021a). Therefore, AIOs
can be used by CNNs for regression and classification tasks
(Bavykina et al., 2022).

The algorithm for optimization of data packing in AIO
was proposed in (Bazgir et al., 2020). The DeepFeature
package proposed in (Sharma et al., 2019, 2021) was de-
veloped to transform large-scale experimental data, such
as genomic or transcriptomic data, into a form optimal for
training a CNN model. The input vector is transformed
into a matrix using t-SNE, kernel PCA, PHATE, or UMAP,
and the smallest rectangle containing all elements is found
using the convex hull algorithm. A rotation is performed
to flatten the image, converting Cartesian coordinates into
pixel indices.

The application of CNN to AIO processing enables the
calculation and visualization of the influence of various
factors on the final solution of the model. The work of (Liu
et al., 2019) was considered to be the first study to apply
the saliency map to identify the most important predictors
in soybean. In this study, gaps in the data were treated as
a new genotype; as a result, each SNP was encoded with
four binary values. The significance value of each geno-
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type was calculated as the maximum absolute value of the
gradients among these four encoding channels, and the
population median was used as a measure of the contribu-
tion of the SNP.

The ResNet architecture, widely used in deep learning
methods, was adapted for use in genomic selection models
in (Xie et al., 2024). Since each locus makes a different
contribution to the final phenotype, successive convolutions
are more suitable for the genomic selection model than
layer pooling. Thus, a deep learning algorithm, ResGS, was
proposed that significantly alleviates the problem of deg-
radation, i. e., the decrease in performance with increasing
model depth, which can improve the prediction accuracy
compared to traditional methods (Wu H. et al., 2024).

Recently, more and more attention has been paid to the
internal mechanisms of convolutional neural networks
and the reasons why the network makes certain decisions
(Wang et al., 2020). Several methods have been proposed,
including data permutation and backpropagation ap-
proaches (Zhang X., Gao, 2020), gradient-based algorithms
(Selvaraju et al., 2020), and class activation maps (Wang
et al., 2020). A saliency map represents the spatial regions
associated with a particular class in a given image (Si-
monyan et al., 2014). Class activation maps provide a visual
explanation for a single input image (Chattopadhay et al.,
2018; Selvaraju et al., 2020), but are sensitive to the model
architecture. Gradient-weighted class activation mapping
(Grad-CAM) uses the gradients of any target concept fed to
the final convolutional layer to create a coarse localization
map, which highlights important regions in the image for
class prediction (Selvaraju et al., 2017).

Score-CAM, unlike previous class activation mapping-
based approaches, removes the dependence on gradients
by deriving the weights of each activation map by directly
computing the network for instances of the target class, with
the final output being a linear combination of the weights
and activation maps (Wang et al., 2020). Grad-CAM-++
(Chattopadhay et al., 2018), a modification of Grad-CAM
(Selvaraju et al., 2020), generalizes CAM to models without
global pooling layers. LayerCAM (Jiang et al., 2021) can
generate robust class activation maps from a combination
of class activation maps from different CNN layers.

Explainable Artificial Intelligence
Explainable Artificial Intelligence (XAI) aims to overcome
the black box problem and provide insight into how Al
systems make decisions. Interpretable ML models can
explain how they make predictions and identify the fac-
tors that influence their results. However, most modern
interpretable ML methods were developed for domains
such as computer vision, making direct application to
bioinformatics problems difficult without customization
and domain adaptation.

An interpretable ML model can identify the factors that
influence its output (e. g. statistically significant features)
and explain the interactions between them (Molnar, 2022).
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Depending on the level of abstraction, methods can be di-
vided into local and global interpretability methods. While
local methods focus on interpreting individual predictions,
global ones try to explain the behavior of the entire model
in the form of diagrams or lists. Various variants of model-
specific and model-independent interpretable ML ap-
proaches have been developed, on which an XAI system
can be built to improve its local and global interpretability
(Wachter et al., 2018), but these methods are most often
used to improve visualization (Weber et al., 2023). Linear
models, decision trees (DTs), and rule-based systems are
less complex and inherently interpretable. However, they
are less accurate compared to tree-based ensembles such as
random forests (RF) and deep neural networks, resulting in
a trade-off between accuracy and interpretability.

Many specific and model-independent interpretable
ML methods have been developed (Azodi et al., 2020). All
these methods can be divided into three main categories:
probing, perturbation, and surrogate models. Examples of
probing methods are gradient-based methods such as gra-
dient-weighted class activation mapping (Grad-CAM++)
and layered relevance propagation (LRP) (Guidotti et al.,
2018). A widely used perturbation-based method is Shapley
additive explanations (SHAP). SHAP is based on coalition
game theory, i. e., on the average marginal contribution of
a feature and the way the payoffs are distributed among its
players (Cubitt, 1991).

Since interpretability comes at the cost of a trade-off
between accuracy and complexity, studies have proposed
training a simple interpretable model to imitate a complex
model (Molnar, 2022). A surrogate or simple proxy model
is a model interpretation strategy that involves training an
initially interpretable model by approximating local black
box predictions (Stiglic et al., 2020; Molnar, 2022).

The majority of surrogate model building tools were de-
veloped with the aim of improving the interpretability and
explainability of black-box ML models covering common
problems in computer vision, text mining or structured data,
and were based on well-known interpretable ML methods
such as LIME (Ribeiro et al., 2016), Model Understand-
ing through Subspace Explanations (MUSE) (Lakkaraju et
al., 2019), SHAP (Lundberg, Lee, 2017) (and its variants
such as SHAP kernel and SHAP tree), Partial Dependency
Graph (PDP), Individual Conditional Expectation (ICE),
Permutation Feature Importance (PFI) and Counterfactual
Explanations (CE) (Wachter et al., 2018).

Large language models

Recently, the use of large language models (LLM) has
become widespread in various fields of science, including
decoding genetic text to predict the manifestation of use-
ful traits in plants. LLMs, such as GPT-4, have conquered
the world, demonstrating amazing capabilities in natural
language proficiency, which immediately prompted re-
searchers to adapt LLMs to a different type of language —
the genome, in order to solve complex problems based on
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large volumes of accumulated data. The success of LLMs
is largely due to the use of transformer-based attention
units in the architecture. The use of such architectural solu-
tions allowed the well-known AlphaFold2 neural network
(Google DeepMind, 2021) to predict three-dimensional
protein structures with unprecedented accuracy. Alpha-
Fold3 (2024), according to the developers, for the first time
surpasses physical methods in its prediction of the 3D struc-
ture of proteins, as well as the interactions of proteins with
each other and with other substances. Profluent’s LLM has
made it possible to create an artificial protein for genome
editing that is comparable in efficiency to the natural one,
but has much greater specificity.

The broad implementation of the results of these achieve-
ments in production requires a deep understanding of the
underlying mechanisms, taking into account complex
interactions, accelerating the search for answers to ques-
tions arising in practice. In particular, there is a need to
shift from identification of SNPs associated with a trait to
identification of genes that affect the trait with a greater
degree of reliability. In addition, it is necessary to take into
account the gene-gene interactions, and to consider not
only one trait, but also pairs of related traits. The solution
to the described problem is impossible without involving
the latest accomplishments in computer science, such as
artificial intelligence based on large language models. An
additional advantage of using such an approach is the ability
to formulate queries in a language close to a natural one
and receive answers in a relatively short time.

Research in this area has increased significantly in re-
cent years. For example, a review (Consens et al., 2023)
on the application of transformer-like models to genetic
data included more than 100 recent papers and noted rapid
development in the field. The use of large language models
based not only on transformers, but also using the so-called
Hyena layer (Poli et al., 2023) to process genomic data was
also noted (Nguyen et al., 2023). One interesting approach
is the possibility of pre-training such models on genome
sequences without using phenotypes.

Currently, the maximum input sequence length among
publicly available DNA transformer-based LLMs is lim-
ited to only 3 x 10% nucleotides for the GENA-LM archi-
tecture. To mitigate this limitation, the performance of a
modified recurrent memory transformer (RMT) architec-
ture in the GENA-LM model was studied in (Kuratov et
al., 2024) for multiple genomic analysis tasks requiring
processing of long DNA sequences. The results obtained in
(Kuratov et al., 2024) showed that augmenting GENA-LM
with RMT leads to a significant performance improvement.

A new method based on a transformer-like neural net-
work to predict the severity of fusarium and the associated
accumulation of the dangerous mycotoxin deoxynivalenol
was proposed (Jubair et al., 2021) that used genomic and
phenotypic data on the barley. The work showed the su-
periority of frequency coding of markers and mentioned
the high memory requirements of the model when using
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a large number of markers, which could be reduced using
selection by the information criterion.

In the paper (Wu C. et al., 2023), a genomic selection
model based on a deep neural network using transformers,
convolutional layers, and an additional information module
was proposed. The model architecture used encoding of
marker positions with trigonometric functions, fast Fourier
transform, Gaussian linear activation function (GELU), and
included blocks of convolutional network, transformer, and
regressor. The model was applied to five datasets, where
it outperformed the four methods used for comparison.

An important source of the phenotype prediction ac-
curacy reduction in models based on genomic data is the
lack of gene-gene interactions consideration. The work
(Cui et al., 2022) proposed an approach for identifying
interactions between genes and taking them into account
in a deep learning model for phenotype prediction. A layer
representing genes as hidden nodes of a sparse network
was added to the deep neural network architecture. Im-
portantly, the Shapley values for hidden nodes of the gene
layer were used to determine the influence of interactions
on the model solution.

Data augmentation

Training large language models requires a large amount
of data because there is a large number of unknown pa-
rameters. The papers (Jubair et al., 2021) and (Wu C. et
al., 2023) consider transformer-like neural network-based
models for genomic prediction. In the paper (Jubair et al.,
2021), GPTransformer contains two Transformer encoding
blocks, uses two nodes for each attention layer, and each
Transformer block contains 256 hidden neurons. The output
is a vector, which is the input of a feedforward network,
which contains one output neuron. The mean squared
error (MSE) loss function is used. A dataset of 400 geno-
types phenotyped in 3 geographic areas and 2 years, i. e.
2,400 records, was used for training and analysis, and
the Pearson correlation coefficient between the model
prediction and the data was 0.6, which allowed obtaining
significant results.

The GPformer model (Wu C. et al., 2023), based on
the transformer-like neural network for predicting phe-
notype from genotype, was separately trained and tested
on the Soybean999, Maize282, Rice469, Wheat599 and
Wheat2403 datasets, which have 999, 282, 469, 599 and
2,403 records, respectively. The resulting Pearson correla-
tion coefficient was 0.4—0.8 for different variants.

An additional tool, as in the case of deep learning models
for image processing, can be data augmentation, which
has recently been studied for deep learning models in the
field of bioinformatics. For example, a new approach to
augmentation of biological sequence data was proposed in
(Jietal., 2024), in which the chromosome order is changed.
This method of generating additional data can be used for
training, because the models cannot use the chromosome
number as a predictor. In the work (Montesinos-Lopez et
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al., 2024) a blending method was considered, which offers
a domain-independent approach to augmentation based on
the assumption that a linear combination of feature vectors
should approximately correspond to a linear combination of
their corresponding target values. In (Vilov, Heinig, 2022),
data augmentation was successfully used to train a classifier
of genomic variants. The approaches based on a genera-
tive network (GAN) and a Boltzmann machine (RBM) for
compiling synthetic genomes were presented in (Yelmen
etal., 2021). In the mentioned works, the authors managed
to improve the accuracy and generalization ability of the
models, so data augmentation can be used to expand the
existing dataset for training the LLM.

Anew method was proposed to predict the classification of
enhancers into strong and weak using data augmentation and
a convolutional neural network ES-ARCNN (Zhang T.-H.
et al., 2021). Two data augmentation techniques, such
as reverse augmentation and shifting, were used to train
ES-ARCNN for previously identified enhancers.

Transfer learning

Transfer learning enables the creation of effective models
for a target domain using knowledge from a different but
related source domain. In medical research, knowledge
transfer can significantly improve the accuracy of disease
prediction for data-poor populations with imbalanced data
(Gao, Cui, 2022). This approach also has great potential
to improve the prediction of complex phenotypic traits,
such as plant yield, although it does not work in all cases
(Kovalev et al., 2018). Transfer learning is widely used to
extract features from images with the models pre-trained on
general-purpose datasets and then fine-tuned on a relatively
limited, specialized dataset (Kirchler et al., 2022).

To facilitate the application of the Transfer learning
approach to phenotype-to-genotype prediction models, an
efficient implementation of TrG2P was proposed in (Li et
al., 2024). In the developed framework, firstly, convolu-
tional neural networks were trained using genomic data
and phenotypic traits with simpler dependencies than a
complex target trait, such as yield. Then, the parameters of
the convolutional layers of these pre-trained models were
transferred to the target trait prediction task, and the fully
connected layers were retrained, thus leading to improved
prediction accuracy of the resulting model (Li et al., 2024).

Dimensionality reduction methods

The explosive growth of available amounts of data not only
brings unprecedented progress in bioinformatics and oppor-
tunities to perform predictive modeling (Han, Liu, 2022),
but also poses challenges to existing Al methods and tools,
such as data heterogeneity, high dimensionality, and volume
(Karim et al., 2021). Principal component analysis (PCA)
and isometric feature mapping (Isomap) are widely used
as dimensionality reduction methods (Fournier, Aloise,
2019). However, the representations obtained by these
methods often lose essential properties (Aggarwal, Reddy,
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2014), making them less effective against a well-known
phenomenon called the curse of dimensionality, especially
for high-dimensional datasets (Fournier, Aloise, 2019).

Hybrid methods
With increasing computing power, existing machine learn-
ing approaches are frequently combined into complex
hybrid models. For example, (Chen C. et al., 2024) con-
sidered algorithms that first use BayesR/GWAS to identify
a subset of 1,000 markers with moderate to large marginal
additive effects, and then use attention networks to make
predictions based on these effects and their interactions.
Hybrid methods with attention networks yielded the low-
est variance in prediction accuracy across all validation
datasets and the lowest root mean square error, the criteria
usually applied in practical breeding programs. In (Ramzan
et al., 2020), a two-step procedure was proposed to solve
the problem of detecting a large number of loci with small
effects on the phenotype. In the first step, the Wald test
statistics values are approximated by cubic splines, and
genomic regions with spline’s extrema that are higher than
expected are considered as quantitative trait loci (QTLs).
SNPs in these QTLs are then ranked by their association
with the phenotype using a random forest approach. In the
work (Nascimento et al., 2024), a Stacking Ensemble Lear-
ning (SEL) model was proposed, which combines several
models that can potentially predict important traits more
accurately than individual ones; the model was applied to
the example of coffee breeding in Coffea arabica.
Acrecently proposed direction of research is the combina-
tion of machine learning models and crop growth models
based on biophysical and biochemical processes (CGM).
It has been suggested that such an approach can improve
the predictions of integrative traits by decomposing them
into simpler intermediate traits with better heritability
(Larue et al., 2024). In the study, the combined CGM-
GP model outperformed the genomic selection models
without CGM integration in the predictive ability, regard-
less of the regression method used. CGM simulates non-
linear (causal) plant responses to the environment through
model parameters (representing genotypic sensitivity to
these responses, GXE). Thus, calibrated CGMs for a geno-
type can be useful for predicting its performance under
unknown conditions; on the other hand, it is impossible
to predict the performance of unknown genotypes (Larue
etal., 2019).

Conclusions

The great variety of machine learning and artificial intel-
ligence methods finds applications in the field of bioinfor-
matics of agricultural plants for such problems as genomic
prediction of important phenotypic traits. ML and Al attract
close attention of researchers and practitioners from dif-
ferent areas as well as cause resonance in the public, and
consequently the number of published manuscripts grows
explosively.
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The main contemporary trends in the field of ML and Al
for GP were included in the review. The examples of the
application of common machine learning models and their
variants modified for bioinformatics tasks were considered.
These examples illustrated the usage of the ML and Al
methods alone and in combination with dimensionality
reduction and feature selection approaches, the construction
of explainable Al solutions and developing hybrid methods.
The increasing role of large language models deserves a
separate mention, including those based on transformers,
and the associated data augmentation methods needed to
train models with a huge number of parameters. Transfer
learning methods can be used to mitigate the problem of
insufficient or imbalanced data.

An important aspect of ML and Al success is data repre-
sentation, for example, the artificial image objects described
in the review make it possible to utilize the powerful and
highly efficient apparatus of convolutional neural networks
for extraction of characteristic patterns from the data. Such
an approach also allows ranking the importance of predic-
tors based on attention maps.

With the rise of the Internet of things, the spread of
mobile devices and autonomous robots, a new trend of
edge computing started to evolve, seeking solutions to the
compactization of models and optimization of algorithms
for resource-limited devices. This topic deserves a separate
review and was not considered in the current work.
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