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Abstract. The most popular model for the search of ChIP-seq data for transcription factor binding sites (TFBS) 
is the positional weight matrix (PWM). However, this model does not take into account dependencies between 
nucleotide occurrences in different site positions. Currently, two recently proposed models, BaMM and InMoDe, 
can do as much. However, application of these models was usually limited only to comparing their recognition 
accuracies with that of PWMs, while none of the analyses of the co-prediction and relative positioning of hits of dif-
ferent models in peaks has yet been performed. To close this gap, we propose the pipeline called MultiDeNA. This 
pipeline includes stages of mo del training, assessing their recognition accuracy, scanning ChIP-seq peaks and their 
classif ication based on scan results. We applied our pipeline to 22 ChIP-seq datasets of TF FOXA2 and considered 
PWM, dinucleotide PWM (diPWM), BaMM and InMoDe models. The combination of these four models allowed a 
signif icant increase in the fraction of re cognized peaks compared to that for the sole PWM model: the increase was 
26.3 %. The BaMM model provided the main contribution to the recognition of sites. Although the major fraction of 
predicted peaks contained TFBS of diffe rent models with coincided positions, the medians of the fraction of peaks 
containing the predictions of sole models were 1.08, 0.49, 4.15 and 1.73 % for PWM, diPWM, BaMM and InMoDe, 
respectively. Thus, FOXA2 BSs were not fully described by only a sole model, which indicates theirs heterogeneity. 
We assume that the BaMM model is the most successful in describing the structure of the FOXA2 BS in ChIP-seq 
datasets under study.
Key words: transcription factor binding sites (TFBS); TFBS de novo searching; ChIP-seq; heterogeneity of  TFBS.
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Аннотация. В настоящее время самой распространенной моделью поиска сайтов связывания транскрип-
ционных факторов (ССТФ) в пиках ChIP-seq является позиционная весовая матрица (position weight matrix, 
PWM). Но эта модель не учитывает взаимосвязи между частотами встреч нуклеотидов в разных позициях 
ССТФ, поэтому не способна гарантировать определение всех возможных структурных вариантов ССТФ. 
На сегодняшний день уже предложены альтернативные модели, например BaMM и InMoDe, которые учи-
тывают такие взаимо связи. Однако применение этих моделей обычно сводилось к сравнению их точности с 
точностью традиционной модели PWM, тогда как анализ совместной встречаемости и относительного рас-
положения ССТФ разных моделей в пиках не производился. В нашей работе мы предлагаем конвейер про-
грамм MultiDeNA, позволяющий сочетать разные модели de novo поиска ССТФ для выявления структурной 
гетерогенности ССТФ в данных ChIP- seq. Разработанный конвейер включает этапы построения моделей на 
основе заданного набора пиков, оценки точности распознавания моделей с помощью перекрестных тестов, 
выбора порогов, сканирования пиков ChIP-seq и классификацию пиков по результатам сканирования. С при-
менением конвейера нами проведен анализ 22 экспериментов ChIP-seq для ТФ FOXA2 с помощью четырех 
моделей: PWM, diPWM, BaMM и InMoDe. Показано, что сочетание моделей позволяет существенно увеличить 
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общее количество распознанных пиков (на 26.3 %) по сравнению с применением только PWM; при этом ос-
новной вклад в распознавание внесла модель BaMM. В значительной доле пиков разные модели распознают 
совпадающие ССТФ; однако для моделей PWM, diPWM, BaMM и InMoDe медианы доли пиков, которые со-
держали ССТФ только одной модели, составили 1.08, 0.49, 4.15 и 1.73 % соответственно. Таким образом, со-
вокупность ССТФ FOXA2 не описывается полностью только одной моделью, что свидетельствует о наличии 
структурной гетерогенности в ССТФ у FOXA2.
Ключевые слова: сайты связывания транскрипционных факторов (ССТФ); de novo поиск ССТФ; СhIP-seq; 
 гетерогенность ССТФ.

Introduction
Transcription factors (TFs) are proteins that can recog-
nize certain regions of genomic DNA (TF binding sites, 
TFBS) (Lambert et al., 2018). The main function of TFs 
is to increase or decrease a level of gene transcription 
(Latchman, 2001). The key stage of the regulation of gene 
expression is TF binding to DNA. This binding initiates 
a chain of molecular events that ensure the assembly and 
regulate the activity of the pre-initiation complex of RNA 
polymerase II, both through direct or indirect contacts with 
the components of this complex, and through the involve-
ment of various modifying chromatin and remodeling 
proteins. As a consequence, local changes in the structure 
of chromatin allow the transcription initiation (Iwafuchi-
Doi, 2019; Srivastava, Mahony, 2020). Therefore, one of 
the most important tasks of modern molecular biology is 
to identify genomic TFBSs.

Currently, the ChIP-seq technique is widely used to 
solve this problem (Farnham, 2009; Park, 2009). This 
technique is based on the chromatin immunoprecipitation 
with antibodies to an investigated TF with consequent 
high-throughput sequencing of precipitated DNA. Primary 
ChIP-seq data processing identifies DNA regions, or peaks, 
in which a target TF was directly or through intermediate 
proteins binds DNA (Furey, 2012). However, lengths of 
peaks are usually equal to hundreds of bp, but a length of 
TFBS does not exceed 20–25 bp (Levitsky et al., 2007; 
Kulakovskiy et al., 2018). Thus, the next stage of the bio-
informatics processing of ChIP-seq data is to search exact 
positions of  TFBS in peaks. To date, many tools have been  
developed to solve this issue, the overwhelming majority 
of them are based on the model of position weight matrix 
(PWM) (Stormo, 2000), including such popular ones as 
ChIPMunk (Kulakovskiy, Makeev, 2009) and Homer 
(Heinz et al., 2010). It is no exaggeration to say that the 
use of different implementations of the PWM model are 
included in almost every pipeline of ChIP-seq data process-
ing (Lloyd, Bao, 2019).

The application of the standard PWM-based approach 
to the processing of ChIP-seq data showed that for most 
TFs about a half of peaks did not contain detected PWM 
hits (Worsley Hunt, Wasserman, 2014; Gheorghe et al., 
2019). Traditionally, this was associated with the main 
disadvantage of PWM, the hypothesis of independence 
of nucleotides frequencies in different positions of TFBS, 
which is not always true. This may negatively affect the 
recognition accuracy (Benos et al., 2002; Keilwagen, Grau, 
2015). Therefore, alternative models of TFBS recognition 

have being developed. They took into account dependencies 
between nucleotides occurrences in a site model (Mathelier, 
Wasserman, 2013; Yang et al., 2014; Siebert, Söding, 2016; 
Eggeling et al., 2017; Gheorghe et al., 2019). Thus, the 
simplest alternative model was the dinucleotide position 
weight matrix (diPWM), it took into account dependences 
between adjacent nucleotides (Zhang M., Marr, 1993; 
Kulakovskiy et al., 2013). On the other hand, models such 
as BaMM (Siebert, Söding, 2016) and InMoDe (Eggeling 
et al., 2017) have been proposed. They were constructed 
 using Markov chains, which took into account dependences 
of positions using the concept of Markov chain order, i. e. 
a length for which nucleotide frequencies can be mutually 
dependent (an order usually does not exceed 5 nt).

Authors of these alternative models proved that their 
models might outperform in recognition accuracy the 
standard PWM. However, these models were not applied 
to solve the problem of incomplete recognition of TFTS 
in ChIP-seq peaks. We assume that this problem is par-
tially related to the structural heterogeneity of binding 
sites of TFs, and the number of recognized peaks can be 
significantly increased with the combination of different 
models together. In this case, the ChIP-seq peaks contain 
both predicted TFBS with application of a sole model, or 
with two models, etc. (Ignatieva et al., 2004; Levitsky et 
al., 2014, 2016). Earlier, we used the training sample of 
53 known TF sites of the FOXA subfamily and analyzed 
ChIP-seq data of  FOXA2 (Wederell et al., 2008; Wallerman 
et al., 2009) with alternative models ChIPMunk (PWM) 
(Kulakovskiy, Makeev, 2009) and SiteGA (Levitsky et al., 
2007) with experimentally fitted model’s thresholds (EMSA 
experiment, electrophoretic mobility shift assay, shift in 
electrophoretic mobility analysis). We showed that both 
models together found FOXA2 sites in more than 95 % of 
peaks (Levitsky et al., 2014). This conclusion was consis-
tent with the absence in literature any data about indirect 
interaction of this well-studied TF with genomic DNA.

The given example indicates that combination of alter-
native models with PWM model for analyzing ChIP-seq 
data is promising. However, until now there has been 
no systematic research on this topic. Alternative models 
of TFBS search are not widely used, despite that about 
20 years ago it was proved that there is a dependence of 
the nucleotide frequencies in different positions in TFBS 
(Bulyk et al., 2002). As the indicator of the popularity of 
different models, we use the number of citations of papers 
devoted to specific de novo TFBS searching programs for 
ChIP-seq data analysis. Thus, at the end of 2020, papers 
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The list of ChIP-seq experiments used in our study

No. GEO/ 
ENCODE ID

Cell line/tissue Treatment TomTom

1 ENCSR066EBK Hep-G2 – +

2 GSE90454 BJ1-hTERT Mimosine +

3 GSE90454 A-549 – +

4 ENCSR000BRE A-549 – +

5 GSE92491 BJ1-hTERT Mimosine +

6 GSE90454 BJ1-hTERT – +

7 ENCSR080XEY Liver – +

8 ENCSR310NYI Liver – +

9 ENCSR000BNI Hep-G2 – +

10 GSE90454 BJ1-hTERT – +

11 ERP004206 H9 – +

12 GSE92491 BJ1-hTERT Mimosine –

13 GSE90454 KerCT – +

14 GSE90454 BJ1-hTERT Mimosine –

15 GSE90454 BJ1-hTERT Mimosine +

16 GSE90454 BJ1-hTERT Mimosine +

17 GSE90454 BJ1-hTERT GATA4 –

18 ERP008682 Pancreas CARN1618 +

19 GSE90454 BJ1-hTERT Mimosine –

20 GSE92491 BJ1-hTERT CDT1 +

21 GSE90454 Hep-G2 – –

22 GSE92491 BJ1-hTERT FOXA2 
and GATA4 
coexpression

–

Notе: GEO/ENCODE – unique identifier of databases (GSE*/ENC*). TomTom – 
result of filtering data using TomTom software (see “Comparison of found TFBS 
with known ones using TomTom tool”). (+)/(–) – the frequency matrix  built 
on the basis of the TFBS found by ChIPMunk (PWM) is significantly similar  
( p-va lue < 0.001)/not similar ( p-value > 0.001) to the frequency matrix of the 
FOXA2 TFBS from HOCOMOCO FOXA2_HUMAN.H11MO.0.A.

devoted to the implementation of the PWM model MEME, 
HOMER and ChIPMunk (Bailey, Elkan, 1994; Heinz et al., 
2010; Kulakovskiy et al., 2010; Machanick, Bailey, 2011) 
have the total number of citations over 6000. However, 
papers devoted to alternative models BaMM, InMoDe 
and diChIPMunk (Kulakovskiy et al., 2013; Siebert, Sö-
ding, 2016; Eggeling et al., 2017; Kiesel et al., 2018) have 
about 50 citations. Moreover, specific studies of individual 
ChIP-seq experiments were usually analyzed only with the 
standard PWM model. This situation we explain as follow. 
First, the PWM model is understandable and anyone can 
simply interpret it. Second, advantages of alternative mo-
dels are insufficiently understandable. E. g., hardly anyone 
thought that alternative models were able systematically to 
find out TFBS of a different structure.

In this paper, we propose the pipeline that combines 
four de novo models of TFBS search, namely ChIPMunk/ 
diChIPMunk implementations of PWM/diPWM (Ku-
lakovskiy et al., 2010, 2013), and the Markov models 
 InMoDe (Eggeling et al., 2017) and BaMM (Siebert, Sö-
ding, 2016). The pipeline evaluates the recognition accu-
racy of these models, selects their thresholds and classifies 
ChIP-seq peaks by comparing respective scan results. This 
approach expands the understanding of TFBS structural 
diversity, especially in cases when the PWM model is un-
able to find TFBS in a peak. We applied the pipeline for 
22 ChIP-seq datasets for TF FOXA2.

Materials and methods
For the analysis we used the set of preprocessed 22 ChIP-
seq datasets for TF FOXA2 in the bed format from the 
ReMap database http://remap.univ-amu.fr/ (Chèneby et al., 
2020), see the Table. Only the best 4000 peaks we used for 
analysis in each sample (see below).

The input of our pipeline includes a dataset of ChIP-seq 
peaks with notation of genome version (mm10 or hg38) and 
the list of available TFBS search programs (PWM, diPWM, 
BaMM, InMoDe). The notation of genome version allows 
selection of the list of promoters in the fasta format (5′-re-
gions of protein-coding genes, 2000 bp upstream transcrip-
tion start sites). This promoter dataset is required for con-
cordant threshold selection for all models. The total sizes 
of these samples were 19 795/19 991 genes for the hu man/ 
mouse genomes (GRCh38.p13/GRCm38.p6 versions). We 
used the reference genome to extract nucleotide sequences 
of the peaks.

Pipeline for searching heterogeneity of TFBS. We 
have developed the MultiDeNA pipeline (multiple de novo 
analysis, https://github.com/ubercomrade/MultiDeNA) to 
search TFBS in ChIP-seq data with several de novo models. 
This pipeline allows obtaining the classification of ChIP-
seq peaks, which is used to estimate the structural diversity 
of TFBS. The pipeline currently uses ChIPMunk (PWM), 
diChIPMunk (diPWM), BaMM, and InMoDe models, as 
well as the bedtools (Quinlan, Hall, 2010) and TomTom 
(Gupta et al., 2007) support programs. The schematic 
dia gram of the program pipeline is shown in Fig. 1. The 

pipe line includes the following steps: (1) data preparation, 
(2) building of a model, (3) model accuracy assessment, 
(4) threshold selection and search of TFBS in ChIP-seq 
peaks with the fixed thresholds and (5) classification of 
ChIP-seq peaks according to results of TFBS recognition. 
Each stage of the program pipeline is described below.

Preparing initial data for analysis. The preparation of 
the data included the sorting of peaks according the value 
–10 ∙ log10 ( p-value) that characterized the peak quality. 
This value was previously calculated for each peak by the 
MACS program (Zhang Y. et al., 2008). The pipeline of 
ReMap database (Chèneby et al., 2020) used this program 
to process raw ChIP-seq data. For each ChIP-seq dataset, 
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Input data Internal program f iles

СhIP-seq peaks  
in bed format

Regerence genome  
for sequence 

extraction

1. Sort peaks by quality (–10 · log10 (p-value))
2. Choose best 4000 peaks
3. Extract of sequences from the reference genome

• Classificate of ChIP-seq peaks based on the results  
of  TFBS recognition by different de novo models

• Compare of  TomTom models with known PWMs (optional)

Genome version 
mm10/hg38

Model 1

Model 1

Prof ile 1 Prof ile 2 Prof ile N

Model 2 Model N

Model 2

Model N

Input parameters

Prepare ChIP-seq peaks

Analysis of results

Build models on ChIP-seq peaks

Choose a theshold for trained models  
based on false discovery rate

Analysis of the accuracy  
of trained models  

(ROC curve calculation, 
optional)

Search for TFBS in ChIP-seq peaks  
by models with a given threshold

List of promoters  
in fasta format  

for mm10 and hg38

Fig. 1. The scheme of MultiDeNA workf low.

we took in analysis top-scoring 4000 peaks. Next, nucleo-
tide sequences of the peaks we extracted from the genome 
using bedtools (Quinlan, Hall, 2010).

Training de novo models and assessing the TFBS recog-
nition accuracy. In order to recognize TFBS in peaks, it is 
necessary to build de novo models. The PWM and diPWM 
models we build with ChIPMunk and diChIPMunk, respec-
tively (Kulakovskiy et al., 2010, 2013).The construction 
of alternative models we carry out with BaMM (Siebert, 
Söding, 2016) and InMoDe (Eggeling et al., 2017).

To improve the recognition accuracy of PWM model, 
we selected it optimal length by the cross-validation pro-
cedure. We used the same length for the construction of 
other models. This procedure included the following steps: 
(1) to divide the ChIP-seq dataset randomly into the training 
(90 % of the peaks) and the control (remaining 10 % of 
the peaks) samples; (2) to build a model with the training 
sample; (3) to get recognition scores of a model with the 
control sample to calculate true positive rate (TPR); (4) to 
generate the sample of random sequences by shuffling of 
nucleotides in the control sample; (5) to get scores of a 
model with the sample of random sequences to calculate 
the false positives rate (FPR); (6) repetition of steps 1–5 
several times; (7) to calculate the ROC-curve (receiver ope-

rating characteristic). We compared different models with 
the pAUC value (partial area under curve), we calculated it 
as the part of the area under ROC curve for all FPR values 
less than 0.001 (McClish, 1989; Siebert, Söding, 2016). 
The method described above for choosing the optimal 
PWM length was developed earlier (Levitsky et al., 2007; 
Kulakovskiy et al., 2013). The accuracy of all models we 
assessed with the same approach.

Next, a model can be applied to a nucleotide sequence 
with the same length as a model site. The result of applying 
this model is the recognition score. The larger score points 
to the higher probability of estimated nucleotide sequence 
to be a functional TFBS.

Threshold selection for models according to false posi-
tive rate estimates. To compare the results of TFBS search 
of different models correctly, it is necessary to set thresholds 
for all models uniformly. We set these thresholds for all 
models according the fixed FPR. To calculate this FPR, 
we use the negative sample, which included 5′-regions of 
protein-coding genes (2000 base pairs from transcription 
start sites).

We calculate FPR as follows. The scores of a model 
we determine for each site in the negative sample at each 
position and DNA strand. Then, the FPR for each unique 
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Fig. 2. The approach of threshold selection for a model through estimation of false positive rate with the whole-genome pro-
moter dataset. 

…tacTCAGCATGTTTATTTAAAATAgac…

…cacAGCTATATTTACACTGTACCacc…ttgTTCAGTTGTTTACCATCTGCccc…

Model 2

Model 2

Model 1

Model 1 Spacer

a

b

Intersection of sites is present

Intersection of sites is absent

Peaks with sites 
of Model 1 only

Peaks with sites 
of Model 2 only

Peaks with intersected 
sites of Model 1  
and Model 2

Peaks without 
intersected sites  
of Model 1 and Model 2

Peaks without sites

Fig. 3. The example of classif ication for two ChIP-seq peaks containing 
sites of two various models (Model 1, Model 2). Colors mark options of 
intersected (a) or not intersected sites (b).

Fig. 4. Peak classification for two models (Model 1, Model 2) with taking 
into account the intersection of TFBS. 

score threshold we calculate as the ratio of the total count of 
predicted TFBS, for which the score is the same or higher 
than this threshold, to the total number of positions in the 
sequence sample available for such TFBS. We choose for 
recognition of TFBS in peaks thresholds for all models 
respecting the FPR 1.9 ∙ 10–4. An example of choosing a 
threshold for PWM for the GSE92491 dataset is shown 
in Fig. 2.

Classification of ChIP-seq peaks based on the results of 
TFBS recognition by different models. After threshold se-
lection for all models, we search TFBS in ChIP-seq peaks. 
Further, these peaks we classify into fractions depend-
ing on the presence/absence of sites of different models 
(PWM, diPWM, BaMM, InMoDe). We use two types of 
classification. One of them take into account the location 
of TFBS of different models in a peak, and another did not 
(see previously developed method, Levitsky et al., 2014, 
2016). In particular, we carry out for each pair of models 
the classification of peaks with taking into account positions 
of  TFBS of different models. Totally, there are six pairs 
of models: PWM and diPWM, PWM and BaMM, PWM 
and InMoDe, BaMM and diPWM, BaMM and InMoDe, 
InMoDe and diPWM. If a peak includes TFBS of a single 
model only, then this peak we classify as the peak of the 
corresponding model. If there are only two different models 
with hits in a peak, then two outcomes are possible (Fig. 3).

In the first case, if there is at least one pair of sites from 
two models that has at least one common position, then such 
peak we classify as the “intersection”. Otherwise, if a peak 
contains sites of different models, but these sites are not 
intersected, then a peak is classified as “no intersection”. If 
sites are absent in a peak, then we classify it as “no sites”. 
Such classification of ChIP-seq peaks for the two models 
can be represented as the pie chart (Fig. 4).

The classification of peaks, without taking into account 
positions of sites of different models we carry out as fol-
lows. We identify following groups of peaks: peaks with 

sites of one model only, peaks containing sites of all models, 
and also several groups of peaks respecting combination 
of various models. 

Comparison of found TFBS with known ones  using 
TomTom tool. To assess whether a predicted site mat-
ches to known FOXA2 sites, we use the TomTom motif 
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comparison program (Gupta et al., 2007). This program 
is designed to assess the similarity between nucleotide 
frequency matrices. For each PWM model, we construct 
a nucleotide frequency matrix based on the sites it find. 
Next, using TomTom, we evaluate the similarity of this 
matrix to the frequency matrix of the FOXA2 from the 
 HOCOMOCO database (ID HOCOMOCO FOXA2_ 
HUMAN.H11MO.0.A, Kulakovskiy et al., 2018). If the 
p-value of the matrix comparison is below 0.001, then a 
ChIP-seq dataset we consider as enriched with FOXA2 
BS (see the Table).

Statistical data analysis. Data analysis and visualiza-
tion we perform in the Python 3.8 programming language 
in the Jupyter environment using the numpy, matplotlib, 
seaborn, and statannot packages. The distributions of peak 
fractions respecting to various models we compare with the 
Mann–Whitney U-test, corrected for multiple comparisons 
(Bonferroni approach).

Results

Filtering data based on TomTom’s motif comparison
To ensure that the trained models find sites correspond-
ing to known FOXA2 sites we apply the filter based on 
the TomTom program. For this, we build the frequency 
matrices respecting a trained model and we compare it 
with the known matrix of FOXA2 from the HOCOMOCO 
database. This procedure left only 16 ChIP-seq datasets out 
of total 22 (see the Table), therefore, these 16 sets we use 
in further analysis.

Classification of ChIP-seq peaks without taking  
into account the intersection of TFBS positions  
found by different de novo models
The main result of MultiDeNA pipeline is the classification 
of peaks. It allows establishing how the models are related 
to each other in terms of their ability to identify TFBS in 
peaks. We used two types of peak classification. The first 
one takes into account an intersection of positions of pre-
dicted TFBS of different models, the second one did not 
take it into account (see “Classification of ChIP-seq peaks 
based on the results of TFBS recognition by different mo-
dels”). The example of results classification for GSE90454.
FOXA2.KerCT dataset is given in Fig. 5.

Let us consider in more detail the classification of ChIP-
seq peaks based on the results of the TFBS search with four 
models without taking into account site positions. It can 
be seen that all models jointly recognized 88.35 % of the 
peaks (3534 out of 4000, the sum of all areas within the 
Venn diagram, see Fig. 5, a, b). The overlap fraction of all 
models amounts 34.25 % (1370 out of 4000 peaks). Two 
non-PWM models BaMM and InMoDe make the signifi-
cant contributions to peak recognition. They totally add 
34.55 % of all peaks (696 + 647 + 39 = 1382 out of 4000). 
This fraction is almost the same as the overlap fraction of 
all models (1370). The BaMM model makes the largest 
independent contribution to recognition of sites, it adds 

17.4 % of the peaks (696), in contrast to other models that 
add 0.525 % (21), 0.975 % (39) and 0.2 % (8) (PWM, 
InMoDe and diPWM respectively).

To assess the structural diversity of the TFBS, we build 
logos for peak fractions “only PWM”, “only diPWM”, 
“only BaMM”, “only InMoDe” and “all models” (see 
Fig. 5, c). All logos contain the GTAAACA consensus. 
However, the “only PWM”, “only diPWM” and “only 
InMoDe” fractions have the higher occurrence of GT than 
AT at the first two nucleotides of the consensus. It can 
also be noted that the 5′-ends of all logos are diverse in 
nucleotide content.

Classification of ChIP-seq peaks with taking  
into account the intersection of TFBS positions  
found by different models
The classification of peaks described above (without  taking 
into account the positions of the TFBS) does not take 
into account positions of sites in peaks. To consider this 
circumstance we classify peaks with taking into account 
positions. We perform this for each pair of models (PWM–
diPWM, PWM–BaMM, PWM–InMoDe, diPWM–BaMM, 
diPWM–InMoDe, InMoDe–BaMM). The results of the 
classification of peaks for GSE90454.FOXA2.KerCT are 
shown as the pie charts in Fig. 6.

All pairs of model combinations have very small frac-
tion of “without intersection” peaks, ranging from 0.3 to 
6.9 %. On the other hand, all cases were characterized by 
the large fraction of peaks “with intersection” (BaMM–
InMoDe 53.6 %, PWM–diPWM 44.4 %, diPWM–BaMM 
41.0 %, PWM–BaMM 37.3 %, diPWM–InMoDe 35.4 %, 
PWM–InMoDe 31.6 %). This fraction is larger for me-
thodologically close pairs of models BaMM–InMoDe and 
PWM–diPWM (see Fig. 6). The fraction of the peaks with 
TFBS found with only a single model is the highest for 
BaMM model. In pairs of models PWM–BaMM, diPWM–
BaMM, and InMoDe–BaMM, BaMM contributes greatly 
(39.2, 36.4 and 26.8 %, respectively).

Evaluation of the recognition TFBS accuracy  
by different models for FOXA2
To compare the recognition accuracy of different models we 
calculate pAUC values from ROC curves obtained with the 
cross-validation procedure (see “Training de novo models 
and assessing the TFBS recognition accuracy”) (Fig. 7, a). 
According to the results obtained, the values of the pAUC 
medians for the PWM, diPWM, BaMM and InMoDe mo-
dels are 8.0E–4, 8.1E–4, 7.3E–4, and 5.6E–4, respectively. 
The differences between pAUC values were not significant 
( p > 0.05) for paired comparisons of PWM, diPWM, and 
BaMM, but the InMoDe model has significantly less values 
than any other model ( p < 0.05).

Comparison of fractions of peaks with TFBS found 
by each model with that for all models. To investigate 
contributions of different models to the efficiency of TFBS 
search and to evaluate the overall result of several mo-
dels, we determine fractions of peaks containing at least 
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Fig. 6. Classification of the GSE90454.FOXA2.KerCT ChIP-seq dataset with taking into account intersection of TFBS positions 
respecting to different models.

Fig. 5. The classif ication of peaks of the GSE90454.FOXA2.KerCT ChIP-seq dataset according to prediction results of all four models. 
(a) Table, (b) Venn diagram, (c) Logo for fraction of the peaks respecting to predictions of sole models and that for the overlapping fraction of all models. 
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Fig. 7. The distribution of quartiles for recognition measures. The bottom part of the box denotes the minimum value of parameter; the top part de-
notes the maximum value of parameter. (a) Values of pAUC for all models. (b) Fractions of peaks recognized with a single models (PWM, diPWM, BaMM, 
InMoDe) and with all models together (Total). (c) Fractions of peaks contained only TFBS recognized with a single model.
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one TFBS for each sole model and those for all models 
together (see Fig. 7, b). The medians of recognized peaks 
fractions are 47.3, 46.4, 65.8, and 54 % for sole PWM, 
diPWM, BaMM and InMoDe, respectively. The median 
of recognized peaks fraction of joined results of all four 
models’ case is 73.6 %. Consequently, together, all models 
add 26.3 % peaks containing TFBS to the fraction of sole 
PWM model, which is consistent with the earlier obtained 
result of using two fundamentally different PWM and 
SiteGA models (Levitsky et al., 2014). At the same time, the 
median values respecting fractions for the PWM, diPWM, 
and InMoDe models significantly lower ( p < 0.05) than 
that obtained by combining all models. Thus, the approach 
using the combination of different models allows better 
identification of peaks with TFBS for FOXA2 than that 
using only one model. However, for BaMM, the fraction of 
recognized peaks did not statistically differ ( p > 0.05) from 
the result obtained by combining the four models. Hence, 
the BaMM model makes the main contribution to the re-
cognition of FOXA2 peaks and, among the other models 
this model better describes the structure of FOXA2 sites. 
However, the rest three models add 7.8 % of the peaks to 
the BaMM result, which proves the effectiveness of using 
different models together.

Comparison of fractions of peaks containing TFBS 
found by single models. As it is shown above, the com-
bination of different models increases the number of peaks 
with TFBS. Hence, each model recognizes TFBS that  others 
do not. To assess the independent contributions of all mo-
dels to the search for TFBS, we determine the fractions of 
peaks containing TFBS of only one model (see Fig. 7, c). 
As one can see, each model (PWM, diPWM, BaMM, 
 InMoDe) is able to find TFBS that other models do not 

find. The medians of peaks containing TFBS respecting a 
single model are 1.08, 0.49, 4.15, and 1.73 %, respectively 
for PWM, diPWM, BaMM, and InMoDe. At the same time, 
the results for BaMM are significantly different ( p < 0.05) 
from those for both PWM and diPWM. It also confirms 
the assumption that the BaMM model better recognizes 
FOXA2 sites. However, each model contributes to site re-
cognition. Consequently, each model reveals certain struc-
tural variant of TFBS.

Cross-validation test for PWM models  
with participation of their own training dataset  
and other ChIP-seq datasets
To estimate the dependence of specificity of various models 
for different ChIP-seq datasets as a function of a selection 
of particular dataset as the training sample, we performed 
the cross-validation test as follow. The accuracy of each 
PWM model we assessed not only within the same ChIP-
seq training dataset, but also for the rest 15 datasets (control 
datasets). For the case of training dataset, we performed 
several iterations to divide the total training sample into 
90 % of the peaks that we used to build a model, and 
the remaining 10 % of the peaks we used to estimate the 
performance. For each case we calculated the accuracy 
estimate pAUC (see “Training de novo models and as-
sessing the TFBS recognition accuracy”), the results we 
presented in the form of the heatmap (Fig. 8). The heatmap 
shows that only in three cases ENCSR000BRE.A-549, 
ENCSR000BNI.Hep-G2 and ERP008682.pancreas other 
models have very low pAUC scores, and for five cases 
GSE90454.A-549, ENCSR066EBK.Hep-G2, GSE90454.
KerCT, ENCSR080XEY.liver and ENCSR310NYI.liver, 
all models have high pAUC values.
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Fig. 8. The heatmap of cross-validation test results for PWM models.
Colors mark pAUC values. Each diagonal cell implies that control and training 
datasets are the same. Remaining cells refer to distinct training and control 
datasets. Rows mean models and columns denote ChIP-seq datasets.
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Discussion
Based on all data obtained, we conclude that the joint use 
of alternative models allows us to expand the number of 
detected peaks containing TFBS relative to application of 
sole PWM.

This result can be explained by the presence of different 
structural types of TFBS of FOXA2. This is in agreement 
with experimental data obtained for a number of other TFs, 
including members of the FOX family. Thus, it was shown 
that HOXB13 and FOXC2 are able to bind with the same 
affinity to completely different sequences CAATAAA/
TCGTAAA (Morgunova et al., 2018) and GTAAACA/
ACAAATA (Chen et al., 2019), respectively. It was recently 
found that TF FOXN3 is able to bind to two fundamentally 
different types of TFBS, which had different lengths (Ro-
gers et al., 2019). In addition, small changes in the structure 
of the TFBS depend on the cooperative interaction between 
TFs (Morgunova, Taipale, 2017). Hence, we propose that 
FOXA2 also can bind to different structural types of BS.

To take into account all the TFBS structural types, the 
only PWM model for site recognition may not be enough, 
this problem partially was solved using several PWMs (Bi 
et al., 2011; Mitra et al., 2018) or using alternative models 
(Mathelier, Wasserman, 2013; Yang et al., 2014; Siebert, 
Söding, 2016; Eggeling et al., 2017; Gheorghe et al., 
2019). However, previously alternative models were usu-
ally compared with PWM only in terms of the recognition 
accuracy (Siebert, Söding, 2016), or according the number 
of recognized TFBSs (Samee et al., 2019). In the current 
study, we took in analysis FOXA2 ChIP-seq data. We 
compared not only the accuracy and the number of peaks 
recognized, but also we estimated independent contribu-

tions of each model and assessed the joint contribution for 
all pairs of models, and also we tested positions of hits in 
peaks for each pair of models. The results for the accuracy 
assessment (see Fig. 7, a) showed that the InMoDe model 
had the lowest accuracy relative to other models, and the 
BaMM, diPWM and PWM models were comparable in 
accuracy. In terms of expanding the total fraction of peaks 
with TFBS, the BaMM model performed the best, since 
this model found the largest fraction of peaks with TFBS 
that other models do not find. Nevertheless, all alternative 
diPWM, BaMM and InMoDe models allow expanding the 
pool of recognized TFBS relative to sole PWM, but PWM 
also makes an independent contribution to the total number 
of peaks with recognized TFBS.

Conclusion
We have developed the pipeline MultiDeNA, which allows 
uniform processing of ChIP-seq data using different TFBS 
models. Currently, it can be used to build PWM, diPWM, 
InMoDe, BaMM models. MultiDeNA includes the steps 
of preparing data, building models, evaluating recognition 
accuracy, scanning peaks, combining results, and analyz-
ing them. The developed pipeline of programs processed 
datasets from the ReMap database, including 22 ChIP-seq 
experiments for TF FOXA2. We have shown that com-
bined use of different models allows increasing the total 
fraction of recognized peaks up to 73.6 % (relative to sole 
PWM model, the fraction of recognized peaks increased 
by 26.3 %). We have shown that different models tend to 
recognize the same sites of FOXA2 in the large fraction 
of peaks, thereby revealing the most common structural 
type of TFBS in these peaks. Also, each model found 
TFBS that other models did not predict. The BaMM model 
performed the best with 4.15 % of peaks containing only 
its sites, versus 1.08, 0.49, 1.73 % for PWM, diPWM and 
InMoDe, respectively. We proposed that the heterogeneity 
of sites for FOXA2 is revealed only if two or more models 
are applied. The diPWM model showed worst result in 
sole application in comparison with other models (diPWM 
recognized TFBS in 46.4 % of the peaks). The best model 
for the FOXA2 sites was BaMM; it found TFBS in 65.8 % 
of the peaks. Hence, we assumed that the BaMM model 
could better describe BS for FOXA2.
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