Моделирование болезни Хантингтона на клетках линии НЕК293

Д.В. Шарипова^{1, 2, 3}, Т.Б. Маланханова^{1, 2, 3, 4}, А.А. Малахова^{1, 2, 3, 4}

1 Новосибирский национальный исследовательский государственный университет. Новосибирск. Россия

Болезнь Хантингтона – наследственное нейродегенеративное заболевание человека, которое вызвано мутацией в гене НТТ. Мутантный белок НТТ имеет удлиненный полиглутаминовый тракт и образует агрегаты в ядре и цитоплазме средних шипиковых нейронов стриатума, приводя их к гибели. Механизмы развития заболевания до конца не изучены, ввиду ограниченной доступности биоматериала и позднего проявления болезни. Именно поэтому одной из актуальных задач является создание модельных систем болезни Хантингтона на основе культивируемых клеток человека. Сочетание клеточных технологий и системы редактирования генома CRISPR/Cas9 позволит изучать молекулярные и клеточные механизмы развития патологии. Ранее в лаборатории эпигенетики развития Института цитологии и генетики СО РАН была разработана методика внесения мутации, вызывающей болезнь Хантингтона, в геном клеток человека и получены мутантные клоны клеток линии НЕК293, моделирующие болезнь Хантингтона. В данной работе мы показали, что мутантные клетки частично воспроизводят патологический фенотип, а именно: обладают сниженной пролиферативной активностью, повышенным уровнем апоптоза и высокой чувствительностью к ингибитору протеасом (MG132). Полученные результаты свидетельствуют о том, что мутация, вызывающая болезнь Хантингтона, влияет не только на нейроны, но и на другие типы клеток.

Ключевые слова: болезнь Хантингтона; клеточные модели; редактирование генома.

КАК ЦИТИРОВАТЬ ЭТУ СТАТЬЮ:

Шарипова Д.В., Маланханова Т.Б., Малахова А.А. Моделирование болезни Хантингтона на клетках линии НЕК293. Вавиловский журнал генетики и селекции. 2017;21(7):856-861. DOI 10.18699/VJ17.306

HOW TO CITE THIS ARTICLE:

Sharipova D.V., Malankhanova T.B., Malakhova A.A. Huntington's disease modeling on HEK293 cell line. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(7):856-861. DOI 10.18699/ VJ17.306 (in Russian)

Received 10.10.2017

Accepted for publication 02.11.2017 © AUTHORS, 2017

Huntington's disease modeling on HEK293 cell line

D.V. Sharipova^{1, 2, 3}, T.B. Malankhanova^{1, 2, 3, 4}, A.A. Malakhova^{1, 2, 3, 4}

¹ Novosibirsk State University, Novosibirsk, Russia

Huntington's disease is a hereditary neurodegenerative disorder caused by CAG trinucleotide repeat expansion in the first exon of HTT gene. The mutant HTT protein has an elongated polyglutamine tract and forms aggregates in the nuclei and cytoplasm of the striatal neurons. The pathological processes occurring in the medium spiny neurons of Huntington's disease patients lead to neurodegeneration and consequently to the death. The molecular mechanisms of the pathology development are difficult to study due to the limited material availability and late onset of the manifestation. Therefore, one of the important tasks is generation of an in vitro model system of Huntington's disease based on human cell cultures. The new genome editing approaches, such as CRISPR/Cas9, allow us to generate isogenic cell lines that can be useful for drug screening and studying mechanisms of molecular and cellular events triggered by certain mutation on an equal genetic background. Here, we investigated the viability and proliferative rate of several mutant HEK293 cell clones with mutations in the first exon of HTT gene. The mutant clones were obtained earlier using CRISPR/Cas9 genome editing technology. We showed that mutant cells partially reproduce the pathological phenotype, that is, they have reduced proliferation activity, an increased level of apoptosis and high sensitivity to treatment with 5µM MG132 proteasome inhibitor compared to the original HEK293 Phoenix cell line. Our results indicate that the mutation in the first exon of HTT gene affects not only neurons, but also other types of cells, and HEK293 cell clones bearing the mutation can serve as in vitro model for studying some mechanisms of HTT functioning.

Key words: Huntington's disease; cell models; genome editing.

² Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук, Новосибирск, Россия

³ Национальный медицинский исследовательский центр им. акад. Е.Н. Мешалкина Министерства здравоохранения Российской Федерации,

⁴ Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия

² Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia

³ Meshalkin National Medical Research Center of the Ministry of Healthcare of the Russian Federation, Novosibirsk, Russia

⁴ Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia

олезнь Хантингтона (БХ) – нейродегенеративное заболевание, которое наследуется по аутосомно-доминантному типу и характеризуется прогрессирующей хореей, когнитивными изменениями и деменцией (Martin, Gusella, 1986). БХ встречается приблизительно в семи-десяти случаях на 100000 человек. Это заболевание вызвано экспансией тринуклеотидных повторов САС (цитозинаденин-гуанин) в первом экзоне гена *HTT* (Huntingtin), расположенном на коротком плече хромосомы 4 (4р16.3). В норме количество триплетов САС варьирует от 9 до 36, у больных пациентов их число может достигать 115. Обычно первые симптомы начинают проявляться в возрасте 35—45 лет. При этом время начала болезни коррелирует с длиной тракта повторов САС: чем их больше, тем раньше проявляется заболевание (Walker, 2007).

Удлиненный тракт тринуклеотидных повторов САG в гене приводит к образованию протяженного полиглутаминового (PolyQ) тракта в синтезируемом белке хантингтин (MacDonald et al., 1993). Вследствие возникновения этого тракта мутантный хантингтин перестает выполнять свою физиологическую функцию в клетках, а также нарушает работу и транспорт митохондрий (Orr et al., 2009; Mochel, Haller, 2011; Song et al., 2011), транскрипционный аппарат (Baydyuk, Xu, 2012; Seredenina, Luthi-Carter, 2012) и другие клеточные процессы. В дальнейшем мутантный белок образует цитоплазматические агрегаты и ядерные включения в средних шипиковых нейронах стриатума, а на поздних стадиях заболевания – в клетках коры головного мозга (Labbadia, Morimoto, 2013).

В настоящее время БХ является неизлечимой, и ее терапия сводится к применению симптоматических средств, которые могут временно улучшить состояние больного, но не дадут стабильного пожизненного результата. Это связано с тем, что в деталях все тонкости патогенеза не изучены, поэтому затруднителен выбор потенциальных терапевтических мишеней. Поскольку этим заболеванием страдают только люди, создание модели, наиболее точно воспроизводящей патологические процессы (на основе человека), невозможно по этическим причинам. Модели БХ на основе животных демонстрируют моторные и когнитивные симптомы и фенотипические признаки заболевания, и их широко используют в исследованиях (Ramaswamy et al., 2007). Однако такие модели не могут в полной мере отражать и воспроизводить все аспекты БХ у человека ввиду значительных генетических различий и относительно короткой продолжительности жизни исследуемых организмов. Поэтому наиболее подходящим объектом для исследования БХ считаются модельные системы на основе культивируемых клеток человека.

В последние несколько лет исследователи активно применяют технологию редактирования генома CRISPR/Cas9 на культивируемых клетках человека (Freiermuth et al., 2017). Система CRISPR/Cas9 позволяет эффективно и направленно модифицировать геном клеток. Так, уже получены линии клеток от пациентов, страдающих БХ, с исправленной мутацией (An et al., 2012).

Ранее были получены клоны клеток линии НЕК293, несущие различные мутации (встройки удлиненного тракта САG и делеции разного размера) в первом экзоне гена *HTT* (Малахова и др., 2016). Эта линия клеток была выбрана

для исследования в связи с тем, что ее легко культивировать и она хорошо поддается различным генетическим манипуляциям. Кроме того, клетки НЕК293 обладают некоторыми нейральными свойствами (Shaw et al., 2002), что позволяет проводить корреляции с процессами, происходящими в нейронах. В данной работе мы исследовали влияние мутантного белка НТТ на пролиферацию, уровень апоптоза и другие показатели жизнеспособности клеток линии НЕК293 с целью оценки способности мутантных клонов НЕК293 моделировать БХ *in vitro*.

Материалы и методы

Культивирование клеток. Работа проводилась на культуре клеток НЕК293 (human embryonic kidney). Всего в работе исследовали восемь линий НЕК293 с мутациями в первом экзоне гена *HTT*: со встройками удлиненных трактов тринуклеотидных повторов (4В, 6Н, 5С, 3В), делециями (8Н, 8D), встройкой и делецией (4Е). Наличие мутации в первом экзоне гена *HTT* подтверждали с помощью стандартной ПЦР (последовательности праймеров приведены в табл. 1). В качестве отрицательного контроля использована линия НЕК293 Phoenix (Ph). Клетки культивировали в среде, содержащей 45 % DMEM, 45 % F12, 10 % FBS, 1mM L-глутамин (Thermo Fisher Scientific), 1 % Pen-Strep (Lonza).

Иммунофлуоресценция. Клетки фиксировали с помощью 4 % параформальдегида (ПФА) 15 мин, пермеабилизовали в 0.5 % Triton X-100 в течение 30 мин, затем добавляли 1 % BSA в PBS (блокирующий буфер) на 30 мин. Инкубировали с первичными антителами 16 ч при 4 °C, затем со вторыми антителами – 2 ч при комнатной температуре и 5 мин с 1 мкг/мл DAPI (Sigma). Использованные антитела указаны в табл. 2. Визуализировали на микроскопе Nikon Ti-Eclipse с помощью программного обеспечения фирмы. Для теста на чувствительность к ингибитору протеасом MG132 инкубировали клетки с 5 мкМ MG132 (Santa Cruz) 12 ч перед фиксацией.

Тест на активность пролиферации. Активность пролиферации клеток исследовали с помощью набора Cell Proliferation Kit II XTT (Roche) по протоколу производителя через 2.5 ч после добавления реагентов. Клетки рассаживали по $5 \cdot 10^4$ на лунку 96-ячеечного планшета. Оптическую плотность образцов измеряли с использованием сканирующего спектрофотометра Perkin Elmer (2030 Multilabel Reader Victor X3) на 2-й, 3-й и 4-й день после пересадки.

Тест на уровень апоптоза. Уровень апоптоза клеток исследовали с помощью набора ApoDETECT Annexin V-FITC Kit (Life Technologies) по протоколу производителя и анализировали с помощью проточной цитометрии на сортере клеток S3e Bio-Rad.

Статистическая обработка данных. Статистическую обработку данных для тестов на уровень пролиферации и апоптоза проводили в программе R. Достоверность отличий оценивали с помощью критерия Вилкоксона.

Выделение РНК, синтез кДНК и ОТ-ПЦР. РНК выделяли из культур клеток с помощью TRIzol Reagent (Thermo Fisher Scientific), согласно инструкции производителя. Синтез кДНК осуществляли с использованием фермента обратной транскриптазы (ОТ) SuperScriptIII (Invitrogen).

Table 1. Primers

Gene	Forward primer	Reverse primer
gDNA_HTT	CCCAAGGCCACCTCGGCTCAGAGTC	CGCAGGCTGCAGGGTTACCGCCATC
cDNA_HTT	AGGAGCTCTCCTTCTCCG	TTCTCCGGAACATTCCAGACTTG
cDNA_GAPDH	TGTTGCCATCAATGACCCCTT	CTCCACGACGTACTCAGCG

Table 2. Antibodies

Antibody	Isotype	Dilution	Manufacturer	Catalog No.
	Primary antibo	dies		•••••
Anti-PolyQ	Mouse monoclonal, IgG1k 1:1000		Millipore	MAB1574
Anti-Neurofilament 200	Rabbit polyclonal	1:1000	Sigma	N4142
Anti-Glial Fibrillary Acidic Protein (GFAP)	»	1:200	Millipore	AB5804
Anti-Vimentin	»	1:200	Abcam	ab45939
Anti-S100B	Mouse monoclonal, IgG1k	1:500	Sigma	SAB1402349
Anti-Isl1	Rabbit polyclonal	1:500	Abcam	ab20670
	Secondary antib	odies	•••••	•
Alexa Fluor 488 goat anti mouse IgG1	Goat polyclonal	1:400	Thermo Fisher Scientific	A21121
Alexa Fluor 488 goat anti rabbit IgG (H+L)	»	1:400	»	A11008
Alexa Fluor 568 goat anti mouse IgG (H+L)	»	1:400	»	A11004

ОТ-ПЦР проводили в стандартных условиях с использованием праймеров, приведенных в табл. 1.

Результаты

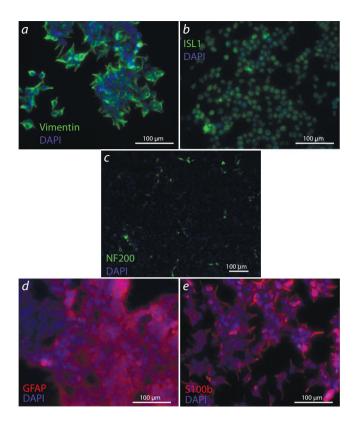
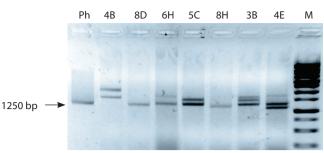
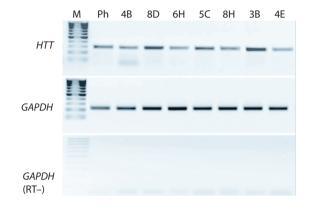
Экспрессия нейральных маркеров в линии клеток НЕК293. Чтобы подтвердить экспрессию маркеров нейральных клеток в клетках линии НЕК293, проведено иммунофлуоресцентное окрашивание. Выявлено, что эта клеточная линия экспрессирует Vimentin и ISL1 – маркеры предшественников нейронов и маркеры астроцитов GFAP и S100B (рис. $1, a, \delta, \epsilon, \delta$). Также в отдельных клетках наблюдается экспрессия нейрофиламента NF200 (см. рис. $1, \epsilon$).

Экспрессия *HTT* в мутантных клонах линии HEK293. Исследовано восемь линий HEK293, имеющих в первом экзоне гена *HTT* встройки либо делеции разного размера (рис. 2).

Для подтверждения экспрессии HTT в исследуемых линиях клеток проведена ОТ-ПЦР. Показано, что HTT экспрессируется как в линии клеток без мутаций, так и в мутантных клетках (рис. 3). В качестве положительного контроля проведена ОТ-ПЦР на экспрессию гена GAPDH.

Отсутствие белковых агрегатов в мутантных клетках и их повышенная чувствительность к ингибитору протеасом. Для выявления наличия белковых агрегатов проведено иммунофлуоресцентное окрашивание антителами на PolyQ-тракт. Для этого были выбраны три линии: Phoenix с нормальными аллелями *HTT*, 4B с двумя мутантными аллелями и 6H с одним нормальным и одним мутантным аллелями и 6H с одним нормальным и одним мутантным аллелем. Показано, что белковые агрегаты ни в одной из клеточных линий не формируются (рис. 4, a). Известно, что при воздействии на клетки веществом MG132, которое является ингибитором протеасом, может повышаться количество цитоплазматических включений в клеточных линиях, имеющих мутации в гене HTT (Jeon et al., 2012). Поэтому с целью инициирования образования белковых агрегатов клетки перед окрашиванием инкубировали с 5 мкМ MG132, однако агрегаты также не были выявлены. Мутантные линии 4B и 6H в присутствии ингибитора протеасом MG132 визуально демонстрировали повышенный уровень клеточной гибели по сравнению с контрольной линией (см. рис. 4, δ).

Отрицательное влияние мутаций на жизнеспособность клеток. С помощью окраски на Annexin V/PI выявлены следующие группы клеток: живые, окрашивающиеся на ранние маркеры апоптоза; погибшие от апоптоза (поздний апоптоз); погибшие от некроза (табл. 3). Между мутантными линиями и контролем (Phoenix) наблюдалась тенденция к увеличению количества клеток, окрашивающихся на ранние маркеры апоптоза (см. табл. 3, значения первого столбца). Разброс значений представлен на рис. 5. По сравнению с линией без мутации доля клеток, погибающих от апоптоза, в некоторых мутантных линиях имеет тенденцию к увеличению. Это линии, несущие встройки удлиненного тракта тринуклеотидных повторов САG (3B, 5C, 6H), и линия, несущая и встройку, и делецию (4E).

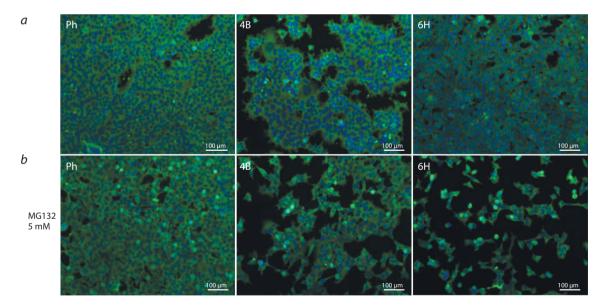

Fig. 1. Fluorescence of neural markers in HEK293 cells.

Fig. 2. PCR-based confirmation of mutations in the first exon of HTT in HEK293 clones.

Fig. 3. RT-PCR-based confirmation of *HTT* expression in HEK293 clones.

Fig. 4. PolyQ fluorescence in HEK293 clones. (a) immunostaining without MG132, (b) immunostaining after treatment with 5 μ M MG132.

Сниженная пролиферативная активность мутантных клеток. В результате анализа клеток на уровень пролиферативной активности выявлено, что мутантные линии пролиферируют медленнее (рис. 6). Для наглядности полученные данные были объединены в три группы: линии клеток со встройками в первом экзоне гена *HTT*

(6H, 3B, 5C), линии клеток с делециями (8D и 8H) и линия без мутации в гене *HTT* (Phoenix). Статистическая обработка данных показала достоверное отличие в скорости пролиферации групп линий на 1-й и 2-й день: линии со встройками пролиферируют медленнее. На 3-й день отличие в скорости пролиферации недостоверно.

Table 3. Annexin V/PI staining of HEK293 clones

Clone	Annexin+ / PI- cells, % Early apoptosis)			Annexin+ / PI+ cells, % Late apoptosis)			Annexin- / PI+ cells, % (Necrosis)		
Ph	1.41	0.91	1.50	2.78	2.04	1.58	10.93	8.26	8.22
8D	1.60	2.78	0.97	1.59	2.42	1.11	4.31	6.83	7.06
4B	2.81	1.91	11.97	2.14	1.68	3.96	14.13	9.79	15.74
4E	14.93	10.59	8.32	11.41	7.39	2.59	12.81	9.76	14.30
3B	1.85	1.74	2.28	1.57	1.70	1.83	4.79	6.25	5.24
6H	2.24	1.56	1.79	2.23	1.69	2.78	6.49	5.22	6.08
5C	7.50	3.47	2.32	2.32	2.38	2.61	8.52	5.74	5.77

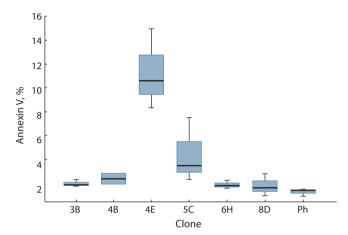


Fig. 5. Data scattering in the analysis of apoptosis level in HEK293 clones.

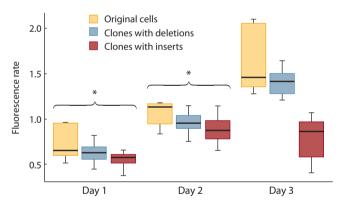


Fig. 6. Analysis of proliferation levels in HEK293 cell clones.

The proliferation rate of clones with deletions does not differ from the Phoenix control line (p > 0.05). The proliferation rates of clones carrying inserts differ significantly from the Phoenix control line on the first (p = 0.04719) and second (p = 0.02244) days of measurements. On the third day, the difference is insignificant (p > 0.05).

Обсуждение

В настоящей работе исследовано влияние мутаций в первом экзоне гена *HTT* на жизнедеятельность клеток линии HEK293 с помощью различных методов анализа. Мы показали, что линия HEK293 обладает некоторыми свойствами нейральных клеток, поэтому может быть использована в исследовании отдельных механизмов развития нейродегенеративных заболеваний.

Несмотря на то что экспрессия *HTT* подтвердилась во всех исследуемых клеточных линиях, белковых агрегатов в цитоплазме мутантных клеток не наблюдалось. Возможно, белковые агрегаты формируются только в клетках с низкой пролиферативной активностью, долгой продолжительностью жизни и длинным клеточным циклом, когда не происходит ремоделирования цитоплазмы (Currais et al., 2017; Kim et al., 2017). Такими характеристиками обладают нейроны, однако остается неясным, почему при БХ погибают преимущественно средние шипиковые нейроны стриатума.

Не обнаружив внутриклеточных агрегатов в мутантных клетках, мы решили индуцировать их формирование с помощью ингибитора протеасом MG132, так как ранее в исследованиях его уже использовали в этих целях (Jeon et al., 2012; Nekrasov et al., 2016). В ходе этого эксперимента показано, что белковые агрегаты также не образуются, но клетки, несущие мутацию, более чувствительны к добавлению ингибитора. Возможно, это связано с тем, что не только наличие мутантного НТТ может приводить к гибели клеток, но также недостаток НТТ дикого типа значительно сказывается на их выживаемости. НТТ выполняет важную роль в регуляции аутофагии: он участвует в формировании и транспортировке аутофагосом внутри клеток (Martin et al., 2015). Таким образом, в условиях отсутствия или нехватки нормального белка дополнительное ингибирование другого пути утилизации отработавших белков - протеолиза - является критичным для жизнеспособности клеток.

При оценке жизнеспособности клеток мы обнаружили, что клетки со встройкой удлиненного тракта повторов САG характеризуются более высоким уровнем апоптоза по сравнению как с отрицательным контролем (Phoenix), так с линией, несущей делецию. Более того, активность пролиферации в первые два дня достоверно снижена только у клеточных линий со встройками. На 3-й день анализа это отличие недостоверно, что может быть связано с тем, что скорость пролиферации контрольной линии Phoenix вышла на плато. Различий между пролиферативной активностью контрольной линии и линиями с делециями не обнаружено ни в один из дней эксперимента. Это свидетельствует о том, что наличие полиглутаминового тракта в мутантном белке НТТ оказывает более негативный эффект, чем делеция в соответствующем локусе.

Полученные в нашем исследовании результаты демонстрируют, что мутации в первом экзоне гена *HTT* в клетках линии НЕК293 оказывают негативное влияние на некоторые физиологические свойства клеток. Такая клеточная модель хороша тем, что несмотря на внесенные мутации, клетки остаются жизнеспособными. Это позволит изучать функционирование нормального и мутантного НТТ в течение длительного времени и использовать данные модели для долговременных исследований. Однако, поскольку у человека симптомы БХ начинают проявляться в возрасте примерно 40 лет, вполне вероятно, что для воссоздания более корректного мутантного фенотипа in vitro необходимо исследовать нейроны после длительного культивирования. В связи с тем, что именно средние шипиковые нейроны стриатума наиболее подвержены влиянию мутантного НТТ, исследование этого типа клеток позволит получить наиболее точные результаты. Поэтому для моделирования БХ in vitro необходимо также получать индуцированные плюрипотентные стволовые клетки человека, несущие необходимую мутацию, и дифференцировать их в релевантные типы клеток.

В этом исследовании мы подтвердили экспрессию нескольких нейральных маркеров в клетках НЕК293 и продемонстрировали, что внесенные мутации оказывают влияние на различные физиологические показатели полученных клеток, такие как скорость пролиферации, уровень апоптоза в нормальных условиях и при клеточном стрессе. Таким образом, мутации, вызывающие БХ, оказывают негативный эффект не только на те типы клеток, которые традиционно считаются ключевыми в развитии патологического фенотипа, но и, в частности, на клетки линии НЕК293.

Acknowledgments

This study was supported by the Russian Foundation for Basic Research, project 16-15-10128.

Conflict of interest

The authors declare no conflict of interest.

References

- An M.C., Zhang N., Scott G., Montoro D., Wittkop T., Melov S., Ellerby L.M. Genetic correction of Huntington's disease phenotypes in induced pluripotent stem cells. Cell Stem Cell. 2012;11(2):253-263. DOI 10.1016/j.stem.2012.04.026.An.
- Baydyuk M., Baoji X. BDNF in Huntington's disease: role in pathogenesis and treatment. Huntington's Disease Core Concepts and Current Advances. InTech, 2012;495-507.
- Currais A., Fisher W., Maher P., Schubert D. Intraneuronal protein aggregation as a trigger for inflammation and neurodegeneration in the aging brain. FASEB J. 2017;31(1):5-10. DOI 10.1096/fj. 201601184.
- Freiermuth J.L., Powell-Castilla I.J., Gallicano I. Toward a CRISPR picture: use of CRISPR/Cas9 to model diseases in human stem cells in vitro. J. Cell. Biochem. 2017;7(May):1-7. DOI 10.1002/jcb.26162.
- Jeon I., Lee N., Li J., Park I., Park K., Moon J., Shim S.H., Choi C., Chang D., Kwon J., Oh S., Shin D.A., Kim H.S., Do J.T., Lee D.R., Kim M., Kang K., Daley G.Q., Brundin P., Sjihwan S. Neuronal properties, *in vivo* effects and pathology of a Huntington's disease

- patient-derived induced pluripotent stem cells. Stem Cells. 2012;30: 2054-2062. DOI 10.1002/stem.1135.
- Kim M., Ho A., Lee J.H. Autophagy and human neurodegenerative diseases A fly's perspective. Int. J. Mol. Sci. 2017;18(7):1596. DOI 10.3390/ijms18071596.
- Labbadia J., Morimoto R.I. Huntington's disease: underlying molecular mechanisms and emerging concepts. Trends Biochem. Sci. 2013; 338(4):378-385. DOI 10.1016/j.tibs.2013.05.003.Huntington.
- MacDonald M.E., Ambrose C.M., Duyao M.P., Myers R.H., Lin C., Srinidhi L., Barnes G., Taylor S.A., James M., Groat N., MacFarlane H., Jenkins B., Anderson M.A., Wexler N.S., Gusella J.F., Bates G.P., Baxendale S., Hummerich H., Kirby S., North M., Youngman S., Mott R., Zehetner G., Sedlacek Z., Poustka A., Frischauf A., Lehrach H., Buckler A.J., Church D., Doucette-Stamm L., O'Donovan M.C., Riba-Ramirer L., Shah M., Stanton V.P., Strobel S.A., Draths K.M., Wales J.L., Dervan P., Housman D.E., Alterr M., Shiang R., Thompson L., Fielder T., Wasmuth J.J., Tagle D., Valdes J., Elmer L., Allard M., Castilla L., Swaroop M., Blanchard K., Collins F.C., Snell R., Holloway T., Gillespie K., Datson N., Shaw D., Harper P.S. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell. 1993;72(6):971-983.
- Malakhova A.A., Sorokin M.A., Sorokina A.E., Malankhanova T.B., Mazurok N.A., Medvedev S.P., Zakiyan S.M. The genome editing approach for generation of isogenic cell lines modelling Huntington's disease in vitro. Geny i kletki = Genes&Cells. 2016;9(3):106-113. (in Russian)
- Martin D.D., Ladha S., Ehrnhoefer D.E., Hayden M.R. Autophagy in Huntington disease and huntingtin in autophagy. Trends Neurosci. 2015;38(1):26-35. DOI 10.1016/j.tins.2014.09.003.
- Martin J.B., Gusella J.F. Huntington's disease: Pathogenesis and management. N. Engl. J. Med. 1986;315:1267-1276.
- Mochel F., Haller R.G. Energy deficit in Huntington disease: why it matters. J. Clin. Invest. 2011;121(2):493-499. DOI 10.1172/JCI45691.
- Nekrasov E.D., Vigont V.A., Klyushnikov S.A., Lebedeva O.S., Vassina E.M., Bogomazova A.N., Chestkov I.V., Semashko T.A., Kiseleva E., Suldina L.A., Bobrovsky P.A., Zimina O.A., Ryazantseva M.A., Skopin A.Y., Illarioshkin S.N., Kaznacheyeva E.V., Lagarkova M.A., Kiselev S.L. Manifestation of Huntington's disease pathology in human induced pluripotent stem cell-derived neurons. Mol. Neurodegener. 2016;11(27):1-15. DOI 10.1186/s13024-016-0092-5.
- Orr A.L., Li S., Wang C., Li H., Wang J., Rong J., Xu X., Mastroberardino P.G., Greenamyre J.T., Li X. N-terminal mutant huntingtin associates with mitochondria and impairsmitochondrial trafficking. J. Neurosci. 2009;28(11):2783-2792. DOI 10.1523/JNEUROSCI. 0106-08.2008.
- Ramaswamy S., McBride J.L., Kordower J.H. Animal models of Huntington's disease. ILAR J. 2007;48:356-373.
- Seredenina T., Luthi-Carter R. What have we learned from gene expression profiles in Huntington's disease? Neurobiol. Dis. 2012;45(1): 83-98. DOI 10.1016/j.nbd.2011.07.001.
- Shaw G., Morse S., Ararat M., Graham F.L. Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J. 2002;16:869-871. DOI 10.1096/fj.01.
- Song W., Chen J., Petrilli A., Liot G., Klinglmayr E., Zhou Y., Poquiz P., Tjong J., Pouladi M.A., Hayden M.R., Masliah E., Ellisman M., Rouiller I., Schwarzenbacher R., Bossy B., Perkins G., Bossy-Wetzel E. Mutant huntingtin binds the mitochondrial fission GTPase Drp1 and increases its enzymatic activty. Nat. Med. 2011; 17(3):377-382. DOI 10.1038/nm.2313.MUTANT.
- Walker F.O. Huntington's Disease. Lancet. 2007;369(9557):217-228. DOI 10.1055/s-2007-971176.