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With the expected development of thousands of molecular markers in most crops, the marker-assisted
selection theory has recently shifted from the use of a few markers targeted in QTL regions (or derived
from candidate or validated genes) to the use of many more markers covering the whole genome. These
genome-wide markers are already used for association analysis between polymorphisms for anonymous
markers and qualitative or quantitative traits. The condition for success is that a sufficient level of linkage
disequilibrium (LD) exists between the adjacent markers used for genotyping and the true genes or QTLs.
This LD is known to vary among species and type of genetic material. In selfing species, particularly among
breeding lines, LD has been reported to range up to 1 ¢cM or more. In such conditions, uncharacterized
markers can be used to predict the breeding value of a trait without referring to actual QTLs. We present
an example applying DArT markers to the INRA wheat breeding material in an attempt to implement
whole genome selection as an alternative to phenotypic selection. This study assesses different models
(GBLUP, Ridge Regression BLUP, Bayesian Ridge Regression and Lasso) and their ability to predict the
yields of genotypes evaluated in a multi-site network from 2000 to 2009 in a highly unbalanced design.
The prediction coefficients obtained by cross-validation techniques are encouraging, given the small size

of the training population.
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Introduction

To satisfy the demand of the growing world
population, agriculture faces the challenge of de-
livering safe, high-quality, and health-promoting
food and feed in an economical, environmentally
sensitive, and sustainable manner while maintain-
ing yield and stability across different environ-
ments affected by climate change. Grain cereals —
mainly wheat, rice and maize- represent a major
renewable resource and are among the most widely
grown crop worldwide. Wheat is the most widely
grown crop worldwide with an average global an-
nual harvest of 621 million tons of grains. Wheat
demand is expected to increase from 621 mt to
760 mt in 2020, to 813 mt in 2030 and more than
900 mt in 2050 (FAO, 2002). This implies annual
production growth rate of about 2 %, while it was
limited to 0,9 % from 1985 to 1995. Moreover, the
rate of yield increase has slowed down from 1995
to 2005 in nearly every country (Complementary
strategies ..., 2009; Wheat facts ..., 2009), and it is

close to 0 in EU, particularly in the major producing
countries like France, Germany and UK.

This yield increase should be achieved by
«sustainable intensification». Thus, accelerating
genetic progress is recognized as a priority in most
countries. Genetic progress per year is given by the
general formula:

AG = i'h?'6,/L (where i is selection intensity,
h? trait heritability, G, phenotypic variability and
L the duration of selection cycle).

The utilization of markers has been proposed
as a means to improve trait heritability and in-
crease selection intensity (by reducing need/cost
of phenotyping). Marker assisted selection (MAS)
can be used to accelerate and improve the transfer
of traits under mono or oligogenic control. For
example, MAS can facilitate the transfer from an
unadapted source into an elite genetic background
through recurrent backcrosses. It has been demon-
strated that the use of markers tightly linked to the
causal gene can avoid costly and time consuming
phenotyping, while genome wide markers enable
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to recover most of the elite background in two or
three backcrosses instead of 6—7 while limiting
linkage drag. In the case of complex traits such as
yield, there are likely many genes with quantitative
effects (QTLs), which have not all been identified.
Therefore, the former strategy of marker assisted
transfer cannot be applied, and is generally replaced
by marker assisted recurrent selection, whose ob-
jective is to increase the frequency of favourable
alleles at most QTL. By this way, the probability of
identifying lines which cumulate favourable alleles
is also increased.

In their pioneering work, Lande and Thompson
(1990) proposed an extension of the index selection
theory by adding a molecular score to the classi-
cal phenotypic score. They introduced the theory
for optimizing weights given to each component
and demonstrated that this index is in any case at
least as efficient as the phenotypic score alone.
Note that this approach of marker assisted recur-
rent selection used only markers which have been
identified as being significantly associated (linked)
to QTL. The efficiency of MAS/phenotype selec-
tion is higher when the trait has a low heritability,
the population size is large and the detected QTLs
explain a large proportion of the trait variation.
Thus further studies have shown that efficiency
is improved when including QTLs with small ef-
fects, even if they are false positives, rather than
being too stringent during the QTL detection step
(Moreau et al., 1998; Bernardo, 2006). This com-
bined index theory has been adapted, particularly
by removing the phenotypic component. Hospital
et al. (1997) showed that the use of marker index
only allows early selection, without trait evaluation,
thereby shortening selection cycles and accelerat-
ing genetic gain per cycle. However, after several
cycles of selection, some favorable alleles may
become fixed, and recombination will decrease
linkage disequilibrium between QTLs and mark-
ers. It is then necessary to regularly re-estimate the
associations between QTLs and markers and their
effects on the trait (Gimelfarb, Lande, 1994). The
interest of marker assisted selection for quantitative
traits has been experimentally demonstrated (e.g.
Eathington et al., 2007; Blanc et al., 2008) and they
are currently used in routine by most large plant
breeding companies.

However, the efficiency of these marker assisted
selection methods can still be limited by the first

step of QTL detection, whose power can be low for
QTL with small effects in breeding populations of
limited sizes. For complex traits, like grain yield,
the most likely hypothesis is that they are controlled
by a very high number of genes, most with small
effects below the detection threshold. Therefore,
a large number of QTL are not accounted for by
markers included in the selection index.

A further step was proposed by Whittacker
(2000), who suggested including all markers in the
selection index, thus skipping the QTL detection
step. As the number of markers is generally higher
than the number of genotypes, classical multiple
regression with markers as fixed effects cannot
be used. Therefore Whittacker (2000) suggested
using ridge regression models to overcome this
overparemetrization problem. This method is based
on introducing a penalization parameter, A, which
reduces the space dimensionality. Meuwissen et
al. (2001) applied ridge regression and several
Bayesian approaches to animal populations for pre-
dicting breeding values. They proposed the use of
genome-wide markers to predict the genetic value
of individuals. Therefore, it is appropriate to name
these methods «genomic prediction». However,
as genomic predictions are intended for selection
purposes, the expression «genomic selection» has
become common (e.g. Goddard, Hayes, 2007).

The most efficient use of genomic selection is to
replace costly and time consuming phenotyping by
a prediction of the genetic value of the trait under
selection (or any multitrait index). Thus, the main
expected advantage is to shorten selection cycles.
However, to benefit from shorter cycles, the genetic
gain per selection cycle should be close to that
expected from phenotypic or combined MAS +
phenotypic selection.

The relative efficiency relies on the accuracy of
prediction of the true genetic value by the marker
score. Abundant theoretical quantitative genetics
literature often report the correlation between
genomic marker predictions and «true» breeding
value or phenotype. The true breeding value is
known only in simulated data, in which QTL ef-
fects are given to simulated or real markers, and
then these effects are summed to obtain the «real»
genetic value. In real datasets, the true genetic value
1s unknown, and it should be remembered that the
phenotype is only a predictor of this breeding value,
but usually the only available to compare perfor-
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mance of marker-based predictors. The quality of
a prediction, as measured by this correlation, relies
itself on the level of linkage disequilibrium between
a QTL and the linked marker. The relevant param-
eter is the 1, as it was demonstrated that the sample
size required to detect a QTL by a nearby marker
is 1/r2 times the size required if we has tested the
QTL itself (Balding et al., 2007). The quality of
the global prediction of breeding value will depend
on the effectiveness of the markers to capture most
of the information brought by QTLs. Thus marker
density should be high enough, in order that every
QTL be in sufficient LD with an adjacent marker.
The extent of LD has been extensively studied in
animal and plant species, and we should keep in
mind that it is a property of each particular ge-
nepool, and no generalization is straightforward
among germplasm or breeding programmes. For
example, this LD range is expected to be large in
biparental populations, and Lorenzana et al. (2009)
obtained reasonably good prediction with as few as
96 markers in simulated maize progenies. But in
progenies from more complex mating schemes, the
required marker density will be higher (Bernardo,
Yu, 2007; Blanc et al., 2008; Heftner et al., 2009;
Jannink et al., 2010). Moreover, the LD pattern
changes from one generation to the next, since
recombination reduces the range of LD.

For practical applications in breeding programs,
one has to estimate marker effects and add them
to obtain the genomic estimate of breeding value
(GEBYV). This estimation requires both genotypic
and phenotypic information in a so-called «refer-
ence» or «training» population. Then, marker ef-
fects can be used to estimate GEBV in a «target»
population with only the genotypic information,
and, subsequently, selection can be made on the
GEBYV instead of the phenotypes. Genomic Selec-
tion (GS) can be repeated on the progeny of crosses
between GEBV-selected individuals and so on.
However, as the LD between markers and QTL
decreases from one generation to the next, GEBV
predictions are less and less accurate. Therefore,
new phenotypic measurements are needed to re-
estimate marker effects (see Heffner et al., 2010).

In this manuscript, we report on some prelimi-
nary results about the implementation of genomic
prediction of yield in the INRA wheat breeding
programme. We used both simulated and real data
and discus some of the issues related to genomic

prediction for wheat in France. The presented re-
sults only deal with the initial prediction of target
populations using marker effects estimated from
training populations sampled by cross-validation.

Material and Methods

The INRA wheat breeding program is a carried
out in three main research units: Clermont-Ferrand,
Estrées-Mons and Rennes. Each breeder makes
100—-150 crosses every year, using registered variet-
ies (most recently in western Europe) for 50 % of
parents and breeding lines from previous cycles of
the program for the remaining 50 %. F, to F, plants
are conducted as bulked families with around 2000
plants per cross, then Fy grains from selected spikes
are sown in single rows in a classical pedigree
design. Bulked grains of F lines are sown is two
replicate trials with randomized 6—10 ml plots in a
single location, then the best F, in 3—4 replicates,
and the most advanced Fg—F, lines are evaluated
in a network with 4 replicates in 8-10 locations,
according to their precocity group. To have a more
balanced design, we kept data from 6 locations with
the higher number of common genotypes. There-
fore, 30—50 most fixed «new» lines enter the most
advanced evaluation network each year. Some of
them are evaluated only one year, some two or three
consecutive years before being presented to official
registration for the best ones. As breeding lines are
used as genitors only once sufficient phenotypic data
are available, i.e. in Fg, the duration of the selection
cycle can be estimated to at least 8 years, and more
likely 9-10 to take into account the use of regis-
tered varieties in crossing schemes. In this study,
we used those lines which have been evaluated in
the complete multisite network between 2000 and
2009. After discarding some lines with too few data
or to many missing markers, this gave a dataset of
318 breeding lines.

DArT markers were provided by Triticarte
company (www.triticarte.com.au). After cleaning
markers with more than 5 % missing data and mi-
nor allele frequency >5 %, we obtained a dataset
with 2121 polymorphic markers.

As often reported in the literature, we used
Monte-Carlo methods to simulate «true» breeding
values to be estimated by GS prediction. For this,
a subset of 50, 100 or 250 markers were sampled
and given an additive effect drawn from a N (0,1)
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distribution. Then the sum of the 100 QTL effects

was summed for each individual to estimate its

«true» breeding value (TBV), and its «realized»

genetic variance ng. Finally a random was gener-

ated using a N (0, 6.2) and added to the TBV to
generate a «simulated phenotype» (simP), where

o being setas 6=, (1 +h?)/h? to achieve the

desired heritability of simP.

For estimating the accuracy of prediction on
real data, we focused on yield, whose broad sense
heritability in our design was estimated to 0,37. Be-
cause of the highly unbalanced design, we first had
to correct for other factor and estimate a corrected
genetic main effect. This was achieved through the
use of mixed models, with environments and blocks
within environments as fixed effects and genotypes
as random effects, whose variance being modeled
by an identity matrix to avoid confusion with
further BLUP prediction using marker estimates
of additive relationship matrix. Then the BLUP
for each of the 318 lines were used as observed
phenotypes (obsP).

Several statistical models are being compared
for their prediction accuracy as measured by the
correlations between GEBV and either TBV, simP
or obsP.

Four statistical methods have been used to
predict GEBV
e The ridge regression, as described by Whit-

tacker et al. (2000) using a home written
R programme (R development core team,
2011). Basically, this methods uses a mixed
linear model to estimate best linear unbiased
predictor (BLUP), assuming that markers
have random effects with common variance.
RRBLUP uses a penalty parameter, A2 in
the estimator to shrink marker effects and to
avoid over-fitting (Piepho, 2009). In this study,
M=c2/ csgz, where 62 is the residual variance
and 6,2 is the marker effect variance — estimat-
ed from the additive genetic variance divided
by the number of markers.

*  The GBLUP (Coster, 2010), using the pedi-
gree library of R. The XX function solve the
classical BLUP equation (Henderson, 1975),
using a marker-based estimate of the additive
relationship matrix.

* Bayesian Ridge Regression and LASSO (De
los Campos, Pérez, 2010; Pérez et al.,2010) as
implemented in the BRR library of R.

Results

Figure 1 shows the correlations between
GEBYV and either TBV or simP for the 4 prediction
methods on simulated data with 100 QTL at 3 trait
heritabilities.

Similar to other publications, the prediction
accuracy increases with simulated trait heritabilities
and the correlations with TBV are all higher than
that with simP at a given heritability. It should be
remembered that the correlation with phenotype
cannot exceed h, the square-root of trait heritability,
which is verified in Fig. 1. Whatever the trait
heritability and the measure of accuracy, the 4
methods rank in similar order, the G-BLUP being
the least efficient and the Bayesian approaches the
most, particularly LASSO.

The accuracies of the four methods on the BLUP
prediction of yield in each of the 6 locations and
on the overall BLUP prediction are given in Table
and illustrated in Fig. 2.

On this real trait averaged over environments,
i.e. the best estimate of the additive main genotype
effects, the ranking of the 4 methods is quite similar
to that obtained on simulated data. The two Bayesian
approaches (RRB and LASSO) clearly outperform
the mixed model approaches. However the ridge
regression appears to be less accurate than G-BLUP,
which was the least efficient on simulated data.

Prediction accuracies of the 4 methods, i.e.
correlations between GEBV and obsP obtained
in six different locations vary from one location
to another, likely according to the within location
broad sense heritability. Moreover, in some
locations all 4 methods gave similar correlations,
while in others there are significant differences
among them. More remarkably, the ranking of the 4
methods according to their accuracy differs from the
ranking observed on simulated data or even the obsP
on all environments. This is particularly true for the
G-BLUP method, which is never worst, and it even
outperforms the Bayesian methods in two locations.
It clearly appears that these BLUP estimates of
yield, using single locations, differ from the overall
estimate, likely due to GxE interactions.

Discussion

In this preliminary attempt to predict the
breeding values of elite wheat lines using genomic
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Fig. 1. Correlation between GEBV and simulated true breeding value (TBV) or simulated phenotypes (TRAIT)

for 3 heritability values.

RRB: Ridge regresion BLUP, GB: G-BLUP, BRR: Bayesian Ridge regression, BL: Bayesian LASSO. Mean of 100 simulations

with 100 QTL with normally distributed effects.

Table
Mean (and standard deviation from 100 cross-validations)

of correlations between GEBYV estimated from four statistical models

and yield predicted in each of the 6 locations and using all locations
Site / Model cf di em Im Iu re All sites
RRB 289(.14) | 471(12) | 276(.15) | .332(.12) | .278(.08) | .297(.10) | .488(.12)
GB 395(.10) | .447(.15) | .330(.12) | .494(.08) | .294(.11) | .344(.11) | .522(.08)
BRR 329(.12) | .479(15) | 350(.11) | .492(.08) | .276(.16) | .348(.13) | .506(.11)
BL 312(.14) | 479(13) | .333(.12) | 456(.08) | .316(.14) | .324(.12) | .504(.11)

Notes. RRB: Ridge regression BLUP, GB: G-BLUP, BRR: Bayesian Ridge regression, BL: Bayesian LASSO.

markers, results obtained on real data are in
accordance with those obtained on simulated traits
of similar heritabilities. Indeed the correlation
between GEBYV and either simulated or observed
phenotype is around 0,5. We may assume that
the correlation with TBV of real data will also
be similar to that obtained on simulated data, i.e.
in the range 0,6-0,7. This value is encouraging,
and compared to those reported by Crossa et al.

(2010) who reported accuracy values ranging
from 0,355 to 0,608 according to the method and
the environment. Heffner ez al. (2010) recently
reported somewhat lower correlation, but they used
a more conservative approach, as the used yield in
one year as training data and correlate GEBV with
yield in another year. If true, an accuracy of 0,6 for
TBV is encouraging, since phenotype itself cannot
be viewed as a perfect predictor of TBV. Therefore
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Fig. 2. Mean (and standard deviation from 100 cross-validations) of correlations between GEBV estimated from
four statistical models and yield predicted in each of the 6 locations and using all locations.

RRB: Ridge regression BLUP, GB: G-BLUP, BRR: Bayesian Ridge regression, BL: Bayesian LASSO.

selection based on GEBV may not be worse than
that based on phenotypes.

However, all studies published so far have failed
to obtain very high prediction accuracies. This may
be due to the small size of the training population,
which is most often lower than 1000. Hayes et al.
(2009) gave an estimate of the training population
required to achieve an accuracy of 0,8, according
to trait heritability. For a trait with h? = 0,5, the
theoretical population size is about 5000, nearly
twentyfold more than in the present study. Another
limitation could come from sparse marker coverage.
However, the average marker density achieved with
the Dart markers, although unevenly distributed on
the genome, seems to be sufficient. This is related
to the minimal extent of LD range in the studied
material, which itself depends on the number of
founder lines and number of generations or the
effective population size, as discussed by Heffner et
al. (2010). As we do not have reliable map positions
for every marker, we do not present the pattern of
LD in the studied material. However at first glance
there are some high values of LD between markers
at a few cM apart. Other parameters which affect
prediction accuracy have been recently discussed
(Zhong et al., 2009; Iwata, Jannink, 2011).

The correlation values obtained in this study
appear high enough to provide prediction accuracies
of TBV of the same magnitude as that provided by
replicated phenotypic trials. However, compared
to dairy cow, the economic advantage of replacing
phenotype prediction by genomic prediction is
much less obvious in wheat. Indeed, reliable
phenotypic prediction of breeding value of a
bull for milk production requires measuring milk
production of some or hundreds of its daughters
(progeny tests). This requires at least 56 years,
and the cost is estimated to be around 40 000 €
per bull (D. Boichard, pers. comm.). In wheat, 4-
time replicated plots in 8—10 locations are usually
considered enough to get reliable estimates of mean
breeding values of a breeding line, which costs a
few hundred euros. Thus the main interest of GS in
wheat is shortening selection cycles to accelerate
genetic gain. This should only be achieved if fast
pure line fixation methods are implemented. This
could be accelerated using single seed descent with
off season generation in different environments
(such as the shuttle breeding used in CIMMYT’s
programmes), or under controlled conditions
using doubled haploid methods, which allow the
production of and intermating of GS-selected pure
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lines in only 23 years instead of 7-10 in classical
pedigree selection.

In the framework of the French National
Breedwheat programme, a fair comparison of one
cycle of phenotypic selection vs two cycles of
GEBV-based selection will be carried out on about
1000 DH lines from 34 breeders’ crosses over a
6-year period.
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BBuny oxxunaeMoii pa3paboTKH THICSY MOJIEKYIIIPHBIX MApKEPOB ISl OONBIINHCTBA KyJIBTYP CMECTHIINChH
AKIEHTHI B Teopur M A S-cenekimm (MapKep-0IoCpeloBaHHON CETEKIINN) OT MApKHPOBAHUSI OTIPEAEIICHHBIX
QTL (J10KyCOB KOJIMUYECTBEHHBIX TPU3HAKOB) HECKOJIBKMMHI MapKEpaMH B CTOPOHY TaK Ha3bIBAEMOM TeHOM-
HOH CEJIEKIINH C TIOMOIIBI0 OOJIBIIOTO YHCIIa MapKepPOB, IOKPHIBAIOIINX BeCch TeHoM. Habopbl Mapkepos,
MOKPBIBAOIINE TEHOM, YK€ NCTIONB3YIOTCS JUIS aHAIM3a ACCOLMALNI MEX Ty TOIMMOpP(U3MaMu 110 MapKepam
" IIpU3HAKaMHU (Ka‘leCTBeHHBIMI/I HJIN KOHI/I‘IGCTBCHHBIMI/I). HpI/I 9TOM O65[38.TCJ'[I)HBIM ABJISICTCA yCJIOBUE,
4yro0bl reH (nau QTL) Haxomuiicst B JocTatouHOM HepaBHOBecHH 10 cueruiennto (LD) ¢ mpuerarommmu
K HEMY MapKepaMu, UCII0JIb3yeMbIMU I FeHOTUIMpoBanus. Besnuuna LD Bapsupyer oT BUzia K BULLy U
3aBUCHT OT THIIAa FTEHETUYECKOT0 Marepuaia. Tak, coo0Ianock, YTo Mpy aHATU3€ CAMOOTBUISOLIMXCS BUZIOB
(0cOOCHHO CENeKITMOHHBIX JTHHU Takux BUIOB) BenmmurHa LD coctapnsier 1o 1 ¢cM u 6onee. [Tpu Takux yc-
JIOBHSIX JUIS TIPE/ICKa3aHMsI CEJICKIIMOHHON [IEHHOCTH ITPU3HAKA MOYKHO HUCIIOIb30BaTh MapKephbl, HE IIprOeras
K aHAJIM3Y JIOKYCOB KOJINUECTBEHHBIX NpH3HaKoB. Mcmonbsys DArT-Mapkeps! Ha CEJICKIIMOHHOM MarepHuare
INRA, MBI 1eMOHCTpHpPYEM IPUMEP IPUMEHEHUS METOIa TEHOMHOM CEeJICKIINU B KAYeCTBE aJIbTEPHATHBEI
TPaZMIIMOHHOMY TIO/IXOly, OCHOBAaHHOMY Ha ()eHOTHITYIECKOH OlleHKe. B ncceioBaHny poBOANTCS OLIEHKA
BO3MO)KHOCTH HCIIONB30BaHUs pa3nudHbix moxenelt («GBLUP», «Ridge Regression BLUP», «Bayesian
Ridge Regression» u «Lasso») i1t mpeAcKa3aHus ypoyKaifHOCTH T€HOTUIIOB, OI[CHEHHBIX B IIUPOKOI CETH
ucnbITarenbHBIX yaacTkoB ¢ 2000 mo 2009 rr. C ydaeTom HEOOIBIIOTO pa3Mepa 00yJaromiel MOMmysIuy B
XOJI€ TIEPEKPECTHOM MPOBEPKH MOJIYUYCHBI YIOBICTBOPUTEIIBHBIC MPEICKa3aTeIbHbIC KOI()(UIHCHTHI.

KurroueBble cJioBa: TCHOMHAs CCICKIIHS, CENICKIMOHHAs IIeHHOCTh, MeTon «GBLUP», meton «Ridge
Regression», metog «LASSO».



