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Abstract. Development of computer models imitating the work of the nervous systems of living organisms, taking into 
account their morphology and electrophysiology, is one of the important and promising branches of computational 
neurobiology. It is often sought to model not only the nervous system, but also the body, muscles, sensory systems, and 
a virtual three-dimensional physical environment in which the behavior of an organism can be observed and which 
provides its sensory systems with adequate data streams that change in response to the movement of the organism. 
For a system of hundreds or thousands of neurons, one can still hope to determine the necessary parameters and get 
the functioning of the nervous system more or less similar to that of a living organism – as, for example, in a recent work 
on the modeling of the Xenopus tadpole. However, of greatest interest, both practical and fundamental, are organisms 
that have vision, a more complex nervous system, and, accordingly, significantly more advanced cognitive abilities. 
Determining the structure and parameters of the nervous systems of such organisms is an extremely difficult task. 
Moreover, at the cellular level they change over time, these including changes under the influence of the streams of 
sensory signals they perceive and the life experience gained, including the consequences of their own actions under 
certain circumstances. Knowing the structure of the nervous system and the number of nerve cells forming it, at least 
approximately, one can try to optimize the initial parameters of the model through artificial evolution, during which 
virtual organisms will interact and survive, each under the control of its own version of the nervous system. In addition, 
in principle, the rules by which the brain changes during the life of the organism can also evolve. This work is devoted 
to the development of a neuroevolutionary simulator capable of performing simultaneous functioning of virtual or-
ganisms that have a visual system and are able to interact with each other. The amount of computational resources 
required for the operation of models of the physical body of an organism, the nervous system and the virtual environ-
ment was estimated, and the performance of the simulator on a modern desktop computing system was determined 
depending on the number of simultaneously simulated organisms.
Key words: nervous system; vision system; virtual organism; population; computational modeling; neuroevolution 
simulator.
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Аннотация. Создание компьютерных моделей, имитирующих работу нервных систем живых организмов с уче-
том их морфологии и электрофизиологии, – один из важных и перспективных разделов вычислительной нейро-
биологии. При наличии возможности стремятся моделировать не только нервную систему, но и тело, мышцы, 
сенсорные системы и виртуальную трехмерную физическую среду, в которой можно наблюдать поведение орга-
низма и которая обеспечивает его сенсорные системы адекватными потоками данных, изменяющимися в ответ 
на движение организма. Для системы из сотен или тысяч нейронов еще можно надеяться задать необходимые 
параметры и получить функционирование нервной системы, более-менее сходное с таковым для живого орга-
низма, как, например, в недавней работе по моделированию головастика Xenopus. Однако наибольший инте-
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рес, как практический, так и фундаментальный, представляют организмы, обладающие зрением, более сложной 
нервной системой и, соответственно, значительно более развитыми когнитивными способностями. Определить 
структуру и параметры нервных систем таких организмов представляется исключительно сложной задачей. Бо-
лее того, они изменяются с течением времени, в том числе под воздействием воспринимаемых ими потоков 
сенсорных сигналов и полученного жизненного опыта, включая последствия собственных действий при тех или 
иных обстоятельствах. Зная структуру нервной системы и число образующих ее нервных клеток хотя бы прибли-
зительно, можно попытаться оптимизировать начальные параметры модели посредством искусственной эво-
люции, в процессе которой виртуальные организмы будут взаимодействовать и выживать – каждый под управ-
лением собственной версии нервной системы. Помимо этого, эволюционировать могут и правила, по которым 
мозг изменяется на протяжении жизни организма. Данная работа посвящена созданию нейроэволюционного 
симулятора, способного осуществлять одновременное функционирование виртуальных организмов, обладаю-
щих зрительной системой, которые взаимодействуют между собой. Приведены расчеты, показывающие, сколь-
ко вычислительных ресурсов требуется для работы моделей физического тела организма, нервной системы и 
виртуальной среды обитания, а также определена производительность симулятора на современной настольной 
вычислительной системе в зависимости от числа одновременно моделируемых организмов.
Ключевые слова: нервная система; зрительная система; виртуальный организм; популяция; компьютерное моде-
лирование; нейроэволюционный симулятор.

Introduction
Computational models imitating the functioning of living or-
ganisms’ nervous systems, based on their electrophysiological 
and morphological data, are powerful tools in neuroscience. 
With their help it is possible, on the basis of knowledge and 
ideas about the functioning of individual nerve cells and the 
mechanisms of interaction between them, to calculate the 
dynamics of the activity of networks of nerve cells. The model 
of the nervous system functioning in combination with the 
model of the body of an organism equipped with muscular 
and sensory systems, placed in a virtual three-dimensional 
physical environment, provides the researcher with signifi-
cant advantages. First, one can observe and register both the 
behavior of the body model of an organism and the activity 
of the nervous system, up to the activity of individual nerve 
cells, their processes and synapses. Secondly, the model of 
the nervous system receives a stream of signals from the 
virtual environment that change in response to the actions 
of the organism, driven by a muscular system controlled by 
its “brain”, i. e. there is a constant feedback between actions 
and their consequences, just like in reality. One of the goals 
of such modeling is to check the adequacy of neural network 
models by comparing the activity of nervous systems of a real 
organism and its virtual ‘twin’, as well as their behavior.

Probably the most well-known creature in this context is 
one of the most simple multicellular organisms, invertebrate 
Caenorhabditis elegans, whose nervous system is composed 
of just 302 neurons (Sarma et al., 2018). Also, sufficiently 
convincing similarity between the real organism and the model 
was achieved for the Xenopus frog tadpole at the two-day stage 
of development, whose nervous system model was represented 
by a neural network composed of approximately 2300 neurons 
(Ferrario et al., 2021). However, neither C. elegans, nor the 
two days old Xenopus tadpole has a visual system.

Attempts to model much more complex organisms such 
as a mouse (~70 million neurons (Herculano-Houzel et al., 
2006)) or a rat (~200 million neurons (Herculano-Houzel, 
Lent, 2005)), including their nervous systems, have also been 
made. However, to date, their virtual twins have not yet been 
created. The work aimed at reverse engineering and modeling 
the nervous system of the Drosophila fruit fly (~100 thousand 

neu rons (Scheffer et al., 2020)) is also in progress. Another ex-
tremely promising object of investigation and modeling is ants 
(~250 thousand neurons (Moffet et al., 2021)). These insects 
have immobile compound eyes, consisting of 100…3000 om-
matidia – structural and functional units of such eyes (their 
number depends on the type of ant and its specialization), 
providing color vision with a rather modest resolution (from 
10×10 to 55×55 “pixels”). Thus, for example, the eyes of 
Myrmica ruginodis usually have 109 to 169 ommatidia, and 
those of Camponotus crassus and Pseudomyrmex adustus, 
which are active during daylight hours – up to 700 and 930, 
correspondingly (Aksoy, Camlitepe, 2018), and the maximal 
known number of ant ommatidia per eye, near 3000, was 
registered in tropical species Gigantiops destructor (Macquart 
et al., 2006).

It is noteworthy that ants are the simplest organisms that 
successfully pass the mirror test, i. e. they are able to distin-
guish their own reflection in a mirror from another ant, which 
they can see through ordinary transparent, non-mirror glass of 
the same size (Cammaerts M.-C., Cammaerts R., 2015). The 
principle of conducting a mirror test is worth mentioning. In 
front of a mirror, ants clean themselves up or make unusual 
movements of their head and antennae, which is not observed 
when they see relatives behind the glass. If a small mark (e. g. 
blue) is applied on the front of an ant’s head, then when it 
sees itself in the mirror, it will try to get rid of it, try to clean 
it off with the help of its legs. And if the mark is the same 
color as the body of the ant, or if it is applied to the back of 
the head, not visible in the mirror, then the ant will not show 
concern and attempts to clean it off. Thus, the ants notice the 
mark on themselves and behave as if they understand that it 
is on themselves, and not on another ant, relying solely on 
visual signals.

Computational modeling of both a single ant, with or with-
out a mark, able to see itself in a mirror, as well as multiple ants 
that can see and interact with each other and with surrounding 
objects is of considerable scientific interest. Orientation on 
the terrain in ants is also carried out mainly through vision 
(Buehlmann et al., 2020).

What are the requirements for a software system and com-
puting hardware capable of performing computer simulation 
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Fig. 1. Simple “ant” 3D body model, general view.
А – head, B – body, С – legs, D – a joint connecting body and legs. The head has 
a movable connection with the body.
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of a group of virtual organisms imitating ants (including body, 
muscle, sensory and nervous systems) and their habitat? It 
is assumed that organisms can interact with each other in 
the physical world and “see” each other, i. e. their nervous 
system receives a stream of video data corresponding to the 
first-person view as input. The problem of “digitizing” the 
structure of the nervous system, including 3D morphology of 
each neuron, its processes and synapses, is extremely labor- 
and time-consuming. However, this may not be essential, 
since the brain, even in ants, is quite plastic and undergoes 
noticeable structural changes during the life of the organism 
(Penick et al., 2021). At the same time, not much is known 
about the mechanisms underlying brain changes throughout 
life at the level of single neurons and connections between 
them. Therefore, it makes sense to pose the problem of mo-
deling an organism that has the body and sensory systems 
of an ant (at least visual and mechanosensory, as well as the 
simplest olfactory and taste receptors) and a nervous system 
with a similar number of neurons and synapses, but without 
a fixed connectome. How fast can such modeling be carried out 
and can one expect that virtual evolution in such a system will 
help artificial neural networks to achieve cognitive capabilities 
that will allow virtual organisms to effectively survive, solving 
more or less complex tasks related to finding food, avoiding 
hazards and performing other activities? 

Materials and methods
Software system. In accordance with the subject of the article, 
we are using computational modeling to deal with the prob-
lems to be solved – the research is carried out based on the 
software that we developed for conducting numerical experi-
ments in the field of neuroevolutionary modeling. It is based 
on a modern 3D physics engine named Unigine (unigine.com), 
which is used for developing games, virtual reality systems, 
interactive visualization software, educational systems in va-
rious areas, etc., supporting Windows and Linux platforms.

The physics simulation module supports collision detec-
tion, rigid body physics, various types of joints (hinged, ball, 
prismatic, cylindrical, etc.), dynamic destruction of objects, 
cloth, floating objects, force fields, time reversal, etc. (https://
developer.unigine.com/ru/docs/latest/principles/physics/). In 
Unigine it is possible to use mirrors, which may be useful in 
the future for conducting a “mirror test”. Also, it has built-in 
C++ programming language, which allows to develop and use 
one’s own program code – for example, to model networks of 
neurons that receive signals from virtual organisms sensory 
systems and control their movements.

An “ant” body model. The simple “ant” body model that 
we designed and used as a first prototype to evaluate the per-
formance of the simulator is shown in Figure 1. In the future, 
it is planned to develop and use a much more detailed and 
realistic version.

In the simplest test scene, food particles (shown in green) 
and several dozen virtual organisms are randomly placed on 
the plane (Fig. 2).

Visual system. Figure 3 shows examples of images per-
ceived by a “video camera” located on the body’s head, which 
is directed forward (at the moment only color mono-vision is 
implemented, although stereo is also planned for the future). 
The resolution of frames of ant’s video stream was chosen to 

be 30×30, which approximately corresponds to the average 
spatial resolution of visual systems of real ants considered 
earlier. Since the images themselves are quite small, for the 
convenience of perception in the figure they are proportion-
ally enlarged by 5 times (one color square of 5×5 pixels cor-
responds to one real “receptor” pixel).

An image can be represented as three matrices, each of 
which represents a separate color channel (red – R, green – G 
and blue – B). Each matrix has a size of 30×30, forming an 
array of data, Input, consisting of 2700 elements, organized 
in the following way:

Input (r) = R(i, j),   r = i · 30 + j,
Input (g) = G(i, j),   g = i · 30 + j + 900,
Input (b) = B(i, j),   b = i · 30 + j + 1800,

where 0 ≤ i < 30,   0 ≤ j < 30.
The simulation has a certain frame refresh rate, depending 

on the computational performance of the hardware, the com-
plexity of the simulated scene and the number of “ants”. With 
a certain frequency, each individual forms such an array, the 
content of which enters the “nervous system” of the organism.

Nervous system. Visual signals enter “nervous systems” of 
virtual organisms, which at the very beginning of the simula-
tion, for the first generation of “ants”, are randomly gene rated 
networks of artificial neurons, similar to those used in per-
ceptrons (Rosenblatt, 1962) for recognition of letters, digits 
and geometrical figures. In our case, the number of neurons in 
each network was about 3000. Within the lifetime of one indi-
vidual, networks have a static topology. Perceptron consists of 
S-elements (sensory), one or more layers of А-elements (as-
sociative) and R-elements (reacting). А-elements are defined 
by a set of weight matrices А1, А2, …, Аn and bias vectors 
b1, b2, …, bn. The array Input, mentioned above, is processed 
in the following way:

resulti = Ai · resulti – 1 + bi ,

where result0 is a layer of sensory elements, containing an  
array of visual data perceived by an “ant”, and i = 1,…, n. And 
acti vation of R-elements as a result of visual data process-
ing leads to the corresponding actions performed by the ant 
(change of speed, turn to the left or to the right).

https://developer.unigine.com/ru/docs/latest/principles/physics/
https://developer.unigine.com/ru/docs/latest/principles/physics/
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Fig. 2. General view of the simulation – test scene with a few dozens of virtual organisms.

Fig. 3. A few examples of the “first-person view”.
In the first one (on the left), one can distinguish another individual (top, in brown tones) and the shadow of the virtual organism perceiving 
this image (dark gray).

Simulation of evolution. Some variants of weights ma-
trices of perceptrons described above provide more efficient 
survival, i. e. the ability to perceive “first-person view” visual 
signals, analyze them and control the movement of the body 
in such a way that an organism regularly reaches food par-
ticles and maintains the necessary “energy level” in the body 
(satiated state). Organisms that remain hungry for too long 
die out and the “long-livers” have the opportunity to generate 
offsprings that inherit the structure of their neural networks. 
Currently, offspring is generated by only one parent (in nature 
such a reproduction mechanism, called parthenogenesis, also 
exists – in many types of arthropods, including 8 species of 
ants, as well as in about 70 species of vertebrates).

In the simulator, the current “energy level” of the organism 
is indicated as Satiety (t), with which the following quantities 
are associated: 

MaxSatiety – maximum organism satiety (15 by default);
BirthSatiety = MaxSatiety · 0.7  – the satiety of the orga­

nism, upon reaching which it gives birth to a descendant. When 
it happens, half of the available resources remains with the 
organism, and half passes to the descendant.

Each organism is initialized with Satiety (0) = 8. Each 
time after a certain period, it loses one satiety unit (because 
organism functioning “consumes energy”). At Satiety (t) = 0 
the organism dies. When eating food, the organism gains a 
satiety point until MaxSatiety is reached. 
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The child inherits the parent’s neural network with changes 
that are carried out according to the following rules:

ε, δ – random values which are distributed uniformly;
ε  [a, b] – probability of changes in neuron parameters 

(“mutation”), 0 ≤ a ≤ b ≤ 1;
δ   [c, d ] – the amount of weight change in the matrix ele-

ment as a result of mutation, c ≤ d. Parameters a, b, c  and d 
can be changed by user. 

Every element of weight matrices and bias vectors, Ak (i, j ) 
and bk (l ) (k = 1, …, n) changes by +δ or –δ with probability ε.

Results
At the current stage of the work, the main achieved result 
is the development of the simulator prototype (including 
a three-dimensional physical world, a model of the physical 
body of an ant, a model of the visual system and a model of 
the nervous system), as well as measurements of its perfor-
mance on various computing systems, depending on their 
characteristics and on the number of neurons in the nervous 
system of virtual organisms. The source code of the simulator 
is available in the following repository (https://github.com/
NotNa19/AntPrototype). Perspectives of further development 
of this project depend on the ability to perform neuroevolu-
tionary modeling for at least one, but preferably for more 
virtual organisms, whose “nervous systems” are comparable 
to those of real ants in terms of the number of nerve cells.

Table 1 contains the characteristics of the computational 
hardware used in the testing and the maximum number of 
virtual organisms modelled simultaneously for which the 
simulation still remains stable. In this case, “stable work” 
means the correct functioning of organisms and their physi-
cal bodies. The fact is that in the current version of Unigine, 
at a low frame rate, delays between the movement of vari-
ous components of the organism may occur, the processing 
of collisions between the objects, including “organisms” 
and “food”, may not always work correctly, and some other 
problems of this kind may happen as well. It is possible to fix 
these problems and it is planned for the future, but it requires 
a deeper knowledge about the mechanisms of the 3D engine. 
With a screen resolution of 1920×1080 pixels and its refresh 
rate (frames per second, FPS) of at least 30 per second, the 
simulator remains stable. However, the number of individuals 
simulated at the same time affects the performance. The fol-
lowing values were obtained on our computational hardware:

Table 1. The maximum size of the population  
of virtual organisms at which the simulator is stable,  
depending on the characteristics of the hardware used

Characteristics  
of the computing system

The maximum number  
of virtual organisms
at which the simulator  
is stable

CPU Intel Core i5-7300HQ 2.50 GHz
GPU GeForce GTX1050 Ti, 4 Gb

   50

CPU AMD Ryzen 7 2700X 3.70 GHz
GPU NVIDIA GeForce 1060, 6 Gb

   80

CPU AMD Ryzen 5 5600X 3.7/4.6 GHz
GPU MSI GeForce RTX 3060 Ti, 8 Gb

150

Detailing of the time spent on various stages of the simula-
tion showed that with a small size of nervous systems (thou-
sands to tens of thousands of neurons), the most significant 
factor limiting the speed of its operation is the process of 
obtaining “first-person view” video stream data for the ant 
population, even considering the fact that the multithreading 
of calculations is provided by the engine itself. Dependence 
of the maximum number of individuals in the simulation on 
the number of neurons in the “nervous system” of the virtual 
organism (all individuals have the same number) has also been 
investigated. The following values were obtained for GeForce 
RTX 3060 Ti + AMD Ryzen 5 5600X (Table 2).

Table 2. The maximum population size of virtual organisms  
at which the simulator is stable, depending on the number  
of neurons in their “nervous system”

The number of neurons The maximum number  
of virtual organisms  
at which the simulator is stable

3000 150

10 000    50

100 000    10

The costs of 3D scene visualization for an external ob-
server also have a noticeable impact on the performance 
of the system. Measurements performed at the computa-
tional system composed of AMD Ryzen 7 2700X 3.70 GHz 
CPU and NVIDIA GeForce 1060 6 Gb GPU revealed the  
following:
• When performing a simulation with an empty scene (with 

or without visualization for an external observer), stable 
9000 clock cycles in 60 seconds (an average of 150 clock 
cycles/sec) are obtained.

• When performing a simulation with 80 organisms, with 
visualization for an external observer, we get 5400 cycles in 
60 seconds (an average of 90 cycles/sec), and 7800 cycles 
in 60 seconds (an average of 130 cycles/sec) without vi-
sualization.

• With a higher load (100 individuals and more food), we 
obtained 1800 cycles in 60 seconds with visualization (on 
average 30 cycles/sec) and 4500 clock cycles in 60 seconds 
without visualization (an average of 75 clock cycles/sec).
Thus, visualization for an external observer (user) plays 

a fairly significant role in the overall performance of the sys-
tem and thus it makes sense to turn it on only when it is really 
necessary – for example, in cases of debugging or recording 
demo videos illustrating the functioning of the simulator.

The work of the genetic algorithm can be illustrated by the 
dependence of the individuals’ lifetime, which increases as the 
number of generations grows. The curves shown in  Figure 4 
were obtained based on 10 runs of the simulator with the 
same parameters.

It can be seen that over time there are individuals appearing 
in the population whose lifetime is many times longer than 
the lifetime of individuals with randomly generated neural 
network parameters that have not yet passed natural selec-
tion. At the behavior level and with visual observation, it is 
expressed in the fact that the most adapted virtual organisms 

https://github.com/NotNa19/AntPrototype
https://github.com/NotNa19/AntPrototype
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Fig. 4. The dependence of the maximum lifetime of an individual from 
the population for the entire period from the beginning to the pre sent 
moment (blue curve), at the moment (green curve), and during the 
 average lifetime of the population (red curve), indicating the root-mean-
square deviation.
The data is obtained from 10 simulation runs.

purposefully move towards the particles of  “food” and avoid 
moving away from the central area of space with the largest 
concentration of  “food”, i. e. they are successfully adapted to 
their living conditions.

Discussion
The current neural network architecture is quite simple and at 
this stage was used mainly for testing the system as a whole 
and for evaluating its performance at an early stage of deve-
lopment. Currently, the following much more advanced and 
modern neural network architecture, which is a combination 
of a convolutional neural network (LeCun, Bengio, 1995) (for 
working with incoming video data) and the NEAT algorithm 
(NEuroevolution of Augmenting Topologies) (Stanley, Miik-
kulainen, 2002) is being implemented. NEAT can change not 
only the weight parameters, but also the structure of the neural 
network during the lifetime of the organism. The convolu-
tional neural network will transform the details of the image 
to some abstractions, and the NEAT algorithm will handle 
the be havioral part of the virtual organism and work with the 
results of the functioning of this convolutional neural network.

In addition to this variant, self-organizing networks such as 
neocognitron (Kunihiko, 1980) are quite promising in terms 
of architecture as well. There are also neural networks that 
are much more realistic in terms of electrophysiology and 
neuromorphology. They are based on the Hodgkin–Huxley 
nervous cell model (Hodgkin, Huxley, 1952), in which it is 
represented in the form of compartments characterized by 
electrical capacitances and resistances, with calculations of 
membrane potentials and ion currents. The modern imple-
mentation of this model with support of parallel computing on 
GPUs has the following performance indicators. In the work 
(Stimberg et al., 2020), a neural network of 64 thousand neu-
rons required about 0.6 sec of working time on a Tesla V100 
GPU (with a performance of 14.1 TFLOPS in FP32 mode) 
to calculate 1 sec of simulation time (i. e. real time), and 
about 3 sec of calculations per 1 sec of simulation time – for 
neural networks of 256 thousand neurons. At the same time, 
numerical integration of the equations describing the system 
occurs with a time interval not exceeding 0.1 msec to ensure 
the accuracy of calculations and stability of the system, and 
each neuron on average has about 1000 connections (80 % of 
which are activating, and 20 % are inhibiting).

Recently, the research on new neural network architectures 
has been quite actively conducted, and many of obtained re-
sults have been successfully applied in practice. Particularly, 
in the field of neuroevolutionary methods, quite a wide range 
of promising variants has been considered, classified and 
compared in the dissertation (Khlopkova, 2016, Ch. 1) and 
in the review article (Ma, Xie, 2022). In the future we plan 
to implement the most suitable and promising of them in the 
presented simulator and explore the limits of their “cognitive 
capabilities” while controlling the virtual “ants”.

Conclusion
Modern GPUs, such as, for example, NVidia 3080 Ti, with 
10240 parallel CUDA computing cores, have a performance of 
34.1 TFLOPS, and the upcoming 4080 Ti is expected to have 
67.6 TFLOPS. Thus, the technological capability to simulate 

a single virtual organism with a biologically realistic neural 
network of  256 thousand neurons and 256 million connections 
between them, with a numerical integration time step equal 
to 0.1 msec, on a single GPU, has already been achieved. It 
is comparable to the neural network of the real ant’s nervous 
system, which includes about 250 thousand neurons.

Our calculations for virtual organisms with neural networks 
of several thousand elements have shown that the compu-
tational costs of neural networks and the virtual physical 
environment are relatively small, and the main limiting factor 
for the system performance is video data streams in the “first 
person view” mode, carrying visual information. However, in 
the case of neural networks consisting of hundreds of thou-
sands of neurons, the “nervous system” becomes the main 
consumer of computing resources. Thus, given the above, 
a modern desktop computing system with a powerful modern 
GPU has enough performance to provide a real time simulation 
of a virtual organism with a “nervous system” based on the 
Hodgkin–Huxley model, with a number of neurons compos-
ing its nervous system equivalent to that of a real ant. And if 
there are multiple GPUs in one workstation, the number of 
simultaneously simulated ants interacting with each other can 
be increased in proportion to the number of GPUs.
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