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Abstract. DNA repeat composition of low coverage (0.1–0.5) genomic libraries of four amphipods species endemic to 
Lake Baikal (East Siberia) and four endemic gastropod species of the fam. Baicaliidae have been compared to each other. 
In order to do so, a neighbor joining tree was inferred for each quartet of species (amphipods and mollusks) based on the 
ratio of repeat classes shared in each pair of species. The topology of this tree was compared to the phylogenies inferred 
for the same species from the concatenated protein-coding mitochondrial nucleotide sequences. In all species analyzed, 
the fraction of DNA repeats involved circa half of the genome. In relatively more ancient amphipods (most recent common 
ancestor, MRCA, existed approximately sixty millions years ago), the most abundant were species-specific repeats, while 
in much younger Baicaliidae (MRCA equal to ca. three millions years) most of the DNA repeats were shared among all four 
species. If the presence/absence of a repeat is regarded as a separate independent trait, and the ratio of shared to total 
numbers of repeats in a species pair is used as the measure of distance, the topology of the NJ tree is the same as the quar-
tet phylogeny inferred for the mitogenomes protein coding nucleotide sequences. Meanwhile, in each group of species, 
a substantial number of repeats were detected pointing to the possibility of non-neutral evolution or a horizontal transfer 
between species occupying the same biotope. These repeats were shared by non-sister groups while being absent in the 
sister genomes. On the other hand, in such cases some traits of ecological significance were also shared.
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Аннотация. Исследованы ДНК повторы, присутствующие в геномных библиотеках с низким покрытием (0.1–0.5) че-
тырех видов амфипод, эндемичных для озера Байкал (Восточная Сибирь), и четырех эндемичных видов брюхоногих 
моллюсков семейства Baicaliidae. Для этого были построены деревья методом объединения ближайших соседей для 
каждого квартета видов (амфиподы и моллюски) на основе соотношения повторяющихся классов, общих для каж-
дой пары видов. Топология этих деревьев была сопоставлена с филогениями, полученными для тех же видов на ос-
нове сцепленных белок-кодирующих митохондриальных нуклеотидных последовательностей. У всех проанализи-
рованных видов в долю повторов ДНК вовлечено около половины генома. У относительно более древних амфипод 
(самый последний общий предок, MRCA, существовал приблизительно шестьдесят миллионов лет назад) наиболее 
распространенными были видоспецифичные повторы, тогда как у гораздо более молодых байкалиид (MRCA при-
близительно равен трем миллионам лет) большинство повторов ДНК были общими для всех четырех видов. Если 
наличие/отсутствие повтора рассматривать как отдельный независимый признак, а отношение общего числа по-
второв в паре видов использовать в качестве меры расстояния, топология дерева NJ такая же, как и филогения квар-
тета, выведенная для белков митогеномов, кодирующих нуклеотидные последовательности. Между тем в каждой 
группе видов было обнаружено значительное количество повторов, указывающих на возможность ненейтральной 
эволюции или горизонтального переноса между видами, занимающими один и тот же биотоп. Эти повторы были 
общими для неродственных групп, но отсутствовали в сестринских геномах. С другой стороны, в таких случаях не-
которые черты, имеющие экологическое значение, также были общими.
Ключевые слова: повторы ДНК; озеро Байкал; филогения; Baicaliidae; амфиподы; эволюция повторов; репитом.
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species flocks

Introduction
In Metazoa, approximately half of all genomic DNA is made 
up of repeated DNA sequences, which are otherwise called 
“non-genic DNA” (Cavalier-Smith, Beaton, 1999; Bird et al., 
2006) or repeatome (Titievsky et al., 2021). The already known 
functions of this fraction of the genome are very diverse. Most 
of it is satellite DNA (Biscotti et al., 2015; Silva et al., 2019; 
Thakur et al., 2021). A significant proportion of DNA repeats 
account for mobile elements belonging to different classes. 
There is evidence that highly repeated mobile elements may 
play a certain role in the regulation of genetic activity (see 
for example (Rocha et al., 2022)), their distribution must also 
be taken into account in the epigenetic analysis (Lerat et al., 
2019). It is important to note that evidence is accumulating 
about the important role that repeated mobile elements may 
play in horizontal gene transfer between phylogenetically dis-
tant species (Ahmad et al., 2021; Athanasouli, Rӧdelsperger, 
2022; Kejnovsky, Jedlicka, 2022). Dodsworth et al. (2015) 
have shown that a set of repeated elements contains a sig-
nificant phylogenetic signal. They also noted the presence of 
a repeat fraction, which was inconsistent with the phylogenies 
inferred from individual nucleotide sequences and from the 
repeats, but treated this fraction more like an obstacle rather 
than an interesting phenomenon. It has been shown that hori-
zontal gene transfer is a common mechanism of transmission 
of traits involved in adaptation processes in bacteria (Lee et 
al., 2022) and fungi (Steensels et al., 2021). Recently, there 
has been more and more evidence that similar mechanisms 
are likely to be involved in the adaptive evolution of  Metazoa 
(Boto, 2014; Chen et al., 2017; Ahmad et al., 2021; Li et al., 
2022). Sinсe then their work though the main focus of studies 
of the repeated DNA shifted mostly towards their potential 
structural role and was performed mostly of plant models (see 
for example (Titievsky et al., 2021)). 

Here we apply the repeats analysis to the two species flocks 
of Baikalian invertebrates. Genetic studies of invertebrates 
from Lake Baikal allow to unravel many problems of their 
evolutionary history (Romanova et al., 2016; Peretolchina et 
al., 2020), mechanisms of speciation (Naumenko et al., 2017; 
Gurkov et al., 2019; Drozdova et al., 2022) and adaptation 
(Lipaeva et al., 2021), diversity and conservation (Butina et 
al., 2019; Yakhnenko, Itskovich, 2020). We use the features of 
the evolution of two species flocks of endemic Baikal inver-
tebrates – amphipods (Bazikalova, 1945; Kamaltynov, 1999; 
Takhteev, 2019) and gastropods of the family Baicaliidae 
(Sitnikova et al., 2001; Hausdorf et al., 2003; Peretolchina et 
al., 2020) to study the evolution of the maximum diversity 
of repeats in their genomes. These two groups are attractive 
models for this kind of research for the following reasons:
1. Both groups of organisms have been well and comprehen-

sively studied (see (Kozhov, 1963)).
2. Both groups evolved within Baikal, therefore all possible 

genome transformations were minimally, if at all, dependent 
on the introduction of genetic information from outside the 
ecosystem, and speciation processes occurred mainly by 
sympatric mechanisms.

3. The evolutionary histories of amphipods and Baicaliidae 
in Baikal are fundamentally different: if the former is re­
presented by at least two branches that independently pene-
trated Baikal, the common ancestor of which existed at 

least 60 million years ago, then the maximum age of the 
common ancestor of Baikal species is at least 3 million 
years (Sherbakov, 1999; Mats et al., 2011).
Thus, the above-mentioned properties of evolutionary hi-

stories allow us to conduct a comparative analysis of sets of 
DNA repeats in two species-rich groups of invertebrates and 
assess the potential benefits of such a comparison for a deeper 
understanding of the evolutionary mechanisms that have 
shaped their modern diversity.

Materials and methods
In this work, the genomic libraries of gastropods were used: 
Baicalia turriformis, Maackia herderiana, Korotnewia ko rot­
newi and Godlewskia godlewskia, the collection of samples 
and genome-wide sequencing of which is described in Pe-
re tolchina et al. (2020). Obtaining the genomic libra ries of 
amphipods Acanthogammarus victorii, Brachyuropus gre­
wingkii, Garjajewia cabanisi and Macrohectopus branickii 
is described in (Romanova et al., 2016).

Random sets of reads were prepared from the source libra-
ries using Seqtk-1.3 (r106) (Shen et al., 2016) on the Galaxy 
(Jalili et al., 2020) platform. The size of a library was set to 
5 × 105 reads. The search for repeating genetic elements was 
performed using the RepeatExplorer (Novák et al., 2013) 
pipeline implemented on the Galaxy platform.

Quality control and library filtering were performed using 
the standard Galaxy FastQC (de Sena Brandine, Smith, 2019) 
tool. Cluster analysis requires files containing sequences of 
reads in FASTA format as input data.

The search for repeated sequences was performed using 
RepeatExplorer2 clustering.

Launch Parameters:
Paired­end reads True, Read sampling false, Sample size 0,
Select taxon and protein domain database version (REXdb) 

Viridiplantae version 3.0,
Advanced options false,
Select queue basic_fast_queue,
Modify parameters (optional) –l
select=1:ncpus=10:mem=32gb:scratch_local=50gb –l 

walltime=48:00:00 –q elixirre@pbs.elixir­czech.cz –v 
TAREAN_MAX_MEM=4000000,TAREAN_CPU=4

The search for repeats was limited to those that occur more 
often than 0.01 % of the input reads. In addition to satellite 
repeats, the output data contains LTR-retrotrans-posons, 45S, 
5S rDNA and all other repeats, the number of which exceeds 
the threshold value.

Comparative analysis of the composition of repeats was 
performed using a set of original scripts in Python 3.10 and 
Biopython ver. 1.79. nblast (Costa et al., 2016) was used to 
compare the nucleotide sequences of DNA repeat contigs 
from different species.

Results
Each of the groups of organisms is represented in this paper by 
four species selected in such a way that they cover the maxi-
mum range of evolutionary distances within their branch. The 
phylogenetic relationships of four gastropod species (Baicalia 
turriformis, Maackia herderiana, Korotnewia korotnewi and 
Godlewskia godlewskia) are shown in Fig. 1, b. The lifetime 
of their common ancestor does not exceed 3 million years 

mailto:elixirre@pbs.elixir-czech.cz
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Fig. 1. a, A phylogenetic tree of Baikal amphipods and some representatives of the genus Gammarus, obtained on the basis of a 
comparison of concatenated nucleotide sequences on which the species studied in this work are isolated. Two branches repre-
sented in Baikal are highlighted in color, as well as phylogenetic relationships between Acanthogammarus victorii, Brachyuropus 
grewingkii, Garjajewia cabanisi and Macrohectopus branickii.
b, A phylogenetic tree of Baicaliidae, rooted at the midpoint, built on the basis of the analysis of the sequences of the Folmer 
fragment. The phylogenetic relationships between Baicalia turriformis, Maackia herderiana, Korotnewia korotnewi and Godlewskia 
godlewskia are highlighted in color.

(Zubakov et al., 1997; Sherbakov, 1999), and the connections 
between the selected four species pass through the root of the 
tree if the tree is rooted at the midpoint. It should be noted 
that the selected species differ dramatically in their important 
ecological characteristics and distribution.

Amphipods in Baikal belong to at least two large branches, 
both within the genus Gammarus (Sherbakov, 1999; Hou, 

Sket, 2016; Romanova et al., 2016; Naumenko et al., 2017). 
Of the species selected for the study, only M. branickii – a re-
presentative of the monotypic family – belongs to the branch 
‘Micruropus’, the rest belong to the branch ‘Acanthogam-
marus’ – the most diverse in both species and ecology. B. gre­
wingkii and G. cabanisi are abyssal species, A. victorii lives 
at shallow and medium depths, and M. branickii is a unique 
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pelagic species distributed throughout the water column of 
the lake, including the maximum depths (Bazikalova, 1945) 
and as part of the quartet of species considered in this work 
is a distant outer group (see Fig. 1, a).

Libraries of repeated contigs were constructed from ge-
no me-wide libraries of four species of amphipods and four 
species of gastropods of the Baikal endemic family Baica-
lii dae, the production of which is described in (Romanova 
et al., 2016) and (Peretolchina et al., 2020), respectively. 
0.5 × 106 reads were randomly selected from each library and 
without return, resulting in depleted libraries with a coverage 
degree of less than 0.5, as a result of which the representation 
of unique sequences in them turned out to be very low. These 
subsets of genomic libraries were used to search and anno-
tate DNA repeats using repeatexplorer (Novák et al., 2013). 
In all cases, the repetitions included approximately 50 % of 
the reads, which accounted for from 5 × 103 to 104 of unique 
contigs (Fig. 2).

The distributions of contigs by representation in genomes 
were also approximately the same in all cases; however, 
if A. victorii and G. cabanisi had a single dominant repeat 
(refers to simple DNA repeats, SSR) (see Fig. 2, a, c), then 
B. grewingkii and M. branickii had several dominant repeats 
(see Fig. 2, b, d ).

The comparison of the compositions of repeats in the spe-
cies within each of the groups was carried out by concatenat-
ing the output files – lists of contigs resulting from a search 
through genomic libraries. To distinguish between contigs 
belonging to different species, prefix indexing was used, 
specific to each of the species. After converting a copy of the 
concatenated list into a library in blast format, we used nblast 
to search in the “all against all” mode. At the same time, dele-

tions/insertions were allowed and the similarity threshold of 
sequences was set to 80 %.

For each of the studied groups, libraries of repeat contigs 
were concatenated after adding species­specific tags to se-
quence names, then groups consisting of at least five sequences 
were selected and a nblast search was performed “all against 
all”. The search conditions allowed 20 % differences and 
indels. The analysis of intragroup distributions of repeats re-
vealed significant differences between amphipods and mol ­ 
luscs (Fig. 3, see the Table). In a much younger group of  Bai-
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Fig.  2.  Representation of the repeats among the species of amphipods sorted by their abundance: a,  Acanthogammarus victorii; b,  Brachyuropus 
grewingkii; c, Garjajewia cabanisi, and d, Macrohectopus branickii.
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Fig. 3. The proportions of repeats common to several species and found 
as a result of the blast search for gastropods Baicaliidae and amphipods.
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kal, the repeats that occur in all four species turned out to be 
the most represented. Conversely, a relatively small proportion 
is accounted for by species­specific sequences (see Fig. 3, a). 
The representation of repetitions common to several species 
also turned out to be very similar in different Baikal species.

In amphipods, on the contrary, most of the repeats are 
unique (species­specific), and there are very few common 
ones for all four species (see Fig. 3, a). Repeats common to 
two, three and four species are also not equally represented in 
different genomes of amphipods (see the Table and Fig. 3, b). 
Interestingly, the largest proportion of common repeats 
(‘quartets’) was found in the genome of M. branickii, which 
is a very remote external group in relation to the other three 
species and, unlike the rest of the Baikal amphipods, lives in 
the pelagic zone of the lake.

In general, it should be noted that all possible patterns of 
repeat propagation are present in the genomes of  both groups 
of species: there are both those present in only two species in 
all possible combinations, and all variants of absence in only 
one of the species (see Fig. 3).

A comparison of the distribution of repeats belonging to 
different classes according to their distribution in Figure 4 also 
does not reveal any interspecific variation in Baikal and rather 
significant differences between amphipod species. However, in 
both, all possible combinations of the two species are detected, 
which have repeated elements in common only for them (up 
to the sensitivity of detection and identification conditions).

Sets of common repeats were used to cluster species. To do 
this, as a measure of the distance between species, we used

dij = 1 – Nshared
Ni + Nj

,

where dij is the distance between species (genomes), i and j 
are species or genomes numbers, Nshared, Ni and Nj are the 
numbers of repeat types in the respective species. Note that the 
abundances of repeats of each type are not taken into account, 
but the denominator Ncommon involves all types of repeats 
found in the pulled repeats library of the species compared. 
These distances were used to construct the distance matrix, and 
it, in turn, was used to build a tree by combining the nearest 
neighbors (Saitou, Nei, 1987).

For the same species and both groups, maximum likelihood 
trees were inferred based on a comparison of concatenated 

protein-coding nucleotide sequences of mitochondrial ge-
nomes. The topologies of the trees coincided, but the ratio 
of nucleotide distances and distances calculated by common 
repetition is not linear (data not shown).

A more detailed examination of pairs of species with com-
mon repeats (Fig. 5) shows that a noticeable, albeit relatively 
small number of repeats is shared by species that are not sister 
species and thus are not consistent with the phylogeny. This 
property is present in both amphipods and gastropods.

Discussion
The libraries of the NGS reads of four species of Baikal en-
demic gastropods (Baicalia turriformis, Maackia herderiana, 
Korotnewia korotnewi and Godlewskia godlewskia) belonging 
to the Baikal endemic Baicaliidae, and four Baikal amphi-
pods (Acanthogammarus victorii, Brachyuropus grewingkii, 
Garjajewia cabanisi and Macrohectopus branickii) were 
used to de novo search for repeated DNA elements using the 
repeatexplorer algorithm. All taxa whose genomic libraries are 
analyzed in this work, despite various evolutionary histories, 
evolved within the limits of the reservoir that continuously 
existed on the site of modern Baikal.

The gastropods of Baicaliidae are a relatively young group, 
the time of the most recent common ancestors (tMRCA) of 
modern species is no more than 2.5 million years old. They 
are found at depths of no more than 100 m on a variety of soil 
types (Zubakov et al., 1997; Sitnikova, 2006). The amphipods 
in Baikal are represented by at least two large branches that di-
verged no earlier than about 60 million years ago (Sherbakov, 
1999; Mats et al., 2011; Naumenko et al., 2017). The variety 
of ecological niches occupied by them is exceptionally large, 
they are found at all depths.

By their distribution between species, all theoretically pos-
sible combinations of repeat classes were found. They ranged 
from species­specific ones to those found in all the genomes 
studied. This circumstance made it possible to use the distri-
bution of repeats between genomes as a tool for clustering 
the corresponding species and comparing the topology of the 
obtained quartets with the results of clustering of the same 
species based on a comparison of the nucleotide sequences 
of concatenated protein-coding fragments of mitochondrial 
genomes. The topologies coincided, but the ratio of the lengths 

Patterns of repeats shared in amphipods and gastropods (Baicaliidae)

Species Total number of contigs Unique contigs (ratio) Fully shared contigs (ratio)

Amphipods

Brachyuropus grewingkii 21070.0 0.233 0.135

Acanthogammarus victorii 30695.0 0.315 0.093

Garjajewia cabanisi 58335.0 0.605 0.049

Macrohectopus branickii 10674.0 0.455 0.267

Baicaliidae

Baicalia turriformis 58491.0 0.036 0.626

Maackia herderiana 57525.0 0.044 0.637

Korotnewia korotnewi 51841.0 0.040 0.707

Godlewskia godlewskia 57872.0 0.037 0.633
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Fig. 4. Species-specific patterns of repeats shared in gastropods (the left four panels) and gastropods (the right four panels).

Fig. 5. Venn diagrams of the distribution of repeated DNA between am-
phipod  (a) and Baicaliidae  (b) species. c,  d are unrooted trees inferred 
from concatenated protein-coding mitochondrial DNA of the corre-
sponding species.
The colors of the branches correspond to the colors of the ovals on the Venn 
diagrams.
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of the branches turned out to be different. In other words, the 
proportions of common repeats and the degree of differences 
in nucleotide sequences turned out to be independent, albeit 
partially correlated features.

The method we used to identify highly repeated sequences 
and a set of search parameters allow us to identify those that 
are repeated in the genome with at least 50–100 copies per 
haploid genome. The detected repeats make up approximately 
50 % of the genome and are very diverse (1× 104…6 × 104 va-
rieties per genome, see the Table). Therefore, at the present 
stage of the study, we focused on the integral characteristics 
of this repetition and the comparison of these characteristics 
in two flocks of invertebrate species.

The distance tree was inferred from the repeats data using 
the distance metric calculated from the presence/absence of a 
repeat class in a sample as justified by blast search under a mild 
set of parameters. This differs from the parsimony approach 
employed by (Dodsworth et al., 2015). Its advantage was in 
avoiding the assumption of strict homology. Nevertheless, like 
in their study, we obtained the same tree topology to the one 
inferred from mitogenome sequences for both animal groups 
studied. Although the topologies were the same, the ratios in 
branch lengths differed dramatically. We believe that these 
differences result from the peculiarities of the evolution of the 
presence/absence of repeats in genomes. The main feature is 
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that in order to appear in the genome as a repeat, the nucleotide 
sequence starts as a single copy and must be amplified to such 
an extent that it can be detected by the repeatexplorer algo-
rithm. The loss of repetition should also go through a gradual 
decrease in the number of copies of it.

Over time, differences in the compositions of repeated se­
quences accumulate. This confirms the spread of species­spe­
cific sequences in amphipods compared to Baicaliidae and vice 
versa, with a decrease in the proportion of repeats that occur 
in all four species. Therefore, the comparison of repeat spec-
tra in a large number of species can be an interesting tool for 
phylogenetic analysis due to the high diversity of repeats and 
the fact that a large proportion of the genome is used in such 
an analysis, which gives hope for obtaining a more adequate 
and stable picture of evolution. A more detailed examination 
of pairs of species with common repeats (see Fig. 5) shows 
that a noticeable, albeit relatively small number of repeats, 
is common between species that are not sister species. This 
fraction, if “inconsistent”, is present in both amphipods and 
gastropods.

Conclusion
Of particular interest are the repeats, the distribution of which 
between species contradicts the topology of phylogenetic trees, 
but corresponds to the ecological or geographical confine-
ment of species. Such repeats are found in both groups (see 
the Table and Fig. 5), and in a significant (from hundreds to 
thousands) amount. From the point of view of phylogenetic 
analysis, they reduce its resolution but allow us to make an 
intriguing assumption that some part of them is involved in 
horizontal transfer between sympatrically inhabiting species. 
This requires an annotation of this part of the contigs, the 
results of which will be described elsewhere.
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