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Abstract. Periodic processes of gene network functioning are described with good precision by periodic trajecto-
ries (limit cycles) of multidimensional systems of kinetic-type differential equations. In the literature, such systems
are often called dynamical, they are composed according to schemes of positive and negative feedback between
components of these networks. The variables in these equations describe concentrations of these components
as functions of time. In the preparation of numerical experiments with such mathematical models, it is useful to
start with studies of qualitative behavior of ensembles of trajectories of the corresponding dynamical systems, in
particular, to estimate the highest likelihood domain of the initial data, to solve inverse problems of parameter
identification, to list the equilibrium points and their characteristics, to localize cycles in the phase portraits, to
construct stratification of the phase portraits to subdomains with different qualities of trajectory behavior, etc.
Such an a priori geometric analysis of the dynamical systems is quite analogous to the basic section “Investigation
of functions and plot of their graphs” of Calculus, where the methods of qualitative studies of shapes of curves de-
termined by equations are exposed. In the present paper, we construct ensembles of trajectories in phase portraits
of some dynamical systems. These ensembles are 2-dimensional surfaces invariant with respect to shifts along the
trajectories. This is analogous to classical construction in analytic mechanics, i.e. the level surfaces of motion inte-
grals (energy, kinetic moment, etc.). Such surfaces compose foliations in phase portraits of dynamical systems of
Hamiltonian mechanics. In contrast with this classical mechanical case, the foliations considered in this paper have
singularities: all their leaves have a non-empty intersection, they contain limit cycles on their boundaries. Descrip-
tion of the phase portraits of these systems at the level of their stratifications, and that of ensembles of trajectories
allows one to construct more realistic gene network models on the basis of methods of statistical physics and the
theory of stochastic differential equations.
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AHHoTayus. MNeproanyeckre npoueccsl GyHKLNOHUPOBAHUSA LUMPOKOTO KNlacca reHHbIX CETEN C XOPOLLEN TOYHO-
CTblO OMUCHIBAIOTCA MPEAENbHBIMY LMKNaM/A MHOFOMEPHbBIX cucTemM AnddepeHLmanbHbIX YpaBHEHNUI KMHETMYE-
cKoro Tuna. Takve cucTembl, YacTo Ha3blBaeMble B IUTEPAType AMHAMMNYECKUMY, COCTABAAIOTCA MO CXeMaM MOSTOXKN-
TeNIbHbIX M OTPULATENbHBIX CBA3EN MEX Y KOMMOHEHTaMn Modenunpyemblx ceTel. ickomble GyHKLUY B ypaBHEHMAX
ONMCHIBAIOT 3aBUCMMOCTb OT BPEMEHWN KOHLEHTPALMIA STUX KOMMOHEHT. [py NNaHMpOBaHNUN BbIUNCIUTENbHbBIX
JKCMEePVIMEHTOB C MOAOOHBIMI MaTeMaTUYECKUMM MOLENAMYM MONEe3HO NpeABapuTeNbHO OnucaTb KauyecTBeHHoe
noBefieHne aHcaMbei TpaeKTopriA COOTBETCTBYIOLLMX AUHAMNYECKUX CUCTEM, B YaCTHOCTU OLEHUTb 06NIACTM MaK-
CMManbHOro NpaBaonofaobus HauyanbHbIX AaHHbIX, UCCefoBaTb obpaTHble 3aaaun naeHTUOUKaALMM NapamMeTpoB,
0Cobble TOUKM 3TUX CUCTEM, IOKanM30BaTb B $a30BbiX MOPTPETaX MNONOXKEHWE LMKIO0B, B TOM YMCe NPeAesbHbIX,
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CrpatndurKkaymmn n cnoeHms
B $a30BbIX NOPTPETax MoAenel reHHbIX ceTel

cTpaTndunLMpoBaTh Gpa3oBble MOPTPETbI Ha MOAO6NACTY C KaueCTBEHHO Pa3/IMYHbIM MOBefeHNeM TPaeKTopuiA 1
T.N. Tako anpuopHbI FeOMETPUYECKINI aHann3 pacCMaTp1BaeMblX MOfeNell FeHHbIX CeTell MOMHOCTbIO aHanoru-
YeH XpecToMaTUNHOMY pasfieNly HauyanbHbIX KypcoB MaTeMaTukm «MccnefoBaHune GyHKUMI 1 NOCTpoeHUe rpadu-
KOB», B KOTOPOM OMMWCbIBAIOTCA METOAbI HAarfMALHOIO NpeACTaBeHNA NOBeAEHNA KPUBbIX, OnpefenaeMblX ypaBHe-
HuAMK. B HacToALlel cTaTbe B $pa30BbIX MOPTPETax AUHAMMUYECKMX CUCTEM, MOLENMPYIOLUX GYHKLMOHNPOBaHMe
KOMbLIEBbIX F€HHbIX CeTell, KOHCTPYMPYIOTCA [IByMepHble MOBEPXHOCTH, MHBapUaHTHble OTHOCUTENbHO CABUrOB
BAOJIb TPaeKTopuii, — aHcambnu TpaekTopuii. lMpocmaTpuBaeTca ecTeCTBeHHanA aHaNorma C KacCUYecKow KOH-
CTPyKLUMEN aHaNNTUYECKON MeXaHNKN — C MOBEPXHOCTAMU YPOBHA MHTErpasoB ABMKEHWUA (SHeprua, UMNynbe 1
Ap.). Takne noBepxXHOCTY 06pasyloT cnoeHNs B Gpa3oBbIxX MOPTPETax ANHAMUYECKNX CUCTEM FaMUIBTOHOBOI MeXa-
HVKW. B 0TAIMYmMe OT 3apay MexaHvKK, AnA paccMaTprBaeMblX Hamy MOAesel reHHbIX ceTel cnoeHus, obpasyemble
VHBaPWaHTHbIMV MOBEPXHOCTAMMU, UMEIOT OCOOEHHOCTH, BCe VX CZION COAepPKaT Ha CBOUX rpaHuLax npegenbHble
umKnbl. OnuncaHre $pa3oBbix NOPTPETOB ANHAMNUYECKMX CUCTEM B TEPMUHAX UX CTpaTUdMKaLmin 1 aHcambnei nx
TPaeKTopuin MO3BONNT CTPOUTL GoNlee peanncTUUHbIe MOJENM FeHHbIX CeTell C MCNOMb30BaHNeM annapata cTaTu-
CTUYecKon GU3MKM 1 TEOPUN CTOXacTUYECKMX AnddepeHLmanbHbIX ypaBHEHUIA.

KnioueBble cnoBa: oCLMNNALMK; MONOXUTENbHbIE 1 OTPULATENbHbIE CBA3MW; MOAENM TeHHbIX ceTell; dasoBble
NopTpeTbl; MHBapUaHTHble 061acTV U NOBEPXHOCTY; MHBApUaHTHbIe ClIoeHNA; oTobpaxeHue lNyaHKape; Teopema
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[pobmaHa-XapTmaHa; Teopema OpobeHunyca-MNeppoHa.

Introduction
At present time, investigation of questions of existence of
periodic trajectories (cycles) in phase portraits of systems of
non-linear differential equations simulating functioning of
various natural processes is carried out in most fields of applied
mathematics. Detection of such cycles, their localization in
the phase portraits, description of their characteristics, such
as stability, (non)uniqueness, etc. have a long history (Poin-
caré, 1892). These problems have generated a whole range of
research directions in pure mathematics: qualitative theory of
differential equations, theory of dynamics systems, etc., which
in turn have a great impact on corresponding applied disci-
plines. At their junction, the famous 16-th Hilbert’s problem,
and the “center-focus” problem, related to seemingly just a
pictorial case of two differential equations with two unknown
functions of one variable (time) have appeared.

Here, in the present paper, we study systems of kinetic
equations of higher dimensions, considered as functioning
of circular gene networks models:

G50 0

It is assumed here and below thatj=1,2,...,n; n> 3, and
that j—1= n, if j =1. In all these equations, non-negative
functions x;(¢) denote concentrations of species in the gene

networks, and positive coefficients k; characterize the rates of
their degradations (Likhoshvai et al., 2020).

Consider the system (1) in the vector form Ccli_)t( = F(X),

where the vector-function X(¢) is defined by its coordinate
functions x;(7). The divergence of this vector-field F(X) is
constant and negative:

div F(X) =k, ~k,— ...~ k, <O0.

It is well-known (Arnold, 1989) that in this case, n-di-
mensional volume of any finite domain in the phase portrait
decreases exponentially during the shifts of its points along
trajectories of the system (1) as ¢ grows. This does not mean
that each such domain collapses to a point. For the dynamical
systems considered here, these limit sets are two-dimensional
invariant surfaces in their n-dimensional phase portraits.
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We call the dynamical system (1) block-linear if for all j
each function f; which describes the rate of synthesis of the
Jj-th component of the gene network is a step-function (thresh-
old function)

SO =L)=ka, if0<y<1;L(y)=0,ify>1;
orf(»=T(»)=0,if0<y<L;T(y) =ka, ify>1.

Here, a; are some positive constants. Decreasing func-
tions L; describe negative feedbacks in the gene network and
increasing functions I’; correspond to positive feedbacks.

For one particular case ;=1 forall j, investigation of cycles
of similar block-linear systems was realized in (Glass, Paster-
nack, 1978; Akinshin et al., 2013; Ayupova, Golubyatnikov,
2014; Golubyatnikov, Gradov, 2021). Under the same assump-
tions, questions of existence of cycles in smooth analogues of
these systems were studied in (Elowitz, Leibler, 2000; Glyzin
et al., 2016; Kolesov et al., 2016) in the cases when these
systems are symmetric with respect to cyclic permutations
of pairs of the variables x;.

In recent publications (Golubyatnikov, Ivanov, 2018; Golu-
byatnikov, Minushkina, 2019, 2020; Likhoshvai et al., 2020;
Ivanov, 2022), existence, uniqueness, and stability of the
cycles of block-linear dynamical systems of some different
dimensions with arbitrary positive coefficients k; were proved
with the help of stratification of phase portraits to subdomains
according to behavior of trajectories. It was shown there that
these phase portraits contain cycles if and only if a;>1 for
all j and that the parallelepiped 0" =[0,a,]*[0,a,]*...x[0,a,]
in the positive octant of the space R” is a positively invariant
domain of the dynamical system (1). This means that trajec-
tories of all points of the domain 0" do not leave it and that
all cycles of the system (1) are contained in the interior of Q.
We consider below the dynamical systems of the type (1) in
the case @;>1 for all j only. Physical interpretation of this
condition means that the maximal rate of synthesis of any
component of the gene network exceeds that of its degra-
dation.

We decompose the domain Q" by the planes x;=1 to 2"
smaller parallelepipeds, which we call blocks and enumerate
by binary multi-indices: {€,¢,...€,}=1,(g,) X L,(g,) % ... X1 (€,).
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Here, each index ¢; equals 0 or 1, and /,(0) = [0, 1], I(1) =
=(l,q)]. Let E be the common point of all these blocks (all its
coordinates equal one). In each of these blocks, the equations
of the system (1) take the simplest linear form

B - a1 =5,
and solution to the Cauchy problem for this system has a
simple representation

xj(t) = aj(l - gj;]) + ()CJ(O) - aj(l - 8]-71)) exp(—kjt). (2)

In the present paper, for some low dimensional block-linear
dynamical systems considered as models of gene networks
functioning, we study the behavior of ensembles of their
trajectories and show the existence of families of two-dimen-
sional surfaces that are invariant with respect to shifts along
trajectories of these systems and contain their cycles. This
makes the qualitative analysis of trajectory behavior and in-
terpretation of numerical experiments with these models much
simpler.

Three-dimensional dynamical system
In the papers (Golubyatnikov et al., 2018; Golubyatnikov,
Ivanov, 2018), we considered a 3D block-linear dynamic
system:
dx dx dx
Ttl =L,(xy)—kyx,; th =Ly(x)—kyxy; 7; =Ly(x)—kyxs. (3)

Trajectories of all points of the block {001} pass through
six blocks of decomposition of the domain Q° from block
to block according to arrows of the following diagram only:

...—{001}—{011}—>{010}—
{110} — {100} —{101}— {001} ... 4)

Denote by W13 aunion of blocks listed in the diagram, this
is a positive invariant domain of the system (3), its interior
is homeomorphic to torus. Note that trajectories of points of
two blocks, {000} and {111}, eventually leave them in the in-
variant domain W13 and further stay there. Thus, cycles of the
system (3) do not intersect these two blocks (Golubyatnikov
et al., 2018). Stratification of phase portrait of the system (3)
consists of two parts: the domain W13 and the union of two
blocks, {000}, {I111}.

Consider a two-dimensional face £;= {001} N {011} which
separates the blocks {001} and {011} as well as other faces
F, which separate incident blocks of the diagram (4):

F, = {011}N{010}, F, = {010} N{110},
Fy={110}N{100},... F5={101}N{001}.

After transition along all six arrows of this diagram, trajec-
tories of all points of the face F; return to it, each trajectory
with its own time. Composition ¥: F,—F|, of all these six
shifts from face F, to face F,,,, m=0,1,2,3,4, and F's—F|,
is called the Poincaré map.

On the face F, let us introduce a coordinate system (w,; w,)
with the origin at the point £ = (1; 1; 1) such that coordinates
wy, w, of all points of this face are non-negative: w, = 1—x,;
w, = x;—1. Let the Poincaré map be written by equation

W(W1§W2) = (\V1(W1§W2)§ \Vz(W1§W2))~

760

Stratifications and foliations
in phase portraits of gene network models

The main technical result of the papers (Golubyatnikov et al.,
2018; Golubyatnikov, Ivanov, 2018) is the following

Lemma 1: a) the Poincaré map is monotonic: if for points

A(vy;v,) and B(w;w,) relations v| <w, and v, <w,, are sa-

tisfied then \y,(v,;v,) <y, (wysw,) and yy(vy;v,) <y, (wy; w,).

For this partial order relation, we use a notation: A < B,

Y(4) <¥(B);

b) if w, and w, are sufficiently small then w,< y,(w,;w,)

and wy< \y,(w;;w,), i.e., B<Y(B);

c) at each point of the face F\, the first derivatives of the

coordinate functions | and \y, are strictly positive and their

second derivatives are strictly negative.

This implies that the Poincaré map ¥:F)—F has two fixed
points exactly; one of them is the point £; which lies at the
boundary of /, and the other one, denoted by P, is contained
in the interior of the face F, (Golubyatnikov, Ivanov, 2018).
Trajectory of the point P returns to this point after transition
through the blocks of the diagram (4) and, therefore, it is a
cycle. Since the map ¥ has just one nontrivial fixed point Pk,
the system (3) does not have any other cycles.

In the same paper, for the fixed points £; and Px of the
Poincaré map, Jacobian matrices J,(E5) and J,(Px) were cal-
culated and it was shown that the eigenvalues A, (Px), A,(Px)
of the matrix J,(Ps) are different, positive and do not exceed
one, which means exponential stability of the cycle of the
system (3). We denote this cycle discovered in (Golubyatni-
kov, Ivanov, 2018) by C;. Lemma 1 also implies that both
these Jacobian matrices are positive, so it is possible to use the
Frobenius—Perron theorem (Gantmacher, 1959) in our studies.

Note that the determinant of Jacobian matrix J,(E;) is
equal to one and for its eigenvalues A,(E5), A,(£;), relations
A (E;)>1>M(E;)> 0 are true. So, for the map ‘P, hypothesis of
Grobman—Hartman theorem (Hartman, 1964) is fulfilled. This
implies that in a sufficiently small neighborhood U(E;)C F,
of the point £, the Poincaré map is linearized by some con-
tinuous (in general terms, non-smooth) change of variables
(wy;w,) = (uy;u,). In such a coordinate system, W(u,;u,) =
= (M(ES) - uy; M(ES) - uy).

For sufficiently small € > 0, we denote by 72 < U(ES)
a triangle 0 < u, +u, < € with one vertex at the point £, and
let ﬁ; be a truncated face F,\T7.

Choose two segments [0, o,] and [0, a,] < [0, o,] in
this neighborhood so that o, = A,(E;) - 0. Let N; and N,
respectively, be the right endpoints of these segments, then
([0, a,]) =[0, a,] and ¥(N,) = N,; in the original coordinate
system (w,;w,), the segments [0, a,,] and [0, o, ] are represented
by arcs Dy < D, with a common endpoint £;. Consider action
of iterations of the Poincaré map to these arcs:

YD, =D, cD,=¥YD)cD,=¥YD,)cD, ...

The union Dx of infinite sequence of mutually embedded
arcs Dy is a continuous monotonic arc connecting the points
E; and Px; after transition along arrows of the diagram (4),
trajectories of points of D return to this arc: the semi-interval
D\D, passes to semi-interval D,\D, which passes in turn to
D;\D,, etc. Thus, trajectories of points of the arc D generate
an invariant (non-smooth) surface 2 bounded by the cycle C,
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in the invariant domain Wf — 0. By the construction, this
surface contains the point £,

Starting such constructions of small segments [N, N,] in
a neighborhood U(E;) with points N, which do not lie on
the axis E;u, and considering the images of these segments
under iterations of the Poincaré map ¥, we obtain a family
of continuous monotonic arcs which leave the neighbor-
hood U(E;) and do not contain the point £. For each pair of
points N, N, < U(E;)\ Equ, such that (V) = V,, the sequence
N,="Y(N,_,) tends monotonically to the fixed point Px of the
Poincaré map ¥ (Golubyatnikov et al., 2018). Here, each
segment [N, NV, ] generates, as above, a monotonic arc Dx(N,)
being invariant with respect to the Poincaré map. Trajectories
of points of such an arc, in their turn, form an invariant 2D
surface £2(N,) which intersects the surface 2 by the cycle
C, exactly.

In a similar way, one can construct invariant surfaces which
do not 1ntersect the neighborhood U(E;) in the domain W3
Let U(Px) cF be aneighborhood of the nontrivial fixed pomt
P., where the map ¥ can be linearized. We save the notations
(u,;u,) for these linearized coordinates. For sufficiently small
€ > 0, the Poincaré map transforms the ellipsis 51 cU(Py)
with equation A (P*)u + 7»2(P,,<)u2 = g2 to the 01rcle So ! with
the equation ulz + u2 = g2 Let [,(M,) be a segment Wthh
joins the point M, e §! with its image My="Y¥(M,)€S;. All
such segments are contained in U(Ps) in the ring between Sé
and Sll. Each of these segments generates a sequence of con-
tinuous arcs D, (M,), they are invariant with respect to the
Poincaré map, and V(D (M,))) = D,_,(M,). For each of these
arcs, trajectories of its points generate in Wl3 an invariant
surface bounded by the cycle C;.

Theorem 1. There exists two-dimensional invariant folia-

tion in the invariant domain Wl3 of the dynamical system (3);

its leaves fill Wl3 and contain the cycle C, on their bounda-

ries. One of these leaves contains the point E;.

Four-dimensional dynamical system
Recently, in the papers (Ayupova, Golubyatnikov, 2019;
Golubyatnikov, Minushkina, 2021), we considered a four-

dimensional block-linear system

il

dx,
L (x,)—kx;; dt =T (x, )-kx;r=2,3,4. (5

In partlcular case, when k; = 1 for all j, questions of exis-
tence, uniqueness, and stability of cycles of such systems
were studied in (Glass, Pasternack, 1978). Smooth analogues
of similar systems were considered in (Hastings et al., 1977;
Mallet-Paret, Smith, 1990).

An invariant domain Q" of the system (5) is decomposed
by hyperplanes x; = 1 to 16 blocks {¢, €,¢&,¢,}. Blocks of this
decomposition listed in the following diagram form an inva-
riant subdomain Wf in the phase portrait of (5)

.= {1111}—{0111}—{0011}— {0001} —
{0000} — {1000} — {1100} — {1110} —{1111}—... (6)
The arrows of this diagram show the only possible direc-

tion of trajectory transition from one block to another. The
subdomain W;‘ is one of two parts of stratification of the phase
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portrait of the system (5). For each block not listed here,
trajectories of its points can pass to three adjacent blocks, two
of them are contained in 7}, and one is in Q*\’} (this is the
second part of the stratification mentioned above). Algorithms
of construction of such diagrams for the systems of arbitrary
dimensions, both smooth and blocks-linear, are described in
(Kazantsev, 2015; Kirillova, Minushkina, 2019).

As in previous sections, let us denote by J, an intersection
of two adjacent blocks {1111}N{0111} in the diagram (6).
After eight steps according to its arrows under shifts along
trajectories, all points of this three-dimensional face return
to F,. Let ¥,: F, —F, be a corresponding Poincaré map,
T, c UE,) be apyramid 0 <u, +u,+u; <& with the vertex at
the point £, = (1; 1; 1; 1), and TO be a truncated face )\ T3,

In the paper (Golubyatnlkov Minushkina, 2021), it was
shown that all statements of Lemma 1 are true for the map 'V,
thus, this map has two fixed points exactly: £, and the point I1.
which is contained in the interior of the face F,. This means
that the invariant domain Wf of the system (5) contains one
cycle exactly, let us denote it by C,. The following results
were also established there.

Lemma 2: a) the Jacobi matrices J(E,) and J;(I1«) and

their determinants are positive;

b) det J5(E,) = M(E,) - M(E) - M(Ep) =1

c) magnitudes of eigenvalues of the matrix J;(Il«) are less

than one.

This implies the exponential stability of the cycle C, and
possibility of linearization of the Poincaré map ‘¥, in some
small neighborhood U(I1) of its fixed point IT«. According to
the Frobenius—Perron theorem, one of the eigenvalues of the
matrix J;(I1.) is positive and greater than the magnitudes of
the remaining eigenvalues. The same applies to the eigenval-
ues of the matrix J;(£,). Let us enumerate the eigenvalues of
Jacobi matrices in order of decreasing of their absolute values:
Ay > [Ay| = |As]. Let (uy; uy; us) be the coordinates where ¥,
is linear

D(uy; uys uy) = (AT - 1045 A(TTe) - 1055 Ay(TLe) - 115).

As in the case of the system (3), for a sufficiently small
€>0, the Poincaré map translates the ellipsoid Sf with the
equation A, (IT«)uf + |A,(I1« )|u§ + A (H*)|u3 =¢2 to the
sphere S2 w1th the equation uf + u3 + u3 = €2.

Theorem 2. lfa;> 1 forallj =1,2,3,4, and the Jacobi

matrix Jy(E,) of the Poincaré map does not have eigen-

values with unit module then there exists an invariant folia-
tion in the domain Wf; its leaves fill this invariant domain
and contain the cycle C,. One of these leaves contains the

point E,.

Dynamical systems of higher dimensions
In the papers (Gaidov, Golubyatnikov, 2014; Ayupova, Golu-
byatnikov, 2021), we considered a five-dimensional block

linear dynamical system
X, =L, (xs)—kx,; Xy = Ly(x))—kyxy; ... X5 = Ly(x,)—kgxs, (7)

for which, as in previous sections, an invariant domain Q° =
=[0,a,1x[0, a,] ... %[0, as] and its decomposition to blocks
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by the hyperplanes x; = 1 were constructed. Ten blocks of this
decomposition form a stratum J¥? < O3 which is invariant
with respect to shifts along trajectories of the system (7)
passing through the blocks according to arrows of a cyclic dia-
gram, similar to (4) and (6):
...—{10101}—{00101}—{01101}—{01001}—
{01011} —{01010}— {11010} — {10010} —
{10110} — {10100} — {10101} —...

Points of the four-dimensional face F04 ={10101}N {00101}
under shifts along their trajectories after ten steps along the
arrows of the diagram return to the face F04.

For such a Poincaré map lI—‘S:FO“—>F04, an analogue of
Lemma 1 implies that the face FO4 contains two fixed points
of this map exactly: the point £5 = (1; 1; 1; 1; 1) and a
point [T} in the interior of this face. The domain W15 contains
one cycle exactly. Let us denote it by Cs. This cycle is stable
and passes through the point I} (Ayupova, Golubyatnikov,
2021).

As in previous sections, an analogue of Lemma 2 holds:
Jacobi matrices J,(E5), J,(IT3) and their determinants are
positive, detJ,(£5) = 1.

The magnitudes of eigenvalues of the matrix J,(I13) do
not exceed one. In the case when these Jacobi matrices do
not have any eigenvalues modulo equal to 1, construction of
the invariant surface 2 W15 with the boundary C; and an
invariant foliation in the domain 15 is carried out exactly in
the same way as above.

In the paper (Golubyatnikov, Gradov, 2021), conditions under
which a non-invariant stratum Q3 \(Wl5 U{00000}U{11111})
of the phase portrait of the five-dimensional system (7) con-
tains one more of its cycle were established.

Similar constructions can be done for a block-linear ana-
logue of the six-dimensional Elowitz—Leibler system (Elowitz,
Leibler, 2000) studied in (Minushkina, 2021; Golubyatnikov,
Minushkina, 2022)
ity = Ly(py)—kymy; py = Ty (m)=Lypy; iy = Ly(py)—=kymy;

Py =y(my) =Ly 1y = Ly(py) —kymy; py = T5(my)—Lips. (8)

Here, the variables m; and p; and denote concentrations of
three mRNAs and proteins TetR, Lacl and Acl, corresponding
to them (Elowitz, Leibler, 2000; Kolesov et al., 2016).

An invariant domain Q° = Hjil[O, a]*[0, bj], where b,
are the maximum values of step functions [ divided by the
coefficients /, j =1, 2, 3, is decomposed by six hyperplanes
m; = 1, p;= 1, j=1, 2,3, to 64 blocks which form a strati-
fication of 0 to three subdomains, W, W, and W, with
different qualitative trajectory behavior.

The domain W56 consists of 12 blocks, from which tra-
jectories can transit to 5 adjacent blocks. In the symmetric
case when k; = [;= 1, there are no cycles in this subdomain.
However, W56 contains a two-dimensional invariant surface
consisting of piecewise linear trajectories attracting by the
point £, = (1; 1; 1; 1; 1; 1) in a spiral way.

In the domain Wf’ formed by 12 blocks, from which tra-
jectories can enter one adjacent block only, the Poincaré map
contains a unique non-trivial fixed point 1%, the trajectory of
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which is a stable limit cycle for all trajectories in this domain
(Golubyatnikov, Minushkina, 2022).

In the domain W36 which consists of 40 blocks, state tran-
sition diagram has a more complicated combinatorial struc-
ture. At present time, transitions of trajectories from one
block to another in this subdomain have not been studied
completely yet.

For smooth analogues of the dynamical system (8), the
uniqueness of equilibrium point was established in (Ayupova
et al., 2017). As in the case of block linear systems, hyper-
planes passing through the equilibrium point and being parallel
to coordinate ones decompose the invariant domain Q° to 64
blocks. If a linearization matrix of such smooth system in its
equilibrium point has eigenvalues with positive and negative
real parts and does not have any imaginary eigenvalues then
the invariant domain Wf contains a cycle C; of this sytem
(Ayupova et al., 2017). In the paper (Kirillova, 2020), con-
ditions of existence of an invariant surface bounded by the
cycle Cg in the domain ¢ were obtained.

Results of numerical experiments
The lefthand part of Figure shows 100 trajectories of the
dynamical system (3). Each of these trajectories is contained
in a corresponding leaf of the foliation in W]3 near the invari-
ant surface 2. The values of parameters of this system are:
k,=04; k,=0.3;k;=0.6;a,=1.3; a,= 1.4; a,= 1.7. The ini-
tial data are chosen in a random way in a rectangular neigh-
borhood of the point £;. The righthand part of this Figure
shows results of similar experiments with a smooth analogue
of the system (3):

dc 10 _dy 10 dz 10

G TD A Tee Yl T
Here, one can clearly see its invariant surface.

It was shown in (Golubyatnikov et al., 2018; Ayupova,
Golubyatnikov, 2021; Golubyatnikov, Minushkina, 2021;
Minushkina, 2021) that trajectories of block-linear dynamical
systems (3), (5), (7), (8) are piecewise smooth, the disconti-
nuities of their derivatives are located on the planes x; = 1,
this is clearly seen on the left part of Figure.

In order to perform numerical simulations of trajectories
of (3), we have developed a software project using the R pro-
gramming language (https://www.r-project.org/) and the Shiny
package (https://shiny.rstudio.com/). The source code is avail-
able on GitHub: https://github.com/AndreyAkinshin/pwLLL.

The simulations are performed in the cloud; the results are
described at https://aakinshin.net/posts/dscs2/. The library
ggplot (https://ggplot2.tidyverse.org/) is used here, as well
as the package deSolve (http://desolve.r-forge.r-project.org/)
that contains integration routines previously used to simulate
other systems of gene networks. The user interface allows one
to specify all parameters of the system (3).

Conclusion

In this paper, we have described a construction of invariant fo-
liations, i. e. the families of invariant two-dimensional surfaces
in phase portraits of low-dimensional block-linear models
of circular gene networks. It was shown that on each leaf of
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Results of numerical experiments with trajectories of the 3D systems.

these foliations, trajectories of all its points are repelled by
the boundary of the central part of the phase portrait and they
are attracted by the limit cycle which describes an oscillating
functioning of the corresponding gene network. Theorem 1
is illustrated by numerical experiments.

For the kinetic dynamical systems under consideration, the
leaves of invariant foliations in the phase portraits play the role
of level surfaces of collections of motion integrals studied in
classical mechanics (Poincaré, 1892; Arnold, 1989). Reduction
of dimensions of invariant subsets in the phase portraits allows
us to give a digestible description of trajectories behavior and,
in particular, simplifies considerably numerical experiments
with such gene networks models (Likhoshvai et al., 2020).
Construction of the foliations mentioned above and investiga-
tion of their geometric properties can be useful in studies of
dynamical characteristics of more complicated models of gene
networks functioning when a description of a big system is
given on the basis of known results on its subsystems which
have a simpler structure.
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