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Abstract. Determining the quantitative content of chlorophylls in plant leaves by their reflection spectra is an impor-
tant task both in monitoring the state of natural and industrial phytocenoses, and in laboratory studies of normal and
pathological processes during plant growth. The use of machine learning methods for these purposes is promising,
since these methods allow inferring the relationships between input and output variables (prediction model), and
in order to improve the quality of the prediction, a researcher may modify predictors and selects a set of method
parameters. Here, we present the results of the implementation and evaluation of the random forest algorithm for
predicting the total concentration of chlorophylls a and b from the reflection spectra of plant leaves in the visible and
infrared wavelengths. We used the reflection spectra for 276 leaf samples from 39 plant species obtained from open
sources. 181 samples were from the sycamore maple (Acer pseudoplatanus L.). The reflection spectrum represented
wavelengths from 400 to 2500 nm with a step of 1 nm. The training set consisted of the 85 % of A. pseudoplatanus L.
samples, and the performance was evaluated on the remaining 15 % samples of this species (validation sample).
Six models based on the random forest algorithm with different predictors were evaluated. The selection of control
parameters was performed by cross-checking on five partitions. For the first model, the intensity of the reflection
spectra without any transformation was used. Based on the analysis of this model, the optimal ranges of wavelengths
for the remaining five models were selected. The best results were obtained by models that used a two-point esti-
mation of the derivative of the reflection spectrum in the visible wavelength range as input data. We compared one
of these models (the two-point estimation of the derivative of the reflection spectrum in the range of 400-800 nm
with a step of 1 nm) with the model by other authors (which is based on the functional dependence between two
unknown parameters selected by the least squares method and two reflection coefficients, the choice of which is
described in the article). The comparison of the results of predictions of the model based on the random forest al-
gorithm with the model of other authors was carried out both on the validation sample of maple and on the sample
from other plant species. In the first case, the predictions of the method based on a random forest had a lower
estimate of the standard deviation. In the second case, the predictions of this method had a large error for small
values of chlorophyll, while the third-party method had acceptable predictions. The article provides the analysis of
the results, as well as recommendations for using this machine learning method to assess the quantitative content
of chlorophylls in leaves.
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AnHoTauuma. OnpepeneHrie KOIMYeCTBEHHOTO CofepKaHnaA XopodUNoB B NINCTbAX PACTEHNIA MO UX CNEeKTpaM OT-
paXkeHnA — Ba)kHas 3afjaya Kak Npy MOHUTOPUHIE COCTOAHMA eCTECTBEHHbIX U MPOMBbILLNIEHHbIX GUTOLEHO30B, TaK U
B 1aGOPaTOPHbIX NCCNef0oBaHNAX HOPMAsIbHbIX 1 MATONOMMUYeCKMX NPOLIECCOB B XOAe POCTa pacTeHus. MprmeHeHne
INA 3TUX Leneil METOL0B MALUMHHOMO 06yUYeHNA ABAAETCA NePCMNEKTVBHBIM, MOCKOJIbKY OHU NMO3BONAIOT «<aBTOMATU-
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OnpepeneHne KONMYECTBEHHOTO COAePKaHUA
XNOPOPUINOB B IMCTbAX MO CMEKTPAM OTPaKEHMUA

YyecKm» CTPOUTL peluatoLye npaBuia ANla NoayyeHna pesynbrata (MoAenb NpeAckasaHuns), a nccneposatento (Ana
MOBbILIEHUA KayecTBa MpefcKasaHus) ocTaloTcAa MoandUKauma NpefKTOpoB 1 BbIGOP MHOXECTBa MapameTpoB
meTofa. B cTaTbe NpriBefeHbl pe3ynbTaThl MOCTPOEHNA pPeLlaloLnX NpPaBua anroputMom clyyaiHoro neca (random
forest) ona npefckKasaHWsa CyMMapHOI KOHLEHTpaLmMm xnopoduios a v b no cnekTpam oTpa)eHUs NCTbEB pacTe-
HWI B BUAMMOM 1 H$pakpacHom (MK) arnanasoHax asimH BonH. Habop AaHHbIX B3AT U3 OTKPbITbIX CTOYHNKOB. OHYK
BKJ/toYanu 276 o6pa3uoB nncTbes 39 BULOB pacTeHuid. Mpu 3Tom 181 obpaseL, nonyyeH Npv aHamse nnucTbes 6eso-
ro kneHa (Acer pseudoplatanus L.). CnekTp oTpaeHua npefcTaBneH B AnanasoHe 400-2500 HM ¢ warom 1 Hm. Oby-
YeHune npomncxoamno Ha 85 % obpasuos A. pseudoplatanus L., oueHKa KauecTBa NpeAckasaHua — Ha ocTaBimxca 15 %
o6pa3uoB 3T0ro BrAa (BanuaaumoHHas BbibopkKa). MocTpoeHo wecTb Mofenen Ha OCHOBE anroputma CiyyaHoro
neca c pasHbiMu npeankTopamu. Mogdop ynpaenaowmx napameTpos OCyLLECTBAANN MPU NMOMOLLM NePeKPeCcTHON
NPOBePKM Ha NATY pa3breHunax. NpearKTopamy NepBo MOAeNV BbICTyNany MMeoLWMeCc 3Ha4eHNA No CnekTpy oT-
paxkeHnA 6e3 kKakon-nmbo 06paboTKM C Halel CTOPOHbI. [locne npoBefeHWA aHanM3a 3Tol Mogenu 6biIn BbibpaHbI
AvanasoHbl ANVH BOJIH NPEANKTOPOB AJ1A OCTaBLUMXCA NATU MoAenen. Jlyuwmne npeackasaHna MMelT MOAeNN C pas-
HOCTHOW MPOV3BOAHON CNeKTpa OTPaxeHna B BUAVMOM AnanasoHe AvH BonH. Mogenb ¢ nepBon Npovn3BOAHOM
cneKkTpa oTpakeHuns B AnanasoHe 400-800 HM ¢ warom 1 HM 6panu Ana cpaBHEHUs C MOAENbIO APYrvX aBTOPOB. DTOM
MoZesbto BbICTynaeT PyHKLMOHaNbHaA 3aBUCMMOCTb C ABYMA HEV3BECTHbIMM NapameTpamu, MoAovpaeMbiMy MeTO-
[IOM HaUMeHbLLUNX KBafApaToB, 1 ABYMA KO3dduULMeHTamy OTparkeHNs, BbIGOP KOTOPbIX OMMCbIBAETCA B HAaCTOALLEN
ctatbe. CpaBHeHMe pe3ynbTaToB NpefckasaHnii MoAenu C NPUMEHeHNeM airopuTma cJly4anHoro fieca NpoBOANN
KaK Ha BannpaLmnoHHoM BbIGOpKe KieHa, Tak 1 Ha BbIGOpKe 13 ApYrixX BUAOB pacTeHunin. B nepBom cnyyae npeackasa-
HWA MeToAa Ha OCHOBE CJTyHYaHOrO fleca MeN MeHbLLYIO OLIeHKY CPpefHEKBafpaTNYeCKoro OTK/IOHeHUA. Bo BTopom
cryyae nNpeAckasaHna 3Toro MeToaa 6biny ¢ 60MbLIOK OLIMBKON NPY ManbiX 3HAYEHUAX XIIOPOGMNa, B TO BPeMs Kak
CTOPOHHUI METOA Men npremnemMble npeackasaHna. B ctatbe npnBoAATcA aHann3 pesynbTaToB 1 pekoMeHaaunm
Mo MPUMEHEHMIO 3TOr0 MeTOAa MALUMHHOTO 0OyUYeHNA 1A OLEHKN KONMYeCTBEHHOTO CoAepKaHua xnopodunios
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Introduction
Pigments are low-molecular-weight compounds that give
color to plant organs and play an important role in their life,
performing photosynthetic, protective and metabolic func-
tions. In terrestrial plants, the most well-known pigments are
chlorophylls (which provide the green color of plant organs
and play a crucial role in photosynthesis), carotenoids (which
give red and yellow color, also participate in photosynthesis),
anthocyanins (which give a purple color, perform protective
functions), as well as a number of other compounds (Croft,
Chen, 2018). Photosynthetic pigments, chlorophylls and caro-
tenoids, attract the most attention from researchers; they have
different absorption spectra and perform different functions
in the process of photosynthesis, which is due to structural
differences between the molecules of these substances.
Chlorophyll in plants is represented by two types of mole-
cules, a and b, which have structural differences and differ
in their light-absorbing properties (Du et al., 1998). It allows
photosynthetic organisms to collect sunlight at different
wavelengths to maximize the light energy available for pho-
tosynthesis. Changes in the concentrations of photosynthetic
pigments are closely related to the physiological state of plants.
For example, when the leaves of plants wither, there is a rapid
decrease in the concentration of chlorophylls compared to
carotenoids, thereby increasing the ratio of carotenoids to
chlorophylls causes the leaves to turn red and yellow (Croft,
Chen, 2018). The content of pigments, in particular chloro-
phylls a and b, can thus serve as an indicator of the state of
plants during normal growth and during the development of
infections, as well as stress, photosynthetic activity, metabolic
disorders, etc. (Mtodzinska, 2009). The need to determine
the physiological state of plants often arises in the course of
solving many scientific and practical problems, so methods for
assessing the content of pigments in plant organs and tissues
are constantly being developed and improved.
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Quantitative and qualitative information about pigments
can be obtained using chemical methods (Lichtenthaler, 1987;
Porra et al., 1989; Wellburn, 1994). However, for many tasks,
a more convenient approach is to use remote methods based
on the light reflection spectra from the plant leaf (Horler et
al., 1983; Curran et al., 1990; Gitelson et al., 2001, 2003).
The reflectivity of the leaf in the optical and infrared (IR)
wavelengths (400-2500 nm) depends on various biochemical
and physical factors, including the content of chlorophyll and
other leaf pigments, nitrogen, water, as well as on the internal
structure of the leaves and the characteristics of their surface
(Croft, Chen, 2018). Plant pigments are characterized by the
absorption of electromagnetic radiation in the visible (400—
700 nm) and near-IR (1300-2500 nm) wavelength ranges. The
absorption of the leaf components in the near-infrared region
in the range of 750—1300 nm is low, since in this wavelength
range there is an intense reflection from the components of
the internal structure of the leaves. Thus, the reflection coef-
ficient in the near-IR range depends on both the concentration
of enzymes and the structure of the leaf. All these facts make
it possible to use remote observation methods in both the
visible and near-infrared wavelength ranges to monitor the
physiological state of plants (Merzlyak et al., 2003; Alt et al.,
2020).

One of the approaches to estimating the content of chlo-
rophylls from the reflection spectrum is to select empirical
dependencies (indices) between the reflection coefficients at
certain wavelengths, the choice of which is also an important
part of the method, and the content of chlorophylls (Horler
et al., 1983; Curran et al., 1990; Gitelson et al., 2001, 2003;
Suo et al., 2010; Nikolaev et al., 2018). The success of such
a “classical” approach directly depends on the depth of our
understanding of the physics of the process.

Currently, machine learning methods are often used to
predict the characteristics of biological objects (Doktor et
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al., 2014; Feng et al., 2020). Their advantage is that usually a
complex nonlinear dependence on many variables can be ap-
proximated with the necessary accuracy by machine learning
methods. In simple cases, the data is fed to the program input
without any processing, however, the accuracy of the predicted
parameter will be quite high. Each machine learning method
has its own ways to improve the accuracy of the prediction, for
example, by varying the control actions. There are also ways
to transform the input data to improve the result. Thus, in the
analysis of spectra, the calculation of the derivative makes
it possible to eliminate additive components and highlight
such characteristic features of the spectrum as the positions
of maxima, minima, and points.

The aim of our research was to develop a machine learning
method using a random forest algorithm to predict the total
concentration of chlorophylls ¢ and b in plant leaves from
the values of the reflection spectra in the visible and infrared
wavelength ranges. The accuracy of the prediction is evaluated
in comparison with the results obtained from the analytical
functional dependence, and the advantages and disadvantages
of both approaches are determined.

Materials and methods

Experimental data. The characteristics of the leaf reflec-
tion spectra at different concentrations of chlorophylls a
and b were downloaded from the EcoSIS database (ecosis.
org), set angers2003 (Jacquemound et al., 2003; Féret et al.,
2008). 276 leaf samples of 39 plant species were examined.
181 samples are the leaves of sycamore maple (Acer pseudo-
platanus L.). The data on the reflection spectrum are presented
in the range of 400-2500 nm with a step of 1 nm. The ASD
FieldSpec spectrum radiometer is used for this purpose; the
pigment concentrations were determined by the Lichtenheler
method and are presented in units of measurement of pg/cm?
(see details in (Jacquemound et al., 2003; Féret et al., 2008)).

Mathematical statement of the problem. Let there be a
general set of R§™" of all possible reflection coefficients of
plant leaves for given wavelengths A and Ch/&*"— the values
of the sum of the concentration of chlorophylls ¢ and b cor-
responding to R{™". We have an R, — subsample of R$*" and
Chl — values of the sum of the concentration of chlorophylls
a and b corresponding to R,. It is required to construct the
functional f: R§*"— Chl&" from the set (R), Chl). Moreover,
since this idealized functional cannot be implemented, we get
an approximating functional:f: Ry — Chl.

Building a prediction model using the random forest
method. The random forest (RF) method was chosen for con-
structing the functional (Breiman, 2001; Hastie et al., 2009).
It allows you to get the accuracy of the prediction of the target
function, as a rule, higher than in the case of linear regression
methods. The idea of the algorithm is to apply an ensemble
of decision trees. Each decision tree in this ensemble sets a
piecewise constant function, which is obtained by minimizing
the loss function (for example, the mean square of the devia-
tion). The algorithm combines two main ideas: the Breiman
bagging method (Breiman, 1996) and the random subspace
method proposed by T.K. Ho (1998). In our work, we used the
implementation of the random forest method from the sklearn
library (scikit-learn.org) of the Python language.

Determination of the quantitative content
of chlorophylls in leaves by reflection spectra

To predict the chlorophyll concentrations by the random
forest method, several models that differed in the input data
sets were taken. First, each set was characterized by an interval
of wavelengths, the intensity of reflection at which was taken
into account. In total, several sets of intervals were considered:
400-2450, 400-800 nm, and a combined set of two intervals
of 500-600 and 680—740 nm. Second, the models differed in
the type of input data. These included the values of the inten-
sity of the reflection spectra at certain wavelengths (base data
type), the values of the first derivatives of the spectral curves
for the same wavelengths (der data type), and the values of
the second derivatives (der2 data type). Some models were
based on only one data type, while others shared multiple data
types. Such combinations were marked with a summation sign
(for example, base+der).

In this paper, six models have been considered. They are
designated as RF-(X-Y)-Z, where (X-Y) —intervals of wave-
lengths, Z —type data model: RF-(400-2450)-base (the intensi-
ty of the spectrum in intervals of wavelengths 400-2450 nm);
RF(400-800)-base (the intensity of the spectrum in intervals
of wavelengths 400-800 nm); RF(400-800)-base+der (in-
tensity spectrum and the first derivative in the intervals of
wavelengths 400-800 nm); RF(400-800)-der (first derivative
in the intervals of wavelengths 400-800 nm); RF(400—800)-
der+der2 (first and second derivatives in the interval of wave-
lengths 400-800 nm); RF(500—600; 680—740)-base+der+der2
(intensities, first and second derivatives in the wavelength
ranges 500-600 and 680740 nm).

As an approximation of the derivative of the spectral curves,
the first-order finite difference with a change equal to 1 was
used, which was calculated by the formula D; = R; — R;_;. In
this calculation, there is no derivative for the first value. For
simplicity, the finite difference is referred to the derivative
throughout the text. The second derivative was calculated as
the derivative of the derivative of the spectral curve.

When configuring the random forest algorithm, the follow-
ing control parameters were selected:

* max_depth: [2, 3,4, 5, 6] — the maximum depth of the tree;

« max_features: [2, 7, sqrt, log2, auto] — the number of
features that the partition is searched for (auto — all features);

* n_estimators: [5, 10, 15, 30, 40] — the number of trees in
the random forest ensemble;

» random_state: 20200605.

The specified parameters of the algorithm were selected by
cross-checking on five samples of the same size obtained from
a randomly mixed initial training sample. Four subsamples
were used for training the model, and the fifth one was used
for testing it. To determine the best control parameters, the
test results (mean square deviation of the target indicator —
mse) were averaged between models with the same control
parameters (i. €., obtained during cross-validation) and sorted.
The control parameters for which the average mse is the mini-
mum are the best. As the final model, one of the five models
with the best control parameters is selected, which has the
minimum mse when tested among the models obtained by
the cross-validation method.

The maximum depth of the trees is chosen to be 6, which
gives 2° = 64 intervals for partitioning the parameter space,
despite the fact that the sample length taken to build the model
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is 123. The depth increasing could lead to overfitting. The
number of trees in the forest (up to 40) may seem redundant
for 123 sample values, but the parameters of each of the
decision trees were selected on different subspaces (since the
random subspace method is used), and the dimension of the
features was always greater than the number of elements in
the sample.

It should be noted that the algorithm implemented in the
sklearn library allows us to obtain the informativeness of each
of the model features and select the most informative ones
for the obtained decision rules (Breiman, 2001; Hastie et al.,
2009; Louppe et al., 2013).

Construction of empirical functional dependencies. As a
functional of ]‘: R,— Chl we additionally chose an empirical
dependence from the work (Gitelson et al., 2003) (the GGM
method, which we named after the authors’ surnames), rep-
resented by the expression

Chl:w[———]-R B, !
13}L RNIR NIR B ( )

where Chl is the total concentration of chlorophylls a and b;
R, is the reflection coefficient at the wavelength A; Ry is the
reflection coefficient in the near-infrared range (for example,
at a wavelength of 800 nm); a and B are selected in such a
way as to minimize the selected loss function. A.A. Gitelson
and co-authors (2003) recommend choosing wavelengths
from the range A € [525; 555] U [695; 725]. According to the
authors, the advantage of this algorithm is that the Ryr coef-
ficient “corrects” the influence of the plant tissue structure
on the reflection spectrum and allows us to extend the found
function to plants with different leaf structure.

The comparison of methods for predicting the concen-
tration of chlorophyll. The sycamore maple sample from the
angers2003 data set was randomly divided into a training and
avalidation sample in the ratio of 85:15. For the methods used
in this work for predicting the random forest algorithm (RF)
and functional dependence (GGM), the optimal parameters
are selected on the training sample. The quality control of the
algorithms is carried out on a validation sample represented
by a sycamore maple and on a sample of non-maple samples.
The following metrics were used to evaluate the accuracy of
predicting chlorophyll concentrations: mse, mean absolute
error (mae), and determination coefficient R2. The formulas
for calculating metrics are as follows:

_1z

mse = 3 2(x; — )%
_1z

mae = E%|x,»f)?,-|,

S~ )2

R2=1-— —}1 ,
X(x;—X;)?
T

where x is the true values; ¥ is the predicted values; # is the
number of samples, and X is the mathematical expectation
for the true values. In terms of optimization, mae and R? are
equivalent. The coefficient of determination R? is conve-
nient because it is a dimensionless value usually in the range
[0; 1], the value of R% < 0 shows that the arithmetic mean X
has a better result than the predictions of the constructed
model).
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Results

Selection of parameters for the functional dependence
method. For the GGM prediction on the training sample,
we selected the coefficients o and B of equations (1), as well
as the values A so as to maximize the value of R2. The value
Anir = 800 nm is selected as the wavelength in the near-
infrared range. To get the coefficients o and 3, we took a linear
model based on the least squares method (the LinearRegres-
sion class from the sklearn.linear model package). For each
A € [400; 800] with a step of 1 nm, a specific type of GGM
curve was found. The coefficients of determination R? for
the predictions of the obtained models are shown in Fig. 1.
The highest coefficient of determination was achieved at the
wavelength A = 705 nm. The result is consistent with the
recommended range A € [525; 555TU [695; 725] (Gitelson et
al.,2003). The RF method is compared with the GGM model
obtained at this wavelength A = 705 nm.

Results of constructing an algorithm based on the ran-
dom forest method. The characteristics of the accuracy of the
prediction of chlorophyll concentrations (the values of the mse,
mae, R? parameters) for all six models in the test sample are
shown in the table. The RF-(400—800)-der and RF-(400-800)-
der+der2 methods demonstrated high prediction accuracy. As
the best of them, the RF-(400—800)-der method was selected
as having a smaller number of input parameters.

The selection of wavelengths, the reflection coefficients for
which were taken as input features for predicting chlorophyll
concentrations by the random forest method, was carried out
on the basis of the first model (RF-(400-2450)-base). This is
due to the fact that at first it was not known whether the entire
spectrum was needed, or only a part of it was necessary, and
which one. As mentioned earlier, the RF algorithm allows you
to evaluate the information content of the features the training
took place on. After configuring the control parameters of the
RF-(400-2450)-base model, we took the obtained parameters
to re-train the models on five training samples (from cross-
validation). For these five models, we identified 10 features
with the greatest contribution to the prediction. The results
are shown in Fig. 2: the vertical lines represent the combined
set of wavelengths, the spectrum intensities for which make
the most significant contribution to the prediction accuracy
(26 wavelengths out of 10-5 = 50 possible if the values did
not intersect). Interestingly, the most significant features lie in
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Fig. 1. Determination coefficients of the obtained GGF models
at A € [400; 800], which were calculated on the training sample.

BMONHOOPMATUKA U CUCTEMHAA KOMIMbIOTEPHAA BUOJIOTUA / BIOINFORMATICS AND COMPUTATIONAL SYSTEMS BIOLOGY 67



E.A. Urbanovich, D.A. Afonnikov
S.V. Nikolaev

Determination of the quantitative content
of chlorophylls in leaves by reflection spectra

Results of a random forest model trained on different sets of input features

No. Random forest model Number of input features
1 .............. R F(4o 0 _2450)ba5e .................................. 2 051 .............................
2 .............. R F(4oo_3oo)base4o1 ...............................
3 .............. R F(4o 0 _300) base +de r ................................................................
4 .............. R F(4o 0 _300) der ...........................................................................
5 .............. R F(4o 0 _300) der+der2 .................................................................
6 RF-(500-600;680-740- 101+100+99+61+60-+59 = 380
base+der+der2

Note. The numbers in the description of the feature indicate the range of wavelengths. Additional characteristics of the features: base - reflection spectrum;
der —values of the first derivative of the spectrum; der2 - values of the second derivative of the spectrum. The values with the worst accuracy are shown in italics,

and the values with the best accuracy are highlighted in bold.
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Fig. 2. Characteristics of the reflection spectrum of sycamore maple
pigment samples used for model training.

The lines show: the average value of the intensity of the reflection spectrum
Ry, (Y-axis) for different wavelengths (X-axis); the value of the first derivative
of the average intensity; the value of the second derivative. The values of
the derivatives are normalized to the interval [0; 1]. Vertical lines indicate the
wavelengths whose spectrum intensities make the greatest contribution to
the prediction accuracy of the RF-(400-2450)-base model.

the visible range; most of these features are in the wavelength
range of 500-600 and 680—-740 nm. On this basis we have
formulated the wavelengths of the input characteristics for
the remaining five models for predictions by random forest
(see above).

Comparison of the accuracy of the RF and GGM
methods. The results of the comparison of the methods for pre-
dicting chlorophyll concentrations by the RF-(400-800)-der
and GGM methods and their experimentally measured values
at different concentrations are shown in Fig. 3 and 4. For
sycamore maple samples (the type taken to fit the parame-
ters), the RF-(400-800)-der method shows a better result
compared to the GGM method: \msey= 3.01 pg/cm? ver-
sus \mseggy = 3.21 pg/em?. When testing the methods on a
sample of plant leaves from other species, the GGM functional
dependence method has an advantage \mseggy, = 6.31 pg/cm?
versus \mseg = 12.97 pg/cm?. The GGM method shows high
accuracy at low concentrations of chlorophyll, while the RF
method shows a large error at these values. However, in the
range of chlorophyll concentrations above 20 pug/cm?, the
RF-(400-800)-der algorithm has the best result: \msey,=
=5.91 pg/em? versus \mseggy = 7.01 pg/em?.

Further analysis revealed that for samples with a chlorophyll
concentration of less than 7 pg/cm?, the reflection coefficients

Fig. 3. Comparison of true and predicted values of chlorophyll concentra-
tion in sycamore maple leaf tissues for validation sampling.
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Fig. 4. Comparison of true and predicted values of chlorophyll concentra-
tion in leaf tissues of not related to sycamore maple samples.

R, (maximum of the reflection spectrum) and R, (minimum
of the reflection spectrum) are visually significantly different
from all the others (Fig. 5, points in the upper right quarter).
The predictions for these samples have a significant error.
However, it was not possible to find out what the differences
in the reflection spectrum are related to: these samples do not
differ from the rest either in the surface density of the leaf or
in the equivalent water thickness for the leaf (Jacquemound
et al., 2003). Six out of ten plant species from these samples
also have samples with normally predicted values. Further
analysis of the causes of the anomalous spectrum is difficult,
since the data are taken from open sources, and the measure-
ments themselves were carried out more than 17 years ago.
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Fig. 5. Scattering diagram of reflection coefficients Rggq versus Rssg,
with selected categories by chlorophyll concentration (less than/more
than 20 mcg/cm?) and by plant type (Acer pseudoplatanus L. or other).

Discussion

Many studies on the application of reflection spectra to
estimate pigment concentrations involve neural networks
(Golhani et al., 2018), while the decisions founded on tree-
based methods are also common in machine learning research
tasks. We used the decision tree method to predict chlorophyll
concentrations in plant leaves and compared the results with
the functional dependence method. We have found the ranges
of the spectrum, the intensity of reflection in which most
strongly affects the accuracy of the prediction by the random
forest method.

The range of 690—750 nm in the literature is called the red
edge of photosynthesis (Curran et al., 1990; Gitelson et al.,
2003; Croft, Chen, 2018), and the neighborhood of 550 nm,
where the maximum of the chlorophyll reflection spectrum
is located, is known as the green edge (Gitelson et al., 2003).
As it can be seen from Fig. 2, in our study, these regions
contain the most important predictors for the random forest
method. The choice of a narrower wavelength range of the
visible spectrum (400—800 nm) as input features compared to
the full source data (4002450 nm) improved the quality of
the model. The explanation is that after dividing the sample
into subspaces, some of them are less suitable for training,
and the trees trained on these values introduce an error in the
total result. The greatest effect was achieved with the use of
derived spectral dependences.

The random forest RF method performed well when work-
ing with sycamore maple samples, while the functional de-
pendence of GGM performed well when working with dif-
ferent plant species. This is due to the greater generalization
ability of the GGM method, as it has fewer configurable
parameters. However, the lower accuracy of the RF method
on samples from other plant species is partly due to the small
size of the training sample and the fact that only one species is
represented in it. For example, the best results of the random
forest method were achieved with a tree depth of 5 or 6, and
this requires a minimum of 32 or 64 objects of the training
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sample, while the functional method (1) requires a minimum
of two points (preferably a point at small values of chlorophyll
and a point at large values). Apparently, this feature of the RF
method can be eliminated by using more training data with
samples from different plant species.

Nevertheless, the procedure for selecting parameters for
the RF method showed that the most significant features for
prediction lie in the visible region, but the influence of the plant
structure was not taken into account in this method. Along
with this, in the functional dependence (1), the structure of
the plant tissue is taken into account by the Ry;; member. If
the experiment is performed with different plant species (see
Fig. 4), then at low values of chlorophyll, the structure of the
plant begins to play a significant role.

Interestingly, both methods work in the range A € [525;
5551U[695; 725]. Both methods work on the decline of the
derivative of the reflection spectrum, as it is shown in Fig. 2.

The word “random” in the name of the method “random
forest” can lead to the idea that when you change the ran-
dom parameter used by the algorithm, you can get radically
different results. We believe that with reasonably selected
control parameters, a reasonable division into training and
test samples, this probability is low. In our case, 625 models
were built for each set of input features (a search of a set of
125 combinations of control parameters, and 5 cross-checked
models for each combination). In addition, it follows from the
above table that the RF-(400-800)-base+der, RF-(400-800)-
der, RF-(400-800)-der+der2 methods have similar results
(and, importantly, have less mse compared to the GGM me-
thod), which indirectly confirms that the results will not change
dramatically.

Conclusion

The random forest method is one of the algorithms for
constructing functional dependencies using machine learn-
ing methods. Therefore, it can be used for mass automatic
construction of functions that connect the observed features
with the desired ones in monitoring tasks. The results of this
work have shown that it is advisable to use the random forest
algorithm (and similar ones) in the task of determining the con-
tent of chlorophyll in a plant leaf if there is a large sample, at
least 32 elements, represented by a wide range of chlorophyll
concentrations, while the structure of the leaf tissue changes
slightly (for example, the application of the algorithm only on
those plants on which it was trained). In other cases, it is better
to give preference to methods based on empirical dependencies
(such as the GGM method discussed here).
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