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Abstract. A rapid growth of the available body of genomic data has made it possible to obtain extensive results in 
genomic prediction and identification of associations of SNPs with phenotypic traits. In many cases, to identify new 
relationships between phenotypes and genotypes, it is preferable to use machine learning, deep learning and arti-
ficial intelligence, especially explainable artificial intelligence, capable of recognizing complex patterns. 80 sources 
were manually selected; while there were no restrictions on the release date, the main attention was paid to the 
originality of the proposed approach for use in genomic prediction. The article considers models for genomic pre-
diction, convolutional neural networks, explainable artificial intelligence and large language models.  Attention is 
paid to Data Augmentation, Transfer Learning, Dimensionality Reduction methods and hybrid  methods. Research 
in the field of model-specific and model-independent methods for interpretation of model solutions is re presented 
by three main categories: sensing, perturbation, and surrogate model. The considered examples reflect the main 
modern trends in this area of research. The growing role of large language models, including those based on 
transformers, for genetic code processing, as well as the development of data augmentation methods, are noted. 
Among hybrid approaches, the prospect of combining machine learning models and models of plant development 
based on biophysical and biochemical processes is emphasized. Since the methods of machine learning and arti-
ficial intelligence are the focus of attention of both specialists in various applied fields and fundamental scientists, 
and also cause public resonance, the number of works devoted to these topics is growing explosively. 
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Аннотация. Быстро накапливающийся массив геномных данных – секвенированных геномов сельскохозяй-
ственных растений – позволил получить обширные результаты по геномному прогнозированию и выявле-
нию ассоциаций однонуклеотидных полиморфизмов с фенотипическими признаками. Во многих случаях 
для обнаружения новых связей фенотипов с генотипами предпочтительно использовать методы машинного 
обучения, глубокого обучения и искусственного интеллекта, в особенности объяснимого, способные рас-
познавать сложные закономерности. Вручную было отобрано 80 источников, при этом ограничения по дате 
выхода не ставилось, основной интерес представляла оригинальность предлагаемого подхода или модифи-
кации для применения в задаче геномного прогнозирования. В статье рассмотрены модели для геномного 
прогнозирования, сверточные нейронные сети, объяснимый искусственный интеллект и большие языковые 
модели. Уделено внимание подходам к дополнению данных, переносу знаний, методам снижения размер-
ности и гибридным методам. Приведен пример современного способа кодирования больших геномных 
данных в искусственные изображения, преимуществом которых являются наглядная визуализация и воз-
можность использования известных моделей для извлечения признаков. Исследования в области модель-
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но-специфичных и модельно-независимых методов интерпретации решения моделей представлены тремя 
основными категориями: зондирование, возмущение и суррогатная модель. В рассмотренных примерах от-
ражены основные современные тренды в изучаемой области. Отмечены растущая роль больших языковых 
моделей, в том числе основанных на трансформерах, для обработки генетического кода, а также разраба-
тываемые методы аугментации данных. Дополнительным преимуществом применения языковой модели 
может стать возможность формулировать запросы на близком к естественному языке и получать ответы за 
относительно короткое время. Среди гибридных подходов выделена перспективность сочетания моделей 
машинного обучения и моделей развития растений на основе биофизических и биохимических процессов. 
Поскольку методы машинного обучения и искусственного интеллекта находятся в фокусе внимания как спе-
циалистов в различных прикладных областях, так и фундаментальных ученых, а кроме того, вызывают обще-
ственный резонанс, количество посвященных этим темам работ имеет взрывной рост. 
Ключевые слова: геномное прогнозирование; фенотип растений; машинное обучение; глубокое обучение; 
искусственный интеллект 

Introduction
To this day, a tremendous amount of genomic data has been 
accumulated and it continues to grow rapidly. These data 
include the sequenced genomes of agricultural plants such 
as chickpea, vigna, soybean, wheat, rye, flax etc. (Bragina 
et al., 2019; Ichihara et al., 2023; Chamorro-Padial et al., 
2024; Tang et al., 2024). Many annotations have been 
obtained, classical methods of genomic prediction and 
genome-wide association studies have been successfully 
applied to these data, and SNPs associated with different 
important phenotypes have been identified (Hayes, 2013). 

Many phenotypic traits that selection programs are tar-
geted to are correlated and thus require use of multi-trait 
models in order to obtain statistically significant predic-
tions. Machine learning methods are suitable for such a 
class of problems as well as deep learning models and 
artificial intelligence, explainable AI in particular, which 
are able to recognize complex patterns in the given data 
and generalize extracted knowledge. 

The papers for the current review were selected based 
on the originality of the proposed approach or modification 
for application to the solution of the genomic prediction 
problem. The search was performed in PubMed (https://
pubmed.ncbi.nlm.nih.gov/, accessed on November 7, 2024) 
using terms “plants genomic prediction machine learning” 
and dates from the beginning of the year 2010 to the end 
of the year 2024, which showed exponential growth of the 
number of manuscripts per year with a small decrease in 
the growth rate after the year 2021 (Fig. 1).

Eighty sources were selected manually without restric-
tions on the publication date. The oldest manuscript was 
published in the year 1988, the majority of works (60 %) 
were published after the year 2020, and 20 % of the re-
viewed papers belong to the last two years (Fig. 2).

Genomic prediction
Genomic prediction (GP) aims to predict the phenotype of 
an organism given single nucleotide polymorphism (SNP) 
data (Meuwissen et al., 2001). The wide range of genomic 
prediction methods can be divided into two groups: linear 
and nonparametric. Linear methods such as BLUP work 
well for additive traits. They model the phenotype as a 
function of the contributions of different factors such as 

individual markers, weather parameters, field conditions, 
etc. On the other hand, nonparametric machine learning 
methods such as support vector machines, random forests, 
and gradient boosting can model nonlinear traits, provid-
ing great flexibility to accommodate complex genotype-
phenotype associations (Montesinos-López et al., 2021).

Genomic prediction tools based on statistical methods 
such as genomic best linear unbiased prediction (GBLUP) 
are widely used in crop breeding. However, these tools 
are not designed to account for nonlinear relationships in 
high-dimensional datasets or to handle high-dimensional 
datasets such as drone images. Machine learning (ML) 
algorithms have the potential to surpass the prediction 
accuracy of current tools used to predict phenotypic traits 
from genomic data due to their ability to autonomously 
extract features and represent their relationships at multiple 
levels of abstraction (Danilevicz et al., 2022).

The accuracy of prediction depends on the quality and 
pre-processing of phenotypic data, the platform used to ob-
tain genomic information, the population breeding scheme, 
the internal genetic architecture of the trait, the genetic 
structure of the population, how genotype-environment 
interactions are treated, and the prediction method (de Los 
Campos et al., 2013).

List of abbreviations

SNP – single nucleotide polymorphism
GP – genomic prediction
GBLUP – genomic best linear unbiased predictor
ML – machine learning
RRBLUP – ridge regression with best linear unbiased 

predictor
CNN – convolutional neural network
AIO – artificial image object
PCA – principal component analysis
XAI – Explainable Artificial Intelligence
DT – decision trees
RF – random forest
LLM – large language model
GPT – generative pretrained transformer
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It was reported in (Sandhu et al., 2021) that deep lear-
ning models outperformed traditional ridge regression with 
best linear unbiased prediction (RRBLUP) and Bayesian 
models under all forecasting scenarios. Machine learning 
methods were used to increase the statistical power of the 
models. To apply multi-stage machine learning, a new 
BioM2 package (Zhang S. et al., 2024) was proposed for 
the statistical computing system R, which has the ability 
to apply stratification and aggregation of multivariate data 
based on biological information to improve the training 
efficiency of models. In this case, stratification allows 
one to build subsets of data, for example, training and test 
samples, by controlling the ratio of the number of objects 
from different groups, for example, SNPs in genes involved 
in different processes.

At the same time, aggregation of multivariate data 
makes it possible to use simpler and more easily interpre-
table models that can be refined during multi-stage trai-
ning. An innovative computational framework, PlantMine, 
which combines feature selection and machine learning 
methods to efficiently identify key SNPs, was proposed in 
(Tong et al., 2024), taking critical factors for trait improve-
ment in rice as an example. Various data mining algorithms 
were applied to the 3,000 Rice Genomes Project dataset. 
The results highlighted the effectiveness of combining 
feature selection with machine learning to accurately 
identify key SNPs, offering a promising avenue to accel-
erate the breeding of new plant varieties with improved 
yield and stress tolerance. The overall model performance  
depended more on the prediction algorithm than the pre-
dictor selection method. Among all the models, decision 
tree-based machine learning methods (random forests 
and gradient boosting) performed the best, while classical 
Bayesian methods were prone to overfitting (Sirsat et al., 
2022).

Convolutional neural networks  
and artificial image objects
Among machine learning methods, convolutional neural 
networks (CNNs) provide the best ability to discover hid-
den patterns or features from data and are best suited for 
image analysis (Pook et al., 2020; Montesinos-López et al., 
2021). Artificial image objects (AIO) are a new concept 
for genomic data representation that can be used to encode 
large genomic data by treating individual genetic variants 
as pixels (Galli et al., 2022). The advantages of AIOs in-
clude convenient, simple visualization, compactness, and 
the ability to apply a wide range of methods developed for 
image analysis and classification (Chen X. et al., 2021b), in 
particular CNNs (Chen X. et al., 2021a). Therefore, AIOs 
can be used by CNNs for regression and classification tasks 
(Bavykina et al., 2022).

The algorithm for optimization of data packing in AIO 
was proposed in (Bazgir et al., 2020). The DeepFeature 
package proposed in (Sharma et al., 2019, 2021) was de-
veloped to transform large-scale experimental data, such 
as genomic or transcriptomic data, into a form optimal for 
training a CNN model. The input vector is transformed 
into a matrix using t-SNE, kernel PCA, PHATE, or UMAP, 
and the smallest rectangle containing all elements is found 
using the convex hull algorithm. A rotation is performed 
to flatten the image, converting Cartesian coordinates into 
pixel indices.

The application of CNN to AIO processing enables the 
calculation and visualization of the influence of various 
factors on the final solution of the model. The work of (Liu 
et al., 2019) was considered to be the first study to apply 
the saliency map to identify the most important predictors 
in soybean. In this study, gaps in the data were treated as 
a new genotype; as a result, each SNP was encoded with 
four binary values. The significance value of each geno-

Fig. 1. The growth of the number of works in PubMed. Fig. 2. The distribution of the selected works over the years.
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type was calculated as the maximum absolute value of the 
gradients among these four encoding channels, and the 
population median was used as a measure of the contribu-
tion of the SNP.

The ResNet architecture, widely used in deep learning 
methods, was adapted for use in genomic selection models 
in (Xie et al., 2024). Since each locus makes a different 
contribution to the final phenotype, successive convolutions 
are more suitable for the genomic selection model than 
layer pooling. Thus, a deep learning algorithm, ResGS, was 
proposed that significantly alleviates the problem of deg-
radation, i. e., the decrease in performance with increasing 
model depth, which can improve the prediction accuracy 
compared to traditional methods (Wu H. et al., 2024).

Recently, more and more attention has been paid to the 
internal mechanisms of convolutional neural networks 
and the reasons why the network makes certain decisions 
(Wang et al., 2020). Several methods have been proposed, 
including data permutation and backpropagation ap-
proaches (Zhang X., Gao, 2020), gradient-based algorithms 
(Selvaraju et al., 2020), and class activation maps (Wang 
et al., 2020). A saliency map represents the spatial regions 
associated with a particular class in a given image (Si-
monyan et al., 2014). Class activation maps provide a visual 
explanation for a single input image (Chattopadhay et al., 
2018; Selvaraju et al., 2020), but are sensitive to the model 
architecture. Gradient-weighted class activation mapping 
(Grad-CAM) uses the gradients of any target concept fed to 
the final convolutional layer to create a coarse localization 
map, which highlights important regions in the image for 
class prediction (Selvaraju et al., 2017).

Score-CAM, unlike previous class activation mapping-
based approaches, removes the dependence on gradients 
by deriving the weights of each activation map by directly 
computing the network for instances of the target class, with 
the final output being a linear combination of the weights 
and activation maps (Wang et al., 2020). Grad-CAM++ 
(Chattopadhay et al., 2018), a modification of Grad-CAM 
(Selvaraju et al., 2020), generalizes CAM to models without 
global pooling layers. LayerCAM (Jiang et al., 2021) can 
generate robust class activation maps from a combination 
of class activation maps from different CNN layers.

Explainable Artificial Intelligence
Explainable Artificial Intelligence (XAI) aims to overcome 
the black box problem and provide insight into how AI 
systems make decisions. Interpretable ML models can 
explain how they make predictions and identify the fac-
tors that influence their results. However, most modern 
interpretable ML methods were developed for domains 
such as computer vision, making direct application to 
bioinformatics problems difficult without customization 
and domain adaptation.

An interpretable ML model can identify the factors that 
influence its output (e. g. statistically significant features) 
and explain the interactions between them (Molnar, 2022). 

Depending on the level of abstraction, methods can be di-
vided into local and global interpretability methods. While 
local methods focus on interpreting individual predictions, 
global ones try to explain the behavior of the entire model 
in the form of diagrams or lists. Various variants of model-
specific and model-independent interpretable ML ap-
proaches have been developed, on which an XAI system 
can be built to improve its local and global interpretability 
(Wachter et al., 2018), but these methods are most often 
used to improve visualization (Weber et al., 2023). Linear 
models, decision trees (DTs), and rule-based systems are 
less complex and inherently interpretable. However, they 
are less accurate compared to tree-based ensembles such as 
random forests (RF) and deep neural networks, resulting in 
a trade-off between accuracy and interpretability.

Many specific and model-independent interpretable 
ML methods have been developed (Azodi et al., 2020). All 
these methods can be divided into three main categories: 
probing, perturbation, and surrogate models. Examples of 
probing methods are gradient-based methods such as gra-
dient-weighted class activation mapping (Grad-CAM++) 
and layered relevance propagation (LRP) (Guidotti et al., 
2018). A widely used perturbation-based method is Shapley 
additive explanations (SHAP). SHAP is based on coalition 
game theory, i. e., on the average marginal contribution of 
a feature and the way the payoffs are distributed among its 
players (Cubitt, 1991).

Since interpretability comes at the cost of a trade-off 
between accuracy and complexity, studies have proposed 
training a simple interpretable model to imitate a complex 
model (Molnar, 2022). A surrogate or simple proxy model 
is a model interpretation strategy that involves training an 
initially interpretable model by approximating local black 
box predictions (Stiglic et al., 2020; Molnar, 2022).

The majority of surrogate model building tools were de-
veloped with the aim of improving the interpretability and 
explainability of black-box ML models covering common 
problems in computer vision, text mining or structured data, 
and were based on well-known interpretable ML methods 
such as LIME (Ribeiro et al., 2016), Model Understand-
ing through Subspace Explanations (MUSE) (Lakkaraju et 
al., 2019), SHAP (Lundberg, Lee, 2017) (and its variants 
such as SHAP kernel and SHAP tree), Partial Dependency 
Graph (PDP), Individual Conditional Expectation (ICE), 
Permutation Feature Importance (PFI) and Counterfactual 
Explanations (CE) (Wachter et al., 2018).

Large language models
Recently, the use of large language models (LLM) has 
become widespread in various fields of science, including 
decoding genetic text to predict the manifestation of use-
ful traits in plants. LLMs, such as GPT-4, have conquered 
the world, demonstrating amazing capabilities in natural 
language proficiency, which immediately prompted re-
searchers to adapt LLMs to a different type of language – 
the genome, in order to solve complex problems based on 
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large volumes of accumulated data. The success of LLMs 
is largely due to the use of transformer-based attention 
units in the architecture. The use of such architectural solu-
tions allowed the well-known AlphaFold2 neural network 
(Google DeepMind, 2021) to predict three-dimensional 
protein structures with unprecedented accuracy. Alpha-
Fold3 (2024), according to the developers, for the first time 
surpasses physical methods in its prediction of the 3D struc-
ture of proteins, as well as the interactions of proteins with 
each other and with other substances. Profluent’s LLM has 
made it possible to create an artificial protein for genome 
editing that is comparable in efficiency to the natural one, 
but has much greater specificity.

The broad implementation of the results of these achieve-
ments in production requires a deep understanding of the 
underlying mechanisms, taking into account complex 
interactions, accelerating the search for answers to ques-
tions arising in practice. In particular, there is a need to 
shift from identification of SNPs associated with a trait to 
identification of genes that affect the trait with a greater 
degree of reliability. In addition, it is necessary to take into 
account the gene-gene interactions, and to consider not 
only one trait, but also pairs of related traits. The solution 
to the described problem is impossible without involving 
the latest accomplishments in computer science, such as 
artificial intelligence based on large language models. An 
additional advantage of using such an approach is the ability 
to formulate queries in a language close to a natural one 
and receive answers in a relatively short time.

Research in this area has increased significantly in re-
cent years. For example, a review (Consens et al., 2023) 
on the application of transformer-like models to genetic 
data included more than 100 recent papers and noted rapid 
development in the field. The use of large language models 
based not only on transformers, but also using the so-called 
Hyena layer (Poli et al., 2023) to process genomic data was 
also noted (Nguyen et al., 2023). One interesting approach 
is the possibility of pre-training such models on genome 
sequences without using phenotypes.

Currently, the maximum input sequence length among 
publicly available DNA transformer-based LLMs is lim-
ited to only 3 × 104 nucleotides for the GENA-LM archi-
tecture. To mitigate this limitation, the performance of a 
modified recurrent memory transformer (RMT) architec-
ture in the GENA-LM model was studied in (Kuratov et 
al., 2024) for multiple genomic analysis tasks requiring 
processing of  long DNA sequences. The results obtained in 
(Kuratov et al., 2024) showed that augmenting GENA-LM 
with RMT leads to a significant performance improvement.

A new method based on a transformer-like neural net-
work to predict the severity of fusarium and the associated 
accumulation of the dangerous mycotoxin deoxynivalenol 
was proposed (Jubair et al., 2021) that used genomic and 
phenotypic data on the barley. The work showed the su-
periority of frequency coding of markers and mentioned 
the high memory requirements of the model when using 

a large number of markers, which could be reduced using 
selection by the information criterion.

In the paper (Wu C. et al., 2023), a genomic selection 
model based on a deep neural network using transformers, 
convolutional layers, and an additional information module 
was proposed. The model architecture used encoding of 
marker positions with trigonometric functions, fast Fourier 
transform, Gaussian linear activation function (GELU), and 
included blocks of convolutional network, transformer, and 
regressor. The model was applied to five datasets, where 
it outperformed the four methods used for comparison.

An important source of the phenotype prediction ac-
curacy reduction in models based on genomic data is the 
lack of gene-gene interactions consideration. The work 
(Cui et al., 2022) proposed an approach for identifying 
interactions between genes and taking them into account 
in a deep learning model for phenotype prediction. A layer 
representing genes as hidden nodes of a sparse network 
was added to the deep neural network architecture. Im-
portantly, the Shapley values for hidden nodes of the gene 
layer were used to determine the influence of interactions 
on the model solution.

Data augmentation
Training large language models requires a large amount 
of data because there is a large number of unknown pa-
rameters. The papers (Jubair et al., 2021) and (Wu C. et 
al., 2023) consider transformer-like neural network-based 
models for genomic prediction. In the paper (Jubair et al., 
2021), GPTransformer contains two Transformer encoding 
blocks, uses two nodes for each attention layer, and each 
Transformer block contains 256 hidden neurons. The output 
is a vector, which is the input of a feedforward network, 
which contains one output neuron. The mean squared 
error (MSE) loss function is used. A dataset of 400 geno-
types phenotyped in 3 geographic areas and 2 years, i. e.  
2,400 records, was used for training and analysis, and 
the Pearson correlation coefficient between the model 
prediction and the data was 0.6, which allowed obtaining 
significant results.

The GPformer model (Wu C. et al., 2023), based on 
the transformer-like neural network for predicting phe-
notype from genotype, was separately trained and tested 
on the Soybean999, Maize282, Rice469, Wheat599 and 
Wheat2403 datasets, which have 999, 282, 469, 599 and 
2,403 records, respectively. The resulting Pearson correla-
tion coefficient was 0.4–0.8 for different variants.

An additional tool, as in the case of deep learning models 
for image processing, can be data augmentation, which 
has recently been studied for deep learning models in the 
field of bioinformatics. For example, a new approach to 
augmentation of biological sequence data was proposed in 
(Ji et al., 2024), in which the chromosome order is changed. 
This method of generating additional data can be used for 
training, because the models cannot use the chromosome 
number as a predictor. In the work (Montesinos-López et 
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al., 2024) a blending method was considered, which offers 
a domain-independent approach to augmentation based on 
the assumption that a linear combination of feature vectors 
should approximately correspond to a linear combination of 
their corresponding target values. In (Vilov, Heinig, 2022), 
data augmentation was successfully used to train a classifier 
of genomic variants. The approaches based on a genera-
tive network (GAN) and a Boltzmann machine (RBM) for 
compiling synthetic genomes were presented in (Yelmen 
et al., 2021). In the mentioned works, the authors managed 
to improve the accuracy and generalization ability of the 
models, so data augmentation can be used to expand the 
existing dataset for training the LLM.

A new method was proposed to predict the classification of 
enhancers into strong and weak using data augmentation and 
a convolutional neural network ES-ARCNN (Zhang T.-H. 
et al., 2021). Two data augmentation techniques, such 
as reverse augmentation and shifting, were used to train  
ES-ARCNN for previously identified enhancers.

Transfer learning
Transfer learning enables the creation of effective models 
for a target domain using knowledge from a different but 
related source domain. In medical research, knowledge 
transfer can significantly improve the accuracy of disease 
prediction for data-poor populations with imbalanced data 
(Gao, Cui, 2022). This approach also has great potential 
to improve the prediction of complex phenotypic traits, 
such as plant yield, although it does not work in all cases 
(Kovalev et al., 2018). Transfer learning is widely used to 
extract features from images with the models pre-trained on 
general-purpose datasets and then fine-tuned on a relatively 
limited, specialized dataset (Kirchler et al., 2022).

To facilitate the application of the Transfer learning 
approach to phenotype-to-genotype prediction models, an 
efficient implementation of TrG2P was proposed in (Li et 
al., 2024). In the developed framework, firstly, convolu-
tional neural networks were trained using genomic data 
and phenotypic traits with simpler dependencies than a 
complex target trait, such as yield. Then, the parameters of 
the convolutional layers of these pre-trained models were 
transferred to the target trait prediction task, and the fully 
connected layers were retrained, thus leading to improved 
prediction accuracy of the resulting model (Li et al., 2024).

Dimensionality reduction methods
The explosive growth of available amounts of data not only 
brings unprecedented progress in bioinformatics and oppor-
tunities to perform predictive modeling (Han, Liu, 2022), 
but also poses challenges to existing AI methods and tools, 
such as data heterogeneity, high dimensionality, and volume 
(Karim et al., 2021). Principal component analysis (PCA) 
and isometric feature mapping (Isomap) are widely used 
as dimensionality reduction methods (Fournier, Aloise, 
2019). However, the representations obtained by these 
methods often lose essential properties (Aggarwal, Reddy, 

2014), making them less effective against a well-known 
phenomenon called the curse of dimensionality, especially 
for high-dimensional datasets (Fournier, Aloise, 2019).

Hybrid methods
With increasing computing power, existing machine learn-
ing approaches are frequently combined into complex 
hybrid models. For example, (Chen C. et al., 2024) con-
sidered algorithms that first use BayesR/GWAS to identify 
a subset of 1,000 markers with moderate to large marginal 
additive effects, and then use attention networks to make 
predictions based on these effects and their interactions. 
Hybrid methods with attention networks yielded the low-
est variance in prediction accuracy across all validation 
datasets and the lowest root mean square error, the criteria 
usually applied in practical breeding programs. In (Ramzan 
et al., 2020), a two-step procedure was proposed to solve 
the problem of detecting a large number of loci with small 
effects on the phenotype. In the first step, the Wald test 
statistics values are approximated by cubic splines, and 
genomic regions with spline’s extrema that are higher than 
expected are considered as quantitative trait loci (QTLs). 
SNPs in these QTLs are then ranked by their association 
with the phenotype using a random forest approach. In the 
work (Nascimento et al., 2024), a Stacking Ensemble Lear-
ning (SEL) model was proposed, which combines several 
models that can potentially predict important traits more 
accurately than individual ones; the model was applied to 
the example of coffee breeding in Coffea arabica.

A recently proposed direction of research is the combina-
tion of machine learning models and crop growth models 
based on biophysical and biochemical processes (CGM). 
It has been suggested that such an approach can improve 
the predictions of integrative traits by decomposing them 
into simpler intermediate traits with better heritability 
(Larue et al., 2024). In the study, the combined CGM-
GP model outperformed the genomic selection models  
without CGM integration in the predictive ability, regard-
less of the regression method used. CGM simulates non-
linear (causal) plant responses to the environment through 
model parameters (representing genotypic sensitivity to 
these responses, G×E). Thus, calibrated CGMs for a geno-
type can be useful for predicting its performance under 
unknown conditions; on the other hand, it is impossible 
to predict the performance of unknown genotypes (Larue 
et al., 2019).

Conclusions
The great variety of machine learning and artificial intel-
ligence methods finds applications in the field of bioinfor-
matics of agricultural plants for such problems as genomic 
prediction of important phenotypic traits. ML and AI attract 
close attention of researchers and practitioners from dif-
ferent areas as well as cause resonance in the public, and 
consequently the number of published manuscripts grows 
explosively.
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The main contemporary trends in the field of ML and AI 
for GP were included in the review. The examples of the 
application of common machine learning models and their 
variants modified for bioinformatics tasks were considered. 
These examples illustrated the usage of the ML and AI 
methods alone and in combination with dimensionality 
reduction and feature selection approaches, the construction 
of explainable AI solutions and developing hybrid methods. 
The increasing role of large language models deserves a 
separate mention, including those based on transformers, 
and the associated data augmentation methods needed to 
train models with a huge number of parameters. Transfer 
learning methods can be used to mitigate the problem of 
insufficient or imbalanced data.

An important aspect of  ML and AI success is data repre-
sentation, for example, the artificial image objects described 
in the review make it possible to utilize the powerful and 
highly efficient apparatus of convolutional neural networks 
for extraction of characteristic patterns from the data. Such 
an approach also allows ranking the importance of predic-
tors based on attention maps.

With the rise of the Internet of things, the spread of 
mobile devices and autonomous robots, a new trend of 
edge computing started to evolve, seeking solutions to the 
compactization of models and optimization of algorithms 
for resource-limited devices. This topic deserves a separate 
review and was not considered in the current work.
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