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Abstract. Periodic processes of gene network functioning are described with good precision by periodic trajecto-
ries (limit cycles) of multidimensional systems of kinetic-type differential equations. In the literature, such systems 
are often called dynamical, they are composed according to schemes of positive and negative feedback between 
components of these networks. The variables in these equations describe concentrations of these components 
as functions of time. In the preparation of numerical experiments with such mathematical models, it is useful to 
start with studies of qualitative behavior of ensembles of trajectories of the corresponding dynamical systems, in 
particular, to estimate the highest likelihood domain of the initial data, to solve inverse problems of parameter 
identification, to list the equilibrium points and their characteristics, to localize cycles in the phase portraits, to 
construct stratification of the phase portraits to subdomains with different qualities of trajectory behavior, etc. 
Such an à priori geometric analysis of the dynamical systems is quite analogous to the basic section “Investigation 
of functions and plot of their graphs” of Calculus, where the methods of qualitative studies of shapes of curves de-
termined by equations are exposed. In the present paper, we construct ensembles of trajectories in phase portraits 
of some dynamical systems. These ensembles are 2-dimensional surfaces invariant with respect to shifts along the 
trajectories. This is analogous to classical construction in analytic mechanics, i. e. the level surfaces of motion inte-
grals (energy, kinetic moment, etc.). Such surfaces compose foliations in phase portraits of dynamical systems of 
Hamil tonian mechanics. In contrast with this classical mechanical case, the foliations considered in this paper have 
singularities: all their leaves have a non-empty intersection, they contain limit cycles on their boundaries. Descrip-
tion of the phase portraits of these systems at the level of their stratifications, and that of ensembles of trajectories 
allows one to construct more realistic gene network models on the basis of methods of statistical physics and the 
theory of stochastic differential equations.
Key words: oscillations; positive and negative feedbacks; gene network models; phase portraits; invariant domains 
and surfaces; invariant foliations; Poincaré map; Grobman–Hartman theorem; Frobenius–Perron theorem.
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Аннотация. Периодические процессы функционирования широкого класса генных сетей с хорошей точно-
стью описываются предельными циклами многомерных систем дифференциальных уравнений кинетиче-
ского типа. Такие системы, часто называемые в литературе динамическими, составляются по схемам положи-
тельных и отрицательных связей между компонентами моделируемых сетей. Искомые функции в уравнениях 
описывают зависимость от времени концентраций этих компонент. При планировании вычислительных 
экспериментов с подобными математическими моделями полезно предварительно описать качественное 
поведение ансамблей траекторий соответствующих динамических систем, в частности оценить области мак-
симального правдоподобия начальных данных, исследовать обратные задачи идентификации параметров, 
особые точки этих систем, локализовать в фазовых портретах положение циклов, в том числе предельных, 
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стратифицировать фазовые портреты на подобласти с качественно различным поведением траек торий и 
т. п. Такой априорный геометрический анализ рассматриваемых моделей генных сетей полностью аналоги-
чен хрестоматийному разделу начальных курсов математики «Исследование функций и построение графи-
ков», в котором описываются методы наглядного представления поведения кривых, определяемых уравне-
ниями. В настоящей  статье в фазовых портретах динамических систем, моделирующих функционирование 
кольцевых генных сетей, конструируются двумерные поверхности, инвариантные относительно сдвигов 
вдоль траекторий, – ансамбли траек торий. Просматривается естественная аналогия с классической кон-
струкцией аналитической механики  – с поверхностями уровня интегралов движения (энергия, импульс и 
др.). Такие поверхности образуют слоения в фазовых портретах динамических систем гамильтоновой меха-
ники. В отличие от задач механики, для рассматриваемых нами моделей генных сетей слоения, обра зуемые 
инвариантными поверхностями, имеют особенности, все их слои содержат на своих границах предельные 
циклы. Описание фазовых портретов динамических систем в терминах их стратификаций и ансамблей их 
траекторий позволит строить более реалистичные модели генных сетей с использова нием аппарата стати-
стической физики и теории стохастических дифференциальных уравнений.
Ключевые слова: осцилляции; положительные и отрицательные связи; модели генных сетей; фазовые 
 портреты; инвариантные  области и поверхности; инвариантные слоения; отображение Пуанкаре; теорема 
Гробмана–Хартмана; теорема Фробе ниуса–Перрона.

Introduction
At present time, investigation of questions of existence of 
periodic trajectories (cycles) in phase portraits of systems of 
non-linear differential equations simulating functioning of 
various natural processes is carried out in most fields of applied 
mathematics. Detection of such cycles, their localization in 
the phase portraits, description of their characteristics, such 
as stability, (non)uniqueness, etc. have a long history (Poin-
caré, 1892). These problems have generated a whole range of 
research directions in pure mathematics: qualitative theory of 
differential equations, theory of dynamics systems, etc., which 
in turn have a great impact on corresponding applied disci-
plines. At their junction, the famous 16-th Hilbert’s problem, 
and the “center-focus” problem, related to seemingly just a 
pictorial case of two differential equations with two unknown 
functions of one variable (time) have appeared. 

Here, in the present paper, we study systems of kinetic 
equations of higher dimensions, considered as functioning 
of circular gene networks models:
       dxj

dt  = fj(xj–1) – kj xj.
  

     (1)

It is assumed here and below that j = 1, 2, …, n; n ≥ 3, and 
that j – 1 = n, if  j = 1. In all these equations, non-negative 
functions xj (t) denote concentrations of species in the gene 
networks, and positive coefficients kj characterize the rates of 
their degradations (Likhoshvai et al., 2020). 

Consider the system (1) in the vector form dX
dt  = F(X ),

where the vector-function X(t) is defined by its coordinate 
functions xj(t). The divergence of this vector-field F(X ) is 
constant and negative: 

div F(X ) ≡ –k1 – k2 – … – kn < 0.

It is well-known (Arnold, 1989) that in this case, n-di-
mensional volume of any finite domain in the phase portrait 
decreases exponentially during the shifts of its points along 
trajectories of the system (1) as t grows. This does not mean 
that each such domain collapses to a point. For the dynamical 
systems considered here, these limit sets are two-dimensional 
invariant surfaces in their n-dimensional phase portraits. 

We call the dynamical system (1) block-linear if for all j 
each function  fj which describes the rate of synthesis of the  
j-th component of the gene network is a step-function (thresh-
old function) 

fj( y) ≡ Lj( y) = kj aj, if 0 ≤ y ≤ 1; Lj( y) ≡ 0, if y > 1;
or fj ( y) ≡ Γj ( y) ≡ 0, if 0 ≤ y ≤ 1; Γj ( y) ≡ kj aj, if y > 1.

Here, aj are some positive constants. Decreasing func-
tions Lj describe negative feedbacks in the gene network and 
increasing functions Γj correspond to positive feedbacks. 

For one particular case kj = 1 for all  j, investigation of cycles 
of similar block-linear systems was realized in (Glass, Paster-
nack, 1978; Akinshin et al., 2013; Ayupova, Golubyatnikov, 
2014; Golubyatnikov, Gradov, 2021). Under the same assump-
tions, questions of existence of cycles in smooth analogues of 
these systems were studied in (Elowitz, Leibler, 2000; Glyzin 
et al., 2016; Kolesov et al., 2016) in the cases when these 
systems are symmetric with respect to cyclic permutations 
of pairs of the variables xj.

In recent publications (Golubyatnikov, Ivanov, 2018; Go lu-
byatnikov, Minushkina, 2019, 2020; Likhoshvai et al., 2020; 
Ivanov, 2022), existence, uniqueness, and stability of the 
cycles of block-linear dynamical systems of some different 
dimensions with arbitrary positive coefficients kj were proved 
with the help of stratification of phase portraits to subdomains 
according to behavior of trajectories. It was shown there that 
these phase portraits contain cycles if and only if aj > 1 for  
all  j and that the parallelepiped Qn = [0, a1] × [0, a2] × … × [0, an] 
in the positive octant of the space ℝn is a positively  invariant 
domain of the dynamical system (1). This means that trajec-
tories of all points of the domain Qn do not leave it and that 
all cycles of the system (1) are contained in the interior of Qn. 
We consider below the dynamical systems of the type (1) in 
the case aj > 1 for all j only. Physical interpretation of this 
condition means that the maximal rate of synthesis of any 
component of the gene network exceeds that of its degra-  
dation. 

We decompose the domain Qn by the planes xj = 1 to 2n 

smaller parallelepipeds, which we call blocks and enumerate 
by binary multi-indices: {ε1 ε2 … εn}= I1(ε1) × I2(ε2) × … × In(εn).  
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Here, each index εj equals 0 or 1, and Ij(0) = [0, 1], Ij(1) = 
= (1, aj]. Let E be the common point of all these blocks (all its 
coordinates equal one). In each of these blocks, the equations 
of the system (1) take the simplest linear form

dxj
dt  = kj (xj – aj (1 – εj–1)),  

and solution to the Cauchy problem for this system has a 
simple representation 
         xj(t) = aj(1 – εj–1) + (xj(0) – aj(1 – εj–1)) exp(–kj t).    (2)

In the present paper, for some low dimensional block-linear 
dynamical systems considered as models of gene networks 
functioning, we study the behavior of ensembles of their 
trajectories and show the existence of families of two-dimen-
sional surfaces that are invariant with respect to shifts along 
trajectories of these systems and contain their cycles. This 
makes the qualitative analysis of trajectory behavior and in-
terpretation of numerical experiments with these models much  
simpler. 

Three-dimensional dynamical system 
In the papers (Golubyatnikov et al., 2018; Golubyatnikov, 
Ivanov, 2018), we considered a 3D block-linear dynamic  
system:
dx1
dt  = L1(x3) – k1x1; 

dx2
dt  = L2(x1) – k2x2; 

dx3
dt  = L3(x2) – k3x3.    (3)

Trajectories of all points of the block {001} pass through 
six blocks of decomposition of the domain Q3 from block 
to block according to arrows of the following diagram only:
                          …→{001}→{011}→{010}→
                       {110}→{100}→{101}→{001}…             (4)

Denote by W 3     1  a union of blocks listed in the diagram, this 
is a positive invariant domain of the system (3), its interior 
is homeomorphic to torus. Note that trajectories of points of 
two blocks, {000} and {111}, eventually leave them in the in-
variant domain W 3     1  and further stay there. Thus, cycles of the 
system (3) do not intersect these two blocks (Golubyatnikov 
et al., 2018). Stratification of phase portrait of the system (3) 
consists of two parts: the domain W 3     1  and the union of two 
blocks, {000}, {111}.

Consider a two-dimensional face F0 = {001}∩{011} which 
separates the blocks {001} and {011} as well as other faces  
Fm which separate incident blocks of the diagram (4): 

F1 = {011}∩{010}, F2 = {010}∩{110}, 
F3 = {110}∩{100},… F5 = {101}∩{001}.

After transition along all six arrows of this diagram, trajec-
tories of all points of the face F0 return to it, each trajectory 
with its own time. Composition Ψ: F0→F0 of all these six 
shifts from face Fm to face Fm+1, m = 0, 1, 2, 3, 4, and F5→F0 
is called the Poincaré map. 

On the face F0, let us introduce a coordinate system (w1; w2) 
with the origin at the point E3 = (1; 1; 1) such that coordinates  
w1, w2 of all points of this face are non-negative: w1 = 1 – x2; 
w2 = x3 – 1. Let the Poincaré map be written by equation 

Ψ(w1; w2) = (ψ1(w1; w2); ψ2(w1; w2)).

The main technical result of the papers (Golubyatnikov et al., 
2018; Golubyatnikov, Ivanov, 2018) is the following 

Lemma 1: а) the Poincaré map is monotonic: if for points  
A(v1; v2) and B(w1; w2) relations v1 < w1 and v2 < w2, are sa-
tisfied then ψ1(v1; v2) < ψ1(w1; w2) and ψ2(v1; v2) < ψ2(w1; w2). 
For this partial order relation, we use a notation: A  B, 
Ψ(A)  Ψ(B); 
b) if w1 and w2 are sufficiently small then w1 < ψ1(w1; w2) 
and w2 < ψ2(w1; w2), i. e., B  Ψ(B); 
c) at each point of the face F0, the first derivatives of the 
coordinate functions ψ1 and ψ2 are strictly positive and their 
second derivatives are strictly negative.
This implies that the Poincaré map Ψ:F0→F0 has two fixed 

points exactly; one of them is the point E3 which lies at the 
boundary of F0 and the other one, denoted by P* , is contained 
in the interior of the face F0 (Golubyatnikov, Ivanov, 2018). 
Trajectory of the point  P* returns to this point after transition 
through the blocks of the diagram (4) and, therefore, it is a 
cycle. Since the map Ψ has just one nontrivial fixed point P* , 
the system (3) does not have any other cycles. 

In the same paper, for the fixed points E3 and  P*  of the 
Poincaré map, Jacobian matrices J2(E3) and J2(P*) were cal-
culated and it was shown that the eigenvalues λ1(P*), λ2(P*) 
of the matrix J2(P*) are different, positive and do not exceed 
one, which means exponential stability of the cycle of the 
system (3). We denote this cycle discovered in (Golubyatni-
kov, Ivanov, 2018) by ℂ3. Lemma 1 also implies that both 
these Jacobian matrices are positive, so it is possible to use the 
Frobenius–Perron theorem (Gantmacher, 1959) in our studies.

Note that the determinant of Jacobian matrix J2(E3) is 
equal to one and for its eigenvalues λ1(E3), λ2(E3), relations  
λ1(E3) > 1 > λ2(E3) > 0 are true. So, for the map Ψ, hypothesis of 
Grobman–Hartman theorem (Hartman, 1964) is fulfilled. This 
implies that in a sufficiently small neighborhood U(E3) ⸦ F0 
of the point E3, the Poincaré map is linearized by some con-
tinuous (in general terms, non-smooth) change of variables 
(w1; w2)  (u1; u2). In such a coordinate system, Ψ(u1; u2) = 
= (λ1(E3) · u1; λ2(E3) · u2).

For sufficiently small ε > 0, we denote by T 2   ε  ⸦ U(E3) 
a triangle 0 ≤ u1 + u2 < ε with one vertex at the point E3 and 
let F0 be a truncated face F0\T 2   ε . 

Choose two segments [0, α1] and [0, α0] ⸦ [0, α1] in 
this neighborhood so that α1 = λ1(E3) · α0. Let N1 and N0, 
respectively, be the right endpoints of these segments, then  
Ψ([0, α0]) = [0, α1] and Ψ(N0) = N1; in the original coordinate 
system (w1; w2), the segments [0, α0] and [0, α1] are represented 
by arcs D0 ⸦ D1 with a common endpoint E3. Consider action 
of iterations of the Poincaré map to these arcs: 

Ψ(D0) = D1 ⸦ D2 := Ψ(D1) ⸦ D3 := Ψ(D2) ⸦ D4 …   

The union D* of infinite sequence of mutually embedded 
arcs Dk is a continuous monotonic arc connecting the points  
E3 and P* ; after transition along arrows of the diagram (4), 
trajectories of points of D* return to this arc: the semi-interval  
D1\D0 passes to semi-interval D2\D1 which passes in turn to  
D3\D2, etc. Thus, trajectories of points of the arc D* generate 
an invariant (non-smooth) surface Σ2 bounded by the cycle ℂ3 
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in the invariant domain W 3     1 ⸦ Q3. By the construction, this 
surface contains the point E3. 

Starting such constructions of small segments [N0, N1] in 
a neighborhood U(E3) with points N0 which do not lie on 
the axis E3u1 and considering the images of these segments 
under iterations of the Poincaré map Ψ, we obtain a family 
of continuous monotonic arcs which leave the neighbor-
hood U(E3) and do not contain the point E3. For each pair of 
points N0, N1 ⸦ U(E3)\ E3u1 such that Ψ(N0) = N1, the sequence 
Nk = Ψ(Nk–1) tends monotonically to the fixed point P*  of the 
Poincaré map Ψ (Golubyatnikov et al., 2018). Here, each 
segment [N0, N1] generates, as above, a monotonic arc D* (N0)  
being invariant with respect to the Poincaré map. Trajectories 
of points of such an arc, in their turn, form an invariant 2D 
surface Σ2(N0) which intersects the surface Σ2 by the cycle  
ℂ3 exactly. 

In a similar way, one can construct invariant surfaces which 
do not intersect the neighborhood U(E3) in the domain W 3     1. 
Let U(P* ) ⸦ F0 be a neighborhood of the nontrivial fixed point 
P* , where the map Ψ can be linearized. We save the notations 
(u1; u2) for these linearized coordinates. For sufficiently small 
ε > 0, the Poincaré map transforms the ellipsis S 1   1 ⸦ U(P* ) 
with equation λ1(P*)u 2   1  + λ2(P*)u 2   2  = ε2 to the circle S 1   0 with 
the equation u 2   1  + u 2   2  = ε2. Let I1(M0) be a segment which 
joins the point M1  S 1   1 with its image M0 = Ψ(M1)  S 1   0 . All 
such segments are contained in U(P* ) in the ring between S 1   0   
and S 1   1  . Each of these segments generates a sequence of con-
tinuous arcs Dk(M0), they are invariant with respect to the 
Poincaré map, and Ψ(Dk(M0)) = Dk–1(M0). For each of these 
arcs, trajectories of its points generate in W 3     1 an invariant 
surface bounded by the cycle ℂ3. 

Theorem 1. There exists two-dimensional invariant folia-
tion in the invariant domain W 3     1 of the dynamical system (3); 
its leaves fill W 3     1 and contain the cycle ℂ3 on their bounda-
ries. One of these leaves contains the point E3.

Four-dimensional dynamical system  
Recently, in the papers (Ayupova, Golubyatnikov, 2019; 
Golubyatnikov, Minushkina, 2021), we considered a four-
dimensional block-linear system

       
dx1
dt  = L1(x4) – k1x1; 

dxr
dt  = Гr (xr–1) – kr xr; r = 2, 3, 4.     (5)

In particular case, when kj = 1 for all j, questions of exis-
tence, uniqueness, and stability of cycles of such systems 
were studied in (Glass, Pasternack, 1978). Smooth analogues 
of similar systems were considered in (Hastings et al., 1977; 
Mallet-Paret, Smith, 1990). 

An invariant domain Q4 of the system (5) is decomposed 
by hyperplanes xj = 1 to 16 blocks {ε1 ε2 ε3 ε4}. Blocks of this 
decomposition listed in the following diagram form an inva-
riant subdomain W 4     1 in the phase portrait of (5) 

…→{1111}→{0111}→{0011}→{0001}→
       {0000}→{1000}→{1100}→{1110}→{1111}→…  (6)

The arrows of this diagram show the only possible direc-
tion of trajectory transition from one block to another. The 
subdomain W 4     1 is one of two parts of stratification of the phase 

portrait of the system (5). For each block not listed here, 
 trajectories of its points can pass to three adjacent blocks, two 
of them are contained in W 4     1, and one is in Q4\W 4     1 (this is the 
second part of the stratification mentioned above). Algorithms 
of construction of such diagrams for the systems of arbitrary 
dimensions, both smooth and blocks-linear, are described in 
(Kazantsev, 2015; Kirillova, Minushkina, 2019). 

As in previous sections, let us denote by 0 an intersection 
of two adjacent blocks {1111}∩{0111} in the diagram (6). 
After eight steps according to its arrows under shifts along 
trajectories, all points of this three-dimensional face return 
to 0. Let Ψ4: 0 → 0 be a corresponding Poincaré map,  
T 3   ε ⸦ U(E4) be a pyramid 0 ≤ u1 + u2 + u3 < ε with the vertex at 
the point E4 = (1; 1; 1; 1), and 0  be a truncated face 0\ T 3   ε . 

In the paper (Golubyatnikov, Minushkina, 2021), it was 
shown that all statements of  Lemma 1 are true for the map Ψ4, 
thus, this map has two fixed points exactly: E4 and the point П* 
which is contained in the interior of the face 0. This means 
that the invariant domain W 4     1 of the system (5) contains one 
cycle exactly, let us denote it by ℂ4. The following results 
were also established there. 

Lemma 2: a) the Jacobi matrices J3(E4) and J3(П*) and 
their determinants are positive; 
b) det J3(E4) = λ1(E4) · λ2(E4) · λ3(E4) = 1;
c) magnitudes of eigenvalues of the matrix J3(П*) are less 
than one. 
This implies the exponential stability of the cycle ℂ4 and 

possibility of linearization of the Poincaré map Ψ4 in some 
small neighborhood U(П*) of its fixed point П*. According to 
the Frobenius–Perron theorem, one of the eigenvalues of the 
matrix J3(П*) is positive and greater than the magnitudes of 
the remaining eigenvalues. The same applies to the eigenval-
ues of the matrix J3(E4). Let us enumerate the eigenvalues of 
Jacobi matrices in order of decreasing of their absolute values:  
λ1 > |λ2| ≥ |λ3|. Let (u1; u2; u3) be the coordinates where Ψ4 
is linear 

Φ(u1; u2; u3) = (λ1(Π*) · u1; λ2(Π*) · u2; λ3(Π*) · u3).
As in the case of the system (3), for a sufficiently small  

ε > 0, the Poincaré map translates the ellipsoid S 2   1 with the 
equation λ1(Π*)u 2   1  + |λ2(Π*)|u 2   2  + |λ3(Π*)|u 2   3  = ε2 to the  
sphere S 2   0 with the equation u 2   1  + u 2   2  + u 2   3  = ε2.

Theorem 2. If aj > 1 for all j = 1, 2, 3, 4, and the Jacobi 
 matrix J3(E4) of the Poincaré map does not have eigen-
values with unit module then there exists an invariant folia-
tion in the domain W 4     1; its leaves fill this invariant domain 
and contain the cycle ℂ4. One of these leaves contains the 
point E4.

Dynamical systems of higher dimensions 
In the papers (Gaidov, Golubyatnikov, 2014; Ayupova, Golu-
byatnikov, 2021), we considered a five-dimensional block 
linear dynamical system 

1 = L1(x5) – k1x1; 2 = L2(x1) – k2x2; … 5 = L5(x4) – k5x5,   (7)

for which, as in previous sections, an invariant domain Q5 = 
= [0, a1] × [0, a2] × … × [0, a5] and its decomposition to blocks 
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by the hyperplanes xj = 1 were constructed. Ten blocks of this 
decomposition form a stratum  W 5     1  ⸦ Q5 which is invariant 
with respect to shifts along trajectories of the system (7) 
 passing through the blocks according to arrows of a cyclic dia-
gram, similar to (4) and (6):

…→{10101}→{00101}→{01101}→{01001}→ 
{01011}→{01010}→{11010}→{10010}→ 

{10110}→{10100}→{10101}→…   
Points of the four-dimensional face F 4   0  = {10101}∩{00101} 

under shifts along their trajectories after ten steps along the 
arrows of the diagram return to the face F 4   0 . 

For such a Poincaré map Ψ5:F 4   0 →F 4   0 , an analogue of 
Lemma 1 implies that the face F 4   0  contains two fixed points 
of this map exactly: the point E5 = (1; 1; 1; 1; 1) and a  
point П5

    * in the interior of this face. The domain W 5     1 contains 
one cycle exactly. Let us denote it by ℂ5. This cycle is stable 
and passes through the point П5

    * (Ayupova, Golubyatnikov, 
2021).

As in previous sections, an analogue of Lemma 2 holds: 
Jacobi matrices J4(E5), J4(П5

    *) and their determinants are 
positive, det J4(E5) = 1. 

The magnitudes of eigenvalues of the matrix J4(П5
    *) do 

not exceed one. In the case when these Jacobi matrices do 
not have any eigenvalues modulo equal to 1, construction of 
the invariant surface Σ2 ⸦ W 5     1  with the boundary ℂ5 and an 
invariant foliation in the domain W 5     1  is carried out exactly in 
the same way as above. 

In the paper (Golubyatnikov, Gradov, 2021), conditions under 
which a non-invariant stratum Q5 \ (W 5     1 {00000} {11111}) 
of the phase portrait of the five-dimensional system (7) con-
tains one more of its cycle were established. 

Similar constructions can be done for a block-linear ana-
logue of the six-dimensional Elowitz–Leibler system (Elowitz, 
Leibler, 2000) studied in (Minushkina, 2021; Golubyatnikov, 
Minushkina, 2022) 

1 = L1( p3) – k1m1; 1 = Г1 (m1) – l1 p1; 2 = L2( p1) – k2m2; 

2 = Г2 (m2) – l2 p2; 3 = L3( p2) – k3m3; 3 = Г3 (m3) – l3 p3.   (8)

Here, the variables mj and pj and denote concentrations of 
three mRNAs and proteins TetR, Lacl and λcl, corresponding 
to them (Elowitz, Leibler, 2000; Kolesov et al., 2016). 

An invariant domain Q6 = Π 3     j =1[0, aj] × [0, bj], where bj 
are the maximum values of step functions Гj divided by the 
coefficients lj,  j = 1, 2, 3, is decomposed by six hyperplanes 
mj = 1,  pj = 1,  j = 1, 2, 3, to 64 blocks which form a strati-
fication of Q6 to three subdomains, W 6     1 , W 6     3 , and W 6     5 , with 
different qualitative trajectory behavior. 

The domain W 6     5  consists of 12 blocks, from which tra-
jectories can transit to 5 adjacent blocks. In the symmetric 
case when kj = lj = 1, there are no cycles in this subdomain. 
However, W 6     5  contains a two-dimensional invariant surface 
consisting of piecewise linear trajectories attracting by the 
point E6 = (1; 1; 1; 1; 1; 1) in a spiral way. 

In the domain W 6     1  formed by 12 blocks, from which tra-
jectories can enter one adjacent block only, the Poincaré map 
contains a unique non-trivial fixed point  П6

    *, the trajectory of 

which is a stable limit cycle for all trajectories in this domain 
(Golubyatnikov, Minushkina, 2022).

In the domain W 6     3  which consists of 40 blocks, state tran-
sition diagram has a more complicated combinatorial struc-
ture. At present time, transitions of trajectories from one 
block to another in this subdomain have not been studied 
completely yet.

For smooth analogues of the dynamical system (8), the 
uniqueness of equilibrium point was established in (Ayupova 
et al., 2017). As in the case of block linear systems, hyper-
planes passing through the equilibrium point and being parallel 
to coordinate ones decompose the invariant domain Q6 to 64 
blocks. If a linearization matrix of such smooth system in its 
equilibrium point has eigenvalues with positive and negative 
real parts and does not have any imaginary eigenvalues then 
the invariant domain W 6     1  contains a cycle ℂ6 of this sytem 
(Ayupova et al., 2017). In the paper (Kirillova, 2020), con-
ditions of existence of an invariant surface bounded by the 
cycle ℂ6 in the domain W 6     1  were obtained. 

Results of numerical experiments 
The lefthand part of Figure shows 100 trajectories of the 
dynamical system (3). Each of these trajectories is contained 
in a corresponding leaf of the foliation in W 3     1  near the invari-
ant surface Σ2. The values of parameters of this system are: 
k1 = 0.4; k2 = 0.3; k3 = 0.6; a1 = 1.3; a2 = 1.4; a3 = 1.7. The ini-  
tial data are chosen in a random way in a rectangular neigh-
borhood of the point E3. The righthand part of this Figure 
shows results of similar experiments with a smooth analogue 
of the system (3):

dx
dt  = 10

1+ z3 – x; 
dy
dt  = 10

1+ x3  – y; 
dz
dt  = 10

1+ y3  – z.

Here, one can clearly see its invariant surface. 
It was shown in (Golubyatnikov et al., 2018; Ayupova, 

Golubyatnikov, 2021; Golubyatnikov, Minushkina, 2021; 
Minushkina, 2021) that trajectories of block-linear dynamical 
systems (3), (5), (7), (8) are piecewise smooth, the disconti-
nuities of their derivatives are located on the planes xj = 1, 
this is clearly seen on the left part of Figure.

In order to perform numerical simulations of trajectories 
of (3), we have developed a software project using the R pro-
gramming language (https://www.r-project.org/) and the Shiny 
package (https://shiny.rstudio.com/). The source code is avail-
able on GitHub: https://github.com/AndreyAkinshin/pwLLL.

The simulations are performed in the cloud; the results are 
described at https://aakinshin.net/posts/dscs2/. The library 
ggplot (https://ggplot2.tidyverse.org/) is used here, as well 
as the package deSolve (http://desolve.r-forge.r-project.org/) 
that contains integration routines previously used to simulate 
other systems of gene networks. The user interface allows one 
to specify all parameters of the system (3).

Conclusion
In this paper, we have described a construction of invariant fo-
liations, i. e. the families of invariant two-dimensional surfaces 
in phase portraits of low-dimensional block-linear models 
of circular gene networks. It was shown that on each leaf of 

https://www.r-project.org
https://shiny.rstudio.com/
https://github.com/AndreyAkinshin/pwLLL
https://aakinshin.net/posts/dscs2/
https://ggplot2.tidyverse.org/
http://desolve.r-forge.r-project.org/
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these foliations, trajectories of all its points are repelled by 
the boundary of the central part of the phase portrait and they 
are attracted by the limit cycle which describes an oscillating 
functioning of the corresponding gene network. Theorem 1 
is illustrated by numerical experiments. 

For the kinetic dynamical systems under consideration, the 
leaves of invariant foliations in the phase portraits play the role 
of level surfaces of collections of motion integrals studied in 
classical mechanics (Poincaré, 1892; Arnold, 1989). Reduction 
of dimensions of invariant subsets in the phase portraits allows 
us to give a digestible description of trajectories behavior and, 
in particular, simplifies considerably numerical experiments 
with such gene networks models (Likhoshvai et al., 2020). 
Construction of the foliations mentioned above and investiga-
tion of their geometric properties can be useful in studies of 
dynamical characteristics of more complicated models of gene 
networks functioning when a description of a big system is 
given on the basis of known results on its subsystems which 
have a simpler structure. 
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