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Abstract. The most popular model for the search of ChlIP-seq data for transcription factor binding sites (TFBS)
is the positional weight matrix (PWM). However, this model does not take into account dependencies between
nucleotide occurrences in different site positions. Currently, two recently proposed models, BaMM and InMoDe,
can do as much. However, application of these models was usually limited only to comparing their recognition
accuracies with that of PWMs, while none of the analyses of the co-prediction and relative positioning of hits of dif-
ferent models in peaks has yet been performed. To close this gap, we propose the pipeline called MultiDeNA. This
pipeline includes stages of model training, assessing their recognition accuracy, scanning ChlP-seq peaks and their
classification based on scan results. We applied our pipeline to 22 ChIP-seq datasets of TF FOXA2 and considered
PWM, dinucleotide PWM (diPWM), BaMM and InMoDe models. The combination of these four models allowed a
significant increase in the fraction of recognized peaks compared to that for the sole PWM model: the increase was
26.3 %.The BaMM model provided the main contribution to the recognition of sites. Although the major fraction of
predicted peaks contained TFBS of different models with coincided positions, the medians of the fraction of peaks
containing the predictions of sole models were 1.08, 0.49, 4.15 and 1.73 % for PWM, diPWM, BaMM and InMoDe,
respectively. Thus, FOXA2 BSs were not fully described by only a sole model, which indicates theirs heterogeneity.
We assume that the BaMM model is the most successful in describing the structure of the FOXA2 BS in ChIP-seq
datasets under study.
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AHHOTayuumA. B HacToALWee Bpema camoi pacnpoCTPaHEHHON MOLENbIO NMOMCKa CalTOB CBA3bIBAHWA TPAHCKPWI-
LMOoHHbIX dpakTopos (CCTO) B nukax ChiP-seq ABnAeTcA No3nuMoHHan BecoBaa maTpumua (position weight matrix,
PWM). Ho ata mogenb He yuynTbiBaeT B3aUMOCBA3M MeXAy YacTOoTaMu BCTPEY HYKNeoTUAOB B Pa3HbiX NO3MLMAX
CCT®, nostomMy He cnocobHa rapaHTMpOBaTb OnpefeneHrie BCeX BO3MOXHbIX CTPYKTYPHbIX BapuaHToB CCTO.
Ha ceropHAWHWI feHb y>Ke nNpepoXKeHbl afbTepHaTUBHble Mogenu, Hanpumep BaMM u InMoDe, koTopble yun-
TbIBaIOT TaKve B3auMocCBA3U. OAHAKO NPYMEHEHNE STUX MoLenel 06bIYHO CBOAMIOCH K CPaBHEHUIO UX TOYHOCTM C
TOYHOCTbIO TPaanLMoHHo moaenu PWM, Toraa Kak aHanu3 COBMECTHOW BCTPEYAEMOCTU N OTHOCUTESIbHOMO pac-
nonoxkeHuss CCTO pasHbix MoAenen B NMKax He Npou3Boaucs. B Hawel paboTte mMbl Npeanaraem KoHBenep npo-
rpamm MultiDeNA, no3Bondtowumin coyeTtatb pasHble Mogenu de novo nomcka CCTO ana BbIABNEHNA CTPYKTYPHOW
reteporeHHocT CCT® B gaHHbIX ChlIP-seq. Pa3paboTaHHbIVi KOHBeep BKIOYAET 3Tanbl MOCTPOEHWSA MOAENEN Ha
OCHOBE 3alaHHOro Habopa MMKOB, OLLEHKM TOYHOCTY Pacno3HaBaHWA MoAeNe C MOMOLLbIO NEPEKPECTHbIX TECTOB,
Bblbopa noporos, ckaHnpoBaHus nukos ChIP-seq 1 knaccudurKaLmio NMKOB No pe3ynbTaTam ckaHupoBaHua. C npu-
MEHEHNEeM KOHBelepa Hamu NpoBefeH aHanus 22 skcnepumentos ChiP-seq ana TO FOXA2 ¢ nomolbio YeTbipex
mogenei: PWM, diPWM, BaMM 1 InMoDe. MNoka3aHo, 4To couyeTaHne MoAesell No3BoNAET CyLLeCTBEHHO YBENNUYNTD
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obLiee KONMYECTBO PACNO3HAHHBIX MUKOB (Ha 26.3 %) Mo CpaBHEHWIO C NprMeHeHreM Tonbko PWM; npu aTom oc-
HOBHOW BK/aj B pacrno3HaBaHue BHecna mogenb BaMM. B 3HaunTenbHom fone NMKOB pa3Hble MOAENN pacno3HaoT
cosnapatowme CCTO; ogHako ana mogenenn PWM, diPWM, BaMM un InMoDe mefaHbl oy NMMKOB, KOTOpble CO-
nepxann CCTO Tonbko ogHoM mogenu, coctasunm 1.08, 0.49, 4.15 1 1.73 % cooTBeTCTBEHHO. Takum obpasom, co-
BoKynHocTb CCT® FOXA2 He onuncbiBaeTcA NOHOCTbLIO TOSIbKO OAHOWN MOAENbIO, UTO CBUAETENbCTBYET O HANNUUN

CTPYKTYpHOW reteporeHHocTy B CCTO y FOXA2.

KnioueBble crioBa: caiiTbl CBA3bIBAHUA TPAHCKPUNUMOHHBIX dakTopos (CCTD); de novo nonck CCT®; ChIP-seq;

reteporeHHocTb CCTO.

Introduction

Transcription factors (TFs) are proteins that can recog-
nize certain regions of genomic DNA (TF binding sites,
TFBS) (Lambert et al., 2018). The main function of TFs
is to increase or decrease a level of gene transcription
(Latchman, 2001). The key stage of the regulation of gene
expression is TF binding to DNA. This binding initiates
a chain of molecular events that ensure the assembly and
regulate the activity of the pre-initiation complex of RNA
polymerase II, both through direct or indirect contacts with
the components of this complex, and through the involve-
ment of various modifying chromatin and remodeling
proteins. As a consequence, local changes in the structure
of chromatin allow the transcription initiation (Iwafuchi-
Doi, 2019; Srivastava, Mahony, 2020). Therefore, one of
the most important tasks of modern molecular biology is
to identify genomic TFBSs.

Currently, the ChIP-seq technique is widely used to
solve this problem (Farnham, 2009; Park, 2009). This
technique is based on the chromatin immunoprecipitation
with antibodies to an investigated TF with consequent
high-throughput sequencing of precipitated DNA. Primary
ChlIP-seq data processing identifies DNA regions, or peaks,
in which a target TF was directly or through intermediate
proteins binds DNA (Furey, 2012). However, lengths of
peaks are usually equal to hundreds of bp, but a length of
TFBS does not exceed 20-25 bp (Levitsky et al., 2007;
Kulakovskiy et al., 2018). Thus, the next stage of the bio-
informatics processing of ChIP-seq data is to search exact
positions of TFBS in peaks. To date, many tools have been
developed to solve this issue, the overwhelming majority
of them are based on the model of position weight matrix
(PWM) (Stormo, 2000), including such popular ones as
ChIPMunk (Kulakovskiy, Makeev, 2009) and Homer
(Heinz et al., 2010). It is no exaggeration to say that the
use of different implementations of the PWM model are
included in almost every pipeline of ChIP-seq data process-
ing (Lloyd, Bao, 2019).

The application of the standard PWM-based approach
to the processing of ChIP-seq data showed that for most
TFs about a half of peaks did not contain detected PWM
hits (Worsley Hunt, Wasserman, 2014; Gheorghe et al.,
2019). Traditionally, this was associated with the main
disadvantage of PWM, the hypothesis of independence
of nucleotides frequencies in different positions of TFBS,
which is not always true. This may negatively affect the
recognition accuracy (Benos et al., 2002; Keilwagen, Grau,
2015). Therefore, alternative models of TFBS recognition

have being developed. They took into account dependencies
between nucleotides occurrences in a site model (Mathelier,
Wasserman, 2013; Yang et al., 2014; Siebert, S6ding, 2016;
Eggeling et al., 2017; Gheorghe et al., 2019). Thus, the
simplest alternative model was the dinucleotide position
weight matrix (diPWM), it took into account dependences
between adjacent nucleotides (Zhang M., Marr, 1993;
Kulakovskiy et al., 2013). On the other hand, models such
as BaMM (Siebert, S6ding, 2016) and InMoDe (Eggeling
et al., 2017) have been proposed. They were constructed
using Markov chains, which took into account dependences
of positions using the concept of Markov chain order, i.e.
a length for which nucleotide frequencies can be mutually
dependent (an order usually does not exceed 5 nt).
Authors of these alternative models proved that their
models might outperform in recognition accuracy the
standard PWM. However, these models were not applied
to solve the problem of incomplete recognition of TFTS
in ChIP-seq peaks. We assume that this problem is par-
tially related to the structural heterogeneity of binding
sites of TFs, and the number of recognized peaks can be
significantly increased with the combination of different
models together. In this case, the ChIP-seq peaks contain
both predicted TFBS with application of a sole model, or
with two models, etc. (Ignatieva et al., 2004; Levitsky et
al., 2014, 2016). Earlier, we used the training sample of
53 known TF sites of the FOXA subfamily and analyzed
ChIP-seq data of FOXA2 (Wederell et al., 2008; Wallerman
et al., 2009) with alternative models ChIPMunk (PWM)
(Kulakovskiy, Makeev, 2009) and SiteGA (Levitsky et al.,
2007) with experimentally fitted model’s thresholds (EMSA
experiment, electrophoretic mobility shift assay, shift in
electrophoretic mobility analysis). We showed that both
models together found FOXAZ2 sites in more than 95 % of
peaks (Levitsky et al., 2014). This conclusion was consis-
tent with the absence in literature any data about indirect
interaction of this well-studied TF with genomic DNA.
The given example indicates that combination of alter-
native models with PWM model for analyzing ChIP-seq
data is promising. However, until now there has been
no systematic research on this topic. Alternative models
of TFBS search are not widely used, despite that about
20 years ago it was proved that there is a dependence of
the nucleotide frequencies in different positions in TFBS
(Bulyk et al., 2002). As the indicator of the popularity of
different models, we use the number of citations of papers
devoted to specific de novo TFBS searching programs for
ChIP-seq data analysis. Thus, at the end of 2020, papers
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devoted to the implementation of the PWM model MEME,
HOMER and ChIPMunk (Bailey, Elkan, 1994; Heinz et al.,
2010; Kulakovskiy et al., 2010; Machanick, Bailey, 2011)
have the total number of citations over 6000. However,
papers devoted to alternative models BaMM, InMoDe
and diChIPMunk (Kulakovskiy et al., 2013; Siebert, S6-
ding, 2016; Eggeling et al., 2017; Kiesel et al., 2018) have
about 50 citations. Moreover, specific studies of individual
ChIP-seq experiments were usually analyzed only with the
standard PWM model. This situation we explain as follow.
First, the PWM model is understandable and anyone can
simply interpret it. Second, advantages of alternative mo-
dels are insufficiently understandable. E. g., hardly anyone
thought that alternative models were able systematically to
find out TFBS of a different structure.

In this paper, we propose the pipeline that combines
four de novo models of TFBS search, namely ChIPMunk/
diChIPMunk implementations of PWM/diPWM (Ku-
lakovskiy et al., 2010, 2013), and the Markov models
InMoDe (Eggeling et al., 2017) and BaMM (Siebert, S6-
ding, 2016). The pipeline evaluates the recognition accu-
racy of these models, selects their thresholds and classifies
ChIP-seq peaks by comparing respective scan results. This
approach expands the understanding of TFBS structural
diversity, especially in cases when the PWM model is un-
able to find TFBS in a peak. We applied the pipeline for
22 ChIP-seq datasets for TF FOXA2.

Materials and methods

For the analysis we used the set of preprocessed 22 ChIP-
seq datasets for TF FOXA2 in the bed format from the
ReMap database http://remap.univ-amu.fr/ (Cheneby et al.,
2020), see the Table. Only the best 4000 peaks we used for
analysis in each sample (see below).

The input of our pipeline includes a dataset of ChIP-seq
peaks with notation of genome version (mm10 or hg38) and
the list of available TFBS search programs (PWM, diPWM,
BaMM, InMoDe). The notation of genome version allows
selection of the list of promoters in the fasta format (5'-re-
gions of protein-coding genes, 2000 bp upstream transcrip-
tion start sites). This promoter dataset is required for con-
cordant threshold selection for all models. The total sizes
of these samples were 19795/19991 genes for the human/
mouse genomes (GRCh38.p13/GRCm38.p6 versions). We
used the reference genome to extract nucleotide sequences
of the peaks.

Pipeline for searching heterogeneity of TFBS. We
have developed the MultiDeNA pipeline (multiple de novo
analysis, https://github.com/ubercomrade/MultiDeNA) to
search TFBS in ChIP-seq data with several de novo models.
This pipeline allows obtaining the classification of ChIP-
seq peaks, which is used to estimate the structural diversity
of TFBS. The pipeline currently uses ChIPMunk (PWM),
diChIPMunk (diPWM), BaMM, and InMoDe models, as
well as the bedtools (Quinlan, Hall, 2010) and TomTom
(Gupta et al., 2007) support programs. The schematic
diagram of the program pipeline is shown in Fig. 1. The

AHanus CTpyKTYpHOW reTeporeHHocTy cantos FOXA2 2021
Ha OCHOBe aflbTepHaTVBHbIX Mofeneli de novo nouncka 25.1
The list of ChIP-seq experiments used in our study
No. GEO/ Cell line/tissue Treatment TomTom
ENCODE ID

5 GSE92491 BJ1-hTERT Mimosine +
6 ........ GSE90454 ........... B“hTE RT .................. _ ....................... + ...............
7 ........ ENCSROBOXEY leer ........................... _ ....................... + ...............
8 ........ ENC5R31ONY| leer ........................... _ ....................... + ...............
9 ........ ENCSROOOBN, Hesz ...................... R + ...............
10 ...... GSE90454 ........... B“hTE RT .................. _ ....................... + ...............

11 ....... ERP 004206 ......... Hg .............................. _ ....................... + ...............

12 ...... GSE92491 ........... B“hTE RT .................. MI m Osme ........ _ ...............

13 ...... GSE90454 ........... Ker CT ......................... _ ....................... + ...............

14 ...... GSE90454 ........... B“hTE RT .................. M, m Osme ........ S

15 ...... GSE90454 ........... B“hTE RT .................. MI m Osme ........ + ...............

16 ...... GSE90454 ........... B“hTE RT .................. MI m osme ........ + ...............

17 ...... GSE90454 ........... B“hTE RT .................. GATA4 .............. _ ...............

18 ...... ERP008682 ......... Pancreas .................... CARN1618 ....... + ...............

19 ...... GSE90454 ........... B“hTE RT .................. M, m Osme ........ S

20 ...... GSE92491 ........... B“hTE RT .................. CD-“ ................. + ...............

21 ....... GSE90454 ........... Hesz ...................... _ ....................... _ ...............

22 ...... GSE92491 ........... B“hTE RT .................. FOXA2 .............. _ ...............
and GATA4

coexpression

Note: GEO/ENCODE - unique identifier of databases (GSE*/ENC*). TomTom —
result of filtering data using TomTom software (see “Comparison of found TFBS
with known ones using TomTom tool”). (+)/(-) — the frequency matrix built
on the basis of the TFBS found by ChIPMunk (PWM) is significantly similar
(p-value <0.001)/not similar (p-value>0.001) to the frequency matrix of the
FOXA2 TFBS from HOCOMOCO FOXA2_HUMAN.H11MO.0.A.

pipeline includes the following steps: (1) data preparation,
(2) building of a model, (3) model accuracy assessment,
(4) threshold selection and search of TFBS in ChIP-seq
peaks with the fixed thresholds and (5) classification of
ChIP-seq peaks according to results of TFBS recognition.
Each stage of the program pipeline is described below.
Preparing initial data for analysis. The preparation of
the data included the sorting of peaks according the value
—10-log;, (p-value) that characterized the peak quality.
This value was previously calculated for each peak by the
MACS program (Zhang Y. et al., 2008). The pipeline of
ReMap database (Cheéneby et al., 2020) used this program
to process raw ChIP-seq data. For each ChIP-seq dataset,
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Input data

Input parameters

Internal program files

Model 1
Model N

ChlIP-seq peaks
in bed format

Regerence genome
for sequence
extraction

List of promoters
in fasta format
formm10 and hg38

Genome version
mm10/hg38

Y

2. Choose best 4000 peaks

Prepare ChlIP-seq peaks
1. Sort peaks by quality (-10-log10 (p-value))

3. Extract of sequences from the reference genome

Analysis of the accuracy ¢
of trained models
(ROC curve calculation,

A

Build models on ChIP-seq peaks

optional) _I

Model 1

|_|

Model 2

|_| Model N |_

Choose a theshold for trained models
based on false discovery rate

A

!

Search for TFBS in ChiIP-seq peaks
by models with a given threshold

—| Profile 1 |—|

Profile 2

|—| Profile N |—

Analysis of results

« Classificate of ChIP-seq peaks based on the results
of TFBS recognition by different de novo models
« Compare of TomTom models with known PWMs (optional)

Fig. 1. The scheme of MultiDeNA workflow.

we took in analysis top-scoring 4000 peaks. Next, nucleo-
tide sequences of the peaks we extracted from the genome
using bedtools (Quinlan, Hall, 2010).

Training de novo models and assessing the TFBS recog-
nition accuracy. In order to recognize TFBS in peaks, it is
necessary to build de novo models. The PWM and diPWM
models we build with ChIPMunk and diChIPMunk, respec-
tively (Kulakovskiy et al., 2010, 2013).The construction
of alternative models we carry out with BaMM (Siebert,
So6ding, 2016) and InMoDe (Eggeling et al., 2017).

To improve the recognition accuracy of PWM model,
we selected it optimal length by the cross-validation pro-
cedure. We used the same length for the construction of
other models. This procedure included the following steps:
(1) to divide the ChIP-seq dataset randomly into the training
(90 % of the peaks) and the control (remaining 10 % of
the peaks) samples; (2) to build a model with the training
sample; (3) to get recognition scores of a model with the
control sample to calculate true positive rate (TPR); (4) to
generate the sample of random sequences by shuffling of
nucleotides in the control sample; (5) to get scores of a
model with the sample of random sequences to calculate
the false positives rate (FPR); (6) repetition of steps 1-5
several times; (7) to calculate the ROC-curve (receiver ope-

rating characteristic). We compared different models with
the pAUC value (partial area under curve), we calculated it
as the part of the area under ROC curve for all FPR values
less than 0.001 (McClish, 1989; Siebert, Soding, 2016).
The method described above for choosing the optimal
PWM length was developed earlier (Levitsky et al., 2007;
Kulakovskiy et al., 2013). The accuracy of all models we
assessed with the same approach.

Next, a model can be applied to a nucleotide sequence
with the same length as a model site. The result of applying
this model is the recognition score. The larger score points
to the higher probability of estimated nucleotide sequence
to be a functional TFBS.

Threshold selection for models according to false posi-
tive rate estimates. To compare the results of TFBS search
of different models correctly, it is necessary to set thresholds
for all models uniformly. We set these thresholds for all
models according the fixed FPR. To calculate this FPR,
we use the negative sample, which included 5'-regions of
protein-coding genes (2000 base pairs from transcription
start sites).

We calculate FPR as follows. The scores of a model
we determine for each site in the negative sample at each
position and DNA strand. Then, the FPR for each unique
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Number of sites
above the threshold = 14898

Total number of TFBS
in promoters =78412612

N
o
o
o
(=]

AHanus CTpyKTYpHOW reTeporeHHocTy cantos FOXA2 2021
Ha OCHOBe aflbTepHaTVBHbIX Mofeneli de novo nouncka 25.1
60000 -
N
(o)}
Il
© ke
£ 40000 °
5 3 Number of sites above the threshold _ 19.104
é = Total number of TFBS in promoters '
=)
p=4

10 15 20 25
Scores

-20
Scores

Fig. 2. The approach of threshold selection for a model through estimation of false positive rate with the whole-genome pro-

moter dataset.

score threshold we calculate as the ratio of the total count of
predicted TFBS, for which the score is the same or higher
than this threshold, to the total number of positions in the
sequence sample available for such TFBS. We choose for
recognition of TFBS in peaks thresholds for all models
respecting the FPR 1.9-104. An example of choosing a
threshold for PWM for the GSE92491 dataset is shown
in Fig. 2.

Classification of ChIP-seq peaks based on the results of
TFBS recognition by different models. After threshold se-
lection for all models, we search TFBS in ChIP-seq peaks.
Further, these peaks we classify into fractions depend-
ing on the presence/absence of sites of different models
(PWM, diPWM, BaMM, InMoDe). We use two types of
classification. One of them take into account the location
of TFBS of different models in a peak, and another did not
(see previously developed method, Levitsky et al., 2014,
2016). In particular, we carry out for each pair of models
the classification of peaks with taking into account positions
of TFBS of different models. Totally, there are six pairs
of models: PWM and diPWM, PWM and BaMM, PWM
and InMoDe, BaMM and diPWM, BaMM and InMoDe,
InMoDe and diPWM. If a peak includes TFBS of a single
model only, then this peak we classify as the peak of the
corresponding model. If there are only two different models
with hits in a peak, then two outcomes are possible (Fig. 3).

In the first case, if there is at least one pair of sites from
two models that has at least one common position, then such
peak we classify as the “intersection”. Otherwise, if a peak
contains sites of different models, but these sites are not
intersected, then a peak is classified as “no intersection”. If
sites are absent in a peak, then we classify it as “no sites”.
Such classification of ChIP-seq peaks for the two models
can be represented as the pie chart (Fig. 4).

The classification of peaks, without taking into account
positions of sites of different models we carry out as fol-
lows. We identify following groups of peaks: peaks with

a
Intersection of sites is present ..tacTCAGCATGTTTATTTAAAATAGAC...
Model 1
Intersection of sites is absent
..CaCAGCTATATTTACACTGTACCacc..ttg cce..
N

Model 1 Spacer

Fig. 3. The example of classification for two ChlIP-seq peaks containing
sites of two various models (Model 1, Model 2). Colors mark options of
intersected (a) or not intersected sites (b).

Peaks with sites
1 of Model 1 only

Peaks with sites
of Model 2 only

: Peaks without sites

Peaks with intersected
sites of Model 1
and Model 2

Peaks without
intersected sites
of Model 1 and Model 2

Fig. 4. Peak classification for two models (Model 1, Model 2) with taking
into account the intersection of TFBS.

sites of one model only, peaks containing sites of all models,
and also several groups of peaks respecting combination
of various models.

Comparison of found TFBS with known ones using
TomTom tool. To assess whether a predicted site mat-
ches to known FOXA2 sites, we use the TomTom motif
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comparison program (Gupta et al., 2007). This program
is designed to assess the similarity between nucleotide
frequency matrices. For each PWM model, we construct
a nucleotide frequency matrix based on the sites it find.
Next, using TomTom, we evaluate the similarity of this
matrix to the frequency matrix of the FOXA2 from the
HOCOMOCO database (ID HOCOMOCO FOXA2
HUMAN.H11MO.0.A, Kulakovskiy et al., 2018). If the
p-value of the matrix comparison is below 0.001, then a
ChIP-seq dataset we consider as enriched with FOXA2
BS (see the Table).

Statistical data analysis. Data analysis and visualiza-
tion we perform in the Python 3.8 programming language
in the Jupyter environment using the numpy, matplotlib,
seaborn, and statannot packages. The distributions of peak
fractions respecting to various models we compare with the
Mann—Whitney U-test, corrected for multiple comparisons
(Bonferroni approach).

Results

Filtering data based on TomTom’s motif comparison

To ensure that the trained models find sites correspond-
ing to known FOXA2 sites we apply the filter based on
the TomTom program. For this, we build the frequency
matrices respecting a trained model and we compare it
with the known matrix of FOXA?2 from the HOCOMOCO
database. This procedure left only 16 ChIP-seq datasets out
of total 22 (see the Table), therefore, these 16 sets we use
in further analysis.

Classification of ChIP-seq peaks without taking

into account the intersection of TFBS positions

found by different de novo models

The main result of MultiDeNA pipeline is the classification
of peaks. It allows establishing how the models are related
to each other in terms of their ability to identify TFBS in
peaks. We used two types of peak classification. The first
one takes into account an intersection of positions of pre-
dicted TFBS of different models, the second one did not
take it into account (see “Classification of ChIP-seq peaks
based on the results of TFBS recognition by different mo-
dels”). The example of results classification for GSE90454.
FOXA2.KerCT dataset is given in Fig. 5.

Let us consider in more detail the classification of ChIP-
seq peaks based on the results of the TFBS search with four
models without taking into account site positions. It can
be seen that all models jointly recognized 88.35 % of the
peaks (3534 out of 4000, the sum of all areas within the
Venn diagram, see Fig. 5, a, b). The overlap fraction of all
models amounts 34.25 % (1370 out of 4000 peaks). Two
non-PWM models BaMM and InMoDe make the signifi-
cant contributions to peak recognition. They totally add
34.55 % of all peaks (696+647+39 = 1382 out of 4000).
This fraction is almost the same as the overlap fraction of
all models (1370). The BaMM model makes the largest
independent contribution to recognition of sites, it adds

Analysis of the structural heterogeneity of FOXA2 sites
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17.4 % of the peaks (696), in contrast to other models that
add 0.525 % (21), 0.975 % (39) and 0.2 % (8) (PWM,
InMoDe and diPWM respectively).

To assess the structural diversity of the TFBS, we build
logos for peak fractions “only PWM?”, “only diPWM”,
“only BaMM?”, “only InMoDe” and “all models” (see
Fig. 5, ¢). All logos contain the GTAAACA consensus.
However, the “only PWM?”, “only diPWM” and “only
InMoDe” fractions have the higher occurrence of GT than
AT at the first two nucleotides of the consensus. It can
also be noted that the 5'-ends of all logos are diverse in
nucleotide content.

Classification of ChIP-seq peaks with taking

into account the intersection of TFBS positions

found by different models

The classification of peaks described above (without taking
into account the positions of the TFBS) does not take
into account positions of sites in peaks. To consider this
circumstance we classify peaks with taking into account
positions. We perform this for each pair of models (PWM—
diPWM, PWM-BaMM, PWM-InMoDe, diPWM-BaMM,
diPWM-InMoDe, InMoDe—-BaMM). The results of the
classification of peaks for GSE90454. FOXA2.KerCT are
shown as the pie charts in Fig. 6.

All pairs of model combinations have very small frac-
tion of “without intersection” peaks, ranging from 0.3 to
6.9 %. On the other hand, all cases were characterized by
the large fraction of peaks “with intersection” (BaMM-—
InMoDe 53.6 %, PWM—diPWM 44 .4 %, diPWM-BaMM
41.0 %, PWM—-BaMM 37.3 %, diPWM-InMoDe 35.4 %,
PWM-InMoDe 31.6 %). This fraction is larger for me-
thodologically close pairs of models BaMM-InMoDe and
PWM—diPWM (see Fig. 6). The fraction of the peaks with
TFBS found with only a single model is the highest for
BaMM model. In pairs of models PWM-BaMM, diPWM-
BaMM, and InMoDe-BaMM, BaMM contributes greatly
(39.2, 36.4 and 26.8 %, respectively).

Evaluation of the recognition TFBS accuracy

by different models for FOXA2

To compare the recognition accuracy of different models we
calculate pAUC values from ROC curves obtained with the
cross-validation procedure (see “Training de novo models
and assessing the TFBS recognition accuracy”) (Fig. 7, a).
According to the results obtained, the values of the pAUC
medians for the PWM, diPWM, BaMM and InMoDe mo-
dels are 8.0E—4, 8.1E—4, 7.3E—4, and 5.6E—4, respectively.
The differences between pAUC values were not significant
(p > 0.05) for paired comparisons of PWM, diPWM, and
BaMM, but the InMoDe model has significantly less values
than any other model (p < 0.05).

Comparison of fractions of peaks with TFBS found
by each model with that for all models. To investigate
contributions of different models to the efficiency of TFBS
search and to evaluate the overall result of several mo-
dels, we determine fractions of peaks containing at least
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Fig. 5. The classification of peaks of the GSE90454.FOXA2.KerCT ChIP-seq dataset according to prediction results of all four models.
(a) Table, (b) Venn diagram, (c) Logo for fraction of the peaks respecting to predictions of sole models and that for the overlapping fraction of all models.
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Fig. 6. Classification of the GSE90454.FOXA2.KerCT ChIP-seq dataset with taking into account intersection of TFBS positions
respecting to different models.
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one TFBS for each sole model and those for all models
together (see Fig. 7, b). The medians of recognized peaks
fractions are 47.3, 46.4, 65.8, and 54 % for sole PWM,
diPWM, BaMM and InMoDe, respectively. The median
of recognized peaks fraction of joined results of all four
models’ case is 73.6 %. Consequently, together, all models
add 26.3 % peaks containing TFBS to the fraction of sole
PWM model, which is consistent with the earlier obtained
result of using two fundamentally different PWM and
SiteGA models (Levitsky et al., 2014). At the same time, the
median values respecting fractions for the PWM, diPWM,
and InMoDe models significantly lower (p < 0.05) than
that obtained by combining all models. Thus, the approach
using the combination of different models allows better
identification of peaks with TFBS for FOXA2 than that
using only one model. However, for BaMM, the fraction of
recognized peaks did not statistically differ (p > 0.05) from
the result obtained by combining the four models. Hence,
the BaMM model makes the main contribution to the re-
cognition of FOXA?2 peaks and, among the other models
this model better describes the structure of FOXA?2 sites.
However, the rest three models add 7.8 % of the peaks to
the BaMM result, which proves the effectiveness of using
different models together.

Comparison of fractions of peaks containing TFBS
found by single models. As it is shown above, the com-
bination of different models increases the number of peaks
with TFBS. Hence, each model recognizes TFBS that others
do not. To assess the independent contributions of all mo-
dels to the search for TFBS, we determine the fractions of
peaks containing TFBS of only one model (see Fig. 7, ¢).
As one can see, each model (PWM, diPWM, BaMM,
InMoDe) is able to find TFBS that other models do not

find. The medians of peaks containing TFBS respecting a
single model are 1.08, 0.49, 4.15, and 1.73 %, respectively
for PWM, diPWM, BaMM, and InMoDe. At the same time,
the results for BaMM are significantly different (p < 0.05)
from those for both PWM and diPWM. It also confirms
the assumption that the BaMM model better recognizes
FOXAZ2 sites. However, each model contributes to site re-
cognition. Consequently, each model reveals certain struc-
tural variant of TFBS.

Cross-validation test for PWM models

with participation of their own training dataset

and other ChIP-seq datasets

To estimate the dependence of specificity of various models
for different ChIP-seq datasets as a function of a selection
of particular dataset as the training sample, we performed
the cross-validation test as follow. The accuracy of each
PWM model we assessed not only within the same ChIP-
seq training dataset, but also for the rest 15 datasets (control
datasets). For the case of training dataset, we performed
several iterations to divide the total training sample into
90 % of the peaks that we used to build a model, and
the remaining 10 % of the peaks we used to estimate the
performance. For each case we calculated the accuracy
estimate pAUC (see “Training de novo models and as-
sessing the TFBS recognition accuracy”), the results we
presented in the form of the heatmap (Fig. 8). The heatmap
shows that only in three cases ENCSROOOBRE.A-549,
ENCSRO00BNI.Hep-G2 and ERP008682.pancreas other
models have very low pAUC scores, and for five cases
GSE90454.A-549, ENCSRO66EBK.Hep-G2, GSE90454.
KerCT, ENCSRO80XEY.liver and ENCSR310NY Lliver,
all models have high pAUC values.
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Discussion

Based on all data obtained, we conclude that the joint use
of alternative models allows us to expand the number of
detected peaks containing TFBS relative to application of
sole PWM.

This result can be explained by the presence of different
structural types of TFBS of FOXAZ2. This is in agreement
with experimental data obtained for a number of other TFs,
including members of the FOX family. Thus, it was shown
that HOXB13 and FOXC?2 are able to bind with the same
affinity to completely different sequences CAATAAA/
TCGTAAA (Morgunova et al., 2018) and GTAAACA/
ACAAATA (Chenetal., 2019), respectively. It was recently
found that TF FOXN3 is able to bind to two fundamentally
different types of TFBS, which had different lengths (Ro-
gers etal., 2019). In addition, small changes in the structure
of'the TFBS depend on the cooperative interaction between
TFs (Morgunova, Taipale, 2017). Hence, we propose that
FOXAZ2 also can bind to different structural types of BS.

To take into account all the TFBS structural types, the
only PWM model for site recognition may not be enough,
this problem partially was solved using several PWMs (Bi
etal., 2011; Mitra et al., 2018) or using alternative models
(Mathelier, Wasserman, 2013; Yang et al., 2014; Siebert,
Soding, 2016; Eggeling et al., 2017; Gheorghe et al.,
2019). However, previously alternative models were usu-
ally compared with PWM only in terms of the recognition
accuracy (Siebert, Soding, 2016), or according the number
of recognized TFBSs (Samee et al., 2019). In the current
study, we took in analysis FOXA2 ChIP-seq data. We
compared not only the accuracy and the number of peaks
recognized, but also we estimated independent contribu-

2021
25.1

AHanus CTpyKTYpHOW reTeporeHHocTy cantos FOXA2
Ha OCHOBe anbTepHaTUBHbIX MOAesnel de Novo noucka

tions of each model and assessed the joint contribution for
all pairs of models, and also we tested positions of hits in
peaks for each pair of models. The results for the accuracy
assessment (see Fig. 7, a) showed that the InMoDe model
had the lowest accuracy relative to other models, and the
BaMM, diPWM and PWM models were comparable in
accuracy. In terms of expanding the total fraction of peaks
with TFBS, the BaMM model performed the best, since
this model found the largest fraction of peaks with TFBS
that other models do not find. Nevertheless, all alternative
diPWM, BaMM and InMoDe models allow expanding the
pool of recognized TFBS relative to sole PWM, but PWM
also makes an independent contribution to the total number
of peaks with recognized TFBS.

Conclusion

We have developed the pipeline MultiDeNA, which allows
uniform processing of ChIP-seq data using different TFBS
models. Currently, it can be used to build PWM, diPWM,
InMoDe, BaMM models. MultiDeNA includes the steps
of preparing data, building models, evaluating recognition
accuracy, scanning peaks, combining results, and analyz-
ing them. The developed pipeline of programs processed
datasets from the ReMap database, including 22 ChIP-seq
experiments for TF FOXA2. We have shown that com-
bined use of different models allows increasing the total
fraction of recognized peaks up to 73.6 % (relative to sole
PWM model, the fraction of recognized peaks increased
by 26.3 %). We have shown that different models tend to
recognize the same sites of FOXA?2 in the large fraction
of peaks, thereby revealing the most common structural
type of TFBS in these peaks. Also, each model found
TFBS that other models did not predict. The BaMM model
performed the best with 4.15 % of peaks containing only
its sites, versus 1.08, 0.49, 1.73 % for PWM, diPWM and
InMoDe, respectively. We proposed that the heterogeneity
of sites for FOXA2 is revealed only if two or more models
are applied. The diPWM model showed worst result in
sole application in comparison with other models (diPWM
recognized TFBS in 46.4 % of the peaks). The best model
for the FOXAZ2 sites was BaMM; it found TFBS in 65.8 %
of the peaks. Hence, we assumed that the BaMM model
could better describe BS for FOXAZ2.
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