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Abstract. Vision plays a key role in the lives of various organisms, enabling spatial orientation, foraging, predator 
avoidance and social interaction. In species with relatively simple visual systems, such as insects, effective behav-
ioral strategies are achieved through high neural specialization, adaptation to specific environmental conditions, 
and the use of additional sensory systems such as olfaction or hearing. Animals with more complex vision and 
nervous systems, such as mammals, have greater cognitive abilities and flexibility, but this comes with increased 
demands on the brain’s energy costs and computational resources. Modeling the features of such systems in a 
virtual environment could allow researchers to explore the fundamental principles of sensorimotor integration and 
the limits of cognitive complexity, as well as test hypotheses about the interaction between perception, memory 
and decision-making mechanisms. In this work, we implement and investigate a model of virtual organisms with a 
visual system operating in a three-dimensional physical environment using the Unity ML-Agents software – one of 
the most high-performance simulation platforms currently available. We propose a hierarchical control architecture 
that separates locomotion and navigation tasks between two modules: (1) visual perception and decision-making, 
and (2) coordinated control of limb movement for locomotion in the physical environment. A series of numerical 
experiments was conducted to examine the influence of visual system parameters (e. g, resolution of the “first-
person” view), environmental configuration and agent architectural features on the efficiency and outcomes of 
reinforcement learning (using the PPO algorithm). The results demonstrate the existence of an optimal range of 
resolutions that provide a trade-off between computational complexity and success in accomplishing the task, 
while excessive dimensionality of sensory inputs or action space leads to slower learning. We performed system 
performance profiling and identified key bottlenecks in large-scale simulations. The discussion considers biological 
parallels, highlighting cases of high behavioral efficiency in insects with relatively low-resolution visual systems, 
and the potential of neuroevolutionary approaches for adapting agent architectures. The proposed approach and 
the results obtained are of potential interest to researchers working on biologically inspired artificial agents, evolu-
tionary modeling, and the study of cognitive processes in artificial systems.
Key words: virtual organism; computational modeling; computational complexity; vision system; neural network; 
simulator; PPO; reinforcement learning; Unity ML-Agents

For citation: Zenin M.S., Devyaterikov A.P., Palyanov A.Yu. Self-learning virtual organisms in a physics simulator: 
on the optimal resolution of their visual system, the architecture of the nervous system and the computational 
complexity of the problem. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2025;29(7):1051-1061. doi 
10.18699/vjgb-25-110

Самообучающиеся виртуальные организмы  
в физическом симуляторе: об оптимальном разрешении  
их зрительной системы, архитектуре нервной системы  
и вычислительной сложности задачи
М.С. Зенин1, А.П. Девятериков2, А.Ю. Пальянов 1, 2 

1 Новосибирский национальный исследовательский государственный университет, Новосибирск, Россия
2 Институт систем информатики им. А.П. Ершова Сибирского отделения Российской академии наук, Новосибирск, Россия

 palyanov@iis.nsk.su

© Zenin M.S., Devyaterikov A.P., Palyanov A.Yu., 2025

This work is licensed under a Creative Commons Attribution 4.0 License

SYSTEMS COMPUTATIONAL BIOLOGY
Original article

Vavilovskii Zhurnal Genetiki i Selektsii
Vavilov Journal of Genetics and Breeding. 2025;29(7):1051-1061

doi 10.18699/vjgb-25-110

https://orcid.org/0000-0003-1108-1486
https://orcid.org/0000-0003-1108-1486


M.S. Zenin, A.P. Devyaterikov 
A.Yu. Palyanov

1052 Vavilovskii Zhurnal Genetiki i Selektsii / Vavilov Journal of Genetics and Breeding • 2025 • 29 • 7

Self-learning virtual organisms  
in a physics simulator

Аннотация. Зрение играет ключевую роль в жизни множества различных организмов, обеспечивая ориента-
цию в пространстве, поиск пищи, избегание хищников и социальное взаимодействие. У видов с относительно 
простой зрительной системой, таких как насекомые, эффективная поведенческая стратегия достигается за 
счет высокой специализации нейронов, адаптации к конкретным условиям среды, а также благодаря допол-
нительным сенсорным системам – обонянию или слуху. У животных с более сложным зрением и нервной си-
стемой, таких как млекопитающие, когнитивные возможности и способности к адаптации значительно выше, 
однако выше и энергозатраты на работу мозга. Моделирование особенностей таких систем в виртуальной 
среде позволило бы исследовать фундаментальные принципы функционирования и обучения когнитивных 
систем, включая механизмы восприятия, памяти, принятия решений и их взаимодействие. В данной работе 
объектом исследования являются виртуальные организмы, обладающие зрительной системой и функциони-
рующие в трехмерной физической среде на базе Unity ML-Agents – одного из наиболее высокопроизводи-
тельных современных симуляторов. Предложенная иерархическая архитектура управления, разделяющая 
когнитивные задачи между двумя модулями – зрительного восприятия/принятия решений и управления 
координированным движением конечностей для перемещения в физической среде – показала существенно 
большую скорость и эффективность обучения по сравнению с единой системой. Проведена серия числен-
ных экспериментов, направленных на выявление влияния параметров зрительной системы, конфигурации 
среды и архитектурных особенностей агентов на успешность их обучения с подкреплением (алгоритм PPO). 
Показано, что существует диапазон разрешений, обеспечивающий компромисс между вычислительной 
сложностью и успешностью выполнения задачи, а избыточная размерность сенсорных входных данных или 
пространства действий приводит к замедлению обучения. Должное внимание уделено также оценке вычис-
лительной сложности системы и профилированию производительности ее основных компонентов. Полу-
ченные результаты представляют потенциальный интерес в контексте исследований искусственных агентов, 
вдохновленных биологическими системами, эволюционного моделирования, включая нейроэволюционные 
подходы для создания более адаптивных и умных агентов, и изучения когнитивных процессов в них. 
Ключевые слова: виртуальный организм; компьютерное моделирование; вычислительная сложность; зри-
тельная система; нейронная сеть; симулятор; PPO; обучение с подкреплением; Unity ML-Agents

Introduction
Modeling cognitive activity, behavior, and evolutionary me­
chanisms in virtual environments constitutes an important 
step toward the development of artificial intelligence systems 
capable of learning, adaptation, and interaction with complex 
environments (Bongard, 2013; Stanley et al., 2019). The 
advancement of such systems has been facilitated by modern 
agent-based learning platforms, in particular Unity ML-Agents 
(Juliani et al., 2018), which allow the creation of fully featured 
three-dimensional simulations incorporating physics, vision, 
and multiple trainable agents.

Despite the relatively small number of neurons due to their 
small body size (compared, for instance, to mammals), the 
nervous systems of many invertebrates, including insects, 
exhibit remarkably complex, diverse, and adaptive behavior. 
For example, ants possess approximately 250,000 neurons, 
which is several orders of magnitude less than mammals 
(a mouse has about 7.1∙107), but these insects are capable of 
solving complex tasks of navigation, social interaction, co­
ordination of collective actions, and route memory (Chittka, 
Niven, 2009). Moreover, according to a number of studies, 
certain species of ants are capable of passing the mirror test, 
a behavioral indicator of self-awareness (Cammaerts M.- C.T., 
Cammaerts R., 2015). This makes them unique among insects 
and highlights the potential of minimal but efficiently orga­
nized nervous systems, which are of considerable interest to 
modern science.

Insect visual systems also serve as a source of inspiration 
for the design of artificial agents. In particular, compound eyes 
provide a wide field of view and high refresh rates, enabling 
efficient responses to rapidly changing stimuli (Land, Nils­
son, 2012). However, their angular resolution is significantly 
inferior to that of humans, but this limitation is compensated 

by high sensitivity to movement and the capacity for learning 
at the level of entire behavioral sequences.

These considerations give rise to several fundamental 
research questions: what are the minimal requirements for 
an agent’s visual system that enable successful adaptation to 
its environment? What control architecture ensures cognitive 
modularity under constrained computational resources? In 
other words, how to construct an “artificial organism” – an 
agent with simple but functional elements of perception and 
decision-making. The present study addresses these questions 
by investigating virtual organisms endowed with vision and 
operating in a 3D environment, with a focus on their ultimate 
cognitive efficiency, scalability, and capacity for learning in 
tasks of search and navigation. 

The interest in structures that enable movement with mini­
mal design complexity is also evident in engineering systems. 
For example, a recent study (Song et al., 2022) examines the 
control of hybrid soft limbs, reflecting the pursuit of struc­
turally simple but functionally efficient solutions for motion 
control. The body model of the virtual organism used in the 
present study, in terms of degrees of freedom and segment 
composition, is comparable to those employed in such con­
structions. This makes it possible to regard it as comparable 
in complexity to its physical counterparts.

In our previously published work (Devyaterikov, Palyanov, 
2022), we presented a simulator of the evolution of virtual or­
ganisms in a 3D environment, where each agent was equipped 
with a visual system and a neural network for processing 
sensory input. The system was based on a combination of 
neuroevolution and agent–environment interaction, enabling 
agents to perform elementary cognitive tasks that required 
the use of vision (such as searching for “food” necessary for 
“survival”) and allowing the assessment of agent survivability 
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within a population. The present work provides estimates 
of the computational complexity of calculations related to 
physics (agent bodies, the environment, and their interactions), 
first-person 3D rendering for each agent, and the operation of 
their neural networks. In addition, it introduces a new hierar­
chical agent model and presents the results of a quantitative 
analysis of training time, speed, and efficiency as a function of 
visual system resolution. The (Aksoy, Camlitepe, 2018) study 
provides data on the number of ommatidia (photosensitive 
sensors) for various ant species (from 100 to 3,000). Roughly 
approximating such vision with a square pixel matrix, this 
corresponds to a visual resolution from 10 × 10 to 55 × 55.

The present work combines reinforcement learning me­
thods (PPO (Schulman et al., 2017)), convolutional neural 
networks (O’Shea, Nash, 2015), approaches to hierarchical 
agent training (Vezhnevets et al., 2017), and practical analysis 
of resource-saving simulation schemes (Peng et al., 2018). 
We demonstrate that a hierarchical agent approach (e. g., a 
“Walker/Searcher” pair) enables more stable and interpretable 
behavior while reducing training time at a comparable level 
of task complexity.

Particular attention is given to investigating the impact of 
visual system resolution on agent learning rate, with an as­
sessment of the minimal input image size at which the ability 
to perform visual search and navigation tasks is preserved. 
Such investigations are relevant both for biologically inspired 
modeling and for the development of compact and efficient 
AI agent architectures capable of functioning under limited 
computational resources (Hassabis, Humaran, 2017; Zador, 
2019).

In addition, this study examines the effect of task decom­
position strategies (navigation and locomotion) on training 
efficiency. This approach provides deeper insights into the 
principles underlying cognitive modularity and distributed 
control in complex agent systems (Botvinick et al., 2020; 
Tschantz et al., 2020). The introduced Searcher agent, relying 
exclusively on visual perception, interacts with the Walker 
agent, responsible for physical movement. Such a scheme 
enhances the adaptability of the model and improves the 
interpretability of agent behavior.

Thus, the aim of the present work is to conduct a systematic 
investigation of the limits of cognitive complexity in agents 
equipped with visual systems, to develop optimal control 
architectures and perceptual parameters, and to evaluate the 
performance and scalability of the proposed system imple­
mented on the Unity ML-Agents platform.

Materials and methods
Problem statement. The problem under consideration is 
formulated in terms of a Markov decision process, where the 
agent interacts with a three-dimensional physical environment 
and learns to maximize cumulative reward. The task performed 
by the agent is described below:
Environment E: a square arena bounded by walls. Targets 

with radius r appear randomly within the arena and must be 
collected. Once a target is reached, a new one is generated.

Agent state st: consists of an RGB image from the first-person 
camera of size h × w × 3, long with a vector of control pa­
rameters (joint angles of the limbs and the corresponding 
torques).

Agent action at: a single scalar value representing a normal­
ized rotation angle in the interval [−1, 1]. This parameter 
determines the direction of the agent’s body movement. The 
actual rotation angle is defined as θ = at * θmax, where θmax 
is the maximum allowable rotation angle specified in the 
experimental parameters. In different experimental series, 
various values of this parameter were used, which allowed 
us to investigate its impact on policy efficiency (results are 
reported in Section “Results with varying rotation angles”). 
The restriction to a single control variable is due to the fact 
that low-level locomotion tasks (coordination of limbs and 
balance maintenance) are delegated to a separate Walker 
module, enabling the focus to remain on the cognitive 
aspects of the task, i. e., perception and decision-making.

Reward function R(st, at): an agent receives a positive reward 
for successfully reaching the target.

Objective: to maximize the cumulative reward over an epi­
sode of time T, i. e., to develop a policy that enables efficient 
navigation in the environment and target collection based 
on visual information.
One of the goals of our study is to identify the minimal 

input image resolution at which the agent can still successfully 
learn within a reasonable amount of time. The formal problem 
formulation is as follows:
Training success is defined as achieving an average reward of 

at least Rgoal = 5 per episode (where the reward is granted 
for target collection by the agent). The value of Rgoal was 
determined experimentally. As shown in the training results 
(see Section “Dependence of learnability on image resolu­
tion”), an untrained agent, due to random wandering, attains 
on average no more than 2.

Training time of the agent until reaching the threshold value: 
T(N ) ∈ ℝ+.

Average reward R(Res, T ) achieved by the agent after training 
with input resolution Res = h × w × 3 over time T.

Admissible set of resolutions Res ∈ ℕ, from 20 × 20 × 3 to 
100 × 100 × 3 with a step of 20 and with an additional case 
of 84 × 84 × 3, used as the default resolution in Unity ML-
Agents.

It is required to find minr ∈ ResT(N ), where R(Res, T ) ≥ Rgoal, 
that is, the minimal training time over admissible resolu­
tion for which the achieved reward meets or exceed the 
threshold Rgoal.
Simulator architecture. The proposed system employs 

a hierarchical control architecture for the agent, separating 
perception and motion functions across two levels. The lower-
level agent (Walker) is responsible for physical locomotion 
in the environment, relying on local sensors and a pre-trained 
locomotion model. The higher-level agent (Searcher) receives 
visual input from the camera and decides on the movement 
direction, transmitting a control signal to the Walker agent in 
the form of a normalized rotation angle. This approach makes 
it possible to isolate the complex problem of sensorimotor 
transformation (from image to action) from the tasks of motion 
stabilization and limb coordination. As a result, training of 
the Searcher becomes faster and more stable, since it controls 
only a single variable. The internal communication between 
agents is implemented within the Unity environment through 
the transmission of the direction parameter to the Walker 
controller. In the training mode, the Searcher agent processes 
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Fig. 1. Unity model of the Walker agent, with the first-person camera view shown in the bottom right corner. Two environments, 
the agents, and a number of targets are also presented.

Fig. 2. Walker agent model in Unity.

visual data and generates a rotation angle, which is used as 
the control parameter for selecting the body orientation at the 
next step. The Walker, in turn, executes the specified direction, 
ensuring movement in the intended direction.

During simulation, the environment is dynamically up­
dated: after a target (a unit of “food” required for survival) is 
collected by the Searcher agent, a new one is generated at a 
random position (to maintain the number of available “food” 
units at a constant level). When the agent falls or the maximum 
number of steps is reached, the episode is reset. The archi­
tecture supports parallel execution of multiple environments, 
each containing one Searcher and one Walker, which enables 
training to be scaled within the Unity ML-Agents framework.

Simulation environment. For the experiments, we selected 
the modern Unity ML-Agents platform, which demonstrates 
high performance and provides convenient tools for building 
complex three-dimensional simulations with reinforcement 
learning integration. Unity also offers built-in support for 
parallel environments, visual sensors, and integration with 
the PyTorch library.

Each environment represents a bounded square arena 
(DynamicPlatform) with walls, a floor, and randomly placed 
targets that the agent must collect. The platform size is fixed, 
and the target spawn coordinates are uniformly sampled across 
the available area. When the agent collides with a target, it 
disappears and is immediately replaced by a new one. The 
walls are impenetrable and serve as physical boundaries of 
the environment.

Simulation parameters are specified via the CrawlerSettings 
component and include the simulation tick rate of the physical 
world, gravity, episode duration (max_step – the number of 
simulation steps at which the agent receives observations and 
performs actions), and the number of parallel environments. 
If the agent falls (detected by body contact with the floor), the 
environment is automatically reset. Each parallel environment 
contains one Searcher agent, embedding a nested Walker, 
equipped with an individual camera mounted at the front of 
the head, which supplies the agent’s neural network with a 
stream of first-person visual information.

The number of simultaneously running environments 
(num_envs) depended on the agent type: for the Walker agent, 
which does not use visual input, 10 environments were em­
ployed, while for the Searcher agent, four environments were 
used. This configuration enabled efficient utilization of GPU 
resources and accelerated data collection through parallel in­
teraction with the environment. For each environment, actions 
data, observations, and rewards were collected independently 
and synchronized with the training strategy in Python via the 
Unity ML-Agents gRPC interface. Figure 1 presents a view of 
the simulation from the observer’s perspective, showing two 
environments, the agents, and a number of targets.

Walker agent model. The lower-level agent (Walker) is 
a complex articulated model with six limbs, implemented in 
the Unity engine using the Rigidbody and ConfigurableJoint 
components. Each limb consists of two segments: upper and 
lower – with three degrees of freedom (resulting in a total of 
18 degrees of freedom for all legs). This design enables the 
agent to perform realistic locomotion and maintain stability 
during movement. The agent model in the Unity environment 
is shown in Figure 2.

The control system is implemented through the JointDrive 
Controller module, which converts control signals into desired 
joint angles and forces. The control parameters are represented 
as a vector of dimension 30: 18 values control joint angles, 
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Fig. 3. Walker agent model in motion.

Fig. 4. Schematic representation of the Walker (a) and Searcher (b) agent’s neural network architecture.
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and 12 correspond to the torques applied to them. Specifically, 
for each of the six legs, the upper segment is controlled by 
two angles (rotation about the X and Y axes), and the lower 
segment by one angle (rotation about the X axis), yielding 
18 control parameters in total. In addition, for each of these 
12  segments, a control force is specified, determining the 
intensity of movement, which yields another 12 parameters. 
At each step, the agent receives observations that include 
information on current joint angles, velocities, surface con­
tacts, target direction vector, body orientation, and ground 
raycast data. The Walker agent model in motion is shown in  
Figure 3.

The neural network architecture of the Walker consists of 
three fully connected layers with LeakyReLU activation func­
tions and two outputs: an actor (30 action parameters) and a 
critic estimating the value function (Fig. 4a). The input layer 
has a dimensionality of 223 (vector features and joint param­

eters), while the hidden layers each contain 512 neurons. The 
total size of the model is 655,903 parameters and 1,567 neu­
rons, making it lightweight enough for real-time training. 

The reward function for the Walker agent is defined based 
on the deviation of the agent’s current body velocity from the 
target velocity and the alignment of its movement direction 
with the specified vector. This enables the agent to learn pur­
poseful locomotion in the desired direction while maintaining 
physical stability. After training, the Walker agent is used in 
inference mode as part of the Searcher agent, providing stable 
execution of movement.

During training, the critic block receives the same input 
as the actor – the state feature vector. Based on these data, 
it learns to approximate the expected cumulative reward the 
agent will obtain in the future if it continues to act according to 
the current policy. At the early stages of training, this estimate 
is inaccurate, but it is gradually refined through backpropa­
gation of the error, grounded in the actual rewards received 
by the agent. Thus, the critic does not initially “know” what 
is good or bad – it learns to distinguish this by comparing 
predicted rewards with the real rewards accumulated during  
simulations.

After training, the Walker agent is used in inference mode 
as part of the Searcher agent, ensuring stable motion execu­
tion based on the deviation of the current body velocity from 
the target and the alignment of the movement direction with 
the specified vector. This allows the agent to learn purpose­
ful locomotion in the desired direction while maintaining 
physical stability.

Searcher agent model. The higher-level agent (Searcher) 
is responsible for perceiving the environment and selecting 
the direction of body movement. Unlike the Walker agent, 
it does not interact directly with the physical components of 
the simulation but instead controls the Walker by transmit­
ting a normalized rotation angle in the interval [−1, 1]. Thus, 
the Searcher serves as a cognitive module that implements a 
target-search strategy based on visual information. The pri­
mary input source for the Searcher agent is the image obtained 
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from a camera mounted on the agent’s body (at the front of 
the head). The camera is oriented forward and positioned at 
a height corresponding to the head of the virtual organism. 
The image resolution varies across experiments from 20 × 20 
to 100 × 100 pixels, with increments of 20 in each dimension 
(three-channel RGB), allowing for analysis of the impact 
of visual load and frame resolution on the model’s learning 
performance.

For image processing, a convolutional neural network is 
employed, consisting of two convolutional layers (Conv2D), 
a flattening layer (Flatten), and subsequent fully connected 
layers. The output of the visual input processing is concate­
nated with vector observations and fed into two output layers: 
the actor (a single value representing the rotation angle) and 
the critic (value function estimate). The activation functions 
used are LeakyReLU and Swish. A schematic representation of 
the Searcher agent’s neural network architecture is presented 
in Figure 4b.

The Searcher agent is trained using the Proximal Policy 
Optimization (PPO) algorithm with a continuous action space. 
The objective function is to maximize the cumulative reward 
for collecting targets in the arena. Upon colliding with a target, 
the agent receives a positive reward; upon colliding with a 
wall or remaining inactive, it is penalized. When max_step is 
exceeded or the body falls, the simulation episode terminates 
and a new one begins.

Unlike the Walker agent, which is pre-trained once and then 
used only to execute the learned behavior (inference mode), 
the Searcher agent is trained from scratch, and its  neural 
network includes image processing, which increases com­
putational costs but enables the realization of biologically 
plausible behavior based solely on visual perception. This 
makes it possible to model cognitive constraints and analyze 
the impact of visual resolution on the speed and stability of 
learning.

Training algorithms and hyperparameters. The PPO 
algorithm is a gradient-based policy optimization method that 
belongs to the family of actor-critic approaches. Such methods 
combine the training of a policy and a value function. By 
avoiding abrupt policy updates, in contrast to classical me­
thods of this type, PPO is designed to improve the stability and 
reliability of training. The Actor, the component responsible 
for selecting an action in each state, implements the agent’s 
policy. The Critic, in turn, evaluates how good the chosen ac­
tion was by using the value function. This approach combines 
the advantages of stochastic action selection (important for 
exploration of the environment) with the evaluation of these 
actions based on accumulated experience.

The PPO algorithm operates within the framework of a 
Markov decision process (S, A, P, R, γ), where S – the set of 
states, A – the set of actions, P(s′ | s, a) – the state transition 
probability, R(s, a) – the reward function, γ ∈ [0, 1] – the 
discount factor.

The parameterized policy πθ(a | s) defines the probability of 
selecting action a in state s, where θ signifies the parameters of 
the actor neural network. The critic Vϕ(s) is an approximation 
of the value function V π(S) = E[Rt | st = s], with parameters ϕ, 
where Rt = rt + γrt+1 + γ2rt+2 + … is the discounted sum of 
future rewards. In PPO, instead of direct gradient updates, the 
so-called clipped objective function is used:

LCLIP(θ) = 
  ̭
Et[(rt (θ) · 

  ̭
At , clip(rt (θ), 1 – ε, 1 + ε) · 

  ̭
At)],

where: rt(θ) = 
πθ(at |st)

πθOld (at |st)
 – the probability ratio between the

new and the old policy, ε ∈ (0, 1) the clipping parameter, typi­
cally ε = 0.1 or 0.2, 

  ̭
At  – the advantage estimate.

If the new action deviates too strongly from the old one 
(i. e., rt falls outside the interval [1 – ε, 1 + ε]), the gradient is 
suppressed. This prevents abrupt changes in the policy.

To estimate 
  ̭
At, the generalized advantage estimation (GAE) 

is used:
  ̭
At = 

T – t
∑

l = 0  (γλ)lδt + l,   δt = rt + γV(st +1) – V(st),

where λ ∈ [0, 1] – is the smoothing parameter. This method 
improves training stability by reducing variance.

The loss function in PPO consists of:
 •  the policy loss LCLIP,
 •  the value critic loss (MSE between the predicted V(st) and 

the target value),
 •  an entropy bonus to encourage action diversity:

LCLIP + VF + S
   t  = Et [LCLIP(θ) – c1·(V(st) – V target

   t )2 + c2·H[πθ](st)],

where H [π] is the policy entropy and c1, c2 are the correspond­
ing coefficients. 

A schematic representation of the proximal policy optimiza­
tion algorithm is shown below:

Algorithm: PPO
1: for iteration = 1, 2, … do
2:     for actor = 1, 2, …, N do
3:         run policy πθOld in environment for T timesteps
4:         compute advantage estimates 1, … , T
5:     end for
6:     optimize surrogate L w.r.t. θ, with K epochs and  

     minibatch size M ≤ NT
7:     Lt

 = Et[LCLIP(θ) – c1·(V(st) – V target
   t )2 + c2·H [πθ](st)]

8:     θOld ← θ
9: end for

where N is the number of parallel actors collecting data over T 
time steps, and K is the number of epochs. Neural networks are 
used to approximate the target policy and the value function.

The choice of PPO in this work is motivated by several 
factors: the algorithm supports continuous action spaces, 
which is critical for the locomotion of virtual organisms with 
multi-joint limbs. The update constraint allows the agent’s 
policy to evolve incrementally without disrupting previously 
learned behaviors. PPO can also be effectively applied in 
architectures incorporating convolutional neural networks 
(CNNs) that process images from the agents’ cameras. In 
addition, the Unity ML-Agents environment provides a built-
in PPO implementation, which simplifies configuration and 
accelerates the cycle of computational experiments.

The actor network receives state features (velocities, joint 
positions, surface contacts, etc.) together with visual data 
processed through convolutional layers. The agent’s objective 
is to maximize the reward associated with locomotion and 
stability while moving in the chosen direction. PPO enables 
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smooth adaptation of the policy to complex dynamics and 
noisy feedback from the environment.

For the Walker agent, the action space is represented by 
a vector of 30  continuous values (18  for joint angles and 
12 for actuation forces/torques controlling joint movements), 
whereas the Searcher agent controls only a single parameter – 
the movement direction (a normalized rotation angle in the 
range [−1, 1]). Both models are trained asynchronously using 
multiple parallel environment simulations (from 4 to 10), 
which enables efficient data collection and accelerates the 
optimization process.

The main training parameters are (detailed in the documen­
tation (Juliani et al., 2018)):
 •  algorithm: PPO (proximal policy optimization);
 •  framework: Unity ML-Agents + PyTorch backend;
 •  learning_rate: 3 × 10–4. A coefficient that determines the step 

size when updating neural network parameters;
 •  batch_size – the size of the data batch used for one training 

step: Searcher: 1,024, Walker: 2,048;
 •  buffer_size: 10,240. The number of environment interac­

tions used for one training cycle. Configured as a multiple 
of batch_size × num_envs;

 •  num_epochs: 3. The number of optimizer passes (epochs) 
over one data buffer before it is updated;

 •  gamma (discount factor): Searcher: 0.99, Walker: 0.995;
 •  lambda (GAE): 0.95;
 •  clip_range: 0.2.

The Walker agent was trained separately in an isolated en­
vironment until stable and straight locomotion was achieved. 
The average number of steps to convergence was approxi­
mately 2–3 million. After this stage, the model weights were 
fixed, and the agent was used only in inference mode.

The Searcher agent was trained independently of the 
Walker. The average number of steps per experiment ranged 
from 5 to 10 million, depending on the environment configura­
tion (camera resolution, max_step, number of target objects 
in the environment, etc.).

Simulation parameters were specified through YAML con­
figurations of ML-Agents. To ensure stable and reproducible 
results, a fixed parameter was used to set the initial value for 
the random number generator applied in both the environment 
and training (random_seed), along with consistent settings: 
when the number of environments (num_envs) was changed, 
buffer_size was necessarily adjusted proportionally, as re­
quired by the ML-Agents framework.

All experiments were conducted on a computer equipped 
with a CUDA-compatible GPU (see Section “System perfor­
mance and profiling”). The software versions used were: Uni­
ty 2022.3, ML-Agents 21.0, PyTorch 2.0.1, and Python 3.10.

Experiments. The experimental part of the study (nu­
merical experiments) was aimed at investigating the influence 
of visual system parameters, environment configuration, 
and architectural constraints on the training efficiency of 
agents. All experiments were carried out in isolated envi­
ronments using a fixed Walker agent model and a trainable 
Searcher agent. The main directions of investigation were as  
follows:
1. Impact of camera image resolution on learnability. A range 

of resolutions was considered: 20 × 20, 40 × 40, 60 × 60, 
80 × 80, 84 × 84 (the default resolution for Unity ML-

Agents), and 100 × 100 pixels. For each of these, a separate 
training of the Searcher was conducted under otherwise 
identical parameters. The objective was to determine the 
minimal resolution at which the agent consistently achieves 
the target behavior (Reward ≥5).

2. Impact of speed control capability. In one of the experi­
ments, the Searcher agent was additionally given the ability 
to control the target movement speed (a second continuous 
output parameter). The objective was to determine whether 
this would lead to more flexible behavior or instead com­
plicate the learning task.

3. Variation of maximum rotation angle. The Searcher agent 
transmits a body rotation command. In different experi­
ments, the maximum allowable rotation angles were tested: 
90, 120, 180, and 270°. The hypothesis examined was that 
larger angles may simplify navigation but make the behavior 
less precise and stable.

4. Impact of episode length (max_step parameter). In the 
experiments, two values of the max_step parameter were 
considered: 5,000 and 20,000. The value max_step = 5,000 
was used as the baseline, as it allowed the agent to receive 
rewards quickly enough and provided timely feedback to 
the learning algorithm. The value 20,000 was considered 
as an alternative, applicable to tasks with longer action 
sequences and delayed rewards.

5. Verification with manual control. To validate the behavior 
of the trained Walker model, manual control of the agent 
was implemented (via the A/D keys, left/right). This made 
it possible, on the one hand, to confirm that the observed 
effects (e. g., halting of movement) were caused by body 
dynamics rather than the Searcher agent’s policy, and on the 
other hand, to test whether a human, using the same type 
of control, could successfully perform the target-search 
task (an assessment of controllability and environment 
perception).
All experiments were recorded using the Unity ML-Agents 

logging system and analyzed in TensorBoard, a visualization 
tool for monitoring the training process that allows real-time 
plotting of reward dynamics, loss functions, simulation speed, 
and other metrics. The success criteria are described in Section 
“Problem statement”.

Results

Dependence of learnability on image resolution
The results of the series of experiments with different input 
image resolutions showed that the minimal resolution at which 
the agent consistently achieved the target behavior (average 
reward ≥5) was 84 × 84 pixels. At resolutions of 20 × 20, 
40 × 40, and 60 × 60, training required substantially more 
time, although the trend toward improvement was preserved. 
The resolution of 100 × 100 also allowed the target reward to 
be reached, but training at 84 × 84 was slightly faster due to 
lower computational load. The results of this experiment are 
presented as TensorBoard plots in Figure 5.

Impact of speed control on training
The addition of a second control parameter (movement speed) 
increased the dimensionality of the action space and signifi­
cantly complicated training. The agent required more time to 
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Fig. 5. Training results of the Searcher agent at different input image resolutions. 
The upper panel shows the average reward curves for all investigated resolutions; the magenta curve corresponds to 84 × 84, 
and the orange curve to 100 × 100. The lower panel presents the same data with the dominant curves removed, allowing a more 
detailed view of the remaining variants (20 × 20, 40 × 40 и 60 × 60, 80 × 80).
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converge (approximately 33 % longer under otherwise identi­
cal conditions), and the resulting behavior was less stable – for 
the given task, speed control is largely a redundant parameter. 
This supports the simple hypothesis that increasing the number 
of degrees of freedom requires a more complex policy and 
hinders model training. The results of this experiment are 
shown as a TensorBoard plot in Figure 6.

Results with varying rotation angles
The best results were obtained with a maximum rotation angle 
of 90°. Increasing the angle to 120° led to a slight decrease in 
stability, while at 180 and 270°, the agent did not reach the 
target reward level, requiring longer and less efficient training. 
This indicates that an excessively wide action space hinders 
the development of a stable navigation policy.

Fig. 6. Training results of the Searcher agent with input image resolution 84 × 84 and the addition of a second control parameter (movement speed) 
alongside the primary one (rotation angle).
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Impact of episode length (max_step)
With max_step = 5,000, the agent demonstrated stable train­
ing, receiving timely feedback on goal achievement. Increas­
ing the episode length to 20,000 did not improve training 
quality, while simulation time and resource load increased. 
Therefore, max_step = 5,000 was used as the primary set­
ting, as it provided a balance between training efficiency and 
computational cost.

System performance and profiling
To evaluate the scalability and computational efficiency of 
the simulator, profiling of key system components was con­
ducted under varying visual sensor resolutions and numbers 
of parallel environments. All measurements were performed 
on a machine equipped with an NVIDIA GeForce RTX 3070 
GPU and an AMD Ryzen 5 7500F CPU (6 cores, 12 threads, 
3.7 GHz base clock, 5.0 GHz in turbo mode).

The contribution of main simulation components to com­
putational costs:
 •  Physics Engine – less than 1 ms per step, virtually inde­

pendent of resolution;
 •  graphics and sensors (Camera.Render, PostProcess) – 

from 3.2 to 9.5 ms depending on resolution (almost linear 
dependence);

 •  neural network (PyTorch Inference) – approximately 
35 ms per step when using convolutional architecture for  
Searcher;

 •  Unity–Python communication (gRPC, serialization) – 
from 45 to 60 ms. With an increasing number of agents, this 
component becomes one of the main system bottlenecks, 
since communication costs (serialization/deserialization, 
data exchange) grow proportionally to the number of  
agents;

 •  other (UI, garbage collection, VSync) – up to 20 % of 
runtime, may increase during active debugging.
At a resolution of 84 × 84 with four parallel agents, the 

average simulation step time was approximately 3.6  ms, 
corresponding to about 278 steps per second. At a resolution 
of 100 × 100, the step time increased to 3.8 ms, reducing per­
formance to roughly 263 steps per second. All measurements 
were conducted without scene visualization. In all experiments 
with the Searcher agent, the number of simultaneously running 
environments was set to 4.

Thus, the main limiting factor in scaling is not physics or 
rendering, but data exchange between Unity and Python. This 
should be considered when planning large-scale experiments 
or transitioning to population-level modeling. A working pro­
totype for reproducing the results is available in the repository 
at: https://github.com/DerpyFox/organism_simulator.

Discussion

Results interpretation
The obtained results demonstrate that the success of train­
ing agents with visual perception directly depends on the 
resolution of the input image. Too low a resolution (up to 
60 × 60) leads to a loss of spatial structure of the scene and 
the agent’s inability to develop a stable strategy. On the other 
hand, resolutions above 84 × 84 do not provide a noticeable 
gain in efficiency but increase the computational load. This 

confirms the existence of an optimal range of visual percep­
tion, comparable to that evolutionarily formed in insects: their 
vision developed to be sufficiently detailed for performing 
behavioral tasks (Chittka, Niven, 2009).

Despite the observed dependence between visual system 
resolution and the success of agent training, it should be noted 
that in nature there are organisms capable of effective behavior 
even with extremely low visual resolution. For example, in 
some ant species, as mentioned in the introduction, the visual 
system is comparable in scale to a resolution of about 10 × 10, 
yet this does not prevent them from confidently navigating, 
locating food, interacting with their environment, and even 
passing the mirror test (Cammaerts M.-C.T., Cammaerts R., 
2015). Such efficiency is determined not only by vision but 
also by the developed olfactory system, which plays a key 
role in perceiving the surrounding world. In addition, the 
neural systems of real insects may possess a range of pro­
perties that enhance their effectiveness. These systems were 
shaped through long evolutionary processes and are adapted 
to specific living conditions and the typical tasks of a living 
organism – for example, navigating in complex environments, 
searching for food, and interacting with conspecifics. They 
exhibit a high degree of neuronal specialization and mecha­
nisms of adaptation to changing stimuli. Such “tuning” to 
real-world conditions makes it possible to efficiently process 
even limited or fragmentary sensory signals, including visual, 
olfactory, and mechanosensory inputs.

The addition of speed control and the increase in rotation 
angle showed that even a slight expansion of the action space 
leads to slower learning. Thus, it is important to maintain 
a balance between the expressiveness of the model and its 
learnability. The division of perception and body control tasks 
between the Searcher and Walker agents proved to be critical 
for achieving stable behavior.

Biological parallels and cognitive efficiency
The results resonate with principles observed in insects: 
minimal but functionally redundant visual systems enable 
successful navigation and real-time decision-making. Simi­
larly, the proposed architecture allows the agent to achieve 
target strategies with limited resolution and a relatively small 
neural network.

When the obtained results are considered in the context 
of real biological systems, a parallel can be drawn with the 
evolutionary trade-offs that arise between sensory accuracy, 
computational cost, and behavioral adaptability. For example, 
the visual systems of insects such as fruit flies (~150,000 neu­
rons) or honeybees (~960,000 neurons) provide basic object 
recognition and spatial orientation with a minimal number of 
neurons and extremely limited bandwidth (Menzel, 2012). 
These organisms do not possess high-resolution visual sys­
tems, but they achieve high efficiency through a combination 
of rapid response, sensorimotor architecture, and decision-
making strategies (Chittka, Niven, 2009). Such considerations 
are well illustrated by insects with a high level of social or­
ganization. In ants, division of labor and communication are 
shaped not only as innate behavioral patterns but also as the 
result of flexible adaptation at the level of individual workers. 
The distribution of roles within a colony may vary depending 
on age, physiological state, and the current situation, while 

https://github.com/DerpyFox/organism_simulator
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information transfer between ants is achieved through a wide 
range of signals (Chittka, Muller, 2009). Thus, even simple 
agents with limited cognitive capacities can achieve high ef­
ficiency through the organization of interactions and simple 
behavioral rules.

Agents in our simulator demonstrate the ability for adap­
tive behavior even at relatively low visual resolutions (e. g., 
84 × 84 pixels), which allows further analogies to be drawn 
with minimal cognitive systems in nature. Such models can be 
employed as artificial systems that reproduce key behavioral 
aspects of simple organisms and serve as a basis for generat­
ing hypotheses about the neurophysiological mechanisms of 
perception and behavior in invertebrates.

System limitations
The main limitation of the system lies in the communication 
overhead between the Unity environment and the PyTorch 
training framework. Even with high computational perfor­
mance of the processing units, serialization and data transfer 
via gRPC become the bottleneck. In addition, at this stage, the 
environment remains limited in complexity: it lacks obstacles, 
dynamic topography, and inter-agent interactions. Finally, the 
agent architectures are fixed and do not undergo evolution or 
temporal adaptation (only parameter weights change, while 
network topology remains unchanged).

Future directions
Further development is possible in several directions. The in­
troduction of neuroevolutionary mechanisms (e. g., the NEAT 
approach – NeuroEvolution of Augmenting Topologies) would 
make it possible to investigate not only changes in neural 
network weights but also the evolutionary optimization of 
network structure. This is particularly relevant in the context 
of energy costs: with excessive brain complexity, resource 
consumption increases, whereas in simpler environments it 
may be advantageous to reduce the number of neurons. In this 
way, agents could autonomously adapt the size and potentially 
the architecture of their neural networks, reducing redundancy 
under conditions of low cognitive load. In biological systems, 
even a slight increase in nervous system complexity can lead 
to a noticeable rise in energy expenditure. For example, in the 
fly Calliphora vicina, the retina alone consumes about 8 % of 
the organism’s resting metabolic rate (Niven, Laughlin, 2008). 
In humans, by contrast, the brain accounts for only about 2 % 
of body mass yet consumes up to 20 % of the body’s energy 
(Attwell, Laughlin, 2001). These data indicate that the benefit 
of reducing the number of neurons or decreasing the complex­
ity of the sensory system can be substantial.

Introducing environmental elements involving resource 
competition (multiple agents, a limited number of targets, and 
the ability of more advanced agents to select and solve more 
complex cognitive tasks from those available in the system, 
thereby gaining additional advantages) would make it pos­
sible to analyze behavioral strategies at the population level.

A promising direction is the addition of an olfactory model – 
a sensory channel based on short-term “traces” in the environ­
ment, analogous to pheromone markings in ants. Such traces 
may decay over time, differ in content (e. g., distinguishing 
between a satiated and a hungry ant), and influence an agent’s 
trajectories, thereby reinforcing elements of indirect communi­

cation and collective behavior. It would also be reasonable to 
incorporate memory and recurrent modules into the Searcher 
model to study navigation under partial observability.

Conclusion
This study was aimed at the quantitative and qualitative evalu­
ation of architectural and sensory parameters in the task of 
training visually guided agents in a three-dimensional simu­
lation. We proposed and implemented a hierarchical control 
model in which the locomotion agent (Walker) functions as 
a low-level executor of movements, while the perception and 
navigation agent (Searcher) makes strategic decisions based 
on visual information.

A systematic analysis demonstrated that even under lim­
ited sensory input (due to low resolution), agents are capable 
of developing stable behavioral strategies, provided that 
the model and environmental conditions are designed with 
cognitive load in mind. It was established that a resolution of 
84 × 84 pixels offers a compromise between computational ef­
ficiency and minimal cognitive adequacy, whereas increasing 
the dimensionality of the action space without a correspond­
ing increase in training resources leads to degraded per- 
formance.

Our results support the hypothesis that minimally complex 
neural network agents can realize sophisticated behavioral 
patterns under conditions of limited sensory perception, where 
the agent receives only partial information about the environ­
ment. These findings are consistent with observed examples 
of cognitive efficiency in invertebrates, such as ants and bees, 
and open up prospects for the use of such models in bio­
logical modeling, robotics, and research in the field of neuro- 
evolution.

In the future, the system may be extended toward popu­
lation-level simulations incorporating competition, inter-
agent communication, and strategy adaptation in a changing 
environment. The architecture can be further enhanced with 
memory modules, recurrent connections, or neuroevolutionary 
mechanisms, enabling the study of more complex cognitive 
phenomena in virtual populations.

It was also shown that the use of visual information, de­
spite its expressiveness, requires substantial computational 
resources and, in some cases, may be less efficient than simpler 
sensory models. These observations highlight the importance 
of sensory architecture choice when designing minimally suf­
ficient cognitive agents.

Another key finding was the recognition of the critical role 
of environment design and training structure in the success of 
modeling. Initial attempts to train behavior through a single 
neural network model that combined locomotion and strat­
egy did not lead to the emergence of the ability to detect and 
collect targets (“food” units), due to difficulties in balancing 
rewards and formulating the task. The introduction of a func­
tionally separated approach (search and locomotion) made it 
possible to achieve a substantial improvement in learnability 
and behavioral stability.

Thus, the obtained results demonstrate the potential of 
neuro-agent systems in biologically inspired modeling tasks 
and provide a foundation for further experiments aimed at 
exploring the limits of cognitive complexity under constrained 
perceptual and control resources.
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