

Создание стабильного штамма-продуцента полноразмерного антитела человека на примере антитела против вируса эктромелии

А.Л. Матвеев¹, Я.А. Хлусевич¹, И.К. Байков¹, И.В. Бабкин^{1, 2}, Е.П. Гончарова¹, В.В. Морозова^{1, 2}, Н.В. Тикунова^{1, 2}

Полноразмерные антитела человека обладают большим терапевтическим потенциалом, однако разработка стабильных штаммов, обеспечивающих высокий уровень продукции полноразмерных антител, является непростой задачей, поскольку молекулы антител содержат два типа полипептидных цепей. При получении штаммапродуцента чаще всего используют подход, основанный на случайной интеграции в геном плазмиды, содержащей ген, который кодирует целевой белок. Цель данного исследования – разработка оригинальной экспрессионной системы на основе направленной рекомбинации (генный таргетинг) для интеграции гена, кодирующего полноразмерное антитело человека, в транскрипционно активную область генома эукариотических суспензионных клеток CHO-S. Для создания высокопродуктивного стабильного штамма на первом этапе была сконструирована кассетная векторная плазмида pCDNA5/FRT-DHFR-CH-CL, содержащая сайт гомологичной рекомбинации и гены, кодирующие тяжелую и легкую цепи полноразмерного антитела человека класса IgG1/kappa. ДНК плазмиды pCDNA5/FRT-DHFR-CH-CL организовали таким образом, что перед последовательностями, кодирующими константные домены тяжелых и легких цепей антитела человека, находились сайты узнавания эндонуклеаз рестрикции для удобного встраивания фрагментов ДНК, кодирующих соответствующие вариабельные домены тяжелых и легких цепей. На втором этапе в кассетную плазмиду pCDNA5/FRT-DHFR-CH-CL были встроены ДНК-фрагменты, кодирующие вариабельные домены тяжелых и легких цепей антитела человека против ортопоксвирусного белка р35. Затем полученной плазмидой трансфицировали эукариотические клетки CHO-S/FRT, содержащие FRT-сайт гомологичной рекомбинации и экспрессирующие белок GFP. При встройке целевых генов, кодирующих тяжелые и легкие цепи антитела в FRT-сайт, продукция GFP должна была прекратиться. При использовании такой системы отбора был получен стабильный клон, продуцирующий целевое антитело fh8E с уровнем продукции около 100 мкг/мл. Аффинность связывания очищенного антитела fh8E с таргетным белком, измеренная методом поверхностного плазмонного резонанса, составила 12 нМ. Антитело fh8E продемонстрировало вируснейтрализующие свойства в реакции ингибирования бляшкообразования вируса осповакцины в экспериментах in vitro.

Ключевые слова: полноразмерное антитело человека; штаммпродуцент; клетки СНО; плазмида; геномная амплификация; вирус эктромелии.

Development of a stable eukaryotic strain producing fully human monoclonal antibody on the basis of the human antibody against ectromelia virus

A.L. Matveev¹, Ya.A. Khlusevich¹, I.K. Baykov¹, I.V. Babkin¹, ², E.P. Goncharova¹, V.V. Morozova¹, ², N.V. Tikunova¹, ²

Fully-human antibodies have a great therapeutic importance; however, the development of stable strains providing a high level of production of full-size antibodies is a challenging task, as antibody molecules contain two types of polypeptide chains. To develop the producing strain, random integration of the plasmid containing the gene encoding the target protein into the genome of the host cells is commonly used. The aim of this study was the development of an original expression system, using gene targeting to integrate the gene encoding the fully-human antibody into the transcriptionally active region of the genome of eukaryotic suspension cells CHO-S. To develop a stable strain, the cassette vector plasmid pCDNA5/FRT-DHFR-CH-CL containing the site of homologous recombination and the genes encoding heavy and light chains of the fully human antibody of the IgG1/kappa class was constructed at the first step. Notably, DNA of the plasmid pCDNA5/FRT-DHFR-CH-CL was organized in such a way that the restriction sites for rapid cloning of DNA fragments encoding the variable domains of heavy and light chains were inserted upstream of the sequences encoding constant domains of the heavy and light chains of the antibody. Secondly, DNA fragments encoding the variable domains of the heavy and light chains of antibody against orthopoxvirus protein p35 were inserted into the pCDNA5/FRT-DHFR-CH-CL cassette plasmid. Then, CHO-S/FRT cells, which contain the FRT-site for homologous recombination and are able to produce green fluorescence protein GFP, were transfected with the constructed plasmid. After the insertion of the target genes into the FRT-site, GFP production was supposed to stop. Using this selection system, a stable clone producing target antibody fh8E was selected with the level of production of about 100 µg/ml. The binding affinity of purified antibody fh8E with the targeted protein, measured

Received 21.11.2017 Accepted for publication 15.12.2017 © AUTHORS, 2017

¹ Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия

² Новосибирский национальный исследовательский государственный университет, Новосибирск, Россия

¹ Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia

² Novosibirsk State University, Novosibirsk, Russia

by surface plasmon resonance, was 12 nM. In addition, antibody fh8E demonstrated anti-vaccinia virus activity in the plaque reduction neutralization test *in vitro*.

Key words: fully human antibody; producing strain; CHO cells; plasmid; genomic amplification; ectromelia virus.

КАК ЦИТИРОВАТЬ ЭТУ СТАТЬЮ:

Матвеев А.Л., Хлусевич Я.А., Байков И.К., Бабкин И.В., Гончарова Е.П., Морозова В.В., Тикунова Н.В. Создание стабильного штамма-продуцента полноразмерного антитела человека на примере антитела против вируса эктромелии. Вавиловский журнал генетики и селекции. 2017;21(8):993-1000. DOI 10.18699/VJ17.324

HOW TO CITE THIS ARTICLE.

Matveev A.L., Khlusevich Ya.A., Baykov I.K., Babkin I.V., Goncharova E.P., Morozova V.V., Tikunova N.V. Development of a stable eukaryotic strain producing fully human monoclonal antibody on the basis of the human antibody against ectromelia virus. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(8):993-1000. DOI 10.18699/VJ17.324 (in Russian)

последние годы все большее место на фармацевтическом рынке занимают препараты на основе терапевтических антител. Это связано с исключительными свойствами этих молекул - высокой специфичностью взаимодействия с антигеном, способностью вовлекать различные звенья иммунной системы, а также проникать в ткани и выводиться из организма с помощью естественных механизмов. Первыми были разработаны терапевтические и профилактические препараты на основе сывороток иммунизированных людей или животных. Так, в Российской Федерации успешно применяют иммуноглобулин человека против гепатита В, противоклещевой и противостолбнячный иммуноглобулины, полученные на основе донорской крови (http://www.microgen.ru/products); в США для лечения осложнений после вакцинации вирусом осповакцины используют сывороточный вакцинный иммуноглобулин (VIG) (Hopkins, Lane, 2004). Вместе с тем в настоящее время наблюдается тенденция отказа от сывороточных препаратов из-за возможного биологического риска, связанного с их применением, и в клинической практике в основном используют рекомбинантные полноразмерные антитела, которые нарабатывают в эукариотических клеточных линиях (Reichert, 2016, 2017). Однако из более чем сорока терапевтических антител, представленных на мировом фармацевтическом рынке, большинство - это противоцитокиновые и противораковые антитела, и имеется лишь одно противовирусное терапевтическое антитело (против респираторного синтициального вируса).

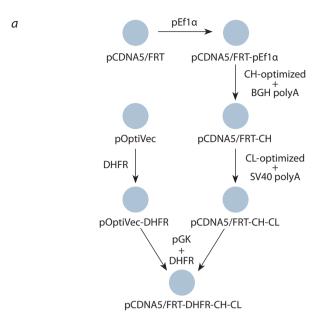
Ключевым этапом в процессе разработки терапевтических антител является создание стабильного высокопродуктивного штамма-продуцента, обеспечивающего коммерческую привлекательность производства необходимого для медицины антитела. При этом получить клеточные линии, стабильно экспрессирующие рекомбинантные антитела с высоким уровнем продукции, бывает трудно из-за того, что такие клоны встречаются с частотой 1/10000, и во время культивирования клеток чужеродные гены легко элиминируются (Lucas et al., 1996). Продуктивность рекомбинантных клеточных линий напрямую зависит от места интеграции целевых генов в геном, но вероятность получения стабильных клеток, у которых целевой ген интегрирован в активный участок генома, довольно низка. Известно, что только 0.1 % геномной ДНК содержит транскрипционно активные последовательности, поэтому на уровень продукции влияют геномная среда, так называемый эффект положения и число копий

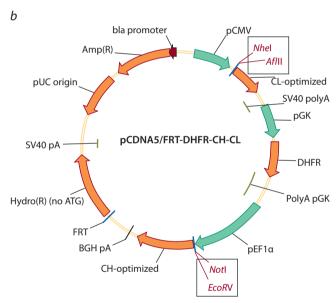
целевого гена в геноме (Little et al., 1993). Однако гомологичная рекомбинация между геномом клетки хозяина и плазмидной ДНК, используемой для трансфекции, происходит с низкой частотой (Hirata et al., 2002).

Одним из способов повышения вероятности направленной интеграции является применение специфических ферментов, таких как Flp-рекомбиназы дрожжей. Эти ферменты катализируют гомологичную направленную рекомбинацию с высокой частотой, если в донорной плазмидной ДНК и реципиентной геномной ДНК есть конкретные сайты для рекомбинации (Wilson et al., 2001). Flp-рекомбиназы были широко использованы для направленной рекомбинации целевых генов в геном клеток животных (Wirth et al., 2007). Сайт-специфичные системы рекомбинации Cre-LoxP и FLP-FRT были хорошо изучены и часто применяются для сайт-специфической рекомбинации клеток животных (Kito et al., 2002; Coroadinha et al., 2006; Huang et al., 2007; Kameyama et al., 2010). Тем не менее интеграция в эухроматин не является гарантией обеспечения долгосрочной экспрессии рекомбинантного гена. Во многих случаях реципиентные гены быстро инактивируются (замолкают), что может быть ассоциировано с гипоацитилированием гистонов, метилированием лизина-9 гистона Н3 и увеличением СрG-метилирования в промоторной области трансгена (Richards, 2002; Mutskov, Felsenfeld, 2004).

Разработано несколько стратегий для уменьшения негативного влияния эффекта положения при случайной интеграции (Zahn-Zabal et al., 2001; Fernandez et al., 2002; Kwaks et al., 2003). Одна из возможных стратегий преодоления эффекта положения – это использование направленной рекомбинации (генный таргетинг) для интеграции гена, кодирующего целевой белок, по специфическим сайтам в транскрипционно активную область генома.

Как правило, разработкой препаратов на основе полноразмерных антител занимаются частные фармацевтические компании, поэтому многие детали, связанные с получением штаммов-продуцентов, остаются неизвестными. При получении штамма-продуцента чаще всего применяют традиционный подход, основанный на случайной интеграции в геном последовательности ДНК, кодирующей целевой белок. Клеточные линии для трансфекции с помощью направленной рекомбинации, созданные на основе суспензионных клеток, не описаны. Однако именно такой подход является, на наш взгляд, наиболее перспективным для получения промышленных штаммов-продуцентов. Цель данного исследования — разработка оригинальной


экспрессионной системы для создания на ее основе высокопродуктивных стабильных штаммов-продуцентов полноразмерных антител человека на примере антитела против белка p35 ортопоксвирусов.


Материалы и методы

Клетки Escherichia coli XL1-blue, использовавшиеся при конструирования плазмидной ДНК, суспензионные эукариотические клетки CHO-S/FRT, содержащие FRT-сайт гомологичной рекомбинации и продуцирующие зеленый флуоресцентный белок GFP (green fluorescence protein), и эукариотические клетки Vero Еб были получены из Коллекции экстремофильных микроорганизмов и типовых культур Института химической биологии и фундаментальной медицины (ИХБФМ) СО РАН. Штамм вируса осповакцины, несущего в составе генома ген gfp (BOB-LIVP-GFP), был создан ранее (Петров и др., 2013).

Конструирование кассетной векторной плазмиды pCDNA5/FRT-DHFR-CH-CL, содержащей сайт гомологичной рекомбинации и гены, кодирующие тяжелую и легкую цепи полноразмерного антитела человека, проводили в несколько этапов (рис. 1). На первом этапе в плазмиду pCDNA5/FRT (Life Technologies), содержащую FRT-сайт для гомологичной рекомбинации, была встроена последовательность промотора гена, кодирующего фактор элонгации pEf1 a. Для этого ДНК-фрагмент, содержащий в своем составе промотор $Pr/Efl\alpha$, полученный в ПЦР с использованием праймеров Ef1 a U17 и Ef1 a L22 (см. таблицу) и плазмиды pbudCE4.1 (Life Technologies), обрабатывали эндонуклеазами рестрикции *Kpn*I и ВатНІ и объединяли в реакции лигирования с плазмидой pCDNA5/FRT, обработанной теми же рестриктазами. На втором этапе в полученную плазмиду pCDNA5/FRTрЕf1α последовательно встраивали гены, кодирующие константные домены тяжелой и легкой цепей антитела человека, с сайтами полиаденилирования бычего гормона роста (BST) и вируса SV40 соответственно. Соответствующие фрагменты ДНК (CH+polyA_{bST} и CL+polyA_{SV40}) были получены в ПЦР с использованием плазмид рСН и рСL, сконструированных ранее (Байков и др., 2013), и пар праймеров СН U22 и BGH polyA L18, а также CL U21 и SV40_polyA_L30 (см. таблицу). В результате была создана промежуточная плазмида pCDNA5/FRT-CH-CL, организованная таким образом, что перед последовательностями, кодирующими константные домены тяжелых и легких цепей антитела человека, находились сайты рестрикции EcoRV и NotI, а также NheI и AflII соответственно для быстрого встраивания фрагментов ДНК, кодирующих эти вариабельные фрагменты.

На следующем этапе в плазмиде pOptiVec-TOPO (Life Technologies), содержащей ген, кодирующий дегидрофолат редуктазу (dhfr), был заменен IRES-элемент вируса энцефаломиокардита на слабый эукариотический промотор фосфоглицераткиназы – Pr/pgk. Для этого с помощью праймеров pGK_U20 и pGK_L17 (см. таблицу) был получен ПЦР-фрагмент, содержащий Pr/pgk, причем на 5'- и 3'-концах ПЦР-фрагмента находились сайты HpaI и Bg/II соответственно. В качестве матрицы для получения этого ПЦР-продукта использовали плазмиду pExT (Tasic et al., 2012). Затем плазмидная ДНК pOptiVec-TOPO и полу-

Fig. 1. (a) Schematic presentation of the construction of the cassette vector plasmid pCDNA5/FRT-DHFR-CH-CL. (b) Map of pCDNA5/FRT-DHFR-CH-CL plasmid.

ченный ПЦР-фрагмент были обработаны эндонуклеазами HpaI и BgIII и объединены в реакции лигирования. В результате была сконструирована промежуточная плазмида pOptiVec-DHFR.

На последнем этапе в плазмиду pCDNA5/FRT-CH-CL был встроен ген dhfr. Для этого получали ПЦР-фрагмент, содержащий промотор Pr/pgk, ген dhfr и сайт полиаденилирования гена тимидинкиназы. В ПЦР-фрагмент с помощью праймеров ввели на 5'- и 3'-концы сайты ApaI и Ksp22I соответственно. В качестве матрицы для синтеза этого ПЦР-продукта использовали промежуточную плазмиду pOptiVec-DHFR и пары праймеров pGK_APA_U20 и DHFR_L21. В результате реакции лигирования была сконструирована кассетная плазмида pCDNA5/FRT-DHFR-CH-CL, содержащая уникальные сайты EcoRV и

Primers used in the study

Primer	Nucleotide sequence
Ef1α_U17	5'-AATGGTACCCGTGAGGCTCCGGTGCC-3'
Ef1α_L22	5'-TGGGGATCCTCACGACACCTGAAATGGAAGA-3'
CH_U22	5'-AATCTCGAGTCATCTGCCAGTACCAAAGGCC-3'
BGH_polyA_L18	5'-AATCTCGAGCCATAGAGCCCACCGCAT-3'
CL_U21	5'-GCAAAGCTTCAAGAGGACTGTAGCAGCTCC-3'
SV40_polyA_L30	5'-GCAAAGCTTAACTTGTTTATTGCAGCTTATAATGGTTAC-3'
pGK_U20	5'-GGGTTGTTAACGAATTCTACCGGGTAGGGGA-3'
pGK_L17	5'-CCCAAAGATCTGCAGGTCGAAAGGCCC-3'
pGK_APA_U20	5'-ATTGGGCCCAATTCTACCGGGTAGGGGA-3'
DHFR_L21	5'-GCCTGATCATAGCTAGAGGTCGACGGTAAT-3'
VH8E_U24	5'-GGGATATCGCCGCCACCATGGCTTGGGTGTGGACCTTGCTA-3'
VH8E_L45	5'-AGCGGCCGCGTACTGGCCCCAGTAGTCAAAGTAGCCTC-3'
VL8E_L46	5'-GAAGCTAGCTGCTACAGTCTGGCCAAAAGTGTACGGGGTACTGTAA-3'
VL8E_U45	5'-CCTTAAGAGCCACCATGAAGTCACAGACCCAGGTCTTCGTATTTC-3'

NotI, а также NheI и AfIII соответственно, для клонирования генов, кодирующих вариабельные домены тяжелых и легких цепей антитела человека.

Для наработки полноразмерного антитела человека fh8E (fully human 8E) в сконструированную плазмиду pCDNA5/FRT-DHFR-CH-CL встроили фрагменты ДНК, кодирующие V_H и V_L домены фагового антитела 8E. Эти фрагменты ДНК были синтезированы в ПЦР с помощью фагмидной ДНК pHEN-8E, полученной panee (Khlusevich et al., 2014б), и праймеров VH8E_U24 и VH8E_L45, содержащих на 5'-концах сайты эндонуклеаз рестрикции EcoRV и NotI соответственно для встраивания V_H -гена, а также праймеров VL8E L46 и VL8E U45, содержащих на 5'-концах сайты эндонуклеаз рестрикции NheI и AflII соответственно (см. таблицу) для встраивания V_I-гена. В результате была получена плазмида pCDNA5/FRT-DHFR-full 8E, кодирующая тяжелые и легкие цепи полноразмерного антитела fh8E. Плазмидную ДНК нарабатывали в клетках E. coli, очищали с помощью набора PureYield Plasmid Midiprep (Promega) и использовали для последующей трансфекции эукариотических клеток.

Для получения штамма, продуцирующего антитело fh8E, суспензионные клетки линии CHO-S/FRT одновременно трансфицировали двумя плазмидами: вспомогательной плазмидой рОG44 (Life Technologies) с геном, кодирующим флиппазу, и сконструированной плазмидой рCDNA5/FRT-DHFR-full_8E, кодирующей целевое антитело fh8E. Трансфекцию проводили с помощью трансфектанта Lipofectamine 2000 (Life Technologies) согласно рекомендациям производителя. Эффективность гомологичной рекомбинации оценивали через 72 ч после трансфекции методом проточной цитофлуориметрии с использованием цитофлуориметра NovoCyte (ACEA).

Полученные пулы клеток в концентрации 0.5×10^6 кл./мл засевали в селективную среду CD OptiCHO, содержащую 80 мкг/мл селективного антибиотика Гигромицин В и все необходимые ростовые добавки. В выживших клетках проводили амплификацию целевого гена. Для этого

к аликвотам клеток добавляли метотриксат (TEVA, Израиль) в концентрациях 200, 400, 800 и 1600 нМ. После этого отдельные клоны получали методом предельных разведений.

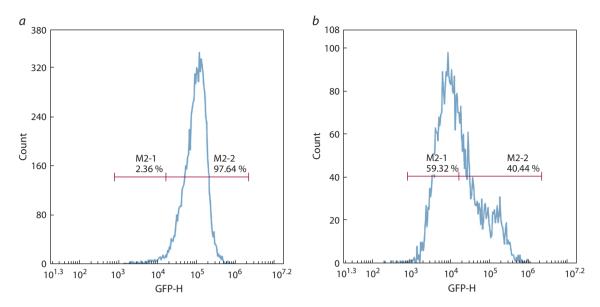
Для очистки антитела fh8E культуральную среду, содержащую это антитело, центрифугировали 10 мин при 12000 g. Хроматографическую полипропиленовую колонку (QIAgen), содержащую белок A-сефарозу CL-4B (GE Healthcare), предварительно уравновешивали фосфатно-солевым буферным раствором (ФСБР) в составе: 100 мМ NaCl, 50 мМ Na₂HPO₄ при рН 7.4. Супернатант наносили на колонку со скоростью 0.5 мл/мин при температуре 4 °C. Колонку промывали тремя объемами ФСБР и элюировали антитело fh8E четырьмя объемами 0.1 M цитратного буфера, рН 3.0. К элюату добавляли 1 М буфер трис-HCl, рН 8.8, в соотношении 1:10 для изменения рН до физиологических значений. Раствор антитела fh8E концентрировали с помощью фильтров Amicon Ultra-4 30K (Millipore) и заменяли буфер на ФСБР с добавлением 0.05 % азида натрия. Концентрацию белка в препарате определяли спектрофотометрически, проводя измерение при длине волны 280 нм.

Для выявления иммуноглобулинов человека в культуральной жидкости эукариотических клеток, продуцирующих антитело fh8E, в 96-луночные иммунологические планшеты («Медполимер», Россия) сорбировали по 100 нг поликлональных антител козы («БиоСан», Россия) против Fab-фрагмента IgG человека в 0.1 М карбонатном буфере, рН 9.4. После блокировки мест неспецифического связывания 3 % раствором бычьего сывороточного альбумина (БСА) в ФСБР, рН 7.5, в лунки добавляли 5-кратные разведения супернатантов клеток, продуцирующих антитело fh8E, и инкубировали их в течение 1 ч. Связавшиеся антитела выявляли поликлональными антителами козы («БиоСан», Россия) против Fc-фрагмента IgG человека, конъюгированными с щелочной фосфатазой (Sigma Aldrich). В качестве хромогена использовали пара-нитрофенилфосфат (Sigma, США).

Для анализа специфичности антитела fh8E в 96-луночные иммунологические планшеты («Медполимер», Россия) сорбировали по 100 нг BOB-LIVP-GFP в ФСБР, рН 7.5. После блокировки мест неспецифического связывания 3 % раствором БСА в ФСБР в иммунологические планшеты добавляли двукратные разведения антитела fh8E (исходная концентрация 20 мкг/мл) в ФСБР, содержащем 0.1 % Твин 20. Антитела, связавшиеся с вирусными антигенами, выявляли поликлональными антителами козы («БиоСан», Россия) против Fc-фрагмента IgG человека, конъюгированными со щелочной фосфатазой (Sigma Aldrich). В качестве хромогена использовали пара-нитрофенилфосфат (Sigma, США). Контролем неспецифического связывания служило химерное антитело ch14D5 против гликопротеина Е вируса клещевого энцефалита, содержащее константные домены, аналогичные fh8E (Baykov et al., 2014).

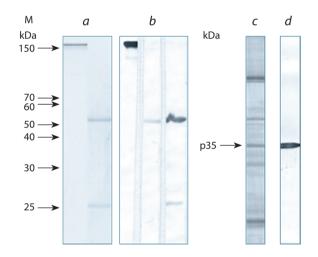
Для проведения вестерн-блот анализа лизаты ВОВ-LIVP-GFP или *E. coli* разделяли электрофоретически в 12 % полиакриламидном геле с 0.1 % додецилсульфатом натрия и переносили на нитроцеллюлозную мембрану (Sigma, США). Места неспецифического связывания на мембране насыщали 5 % раствором сухого молока в ФСБР, затем мембрану инкубировали 1 ч при 37 °С с 1 мкг антитела в 0.1 % Твин 20 в ФСБР. Связавшиеся антитела проявляли поликлональными антителами козы против антител человека (Sigma Aldrich, США), конъюгированными со щелочной фосфатазой, в разведении 1:12000 в 0.1 % растворе Твин 20 в ФСБР. Визуализацию иммунных комплексов проводили, добавляя 0.5 мг 5-бромо-3-индолил фосфата (Sigma, США) и 1.0 мг нитро-тетразолиевого синего (Roche).

Константу связывания антитела fh8E с белком p35delta12 (Хлусевич и др., 2014а) определяли на оптическом биосенсоре ProteOn XPR 36 (Bio-Rad). Измерения вели в ФСБР с добавлением 0.005 % Твин 20. Белок A Staphylococcus aureus ковалентно иммобилизовали на поверхность чипа GLC до уровня около 2000 ед. отклика. Антитело fh8E иммобилизовали на поверхность вертикальных каналов L1 и L2 до уровня около 1500 ед. отклика (RU). Последовательные двукратные разведения белка p35delta12 (Хлусевич и др., 2014а), начиная с концентрации 500 мМ, пропускали через биосенсор в горизонтальной ориентации со скоростью потока 25 мкл/мин. Связывание длилось 10 мин, диссоциация комплексов – 30 мин. Для вычисления константы аффинности проводили глобальный анализ данных в программе ProteOnManager v.3.1.0 (Bio-Rad) с использованием модели односайтового связывания.


Для исследования вируснейтрализующей активности антитела fh8E *in vitro* суспензию BOB разводили до уровня 320 БОЕ/мл и смешивали с равным объемом соответствующего разведения fh8E. Смеси антитела с вирусом инкубировали в течение 1 ч при 37 °C, наносили на монослой клеток линии *Vero* Е6 в 24-луночные планшеты (Orange Scientific, Бельгия) и инкубировали 1 ч при 37 °C. После этого смеси удаляли и в лунки вносили среду DMEM, содержащую 2 % эмбриональную сыворотку теленка и 0.24 % агар. Через 3—4 дня монослой клеток окрашивали 0.1 % раствором кристаллического фиолетового с 10 % формалином, визуализируя бляшки. Титр нейтрализации

считали по формуле N = $(V_0 - V_n)/V_0 \times 100$ %, где V_0 и V_n – количество бляшек в контрольных и тестируемых лунках соответственно.

Результаты и обсуждение


Полноразмерные антитела человека обладают большим терапевтическим потенциалом, поэтому в настоящее время сывороточные препараты повсеместно заменяют на препараты на основе рекомбинантных антител. В частности, для замены VIG разрабатывают противоортопоксвирусные полноразмерные человеческие или химерные антитела (McCausland et al., 2010; Crickard et al., 2012; Tikunova et al., 2012; Matho et al., 2015). Как правило, для исследования противовирусных свойств полученных антител используют экспериментальную наработку антител в системе транзиентной экспрессии при одновременной трансфекции эукариотических клеток двумя плазмидами, каждая из которых несет ген, кодирующий тяжелую или легкую цепи целевого антитела. При этом эффективность получения трансфектантов, несущих обе плазмиды, довольно низка, и продуктивность получаемых целевых клеток варьирует от 0.1 до 5 мг/л.

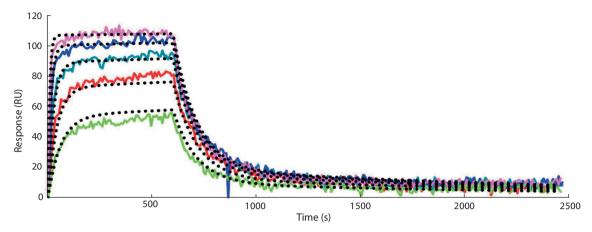
Для создания стабильного штамма, продуцирующего полноразмерное человеческое антитело против ортопоксвирусов, на основе коммерчески доступных плазмид pCDNA5/FRT и pbudCE4.1, а также сконструированных нами ранее плазмид рСН и рСL (Байков и др., 2013) была создана кассетная плазмида pCDNA5/FRT-DHFR-CH-CL, содержащая сайт гомологичной рекомбинации FRT и гены, кодирующие константные домены тяжелой и легкой цепей полноразмерного антитела человека класса IgG1/kappa (см. рис. 1). ДНК плазмиды pCDNA5/FRT-DHFR-CH-CL сконструировали таким образом, чтобы перед последовательностями, кодирующими константные домены тяжелых и легких цепей антитела человека, находились сайты рестрикции для удобного встраивания фрагментов ДНК, кодирующих соответствующие вариабельные домены тяжелых и легких цепей. Затем в плазмиду pCDNA5/FRT-DHFR-CH-CL были встроены последовательности ДНК, кодирующие вариабельные домены тяжелой и легкой цепей антитела человека против ортопоксвирусного белка р35. Эти последовательности ДНК были отобраны ранее в результате фагового дисплея комбинаторной иммунной библиотеки одноцепочечных антител человека, сконструированной нами ранее на основе РНК периферических лимфоцитов доноров, вакцинированных вирусом осповакцины (Tikunova et al., 2012). В результате биопэннинга этой библиотеки и последующей селекции фаговых антител, специфически связывающих вирус эктромелии, были отобраны несколько одноцепочечных антител (scFv) (Хлусевич и др., 2014б), представляющих собой вариабельные домены тяжелой и легкой цепей, объединенных гибким пептидным линкером в единую полипептидную последовательность. Одно из отобранных антител, scFv-8E, послужило источником вариабельных доменов легкой и тяжелой цепи конструируемого антитела. В результате встраивания генов, кодирующих вариабельные домены scFv-8E, в кассетную плазмиду pCDNA5/FRT-DHFR-CH-CL была сконструирована плазмида pCDNA5/FRT-DHFR-full 8E,

Fig. 2. Changes in GFP-fluorescence in CHO-S/FRT cells recorded by flow-cytometry:

(a) the population of ancestral nontransfected CHO-S/FRT cells; (b) CHO-S/FRT cells 48 h after transfection with pOG44 and pCDNA5\FRT-DHFR-full_8E plasmids used in the ratio 14: 1.

Fig. 3. Analysis of the purity and specificity of recombinant antibody fh8E: (a) Electrophoretic image of the purified antibody fh8E under nonreducing and reducing conditions. (b) Western blot analysis of purified antibody fh8E revealed by polyclonal goat antibodies against the Fc fragment of human IgG conjugated with alkaline phosphatase and against the whole human IgG molecule (H+L) conjugated with alkaline phosphatase. (c) VACV-LIVP-GFP proteins fractionated by PAGE. (d) Western blot analysis of VACV-LIVP-GFP proteins fractionated by PAGE and visualized with full-size human antibody fh8E. M, molecular weight ladder #26614 (Fermentas, Lithuania).

несущая гены тяжелой и легкой цепей полноразмерного антитела fh8E.


Для создания стабильного штамма-продуцента полноразмерного антитела человека fh8E суспензионную клеточную линию CHO-S/FRT одновременно трансфицировали коммерческой плазмидой pOG44 и сконструированной плазмидой pCDNA5/FRT-DHFR-full_8E. При этом транс-

фекцию клеток проводили в четырех вариантах с использованием различных массовых соотношений плазмид pOG44 и pCDNA5/FRT-DHFR-full 8E: 19:1, 14:1, 9:1 и 4:1.

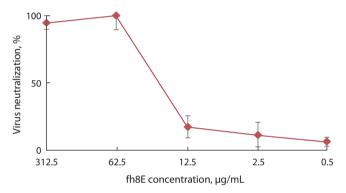
Поскольку FRT-сайт в геноме клеточной линии CHO-S/ FRT расположен между стартовым кодоном ATG и слитым белком GFP-Zeo, встраивание в геном плазмиды, содержащей FRT-сайт, инактивирует слитый белок GFP-Zeo. Таким образом, стабильные клеточные линии, в которых произошла гомологичная рекомбинация по FRT-сайту, могут быть отобраны по чувствительности к зеоцину и по отсутствию продукции белка GFP. Следовательно, у трансформированных клеток со встройкой в FRT-сайт должно наблюдаться уменьшение флуоресценции в зеленой области спектра. В связи с этим флуоресценцию пулов трансфицированных клеток анализировали на проточном цитофлуориметре по сравнению с флуоресценцией исходных нетрансфицированных клеток (рис. 2). Уровень уменьшения флуоресценции варьировал от 6 % (соотношение плазмид pOG44 и pCDNA5/FRT-DHFR-full 8E было 4:1) до 70 % (соотношение 14:1).

Пулы, содержащие наименьшее число клеток, экспрессирующих GFP, использовали для дальнейшей селекции. Для этого клетки высевали на селективную среду с гигромицином В и повторно анализировали по снижению уровня флуоресценции в зеленой части спектра с помощью проточного цитофлуориметра. Аликвоты, содержащие клетки отобранных клонов, замораживали, а оставшиеся части культивировали в течение 21 дня в среде CD OptiCHO со 100 мкг/мл селективного антибиотика зеоцин для подтверждения точности гомологичной рекомбинации. При обнаружении клонов, чувствительных к зеоцину, клетки из соответствующих пробирок размораживали и подвергали процедуре амплификации генов.

Для амплификации генов клетки, продуцирующие антитело fh8E, высевали в концентрации 5×10^5 кл./мл в

Fig. 4. Measurement of the affinity constant of the binding of fh8E with recombinant protein p35delta12. Antibody fh8E was immobilized on the surface of a GLC chip; p35delta12 was used as the analyte at concentrations 31.2 nM, 62.5 nM, 125 nM, 250 nM, and 500 nM. The predicted curves are dotted.

селективную среду с гигромицином В в четырех повторах. В каждый повтор добавляли 200, 400, 800 и 1600 нМ метотрексата (МТХ) (TEVA, Израиль). После культивирования уровень амплификации оценивали по продуктивности полученных пулов клеток. Продуктивность составила (мг/л):


Исходный	200 нм	$400 \ нм$	800 нМ	1600 нМ
пул клеток	MTX	MTX	MTX	MTX
6.2	5.3	9.6	15.2	11.3

Затем методом предельных разведений были получены и проанализированы по 96 отдельных клонов для пулов «800 нм МТХ» и «1600 нМ МТХ». Наибольшая продуктивность отобранных клонов составила 110.2 мг/л.

Полученный клон охарактеризовали по стабильности экспрессии, для чего его растили в течение 35 пассажей, оценивая продуктивность. После 35 пассажей продуктивность одного из клонов составила 102.1 мг/л.

Следует отметить, что при создании штамма-продуцента важно, чтобы целевой белок обладал правильной конформацией, обеспечивающей сохранение его иммунохимических свойств. В случае противовирусных антител существенными характеристиками являются аффинность и наличие противовирусных свойств. Для оценки иммунохимических свойств антитела fh8E проводили аффинную очистку антитела (рис. 3, a), подтверждали принадлежность константных доменов к константным доменам человека (рис. 3, δ), а также тестировали способность антитела fh8E выявлять ортопоксвирусный белок p35 в вестерн-блот анализе (рис. 3, ϵ , ϵ).

Константу аффинности полноразмерного антитела fh8E измеряли методом поверхностного плазмонного резонанса по связыванию с рекомбинантным ортопоксвирусным белком p35delta12, сконструированным ранее (Хлусевич и др., 2014а). Ранее было продемонстрировано, что белок p35delta12 специфически выявляется сыворотками доноров, вакцинированных вирусом осповакцины, с помощью ELISA и вестерн-блот анализа, а также конкурирует с вирусом осповакцины за связывание с моноклональным антителом против ортопоксвирусов (Хлусевич и др., 2014а). Измерение динамических констант показало, что константы ассоциации и диссоциации составили:

Fig. 5. Analysis of the neutralizing activity of serial dilutions of fh8E against VACV-LIVP-GFP taken at the dilution 320 PFU/mL.

Results of two independent experiments performed in three replications are shown.

 $k_{on} = 4.9 \times 10^5 \, M^{-1} c^{-1} \, \text{и} \, k_{off} = 5.6 \times 10^{-3} \, c^{-1} \, \text{соответственно};$ равновесная константа аффинности антитела fh8E равна 12 нМ (рис. 4).

Противовирусные свойства антитела fh8E протестировали в реакции подавления бляшкообразования BOB *in vitro*. В эксперименте антитело fh8E последовательно разводили в ФСБР (pH 7.2) с шагом 1:5, начиная с концентрации 312 мкг/мл. Антитело fh8E продемонстрировало способность нейтрализовать инфекционность BOB дозозависимым образом (рис. 5). Титр нейтрализации IC $_{50}$ определяли как разведение антитела, при котором наблюдалось $50\,\%$ уменьшение количества бляшек. В результате IC $_{50}$ составил около $25\,$ мкг/мл.

Заключение

В результате проведенных экспериментов была разработана оригинальная экспрессионная система на основе направленной рекомбинации (генный таргетинг) для интеграции гена, кодирующего полноразмерное антитело человека, в транскрипционно активную область генома эукариотических суспензионных клеток CHO-S/FRT. С помощью разработанной экспрессионной системы получен стабильный клон, обеспечивающий продукцию полноразмерного антиортопоксвирусного антитела человека с продуктивностью около 100 мг/л. Очищенное целевое антитело обладало наномолярной аффинностью и продемонстрировало вируснейтрализующую активность in vitro.

Следует отметить, что достигнутый уровень продуктивности в настоящее время не является достаточным для биотехнологического производства рекомбинантного полноразмерного антитела - для коммерческой привлекательности продуктивность должна превышать 1 г/л. Вместе с тем достигнутый уровень экспрессии обеспечивает получение целевого полноразмерного антитела в количествах, достаточных для выполнения экспериментов in vitro и in vivo и проведения доклинических испытаний. При разработке противовирусных антител это позволяет в короткие сроки оценить перспективность дальнейшей разработки терапевтического препарата на основе исследуемого антитела.

Acknowledgments

This study was supported by the Russian Science Foundation, project 16-14-00083. The maintenance of the strain producing multisubunit proteins was supported by the Fundamental Research Program of the Siberian Branch of the RAS, project 0309-2016-0003.

Conflict of interest

The authors declare no conflict of interest.

References

- Baykov I.K., Khlusevich Ya.A., Matveev A.L., Tikunova N.V. Construction of cassette vector plasmids for production of full-size recombinant antibodies. Vestnik NGU: Seriya biologicheskaya, klinicheskaya meditsina = Herald of the Novosibirsk State University. Series: Biology and clinical medicine. 2013;11(3):56-64. (in Russian)
- Baykov I.K., Matveev A.L., Stronin O.V., Ryzhikov A.B., Matveyev L.E., Kasakin M.F., Richter V.A., Tikunova N.V. A protective chimeric antibody to tick-borne encephalitis virus. Vaccine. 2014; 32(29):3589-3594.
- Coroadinha A.S., Schucht R., Gama-Norton L., Wirth D., Hauser H., Carrondo M.J. The use of recombinase mediated cassette exchange in retroviral vector producer cell lines: predictability and efficiency by transgene exchange. J. Biotechnol. 2006;124(2):457-468.
- Crickard L., Babas T., Seth S., Silvera P., Koriazova L., Crotty S. Protection of rabbits and immunodeficient mice against lethal poxvirus infections by human monoclonal antibodies. PLoS ONE. 2012; 7(11):e48706.
- Fernandez J., Yaman I., Merrick W.C., Koromilas A., Wek R.C., Sood R., Hensold J., Hatzoglou M. Regulation of internal ribosome entry sitemediated translation by eukaryotic initiation factor-2α phosphorylation and translation of a small upstream open reading frame. J. Biol. Chem. 2002;277(3):2050-2058.
- Hirata R., Chamberlain J., Dong R., Russell D.W. Targeted transgene insertion into human chromosomes by adeno-associated virus vectors. Nat. Biotechnol. 2002;20:735-738.
- Hopkins R.J., Lane J.M. Clinical efficacy of intramuscular vaccinia immune globulin: a literature review. Clin. Infect. Dis. 2004;39(6): 819-826.
- Huang Y., Li Y., Wang Y.G., Gu X., Wang Y., Shen B.F. An efficient and targeted gene integration system for high-level antibody expression. J. Immunol. Methods. 2007;322(1-2):28-39.
- Kameyama Y., Kawabe Y., Ito A., Kamihira M. An accumulative site-specific gene integration system using Cre recombinase-mediated cassette exchange. Biotechnol. Bioeng. 2010;105(6):1106-1114.
- Khlusevich Y.A., Morozova V., Pyshnyi D.V., Tikunova N.V. Antibodies against ectromelia virus capable of neutralizing variola virus: generation and application for epitope mapping. FEBS J. 2013; 280(S1):371-372.
- Khlusevich Y.A., Tikunova N., Morozova V., Bulychev L., Bormotov N.,

- Vlasov V., Sergeev A. Sredstvo dlya neytralizatsii virusa natural'noy ospy [The agent for neutralizing variola virus]. Patent RF No. 2515905, 20146. (in Russian)
- Khlusevich Ya., Tikunova N., Morozova V., Grigor'eva A., Baykov I., P'yankov O. Rekombinantnaya plazmidnaya DNK pQE-p35d, obespechivayushchaya sintez rekombinantnogo belka p35d virusa ospy korov, shtamm bakteriy Escherichia coli - produtsent rekombinantnogo belka r35d virusa ospy korov i rekombinantnyy belok r35d virusa ospy korov, ispol'zuemyy dlya sozdaniya test-sistem i konstruirovaniya sub'edinichnykh vaktsin protiv ortopoksvirusnykh infektsiv [Recombinant plasmid DNA pQE-p35d providing synthesis of p35d recombinant protein of cowpox virus, Escherichia coli bacterial strain that is producer of p35d recombinant protein of cowpox virus and p35d recombinant protein of cowpox virus used to engineer test systems and to design orthopoxvirus split vaccines]. Patent RF No. 2511037, 2014a. (in Russian)
- Kito M., Itami S., Fukano Y., Yamana K., Shibui T. Construction of engineered CHO strains for high-level production of recombinant proteins. Appl. Microbiol. Biotechnol. 2002;60(4):442-448.
- Kwaks T.H., Barnett P., Hemrika W., Siersma T., Sewalt R.G., Satijn D.P., Brons J.F., van Blokland R., Kwakman P., Kruckeberg A.L., Kelder A., Otte A.P. Identification of anti-repressor elements that confer high and stable protein production in mammalian cells. Nat. Biotechnol. 2003;21(5):553-558.
- Little M., Breitling F., Dübel S., Fuchs P., Braunagel M., Seehaus T., Klewinghaus I. Universal antibody libraries on phage and bacteria. Year Immunol. 1993:7:50-55
- Lucas B.K., Giere L.M., DeMarco R.A., Shen A., Chisholm V., Crowley C.W. High-level production of recombinant proteins in CHO cells using a dicistronic DHFR intron expression vector. Nucleic Acids Res. 1996;24(9):1774-1779.
- Matho M.H., Schlossman A., Meng X., Benhnia M.R., Kaever T., Buller M., Doronin K., Parker S., Peters B., Crotty S., Xiang Y., Zajonc D.M. Structural and functional characterization of anti-A33 antibodies reveal a potent cross-species orthopoxviruses neutralizer. PLoS Pathog. 2015;11.
- McCausland M.M., Benhnia M.R., Crickard L., Laudenslager J., Granger S.W., Tahara T., Kubo R., Koriazova L., Kato S., Crotty S. Combination therapy of vaccinia virus infection with human anti-H3 and anti-B5 monoclonal antibodies in a small animal model. Antivir. Ther. 2010;15(4):661-675
- Mutskov V., Felsenfeld G. Silencing of transgene transcription precedes methylation of promoter DNA and histone H3 lysine 9. EMBO J. 2004;23(1):138-149.
- Petrov I.S., Goncharova E.P., Kolosova I.V., Pozdnyakov S.G., Shchelkunov S.N., Zenkova M.A., Vlasov V.V. Antitumor effect of the LIVP-GFP recombinant vaccinia virus. Doklady RAN = Proceedings of the Russian Academy of Sciences. 2013;451(5):592-597. DOI 10.7868/ S0869565213240274. (in Russian)
- Reichert J.M. Antibodies to watch in 2016. MAbs. 2016;8(2):197-204.
- Reichert J.M. Antibodies to watch in 2017. MAbs. 2017;9(2):167-181.
- Richards E.J. Chromatin methylation: who's on first? Curr. Biol. 2002; 12(20):694-695
- Tasic B., Miyamichi K., Hippenmeyer S., Dani V.S., Zeng H., Joo W., Zong H., Chen-Tsai Y., Luo L. Extensions of MADM (Mosaic Analysis with Double Markers) in mice. PLoS ONE. 2012;7(3):e33332. DOI 10.1371/journal.pone.0033332.
- Tikunova N., Dubrovskaya V., Morozova V., Yun T., Khlusevich Y., Bormotov N., Laman A., Brovko F., Shvalov A., Belanov E. The neutralizing human recombinant antibodies to pathogenic Orthopoxviruses derived from a phage display immune library. Virus Res. 2012;163(1):141-150.
- Wilson C.J., Guglielmo C., Moua N.D., Tudor M., Grosveld G., Young R.A., Murray P.J. Yeast artificial chromosome targeting technology: an approach for the deletion of genes in the C57BL/6 mouse. Anal. Biochem. 2001;296(2):270-278
- Wirth D., Gama-Norton L., Riemer P., Sandhu U., Schucht R., Hauser H. Road to precision: recombinase-based targeting technologies for genome engineering. Curr. Opin. Biotechnol. 2007;18(5): 411-409
- Zahn-Zabal M., Kobr M., Girod P.A., Imhof M., Chatellard P., de Jesus M., Wurm F., Mermod N. Development of stable cell lines for production or regulated expression using matrix attachment regions. J. Biotechnol. 2001;87(1):29-42.