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Abstract. Development of computer models imitating the work of the nervous systems of living organisms, taking into
account their morphology and electrophysiology, is one of the important and promising branches of computational
neurobiology. It is often sought to model not only the nervous system, but also the body, muscles, sensory systems, and
a virtual three-dimensional physical environment in which the behavior of an organism can be observed and which
provides its sensory systems with adequate data streams that change in response to the movement of the organism.
For a system of hundreds or thousands of neurons, one can still hope to determine the necessary parameters and get
the functioning of the nervous system more or less similar to that of a living organism - as, for example, in a recent work
on the modeling of the Xenopus tadpole. However, of greatest interest, both practical and fundamental, are organisms
that have vision, a more complex nervous system, and, accordingly, significantly more advanced cognitive abilities.
Determining the structure and parameters of the nervous systems of such organisms is an extremely difficult task.
Moreover, at the cellular level they change over time, these including changes under the influence of the streams of
sensory signals they perceive and the life experience gained, including the consequences of their own actions under
certain circumstances. Knowing the structure of the nervous system and the number of nerve cells forming it, at least
approximately, one can try to optimize the initial parameters of the model through artificial evolution, during which
virtual organisms will interact and survive, each under the control of its own version of the nervous system. In addition,
in principle, the rules by which the brain changes during the life of the organism can also evolve. This work is devoted
to the development of a neuroevolutionary simulator capable of performing simultaneous functioning of virtual or-
ganisms that have a visual system and are able to interact with each other. The amount of computational resources
required for the operation of models of the physical body of an organism, the nervous system and the virtual environ-
ment was estimated, and the performance of the simulator on a modern desktop computing system was determined
depending on the number of simultaneously simulated organisms.
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simulator.
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ITporpaMMHas cuucteMa Ha OCHOBe 3D cumMynsaTopa
IIJISI MOOEeIVPOBAHNS SBOJIOLN B IMOMY/ISINN OPTaHN3MOB,
06amaIX 3pUTEIbHON CUCTEMOI
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AHHoTayus. Co3aaHne KOMMbIOTEPHbIX MOZENEN, UMUTUPYIOLNX PABOTy HEPBHBIX CUCTEM MIMBbIX OPraHM3MOB C yue-
TOM 1X MOPGONIOrK 1 3NEKTPOGU3NONOTN, — OOUH U3 BaXKHBIX 11 MEPCNEeKTUBHbIX Pa3AesioB BblUNCIIUTENbHOWM HENpO-
6vionorvn. Mpy HanUUMU BO3MOXHOCTY CTPEMATCA MOAENMPOBATb HE TONIbKO HEPBHYIO CUCTEMY, HO 1 TENIO, MbILLLibI,
CEHCOpPHbIe CUCTEMbI 1 BUPTYasbHYI0 TPEXMEPHYI0 Gr3nUecKyto cpefly, B KOTOPOI MOXHO HabsioaaTh NoBefeHvie opra-
HK3Ma 1 KoTopas obecneumBaeT ero CEHCOPHbIe CUCTEMbI aAeKBaTHbIMY NOTOKAMM JaHHbIX, U3MEHSIOLMMANCA B OTBET
Ha ABVKeHre opraHuama. [Insa cuctembl U3 COTEH WK TbICAY HEMIPOHOB ellie MOXXHO HaAeATbCA 3aAaTb HeOOXoANMble
napameTpbl ¥ MONY4YnTb GYHKLMOHNPOBAHNE HEPBHOW CMCTEMbI, HoMee-MeHee CXOHOE C TaKOBbIM /1A XMBOTrO opra-
HM3Ma, Kak, Hanpumep, B HeflaBHel paboTe Mo MOAENMPOBaHMIO rofioBacTka Xenopus. OgHaKo HanGONbLINA NHTe-
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Henpo3BONOLMOHHbIN CUMYNATOP OPraHN3MOB,
06/1apatoL X 3pUTeSIbHON CUCTeMON

pec, Kak NpaKTNYecKknii, Tak 1 GyHAaMeHTaNbHbIiA, NPefCTaBNAIT OpraHy3Mbl, obnafatoLne 3peHrem, 6oee ClIOXHON
HePBHOW CYCTEMOW 1, COOTBETCTBEHHO, 3HAUUTENBHO GOMee Pa3BUTLIMM KOTHUTVMBHBIMM CNIOCO6HOCTAMM. OnpeaenuTsb
CTPYKTYpPY 1 NapameTpbl HEPBHbIX CUCTEM TaK/X OPraH/W3MOB NPeACTaBAAETCA UCKITIOUNTENIbHO CIOXKHOI 3agadei. bo-
nee TOro, OHV U3MEHAIOTCS C TEYEHNEM BPEMEHM, B TOM Yucie Nof BO3AeNCTBMEM BOCMPUHMMAEMbIX MK MOTOKOB
CEHCOPHBIX CUTHANOB 1 NOJTYYEHHOTO »KN3HEHHOTO OMbITa, BKIIOUasA NOCNEACTBYA COOCTBEHHbIX AENCTBUI NPU TEX UK
MHbIX 06CTOATENbCTBAX. 3HAA CTPYKTYPY HEPBHOW CMCTEMBI 1 UMCIO 06Pa3yoLLMX ee HePBHbIX KNETOK XOTs 6bl Npn6nu-
3UTENbHO, MOXHO MOMbITAaTLCA ONTVMM3MPOBATb HayaslbHble NMapamMeTpbl MOAENN NOCPeCTBOM UCKYCCTBEHHOW 3BO-
ntouuK, B NpoLecce KOTOPOI BUPTYaslbHble OpraHui3mMbl 6yAyT B3aviMOLENCTBOBATb U BbIXKUBATb — KaXAblid Nof ynpas-
neHnem CO6CTBEHHOM BEPCMMN HEPBHOW cMcTeMbl. [TOMYMO 3TOrO, 3BOSTIOLMOHPOBATL MOTYT 1 MPaBUa, MO KOTOPbIM
MO3T M3MEHAETCA Ha MPOTAXKEHUN KU3HW opraHn3ma. [laHHasa paboTa NocBsALeHa CO34aHMI0 HeiPO3BOSIOLNOHHOTO
CUMYNATOPA, CNOCOGHOTO OCYLLECTBAT OAHOBPEMEHHOE GYHKLIMOHUPOBaHME BUPTYalbHbIX OPraH13MoB, obnaaato-
LLMX 3pUTENIbHON CUCTEMON, KOTOPbIE B3aUMOAENCTBYIOT Mexay co60i. [priBeaeHbl pacyeTbl, MOoKasblBatoLime, CKOJb-
KO BbIUMCIINTENBHBIX PECYPCOB TpebyeTca AnsA paboTbl Moaenein ¢r3n4eckoro Tena opraHn3ma, HepBHOW CUCTEMbI U
BUPTYasnbHOW Cpefbl 06MTaHMA, @ TAKXKe onpefieneHa Npon3BOANTENIbHOCTb CUMYTIAITOPA Ha COBPEMEHHOW HACTONbHOW
BbIUMCIINTENIbHON CUCTEME B 3aBUCMMOCTH OT YMCila OAHOBPEMEHHO MOLENVPYEMbIX OPTraHN3MOB.

KnioueBble crioBa: HepBHas CUCTEMA; 3pUTENbHAA CUCTEMA; BUPTYaslbHbI OPraHn3m; NONyALMSA; KOMMbIOTEPHOE Moe-
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Introduction

Computational models imitating the functioning of living or-
ganisms’ nervous systems, based on their electrophysiological
and morphological data, are powerful tools in neuroscience.
With their help it is possible, on the basis of knowledge and
ideas about the functioning of individual nerve cells and the
mechanisms of interaction between them, to calculate the
dynamics of the activity of networks of nerve cells. The model
of the nervous system functioning in combination with the
model of the body of an organism equipped with muscular
and sensory systems, placed in a virtual three-dimensional
physical environment, provides the researcher with signifi-
cant advantages. First, one can observe and register both the
behavior of the body model of an organism and the activity
of the nervous system, up to the activity of individual nerve
cells, their processes and synapses. Secondly, the model of
the nervous system receives a stream of signals from the
virtual environment that change in response to the actions
of the organism, driven by a muscular system controlled by
its “brain”, i. e. there is a constant feedback between actions
and their consequences, just like in reality. One of the goals
of such modeling is to check the adequacy of neural network
models by comparing the activity of nervous systems of a real
organism and its virtual ‘twin’, as well as their behavior.

Probably the most well-known creature in this context is
one of the most simple multicellular organisms, invertebrate
Caenorhabditis elegans, whose nervous system is composed
of just 302 neurons (Sarma et al., 2018). Also, sufficiently
convincing similarity between the real organism and the model
was achieved for the Xenopus frog tadpole at the two-day stage
of development, whose nervous system model was represented
by a neural network composed of approximately 2300 neurons
(Ferrario et al., 2021). However, neither C. elegans, nor the
two days old Xenopus tadpole has a visual system.

Attempts to model much more complex organisms such
as a mouse (~70 million neurons (Herculano-Houzel et al.,
20006)) or a rat (~200 million neurons (Herculano-Houzel,
Lent, 2005)), including their nervous systems, have also been
made. However, to date, their virtual twins have not yet been
created. The work aimed at reverse engineering and modeling
the nervous system of the Drosophila fruit fly (~100 thousand
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neurons (Scheffer et al., 2020)) is also in progress. Another ex-
tremely promising object of investigation and modeling is ants
(~250 thousand neurons (Moffet et al., 2021)). These insects
have immobile compound eyes, consisting of 100...3000 om-
matidia — structural and functional units of such eyes (their
number depends on the type of ant and its specialization),
providing color vision with a rather modest resolution (from
10x10 to 55%55 “pixels”). Thus, for example, the eyes of
Myrmica ruginodis usually have 109 to 169 ommatidia, and
those of Camponotus crassus and Pseudomyrmex adustus,
which are active during daylight hours — up to 700 and 930,
correspondingly (Aksoy, Camlitepe, 2018), and the maximal
known number of ant ommatidia per eye, near 3000, was
registered in tropical species Gigantiops destructor (Macquart
et al., 2006).

It is noteworthy that ants are the simplest organisms that
successfully pass the mirror test, i.e. they are able to distin-
guish their own reflection in a mirror from another ant, which
they can see through ordinary transparent, non-mirror glass of
the same size (Cammaerts M.-C., Cammaerts R., 2015). The
principle of conducting a mirror test is worth mentioning. In
front of a mirror, ants clean themselves up or make unusual
movements of their head and antennae, which is not observed
when they see relatives behind the glass. If a small mark (e. g.
blue) is applied on the front of an ant’s head, then when it
sees itself in the mirror, it will try to get rid of it, try to clean
it off with the help of its legs. And if the mark is the same
color as the body of the ant, or if it is applied to the back of
the head, not visible in the mirror, then the ant will not show
concern and attempts to clean it off. Thus, the ants notice the
mark on themselves and behave as if they understand that it
is on themselves, and not on another ant, relying solely on
visual signals.

Computational modeling of both a single ant, with or with-
out a mark, able to see itself in a mirror, as well as multiple ants
that can see and interact with each other and with surrounding
objects is of considerable scientific interest. Orientation on
the terrain in ants is also carried out mainly through vision
(Buehlmann et al., 2020).

What are the requirements for a software system and com-
puting hardware capable of performing computer simulation
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of a group of virtual organisms imitating ants (including body,
muscle, sensory and nervous systems) and their habitat? It
is assumed that organisms can interact with each other in
the physical world and “see” each other, i.e. their nervous
system receives a stream of video data corresponding to the
first-person view as input. The problem of “digitizing” the
structure of the nervous system, including 3D morphology of
each neuron, its processes and synapses, is extremely labor-
and time-consuming. However, this may not be essential,
since the brain, even in ants, is quite plastic and undergoes
noticeable structural changes during the life of the organism
(Penick et al., 2021). At the same time, not much is known
about the mechanisms underlying brain changes throughout
life at the level of single neurons and connections between
them. Therefore, it makes sense to pose the problem of mo-
deling an organism that has the body and sensory systems
of an ant (at least visual and mechanosensory, as well as the
simplest olfactory and taste receptors) and a nervous system
with a similar number of neurons and synapses, but without
afixed connectome. How fast can such modeling be carried out
and can one expect that virtual evolution in such a system will
help artificial neural networks to achieve cognitive capabilities
that will allow virtual organisms to effectively survive, solving
more or less complex tasks related to finding food, avoiding
hazards and performing other activities?

Materials and methods

Software system. In accordance with the subject of the article,
we are using computational modeling to deal with the prob-
lems to be solved — the research is carried out based on the
software that we developed for conducting numerical experi-
ments in the field of neuroevolutionary modeling. It is based
on amodern 3D physics engine named Unigine (unigine.com),
which is used for developing games, virtual reality systems,
interactive visualization software, educational systems in va-
rious areas, etc., supporting Windows and Linux platforms.

The physics simulation module supports collision detec-
tion, rigid body physics, various types of joints (hinged, ball,
prismatic, cylindrical, etc.), dynamic destruction of objects,
cloth, floating objects, force fields, time reversal, etc. (https://
developer.unigine.com/ru/docs/latest/principles/physics/). In
Unigine it is possible to use mirrors, which may be useful in
the future for conducting a “mirror test”. Also, it has built-in
C++ programming language, which allows to develop and use
one’s own program code — for example, to model networks of
neurons that receive signals from virtual organisms sensory
systems and control their movements.

An “ant” body model. The simple “ant” body model that
we designed and used as a first prototype to evaluate the per-
formance of the simulator is shown in Figure 1. In the future,
it is planned to develop and use a much more detailed and
realistic version.

In the simplest test scene, food particles (shown in green)
and several dozen virtual organisms are randomly placed on
the plane (Fig. 2).

Visual system. Figure 3 shows examples of images per-
ceived by a “video camera” located on the body’s head, which
is directed forward (at the moment only color mono-vision is
implemented, although stereo is also planned for the future).
The resolution of frames of ant’s video stream was chosen to
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Fig. 1. Simple “ant” 3D body model, general view.

A -head, B-body, C-legs, D - ajoint connecting body and legs. The head has
a movable connection with the body.

be 3030, which approximately corresponds to the average
spatial resolution of visual systems of real ants considered
earlier. Since the images themselves are quite small, for the
convenience of perception in the figure they are proportion-
ally enlarged by 5 times (one color square of 5x5 pixels cor-
responds to one real “receptor” pixel).

An image can be represented as three matrices, each of
which represents a separate color channel (red — R, green — G
and blue — B). Each matrix has a size of 30x30, forming an
array of data, /nput, consisting of 2700 elements, organized
in the following way:

Input(r)=R(, ), r=1i-30+j,
Input(g) = G(, j), g=1i-30+;+900,
Input(b) =B(i,j), b=1i-30+;+1800,
where 0<7 <30, 0<;<30.

The simulation has a certain frame refresh rate, depending
on the computational performance of the hardware, the com-
plexity of the simulated scene and the number of “ants”. With
a certain frequency, each individual forms such an array, the
content of which enters the “nervous system” of the organism.

Nervous system. Visual signals enter “nervous systems” of
virtual organisms, which at the very beginning of the simula-
tion, for the first generation of “ants”, are randomly generated
networks of artificial neurons, similar to those used in per-
ceptrons (Rosenblatt, 1962) for recognition of letters, digits
and geometrical figures. In our case, the number of neurons in
each network was about 3000. Within the lifetime of one indi-
vidual, networks have a static topology. Perceptron consists of
S-elements (sensory), one or more layers of A-elements (as-
sociative) and R-elements (reacting). A-elements are defined
by a set of weight matrices 4,, 4,, ..., 4, and bias vectors
by, b,, ..., b,. The array Input, mentioned above, is processed
in the following way:

result, = A, - result, |+b,,

where result, is a layer of sensory elements, containing an
array of visual data perceived by an “ant”, and i = 1,..., n. And
activation of R-elements as a result of visual data process-
ing leads to the corresponding actions performed by the ant
(change of speed, turn to the left or to the right).
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Fig. 2. General view of the simulation - test scene with a few dozens of virtual organisms.

Fig. 3. A few examples of the “first-person view".

In the first one (on the left), one can distinguish another individual (top, in brown tones) and the shadow of the virtual organism perceiving

this image (dark gray).

Simulation of evolution. Some variants of weights ma-
trices of perceptrons described above provide more efficient
survival, i. e. the ability to perceive “first-person view” visual
signals, analyze them and control the movement of the body
in such a way that an organism regularly reaches food par-
ticles and maintains the necessary “energy level” in the body
(satiated state). Organisms that remain hungry for too long
die out and the “long-livers” have the opportunity to generate
offsprings that inherit the structure of their neural networks.
Currently, offspring is generated by only one parent (in nature
such a reproduction mechanism, called parthenogenesis, also
exists — in many types of arthropods, including 8 species of
ants, as well as in about 70 species of vertebrates).

SBOJIIOLUMOHHAA KOMMbIOTEPHAA BUOJIOTUA / EVOLUTIONARY COMPUTATIONAL BIOLOGY

In the simulator, the current “energy level” of the organism
is indicated as Satiety (), with which the following quantities
are associated:

MaxSatiety — maximum organism satiety (15 by default);

BirthSatiety = MaxSatiety-0.7 — the satiety of the orga-
nism, upon reaching which it gives birth to a descendant. When
it happens, half of the available resources remains with the
organism, and half passes to the descendant.

Each organism is initialized with Satiety (0) = 8. Each
time after a certain period, it loses one satiety unit (because
organism functioning “consumes energy”). At Satiety (t) = 0
the organism dies. When eating food, the organism gains a
satiety point until MaxSatiety is reached.
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The child inherits the parent’s neural network with changes
that are carried out according to the following rules:

€, & — random values which are distributed uniformly;

€ € [a, b] — probability of changes in neuron parameters
(“mutation”), 0 <a<b<1;

d €[c, d]—the amount of weight change in the matrix ele-
ment as a result of mutation, ¢ < d. Parameters a, b, ¢ and d
can be changed by user.

Every element of weight matrices and bias vectors, 4, (i, )
and b, (1) (k=1, ..., n) changes by +6 or -0 with probability €.

Results
At the current stage of the work, the main achieved result
is the development of the simulator prototype (including
a three-dimensional physical world, a model of the physical
body of an ant, a model of the visual system and a model of
the nervous system), as well as measurements of its perfor-
mance on various computing systems, depending on their
characteristics and on the number of neurons in the nervous
system of virtual organisms. The source code of the simulator
is available in the following repository (https://github.com/
NotNal9/AntPrototype). Perspectives of further development
of this project depend on the ability to perform neuroevolu-
tionary modeling for at least one, but preferably for more
virtual organisms, whose “nervous systems” are comparable
to those of real ants in terms of the number of nerve cells.
Table 1 contains the characteristics of the computational
hardware used in the testing and the maximum number of
virtual organisms modelled simultaneously for which the
simulation still remains stable. In this case, “stable work™”
means the correct functioning of organisms and their physi-
cal bodies. The fact is that in the current version of Unigine,
at a low frame rate, delays between the movement of vari-
ous components of the organism may occur, the processing
of collisions between the objects, including “organisms”
and “food”, may not always work correctly, and some other
problems of this kind may happen as well. It is possible to fix
these problems and it is planned for the future, but it requires
a deeper knowledge about the mechanisms of the 3D engine.
With a screen resolution of 1920x1080 pixels and its refresh
rate (frames per second, FPS) of at least 30 per second, the
simulator remains stable. However, the number of individuals
simulated at the same time affects the performance. The fol-
lowing values were obtained on our computational hardware:

Table 1. The maximum size of the population
of virtual organisms at which the simulator is stable,
depending on the characteristics of the hardware used

The maximum number
of virtual organisms
at which the simulator

Characteristics
of the computing system

is stable
CPU Intel Core i5-7300HQ 2.50 GHz 50
GPU GeForce GTX1050Ti, 4 Gb
CPU AMD Ryzen 7 2700X 3.70 GHz 80

GPU NVIDIA GeForce 1060, 6 Gb

CPU AMD Ryzen 5 5600X 3.7/4.6 GHz 150
GPU MSI GeForce RTX 3060 Ti, 8 Gb

Neuroevolutionary simulator of organisms
endowed with a visual system

Detailing of the time spent on various stages of the simula-
tion showed that with a small size of nervous systems (thou-
sands to tens of thousands of neurons), the most significant
factor limiting the speed of its operation is the process of
obtaining “first-person view” video stream data for the ant
population, even considering the fact that the multithreading
of calculations is provided by the engine itself. Dependence
of the maximum number of individuals in the simulation on
the number of neurons in the “nervous system” of the virtual
organism (all individuals have the same number) has also been
investigated. The following values were obtained for GeForce
RTX 3060 Ti + AMD Ryzen 5 5600X (Table 2).

Table 2. The maximum population size of virtual organisms
at which the simulator is stable, depending on the number
of neurons in their “nervous system”

The maximum number
of virtual organisms
at which the simulator is stable

The number of neurons

3000 150
10000 50
100000 10

The costs of 3D scene visualization for an external ob-
server also have a noticeable impact on the performance
of the system. Measurements performed at the computa-
tional system composed of AMD Ryzen 7 2700X 3.70 GHz
CPU and NVIDIA GeForce 1060 6 Gb GPU revealed the
following:

* When performing a simulation with an empty scene (with
or without visualization for an external observer), stable
9000 clock cycles in 60 seconds (an average of 150 clock
cycles/sec) are obtained.

* When performing a simulation with 80 organisms, with
visualization for an external observer, we get 5400 cycles in
60 seconds (an average of 90 cycles/sec), and 7800 cycles
in 60 seconds (an average of 130 cycles/sec) without vi-
sualization.

« With a higher load (100 individuals and more food), we
obtained 1800 cycles in 60 seconds with visualization (on
average 30 cycles/sec) and 4500 clock cycles in 60 seconds
without visualization (an average of 75 clock cycles/sec).
Thus, visualization for an external observer (user) plays

a fairly significant role in the overall performance of the sys-

tem and thus it makes sense to turn it on only when it is really

necessary — for example, in cases of debugging or recording
demo videos illustrating the functioning of the simulator.

The work of the genetic algorithm can be illustrated by the
dependence of the individuals’ lifetime, which increases as the
number of generations grows. The curves shown in Figure 4
were obtained based on 10 runs of the simulator with the
same parameters.

It can be seen that over time there are individuals appearing
in the population whose lifetime is many times longer than
the lifetime of individuals with randomly generated neural
network parameters that have not yet passed natural selec-
tion. At the behavior level and with visual observation, it is
expressed in the fact that the most adapted virtual organisms
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purposefully move towards the particles of “food” and avoid
moving away from the central area of space with the largest
concentration of “food”, i. e. they are successfully adapted to
their living conditions.

Discussion

The current neural network architecture is quite simple and at
this stage was used mainly for testing the system as a whole
and for evaluating its performance at an early stage of deve-
lopment. Currently, the following much more advanced and
modern neural network architecture, which is a combination
ofa convolutional neural network (LeCun, Bengio, 1995) (for
working with incoming video data) and the NEAT algorithm
(NEuroevolution of Augmenting Topologies) (Stanley, Miik-
kulainen, 2002) is being implemented. NEAT can change not
only the weight parameters, but also the structure of the neural
network during the lifetime of the organism. The convolu-
tional neural network will transform the details of the image
to some abstractions, and the NEAT algorithm will handle
the behavioral part of the virtual organism and work with the
results of the functioning of this convolutional neural network.

In addition to this variant, self-organizing networks such as
neocognitron (Kunihiko, 1980) are quite promising in terms
of architecture as well. There are also neural networks that
are much more realistic in terms of electrophysiology and
neuromorphology. They are based on the Hodgkin—Huxley
nervous cell model (Hodgkin, Huxley, 1952), in which it is
represented in the form of compartments characterized by
electrical capacitances and resistances, with calculations of
membrane potentials and ion currents. The modern imple-
mentation of this model with support of parallel computing on
GPUs has the following performance indicators. In the work
(Stimberg et al., 2020), a neural network of 64 thousand neu-
rons required about 0.6 sec of working time on a Tesla V100
GPU (with a performance of 14.1 TFLOPS in FP32 mode)
to calculate 1 sec of simulation time (i.e. real time), and
about 3 sec of calculations per 1 sec of simulation time — for
neural networks of 256 thousand neurons. At the same time,
numerical integration of the equations describing the system
occurs with a time interval not exceeding 0.1 msec to ensure
the accuracy of calculations and stability of the system, and
each neuron on average has about 1000 connections (80 % of
which are activating, and 20 % are inhibiting).

Recently, the research on new neural network architectures
has been quite actively conducted, and many of obtained re-
sults have been successfully applied in practice. Particularly,
in the field of neuroevolutionary methods, quite a wide range
of promising variants has been considered, classified and
compared in the dissertation (Khlopkova, 2016, Ch. 1) and
in the review article (Ma, Xie, 2022). In the future we plan
to implement the most suitable and promising of them in the
presented simulator and explore the limits of their “cognitive
capabilities” while controlling the virtual “ants”.

Conclusion

Modern GPUs, such as, for example, NVidia 3080 Ti, with
10240 parallel CUDA computing cores, have a performance of
34.1 TFLOPS, and the upcoming 4080 Ti is expected to have
67.6 TFLOPS. Thus, the technological capability to simulate
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Fig. 4. The dependence of the maximum lifetime of an individual from
the population for the entire period from the beginning to the present
moment (blue curve), at the moment (green curve), and during the
average lifetime of the population (red curve), indicating the root-mean-
square deviation.

The data is obtained from 10 simulation runs.

a single virtual organism with a biologically realistic neural
network of 256 thousand neurons and 256 million connections
between them, with a numerical integration time step equal
to 0.1 msec, on a single GPU, has already been achieved. It
is comparable to the neural network of the real ant’s nervous
system, which includes about 250 thousand neurons.

Our calculations for virtual organisms with neural networks
of several thousand elements have shown that the compu-
tational costs of neural networks and the virtual physical
environment are relatively small, and the main limiting factor
for the system performance is video data streams in the “first
person view” mode, carrying visual information. However, in
the case of neural networks consisting of hundreds of thou-
sands of neurons, the “nervous system” becomes the main
consumer of computing resources. Thus, given the above,
amodern desktop computing system with a powerful modern
GPU has enough performance to provide a real time simulation
of a virtual organism with a “nervous system” based on the
Hodgkin—Huxley model, with a number of neurons compos-
ing its nervous system equivalent to that of a real ant. And if
there are multiple GPUs in one workstation, the number of
simultaneously simulated ants interacting with each other can
be increased in proportion to the number of GPUs.
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