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Abstract. Whole genome and whole exome sequencing technologies play a very important role in the studies of the ge-
netic aspects of the pathogenesis of various diseases. The ample use of genome-wide and exome-wide association study
methodology (GWAS and EWAS) made it possible to identify a large number of genetic variants associated with diseases.
This information is accumulated in the databases like GWAS central, GWAS catalog, OMIM, ClinVar, etc. Most of the va-
riants identified by the GWAS technique are located in the noncoding regions of the human genome. According to the
ENCODE project, the fraction of regions in the human genome potentially involved in transcriptional control is many times
greater than the fraction of coding regions. Thus, genetic variation in noncoding regions of the genome can increase the
susceptibility to diseases by disrupting various regulatory elements (promoters, enhancers, silencers, insulator regions,
etc.). However, identification of the mechanisms of influence of pathogenic genetic variants on the diseases risk is difficult
due to a wide variety of regulatory elements. The present review focuses on the molecular genetic mechanisms by which
pathogenic genetic variants affect gene expression. At the same time, attention is concentrated on the transcriptional level
of regulation as an initial step in the expression of any gene. A triggering event mediating the effect of a pathogenic genetic
variant on the level of gene expression can be, for example, a change in the functional activity of transcription factor bind-
ing sites (TFBSs) or DNA methylation change, which, in turn, affects the functional activity of promoters or enhancers. Dis-
secting the regulatory roles of polymorphic loci have been impossible without close integration of modern experimental
approaches with computer analysis of a growing wealth of genetic and biological data obtained using omics technologies.
The review provides a brief description of a number of the most well-known public genomic information resources contain-
ing data obtained using omics technologies, including (1) resources that accumulate data on the chromatin states and the
regions of transcription factor binding derived from ChIP-seq experiments; (2) resources containing data on genomic loci,
for which allele-specific transcription factor binding was revealed based on ChIP-seq technology; (3) resources containing
in silico predicted data on the potential impact of genetic variants on the transcription factor binding sites.
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AHHoTauuA. NONHOreHOMHbIe U NOIHO3K30MHbIe TEXHOMOMMN CEKBEHUPOBAHUA UrPaloT BaXKHYIO POJb B UCCIeLoBaHU-
AX FEHETUYECKMX acreKkToB MaToreHe3a pasfinyHbiX 3aboneBaHuii. LLinpokoe nprmeHeHre METOLOB MONHOFEHOMHOTO 1
NOMHO3K30MHOIO aHanM13a accouynaumii No3BonAeT MAeHTUOULMPOBaTb MHOXECTBO BapUAHTOB FEHOMHOW U3MEHUMBOCTY
('), accounnpoBaHHbIX € 3aboneBaHMAMN. DTa MHPOPMaLMA HakanneaeTcs B 6a3ax gaHHbix GWAS central, GWAS catalog,
OMIM, ClinVar 1 gp. BonbLUMHCTBO BapUAHTOB, UAEHTUOULMPOBAHHbIX METOANKOV NOTHOF@HOMHOMO aHaNn3a accoumaLmin,
pacnonaraeTcsi B HEKOAMPYIOLWMX 06MacTAX reHoma yenoseka. Mo gaHHbiM npoekta ENCODE, fonsa yyacTKOB B reHoMe
yenoseka, NOTEHUMaNbHO 3a4eNCTBOBaHHbIX B PEryNALMM TPAHCKPUMLMKU, BO MHOTO Pa3 NPeBbILIAET SO0 KOAMPYOLNX
obnacteit. Takum 06pa3om, reHOMHasA N3MEHUYMBOCTb B HEKOAMPYIOLLMX 06NacTAX reHoMa MOXET MOBbILATb Npefpacmno-
NOXEHHOCTb K 3aboneBaHuAM, Hapyllas GYHKLUMOHNPOBaHME Pas3fIUHbIX PEryIATOPHbIX S1eMEHTOB (MPOMOTOPOB, 3H-
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[eHOMHasA M3MEHUMBOCTb B PErYIATOPHbIX PaioHaX reHoB
uenoBeKa: BIUsHWE Ha TPAHCKPUMLMIO 1 6a3bl AaHHbIX

XaHCepoB, yyacTKoB, onpeaensiowyx 3D cTpyKTypy XxpoMaTuHa 1 T. A.). OfHaKo nAeHTUGUKALUA MEXaHN3MOB BIVAHNSA
naToreHHbIx BapvaHToB I Ha pycK pa3BnTuA 3aboneBaHuWin 3aTpyaHeHa BBUAY 6OMbLIOrO pa3HOO6Pa3nsA perynaTopHbIX
aneMeHTOB. B 0630pe paccmMoTpeHbl MONEKYNIAPHO-TeHETNYECK/IE MEXaHU3Mbl BAIMSIHVA NaTOreHHbIX BapuaHToB MM Ha sKc-
npeccuio reHoB. [py 3TOM BHYMaHWe COCPefoTOUEHO HA TPAHCKPUMLMOHHOM YPOBHE Peryiaumm Kak KiodyeBol cTagum,
3anycKaloLLei NocsieoBaTeNIbHOCTb 3TanNoB SKCNpeccum Noboro reHa. MNyckoBbIM COObITMEM, ONMOCPEAYIOLUM BIAIHWE Na-
TOreHHOro BapuviaHTa [/l Ha ypoBEeHb SKCMPECCU reHa, MOXeT bbITb, Hanprmep, 3MeHeHne GpYHKLMOHANbHOWM aKTUBHOCTU
CaiTOB CBA3bIBAHNA TPAHCKPUMLMOHHbIX GpaKTOPOB 1M YpoBHsA MeTunupoBaHus [HK, uto, B cBolo ouepefp, oTpaxaeTcs
Ha QYHKLMOHANbHOW aKTUBHOCTY MPOMOTOPOB UM SHXaHCEPOB. BbisiBneHne perynatopHbix 3G GpeKkToB nonmmopdHbIx J10-
KyCOB HEBO3MOXKHO 6€3 TECHOI MHTErpaLnmn COBPEMEHHbIX SKCMepYIMeHTaIbHbIX MOAXOA0B C KOMMbIOTEPHBIM aHANN30M
60/bLUNX MACCUBOB FrEHETUYECKUX AaHHbIX, MOMyYaeMblX Ha OCHOBE OMUKCHbIX TEXHONOMMA. B 0630pe KpaTko onucaHbl
Havboree N3BeCTHble OTKPbITbIE MOMHOreHOMHbIE MHGOPMALIMOHHBIE PECYPCbI, COfepKaLlMe JaHHbIe, NMoJTyYeHHble Ha OC-
HOBE OMUKCHbIX TEXHOJIOMMIA, B TOM YMC/IEe: PeCcypCbl, HaKamnnmBaiLye CBeAeHNs O COCTOAHMMN XPOMATMHA U yYacTKax ero
CBA3bIBAHVA C TPAHCKPUMLUOHHBIMK (aKTopamu, BbIsIBNIEHHbIMM C MomMoLybto TexHonornn ChiP-seq; pecypcbl no reHom-
HbIM JIOKYCaM, A1l KOTOPbIX Ha ocHoBe AaHHbiX ChIP-seq BbiABNEHO annenb-cneundpryHoe CBA3bIBaHNE C TPAHCKPUMLNOH-
HbIMU paKTOpamK; a TakxKe pecypcbl, cofepraLlme npeAckasaHHble in silico faHHble 0 NoTeHLManbHOM BAVISIHAW FeHOMHOM
MN3MEHUYMBOCTMN Ha CaliTbl CBA3bIBAHWA TPAHCKPUMUMOHHbIX GaKTOPOB.

KnioueBble cfioBa: perynayms TpaHCKPUNLUY; FreHOMHas N3MEHUYMBOCTb; NaTOreHHble FreHOMHbIE BapWaHTbl; PalioHbl, pery-
nUpytoLre TPaHCKPUMNLMIO; CaiiTbl CBA3bIBAHWSA TPAHCKPUMLMOHHBIX $aKTOPOB; FeHOMHbIE 6a3bl JaHHbIX.

Introduction

At present, largely due to the widespread use of the technology
of genome-wide and exome-wide association study (GWAS
and EWAS), a large number of polymorphisms associated
with diseases have been identified. For example, GWAS
central (https://www.gwascentral.org/) contains information
on more than 70 million associations between ~3.2 million
SNPs and 1451 diseases or phenotypic characteristics (Beck
et al., 2020). Experimental datasets of comparable volume
have been accumulated in a number of other databases on
genotype-phenotype associations (GWAS catalog, OMIM,
ClinVar, HGMD, PheGenl, EGA, GAD, dbGaP).

Currently, a large amount of experimental data has been
obtained about the disease-associated genetic variants (GVs),
but the molecular mechanisms underlying these associations
are extremely poorly understood. This is due to the fact that
only arelatively small proportion of pathogenic GVs is located
in the coding regions of the human genome, changes in the
nucleotide sequence of which disrupt the structure and func-
tion of proteins. A huge mass of polymorphic loci associated
with diseases is located in non-coding regions of the genome
(introns, 5’- and 3'-flanking regions of genes, intergenic re-
gions). For example, according to GWAS data, ~90 % of the
total number of variants associated with diseases are located
in noncoding regions of the human genome (Maurano et al.,
2012; Farh et al., 2015).

It is known that non-coding regions of the genome contain
regions that perform a wide range of regulatory functions:
promoter regions, enhancers, negative regulatory elements,
nuclear matrix attachment regions, regions that determine
the structure of topologically associating domains (TADs),
and other features of 3D organization of genome (Mathelier
etal., 2015; Meddens et al., 2019; Ibrahim, Mundlos, 2020).
The proportion of regions in the human genome potentially
involved in the transcriptional regulation is extremely high.
According to the ENCODE project, the chromatin regions
corresponding to the peaks of transcription factor (TF) binding
identified by the ChIP-seq occupy ~8.1 % of the total genomic
DNA (ENCODE Project Consortium, 2012), which is sig-
nificantly higher than the proportion of coding regions of the
human genome (~1.2 %). Considering that not all known TFs

and not all cell lines were studied in the ENCODE project,
an obviously larger fraction of genomic DNA is involved in
the interaction with TFs. The total length of human genome
regions with enhancer-associated chromatin features also
significantly exceeds the total size of the coding regions: for
example, in only one cell type studied (HI-ES), enhancer
regions occupy ~3.2 % (Roadmap Epigenomics Consortium
etal., 2015).

Studies aimed at identifying the mechanisms of the influ-
ence of pathogenic GVs on the predisposition to diseases are
carried out very actively, which is reflected in a number of
review publications (Mathelier et al., 2015; Merkulov et al.,
2018; Smith etal., 2018; Wang et al., 2019; Vohra et al., 2020).
The most discussed effect of pathogenic GVs is a change in
the binding activity of TFBSs (Lewinsky et al., 2005; Chen L.
et al., 2013; Claussnitzer et al., 2015; Mathelier et al., 2015;
Gorbacheva et al., 2018). It has also been shown that polymor-
phic loci can be associated with alteration of DNA methylation
patterns (Howard et al., 2014; Kumar D. et al., 2017; Rahbar
etal.,2018; Schmitz et al., 2019) and modifications of histone
proteins (Kilpinen et al., 2013; Visser et al., 2015; Zhang et al.,
2018; Cong et al., 2019), with structural change in chromatin
loops (Visser et al., 2015; Zhang et al., 2018) and, as one of
the manifestations of this process, with changes in the TADs
structure (Cong et al., 2019; Mei et al., 2019). Examples of
such effects will be discussed below (Table 1).

The effects of genetic variants on the functional
activity of transcription factor binding sites

The key role in the transcriptional regulation is played by
transcription factors — proteins that can specifically bind to
DNA of'the regulatory regions of genes and to initiate the tran-
scription complexes formation. The human genome contains
more than 1500 genes encoding TFs (Wingender et al., 2013).
TF binding sites, as a rule, have a length of 10-25 nucleotides
(Levitsky et al., 2014; Kulakovskiy et al., 2018).

Nucleotide substitutions, as well as short insertions/dele-
tions at polymorphic loci, can disrupt TFBSs or create them
de novo (see Table 1), and this, in turn, can have both negative
and positive effects on the level of gene transcription (Chen L.
etal., 2013; Gorbacheva et al., 2018). Such GVs (and the cor-

BMONHOOPMATUKA U CUCTEMHAA KOMIMbIOTEPHAA BUOJIOTUA / BIOINFORMATICS AND COMPUTATIONAL SYSTEMS BIOLOGY 19



E.V.Ignatieva
E.A. Matrosova

Genetic variants in the regulatory regions of genes:

effects on transcription and genomic resources

Table 1. Examples of polymorphic loci associated with pathologies and mechanisms of their action on the gene expression level

Mechanism

Reference

rs928413(G) allele creates a binding site for the
transcription factor CREB1 leading to increased
expression level of /L33

Gorbacheva et al.,
2018

rs1421085(C) variant disrupts a conserved motif for
the ARID5B repressor, which leads to derepression
of a potent preadipocyte enhancer and a doubling
of IRX3 and IRX5 expression

Claussnitzer et al.,
2015

The allele G of rs2001389 weakens the CTCF bind-
ing activity of DNA, eliminating TAD boundary and
altering 3D chromatin structure, and it is related to
the lower expression of a putative antioncogene
MFSD13A

Individuals that have rs174537(T) allele exhibited

a higher level of DNA methylation at CpG sites
located within regulatory region of FADS cluster,
which led to a decrease in transcriptional activity of
FADST and FADS2

Howard et al.,
2014

The rs612529(T) allele facilitates binding of the tran-
scription factor PU.1, that acts as docking site for
DNA demethylases. In carriers of pathogenic vari-
ant C, the interaction of PU.1 with DNA is disrupted,
as a result, the methylation level of the VSTM1 pro-
moter is elevated, and this is accompanied by a
downregulation of VSTMT expression

Kumar D. et al.,
2017

CGG repeat expansion disrupts the structure of
TAD, that includes FMR1. In individuals with muta-
tion-length CGG triplet repeats, the 5-boundary
region of TAD is ablated (this region is hypermethy-
lated and its CTCF occupancy is lost). As a result,
one subTAD dissolves. FMR1, which is normally
associated with the downstream TAD, shifts to

the upstream TAD. In this case, FMRT promoter is
hypermethylated, and FMR1 expression is down-
regulated

Sunetal., 2018

rs7873784(C) allele creates a binding site for trans-
cription factor PU.1, a known regulator of TLR4
expression. Functional PU.1 binding site augments
the enhancer activity of TLR4 3'-UTR that leads to
increased TLR4 expression

Korneev et al.,
2020

Disease Polymorphic locus  Localization
or pathology
Atopic asthma rs928413 IL33 promoter region
A—-G
Obesity rs1421085 Intron of the FTO gene
T—C which contains the
regulatory region of
the IRX3 and IRX5 genes
(the distance between
rs1421085 and TSSs of IRX3
and IRX5 is ~517,000 and
~1,164,000 bases)
Pancreatic rs2001389 The boundary of TAD
cancer A—G located on chromosome 10
Disturbances  rs174537 An enhancer region
of lipid G—oT of the FADS cluster
metabolism
Atopic rs612529 VSTM1 promoter region
dermatitis T—C
Fragile X CGG repeat expan-  The 5"-untranslated region
syndrome sion. Healthy of FMR1 gene
individuals harbor
between 5 and
55 copies of the
CGG repeats,
affected patients
harbor more than
100 copies
Rheumatoid  rs7873784 The 3"-untranslated region
arthritis and G—C of TLR4 gene
type-2
diabetes
mellitus
Breast cancer  rs4321755 Enhancer region of MRPS30
C—-T and RP11-53019.1 genes

The risk allele rs4321755(T) creates a GATA3 binding
motif within an enhancer, resulting in stronger
binding of GATA3 and chromatin accessibility,
thereby activating interaction between the enhan-
cer and MRPS30/RP11-53019.1 divergent promoter
and increasing the expression of MRPS30 and
RP11-53019.1 genes

Zhang et al., 2018

responding polymorphic loci) that affect the transcriptional
activity of genes are usually called regulatory variants (Ku-
mar S. etal., 2017; Guo, Wang, 2018; Merkulov et al., 2018).

Pathological (that is, associated with a disease) can be both
an allelic variant of the DNA sequence containing a disrupted
TFBS (Lewinsky et al., 2005; Chen L. et al., 2013; Clauss-
nitzer et al., 2015; Kumar D. et al., 2017; Mei et al., 2019)
and an allelic variant, leading to creation of TFBS de novo

20

(Gorbacheva et al., 2018; Zhang et al., 2018; Korneev et al.,

2020) (see Table 1).

Pathological GVs, affecting the binding activity of TFBSs,

can be located not only in promoter regions, but also in regula-
tory regions located at considerable distance from transcrip-
tion start sites (TSSs) of genes: enhancers (Lewinsky et al.,
2005; Zhang et al., 2018; Meddens et al., 2019), regulatory
regions with repressive function (Claussnitzer et al., 2015),
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and TAD boundary regions (Mei et al., 2019) (see Table 1).
For example, the rs1421085 T—C substitution associated
with obesity impairs the functioning of the negative regula-
tory region controlling expression of the /RX3 and /RX5 genes
(Claussnitzer et al., 2015). The rs1421085 locus is located in
the intron of the F70 gene (Fig. 1) at a considerable distance
from the transcription start sites of /RX3 and /RX5 (~520,000
and ~1,164,000 bases). Normally, the DNA region containing
allele T interacts with a repressor factor ARID5B, leading
to a decrease in transcriptional activity of /RX3 and /RX5
genes. In carriers of the mutant variant of the DNA sequence
(allele C), the binding site of the ARIDS5B repressor factor is
disrupted, which causes an excessively high expression of the
IRX3 and IRX5 genes and activates adipogenesis (Claussnitzer
etal., 2015).

Occasionally a nucleotide substitution at a polymorphic
locus disrupts the TFBS and this, in turn, affects the functional
activity of the TAD (see Table 1). This effect was found in
the case of A—G (1s2001389), associated with the risk of
pancreatic cancer (Fig. 2). The rs2001389 locus is located in
the region that determines the structure of chromatin loops
within the TAD. This TAD contains 91 genes and is formed
by spatially adjacent chromatin regions (Mei etal., 2019). The
DNA region containing the risk allele G is characterized by a
reduced ability to interact with CTCF, which in this case acts
as a structural protein of chromatin. Normally, CTCF binding
ensures the functioning of one of the regions that determines
the structure of chromatin loops within the considered TAD.
The pathogenic allele G alters the activity of CTCF binding
motif within TAD boundary disrupting the stability of corre-
sponding 3D structure of chromatin. As a result, the expres-
sion of the genes within this TAD is impaired. In this case,
the greatest decrease in MFSD13A expression is observed.

The effects of genetic variability on DNA
methylation and gene transcriptional activity

DNA methylation doesn’t change the nucleotide sequence
and is the addition of a methyl group to the fifth carbon atom
of cytosine (Angeloni, Bogdanovic, 2019). An increase in
the level of DNA methylation, as a rule, leads to a long-term
inactivation of the expression of genes lying in the methylated
region, since, according to the generally accepted concept,
methylation of a DNA region facilitates recruiting protein
complexes, containing histone deacetylase (HDAC) (Jones
et al., 1998; Nan et al., 1998). DNA methylation can also
decrease the ability of some TFs to interact with DNA: it is
known that CTCF factors and factors from the ETS family
have such sensitivity to methylation (Wang et al., 2019). In
contrast, another transcription factor, ZFP57, binds only to
methylated DNA (Quenneville et al., 2011). Thus, cytosine
methylation can activate different mechanisms of gene tran-
scription regulation, and not always an increase in the methy-
lation level of the regulatory DNA region is associated with
a decrease in the expression of the corresponding gene (Izzi
et al., 2016; Wang et al., 2019).

Genetic variability affects significantly the methylation of
DNA regions that have regulatory potential. Thus, a genome-
wide analysis of the methylation patterns of DNA collected
from 24 subjects from Norfolk Island genetic isolate (Benton
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Fig. 1. Disruption of the binding site caused by T—C substitution
(rs1421085) weakens ARID5B repressor binding to the regulatory region
of the IRX3 and IRX5 genes. As a result, the level of expression of IRX3 and
IRX5 is increased.
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Protective
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Allele G:
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Fig. 2. Disruption of the CTCF binding site caused by the nucleotide sub-
stitution (rs2001389) eliminates one of the boundary regions that deter-

mine the TAD structure. As a result, the tumor suppressor gene MFSD13A
expression is downregulated.

Pathogenic variant
(pancreatic cancer)

The contacts between chromatin regions within the TAD are shown with
brown lines. Interrogation points in the bottom figure indicate the lack of data
on the new structure of TAD.
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Fig. 3. Disruption of the PU.1 binding site caused by the T—C (rs612529)
nucleotide substitution reduces the activity of demethylases (for exam-
ple, Tet2) that maintain the VSTMT promoter region in an active state, and
therefore VSTMT expression is downregulated.

Pathogenic variant
(Atopic dermatitis)

etal.,2019), identified 12,761 regions containing at least two
CpG dinucleotides and having an allele-specific methylation
level. In most cases (98 %), regions with allele-specific me-
thylation level are co-localized with single nucleotide variants
presented in dbSNP (Benton et al., 2019).

This study (Benton et al., 2019) also analyzed the location
of allele-specific methylation regions relative to the set of
polymorphic loci associated with human diseases extracted
from the GWAS catalog database. It turned out that polymor-
phic loci associated with diseases overlap with regions of
allele-specific methylation twice more often than it would be
expected by chance. This means that the change in methyla-
tion levels due to genetic variability is one of the factors that
increase the risk of disease.

As an example, consider the rs174537 (G—T) polymor-
phic locus located in the enhancer of the FADS! and FADS?2
genes encoding fatty acid desaturases 1 and 2. The T variant
of the rs174537 locus is associated with an increased risk of
pathological disturbances of lipid metabolism (see Table 1).
It was shown that individuals that have rs174537(T) allele
had a higher methylation level of the regulatory region of the
FADSI and FADS? genes in human liver (Howard et al., 2014),
which led to the suppression of the transcriptional activity of
FADSI and FADS?.

Occasionally, in one of the allelic variants, DNA demethy-
lation occurs, initiated by TF binding to DNA (see Table 1).
For example, such a mechanism was revealed for rs612529
T—C. This locus is located in the promoter region of the
VSTM1 (Fig. 3). The low expression of ¥'STM1 in monocytes
provokes the development of atopic dermatitis. In this cell
type, the promoter region containing the protective variant T
interacts with the transcription factor PU.1 more actively

Genetic variants in the regulatory regions of genes:
effects on transcription and genomic resources

than the other one containing variant C. PU.1 initiates DNA
demethylation by recruiting DNA demethylases (for example,
Tet2). As a result, carriers of the T allele have completely
demethylated VSTM1I promoter, and VSTMI expression is
activated. In carriers of pathogenic variant C, the interaction
of PU.1 with DNA is disrupted, as a result, methylation level
of the VSTM 1 promoter is elevated, and this is accompanied
by a decrease in VSTM1 expression (Kumar D. et al., 2017).

The effects of the genetic variability

on the chromatin states and chromatin

spatial organization

Pathogenic GVs may impaire the chromatin state (Kilpinen
et al., 2013). There are cases when the presence of a patho-
genic GV was accompanied by a change in the patterns of
histone modification and the appearance (or disappearance)
of DNase I hypersensitive sites (McVicker et al., 2013; Visser
et al., 2015; Zhang et al., 2018; Cong et al., 2019). In these
cases, allele-specific contacts between promoters and enhan-
cers were identified, the number of which correlated with the
activity of the enhancer regions.

There are also known cases when structural variations of
the genome (insertions, deletions, duplications, inversions,
translocations longer than 50 nucleotides) lead to a change
in the spatial organization of chromatin, thereby disrupt-
ing the expression of genes associated with pathological
processes (Sun et al., 2018; Ibrahim, Mundlos, 2020). For
example, the expansion of CGG trinucleotide repeats in the
5'-untranslated region (5'-UTR) of the FMR gene, associated
with the fragile X syndrome, disrupts the structure of TAD,
that includes FMRI (Fig. 4, see Table 1). Normally, FMR1 is
very close to the 5'-boundary region of TAD (in Fig. 4, this is
TADI). The DNA region corresponding to this 5'-boundary
is hypomethylated and is occupied by CTCF. In individuals
with mutation-length CGG triplet repeats (more than 100),
this boundary is ablated (this region is hypermethylated and
its CTCF occupancy is lost). As a result, TAD1 dissolves and
the boundary of the other TAD (in Fig. 4 it is designated as
TAD?2) shifts to the 3'-region of FMRI. Therefore, FMR1 is
within the TAD2, which normally does not contain this gene.
In this case, FMRI promoter is hypermethylated, and FMR1
expression is inactivated (Park et al., 2015; Sun et al., 2018).

To study molecular-genetic mechanisms of the effect of ge-
nome variability on the 3D chromatin structure, it is necessary
to reconstruct the spatial genome organization. The following
basic levels of the 3D genome organization have been identi-
fied: (1) regulatory DNA loops that bring together promoters
and enhancers; (2) topologically associating domains (TADs),
within which DNA regions have more contacts with each
other than with neighboring domains; (3) A and B compart-
ments corresponding to transcriptionally active and condensed
chromatin; and finally (4) chromosome territories (Fishman
et al., 2018; Hansen et al., 2018). Disruption of 3D contacts
between promoters and enhancers within the TAD, caused, for
example, by chromosomal rearrangements, can significantly
affect the transcriptional activity of a gene, increasing risk of
diseases (Lupiafiez et al., 2015).

The Institute of Cytology and Genetics SB RAS has de-
veloped an experimental computer approach for prediction
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Fig. 4. With an increase in the number of CGG triplet repeats in the 5-un-
translated region of the FMR1 gene, the DNA region corresponding to
the TAD1 boundary region is hypermethylated. This leads to impaired
binding of CTCF factors and disrupts a barrier function of the boundary
region.

The brown lines show the contacts between chromatin loops within TADs.

physical contacts between promoters and enhancers within
the 3D chromatin structure (Fishman et al., 2018; Belokopy-
tova et al., 2020; Belokopytova, Fishman, 2021). The ap-
proach is based on the following information: (1) cell type;
(2) cell-specific localization of enhancers in the linear genome
(from the ENCODE database); (3) transcriptional activity of
promoters (from RNA-seq experiments); (4) boundaries of
chromatin loop extrusion (based on ChIP-seq mapping of
CTCF occupancy in a definite cell type); (5) orientation of
CTCEF binding motifs (based on motif prediction pipeline);
(6) A or B chromatin compartment (according to Hi-C experi-
ments). Analysis of these data using the original 3DPredictor
program (Belokopytova et al., 2020), developed on the basis
of machine learning algorithms, allows to predict the frequen-
cies of physical contacts between promoters and enhancers in
the 3D genome structure with an accuracy that exceeds the
accuracy of other known prediction methods.

The 3DPredictor was used to analyze the 3D genome struc-
ture in homozygous DelB/DelB mice that have a deletion of
the 1.5 Mb genomic region containing Epha4. This deletion
is accompanied by the appearance of additional contacts be-
tween Pax3 gene and Epha4 enhancer region, altering Pax3
expression and leading to brachydactyly. Mice with the De/B/
DelB genotype are a genetic model of human pathology ac-
companied by limb malformations (Lupiaiiez et al., 2015).
Testing 3DPredictor on this model has demonstrated the high
efficiency of the program: in homozygous DelB/DelB mice,
ectopic contacts between the Pax3 gene and Epha4 enhan-
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cers cluster were predicted (Belokopytova et al., 2020), and
these predictions were in good agreement with the experi-
mental data.

Genetic variability: combined analysis

of heterogeneous big biological and genetic data
As noted above, many polymorphic loci associated with dis-
eases are located at a considerable distance from the coding
regions of genes (ENCODE Project Consortium, 2012; Mau-
rano et al., 2012). Additional studies are needed to identify the
molecular-genetic mechanisms of the influence of such GVs
on the predisposition to diseases. The purpose of such studies
is to clarify the regulatory role of GVs. A typical example is
the work (Zhang et al., 2018), which made it possible to find
a functionally active regulatory variant rs4321755 associated
with the risk of breast cancer. The rs4321755 locus is located
in a distant enhancer that regulates the expression of the
MRPS30and RP11-53019.1 genes (see Table 1). It turned out
that in the presence of the pathogenic variant rs4321755(T),
anew GATA3 binding site is created. The transcription factor
GATA3 increases the functional activity of the enhancer, this
leads to the formation of more contacts between the enhancer
and the divergent promoter of the MRPS30 and RP11-53019.1
genes, and increased expression level of these genes. To iden-
tify this functionally significant regulatory variant, the authors
developed an integrated experimental computer method based
on a combined analysis of heterogeneous big biological and
genetic data, including: (1) data on allele-specific expres-
sion obtained from RNA-seq in combination with data on
haplotypes; (2) expression quantitative trait loci (eQTL);
(3) genomic distribution of DNAse I hypersensitive sites;
(4) localization of ChIP-seq peaks from ENCODE and GEO
databases; (5) localization of regulatory motives predicted by
computer programs. Similar scenarios for integrated experi-
mental computer research have been implemented in the other
studies (Chen C.-Y. et al., 2014; Claussnitzer et al., 2015; Zhao
etal., 2019; Li et al., 2020).

This kind of research became possible due to (1) the deve-
lopment of modern high-throughput experimental approaches
that allow producing data of different types on a genome-wide
scale (parallel high-throughput sequencing, ChIP-seq, 3C,
Hi-C, ChIA-PET techniques, DNAse I footprinting, bisulfite
sequencing, etc.); (2) development of public information
resources accumulating such experimental data. Table 2 pro-
vides a brief description of information resources containing
genomic data obtained on the basis of omics technologies and
used to study the mechanisms by which GVs alter the level of
transcription. These resources present (1) the human genome
annotation (GENCODE); (2) genome variability in human po-
pulations (HapMap, 1000 Genomes Project, IGSR, dbSNP);
(3) GVs associated with diseases (GWAS central, GWAS
catalog, ClinVar, HGMD, OMIM, etc.); (4) modifications
of the chromatin (ENCODE, NIH Roadmap Epigenomics
Mapping Consortium); (5) expression quantitative trait loci
(GTEx project, eQTL databases, exSNP, etc.); (6) profiling
of transcription factor binding events by ChIP-seq (Cistrome
Data Browser, GTRD, ReMap); (7) allele-specific binding
of TFs, identified using ChIP-seq data in combination with
the data on the genotypes of the studied cells (AlleleDB,
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Table 2. Information resources on genomic data obtained on the basis of the modern high-performance experimental methods

Information resource

Description

Reference quality human gene annotations created by merging the
results of manual and computational gene annotation methods

https://www.genome.gov/10001688/
international-hapmap-project
ftp://ftp.ncbi.nlm.nih.gov/hapmap/

A map of haplotype blocks of the human genome and the specific
SNPs that identify the haplotypes (tag SNPs)

1000 Genomes Project
(1KGP)

https://www.ncbi.nlm.nih.gov/
variation/tools/1000genomes/

Genetic variants (single nucleotide polymorphisms, insertions/dele-
tions, structural variants) and genotypes identified in individuals
from 26 populations

International Genome
Sample Resource (IGSR)

Combining 1000 Genomes Project data with the other large
datasets generated on 1000 Genomes samples by projects such as
GEUVADIS, who generated RNA-Seq data on the 1000 Genomes
European samples and the YRI population, and ENCODE, who have
carried out extensive assays on the NA12878 cell line

https://www.ncbi.nlm.nih.gov/snp/

Human single nucleotide variations, microsatellites, and small-
scale insertions and deletions along with population frequency,
publication, molecular consequence, and genomic and RefSeq
mapping information for both common variations and clinical
mutations. The human data in dbSNP include submissions from the
SNP Consortium, variations mined from genome sequence as part
of the human genome project, and individual lab contributions of
variations in specific genes, mRNAs, ESTs, or genomic regions

GWAS central (Genome-wide
association studies central)

Allele and genotype frequency data, genetic association significance
findings. GWAS central gathers datasets from public domain projects,
and also encourage direct data submission from the community

GWAS catalog (Genome-wide
association studies catalog)

Data on associations between polymorphic loci and phenotypic
traits extracted from the published GWA studies

OMIM (Online Mendelian
Inheritance in Man)

A compendium of human genes and genetic disorders and traits,
with particular focus on the molecular relationship between genetic
variation and phenotypic expression. OMIM is based on the peer-
reviewed biomedical literature

A public archive of reports of the relationships among human varia-
tions and phenotypes

HGMD (The Human Gene
Mutation Database)

http://www.hgmd.cf.ac.uk/ac/
index.php

PheGenl (The Phenotype-
Genotype Integrator)

https://www.ncbi.nlm.nih.gov/gap/
phegeni

Phenotype-oriented resource that merges GWAS catalog data with
several other databases (Gene, dbGaP, OMIM, eQTL and dbSNP)

EGA (The European
Genome-phenome Archive)

Data on the relationship between genotypes and phenotypes
obtained by various experimental methods (GWAS, exome
sequencing, whole-genome sequencing, single-cell sequencing,
genotyping)

dbGaP (The database of
Genotypes and Phenotypes)

Data and results from studies that have investigated the interaction
of genotype and phenotype in humans. Such studies include
genome-wide association studies, medical sequencing, molecular
diagnostic assays, as well as association between genotype and
non-clinical traits

ENCODE (The Encyclopedia
of DNA Elements)

http://genome.ucsc.edu/ENCODE/
https://www.encodeproject.org/

Genome-wide profiles of histone modifications, genome-wide DNA
methylation profiles, regions of TF binding derived from ChIP-seq
experiments, interactions between genomic loci, genomic distribu-
tion of DNAse | hypersensitive sites, expression data for more than
300 cell types

NIH Roadmap Epigenomics
Mapping Consortium

http://www.roadmapepigenomics.
org/

Human epigenomic data (DNA methylation profiles, histone modi-
fications, chromatin accessibility, etc.). Annotation of the human
genome in accordance with the classifications of chromatin states
(15, 18, 25-state models)
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End of Table 2

Information resource URL Description

Genotype-Tissue Expression https://www.gtexportal.org/home/ Expression and eQTL data in 54 human cell types with a healthy
(GTEX) project phenotype

eQTL databases https://www.hsph.harvard.edu/ Expression quantitative trait loci derived from lymphoblastoid cell lines
liming-liang/software/eqtl/

exSNP http://www.exsnp.org/ eQTL data from six cell types (LCLs, B cells, monocytes, brain, liver, and
skin) integrated with SNPs in disease risk loci from GWA studies of seven
common human diseases

eQTL Catalogue https://www.ebi.ac.uk/eqtl/ Cis-eQTLs and splicing QTLs from all available public studies on human
.................................................................................................................. (including GTEx project data) | e
eQTL Browser http://eqtl.uchicago.edu/cgi-bin/  eQTLs identified in recent studies in multiple tissues
gbrowse/eqtl/

Cistrome Data Browser http://cistrome.org/db/#/ The ChIP-seq, DNase-seq and ATAC-seq data: (1) genomic regions inter-
acting with TFs, (2) DNase | hypersensitive sites, (3) the binding locations
of modified histone proteins. The data has been assigned statuses accord-
ing to six quality control criteria

Gene Transcription https://gtrd.biouml.org/#! A collection of ChIP-seq experiments aimed at finding TF binding sites
Regulation Database (GTRD) in the human and mouse genomes

ReMap (Global map http://remap.univ-amu.fr/ A collection of ChIP-seq, ChIP-exo, DAP-seq experiments from public
of regulatory elements) resources (GEO, ENCODE, ENA). Chromatin regions in contact with TFs,

transcriptional coactivators, and chromatin remodeling factors

AlleleDB http://alleledb.gersteinlab.org/ Genomic annotation of cis-regulatory SNVs associated with allele-specific
binding and expression derived from RNA-seq and ChIP-seq data
of 383 individuals from the 1000 Genomes Project

AlleleSeq http://alleleseq.gersteinlab.org/ Allele-specific binding of six TFs (cFos, cMyc, JunD, Max, NfkB, CTCF)
identified using variation data for NA12878 from the 1000 Genomes
Project as well as matched, deeply sequenced RNA-Seq and ChIP-Seq data
sets generated for this purpose

HaploReg https://pubs.broadinstitute.org/ Annotation of polymorphic loci within haplotype blocks that were de-
mammals/haploreg/haploreg.php fined using LD information from the 1000 Genomes Project. Annotation
includes: (1) chromatin state and protein binding annotation from the
Roadmap Epigenomics and ENCODE projects, (2) sequence conservation
across mammals, (3) the effect of GVs on regulatory motifs, (4) the effect
of GVs on expression from eQTL studies

SNP2TFBS http://ccg.vital-it.ch/snp2tfbs/ Genetic variants from 1000 Genomes Project, which, according to in silico
predictions, affect the similarity of TFBSs with weight matrices

rSNPBase http://rsnp3.psych.ac.cn/index.do  SNP-related regulatory elements (TF binding regions, TADs, mature
miRNA regions, predicted miRNA target sites, etc.), SNP-related regulatory
element-target gene pairs, SNP-based regulatory networks

rVarBase http://rv.psych.ac.cn/ Annotation of polymorphic loci (including copy number variations). Anno-
tation includes (1) chromatin state, (2) related regulatory element (CpG is-
lands, matched TF binding sites, miRNA target sites, etc.), (3) target genes

UCSC Genome Browser https://genome.ucsc.edu/ Data is integrated based on a graphical interface that allows visualizing
genome sequences along with a large number of annotations and features
(positions of transcripts, GC percent, chromatin states, histone marks, con-
tacts between chromatin regions, expression, genetic variability, etc.). Data
can be retrieved in text format via special Table Browser program

Ensembl Genome Browser  https://www.ensembl.org/ Data is integrated based on a graphical interface that allows visualizing
index.html genome sequences along with a large number of annotations and
features (positions of transcripts, GC percent, chromatin states, genetic
variability, etc.). Tables of Ensembl data can be downloaded via the highly
customizable BioMart data mining tool

GEO (Gene Expression https://www.ncbi.nlm.nih.gov/gds The largest public repository that archives and freely distributes compre-

Omnibus) hensive sets of microarray, next-generation sequencing, and other forms
of high-throughput functional genomic data submitted by the scientific
community

* GENCODE reference gene annotations for the human and mouse genomes are also available through the UCSC Genome Browser (https://genome.ucsc.edu/)
and the Ensembl genome browser (https://www.ensembl.org/index.html).
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Fig. 5. The view of the human genomic region (chromosomal coordinates chr9: 117,703,000-117,725,000) displayed by the
Genome Browser of the University of California, Santa Cruz, USA (UCSC Genome Browser, https://genome.ucsc.edu/).

(1) transcripts of the TLR4 gene, displayed according to the GENCODE v32 release; (2) DNase | hypersensitivity peak clusters derived from
assays in 95 cell types (as a part of the ENCODE project); (3) transcription factor binding derived from a large collection of ChIP-seq experi-
ments performed by the ENCODE project; (4) levels of enrichment of the H3K27Ac histone mark across the genome as determined by a
ChlIP-seq assay on 7 cell lines from ENCODE (H3K27Ac is the acetylation of lysine 27 of the H3 histone protein, and it is often found near
regulatory elements); (5) short genetic variants from dbSNP release 153. The yellow vertical line marks the position the SNP rs7873784
located in the 3"-UTR of TLR4 gene and associated with development of rheumatoid arthritis and type 2 diabetes (see Table 1). According
to (Korneev et al., 2020), the G—C substitution at the rs7873784 locus creates PU.1 binding site, that increases the activity of the enhancer

located in the 3'-UTR of the TLR4 gene.

AlleleSeq); (8) the effects of genetic variability on TFBSs
predicted in silico by computer programs (HaploReg,
SNP2TFBS, rSNPBase, rVarBase).

A separate category of information resources includes:
(1) the genome browser of the University of California, Santa
Cruz, USA (UCSC Genome Browser, https://genome.ucsc.
edu/) and (2) the genome browser of the Ensembl database
which is a joint research project of the European Bioinforma-
tics Institute and the Wellcome Trust Sanger Institute (Ensembl
Genome Browser, https://www.ensembl.org/index.html).
These genome browsers integrate data on genome sequences
and its features obtained by different research groups using
a wide range of experimental methods (Lee et al., 2020; Yates
etal., 2020). The websites of these browsers provide access to
the primary DNA sequences and genome annotations for many
organisms (including vertebrates and several other model spe-
cies). Browser’s graphical interfaces allow to obtain scalable
maps of genomic regions and to visualize interactively a large
number of annotations and features (for example, positions
of transcripts, positions of GVs, chromatin regions interact-

ing with TFs detected by ChIP-seq experiments, data on ge-
nome-wide mapping of DNase I hypersensitive sites, etc.)
(Fig. 5).

The websites of the UCSC Genome Browser and Ensembl
Genome Browser provide access to software tools for extrac-
tion data as text files: UCSC table browser (https://genome.
ucsc.edu/cgi-bin/hgTables) and BioMart data mining tool
(https://www.ensembl.org/info/data/biomart/index.html).

Information resources on allele-specific binding

of transcription factors and on the effects

of genetic variants on TFBSs predicted in silico

As noted above, the influence of pathogenic GVs on gene
expression is often mediated through a change in the func-
tional activity of TFBSs. In this regard, information resources
that include whole genome data on allele-specific binding of
TFs, identified based on the ChIP-seq method, can be ex-
tremely useful. A range of approaches have been developed
to identify allele-specific binding of TFs (Rozowsky et al.,
2011; Reddy et al., 2012; Waszak et al., 2014; Younesy et
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al., 2014). These approaches are based on the analysis of the
ChIP-seq data in combination with the sequencing data, which
allow to find heterozygous loci within a single genome and to
phase genotypes of the studied cells. Thus, for each type of
cells examined, its own set of genomic loci interacting with
a specific transcription factor in an allele-specific manner
can be identified. For example, in (Cavalli et al., 2016a), the
ChlIP-seq data for 55 TFs in the HepG?2 cells and 57 TFs in the
HeLa-S3 cells were analyzed. In HepG2 cells, 3001 genomic
loci with allele-specific signals were found, and 712 loci were
found in HeLa-S3 cells. The authors note the pronounced
tissue-specific nature of allele-specific TF binding: of the
entire set of identified loci, only 34 were found in both cell
lines (Cavalli et al., 2016a).

The data on allele-specific binding of TFs are collected in
the following information resources: AlleleDB (http://alleledb.
gersteinlab.org/) (Chen J. et al., 2016), AlleleSeq (http://
alleleseq.gersteinlab.org/) (Rozowsky et al., 2011) (see Table 2),
as well as in the supplemental files to publications (Cavalli et
al., 2016a, b, 2019; Shi et al., 2016).

Studies aimed at identifying allele-specific TF binding
made it possible to estimate the number of genetic variants
that affect the binding of a particular transcription factor to
DNA in a particular cell type. The average number of such
events registered for a single transcription factor can range
from 19 to 37 for cells with a normal karyotype (GM 12878,
H1-hESC) and from 12 to 55 for cancer cell lines (SK-N-SH,
K562) (Cavalli et al., 2016a, b).

When generating hypotheses on the mechanisms that medi-
ate the effect of GVs on disease risk, one can also use the data
on the effects of genetic variants on the functional activity of
TFBSs predicted in silico. Such information is accumulated in
specialized databases: HaploReg (https://pubs.broadinstitute.
org/mammals/haploreg/haploreg.php) (Ward, Kellis, 2012),
SNP2TFBS (http://ccg.vital-it.ch/snp2tfbs/) (Kumar S. et al.,
2017), rfSNPBase (http://rsnp3.psych.ac.cn/index.do) (Guo,
Wang, 2018), rVarBase (http://rv.psych.ac.cn) (see Table 2).

Conclusion

A significant proportion of pathogenic genetic variants asso-
ciated with diseases are located in non-coding regions of the
human genome. Such genetic variants can with a high degree
of probability disrupt functional activity of regulatory regions
that control the transcriptional activity of genes. The examples
of the mechanisms of influence of pathogenic genetic variants
on gene expression considered in this review confirm this
possibility. The studies that have made it possible to identify
these mechanisms are complex and are based on the analysis
of big heterogeneous genetic data. The online omics data re-
sources provide ample opportunities for such research. Further
development of experimental techniques and bioinformatics
methods for analyzing the data obtained with the help of this
techniques, as well as an increase in the set of investigated cell
types, will significantly expand these possibilities.
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