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Секвенирование следующего поколения (NGS) с помощью 
корот ких прочтений ДНК вносит большой вклад в решение 
задач современной геномики, генетики, клеточной биологии и 
медицины, особенно в исследования метагеномики, сравни-
тельной геномики, определение полиморфизмов, скрининг 
мутаций, транскриптомное профилирование, изучение ремо-
делирования хроматина и многие другие приложения. Секве-
ниро вание неустойчиво к техническим ошибкам, которые 
могут влиять на научные выводы. NGS технологии состоят из 
создания коллекции многочисленных коротких фрагментов 
ДНК, имену емой «библиотекой», получения молекулярных 
колоний и их дальнейшего массового параллельного секвени-
рования. Такие секвенированные фрагменты называются «про-
чтениями», они собираются (ассемблируются) в протяженные 
строки. Протяжен ные последовательности, в свою очередь, 
собираются в геномы для дальнейшего анализа. Вычислитель-
ные/процессинговые ошибки и сбои секвенирования – это 
ошибки, возникающие при последующей цифровой обработке 
секвенированных образцов. Последующая обработка (процес-
сирование) включает процедуры оценки качества, картирова-
ния, ассемблирования и даже корректировки ошибочных 
дан ных. Данная статья рас сматривает вычислительные ошибки 
процессирования, компью терные и статистические подходы 
для их определения, а также представляет словарь терминоло-
гии секвенирования. Рассмот рены задачи идентификации 
мутаций («Определение вариаций») в данных секвенирования 
и контроль качества их определения. Определение вариаций 
включает локальные вариации, такие как одиночные нуклео-
тидные полиморфизмы, короткие вставки и делеции (инделы), 
и масштабные вариации (инверсии, трансло кации или боль шие 

Short read next generation sequencing (NGS) has signifi-
cant impacts on modern genomics, genetics, cell biology 
and medicine, especially on meta-genomics, comparative 
genomics, polymorphism detection, mutation screening, 
transcriptome profiling, methylation profiling, chromatin 
remodelling and many more applications. However, NGS 
are prone for errors which complicate scientific conclu-
sions. NGS technologies consist of shearing DNA molecul-
es into collection of numerous small fragments, called a 
‘library’, and their further extensive parallel sequencing. 
These sequenced overlapping fragments are called ‘reads’,  
they are assembled into contiguous strings. The contigu-
ous sequences are in turn assembled into genomes for 
further analysis. Computational sequencing problems are 
those arising from numerical processing of sequenced 
samples. The numerical processing involves procedures 
such as: quality-scoring, mapping/assembling, and sur-
prisingly, error-correction of a data. This paper is reviewing 
post-processing errors  and computational methods to 
discern them. It also includes sequencing dictionary. We 
present here quality control of raw data, errors arising 
at the steps of alignment of sequencing reads to a refer-
ence genome and assembly. Finally this work presents 
identification of mutations (“Variant calling”) in sequenc-
ing data and its quality control. 
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инделы). Обсуждены проблемы контроля качества исходных 
(сырых) данных, ошибки, возникающие на этапах выравнива-
ния прочтений последовательностей ДНК на референсный 
геном и последующего выравнивания/ассем б ли рования.
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Here we will concentrate on second generation short read 
DNA sequencing (Liu et al., 2012), and will drop off 
the term ‘second generation short read’ while speaking 

about NGS further. The terms in bold are explained in the 
Glossary.

NGS technologies have as an essential feature of breaking 
DNA molecules into stack of numerous fragments, called a 
‘library’. The end parts of these fragments are sequenced in 
parallel, and called ‘reads’. They are assembled into con-
tiguous strings. These assembled sub-sequences are in turn 
assembled into genomes, and are subjects for further analysis. 

We refer to (van Dijk et al., 2014; Anders et al., 2015) for 
detailed characteristics of NGS platforms. 

The NGS data processing is arranged in a set of consecu-
tive steps, called a pipeline. A common post-sequencing NGS 
pipeline (Mutarelli et al., 2014; Newell, 2014) consists of: 
(1) Quality Control (QC) of initial data;
(2) Mapping to a reference genome and/or assembly;
(3) Post-mapping/assembly QC and re-calibration;
(4) Variant calling and its QC;
(5) Correcting of errors.

The step 2 may be combined and/or substituted by a de-novo 
genome assembly (Baker, 2012) in case there is no reference 
for the sequenced genome. 

We refer readers to reviews on NGS computational frame-
works (Dolled-Filhart et al., 2013; Guo et al., 2014a; Mutarelli 
et al., 2014; Pabinger et al., 2014). The on-line sources (Li J. 
et al., 2012b; Hadfield, 2013; Ignatieva et al., 2015) can help 
researchers to build up their own pipelines. For ‘meta’ pipe-
lines we refer to (Anders et al., 2015; Wolfinger et al., 2015) 
which describe tools to build up bespoke pipelines.

For each of the steps in a pipeline above we will review 
(a) what they are and what is their goal; (b) how it is done 
summarising the methodology, their advantages and pitfalls. 

1. QC of initial data
For any platform, an initial unprocessed digital outputs of a 
sequencing are a base calls and their qualities.

Compared to a first generation Sanger sequencing (Sanger 
et al., 1992), NGS technologies are confronted by shorter read 
length, platform/instrument/sample specific biases (Haris-
mendy et al., 2009), higher error rate, and irregular coverage. 
These factors lower the accuracy of NGS further analysis (e. g. 
variant calls and de-novo assembly) by introducing sequencing 
errors that may direct to mis-interpretation of data.

The main factors utilised in quality control of raw data to 
characterise sequencer’s performance and library prepara-
tion are:

Total read count; Proportion of high quality data; Nucleo-
tide and quality distribution per cycle; Duplication rate (can 
be optical or amplification duplicates); Adapter’s counts; 
Proportion of bases per sample for pooled multiplexed data;
◊ Total read count shows general library effectiveness. It 

should be reasonably large to produce results of statistical 
significance. 

◊ Proportion of high quality (Q > 30) bases within Q value 
distribution should be large: at least more than half. A base 
call is scored with low Q mostly because of sequencer’s 
preferences and faults (Abnizova et al., 2010; Ledergerber, 
Dessimoz, 2011). These low quality bases are typically 
trimmed or corrected (Kelley et al., 2010; Del Fabbro et 
al., 2013), so low Q and possibly wrong called data will 
not compromise downstream analysis. However, an error 
correction should be applied only to high-coverage and 
homogeneous data – an assumption that often fails for 
NGS data.

◊ Quality-per-cycle distribution. A random quality peaks/
deeps per cycle point to some problems on machine during 
sequencing. Quality usually declines gradually with cycle 
as a result of increasing signal-to-noise ratio. 

◊ Duplicate reads, appearing due to PCR (polymerase chain 
reaction) and optical problems, may lead to over-estimating 
of some variant contribution in the data. Duplicate remov-
ing is debated in (Pireddu et al., 2011; Davis et al., 2013). 
Thus, their proportion should be less than 10 %.

◊ Proportion if adapters should less than 10 % as well. Parts 
of adapter might be erroneously sequenced in the beginning 
of a read, and thus may bring artificial mutations (Martin,  
2011; Li J. et al., 2012a). The popular tools for adapter 
removing are discussed in (Marroni et al., 2012; Jiang et 
al., 2014).

◊ Di-multiplexing, namely splitting up samples based on their 
tags, should be even across tags in theory. It is very impor-
tant that the size of each pool is sufficient and equal (Mir 
et al., 2013) for pooled multiplexed samples. Fairly even 
di-multiplexing (Hadfield, 2013) provides less biased data.

◊ There is also a possibility to quality control a library before 
massive sequencing. The MiSeq QC (Illumina, 2014) en-
ables performing a preliminary run on libraries before deep-
sequencing on a bigger machine, such as HiSeq or HiSeqX. 
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Nevertheless, any individual QC metric should be regarded 
in context of its project (Guo et al., 2014a). 

A lot of sequencers (Cox et al., 2010) generate a QC reports 
included into their processing pipeline, and these reports in-
vestigate mainly a general performance of the corresponding 
sequencer. They typically do not cover any effects of sample 
extraction and library preparations. 

A special case is fastQC. It is built up to point to prob-
lems which developed either in the library preparation or on 
sequencer. It is a very fast and crude estimation of different 
metrics formed by stratified samples of the data. 

Alternatively, FaQCs (Lo, Chain, 2014) records errors in 
the whole data. It also takes away low Q-value reads. 

The NGS QC Toolkit (Patel, Jain, 2012), except of perform-
ing a quality check and generating descriptive statistics, trims 
low Q ends of reads and removes low Q bases. It also enables 
a conversion between various file formats of NGS data from 
Illumina and Roche 454 platforms. 

One should be careful: what is removed might be a genuine 
biological signal. Nevertheless, any fluctuation from expected 
values for the QC metrics, might be a possible error. 

2. Mapping/aligning to a reference genome  
and/or assembly
The further step is the matching of the reads to positions at 
the reference genome, so called mapping. This is done by 
aligning reads to sub-sequences of the reference genome to 
which they are most close in terms of nucleotide sequence. 
Computationally, mapping is the most time and memory 
consuming step (Day-Williams, Zeggini, 2011; Fonseca et 
al., 2012). It is also critical: any mistake in alignment will be 
subject to further processing and hence spread errors to the 
further stages of sequencing and analysis. 

For the short reads of NGS, it is too inefficient in time 
and memory to use the well-known BLAST (Altschul et 
al., 1990) algorithm to map reads to genome. Therefore a 
particular memory and time optimised mapping algorithms 
are developed. 

NGS mappers/aligners can be classified based on their 
methods: hash table indexing (Shang et al., 2014) or Burrows-
Wheeler Transform (BWT) (Li, Durbin, 2010). They also 
differ by computer resource usage and sensitivity. Thus, 
they may lead to a different mapping results. Here we define 
sensitivity as a proportion of genome which is covered by at 
least one read after mapping. Mapping algorithms also vary 
in their ability to deal with particular sequencing platforms, 
quality of base, protocols and in the dealing with structural 
features of the DNA subject to sequencing, such as repetitive 
motives, gaps, deletions and insertions. 

Both types of aligners typically pre-process and index both 
reference and reads before a search of matching read posi-
tions (in the reference genome) itself. A hash table is a kind 
of a look up table, only supplied with advanced structure of 
indexing. BWT usually compresses data in a particular way 
(modification of a suffix array) before matching. BWT aligners 
are less sensitive than hash table methods, but are faster and 
use less memory (Newell, 2014).

A sequence assembly refers to aligning and integrating 
short fragments from a sequenced DNA in order to recreate 
the original sequence. If the genome of an organism has not 

been sequenced before, the assembly results in the first form 
of its reference genome. This procedure is called “de-novo 
assembly”. Sometimes a de-novo assembly is used together 
with alignment to reconstruct previously insufficiently covered 
and untrustworthy sequenced genome loci. 

Present-day assembling algorithms for NGS comprise two 
main groups (Li Z. et al., 2012): (i) Overlap-layout-consensus 
(OLC) methods; and (ii) Eulerian/de Bruijn Graph (DBG) 
methods. Both groups apply a graph theory to deal with NGS 
data, but in OLC notation reads are nodes, while in DBG nota-
tion a k-mer is a node. A read’s overlapping sequences stand 
for graph edges in both groups of assemblers.

We refer to (Li, Homer, 2010; Nagarajan, Pop, 2013; Otto 
et al., 2014; Pightling et al., 2014) or comparisons and bench-
mark aligners tests; for exhaustive literature on assemblers 
read (Nagarajan, Pop, 2013; Chin et al., 2014; Shang et al., 
2014). An online list of aligners is regularly updated at (http://
www.ebi.ac.uk).

What can go wrong?
• Reference mistakes. One should understand that an align-

ment step is apparently dependent on a reference’s accuracy. 
In the case of incorrect reference many reference errors 
could be mistreated as high quality genetic variants. 

• A bias shared by most technologies is that their accuracy 
decreases with the number of sequencing cycles, thus an 
error of mapping the end of a read grows (Balint, 2016; 
Sameith et al., 2016).

• Of the more specific defects, we refer to: platform-depend-
ent issues; the type of protocol used; complications due to 
the functional and structural complexity of the sample DNA.

• Read Length and Error Rates
Read lengths span from 70–1500 bp (Newell, 2014) depend-

ing on the sequencing platform. If reads are short it is harder 
to match them precisely to a unique genomic location. 

Some sequencing platforms allow for longer read lengths 
than others (for example 200 bp by Ion Torrent and 700 bp 
by Roche’s 454, while Illumina’s reads of 100–250 bp) which 
makes mapping more precise. However, this advantage is 
defeated by their higher mismatch-error rate; aligners throw 
away reads with too many mismatches on the basis of a pre-
set mismatch error rate. 
• Platform-dependent issues

The technology on which a platform is founded may be 
prone to a certain sequencing mistakes, resulting in platform-
specific error characteristic.

A ‘light-based’ sequencing platforms, Illumina, SOLiD, 
and Complete Genomics, employ fluorescent dye’s labelling 
to measure a signal strength for a successive sequencing 
cycle. The light-based platforms are known to be impaired by 
GC-bias, i. e. a low coverage of either GC-rich or GC-poor 
DNA regions (Chen et al., 2013; Rieber et al., 2013). Its ori-
gin is likely to be a fragmentation or/and cloning procedures 
during library preparation (Benjamini, Speed, 2012; Ross et 
al., 2013). 

The light-based platforms typically are disadvantaged by 
single nucleotide miss-identifications. The SOLiD platform 
is known to have difficulties with sequencing palindromic 
sequences (Huang et al., 2012).

Ion Torrent’s Personal Genome Machine (PGM) (Niu et al., 
2010) utilises semiconductor sequencing technology that oper-
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ates on acidity (pH) rather than on light. Roche’s 454 (Niu et 
al., 2010) employs a pyro-sequencing technology. An accuracy 
of both technologies depends on the length of sub-sequences 
of identical nucleotides (“homo-polymers”) because of similar 
computational approaches to evaluate a homo-polymer length. 
Defective flow-calls result in insertion/deletion (indel) errors: 
they are largely homo-polymer-asso ciat ed errors in case when 
short homo-polymers are frequent while long are rare (Bragg 
et al., 2013; Li et al., 2013).

Recognizing indels from NGS is known to be very daring 
(Li et al., 2013), because ‘indel by itself obstructs with precise 
mapping’. To map indels precisely, pair-end (PE) information 
is employed (Albers et al., 2011). It is valid for indels half 
a size of reads. Longer deletions are detected by a split-read 
method.

To distinguish long insertions a de-novo assembly of weakly 
covered regions is required (Li et al., 2013). 
• Sequence-specific errors: For pyrosequencing platforms, a 

‘homopolymer-associated errors’ result into throwing away 
repetitive DNA after mapping. Indel errors are known to 
be context-dependent. Moreover, for Ion Torrent, GC-poor 
organisms have higher error rate and poorer coverage than 
GC-balanced. The nucleotide context of Illumina errors is 
reported in (Minoche et al., 2011).

• DNA complexity: DNA functionality causes aligning biases 
The study of NGS artefacts in (Schwartz et al., 2011) 

showed that less linguistically complex sequences of introns 
are less covered with reads than more complex sequences of 
exons. The authors discovered that peaks of mapped reads 
were associated with biological features, such as intron-
exon junction, expression level, splice sites and transcription  
length.

Similarly, the authors of (Auerbach et al., 2009) found that 
regions proximal to promoters are prone for sonication break-
age, and hence are the subjects of regional bias. These regions 
are the primary cause of an uneven read coverage, retaining 
a large peaks of aligned reads. 
• DNA complexity: Repetitive DNA causes assembly problem 

A particular troublesome feature of the sequential structure 
of many genomes is the occurrence of long chunks of repeti-
tive DNA (so-called “repeats”): repetitive DNA is frequently 
overlooked, miss-mapped and miss-assembled by all platforms 
(McCoy et al., 2014).

Around half of human genome is comprised of repeti-
tive DNA (de Koning et al., 2011), the fraction of repeats is 
even larger for some plant genomes (Feschotte et al., 2002). 
Even though repetitive DNA is functionally important, NGS 
sequencing often fails to sequence it flawlessly (Alkan et al., 
2011b; Ye et al., 2011). Most current technologies are error-
prone while handling repeats. 

But granting a repetitive DNA stretch is sequenced cor-
rectly, it might be compromised by similar DNA in other 
genome location, and lead to mis-alignment. And finally, 
repetitive DNA is often a hot-spot of real biological mutations 
and structural variations (Orlov et al., 2006; Medvedev et al., 
2009; Safronova et al., 2015, 2016). 

In addition to various repetitive DNA, a short indels and 
segmental duplications are also difficult to align and assemble 
(McCoy et al., 2014) because of ambiguity at which location 
to map an identical DNA subsequence. 

The main assumption of assembly (similar reads belong to 
the same location) is breached by various repeats and poly-
morphisms. An assembly is computationally not tractable for 
genomes where the ratio of repeat length to read length is large 
(Nagarajan, Pop, 2013). 

When whole long repetitive stretch were sequenced together 
with their flanking regions, it would be easier to detect it within 
genome. Therefore, longer reads could solve this problem 
(Huddleston et al., 2014).
• Diversity of protocols: PE and MP methods

The types of sequencing protocols depend on a researcher’s 
question: e. g. reads sequenced in pairs (pair end, PE) (Med-
vedev et al., 2009) or singles (SE). PE reads are designed to 
detect direction and distance between reads, therefore reads 
containing complex DNA can be mapped uniquely (Miller et 
al., 2010; Alkan et al., 2011a). 

A sub-type of PE reads, the long inserts reads (up to 5 KB), 
frequently named as mate-pair libraries (MP) (Park, 2013) 
are valuable to connect long repeats (including repetitive 
transposable elements) and structural variations.

Longer reads can solve the assembly and mapping prob-
lems. With longer reads it is easier to establish a correct 
genomic location for a sequenced DNA. Therefore, a new 
synthetic long reads (McCoy et al., 2014) from the Illumina 
TruSeq are developed. They are as long as 3d generation 
PacBio (Sharon et al., 2013), but much more accurate, having 
as low error rate as 0.03 % per base. 

These synthetic long reads are assembled from Illumina 
short reads, by combination of laboratory and computational 
efforts (Voskoboynik et al., 2013). Nonetheless, there are still 
some imperfections left: gaps in assembly and a low coverage 
for repetitive AT-rich regions. 

Regrettably, when some problems are reduced, a new 
ones arise. The essential problems of MP (Park, 2013) are: 
(i) extremely elaborated construction of their libraries, and 
(ii) common mistakes of mapping: ‘inward facing’ reads as 
a substitute of ‘outward facing’. This mistake results into 
chimeric reads (Illumina). Another problems are: unexpect-
edly small insert sizes (Nextera), underrepresentation of 
the AT-rich sequences (SOLiD) and unplanned spontaneous 
secondary fragmentation (Roche).
• Sequencing errors (Abnizova et al., 2012; Ross et al., 2013) 

is another threat for aligners. Clearly, if a read encloses more 
mismatches than allowed by aligner settings, than it will 
be discarded, even if it accommodates biological signal.
Another objection significant discordance of assemblers 

(Magoc et al., 2013): different assemblers yield very unequal 
amount of assembled reads for the same data sets, specifically 
for homologous genome regions.

3. Post-mapping/assembly QC  
and re-calibration
Mapping is known (Li H. et al., 2009) to be the a primary 
cause of sequencing biases. Therefore it is recommended 
that one reviews the quality of mapped reads before in-depth 
scientific analysis.

3.1. Mapping metrics
To safeguard an adequate aligners’ performance, there are 
several QC metrics:
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◊ Number and proportion of high quality reads mapped; 
◊ Coverage uniformity and average/median depth of co-verage;
◊ Quality-associated metrics: mapping quality, base quality 

score distribution, etc.;
◊ Insert size distribution; most frequent k-mers;
◊ Protocol-linked metrics: fraction of discordant pairs; capture 

efficiency;
◊ Forward and reverse read strand symmetry;
◊ Error rate per cycle;
◊ Possible contaminations metrics, see Chapter 4; GC-bias 

metrics;
◊ For a confident variant call two metrics are of great import-

ance: sequencing coverage depth and uniformity.
Ideally, an even read coverage is expected along genome, 

to escape local biases. On the other hand, coverage is known 
(Minoche et al., 2011) to be non-uniform along genome, de-
pending on the regional function, composition (Rieber et al., 
2013) and many other features. 
◊ The Q-value/score is a commonly used measure of base call 

quality (Bonfield, Staden, 1995; Ewing et al., 1998). The 
quality Q-scores compress different types of information 
about the quality of base calls into a confidence (of error) 
value. Quality score is commonly accepted input for ma-
jority of analysis tools, assemblers and aligners in order to 
produce accurate results. 
However, in a raw fastq/bam files these Qs are inferred or 

predicted. The predictions are based on a set of measurements 
of a base call, and on previous observations of the values of 
the measurements. The inferred Q-values are assigned by the 
means of pre-computed look up table, so called calibration 
table (Brockman et al., 2008; Abnizova et al., 2010).

A sequencer’s errors are typically of low Q, and come from 
technological and hardware shortcomings. 

The infamous sources of errors for Illumina sequencers are: 
phasing and pre-phasing, dye label X-talk, molecule degrada-
tion with time and G-quenching (IDT, 2011). The phase inac-
curacy results from base-incorporation errors on a sequencer 
machine. A G-quenching is an effect of previous nucleotide G; 
a base quality is typically low for this G-preceded base call 
(Abnizova et al., 2010, 2012). It was strongly pronounced for 
the v3 version HiSeq, and dramatically reduced for HiSeqX10 
and X5.
◊ Contaminated sequences (due to different reasons) may 

bring up artefacts during variant calling (Schmieder, Ed-
wards, 2011). 

◊ A capture efficiency for exome sequencing is a proportion 
of useful data (Garcia-Garcia et al., 2016). It is normally 
40–75 % (Guo et al., 2014a), and should not be too small 
for statistically sound results. 
And likewise to the section 1, any inconsistency with ex-

pected values for a sample investigated should be cautioning.

3.2. Assembly metrics
In the non-existence of reference genome, the assembly 
metrics are:
◊ Total number of contigs or scaffolds: the less the better; 
◊ Contig or scaffolds sizes: max, mean and N50. N50 is de-

fined as the length of the scaffold/contig, which overlaps 
the midpoint of length-ordered concatenation of scaffolds/
contigs; 

◊ Total size of scaffolds. It should be close to an expected size 
of a genome sequenced;

◊ Number of Ns should be limited. (The created gaps in as-
sembly are filled with the uninformative base-pair cha-
racter ‘N’.)
An assembly accuracy and several normalised metrics are 

possible to assess in case when a reference genome exits. Note 
that normalization accounts only on those parts of assembly, 
which can be mapped to a reference genome by standard local 
alignment tools. 
◊ Sensitivity of assembly is defines as a percent of genome 

assembled.
◊ Normalised N50 for contigs and for scaffolds is more com-

plicated than for contigs because of N-filler of gaps (Ma-
kinen et al., 2012).

3.3. Q re-calibration
A predicted Qs often do not correspond to an actual Qs for a 
certain run/lane/library. In this incident (and in case hetero-
geneous data are combined) it is suggested to re-calibrate 
the data (Ewing et al., 1998; Massingham, Goldman, 2012). 
In the WTSI we implemented the in-house recalibration 
and error analysis tools (Abnizova et al., 2010). Instead of 
trimming an ambiguous base calls, we warn (low Q) about 
possible sequencing errors. Trustworthy Q-value is known to 
increase SNP call accuracy (Li, Stoneking, 2012) more than 
hard filtering. 

4. Variant calling and its QC
Variant calling from NGS data is defined as a computational 
methods for establishing an event of genetic variant result-
ing from NGS experiments (Lawrence, 2014; Zhang et al.,  
2015).

Variant calling involves small-range variants (Kojima et 
al., 2013), such as single nucleotide polymorphisms (SNPs), 
short insertions and deletions (indels), and large-range struc-
tural variants, copy number variants (CNV) and structural 
variants (SV). A SVs are inversions, translocations, or large 
indels. All types of variants are identified by comparison to 
a reference genome.

Fraction of variation in genomes is significant: e. g. for 
human genome, SNPs comprise around 0.1 %, although 
SV’s contribution is estimated as 1.2 % (Tattini et al., 2015) 
and CNV’s contribution is as large as 15 % (Wong et al.,  
2010). 

A variant calling is crucial for comparative genomics and 
genetics of human diseases. A valuable variant calling ap-
plication is clinical testing: identifying disease-associated 
mutations (Chin et al., 2013). 

Variant calls are implemented in two ways: (i) after aligning 
reads, or (ii) after assembling reads. Sometimes these steps 
are combined. SNPs and small indels can be identified by 
alignment of short sequencing reads to a reference genome. 
However, larger structural variants and repetitive regions in 
the genome are harder to find. 

Structural variation can disturb genes or regulatory ele-
ments, therefore whole-genome sequencing is not complete 
without assembly and detection of structural variation (Li H. 
et al., 2009). In the (i) case, a position of each read relative to 
the reference genome if identified first. After reads are aligned, 
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a set of QC steps, involving recalibration, duplicate removing, 
and indel-realignment, are done before variant calling.

In the (ii) case, an assembly of un-processed reads is per-
formed first, and only after this the assembly is set against a 
reference genome (if the later exists). Variant detection after 
assembling is beneficial to individual genes (Olson et al., 
2015), but it loses power when applied to a whole genome: in 
the absence of a reference genome it is not possible to identify 
other genome’s contaminations; spurious variants can not be 
verified by raw reads after assembling.

Somatic versus germline mutation
Variant calling from NGS is well utilised in genetics of 

human diseases. There are three typical ways how NGS data 
is applied in the area: (a) detection of causal germline muta-
tions in Mendelian disorders (Lettice et al., 2008; Stitziel et 
al., 2011); (b) detection of putative genes for complex diseases 
with GWAS (Day-Williams, Zeggini, 2011; Lander, 2011; 
Marian, 2012); (c) detection of somatic and constitutional 
mutations in cancer (Walther et al., 2009).

It is more complicated to identify a somatic mutation than 
a germline mutation (Pabinger et al., 2014).

To identify somatic mutations in cancer, they typically 
compare tumor vs/and normal samples for the same individual 
(Vissers et al., 2011; Yan et al., 2011).

An annotation step is commonly performed after a vari-
ant call (Li R. et al., 2009; Wang et al., 2010; Yang, Wang, 
2015). Annotation is done by utilising a public databases, e. g.  
dbSNP, dbVar (Lin et al., 2015). The next step is visualization 
(Nielsen et al., 2010).

A set of metrics to assess a quality of variant call is listed 
below (Guo et al., 2014b; Jun et al., 2015):
◊ Ti/Tv ratio, individually for whole genome sequencing 

(WGS) and whole exome sequencing (WES) (should be 
2 and 3);

◊ Heterozygocity ratio; 
◊ Number of known and of new SNPs per person: should be 

not more than 200;
◊ Cross species and within species contamination; genotype 

consistency;
◊ SNP spatial density; QC per SNP;
◊ Strand, cycle, allele balance, reference allele biases; hap-

lotype scores;
◊ Performance metrics: Sensitivity and specificity of single 

nucleotide variant call.
One can combine these metrics by a machine learning meth-

ods (DePristo et al., 2011; Jun et al., 2015). In order to mini-
mise false positive (FP), some variant callers do a lot of filter-
ing and trimming using metrics above: by applying a minimum 
depth of coverage threshold, by masking of homo-polymers 
and repeats, by trimming poor quality bases from a read  
etc. Unfortunately, while reducing FP, one can increase false 
negative (FN) by applying these filters (Olson et al., 2015). 
◊ To assess a goodness of a variant caller, one should use a 

performance metrics: accuracy, sensitivity and specificity, 
(Olson et al., 2015) given a reliable benchmarking test sets 
and reference.
A comprehensive review of post-map QC is performed in 

(Wyllie, 2013; Guo et al., 2014b). The GATK (DePristo et 
al., 2011) utilises variant QC metrics for their variant calls, 
applying genotyping and known SNP information for a variant 

QC and annotation. However, there seems to be no a standard 
evaluation of a variant caller (Olson et al., 2015) so far.

5. Correction of errors
A definite amount of errors is the result of sequencing and 
post-processing imperfections. One way to tackle them is to 
Q-score possible known artefacts low, so they would be not 
used by further analysis. Another way is to correct errors us-
ing a knowledge about error sources for various platforms’ 
errors (Edgar, Flyvbjerg, 2015; Olson et al., 2015) and com-
putational biases.

An error correction after mapping is correction of a mis-
match between sequenced read and a reference. After/during 
assembling error correction is a general agreement of base 
calls across all reads belonging to the same assembled location.

There are multiple attempts to correct sequencing errors. 
However, an error correction might introduce new type of 
errors: mis-correction errors (Yang et al., 2013; Fujimoto et 
al., 2014). And these errors are more difficult to correct back 
than technological errors.

A sound comparison of NGS platforms is done in (Yang 
et al., 2013) together with very good explanation of modern 
error-correction methods. Surprisingly, the paper is very con-
vincing that one should NOT introduce new mis-correcting 
errors. Additionally, it also does not look promising to correct 
reads without understanding causes of sequencing/library 
errors. The work (Fujimoto et al., 2014) confirms that error 
correction methods can not handle heterozygosity, and they 
introduce new mis-correction errors.

There are approaches to correct for known context biases, 
such as GGGGT error patterns for Illumina (Minoche et al., 
2011; Nakamura et al., 2011). However, new Illumina releases 
(e. g. HiSeqX10) are almost free from old type motif-depen-
dency, and new artefacts (such as larger context dependence 
on a next base) appear.

Error models are used in (Janin et al., 2014) to realistically 
simulate individual sequencing runs and/or technologies. 
These models are mostly empirically derived and context-
based. A comparison of genomes without assembling them 
is introduced by (Patro, Kingsford, 2015). 

It might be beneficial to do so for de novo sequenced ge-
nomes. However, possible PCR biases in coverage are not in-
cluded in the model. Some studies, such as (Orton et al., 2015) 
developed a computational error model of Illumina’s sample 
processing, which involves experimental steps. This model 
infers possible genomic genome locations of PCR errors.

As a conclusion, one should be informed of possible biases, 
and make decisions depending on their study’s aim. Overall 
conclusion is in necessity to use short sequencing reads error 
correction for the mapping and processing NGS data, depend-
ing on sequencing platforms. Details of error corrections 
publications will be presented in next paper.
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Glossary
The well-known Sanger sequencing method (Sanger et al., 1992) 

is called a first-generation DNA sequencing technology. The next 
generation sequencing technologies (Liu et al., 2012) include: 
(i) 2nd generation sequencing, the massive parallel sequencing 
of relatively short DNA fragments (Dolled-Filhart et al., 2013); 
and (ii) 3d generation sequencing, in which single DNA molecules 
hence much longer fragments (Schadt et al., 2010) are sequenced.
In this paper we will focus on 2nd generation DNA sequencing, 
and will omit the term ‘2nd generation’ while mentioning NGS 
further.

With NGS technologies, bases are inferred from light/chemistry 
intensity signals, a process commonly referred to as base-calling. 
The sequenced bases are assigned A, C, G or T letters depending 
on the intensity.

The Q-value/score is the most well accepted measure of base call 
quality (Bonfield, Staden, 1995).

The quality Q-scores compress a variety of types of information 
about the quality of base calls into a probability-of-error value.

Mapping or aligning is the matching of the reads to locations at the 
reference genome. This is done by aligning reads to stretches of 
the reference genome to which they are most similar in terms of 
nucleotide sequence.

A sequence assembly refers to aligning and merging short frag-
ments from a DNA sequence in order to reconstruct the original  
sequence. 

If the genome of a species has not been sequenced before, the as-
sembly of the reads results in the first version of its reference 
genome. This is called “de-novo assembly”.

Multiplex is a library containing various samples labelled with bar 
codes.

Sample multiplexing is a useful technique when targeting specific 
genomic regions or working with smaller genomes. To accomplish 
this, individual “barcode” sequences are added to each sample so 
they can be distinguished and sorted during data analysis. Pooling 
samples exponentially increases the number of samples analyzed 
in a single run, without drastically increasing cost or time.

Di-multiplexing is separating samples based on their tags, ideally 
should be even across tags.

Adapter. The vast majority of next-generation sequencing experi-
ments will attach adapter sequence to the sequencing construct. 
In many cases these are standard sequences that can be obtained 
from the vendor and/or sequencing centre. Unfortunately some-
times adapter information is not properly tracked and attached as 
metadata to the raw sequencing data and may not be known for 
a given sample.

PF (purity-filtered) data: PF-filtering is known as throwing away 
data with low maximum intensity signal (purity, Illumina termi-
nology).

GC-content is a measure of the relative frequency of the cytosine (C) 
and guanine (G) bases, in comparison with the adenine (A) and 
thymine (T) bases. A genome is called GC-rich if significantly 
more than 50 % of its bases are G or C.

Mate-pair libraries. Mate-pair is different from “paired-end ” in 
the sense of how the sequence library is made. In “Mate-pair” 
sequencing, 2–5 kb fragments are selected and sequenced from 
both end, thus giving information how nucleotides far apart are 
linked together. Mate-pairs are more ideal for studying genomic 
structural rearrangement and help de novo genome assembly. They 
also facilitate sensitive structural variant (SV) detection across a 
widened SV size-spectrum and in repetitive areas of the genome.

Insert size = DNA fragment size.

Ti/Tv (sometimes called Ts/Tv): the ratio of transitions vs. transver-
sions in SNPs. Transitions are mutations within the same type 
of nucleotide: pyrimidine-pyrimidine mutations (C <–> T) and 
purine-purine mutations (A <–> G). Transversions are mutations 
from a pyrimidine to a purine or vice versa. 

The heterozygosity ratio is the number of heterozygous sites in an 
individual divided by the number of non-reference homozygous 
sites.

Error-correction is an attempt to correct a mismatch between se-
quenced reads and/or reference (if it is available). 

Genomic variant or mutation is a permanent alteration of the 
nucleotide sequence of the genome of an organism. 

A single nucleotide polymorphism or simple nucleotide poly-
morphism, (SNP), is a variation in a single nucleotide which 
may occur at some specific position in the genome, where each 
variation is present to some appreciable degree within a popula-
tion (e. g. >1 %).

Structural variation (also genomic structural variation) is the varia-
tion in structure of an organism’s chromosome.
Structural variation consists of many kinds of variation in the 
genome of one species, and usually includes microscopic and sub-
microscopic types, such as deletions, duplications, copy-number 
variants, insertions, inversions and translocations. 

DNA sequencing is the process of determining the precise order of 
nucleotides within a DNA molecule.

WGS – whole genome sequencing.
WES – whole exome sequencing.
In Illumina, PCR and size selection steps have been implicated in 

GC-bias. PCR is known to preferentially amplify GC-moderate 
sequences, while size selection involves DNA heating which leads 
to a GC-poor fragment’s underrepresentation. Avoiding these steps 
helps to limit the GC-bias.

BAM File – binary version of SAM file, a typical output of the 
secondary phase of data analysis.

Coverage – this value indicates the coverage of an analysed sequence 
with respect to its length, usually expressed as a percentage; 
sometimes the term is also used for the depth of reading.

Long-Reads – strategy for sequencing samples prepared by Mate-
Pair-End method.

Mate Pair-End-Read – strategy for sample preparation where the 
longer fragment (thousands of bases) is circularized using labelled 
adapters, the molecule is subsequently fragmented, but only the 
fragments containing the labelled adapters are sequenced.

Paired-End-Read – a method of reading a fragment where the frag-
ment is first read from one end and then from the other.

Read Depth – DNA = number of times a nucleotide is read; RNA = 
total number of reads per sample.

Read Length – the number of read bases per fragment, respectively 
the maximum length of the fragment, which can be sequenced at 
a time (indicated in bases).

Single-Read – a method of reading a fragment where the fragment 
is read from one end only during sequencing.

SNP – Single-Nucleotide Polymorphism = sequence divergence in 
the range of a single base.

SNP Calling – process of detecting SNPs in the sequences obtained.
Variant Calling is a process of detection of sequence variants in 

the sequences obtained.
Heterozygosity occurs when an individual has two different alleles 

of a gene/loci.
Chimeric reads are reads with DNA sequences originating from 

two different samples.
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