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Abstract. Healthy human longevity is a global goal of the world health system. Determining the causes and processes
influencing human longevity is the primary fundamental goal facing the scientific community. Currently, the main ef-
forts of the scientific community are aimed at identifying the qualitative characteristics of the genome that determine
the trait. At the same time, when evaluating qualitative characteristics, there are many challenges that make it difficult
to establish associations. Quantitative traits are burdened with such problems to a lesser extent, but they are largely
overlooked in current genomic studies of aging and longevity. Although there is a wide repertoire of quantitative trait
analyses based on genomic data, most opportunities are ignored by authors, which, along with the inaccessibility of
published data, leads to the loss of this important information. This review focuses on describing quantitative traits im-
portant for understanding aging and necessary for analysis in further genomic studies, and recommends the inclusion
of the described traits in the analysis. The review considers the relationship between quantitative characteristics of the
mitochondrial genome and aging, longevity, and age-related neurodegenerative diseases, such as the frequency of
extensive mitochondrial DNA (mtDNA) deletions, mtDNA half-life, the frequency of A>G replacements in the mtDNA
heavy chain, the number of mtDNA copies; special attention is paid to the mtDNA methylation sign. A separate sec-
tion of this review is devoted to the correlation of telomere length parameters with age, as well as the association of
telomere length with the amount of mitochondrial DNA. In addition, we consider such a quantitative feature as the
rate of accumulation of somatic mutations with aging in relation to the lifespan of living organisms. In general, it may
be noted that there are quite serious reasons to suppose that various quantitative characteristics of the genome may
be directly or indirectly associated with certain aspects of aging and longevity. At the same time, the available data are
clearly insufficient for definitive conclusions and the determination of causal relationships.
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AHHOTaLuA. 340POBOE AONTONETHNE YesioBeKa — robasibHas LieSib MMPOBOI CUCTEMbI 34 paBOOXpaHeHNA. B To e Bpe-
Ms HEYKJIOHHOE CTapeHue HaCceNleHUA CTaslo CEPbe3HbIM BbI30BOM A CUCTEM 3APABOOXPAHEHMA MHOTUX CTPaH M1pa,
B TOM UMCIle U3-33 BO3POCLLIEro PrCKa pPasBUTUA MHOTMX TSXKeNbIX HelipofereHepaTUBHbBIX 3aboneBaHunii, BKouas 60-
ne3Hb Anburerimepa (BA) n 6onesHb MapkuHcoHa (BIM). OnpeaeneHve NPUYKH 1 NPOLECCOB, BAAIOLLMX Ha CTapeHne 1
NPOACIKNTENBHOCTb »KN3HW YENOBEKa, a TakXKe BbIAiBJIEHNE MeXaHN3MOB Pa3BUTMA BO3PACTHbIX MaTOOMMIA — NepBo-
cTeneHHaa dyHaameHTanbHasA 3ajaya, CToALan nepe HayuHbIM coobLiecTBOM. B HacTosLee BpeMA OCHOBHbIE yCunms
HanpasneHbl Ha NAeHTUPMKALMIO KaYECTBEHHbIX XapakTepUCTUK reHOMa, AeTEPMUHMPYIOLLMX NPU3HaK. BmecTe ¢ Tem
Npw NX OLIEHKE CYLLeCTBYeT MHOXECTBO Npobem, 3aTpyAHAIOLWMX YCTaHOB/IeHMEe accouunaumin. KonnyectseHHble npu-
3HaKN 0bpemMeHeHbl TaKoBbIMM NPo6eMamyi B MeHbLLIEM 06beme, HO B GOMbLLUMHCTBE CITyYaeB YMyCKaloTCA Npy npo-
Be[EHNV COBPEMEHHbIX FeHOMHbIX UCCIefoBaHNIA, MOCBALLEHHbIX BOMPOCaM CTapeHnsa 1 fonronetus. Hecmotps Ha
HaJlMyme WNPOKOTO Kpyra BO3MOXKHOCTEN NPOBEAEHNA aHa/IN3a FeHOMHbIX AaHHbIX MO KOJIMYECTBEHHbIM NMPU3HaKaMm,
60MbLUNHCTBO BO3MOXHOCTE HE MCMONb3YEeTCA, YTO HapAAY C HEJOCTYMHOCTbIO OMY6/IMKOBaHHbIX AaHHbIX BEAET K MOo-
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Tepe 3ToW BaxkHOM UHopMaLmn. HacToAwwmin 0630p NOCBALLEH ONMCAHNIO KOMMYECTBEHHbIX MPU3HAKOB, BaKHbIX 1A
NOHMMaHUA NpoLecca CTapeHra 1 HEOOXOAMMbIX AfA aHann3a B fanbHENLLNX FTeHOMHbBIX UCCNef0BaHUAX, U ABNAETCA
pekomeHpauveln ANna BKIYEHNA ONMCaHHbIX NPY3HAKOB B aHanu3. PaccmaTtpriBaeTca B3aIMOCBA3b KONMYECTBEHHbIX
XapaKTePUCTUK ALEPHOMO N MUTOXOHAPUANbHOFO FreHOMa CO CTapeHreM, AOSIFONIETUEM U BO3PACTHLIMU HellpogereHe-
paTVBHbIMY 3a60NeBaHMAMM, TaKNX Kak YacToTa O6LWMNPHDBIX Aeneunin mutoxoHapuanbHoi JHK (mtDNA), Bpems nony-
pacnaga mtDNA, yactoTa 3ameH A>G B Taxenon uenu mtDNA, konnyectso konun mtDNA, gnuHa Tenomep, Yactota
CoOMaTMYeCKMX MyTaLmii. B LLenom MOXXHO OTMETUTb, UTO eCTb AOCTaTOYHO CepPbe3Hble MPUYMHbI MoJlaraTb, YTO Pas3fny-
Hble KONMYECTBEHHbIE XapaKTePUCTMKIN FeHOMa MOTYT ObITb MPAMO U KOCBEHHO aCcCOLMMPOBaHbI C TEMU UM MHBIMU
acneKTamy CTapeHVA 1 MPOJOIKUTENIBHOCTY XKM3HW. HO MMEeIoLNXCA AaHHbIX HeJOCTaTOYHO AJ19 OKOHYaTeSIbHbIX Bbl-

BOAOB U BblABNEHNA MPUYNHHO-CNEACTBEHHDbIX cBA3en.

KnioueBble crioBa: KonmyecTBeHHbIe napameTpbl reHOMa; CTapeHne; A0NTroneTne; HeVIpO,U,eI'eHepaTVIBHbIe 3aboneBsa-

HuA; mtDNA; ONHa Tenomep; comaTnyeckne myTtayumn.

Introduction

Human longevity is a complex trait that is influenced by en-
vironmental factors, lifestyle, random events, and individual
genetic traits. Studies have shown that genetics plays a signifi-
cant role in longevity, with individuals from families of long-
livers having a higher chance of living longer (van den Berg,
2020). However, identifying specific genetic determinants
associated with longevity has been challenging. Currently,
only two genes, APOE and FOXO034, have been shown to be
important for human longevity across different samples and
research groups (Deelen et al., 2019). Other results have been
inconsistent, possibly due to population differences and the
effect of multiple comparisons.

Despite the difficulty in identifying specific genetic de-
terminants, maintaining body health is crucial for longevity.
Aging of the brain and the development of cerebrovascular
and neurodegenerative diseases are major causes of disability
and death in older adults (Debette et al., 2019). However, the
genetic basis of age-related brain diseases is complex and
inconsistent. In contrast to qualitative characteristics of the
genome, quantitative traits such as telomere length, the number
of mitochondrial DNA copies, the frequency of heterozygous
variants of mitochondrial DNA, and the frequency of somatic
mutations are less affected by population and statistical fac-
tors. Despite their importance, little attention has been paid
to these quantitative traits in the study of the genetic basis of
longevity.

This review aims to analyze existing information on quan-
titative genetic traits affecting aging and human longevity.

Quantification of changes in mtDNA

structure due to aging

In recent years, there has been much interest in the role of
mtDNA as a determinant of aging, lifespan processes, and age-
related diseases. Mitochondrial dysfunction is considered one
of the key aging biomarkers (Miva et al., 2022), and changes
in quantitative and qualitative characteristics of mtDNA are
directly associated with longevity. Given the spatial proximity
of mtDNA to the electron transport chain, it is exposed to the
damaging effects of free radicals, which, along with a limited
ability to repair, due to the fact that mtDNA is not protected by
histones and is in a single-stranded form for a considerable part
of'its replication time, determines the vulnerability of mtDNA
structure to damage and degradation. All of these factors
lead to a higher rate of chemical modifications and mutation
accumulation in mtDNA compared to the cell nucleus DNA.

496

Damage and deletion of mtDNA sites can lead to
mitochondrial dysfunction due to an increased proportion
of molecules containing an extensive deletion (mtDNAdel),
since mtDNA with an extensive deletion has a replicative
advantage over wild-type mtDNA (Kowald, Kirkwood,
2018). The replicative advantage is probably determined by
the smaller size of the replicating molecule, which leads to
a higher replication rate (Diaz, 2002), and at the same time,
a lower chance of damage to the molecule by active oxygen
species. This results in less active mitophagy of mtDNAdel-
rich organelles compared to normal organelles (de Grey,
1997). Moreover, whereas in actively proliferating tissues,
cells containing dysfunctional mitochondria are subject to
elimination and replacement, tissues characterized by a high
number of postmitotic cells accumulate a burden of such
mutations, which probably leads to a decrease in the functional
parameters of the tissue (Herbst et al., 2017).

The proportion of mtDNAdel in muscle tissue has been
shown to increase approximately 19-fold, from 0.008
t0 0.15 %, from 50 to 86 years (Herbst et al., 2021b). A similar
phenomenon has been observed in nerve tissue (Nido et al.,
2018). It has also been noted that significant accumulation of
mtDNAdel is observed in patients with Parkinson’s disease
in substantia nigra neurons (Bender et al., 2006; Griinewald
et al., 2016) and the striatum (Ikebe et al., 1990). Moreover,
there is an opinion that accumulation of mtDNAdel can trigger
neuroprotective mechanisms (Perier et al., 2013).

The state of mtDNA heterogeneity in which several
clones of mtDNA with different nucleotide sequences exist
in mitochondria is called heteroplasmy. It is known that
heteroplasmy can occur either de novo during ontogenesis or
by maternal inheritance (Sallevelt et al., 2017). Heteroplasmic
mutations also appear to be associated with macroinflammation
(Justetal., 2015). For example, R. Zhang and colleagues noted
that, on average, individuals over the age of 70 had 58.5 %
more mtDNA heteroplasmic mutations than individuals under
the age of 40 (Zhang et al., 2017). This fact becomes of great
significance when we consider that there is substantial evidence
linking mtDNA heteroplasmy with neurodegenerative diseases
directly associated with longevity: Alzheimer’s disease (AD)
(Tranah et al., 2012) and Parkinson’s disease (PD) (Hudson
et al., 2013). At the same time, there are reports showing a
positive role of heteroplasmy for longevity (Rose et al., 2010;
Sondheimer et al., 2011), which is probably because mtDNA
heteroplasmy is a reservoir of genetic variability that can
introduce new functions and increase the ability of cells to
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cope with environmental and physiological stressors during
life. It can be assumed that both of these phenomena take
place and their importance for longevity is determined by the
localization of somatic mtDNA mutation accumulation and
by the fact that congenital heteroplasmy can have a positive
effect to a greater extent, while acquired one has a greater
chance to carry negative properties.

Another mitochondrial marker likely associated with
longevity may be the frequency of accumulation of mito-
chondrial somatic mtDNA (mtSNV) A>G mutations in the
mtDNA heavy chain. In a recent study (Mikhailova et al.,
2022), the authors determined a positive correlation between
the frequency of A;>G,; (H — heavy chain) substitutions
and the lifespan of different mammalian species: the more
long-lived a species is, the higher the frequency of A >Gy
substitutions is observed in it. At the same time, the authors
suggest that the observed accumulation of Gy, nucleotides is
a consequence of oxidative mutagenesis and aging processes
rather than a cause.

The half-life of mtDNA also seems to be an important
factor determining the rate of tissue dysfunction onset. It has
been suggested that cell lifespan depends on mtDNA half-life
(Poovathingal et al., 2012; Chan et al., 2013). In modeling the
effect of half-life on cell survival time, it has been determined
that a moderate increase in mtDNA half-life has a profound
effect on increasing cell survival time, thereby reducing the
replicative advantage of mtDNA with extensive deletions
(Holt, Davies, 2021). Equally importantly, a decrease in
mtDNA half-life significantly affects the process of mtSNV
accumulation in tissues characterized by a high number of
postmitotic cells. It has been shown that if the half-life is three
months, pathogenic mtSNV acquired in a neuronal progenitor
cell early in development and present in the postmitotic
neuronal population at an average frequency of 1%, by
70 years of human life, will be contained in most neurons with
a frequency of ~14 % (Liet al., 2019). Accordingly, changing
the half-life rate downward acts to inhibit mitochondrial
heteroplasmy levels and vice versa.

In addition to mutational events, the mtDNA copy number
(mtDNAcn) is an important quantitative trait. Changes in
mtDNAcn are usually a reflection of the mitochondrial
response to oxidative stress and are also associated with
general dysfunction. Various studies have reported results
showing a decrease in mtDNAcn as humans age (Herbst
et al., 2017, 2021a). A decrease in mtDNA copies in whole
blood has been found to occur with age, and a lower number
of mtDNA copies is associated with poorer health (Lee et al.,
2010; Mengel-From et al., 2014). High mtDNAcn levels are
probably generally associated with better health outcomes
in older individuals, including higher levels of cognitive
function and lower mortality (Kim et al., 2013; Mengel-From
et al., 2014). It has been noted that a decreased mtDNAcn
score is strongly associated with the risk of age-related
neurodegenerative diseases such as dementia, PD, AD, etc.
(Yang et al., 2021).

It should be noted that both systemic trends toward a
decrease in mtDNAcn in individuals with AD and a local
decrease in mtDNAcn by 30-50 % in the frontal lobe of the
large hemisphere cortex and hippocampus compared to healthy
controls have been observed (Coskun et al., 2004; Rice et al.,
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2014). At the same time, there is a publication that describes
an increase in mtDNAcn in patients of African descent with
Parkinson’s disease (Miiller-Nedebock et al., 2022).

In studies examining changes in mtDNAcn in the blood
leukocytes of long-livers as a model of healthy aging,
contradictory results have been obtained. Y.H. He et al. (2014)
showed a significant increase in the amount of mtDNAcn in
centenarians compared to elderly people (He et al., 2014),
but van Leeuwen et al. did not observe such a pattern
(van Leeuwen et al., 2014), which may be due to different
methodological approaches. It should be noted that different
tissues may show different age dynamics of mtDNAcn. For
example, while an inverse correlation was observed in skeletal
muscle samples, a positive correlation was observed in liver
or substantia nigra samples (Délle et al., 2016; Wachsmuth
etal., 2016).

The mtDNAcn index seems to be related to the telomere
length (TL) parameter (Qiu et al., 2015; Tyrka et al., 2015;
Dolcini et al., 2020). It is assumed that this relationship is
based on the negative correlation between mtDNAcn levels
and levels of reactive oxygen species (ROS) and further
negative effects of ROS on telomere length (Melicher et al.,
2018).

Telomere length as a cause

or consequence of longevity

Telomere length is a well-known biomarker of aging (Sanders,
Newman, 2013). Although the relationship between TL and
cellular aging is undeniable in model cell cultures (Victorelli,
Passos, 2017), the conclusions for multicellular organisms
are not so unambiguous (Blackburn et al., 2015). It has been
suggested that telomere shortening dynamics, rather than
total telomere length, can serve as a quantitative biomarker of
macroorganism lifespan (Vera et al., 2012). For example, in
cross-sectional studies on five bird species, it was shown that
short-lived bird species lose more telomere repeats with age
than species with longer lifespans (Haussmann et al., 2003). A
similar correlation has been observed in mammals, suggesting
that long-lived animals have more effective mechanisms of
protection against replicative aging, such as higher telomerase
activity throughout life (Haussmann et al., 2007).

In humans, shorter telomere length is associated with higher
mortality rates from various age-related pathologies, including
some neurodegenerative diseases such as dementia (Levstek
etal., 2021). However, reports on the role of telomere length
in the risk of AD are ambiguous. Some studies noted that TL
length is lower in people with AD than in control samples
(Thomas et al., 2008; Forero et al., 2016), while P. Thomas et al.
noted an inverse relationship in some tissues such as the
hippocampus. Interestingly, longer telomeres have a negative
effect on disease dynamics and severity (Movérare-Skrtic et
al., 2012; Mahoney et al., 2019). Short TL is a good prognostic
marker for determining the long-term risk of AD in APOE4-
negative individuals (Hackenhaar et al., 2021). Moreover,
TL is associated with cognitive function in both elderly and
middle-aged individuals (Hégg et al., 2017; Gampawar,
2022).

It has been estimated that leukocyte telomeres in adults
shorten at an average rate of 24.7 bp per year (Miezzinler
et al., 2013). A number of different factors can influence TL
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and the rate of telomere depletion. For example, TL has
been shown to be higher in older women compared to men
(Benetos et al., 2001) and in African Americans compared to
Caucasians (Hunt et al., 2008). First of all, it should be noted
that in addition to the large number of studies that have noted
a negative correlation of TL with age and the association of
this parameter with mortality in the older age group, there
are also studies in which these patterns were not confirmed
(Sanders, Newman, 2013).

Initially, it was assumed that such discrepancies are
associated with the peculiarities of specific studies, such as the
methodology of sample formation, the presence of population
stratification, the type of tissue studied, and the methods of
studying the index. For example, in an extensive study of TL
in various tissues, it was determined that in 21 types of tissue,
there is a negative correlation of TL with age (the strongest
correlations for whole blood and gastric tissue), while no
correlation was observed for testes, ovaries, cerebellum,
vagina, skeletal muscle, thyroid gland, and gastroesophageal
junction tissue (Demanelis et al., 2020).

When studying long-livers as a model of healthy aging,
it was hypothesized that TL primarily depends on the
physiological state of the organism rather than age. It was
shown that in “high-performing” long-livers (with a low
number of diseases and high physical activity), TL was
significantly higher than TL in “low-performing” long-livers
(with a high number of diseases and low physical activity).
Therefore, it has been suggested that it is probably not the
telomere length factor that affects the ability to live to one
hundred years, but the health condition associated with
telomere length (Terry et al., 2008; Tedone et al., 2019). This
theory is also supported by a study of TL in same-sex twins
over the age of 70, which noted a clear association between
blood white cell TL and physical health, including between
twins (Bendix et al., 2011). Thus, the study of telomere
dynamics in long-lived individuals is of particular importance
because they may have developed mechanisms that actively
postpone aging and provide effective protection against the
negative effects of aging processes.

Somatic mutations and their role in longevity

The current theory of aging suggests that the accumulation
of DNA mutations in somatic cells (copy number variations,
CNVs) with age leads to a decrease in cell function due to
the inactivation or disruption of important genes (Kennedy et
al.,2012). Indeed, it has been shown that the accumulation of
somatic mutations occurs with age and at a differential rate for
different tissues. For example, in human proximal bronchial
basal cells, the rate of mutation accumulation is approximately
29 CNVs per cell per year (CNVs/pepy) (Huang et al., 2022);
in prefrontal cortex and hippocampal neurons, it is 16-21
CNVs/pepy (Lodato et al., 2018; Miller et al., 2022); in
subcutaneous preadipocytes, it is 18 CNVs/pcpy; in visceral
adipose tissue preadipocytes, it is 27 CNVs/pepy (Franco et al.,
2019); in memory T cells, it is approximately 25 CNVs/pcpy;
in naive B-lymphocytes, it is approximately 15 CNVs/pcpy;
in hematopoietic stem cells and progenitor cells, it is
approximately 16 CNVs/pcpy (Machado et al., 2022); and in
spermatogonia, it is approximately 2 CNVs/pcpy (Milholland
etal., 2017).
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A vivid illustration of the significance of CNVs for lifespan
is provided by studies of the rate of mutation accumulation
in the crypts of the large intestine in mammals with different
lifespans (Cagan et al., 2022). While the rate for humans is
approximately 47 CNVs/pcpy, for giraffes at 25-35 years of
life, it is approximately 99 CNVs/pcpy; for ferrets at 14 years
of life, it is approximately 496 CNVs/pcpy; and for mice at
2 years of life, it is approximately 796 CNVs/pcpy. Thus, the
dependence of lifespan and the rate of mutation accumulation
is well established.

At the same time, it has been shown that the frequency of
somatic mutations in humans in old age is much lower than
that required for the loss of gene function in a significant
number of cells, indicating an indirect relationship between
the indices (Vijg, Dong, 2020). In a study of a large sample of
Chinese centenarians compared to controls, it was observed
that CNV levels were significantly higher in the sample of
centenarians than in the control sample, indicating that the
frequency of CNVs does not directly affect the probability
of living beyond the population norm (Zhao et al., 2018).
On the other hand, a study of centenarians from Italy obtained
different data, observing that centenarians had significantly
lower levels of CN'Vs than controls (Garagnani et al., 2021).
Given the contradictory results obtained in these two studies,
more research on this issue is needed.

Conclusion

Thus, there are reasons to suggest that there is a significant
association between aging dynamics, life expectancy, healthy
aging, the risk of neurodegenerative diseases, and various
quantitative genomic characteristics. At the same time, what is
the cause and what is the effect in most cases is not determined,
which, along with the sporadic nature of the available
publications, highlights the need for additional research.
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