УДК 615.277.3:577.213:575.111:575.26

ХАРАКТЕРИСТИКА ИЗМЕНЕНИЯ КОЛИЧЕСТВА УМЕРЕННЫХ ПОВТОРОВ В ГЕНОМЕ КЛЕТОК КОСТНОГО МОЗГА ЭКСПЕРИМЕНТАЛЬНЫХ МЫШЕЙ НА ФОНЕ ИНЪЕКЦИИ ЦИКЛОФОСФАНА И ЭКЗОГЕННОЙ ДНК ЧЕЛОВЕКА

© 2013 г. Е.В. Долгова¹, А.В. Прокопенко¹, В.П. Николин¹, Н.А. Попова^{1, 2}, А.С. Проскурина¹, К.Е. Орищенко¹, Е.А. Алямкина¹, Я.Р. Ефремов¹, Е.Р. Черных³, А.А. Останин³, С.С. Богачев¹, Т.С. Гвоздева⁴, Е.М. Малкова⁵, О.С. Таранов⁵, В.А. Рогачев¹, А.В. Панов⁶, С.Н. Загребельный², М.А. Шурдов⁷

 ¹ Федеральное государственное бюджетное учреждение науки Институт цитологии и генетики Сибирского отделения Российской академии наук, Новосибирск, Россия, e-mail: gorbi@bionet.nsc.ru;
² Новосибирский национальный исследовательский государственный университет, Новосибирск, Россия;
³ Институт клинической иммунологии СО РАМН, Новосибирск, Россия;
⁴ Новосибирский государственный медицинский университет, Новосибирск, Россия;
⁵ ГНЦ ВБ «Вектор», наукоград Кольцово, Новосибирская область, Россия;
⁶ WellsStar College of Health and Human Services, Kennesaw State University, Kennesaw, Georgia, USA;
⁷ ООО «Панаген», Горно-Алтайск, Россия

Поступила в редакцию 24 мая 2012 г. Принята к публикации 4 июня 2012 г.

Инъекции экзогенной ДНК в определенный промежуток времени после введения цитостатика циклофосфана (ЦФ) приводят к заболеванию и гибели экспериментальных мышей (Долгова и др., 2011). В ходе проведенных исследований установлено, что экзогенная ДНК активно проникает во внутренние компартменты клеток костного мозга (ККМ), где подвергается процессингу (Долгова и др., 2012). При этом именно ККМ в первую очередь подвержены деструктивному воздействию синергичного влияния двух препаратов (Долгова и др., 2013).

В настоящем исследовании показано, что количество умеренных повторов генома мононуклеаров костного мозга мышей, подверженных воздействию цитостатика ЦФ, достоверно ниже, чем у необработанных животных. Указанный феномен фиксируется в промежуток времени 18–24 ч после инъекции ЦФ, когда остановлена репликация, в момент конечной фазы репарации двуцепочечных разрывов (ДЦР), существующих как промежуточный интермедиат репарации межцепочечных сшивок (МЦС). При инъекциях экзогенной ДНК в промежуток времени 18–30 ч после предобработки ЦФ количество умеренных повторов сохраняется на исходном уровне. Совокупность полученных фактов предполагает, что фрагменты экзогенной ДНК принимают участие в процессе репарации ДЦР таким образом, что нарушается корректный ход репаративного процесса.

Ключевые слова: циклофосфан, экзогенная ДНК, межцепочечные сшивки, умеренные повторы генома, гомологичная рекомбинация.

введение

В предыдущих исследованиях было показано, что инъекции экзогенной ДНК в определенный промежуток времени после введения цитостатика ЦФ приводят к заболеванию и гибели экспериментальных мышей (Долгова и др., 2011). При этом именно ККМ в первую очередь подвержены деструктивному воздействию синергичного влияния двух препаратов (Долгова и др., 2013). Как было определено, одним из показателей, характеризующих воздействие ЦФ как монопрепарата, так и в сочетании с экзогенной ДНК, является количество умеренных *B1* и *B2* повторов в геноме ККМ, и в частности мононуклеарных клеток экспериментальных животных.

В настоящее время в мировой литературе существует множество подтверждений тому, что геном эукариотической клетки является динамичной структурой по отношению к количеству составляющих его нуклеотидов (последовательностей). В ходе эмбрио- и онтогенеза под воздействием внешних и внутренних факторов возникают множественные изменения, связанные с переключением групп генов, активностью транспозонов и др. Указанные события могут являться следствием изменения количества нуклеотидных последовательностей ДНК генома (Jack et al., 1988; Taussig, 1988; Jahn, Klobutcher, 2002; Tower, 2004; Wang et al., 2004; Hancock, 2005; Lansdorp, 2005; Moore, Purugganan, 2005; Смирнов, 2007; Kotnis et al., 2008; Tseng et al., 2008).

Репарация различных повреждений ДНК, возникших как в процессе жизнедеятельности клетки, так и в результате внешнего воздействия, также является одним из механизмов, который может влиять на изменение количества генетического материала, контекстного содержания генома, структуры хроматина и активности хромосомы в целом. Частным случаем количественного изменения нуклеотидного содержания генома является изменение числа тандемно повторенных последовательностей (Pâques *et al.*, 1998).

В мировой литературе существует множество данных о том, что районы тандемно повторенных последовательностей часто подвергаются перестройкам в ходе рекомбинационных процессов, происходящих в клетке при репарации различного рода повреждений ДНК (Pâques *et al.*, 1998; Jurka *et al.*, 2005; Lansdorp, 2005; Kobayashi, 2008). Одним из факторов, приводящих в действие репаративную машину клетки, является алкилирующий цитостатик ЦФ, который формирует МЦС, представляющие смертельную опасность для эукариотической клетки (Abrams *et al.*, 1981; Fleming, 1997; Mazur, Czyzewska, 2001; Salem *et al.*, 2010). В первую очередь воздействие ЦФ приводит к остановке репликации (Akkari *et al.*, 2000; Le Breton *et al.*, 2011) и, как следствие, к недорепликации определенного количества геномных последовательностей. Таким образом, если остановка репликации произошла в начальный период синтеза, то недореплицированным остается значительная часть генома. Соотношение количества определенных последовательностей генетического материала клетки в этот момент времени будет отличаться от такового после завершения S-фазы клеточного цикла.

Если в момент репарации МЦС в ядре присутствует экзогенная ДНК, то она может стать непосредственным участником репаративного процесса (Лихачева и др., 2008). В первую очередь, вовлечение экзогенной ДНК в процесс репарации может приводить к различным структурным изменениям генома эукариотической клетки (Likhacheva et al., 2007; Yakubov et al., 2007). Кроме этого, фрагменты экзогенной ДНК, по-видимому, могут активировать своими двуцепочечными (ДЦ) концами аварийные лигазы клетки, что, в свою очередь, может привести к несанкционированному объединению ДЦ-концов, существующих как интермедиаты репарации МЦС. В этом случае физическая, но не функциональная целостность хроматина будет восстановлена, S-фаза клеточного цикла завершится, количество ДНК удвоится и соотношение последовательностей генома будет соответствовать соотношению, существующему до репликации.

В настоящем исследовании описывается феномен уменьшения количества *B1* и *B2* повторов в ККМ мышей, находящихся под воздействием ЦФ в промежутке времени 18–24 ч после введения цитостатика. Одновременно с этим даются экспериментальные доказательства того, что количество указанных типов повторов в ККМ не изменяется при инъекциях экзогенной ДНК мышам в промежуток времени 18–30 ч после введения ЦФ.

МАТЕРИАЛЫ И МЕТОДЫ

Приготовление зондов

Alu повтор (АС002400.1, 53494-53767, состоит из конечной и начальной части двух тандемно расположенных повторов: *AluJ* и *AluY*) нарабатывали с помощью ПЦР, используя в качестве матрицы геномную ДНК человека. Были подобраны специфические для человеческого генома праймеры: **Pr.9:** CGAGG CGGGA GGATC ACTTG AGCCC; **Pr.11:** GCGCG CGCCA CCACG CCCGGC.

Реакцию проводили в 100 мкл: 1×Таq буфер (10 мМ Tris-HCl, pH 8,3; 50 мМ KCl; 2,5 мМ MgCl₂), 0,3 мкг ДНК-матрицы; по 10 пмоль праймеров; 0,2 мМ dNTPs; 5 ед. Таq-полимеразы. Для амплификации использовался следующий температурный режим: 94 °C – 2 мин – 1 цикл (94 °C – 30 с, 72 °C – 1,5 мин) – 35 циклов, 4 °C – хранение.

B1 и *B2* повторы нарабатывали ПЦР с матрицы мышиной ДНК и выделяли из агарозного геля электроэлюцией.

Подобранные специфические праймеры для *B1* повтора: **Pr.3:** CCGGG CATGG TGGTG CATGCCT; **Pr.4:** TTCTCTGTAGCCCTGGTGTC CTGGA. Специфические праймеры для *B2* повтора: **B2 for:** GGTTG TGAGC CACCA TGT; **B2 rev:** GGGGC TGGAG AGATG GCT (Serdobova, Kramerov, 1998).

Для амплификации специфических фрагментов мышиного генома использовался следующий температурный режим: 94 °C – 2 мин – 1 цикл (94 °C – 30 с, T_o °C – 40 с, 72 °C – 30 с) – 35 циклов, 10 °С – хранение. Для В1 повтора T₀=68 °C, для *B2* повтора T₀=62 °C. Затем при помощи набора для клонирования ампликонов в векторе с тупыми концами повторы встраивали в плазмиду pBluescript II. После проведенной трансформации электрокомпетентных клеток XL1-Blue MRF' клетки высевались на чашку, содержащую ампициллин, X-Gal, IPTG, белые колонии отбирались и наращивались в 3 мл ночной культуры. Плазмида из клеток выделялась при помощи лизиса кипячением по методике, описанной в статье Маниатис с соавт. (1984). ДНК клонов была наработана в препаративном количестве. После определения нуклеотидной последовательности были отобраны клоны, ДНК которых использовалась в последующих экспериментах.

Последовательность *B1* повтора: <u>CCGGGCATGGTGGTGCATGCCT</u>TTAATC CCAGCACTCGGGAGGCAGAGGCAGACGG ATTTCTGAGTTCCAGGACAGCCTGGTCTAC

AAAGTGAGT<u>TCCAGGACACCAGGGCTA</u> <u>CAGAGAA</u>.

Последовательность В2 повтора:

GGTTGTGACCACCATGT GGTTGTGACTCAGGACCTCTGGAAGAGCAGT CAGTGCTCTTACCGCTGAGCCATCTCCC AGCCCC.

Мечение *B1* повтора ³²P-dATP проводили при помощи ПЦР-амплификации. Реакционная смесь содержала 1×Таq буфер; 0,1 мкг плазмиды pBSII со встроенным повтором; по 10 пмоль праймеров M13 forvard и M13 reverse; 0,05 мM dGTP, dCTP, dTTP; 0,025 мM dATP; 1,3 MБк ³²P-dATP; 5 ед. Таq-полимеразы. Температурный режим: 95 °C – 2 мин – 1 цикл (95 °C – 30 с, 56 °C – 40 с, 72 °C – 1 мин) – 35 циклов; 72 °C – 5 мин – 1 цикл, хранение при 10 °C.

Выделение ДНК из ядер ККМ экспериментальных мышей

ККМ мышей вымывали из трубчатых костей физиологическим раствором (0,9 % NaCl), ресуспендировали в 0,5 мл лизирующего буфера (10 мМ Tris-HCl, pH 7,4, 50 мМ NaCl, 10 мМ ЭДТА, 0,15 мМ спермин, 0,15 мМ спермидин) с 0,5 % Тритона X-100 (Roberts, 1986) и инкубировали 10 мин на льду. Смесь наслаивали на 1 мл раствора 10 % сахарозы в лизирующем буфере и центрифугировали при 600 g в течение 15 мин при 4 °С. Супернатант (цитоплазматическую фракцию) отбирали. Осадок ядер промывали лизирующим буфером, повторно центрифугировали и ресуспендировали в соответствующем объеме воды. Суспензию ядер лизировали 0,5 % SDS и обрабатывали протеиназой К. Депротеинизацию проводили экстракцией фенол/хлороформ в соотношении 1 : 1. ДНК переосаждали при помощи добавления 0,1 объема 3 M NaAc, pH 5,2 и 0,6 объема изопропанола. Осадок растворяли в небольшом объеме воды.

Количественная дот-блот-гибридизация

ДНК, выделенную из ядер ККМ экспериментальных и контрольных мышей, в количестве от 0,1 до 5000 нг денатурировали кипячением в 0,4 N NaOH и наносили на мембрану Zeta-Probe Genomic Tested Blotting Membrane (Bio-Rad). Предварительно данная ДНК была обработана

панкреатической РНКазой 10 мкг/мл в течение 30 мин при 37 °С и депротеинизирована экстракцией фенол/хлороформ в соотношении 1:1. ДНК переосаждали при помощи добавления 0,1 объема 3 M NaAc, pH 5,2 и 0,6 объема изопропанола. Концентрация ДНК была измерена на спектрофотометре Nanodrop. Мембранные фильтры гибридизовали с ³²Р меченой ДНК в 0,25 М фосфатно-солевом буфере, рН 7,2, 7 % SDS в течение 12 ч при 65 °C. Мембрану дважды отмывали по 30 мин сначала в 0,02 М фосфатно-солевом буфере, 5 % SDS при 68 °C, затем в 0,02 М фосфатно-солевом буфере 1 % SDS. Мембранные фильтры экспонировали с рентгеновской пленкой или проводили засветку на Molecular Imager FX Pro+ (Bio-Rad). Количество меченого материала относительно контролей определяли при помощи программы Quantity One.

Выделение мононуклеаров из ККМ

ККМ мышей вымывали из трубчатых костей физиологическим раствором (0,9 % NaCl), тщательно ресуспендировали. Суспензию аккуратно наслаивали на 3 мл смеси фикол-урографин (15 % урографин, 7 % фиколл, р1.119), центрифугировали при 1500 об/мин в течение 30 мин при 4 °С. После центрифугирования вся клеточная масса разделялась на клетки, составляющие интерфазное кольцо (мононуклеары) и осадок.

Мононуклеары отбирали в новую пробирку, добавляли физиологический раствор до 4 мл и осаждали центрифугированием при 1200 об/мин в течение 5 мин при 4 °С. К осадку клеток добавляли 0,5 мл лизирующего буфера (10 мМ Tris-HCl, pH 7,4, 50 мМ NaCl, 10 мМ ЭДТА, 0,15 мМ спермин, 0,15 мМ спермидин), содержащего 1 % Тритон X-100 (Roberts, 1986). Смесь центрифугировали при 1400 об/мин в течение 5 мин при 4 °С. Осадок обрабатывали протеиназой К и депротеинизировали экстракцией фенол/хлороформ в соотношении 1:1. Верхнюю фракцию аккуратно отбирали пипеткой в новую пробирку. ДНК переосаждали при помощи добавления 0,1 объема 3 М NaAc, pH 5,2 и 0,6 объема изопропанола. Осадок промывали 200 мкл 70 % этилового спирта и растворяли в небольшом объеме воды.

Randomly amplified polymorphic DNA (RAPD) анализ

Праймер для анализа мышиной ДНК: **P29:** CCGGC CTTAC (Бутовская и др., 2009).

Реакционная смесь содержала: 1×Таq буфер, 0,1 мкг ДНК-матрицы; 0,4 мкМ праймера; 0,1 мМ dNTPs; 1 ед. Таq-полимеразы. Температурный режим: 95 °С – 2 мин – 1 цикл (95 °С – 30 с, 38 °С – 40 с, 72 °С – 1 мин) – 30 циклов; 72 °С – 5 мин – 1 цикл, хранение при 4 °С.

При проведении ПЦР аналогичным образом с использованием единичного специфического праймера на умеренный мышиный B1 повтор (Pr. 3) изменяли только температуру отжига праймера (68 °C).

Статистическая обработка данных

Статистическая обработка данных о количестве меченого материала относительно контролей в проведенных экспериментах по совместному введению ЦФ и экзогенной ДНК проводилась при помощи инструментов программы Microsoft Excel. На рисунках показаны стандартные отклонения.

РЕЗУЛЬТАТЫ

Характеристика изменения количества последовательностей, гомологичных *В1* повтору мышиного генома, в хроматине мононуклеарной фракции ККМ мышей, обработанных ЦФ или сочетанием ЦФ и экзогенной ДНК

В ранних работах при исследовании лейкостимулирующей активности инъекций препаратов экзогенной ДНК на фоне действия цитостатика ЦФ в группе экспериментальных животных была отмечена массовая гибель мышей, достигавшая 80 % (Likhacheva *et al.*, 2007). Оказалось, что в наибольшей степени инъекции двух препаратов воздействуют на систему ККМ (Долгова и др., 2012, 2013).

В первоначальных экспериментах предполагалось провести количественную оценку доставляемой в ККМ экзогенной ДНК. Для этого была проведена серия дот-блот гибридизаций с геномной ДНК, выделенной из ядер ККМ

экспериментальных мышей (ЦФ 200 мг/кг; ЦФ и ДНК человека 18–30 ч, каждый час по 0,5 мг) с использованием в качестве зонда ДНК ³²Р меченого Alu повтора человека. Alu повтор был выбран по причине того, что эта последовательность была использована в экспериментах начального этапа исследований, где было показано присутствие фрагментов ДНК человека во фракции геномной ДНК экспериментальных мышей (Likhacheva et al., 2007). В результате проведенных экспериментов было замечено, что интенсивность гибридизационного сигнала в образцах, выделенных после инъекций мышам ЦФ в виде монопрепарата, значительно варьируется в зависимости от времени, а также отличается от сигнала гибридизации Alu повтора с ДНК из ККМ интактных мышей. Одновременно с этим также наблюдались видимые изменения в интенсивности сигнала гибридизации в образцах геномной ДНК, выделенных из ККМ мышей, обработанных ЦФ и экзогенной ДНК (рис. 1).

Геном многих эукариот содержит повторенные последовательности длинной 80–400 п.н. – SINE-элементы (Short Interspersed Elements) или короткие ретротранспозоны, названные так за их способ распространяться по геному с помощью ретротранспозиции – процесса, включающего в себя обратную транскрипцию РНК с последующей интеграцией в геном. Для мышиного генома на настоящий момент описано порядка 8 различных семейств SINE (Кгаmerov, Vassetzky, 2005). Одними из первых были открыты семейства *B1* и *B2* элементов (Кгауеv et al., 1980; Vassetzky et al., 2003), представляющие собой небольшие последовательности длиной около 140 и 200 п.н. и составляющие 2 и 0,8 % от общего генома мыши соответственно.

Многочисленные блот-гибридизации, выполненные в предыдущих исследованиях, свидетельствовали о том, что между Alu повтором человека и геномной ДНК мыши существует перекрестная гомология, выявляемая в предельно жестких условиях гибридизации и отмывки. При этом зона гомологичной перекрестной гибридизации визуализировалась как размазанное облако, захватывающее всю длину пробега геномной ДНК мыши (Likhacheva et al., 2007). Это является следствием того, что в геноме мыши присутствуют умеренно повторяющиеся последовательности, перекрестно гибридизующиеся с человеческим Alu повтором (Vassetzky et al., 2003). Было сделано предположение, что отмечаемая разница в интенсивности гибридизационного сигнала в образцах геномной ДНК, выделенной из ККМ мышей, обработанных ЦФ и экзогенной ДНК, связана не столько с присутствием человеческой ДНК в ККМ, сколько с количественными изменениями в гомологичных Alu повтору повторяющихся последовательностях ДНК генома мыши.

Рис. 1. Гибридизация дот-блота с ДНК ³²Р меченого *Alu* повтора человека.

Слева – картина засветки мембраны с нанесенными образцами ДНК (по 0,5 мкг в каждой точке), выделенной из ядер ККМ экспериментальных мышей через различные промежутки времени после инъекции ЦФ в виде монопрепарата или в сочетании с инъекциями экзогенной ДНК человека. Справа – количественная оценка силы гибридизационного сигнала, проведенная при помощи программы Quantity One.

Известно, что в момент созревания предшественников лимфоцитов разных классов происходит соматическая рекомбинация. Данный процесс мог быть причиной выявляемого при дот гибридизации изменения количества повторов в геноме определенной популяции клеток (Farzaneh et al., 1982; Johnstone, Williams, 1982; Vatolin et al., 1997). Также известно, что обработка ЦФ приводит к изменению соотношения клеток-предшественников в костном мозге. ЦФ практически не влияет на супрессию мононуклеарной фракции костного мозга, из которой развиваются лимфоциты и антигенпрезентирующие клетки: макрофаги и дендритные клетки (Salem et al., 2010). Таким образом, чтобы обогатить фракцию ККМ популяцией клеток, с наибольшей вероятностью отвечающей на проводимые обработки, из общего пула ККМ была выделена мононуклеарная фракция.

Первоначально для сравнительной оценки интенсивности и динамики гибридизации неспецифического *Alu* и специфического *B1* зондов была проведена серия сравнительных гибридизаций с геномной ДНК экспериментальных мышей. В условиях жесткой гибридизации, как описано в «Материалах и методах», оказалось, что *B1* повтор не имеет перекрестной гибридизации ни с *Alu* повтором, ни с суммарной ДНК человека. Благодаря этому в данном случае можно было оценить изменение количества именно *B1* повтора вне зависимости от присутствия во фракции геномной ДНК последовательностей экзогенного происхождения.

Как видно из рис. 1 и 2, существует выраженная корреляция между интенсивностью гибридизации обоих зондов. Интенсивность сигнала гибридизации, определяемая в анализируемое время после инъекции ЦФ, меняется сходным образом. Это связано, как было сказано выше, с частичной гомологией *Alu* последовательности с повторяющимися последовательностями генома мыши, которые так же как и последовательность *Bl* повтора, изменяются количественно.

Выбор *B1* повтора мыши, не гибридизующегося в используемых условиях с человеческой геномной ДНК, в качестве зонда для гибридизации позволил провести серию количественных дот-блот гибридизаций, отражающих молекулярные события в геноме, происходящие в процессе репарации ДЦР. При использовании выбранного зонда была оценена динамика изменения количества последовательностей, гомологичных *B1* повтору в геноме ККМ мышей, обработанных ЦФ как монопрепаратом, так и сочетанием ЦФ и экзогенной ДНК.

Экспериментальным мышам вводили ЦФ в дозе 200 мг/кг, затем через каждые 2 ч вплоть до 28 ч из бедренных костей мышей вымывали ККМ и отделяли фракцию мононуклеаров. Так-

Рис. 2. Гибридизация дот-блота с ДНК ³²Р меченого *В1* повтора мыши.

Слева – картина засветки мембраны с нанесенными образцами ДНК (по 0,5 мкг в каждой точке), выделенной из ядер ККМ экспериментальных мышей через различные промежутки времени после инъекции ЦФ в виде монопрепарата или в сочетании с инъекциями экзогенной ДНК человека. Справа – количественная оценка силы гибридизационного сигнала, проведенная при помощи программы Quantity One.

же в экспериментах была представлена группа мышей, которым вводили человеческую ДНК по схеме: 18–30 ч после инъекции ЦФ, каждый час по 0,5 мг. Из клеток мононуклеарной фракции выделяли ядра и геномную ДНК. ДНК очищали от белков и РНК и измеряли концентрацию. Образцы нормировались по количеству ДНК и использовались для проведения дот-блот гибридизаций с меченной радиоактивным фосфором ДНК *В1* повтора. На рис. 3 и в табл. 1 представлены результаты проведенных гибридизаций, которые сведены в графике (рис. 4).

Анализ графика изменения количества *B1* повторов в геноме мышей, находящихся под воздействием ЦФ как монопрепарата, а также

Рис. 3. Дот-блот гибридизация с ДНК ³²Р меченого *В1* повтора мыши.

На мембраны в каждой точке нанесено по 0,1 мкг ДНК, выделенной из ядер мононуклеаров экспериментальных мышей через различные промежутки времени после инъекции ЦФ (200 мг/кг) в виде монопрепарата и ЦФ в комбинации с введением ДНК человека по 0,5 мг в промежуток времени 18–30 ч после ЦФ каждый час, а также ДНК интактной мыши СВА. под воздействием ЦФ и экзогенной ДНК, свидетельствует о следующем. Начиная с 16 ч после введения цитостатика происходит достоверное уменьшение количества умеренного *B1* повтора в геноме анализируемых клеток, которое сохраняется до 25 ч после введения ЦФ. Через 26 ч после введения цитостатика количество последовательностей ДНК, гомологичных *B1* повтору, восстанавливается до исходного уровня. Инъекции человеческой ДНК в промежуток времени 18–30 ч после ЦФ способствуют сохранению количества повторов в геноме клеток мононуклеарной фракции ККМ.

Было интересно проследить, как ведет себя анализируемый признак в отдаленном времени после введения цитостатика. На графике (рис. 2) прослеживается динамика восстановления количества повторяющейся ДНК, гомологичной ВІ повтору, в геноме экспериментальных мышей к 4-5-м суткам после обработки цитостатиком. Подтверждается снижение количества последовательностей генома, гомологичных В1 повтору, продемонстрированное в ранних экспериментах и суммированное на графике (рис. 4) в точке 24 ч после введения ЦФ. По мере удаления от точки начала отсчета происходит не только восстановление, но и полуторакратное увеличение количества гомологичных повтору ВІ последовательностей в геноме мононуклеарной фракции ККМ.

Характеристика изменения количества последовательностей, гомологичных *B2* повтору мышиного генома, в хроматине ККМ мышей, обработанных ЦФ или сочетанием ЦФ и экзогенной ДНК

Обнаруженные изменения в количестве умеренного повтора генома мыши *B1* и отмеченные характеристики неспецифической гибридизации с *Alu* повтором генома человека, имеющего перекрестную гомологию с геномом мыши, свидетельствовали о следующем. По-видимому, обнаруженные в указанных экспериментальных условиях изменения в количестве *B1* повтора характеризуют общую закономерность динамики количества умеренных повторов генома мыши. Для оценки правомерности высказанного предположения был выбран другой зонд, а именно *B2* повтор, также относящийся к умеренно по-

Таблица 1

Время, ч	Номера гибридизационных проб, выполненных в каждой экспериментальной точке (слева направо)						
	1	2	3	4	5	значение	
		L	ЦФ	1	I	1	
0	33729,2	33554,6	32561,1	35049,2	25552,4	31276	
1,17	33952,5	32297,8	29645	30694,7	27994,4	30917	
4	36147,4	37131,2	38516,9	36445,8	26599,7	34968	
6	29539,6	34872,4	29138,4	28713	23951	29243	
14	35815,7	27270,6	29434	29161,4	28126,7	29962	
16	16691,9	17211,2	17291,3	16952,3	14193,2	16468	
18	14910,4	11990,6	10859,6	12071,3	10861,2	12139	
20	10667,8	9053,3	8786,6	8168,9	7219,3	8779	
22	10534,3	9980,6	9139,9	16707,3	8531,1	10979	
24	15927	13934,6	12921,6	17898,9	13372,8	21551	
26	35441,1	33927,8	29889,6	38077,6	35325,4	33574	
28	45367	39668,5	39350,5	37780,2	37916,5	40017	
32	64562,1	57545,4	53622,1	51068	49272,3	53622	
34	60505,3	55750	52770,8	50670,2	46002,5	50432	
36	48468,5	46191,5	43216,2	40214,8	37667,6	43152	
38	50087,2	46322	47471,6	41453,8	42754,9	45618	
40	48099,5	47052,4	45299,2	41904,8	40094	44490	
ЦФ+ДНК							
18	37029,3	34899,9	31375,9	28024,6	25176	31301	
20	33261,9	28353,5	26742,7	25774,4	22806,5	27388	
22	40356,1	35391,9	31604,4	30435,5	27777,2	33113	
24	37135,1	32627,2	29846,9	28916,2	26632,4	25823	
26	34546,5	32710,9	34117,3	30935,3	29998	33007	
28	26327,3	25230,5	29770,6	28909,1	28060	28056	
32	57113,9	52046,8	52355,9	59358,6	48272,3	53830	
34	43896,7	43098,1	36626,1	37667,3	35947,8	36348	
36	38869,6	38370,5	35443,6	34920,5	35045,9	36530	
38	36534,8	34123,3	31939,1	32059,7	30372,1	33006	
40	38315,2	37436,4	34086	32467,2	31605,6	34782	
42	33330,1	37077,1	35586,5	33139,9	30802,3	33987	

Относительная интенсивность гибридизации проб ДНК, выделенной из ядер мононуклеаров

Примечание. Количественная оценка силы гибридизационного сигнала проводилась при помощи программы Quantity One.

вторяющимся последовательностям мышиного генома. Экспериментально проверено, что *B2* повтор не имеет перекрестной гомологии ни с *B1* повтором, ни с последовательностями генома человека, включая *Alu* повтор.

В проведенных сравнительных экспериментах были выбраны следующие группы и временные точки забора материала ККМ. В экспериментах по анализу динамики изменения количества *B1* повтора в мышином геноме было

Рис. 4. Относительное количество *B1* повторов (пропорциональное силе гибридизационного сигнала) в геноме мононуклеарных клеток мышей после инъекции ЦФ (200 мг/кг) в виде монопрепарата (сплошная кривая) и ЦФ с последующими инъекциями экзогенной ДНК человека в промежуток времени 18–30 ч после инъекции цитостатика (пунктирная кривая).

Нулевая точка – ДНК из ядер ККМ интактных мышей. CNT*mm² – относительные единицы, характеризующие силу радиоактивного сигнала мембраны на единицу площади, подсчитанные в программе Quantity One.

определено, что основные события, связанные с количественными изменениями в геноме мыши, начинаются через 16 ч с момента инъекции ЦФ и заканчиваются к 26 ч. В связи с этим были сформированы группы мышей для анализа происходящих в геноме событий в точках 11, 15, 18, 24, 28 ч для группы ЦФ и 18, 24, 28 ч для группы мышей, обработанных сочетанием препаратов ЦФ и экзогенной ДНК. В случае анализа синергичного действия двух препаратов инъекции экзогенной ДНК проводились ежечасно в указанный отрезок времени в количестве 0,5 мг ДНК на инъекцию. Результаты проведенных экспериментов представлены на рис. 5, 6 и в табл. 2.

В описываемых экспериментах ДНК для гибридизации выделялась из общей популяции ККМ без выделения мононуклеаров. Такой

Рис. 5. Дот-блот гибридизация с ДНК ³²Р меченого *B1* (а) и *B2* (б) повторов мыши.

На мембраны в каждой точке наносили по 0,1 мкг ДНК, выделенной из ядер ККМ экспериментальных мышей через различные промежутки времени после инъекции ЦФ (200 мг/кг) в виде монопрепарата и после совместных инъекций ЦФ и ДНК человека (18–30 ч, каждый час по 0,5 мг).

Рис. 6. Относительное количество *B1* повторов (а) и *B2* повторов (б) в геноме ККМ экспериментальных мышей (пропорциональное силе гибридизационного сигнала) после инъекции ЦФ (200 мг/кг) в виде моно-препарата (сплошные кривые) и после инъекции ЦФ с последующим введением экзогенной ДНК человека в промежуток времени 18–30 ч после инъекции цитостатика (пунктирные кривые).

Отдельные точки – ДНК из ядер ККМ интактных мышей. CNT*mm² – относительные единицы, характеризующие силу радиоактивного сигнала мембраны на единицу площади, подсчитанные в программе Quantity One.

выбор был сделан ввиду того, что картина гибридизации B1 повтора в экспериментах по оценке динамики количественных изменений практически не отличалась для обоих отобранных образцов клеток (мононуклеары и осадок остальных ККМ, данные не приводятся). Эксперименты новой серии проводились в сравнительном режиме, где одновременно использовались два умеренных повтора мышиного генома – B1 и B2 повторы. Оказалось, что, как и в предыдущей серии экспериментов, в условиях использования ЦФ как монопрепарата происходят колебания в количестве последовательностей генома, гомологичных обоим повторам. При этом в образцах геномной ДНК, выделенной из ККМ мышей, находящихся под воздействием одновременно двух препаратов, количество повторов остается неизменным на протяжении контролируемого временного отрезка. Полученные результаты с большой долей вероятности могут указывать на тот факт, что все короткие умеренные повторы генома ККМ мыши, организованные подобным образом с анализируемыми *B1* и *B2*, претерпевают сходные количественные изменения в реакции на репаративные процессы, связанные с ре-

Таблица 2

О посительная интенсивность гиоридизации проб дних, выделенной из ядер ККИ	Относительная интенсивность	гибридизации	проб ДНК.	выделенной из	ядер ККМ
--	-----------------------------	--------------	-----------	---------------	----------

Время,	Номера гибридизационных проб, выполненных в каждой экспериментальной точке (слева направо)					Среднее	
Ч	1	2	3	4	5	значение	
		I.	В1 повтор)	1	1	
			ЦФ				
11	1416,73	1475,41	1404,19	1327,94	1083,65	1342	
15	812,23	942,06	962,14	941,59	832,01	898	
18	1326,06	1410,53	1385,81	1145,24	1246,60	1303	
24	685,48	719,72	645,81	647,67	632,29	666	
28	1277,28	1235,84	1215,34	1324,58	1216,07	1254	
ЦФ+ДНК							
18	847,24	961,11	936,79	999,03	1050,15	959	
24	992,67	964,52	1054,37	1107,20	1160,08	1056	
28	959,38	940,30	890,25	1046,86	1076,52	983	
CBA							
	1482,13	1438,17	1419,03	1429,82	1290,57	1412	
В2 повтор							
ЦФ							
11	465,58	451,99	516,79	439,53	412,43	457	
15	389,77	382,56	411,63	418,97	442,04	409	
18	527,29	539,32	521,79	523,14	490,36	520	
24	425,48	407,19	385,17	355,95	365,78	388	
28	550,46	581,08	554,66	522,34	466,32	535	
ЦФ+ДНК							
18	455,96	450,38	428,64	448,65	370,84	431	
24	461,05	431,13	433,78	448,92	447,38	444	
28	459,74	475,61	442,83	441,83	433,44	451	
CBA							
	724,13	674,05	625,94	608,85	428,65	612	

Примечание. Количественная оценка силы гибридизационного сигнала проводилась при помощи программы Quantity One.

парацией МЦС, вызванных обработкой ЦФ и присутствием в ядре этих клеток фрагментов экзогенной ДНК.

Попытки прямого (из точно подсчитанного числа ККМ) определения количества копий умеренных повторов во фракции геномной ДНК ККМ в указанных экспериментальных условиях оказались неудачными. В указанный промежуток времени вся популяция ККМ во всех экспериментальных группах вступает в апоптоз. В результате указанного процесса образуются апоптотические тельца, которые при подсчете воспринимаются как целые клетки. Такая ситуация не позволяет соотнести количественную оценку повторяющихся последовательностей ДНК генома с числом клеток и, следовательно, не позволяет провести корректный сравнительный анализ.

RAPD анализ

Обнаруженное изменение количества повторяющихся последовательностей предполагало, что в геноме произошли масштабные изменения, которые можно обнаружить не только методом дот гибридизации, но и другими способами.

Был проведен RAPD ПЦР, который позволил зафиксировать значимые изменения в интенсивности бэндов, синтезирующихся в ходе ПЦР при использовании геномной ДНК двух групп: получавших ЦФ как монопрепарат и ЦФ в сочетании с ДНК. В RAPD анализе использовались стандартный праймер (Бутовская и др., 2009) и праймер на *B1* повтор мыши. Полученные результаты (рис. 7, 8) свидетельствуют о том, что через 18 ч глобальных изменений в геноме еще не произошло, тогда как через 24 ч наблюдается достоверное изменение интенсивности специ-

Рис. 7. Результаты RAPD ПЦР-амплификации образцов ДНК, выделенных из ККМ мышей после обработки ЦФ в виде монопрепарата (1) и в сочетании с введением фрагментированной ДНК человека (2) через 18 ч (а) и 23–24 ч (б), а также интактной мыши (3).

М – маркер молекулярного веса. Стрелками обозначены синтезированные ПЦР продукты. Интенсивность свечения Et-Br оценивалась с использованием программы Gel-Pro Analyzer (MediaCybernetics). Результаты обработки представлены в диаграммах справа. На диаграмме (б) кружками отмечены номера бэндов, для которых наблюдается достоверное изменение интенсивности RAPD спектра.

Рис. 8. Результаты ПЦР с использованием праймера на *B1* повтор мыши образцов ДНК, выделенных из ККМ интактной мыши (3) и мышей после обработки ЦФ в виде монопрепарата (1) и в сочетании с введением фрагментированной ДНК человека (2) через 23–24 ч после введения цитостатика.

М – маркер молекулярного веса. Стрелками обозначены синтезированные ПЦР продукты. Интенсивность свечения Et-Br оценивалась с использованием программы Gel-Pro Analyzer (MediaCybernetics). Результаты обработки представлены в диаграмме справа. На диаграмме кружками отмечены номера бэндов, для которых наблюдается достоверное изменение интенсивности свечения.

фических бэндов. В группе ЦФ происходит снижение интенсивности специфических RAPD фрагментов. В соответствии с результатами предыдущих экспериментов в группе ЦФ+ДНК изменения не затрагивают области синтеза специфических RAPD фрагментов, что означает, что эти участки хроматина сохранились в составе генома, и, по-видимому, в исходном количестве.

обсуждение

Изменение относительного количества умеренных повторов в суммарной ДНК геномной фракции ККМ экспериментальных животных и возможные механизмы этого процесса

Два главных вопроса следуют из совокупности полученных результатов. Во-первых, в чем причина изменения (как снижение (рис. 2, 4), так и увеличение (рис. 2)) количества умеренных повторов при воздействии ЦФ. И, во-вторых, почему количество умеренных повторов сохраняется при инъекциях экзогенной ДНК на фоне предобработки ЦФ.

При сопоставлении временных параметров изменения *B1* и *B2* повторов с репарацией ДЦР в ККМ мышей (Долгова и др., 2011) оказалось, что уменьшение количества анализируемых последовательностей приходится как раз на момент репарации ДЦР первого и основного пула ККМ. Этот факт означает, что уменьшение количества умеренных повторов в геноме ККМ мышей связано с процессом образования и репарации ДЦР. Присутствие в указанный отрезок времени в мышином организме экзогенной ДНК полностью предотвращает процесс изменения относительного количества анализируемых повторяющихся последовательностей.

Существуют два принципиально различных механизма возникновения неравного соотношения специфических последовательностей генома в определенный момент времени клеточного цикла. Указанные события могут являться либо следствием истинного изменения количества определенных участков генома, либо результатом недорепликации районов хроматина, содержащих анализируемые последовательности. И в том, и другом случаях количественный анализ выявит относительное изменение в соотношении последовательностей генома. При анализе литературы было обнаружено несколько механизмов, которые позволили объяснить изменение количества умеренных повторов в геноме экспериментальных животных.

Во-первых, масштабность изменения количества *B1* и *B2* повторов в геноме ККМ мышей (уменьшение на 20 %) в анализируемый промежуток времени говорит в пользу того, что основной вклад в данный процесс вносит механизм, связанный с недорепликацией умеренных повторов в клетках мышей, обработанных ЦФ. В результате процесса недорепликации количество *B* повторов на единицу количества ДНК в суммарной фракции геномного материала у таких животных значительно меньше, чем в контроле.

В ККМ мышей группы, получившей инъекцию ЦФ, образуются МЦС, которые распознаются клеткой при вхождении в S-фазу клеточного цикла, когда репликативная(ые) вилка(и) наталкивается на повреждение (Niedernhofer *et al.*, 2004, Akkari *et al.*, 2000). В этот момент в месте МЦС образуется ДЦР, что запускает каскадный путь активации ареста клеточного цикла (Niedernhofer *et al.*, 2004; Warmerdam, Kanaar, 2010). Наряду с этим происходит активация систем репарации ДЦР. При этом возобновление продвижения по клеточному циклу не наступит до тех пор, пока все повреждения не будут удалены из внутриядерного пространства клетки (Shibata *et al.*, 2010).

Огідіп репликации (точка начала репликации) эукариот располагаются через каждые 50 т.п.о. и являются двунаправленными (Hamlin, 1992), а скорость репликации составляет порядка 50 нуклеотидов/с. Количество МЦС, индуцированных ЦФ (200 мг/кг), составляет 2500 на геном (Akkari *et al.*, 2000). Так как распределение МЦС в геноме происходит, по всей видимости, стохастически, то максимальное расстояние движущейся репликативной вилки до МЦС после начала репликации составит порядка 25 т.п.о., которые будут пройдены репликативной вилкой за 8 мин, что соответствует периоду ранней S-фазы. В описанной ситуации, когда произошла остановка репликации, но какое-то количество ДНК уже успело закончить репликацию, удвоение генома прошло неравномерно. При этом в суммарной фракции геномной ДНК меняется относительное количество определенных последовательностей – становится больше участков ДНК, которые успели удвоиться, и, соответственно, уменьшается количество тех последовательностей, которые реплицируются в последнюю очередь.

Проведенный анализ литературных данных предполагает, что анализируемые повторы находятся в недореплицированных участках генома и равновесие в соотношении геномных последовательностей сдвигается в сторону уже удвоившейся ДНК (Кимиссаренко и др., 1986; Herrick *et al.*, 2011).

Как известно, к районам ранней репликации в первую очередь относятся районы эухроматина, а именно уникальные последовательности ДНК, включая гены домашнего хозяйства, гены, отвечающие за процесс апоптоза и т. д. (Herrick et al., 2011). Считается, что SINE элементы, такие, как B1, B2 повторы мышей и Alu повтор человека, относятся к раннереплицирующимся последовательностям ДНК. Тем не менее существуют исследования, в которых показано, что в позднереплицирующейся ДНК также содержатся мобильные элементы и повторенные последовательности, такие, как LINE и SINE (Кимиссаренко и др., 1986; Herrick 2011). Показано, что только 86 % SINE последовательностей реплицируются в ранней фазе репликации, тогда как 14 % приходятся на позднюю S-фазу (Holmquist et al., 1986). В наших экспериментах количество В1 и В2 повторов в геноме мыши в указанных экспериментальных условиях уменьшается ориентировочно на 20 %, что хорошо согласуется с выводами, полученными в работе Holmquist с соавт. (1986). В этой связи наиболее вероятным объяснением уменьшения количества В1 и В2 повторов в геноме мыши в указанных экспериментальных условиях является эффект недорепликации этих структур, вызванный остановкой клеточного цикла вследствие появления ДЦР, индуцированных МЦС.

Во-вторых, помимо описанного объяснения уменьшения количества повторов, наблюдаемого в наших экспериментах, известны другие механизмы, способные вносить вклад в изменение количества повторов в рамках существующих моделей репарации ДЦР. Определенная часть МЦС, индуцированных ЦФ, в обязательном порядке затрагивает участки локализации умеренных повторов, поскольку указанные повторы составляют более 20 % генома мыши. Возникает ситуация репарации МЦС в районе сосредоточения повторенных последовательностей генома.

Существует теоретическая база, характеризующая возможность увеличения или уменьшения количества тандемно повторяющихся последовательностей генома. Причиной увеличения или уменьшения количества тандемных повторов в геноме может служить репарация ДЦР, как это описано для S. serevisiae (Paques, Haber, 1999). ДЦР у дрожжей в S-фазе репарируется главным образом путем гомологичной рекомбинации (ГР). Если при репаративном процессе в гомологичной матричной цепи присутствуют тандемные повторы, то в процессе гомологичной рекомбинации возникает целый ряд новосинтезированных цепей ДНК, содержащих разное количество тандемно повторенных мономеров. Механизм такого изменения связан

Рис. 9. Схема изменения копийности тандемных повторов.

а – репарация ДЦР. 1 – инвазия процессированного З'-конца ДЦР в гомологичный участок цепи ДНК; 2 – начало синтеза ДНК с матрицы гомологичной цепи ДНК; 3 – отсоединение новосинтезированной цепи ДНК, матричная гомологичная цепь ДНК остается в исходном виде; 4 – образование структуры Холлидея; 5 – использование второго З'-конца ДЦР в качестве затравки для синтеза ДНК; 6 – разрезание структуры Холлидея эндонуклеазами, при этом может произойти либо генная конверсия, либо кроссинговер, оба эти процесса ведут к изменениям в структуре как репарируемой, так и матричной нитей ДНК; б – модель увеличения или уменьшения количества тандемных повторов в геноме. 1, 2 – инвазия и синтез ДНК с процессированного З'-конца ДЦР; 3 – повторная инвазия (Paques, Haber, 1999). с тем, что если вновь синтезированная цепь ДНК отсоединилась от матричной молекулы и не находит внешний гомологичный участок, необходимый для спаривания, то она может заново инвазировать в то же место гомологичной цепи ДНК (рис. 9). Последующий синтез того же фрагмента будет служить причиной амплификации данного участка в геноме и, как следствие, увеличения числа повторов.

С другой стороны, тандемно расположенные повторы, синтезированные в процессе рекомбинации, могут отжигаться друг с другом при гомологичном спаривании с соответствующим гомологичным участком не только концевыми последовательностями повторов, но и повторами, находящимися во внутренней части синтезированной цепи ДНК (рис. 10). При дальнейшей репарации выступающие концы, содержащие определенное количество повторов, гидролизуются специфичной эндонуклеазой и удаляются из генома. Благодаря такому процессу может происходить уменьшение количества повторов.

Известно, что в норме при репарации МЦС в геноме происходит образование ДЦР, которые впоследствии удаляются после прохождения гомологичной рекомбинации (Akkari *et al.*, 2000; De Silva *et al.*, 2000; Niedernhofer *et al.*, 2004).

Предполагается, что изменения в количестве случайным образом тандемно расположенных *В* повторов определяются принципами, описанными в цитируемой работе, что приводит или к уменьшению, или увеличению их количества в геноме ККМ.

Рис. 10. Уменьшение копийности тандемных повторов.

1 – синтез тандемных повторов с обоих 3'-концов ДЦР по матрице гомологичной цепи ДНК; 2 – возможные пути отжига концов ДЦР после отсоединения от гомологичной цепи ДНК (Paques, Haber, 1999).

Еще один механизм изменения количества повторов представлен в работе Tanaka с соавт. (2007), в которой показано, что МЦС ведут к образованию палиндромных последовательностей и увеличению копийности генов. В момент, когда в клетке образован ДЦР, происходит процессинг ДЦ конца разрыва, в результате чего остается свободно свисающий 3'-конец молекулы ДНК. В случае наличия в одноцепочечном участке ДНК инвертированных повторов или участков микрогомологии происходит их спаривание с комплементарной последовательностью, располагающейся на этой же молекуле ДНК. Образуется шпилька, содержащая З'-ОН, который служит затравкой для синтеза цепи ДНК, происходящего в рамках процесса репарации. В конечном итоге, когда репарация повреждений в клетке завершена и репликативные вилки восстановлены, в месте ДЦ разрыва появляется палиндромная последовательность, представляющая собой удвоенную копию участка ДНК одной хромосомы. Размер синтезируемого палиндома может доходить до 8 т.п.о. (рис. 11). В результате такого синтеза может происходить изменение копийности умеренных повторов, а также генов и участков ДНК, расположенных в районе палиндрома.

Фрагменты экзогенной ДНК, локализованные в пространстве ядра ККМ в момент репарации ДЦР, подпадают под действие репарационно-рекомбинационной системы клетки и, по-видимому, становятся субстратом некоторых стадий процесса репарации МЦС. Одновременно эти фрагменты, как предполагается, активируют альтернативные репаративные факторы (вероятно, связанные с механизмом NHEJ (Ku70/80, лигаза IV, лигаза III)). Такой эффект нарушает законный репаративный процесс. Можно предположить, что связывание вновь активированных факторов альтернативной репарации происходит в первую очередь и предпочтительно с ДЦ концами хромосом. Следствием этого является немедленное ковалентное объединение всей совокупности ДЦ концов ДНК хромосом, находящихся в ядре. При этом ДЦ концы экзогенных фрагментов ДНК вовлекаются в происходящий процесс лигирования, что сопровождается появлением в геномной фракции ДНК экзогенных последовательностей.

Рис. 11. Модель удвоения специфического участка хромосомы.

Одним из основных интермедиатов репарации МЦС являются ДЦР (1). В процессе репарации происходит процессирование конца ДЦР, в результате чего остается свободный 3'-конец молекулы ДНК (2). Если в участке одноцепочечной ДНК располагаются инвертированные повторы (а) или участки микрогомологии (б), то между указанными последовательностями происходит спаривание и на конце нити ДНК образуется шпилька (3). 3'-ОН служит затравкой для синтеза цепи ДНК, происходящего в рамках процесса репарации (4). По окончании процесса репарации репликативные вилки восстанавливаются и завершается синтез ДНК. При этом в месте ДЦР образуется палиндромная последовательность, представляющая собой удвоенную копию участка одной нити ДНК (Тапаka *et al.*, 2007).

Поскольку NHEJ является более быстрым и не зависящим от гомологии механизмом репарации ДЦР по сравнению с деликатным механизмом ГР, то при его активации происходят немедленное негомологичное воссоединение ДЦР и восстановление непрерывности нити хромосом (Warmerdam, Kanaar, 2010). Подтверждением этому служат результаты, демонстрирующие исчезновение ДЦР из внутриядерного пространства ККМ мышей, обработанных ЦФ, в течение 10 минут после первой инъекции экзогенной ДНК (Долгова и др., 2011). В результате аварийного восстановления целостности генома синтез ДНК возобновляется и уменьшение относительного количества повторов, связанное с остановкой репликации, не происходит.

Следует заметить, что с большой долей вероятности описанные механизмы вносят определенный вклад в обнаруженный процесс изменения количества умеренных повторов, однако, учитывая масштаб изменений, они не могут полностью объяснить обнаруженный феномен.

В проведенных экспериментах также был обнаружен эффект увеличения количества исследуемых повторяющихся последовательностей ДНК во фракции геномной ДНК ККМ в удаленное от исходной точки (введение ЦФ) время (рис. 1, 2, 4). Возможно, что такое изменение связано с естественным замещением популяции ККМ потомками прогениторных клеток. Известно, что воздействие цитостатика приводит к полному опустошению костного мозга к 5 сут после инъекции. К 10-13 сут количество ККМ может превосходить исходный уровень (Николин и др., 2006; Likhacheva et al., 2007). Увеличение количества повторов в этой новой популяции ККМ может отражать процессы, происходившие в клетках-предшественниках в момент активной репарации повреждений, индуцированных ЦФ. Можно предположить, что в этих клетках произошла амплификация умеренных повторов в ответ на агрессию цитостатиком по механизму, описанному в работе Paques и Haber (1999). Причины различного поведения дифференцированных и плюрипотентных клеток могут быть связаны с уровнем потенциальной генетической пластичности, присущей этим типам клеток.

Таким образом, в настоящей работе описывается феномен уменьшения количества В1 и В2 повторов в ККМ мышей, находящихся под воздействием ЦФ в промежутке времени 18-24 ч после введения цитостатика. При этом количество указанных типов повторов в ККМ не изменяется при инъекциях экзогенной ДНК мышам в промежуток времени 18-30 ч после введения ЦФ. Предполагается, что данное изменение связано с процессом репарации ДЦР в ККМ. Фрагменты экзогенной ДНК, интернализующиеся во внутриклеточном пространстве ККМ в момент репарации повреждений, интерферируют репаративный процесс, идущий по пути ГР, следствием чего является сохранение количества повторов на исходном уровне.

ЛИТЕРАТУРА

Бутовская П.Р., Павлова Г.В., Мартиросян И.А. и др. Соматический мозаицизм у мышей, выявляемый методом RAPD-PCR // Молекуляр. генет., микробиол. и вирусология. 2009. № 1. С. 3–7.

- Долгова Е.В., Николин В.П., Попова Н.А. и др. Интернализация экзогенной ДНК во внутренние компартменты клеток костного мозга мышей // Вавилов. журн. генет. и селекции. 2012. Т. 16. № 2. С. 397–414.
- Долгова Е.В., Николин В.П., Попова Н.А. и др. Патологические изменения, возникающие в организме мышей, обработанных сочетанием циклофосфана и экзогенной ДНК // Вавилов. журн. генет. и селекции. 2013. Т. 17. № 1. С. 129–146.
- Долгова Е.В., Проскурина А.С., Николин В.П. и др. Характеристика временных параметров проявления эффекта токсического действия инъекций экзогенной ДНК на фоне предобработки цитостатиком циклофосфаном // Вавилов. журн. генет. и селекции. 2011. Т. 15. № 4. С. 674–689.
- Кимиссаренко С.В., Лукинов Д.И., Черепенко Е.И. Биосинтез различных классов последовательностей ядерной ДНК при пролиферации клеток мышиной плазмоцитомы MOPC-21 // Биополимеры и клетка. 1986. Т. 2. № 4. С. 220–23.
- Лихачева А.С., Рогачев В.А., Николин В.П. и др. Участие экзогенной ДНК в молекулярных процессах, протекающих в соматической клетке // Вестник ВОГиС. 2008. Т. 12. № 3. С. 426–473.
- Маниатис Е., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование: Пер. с англ. М.: Мир, 1984. 480 с.
- Николин В.П., Попова Н.А., Себелева Т.Е. и др. Влияние экзогенной ДНК на восстановление лейкопоэза и противоопухолевый эффект циклофосфана // Вопр. онкологии. 2006. Т. 52. С. 336–340.
- Смирнов Г.Б. Почему редуцируются бактериальные геномы? // Бреслеровские чтения. Спб.: Наука, 2007. С. 34-60.
- Abrams R.A., McCormack K., Bowles C., Deisseroth A.B. Cyclophosphamide treatment expands the circulating hematopoietic stem cell pool in dogs // J. Clin. Invest. 1981. V. 67. No. 5. P. 1392–1399.
- Akkari Y.M., Bateman R.L., Reifsteck C.A. *et al.* DNA replication is required to elicit cellular responses to psoraleninduced DNA interstrand cross-links // Mol. Cell Biol. 2000. V. 20. No. 21. P. 8283–8289.
- De Silva I.U., McHugh P.J., Clingen P.H. *et al.* Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells // Mol. Cell Biol. 2000. V. 20. P. 7980–7990.
- Farzaneh F., Zalin R., Brill D., Shall S. DNA strand breaks and ADP-ribosyl transferase activation during cell differentiation // Nature. 1982. V. 300. No. 5890. P. 362–366.
- Fleming R.A. An overview of cyclophosphamide and ifosfamide pharmacology // Pharmacotherapy. 1997. V. 17. P. 146–154.
- Jack H.M., McDowell M., Steinberg C.M. *et al.* Looping out and deletion mechanism for the immunoglobulin heavychain class switch // Proc. Natl Acad. Sci. USA. 1988. V. 85. P. 1581–1585.
- Jahn C.L., Klobutcher L.A. Genome remodeling in ciliated protozoa // Annu. Rev. Microbiol. 2002. V. 56. P. 489–520.
- Jurka J., Kohany O., Pavlicek A. et al. Clustering, duplication and chromosomal distribution of mouse SINE ret-

rotransposons // Cytogenet. Genome Res. 2005. V. 110. P. 117–123.

- Hamlin J.L. Mammalian origins of replication // Bioassays. 1992. V. 14. No. 10. P. 651–659.
- Hancock J.M. Gene factories, microfunctionalization and the evolution of gene families // Trends Genet. 2005. V. 21. P. 591–595.
- Herrick J. Genetic variation and DNA replication timing, or why is there late replicating DNA? // Evolution. 2011. V. 65. No. 11. P. 3031–3047.
- Holmquist G.P., Caston L.A. Replication time of interspersed repetitive DNA sequences in hamsters // Biochim. Biophys Acta. 1986. V. 868. No. 2/3. P. 164–177.
- Johnstone A.P., Williams G.T. Role of DNA breaks and ADPribosyl transferase activity in eukaryotic differentiation demonstrated in human lymphocytes // Nature. 1982. V. 300. No. 5890. P. 368–370.
- Kobayashi T. A new role of the rDNA and nucleolus in the nucleus--rDNA instability maintains genome integrity // Bioassays. 2008. V. 30. No. 3. P. 267–272.
- Kotnis A., Kannan S., Sarin R. *et al.* Case-control study and meta-analysis of SULT1A1 Arg213His polymorphism for gene, ethnicity and environment interaction for cancer risk // Br. J. Cancer. 2008. V. 99. P. 1340–1347.
- Kramerov D.A., Vassetzky N.S. Short retroposons in eukaryotic genomes // Int. Rev. Cytol. 2005. V. 247. P. 165–221.
- Krayev A.S., Kramerov D.A., Skryabin K.G. *et al.* The nucleotide sequence of the ubiquitous repetitive DNA sequence B1 complementary to the most abundant class of mouse fold-back RNA // Nucl. Acids Res. 1980. V. 8. No. 6. P. 1201–1215.
- Lansdorp P.M. Major cutbacks at chromosome ends // Trends Biochem. Sci. 2005. V. 30. P. 388–395.
- Le Breton C., Hennion M., Arimondo P.B. *et al.* Replicationfork stalling and processing at a single psoralen interstrand crosslink in Xenopus egg extracts // PloS one. 2011. V. 6. No. 4. P. e18554.
- Likhacheva A.S., Nikolin V.P., Popova N.A. *et al.* Integration of human DNA fragments into the cell genomes of certain tissues from adult mice treated with cytostatic cyclophosphamide in combination with human DNA // Gene Ther. Mol. Biol. 2007. V. 11. P. 185–202.
- Mazur L., Czyzewska A. Immunocytochemical analysis of apoptotic bone marrow cells after treatment of mice with WR-2721 and chemotherapeutic drugs // Folia Histochem. Cytobiol. 2001. V. 39. No. 2. P. 63–66.
- Moore R.C., Purugganan M.D. The evolutionary dynamics of plant duplicate genes // Curr. Opin. Plant Biol. 2005. V. 8. P. 122–128.
- Niedernhofer L.J., Odijk H., Budzowska M. et al. The structure-specific endonuclease Ercc1-Xpf is required to resolve

DNA interstrand cross-link-induced double-strand breaks // Mol. Cell Biol. 2004. V. 24. No. 13. P. 5776–5787.

- Paques F., Haber J.E. Multiple pathways of recombination induced by double-strand breaks in *Saccharomyces cerevisiae* // Microbiol. Mol. Biol. Rev. 1999. V. 63. No. 2. P. 349–404.
- PBques F., Leung W.Y., Haber J.E. Expansions and contractions in a tandem repeat induced by double-strand break repair // Mol. Cell. Biol. 1998. V. 18. No. 4. P. 2045–2054.
- Roberts D.B. Drosophila: a practical approach. Oxford-Washington, DC: IRL Press, 1986. 295 p.
- Salem M.L., El-Naggar S.A., Cole D.J. Cyclophosphamide induces bone marrow to yield higher numbers of precursor dendritic cells *in vitro* capable of functional antigen presentation to T cells *in vivo* // Cell Immunol. 2010. V. 261. No. 2. P. 134–143.
- Serdobova I.M., Kramerov D.A. Short retroposons of the B2 superfamily: evolution and application for the study of rodent phylogeny // J. Mol. Evol. 1998. V. 46. P. 202–214.
- Shibata A., Barton O., Noon A.T. *et al.* Role of ATM and the damage response mediator proteins 53BP1 and MDC1 in the maintenance of G(2)/M checkpoint arrest // Mol. Cell. Biol. 2010. V. 30. No. 13. P. 3371–3383.
- Tanaka H., Cao Y., Bergstrom D.A. *et al.* Intrastrand annealing leads to the formation of a large DNA palindrome and determines the boundaries of genomic amplification in human cancer // Mol. Cell. Biol. 2007 . V. 6. P. 1993–2002.
- Taussig M.J. Molecular genetics of immunoglobulins // Immunol. Suppl. 1988. V. 1. P. 7–15.
- Tower J. Developmental gene amplification and origin regulation // Annu. Rev. Genet. 2004. V. 38. P. 273–304.
- Tseng H., Chou W., Wang J. et al. Mouse ribosomal RNA genes contain multiple differentially regulated variants // PLoS One. 2008. V. 3. P. e1843.
- Vassetzky N.S., Ten O.A., Kramerov D.A. B1 and related SINEs in mammalian genomes // Gene. 2003. V. 319. P. 149–160.
- Vatolin S.Y., Okhapkina E.V., Matveeva N.M. *et al.* Scheduled perturbation in DNA during in vitro differentiation of mouse embryo-derived cells // Mol. Reprod. Dev. 1997. V. 47. No. 1. P. 1–10.
- Wang R.C., Smogorzewska A., de Lange T. Homologous recombination generates T-loop-sized deletions at human telomeres // Cell. 2004. V. 119. No. 3. P. 355–368.
- Warmerdam D.O., Kanaar R. Dealing with DNA damage: relationships between checkpoint and repair pathways // Mutat Res. 2010. V. 704. No. 1/3. P. 2–11.
- Yakubov L.A., Rogachev V.A., Likhacheva A.C. *et al.* Natural human gene correction by small extracellular genomic DNA fragments // Cell Cycle. 2007. V. 6. P. 2293–2301.

CHARACTERISTIC CHANGES IN THE COPY NUMBER OF INTERSPERSED REPEATS IN BONE MARROW CELLS OF MICE TREATED WITH CYCLOPHOSPHAMIDE AND EXOGENOUS HUMAN DNA

E.V. Dolgova¹, A.V. Prokopenko¹, V.P. Nikolin¹, N.A. Popova¹, A.S. Proskurina¹, K.E. Orishchenko¹, E.A. Alyamkina¹, Ya.R. Efremov¹, E.R. Chernykh², A.A. Ostanin², S.S. Bogachev¹, T.S. Gvozdeva³, E.M. Malkova⁴, O.S. Taranov⁴, V.A. Rogachev¹, A.V. Panov⁶, S.N. Zagrebelnyi², M.A. Shurdov⁷

 ¹ Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, e-mail: gorbi@bionet.nsc.ru;
² Institute of Clinical Immunology SB RAMS, Novosibirsk, Russia;
³ Novosibirsk State Medical University, Novosibirsk, Russia;
⁴ Research Center for Virology and Biotechnology Vector, Koltsovo, Russia;
⁵ WellsStar College of Health and Human Services, Kennesaw State University Kennesaw, Georgia, USA;
⁶ Novosibirsk National Research State University, Novosibirsk, Russia;

Summary

Mice were observed to get sick and die upon administration of exogenous DNA in a specific period of time following their pretreatment with the cytostatic cyclophosphamide (CP) (Dolgova *et al.*, 2011). It was established that exogenous DNA reaches internal compartments of bone marrow cells (BMCs) where it is processed (Dolgova *et al.*, 2012a). Thus, BMCs appear to be the primary targets for the synergic action of these preparations (Dolgova *et al.*, 2012b).

In the present study, we show that the copy number for mouse interspersed genomic repeats decreases in the genome of mouse mononuclear cells as a result of interstrand cross-link (ICL) repair after pre-treatment with cytostatic CP. This phenomenon occurs within the time span from 18 to 24 h following CP injection, which corresponds to the final step in the repair of the majority of double-strand breaks (DSBs), as predominant intermediates in ICL repair. Injections of exogenous DNA in CP-pretreated mice preserve the copy number of interspersed repeats at the original level. Our results suggest that the fragments of exogenous DNA participate in ICL-induced DSB repair, thereby compromising the repair process.

Key words: cyclophosphamide, exogenous DNA, interstrand cross-links, short interspersed repeat (SINE), homologous recombination.