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Abstract. Single nucleotide polymorphisms (SNPs) are the most common type of variation in the human genome. The vast
majority of SNPs identified in the human genome do not have any effect on the phenotype; however, some can lead to
changes in the function of a gene or the level of its expression. Most SNPs associated with certain traits or pathologies are
mapped to regulatory regions of the genome and affect gene expression by changing transcription factor binding sites. In
recent decades, substantial effort has been invested in searching for such regulatory SNPs (rSNPs) and understanding the
mechanisms by which they lead to phenotypic differences, primarily to individual differences in susceptibility to diseases
and in sensitivity to drugs. The development of the NGS (next-generation sequencing) technology has contributed not only
to the identification of a huge number of SNPs and to the search for their association (genome-wide association studies,
GWASs) with certain diseases or phenotypic manifestations, but also to the development of more productive approaches
to their functional annotation. It should be noted that the presence of an association does not allow one to identify a
functional, truly disease-associated DNA sequence variant among multiple marker SNPs that are detected due to linkage
disequilibrium. Moreover, determination of associations of genetic variants with a disease does not provide information
about the functionality of these variants, which is necessary to elucidate the molecular mechanisms of the development of
pathology and to design effective methods for its treatment and prevention. In this regard, the functional analysis of SNPs
annotated in the GWAS catalog, both at the genome-wide level and at the level of individual SNPs, became especially rele-
vant in recent years. A genome-wide search for potential rSNPs is possible without any prior knowledge of their association
with a trait. Thus, mapping expression quantitative trait loci (eQTLs) makes it possible to identify an SNP for which - among
transcriptomes of homozygotes and heterozygotes for its various alleles — there are differences in the expression level of
certain genes, which can be located at various distances from the SNP. To predict rSNPs, approaches based on searches for
allele-specific events in RNA-seq, ChIP-seq, DNase-seq, ATAC-seq, MPRA, and other data are also used. Nonetheless, for a
more complete functional annotation of such rSNPs, it is necessary to establish their association with a trait, in particular,
with a predisposition to a certain pathology or sensitivity to drugs. Thus, approaches to finding SNPs important for the
development of a trait can be categorized into two groups: (1) starting from data on an association of SNPs with a certain
trait, (2) starting from the determination of allele-specific changes at the molecular level (in a transcriptome or regulome).
Only comprehensive use of strategically different approaches can considerably enrich our knowledge about the role of
genetic determinants in the molecular mechanisms of trait formation, including predisposition to multifactorial diseases.
Key words: regulatory single-nucleotide polymorphism; transcription factor-binding sites; gene expression; genome-wide
studies.
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AHHoTauua. OQHOHYK/NEOTVAHbIE 3aMeHbI, TaKXKe Ha3blBaemble OAHOHYKNeoTUAHbIMK nonumopdusmamu (single nucleo-
tide polymorphism, SNP), - 3To Hanbonee pacnpocTpaHeHHbI TUN Baprauuii reHoma Yenoseka. lMopasnaioLasn yacTb Bbl-
ABNIEHHDbIX B reHoMe yenoBeka SNP He oka3biBaeT Kakoro-nmbo Bo3aencTBmna Ha MoNeKynapHbIi GeHOTUMN, OfHAKO HeKo-
TOpble CNOCcOOHbI NPUBOANTL K M3MEHeHNI0 GYHKLMM reHa Un YpoBHA ero aKkcnpeccuu. B 1o xe Bpema 6onbwmHcTeo SNP,
ACCOLMMPOBAHHDBIX C HEKMMW MPU3HAKaMM UK NaTONOMMAMY, KaPTUPYIOTCA B PEryNATOPHbIX 0611acTAX reHOMa, U3MEHAIT
noTeHUManbHble CaTbl CBA3bIBaHWA TPAHCKPUMLMNOHHbBIX GaKTOPOB M, COOTBETCTBEHHO, MOTYT BAMAIOT Ha SKCMPECCHIo re-
HOB. B nocnegHue pecatuneTva 3HaunTenbHble yCUnua 6biv HanpasieHbl Ha NOVCK Takmnx perynatopHbix SNP (rSNP), a Tak-
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OpfHOHYKNeOoTUAHbIE 3aMeHbl, BIVAOLME Ha CBA3bIBaHWE
baKTOPOB TPAHCKPUMNLMK, UX POSIb B Pa3BUTUV NATONOI A

Ke Ha NOHMMaHMe MeXaHV3MOB, MOCPEACTBOM KOTOPbIX OHM MPUBOAAT K EHOTUMNYECKMM PasNnymam, B NepBYto ouepeab
K pa3HoW NpepacnonoXeHHOCTU K 3ab01eBaHNAM Y UHAVBUAYaJIbHOW YyBCTBUTENIbHOCTY K JIEKaPCTBEHHbIM NpenapaTam.
Pa3Butue TexHonorum NGS (next generation sequencing) cnoco6CcTBOBaNO He TONbKO BbIABIEHIO OFPOMHOIO KOMYeCcTBa
SNP 1 nouncky ux accoumaumm (genome wide association studies, GWAS) ¢ Hekumu 3a6oneBaHnAMN U GeHOTUNNYECKMU
NPOABNEHNAMM, HO U Pa3BUTUIO Bonee NPOV3BOANTENbHbBIX MOAXOA0B ANA UX GYHKLMOHaNbHOWM aHHoTauun. CTont otme-
TUTb, YTO Ha/IMUMe accoLMaLnmM He NO3BONAET BbIAENUTb GYHKLMOHASbHbIN, AeACTBUTENIbHO CBA3AHHbIN C 60Ne3HbIO Ba-
puaHT nocneposatenbHocTV IHK 13 MHOXKeCTBa MapKepHbIX, KOTOPble BbIABMAIOTCA 33 CYET HEPAaBHOBECHA MO CLENJIEHNIO.
Bornee Toro, yctaHoBfIEHVE accoUMaLMi reHETUYECKMX BapraHTOB C 3aboneBaHNeM He AaeT cBefieHnn o GyHKLOHanb-
HOCTU 3TVX BapWaHTOB, YTO HEOBXOAVMO ANA BbIACHEHUA MOJIEKYIAPHBIX MEXaHVU3MOB Pa3BUTUA MATONOMUK U Pa3paboTKm
3¢ PeKTUBHbBIX METOAOB ee fleyeHna N NPOoPUNaKTUKN. B cBA3M ¢ 3TM GyHKLUMOHaNbHbIN aHanu3 SNP, aHHOTMPOBaHHbIX B
GWAS KaTanore, Kak Ha NOJTHOreHOMHOM YPOBHe, TaK 1 Ha YpoBHe oTaenbHbIx SNP B nocneHve roabl ctan 0cobeHHOo aKTy-
anbHbIM. B HacTosLee BpeMs akTUBHO Pa3BMBAETCA MOJTHOreHOMHBbIV NMOUCK NMOTEHLUANbHO perynatopHbix SNP 6e3 Kakux-
nnbo npeaBapUTENbHbIX 3HaHWI 06 NX accoumalm C NPU3HAKOM. Tak, KapTUPOBaHKE TOKYCOB KONMYECTBEHHbIX NPU3Ha-
koB akcnpeccun (eQTL, expression quantitative trait loci) no3sonset BbisiBUTb SNP, AnsA KOTOPOro B TPaHCKPUNTOMax roMo-
3UroT MO Pa3HbIM ero ajuenaAMm, a TakxKe reTepo3nroT HabnloaaTCA Pas3NnUKA B YPOBHE SKCNPECCUIN HEKMX FEHOB, NpUYem
KaK 61113Ko pacrnonoXKeHHbIX, Tak 1 Ha 3HaUNTENbHOM yaaneHun. ina npeackasaHma perynatopHbix SNP ncnonb3yiot Takxe
NnoAXxofibl, OCHOBAHHble Ha Noucke annenb-cneundryecknx coboitnin B aHHbix RNA-seq, ChiIP-seq, DNase-seq, ATAC-seq,
MPRA u T.4. OgHako ana 6onee NofHON XxapakTepucTuKy Takmx rSNP Heo6XoaMmo ycTaHaBNMBaTb VX accoLmaumio ¢ npu-
3HaKOM, B YaCTHOCTU C NPeApPacroNOXeHHOCTbIO K HEKOI MaToNorMm Niam € YyBCTBUTENIbHOCTbBIO K JIEKapCTBEHHbIM npe-
napatam. Takvm 06pa3oM, UMEHHO KOMIIEKCHOE MCMOJb30BaHMe ABYX OCHOBAHHBIX Ha MPOTVBOMOJIOKHbIX MPUHLMMNAX
NMOAXOAOB K MOWCKY 3HAaUYMMbIX ANA PasBUTUA Npu3Haka (natonorum) SNP: ¢ OAHON CTOPOHbI, NCXOAALLEro M3 JaHHbIX MO
accoumauymu SNP ¢ HeKMM NMpU3HaKoM, a C APYroi CTOPOHbI, AYLLErO OT onpefeneHna annenb-crneumdmnyHbIX N3MeHeHN
Ha MONeKYNIAPHOM YPOBHe (B TPAHCKPUMNTOME UM Perynome) — CyLeCcTBEHHO oboraliaeT KapTUHY HalvX 3HaHWI O ponu
reHeTUYeCKNX AeTEPMUHAHT B MOMNEKYIAPHbIX MexaHn3max GopmMrpoBaHna NPU3HAKOB, BKTIOUYaA NPefpacrnonoXeHHOCTb
K MHOrOpaKTOPHbIM 3a60neBaHNAM.

KnioueBble cloBa: perynAaTopHbI O4HOHYKNEOTUAHBIN NOANMOPPM3M; CalTbl CBA3bIBAHMA TPAHCKPUMLUMNOHHbIX GaKkTOpPOB;
JKCMPEeCcHa reHoB; MOJIHOreHOMHble NCCNefOBaHNA.

Introduction
One of the main tasks of human genetics is to clarify the
mechanisms by which genome variations lead to phenotypic
differences, primarily to individual differences in susceptibili-
ty to diseases and in sensitivity to drugs. Single-nucleotide
polymorphisms (SNPs) are the most common type of genome
variation (Chanock, 2001). Currently, due to the development
of next-generation sequencing (NGS) technologies, more
than 950 million SNPs of the human genome are registered
in database dbSNP (https://www.ncbi.nlm.nih.gov/projects/
SNP/snp _summary.cgi) (Sherry et al., 2001); furthermore,
rare SNPs with a frequency (prevalence in the population) of
less than 1 % constitute more than 90 % of the total number
of SNPs. It seems unlikely that the vast majority of identified
variations can be important for the phenotype, but some of
them certainly form the genetic basis of phenotypic traits,
including predisposition to various diseases. In recent decades,
major efforts have been applied to the search for such SNPs.
The most popular approach (which started back in the
1980s) to the identification of trait-related SNPs has been the
determination of associations with diseases for SNPs found
in candidate genes (Lander, Schork, 1994; Ring, Kroetz,
2002), and in this context, only SNPs affecting the protein-
coding part of a gene have been investigated (Cooper, 1998).
Somewhat later, there has been some interest in elucidating
the functionality of variants located in noncoding regions of
genes, i.e., in determining an effect of such variants on a cer-
tain molecular phenotype. In particular, it has been shown that
such SNPs affect transcription factor-binding sites (TFBSs),
thereby leading to changes in the expression of the respective
genes (Ludlow et al., 1996; Piedrafita et al., 1996; Knight
et al., 1999; Vasiliev et al., 1999). Nonetheless, these few

functional studies have remained almost invisible against the
backdrop of a huge wave of research aimed at identifying asso-
ciations.

The productivity of detection of disease-associated SNPs
increased dramatically with the advent of the genome-wide
association study (GWAS) technology in the mid-2000s
(Fig. 1, a), which is based on an unbiased — not based on any
ideas about the formation of a trait — principle of a genome-
wide search for SNPs associated with the trait (Visscher et
al., 2012; Tam et al., 2019). To date, more than 72 thousand
associations of genetic variants with traits have been found
by GWASs (GWAS Catalog, https://www.ebi.ac.uk/gwas/),
thus allowing to find many new genes and systems of genes
associated with predisposition to various diseases (Buniello et
al., 2019; Tam et al., 2019; Claussnitzer et al., 2020).

Nevertheless, GWAS technology does not provide any in-
formation about the functionality of the detected variants,
thereby making it very difficult to elucidate the molecular
mechanisms underlying the development of a pathology
and hence to develop effective methods for its treatment and
prevention. Additionally, based on results of GWASSs, it is
almost impossible to distinguish a truly disease-associated
variant from the many marker variants that are detected due to
linkage disequilibrium (Lappalainen, 2015; Tam et al., 2019;
Zhao et al., 2020). It is also known that most SNPs identified
by GWASSs are located in the noncoding part of the genome
and, as a rule, in its regulatory regions (e. g., promoters and
enhancers) (Hindorff et al., 2009; Maurano et al., 2012;
Bryzgalov et al., 2013; Farh et al., 2015); these data imply
an influence of such SNPs on the binding of transcription fac-
tors (TFs) and on gene expression. Thus, a need for research
on functional interpretation of data from GWASs — both at
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Fig. 1. Genome-wide approaches to the analysis of SNPs.

a, The principle of GWASs; b, the scheme of eQTL analysis for each SNP. A search for allele-specific events: ¢, expression (allele-specific expression, ASE) and

d, binding (allele-specific binding, ASB).

the level of individual potentially regulatory SNPs (rSNPs)
and at the level of all such variants collectively — has become
obvious. In addition, because the GWAS technology greatly
underestimates the actual number of associations owing to
the required strict thresholds in statistical processing (Tam et
al., 2019), investigators have recognized the need to develop
GWAS-unrelated large-scale function-based approaches to
the search for rSNPs (Westra, Franke, 2014; Maurano et al.,
2015; Cavalli et al., 2016b; Korbolina et al., 2018).

Of the genome-wide function-based approaches, the first
in timing of emergence (almost simultaneous with the start
of the application of the GWAS technology) is analysis of
expression quantitative trait loci (eQTLs) (see Fig. 1, b). This
analysis, by means of transcriptome data (earlier, microarray
data have been employed, then data from high-throughput
RNA sequencing [RNA-seq] started to be used), determines
for each SNP a difference in the level of expression of in-
dividual genes among homozygotes and heterozygotes for
different alleles of this SNP (Westra, Franke, 2014; GTEx
Consortium, 2020). Somewhat later, techniques were devised
for finding allele-specific events both in data from RNA-seq
(allele-specific expression [ASE] events) (see Fig. 1, ¢) (Cas-
tel et al., 2020; Fan et al., 2020) and in data from ChIP-seq,
DNase-seq, and ATAC-seq (allele-specific binding [ASB]
events) (see Fig. 1, d) (Maurano et al., 2015; Cavalli et al.,
2016a, b; Xu et al., 2020; Korbolina et al., 2021). Massive
function-based approaches also include massively parallel
reporter assay (MPRA), SNP-seq, and SNP-SELEX (Zhang
etal., 2018; Lu et al., 2021; Yan et al., 2021).

At the beginning of this review, using the latest studies as
examples, we examine rSNPs that are (i) associated with the
development of pathologies according to results of GWASs
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and are (ii) characterized in detail in terms of their influence
on an interaction with a TF and on the expression of nearby
or distant genes. Next, the review describes the application of
functional genomics methods to interpretation of data from
GWAS:s and to the search for new regulatory variants without
GWAS:s. In the course of the presentation, strengths and weak-
nesses of these approaches are shown, as is the importance
of comprehensive use of GWASs and functional genomics
methods to reveal the role of SNPs in molecular aberrations
underlying the development of a pathology.

Functional interpretation of data from GWASs

at the level of individual rSNPs

A wide range of experimental methods are utilized to func-
tionally study individual possible rSNPs. At initial stages,
classical methods are usually used: analysis of DNA-probe
retardation in a gel by nuclear extract proteins (electrophoretic
mobility shift assay, EMSA) and a reporter assay (analysis of
reporter gene expression under the control of allelic variants
of the SNP region), which allow a researcher to detect an
influence of an SNP on the binding of some TF or on reporter
gene expression, respectively (Antontseva et al., 2015; Fang
etal.,2017). To identify the TFs the binding sites of which are
affected by nucleotide substitution, scientists perform EMSA
using appropriate antibodies or purified TFs (Piedrafita et al.,
1996; Knight et al., 1999; Vasiliev et al., 1999; Jiang et al.,
2020), chromatin immunoprecipitation with detection of al-
lele asymmetry in a PCR product (ChIP-AS-qPCR) (Gao et
al., 2018; Choi et al., 2020; Thynn et al., 2020; Protze et al.,
2022), and mass-spectrometric analysis of proteins isolated
from complexes with oligonucleotides containing minor al-
leles (Fang etal., 2017; Liu D. et al., 2018; Choi et al., 2020).
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An impact of a nucleotide substitution in the identified
TFBSs on their potential target genes is confirmed by ex-
periments with downregulation or artificial upregulation of
genes of the corresponding TFs or by studying the effect of
point mutations introduced into the TFBS using CRISPR/
Cas9 technology (Prestel et al., 2019; Gutierrez-Arcelus et
al., 2020; Pan et al., 2020; Thynn et al., 2020; Wang Y. et al.,
2020; Wang X. et al., 2021). Lately, an increasingly popular
approach in this field of research on SNPs has also been the
determination of allelic imbalance of the expression for SNPs
located in transcribed regions of genes. Nonetheless, it is worth
noting that such an SNP can be either an rSNP proper (Syddall
et al., 2013; Klein et al., 2019) or a marker SNP in a linkage
group with an rSNP located in a nontranscribed region (Fang
etal., 2017; Li X.-X. et al., 2019; Peng et al., 2020).

Various combinations of these techniques are employed in
modern research, as illustrated by the examples below.

rs36115365
A textbook example of a well-studied rSNP is rs36115365
(G/C), which is situated at a locus associated with various
types of cancer according to data from GWASs (chr5p15.33:
region 2). At this locus, a correlation analysis has revealed
nine SNPs (2> 0.60, 1000G EUR population) associated with
pancreatic cancer, testicular germ cell tumor, lung cancer, and
melanoma. To screen all nine SNPs for regulatory activity,
EMSA and reporter assay were performed by means of eight
human cell lines (Fang et al., 2017). The use of several cell
lines is a common practice in such studies (Bryzgalov et al.,
2013; Boldes et al., 2020) and is aimed at the highest possible
coverage of events of interaction of TFs with their binding
sites; the reason is substantial differences in the sets of TFs ex-
pressed in different cell types (Tobias et al., 2021). The screen-
ing analyses identified only SNP rs36115365 as potentially
regulatory, and its C allele showed both much better binding to
a certain protein in the EMSA and greater activation of reporter
gene expression as compared to the G allele (Fang et al., 2017).
rs36115365 is located ~18 kilobase pairs (kbp) upstream
of the start of the TERT gene (encoding reverse transcrip-
tase of the telomerase complex) and approximately 5 kbp
downstream of the end of the CLPTMIL gene. According
to the results of ChIP-seq (chromatin immunoprecipitation
followed by sequencing of DNA from the precipitates) from
project ENCODE (Moore et al., 2020), this SNP’s location
overlaps with many TFBSs, and this region is enriched with
active chromatin histone marks, which is typical for enhancer
regions. Inactivation of this region by small-interfering-RNA-
mediated transcriptional silencing (Malecova, Morris, 2010)
results in downregulation of only the TERT gene. To identify
the TF the binding site of which changes as a consequence
of the substitution of G with C, the binding of proteins from
nuclear extracts to oligonucleotides containing minor alleles
was implemented, followed by mass-spectrometric analysis of
the bound proteins. After an analysis of the obtained peptides,
four TF candidates that prefer the C allele were proposed:
ZNF148, VEZF1/ZNF161, ZNF281, and ZNF740. In EMSA
involving specific antibodies to these TFs, only ZNF148 was
confirmed, which was subsequently verified by means of
the purified ZNF148 protein in an experiment. A small-in-
terfering-RNA-mediated knockdown of ZNF148 gave a de-
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finitive answer because it reduced TERT expression and te-
lomerase activity and shortened telomere length. Thus, the
C allele corrects the binding site of ZNF148, enhances the
expression of TERT and, as a consequence, increases the risk
of carcinogenesis (Fang et al., 2017).

rs174575

According to GWASs, rs174575 (C/G) correlates with an
elevated risk of colorectal cancer (Tian et al., 2020). This
SNP is located in the first intron of the delta-6-desaturase
gene (FADS?) at a distance of +41.5 kbp from its transcription
start site and at a distance of —178.8 kbp from the transcription
start site of the gene of long noncoding RNA AP002754.2.
The rs174575 region in chromatin is enriched with histone
modifications characteristic of active regulatory regions
(H3K4mel, H3K4me3, or H3K27ac), and judging by DNase-
seq data (identification of sites of hypersensitivity to DNase I)
and findings of ATAC-seq (assay for transposase-accessible
chromatin), corresponds to open chromatin (ENCODE). The
hypothesis of a regulatory role of rs174575 is supported by
eQTL analysis data, which show an association of the G allele
with overexpression of F4DS2 and AP002754.2.

Computer analysis of DNA motifs using Web services Cis-
trome (Zheng et al., 2019) and JASPAR (Fornes et al., 2020)
has revealed that in the case of rs174575, the replacement of
G with C damages the binding site of TF E2F1, and the data
of ChIP-seq from ENCODE, obtained on colorectal cancer
LoVo cells, indicate that E2F1 is mapped to the location of
this SNP. A cross-competitive EMSA has confirmed better
binding of a certain nuclear extract protein to the G allele,
and that this protein is E2F1 has been demonstrated by ChIP-
qPCR with appropriate antibodies. For instance, in cell lines
with different genotypes —HCT116 (CG), SNU-C1 (CG), and
HT115 (CC) —astronger binding of E2F1 is observed in cells
carrying the G allele. A study involving reporter constructs has
also confirmed a higher enhancer activity of a DNA fragment
containing the G allele (Tian et al., 2020).

Direct contact between the region containing rs174575 and
promoters of FADS2 and AP002754.2 has been detected by the
chromosome conformation capture (3C) method, and it turned
out that the interaction was much more pronounced in cell lines
carrying the G allele. Further experiments indicated that over-
expression of AP002754.2 sharply raises the level of FADS?2
expression in HCT116 and LoVo cells, and a knockdown of
AP002754.2 by microRNA causes a decrease in the expression
of this gene, indicating a stimulatory role of AP002754.2 in
the regulation of the FADS2 gene. On the other hand, over-
expression of FADS2 or AP002754.2 significantly increases
the proliferation rate of HCT116 and LoVo cells, whereas a
knockdown of FADS2 or AP002754.2 significantly reduces
it. It has also been shown that overexpression of FADS2 and
AP002754.2 accelerates tumor growth in in vivo experiments
in mice. It is known that the product of the FADS?2 gene is a key
enzyme in the biosynthesis of polyunsaturated fatty acids,
including arachidonic acid, which in turn is a precursor of
prostaglandin E2 (PGE2), which promotes tumor growth and
metastasis. Thus, rs174575 acts as an allele-specific enhancer
that stimulates the transcription of F4DS2 and AP002754.2,
leading to an elevated risk of colorectal cancer in the case of
the G allele (Tian et al., 2020).

FEHETUKA YEJTIOBEKA / HUMAN GENETICS 665



E.V. Antontseva, A.O. Degtyareva
E.E. Korbolina, I.S. Damarov, T.I. Merkulova

rs4903064

According to GWASSs, 1s4903064 (T/C) is associated with
renal cell carcinoma, the most common type of kidney cancer
(Scelo et al., 2017). rs4903064 is located in the third intron
of the DPF'3 gene, which encodes a protein of the BAF sub-
family of the SWI/SNF chromatin-remodeling complex. The
predominance of the C allele of rs4903064 in tumor tissue
samples from patients with clear-cell renal carcinoma has
been demonstrated, in contrast to both normal kidney tissues
and tumor tissue from individuals with papillary renal cell
carcinoma and individuals with chromophobe renal cell carci-
noma. In this context, a measurement of the ratio of alleles in
DPF3 pre-mRNA in patients with clear-cell renal carcinoma
heterozygous for rs4903064 has confirmed a skew toward the
C allele (Protze et al., 2022).

According to ATAC-seq data obtained on primary renal
cancer cells, rs4903064 is located in an open chromatin
region, in a putative enhancer. Given that the substitution of
T with C (rs4903064) creates a potential binding site for TF
HIF, a reporter analysis has been performed on HelLa and
MCEF-7 cell lines, showing that an increase in reporter gene
expression takes place only in the case of the C allele and
only when cells are treated with a specific stabilizer of HIF:
dimethyloxalylglycine. Knockouts of various isoforms of
HIF have revealed that the increase in reporter activity upon
stimulation with dimethyloxalylglycine depends on HIF-1a.
By means of ChIP-qPCR in primary renal tubular cells with
different genotypes of 14903064 (TT, CT, and CC), enhanced
binding of HIF-1a and HIF-1 to risk allele C has been con-
firmed. To elucidate the role of overexpression of DPF3 in
the development of clear-cell renal carcinoma, a knockout of
DPF3 has been performed in cells of proximal renal tubules
using CRISPR/Cas9 technology. It was demonstrated in that
report that cells with defective expression of DPF3 grow more
slowly than control clones of the corresponding cells, suggest-
ing that increased expression of DPF3 in proximal tubule cells
stimulates proliferation (Protze et al., 2022).

rs17114036

rs17114036 (T/C) is associated with coronary heart disease
and ischemic stroke according to GWASs (Dichgans et al.,
2014). This SNP is located in the 5th intron of the PLPP3
gene, encoding phospholipid phosphatase 3, which inhibits
inflammation of endothelium and contributes to the integrity
of'its monolayer (Panchatcharam et al., 2014; Wu etal., 2015).
Experiments with ATAC-seq and ChIP-seq (H3K27ac and
H3K4me2) performed on human aortic endothelial cells
(HAECs) have identified the region containing rs17114036 as
a potential enhancer. The enhancer activity of this region was
confirmed by reporter analysis, whereas protective allele C (as
compared to the T allele) significantly increased the activity of
luciferase upon transfection of vector constructs into HAECs.
A deletion of a 66-bp region containing rs17114036 by means
of CRISPR/Cas9 significantly reduced the expression of
PLPP3 as compared to the unedited genome and enhanced the
permeability of the monolayer of edited HAECs. As a result of
modeling hemodynamic processes, an increase in the activity
of the studied enhancer (containing the C allele) in HAECs was
shown with an 18-hour “atheroprotective” flow as compared
to an “atherogenic” flow, while no effect of the T allele was
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found. It turned out that the substitution of the T nucleotide
with C creates a binding site (CACC) for the KLF2 protein,
as confirmed by ChIP-AS-qPCR analysis in HAECs hetero-
zygous for rs17114036. Cotransfection experiments with a
plasmid causing overexpression of KLF2 also showed higher
luciferase activity in the case of the tested enhancer carrying
the C allele (Krause et al., 2018).

rs4407214

rs4407214 (T/G) is associated with estrogen receptor-negative
breast cancer. In the HMEC cell line, an analysis of ChIP-seq
data from the ENCODE project regarding locations of marks
of active chromatin (H3K4m1, H3K4m2, H3K4m3, H3K9ac,
H3K27ac, H3K36m3, H3K79m2, H4K20m1, EZH2, and
H2AZ) has helped to find in the rs4407214 region a regulatory
locus in intron 1 of the WDR43 gene (a protein-coding gene
associated with rRNA processing and ribosomal biogenesis).
By EMSA, the researchers showed ASB of nuclear proteins
from MCF10A and CAL-51 cells to DNA probes mimicking
the region of this SNP’s location in the genome. Reporter gene
expression under the control of the identified regulatory region
on the same cell lines was also found to be allele-dependent
(Couch et al., 2016; Fachal et al., 2020).

Bioinformatic analysis was then performed using the
JASPAR database and available ChIP-seq data for this region
from the ENCODE project to identify the TFs the binding sites
of which are altered by the G-to-T substitution (rs4407214).
As a result, USF1 was identified as such a TF. A competi-
tive EMSA with nuclear proteins isolated from CAL-51 and
MCF10A cells confirmed the ASB of USF1 in the case of
the G allele. It was also demonstrated that CRISPR/Cas9-
mediated removal of the presumed regulatory region contain-
ing rs4407214 results in underexpression of PLBI (phospho-
lipase B1), which is located at a distance of ~400 kbp from
WDR43.

Mass interpretation of GWAS data

by functional genomics methods

Because results of GWASs tend to associate a trait (disease)
with multiple loci (Goldstein, 2009; Boyle et al., 2017), most
of which in turn contain many often coinherited SNPs (Tak,
Farnham, 2015; Schaid et al., 2018), it is very difficult to
choose among them the potential rSNPs involved in a disease’s
pathogenesis. To date, several effective experimental solutions
to this problem have been developed. First of all, these are
scaled up versions of the approaches utilized to investigate
individual rSNPs: a reporter assay (MPRA) and methods for
studying protein—nucleic acid interactions (Reel-seq, SNP-
seq, and SNP-SELEX) (Zhao et al., 2020; Lu et al., 2021,
Yan et al., 2021).

In particular, MPRA has been successfully used to find the
rSNPs that play a key role in the genetic predisposition to
lupus erythematosus (Lu et al., 2021). According to GWAS
findings, 3,073 SNPs in 91 loci are associated with this disease.
Those researchers constructed a barcoded library containing
12,396 170-bp oligonucleotides containing in the middle all
known variants of these 3,073 SNPs; these oligos were inserted
upstream of a minimal promoter placed before the eGFP gene.
An influence of a minor allele on enhancer activity of inserts
for 51 SNPs from 27 loci was demonstrated in the GM 12878
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cell line. The small number of identified rfSNPs can most likely
be explained by transfection of only one cell line; if several
cell lines had been tested, the number of rSNPs would have
been much larger due to expansion of the set of TFs involved
in the study. Similarly, in MPRA, 30 out of 832 SNPs (as-
sociated with melanoma risk according to GWASs) showed
a significant difference in the impact of minor alleles on re-
porter gene expression in the UACC903 melanoma cell line
(Choi et al., 2020). For one of these 30 SNPs (rs3982006),
which is located in intron 1 of the MX2 gene, the difference
was the largest. It turned out that risk allele A of rs398206
significantly enhances the binding of TF YY1 in vitro (in
EMSA) and in vivo (according to ChIP-AS-qPCR), thereby
upregulating MX2 and thus contributing to the initiation of
melanoma (Choi et al., 2020). Other examples can be found
in refs (Ulirsch et al., 2016; Liu S. et al., 2017; Kalita et al.,
2018; Klein et al., 2019).

By methodically similar Reel-seq and SNP-seq, which are
based on a comparative analysis of the binding of a TF to
oligonucleotides containing minor alleles, 521 potential rSNPs
have been selected out of 4,316 SNPs correlating with breast
cancer according to GWASs (Zhao et al., 2020) as well as
403 possible rSNPs out of 903 SNPs associated with prostate
cancer (Zhang et al., 2018). The largest study involving the
approach from this research group was published in 2021
(Yanetal., 2021). The approach was named SNP-SELEX. To
implement it, those authors used a library of 383,544 40-bp
oligonucleotides containing in the middle all possible alleles
of 95,886 SNPs. SNPs were chosen based on either their as-
sociation with type 2 diabetes mellitus in GWASs or localiza-
tion within a 500-kbp window containing a variant associated
with this pathology. By means of 270 recombinant TFs, those
authors conducted a multiplex analysis of their binding to
the oligonucleotides and identified 11,079 SNPs having an
appreciable allele effect on binding to at least one TF.

For mass interpretation of the results of GWASs, functional
genomics data from available databases are also widely used,
such as data on genome-wide profiles (ChIP-seq) of TFs’ bind-
ing (Li S. et al., 2020) and of histone modifications (Jones et
al., 2020), on open-chromatin genome-wide profiles (ATAC-
seq) (Corces et al., 2020), on three-dimensional chromatin
contacts (Corces et al., 2020), and on locations of enhancer
and superenhancer regions (Gong et al., 2018; Sun W. et al.,
2018; Nasser et al., 2021) as well as data from eQTL analysis
(Gamazon et al., 2018; Zheng et al., 2019; Barbeira et al.,
2021).

For example, 8,005 SNPs — either directly associated by
GWASs with major depressive disorder or present in the same
linkage group —have been mapped to ChIP-seq peaks obtained
from a brain tissue or cells of neuronal origin by means of
antibodies to 34 various TFs (Li S. et al., 2020). After that,
a search was performed for binding sites of the corresponding
TFs in the regions of the SNPs using a database containing
7,699 position weight matrices (Whitington et al., 2016),
and it was revealed that 34 SNPs disrupt the binding sites of
15 TFs. A reporter assay confirmed the effect of an allele on
gene expression for 29 SNPs. One of them, rs3101339, proved
to be located at a potential binding site of TF REST in the
promoter region of the NEGRI gene, whereas the substitution
of A with C considerably damaged the structure of this site,
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as evidenced by a decrease in reporter gene expression under
the control of an insert carrying the C allele. The influence of
rs3101339 on NEGRI gene expression in vivo was confirmed
by elimination of an appropriate DNA fragment via CRISPR-
Cas9 genomic editing. Since the product of NEGRI plays
an important part in the maintenance of required density of
dendritic spines, its underexpression when A is replaced by C
may substantially contribute to the development of a depres-
sive state (Li S. et al., 2020).

Data on genome-wide profiles of active-chromatin histone
marks are also turning out to be very informative for the
functional interpretation of GWAS results. For example, to
analyze many SNPs correlating with epithelial ovarian cancer,
they have been mapped in the region of ChIP-seq peaks for
H3K27Ac; these peaks were obtained by the researchers in
a study on 26 tissue samples of this type of cancer (Jones et
al., 2020). Then, using the motifbreakR tool (Coetzee et al.,
2015), among the mapped SNPs, 469 SNPs were selected in
which the nucleotide substitution substantially altered a bind-
ing site of some TF. The most frequent was the change in the
sequence of the binding site of TF REST, for which there are
data on its tumor-suppressive and oncogenic functions (Jones
etal., 2020). Besides, the use of ChIP-seq datasets on various
histone modifications from relevant databases in combination
with data and tools from a database of potential regulatory
variants (rVarBase) (Guo et al., 2016) has made it possible to
detect in superenhancers 286 and 366 possible rSNPs asso-
ciated with type 2 diabetes mellitus (Sun W. et al., 2018) and
coronary heart disease (Gong et al., 2018), respectively, that
alter the predicted TFBSs.

GWAS-unrelated function-based

approaches to identifying potential rSNPs

Modern massive function-based approaches to the identifica-
tion of potential rSNPs are mainly based on the registration
of an effect of a nucleotide substitution on some molecular
phenotype. This may be (i) determination (in transcriptomes)
of a difference in the expression level of individual genes
among homozygotes and heterozygotes for different alleles of
each SNP (eQTL analysis), (ii) identification of SNPs showing
asymmetry of enrichment within transcriptome data (RNA-
seq: ASE events) or within epigenomic data (DNase-seq,
ChIP-seq, and ATAC-seq: ASB events), or (iii) determina-
tion of an influence of an allele on reporter gene expression
by MPRA.

eQTL analysis

The term “eQTL” either means that there is a correlation
between a variant (eVariant) and the expression level of
a certain gene(s) (eGene[s]) (GTEx Consortium, 2017, 2020)
or refers directly to an SNP the alleles of which show such
a correlation; the term is used much more frequently in the
latter sense (Fairfax et al., 2014; Fan et al., 2020; Jiang et
al., 2020; Werling et al., 2020). Transcriptomic data obtained
using either microarrays (Fairfax et al., 2014; Westra, Franke,
2014) or RNA-seq (GTEx Consortium, 2020) are suitable
for finding eQTLs. These data are quite sufficient for the
detection of eQTLs located in transcribed regions (Goring et
al., 2007), whereas the identification of their entire set also
requires genome sequencing data (GTEx Consortium, 2020;
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Werling et al., 2020). In contrast to GWASs, which require
biological samples from many thousands of individuals (Tam
et al., 2019), several hundred participants are sufficient for
eQTL analysis (Westra et al., 2013; Fairfax et al., 2014; GTEx
Consortium, 2020). Nonetheless, just as in GWASs, in eQTL
analyses, the problem of distinguishing an SNP that is indeed
relevant to the formation of a trait — among marker variants
detected through linkage disequilibrium — is still relevant (Zou
etal., 2019; Umans et al., 2021).

The largest-scale project on obtaining transcriptomic data
and identifying eQTLs is international consortium GTEx,
within which RNA-seq data on 15,201 postmortem samples
of 49 tissues collected from 838 donors have been collected,
allowing to identify 4,278,636 eQTLs associated with changes
in the expression of 18,262 and 5,006 genes encoding proteins
and long intergenic noncoding RNAs, respectively (GTEx
Consortium, 2020).

There are other datasets of eQTLs, including those obtained
not on postmortem but on biopsy materials (Fairfax et al.,
2014; Stolze et al., 2020). For example, in a study by Stolze
et al., in an analysis of transcriptomes (RNA-seq) of the aor-
tic endothelium of 157 donors, the investigators identified
thousands of eQTLs not registered in the GTEx Consortium
data (Stolze et al., 2020). Fairfax et al. have employed CD14*
monocytes (derived from healthy individuals) treated in vitro
with either interferon gamma (for 24 h, 367 individuals) or
bacterial cell wall lipopolysaccharide (LPS) (2 and 24 h, 261
and 322 individuals, respectively). CD14* monocytes from
414 people served as controls there. Through microarray
RNA profiling and genotyping, 609,704 SNPs (minor allele
frequency > 0.04) were examined and 21,516 eQTLs were
detected, 24.6 % of which manifested themselves in control
cells, 21.6 % of which manifested themselves after 2 h of
treatment with LPS, and 25.4 and 28.3 % after 24 h treatment
with LPS and IFN-y, respectively. The results of this work
point to an important role of genomic variants in the nature
of transcriptomic response to a drug (Fairfax et al., 2014). In
conclusion, it should be noted that any dataset of transcrip-
tomic data obtained from hundreds or more individuals can be
used to search for eQTLs, as, for example, has been done by
us (Korbolina et al., 2021) with the help of data from RNA-
seq analysis of postmortem brain samples from 96 individuals
(Ramaker et al., 2017).

At present, quantitative expression trait loci analysis is
mainly utilized to identify groups of genes participating in
trait formation (Hormozdiari et al., 2016; Morrow et al.,
2018; Gamazon et al., 2019; Ratnapriya et al., 2019; Jaffe et
al., 2020). Additionally, its results are often used to prioritize
GWAS-identified SNPs for their subsequent rigorous expe-
rimental investigation. An example is 1513239597, which is
located in the TNPO3 gene promoter and associated with lupus
erythematosus and multiple sclerosis according to GWASs.
eQTL analysis of transcriptomes of lymphoblastoid cell lines
derived from 373 individuals has not revealed any impact of
rs13239597 on TNPO3 expression but uncovered a significant
association of the A allele of this SNP with overexpression of
the /RF5 gene [which is located 118 kbp away (Thynn et al.,
2020)], in agreement with findings of the GTEx Consortium
(GTEx Consortium, 2017). Next, an analysis of available
Hi-C data showed that /RF5 is one of 12 genes that are in
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direct contact with the rs13239597 region. A computational
analysis of motifs that potentially change affinity for a TF as
aresult of a nucleotide substitution (Coetzee et al., 2015) has
revealed four such TFs: EVI1, ERF, GATA1, and TAL1. By
ChIP-AS-qPCR, it has been demonstrated that EVI1 binds
much better to the rs13239597 region in the case of the A al-
lele as compared to the C allele (Thynn et al., 2020). Similar
examples can also be found in refs (Roca-Ayats et al., 2019;
Jiang et al., 2020; Tian et al., 2020).

A large-scale search for ASE and ASB events

The development of next-generation-sequencing-based me-
thods of transcriptomic analysis (RNA-seq) and epigenomic
analysis (ChIP-seq, DNase-seq, and ATAC-seq) has opened up
aunique opportunity for quantifying a difference in the enrich-
ment of two alleles (an allele imbalance) of each heterozygous
polymorphic site of a diploid organism within the respective
dataset (Maurano et al., 2015; Cavalli et al., 2016a, b; Castel
et al., 2020; Fan et al., 2020; Xu et al., 2020; Korbolina et
al., 2021). An important feature of these approaches to the
identification of potential rSNPs — in contrast to eQTL analysis
(and even more so in contrast to GWASs investigating SNPs
of many individuals in various genomic contexts and living
conditions) — is that allele-asymmetric events are recorded
for each individual and the backgrounds are identical. This
arrangement enables researchers to obtain reliable data when
studying a very small number of individuals, down to one
(Harvey et al., 2015). An increase in sample size is required
only for involving in the analysis a larger number of SNPs that
are in a heterozygous state. For instance, calculations show
that data from 20 individuals theoretically allow to determine
ASE or ASB events for 65-70 % of SNPs that have a popula-
tion frequency of >5 % (Cavalli et al., 2016a).

For this reason, possibilities of pharmacogenetic and phar-
macogenomic projects become much more abundant. The
most striking example of such a project is a simultaneous
analysis of allele-specific effects of 50 substances (steroid
and peptide hormones, nutrients, commonly used drugs, and
a number of environmental pollutants) in primary cultures of
five cell types (LCLs, PBMCs, HUVECs, SMCs, and mela-
nocytes), each of which is represented by cell samples from
three individuals (Moyerbrailean et al., 2016). An analysis
of the resultant transcriptomic data helped to identify more
than 300 SNPs, an imbalance in the enrichment of the al-
leles of which within transcriptomes emerged or increased
significantly in response to treatment with one or another
drug. Via the same approach, inducer (LPS of the bacte-
rial cell wall)-dependent ASE events have been identified in
19 immune response genes by an analysis of transcriptomes
of blood mononuclear cells from eight individuals (Edsgard
et al., 2016) as well as 561 ASE events responsive to treat-
ment of CD4* T cells (from 24 genotyped individuals) with
immobilized anti-CD3/CD28 antibodies (Gutierrez-Arcelus
et al., 2020). These results open up a new — unrelated to any
a priori hypothesis — way to elucidate mechanisms of indi-
vidual sensitivity to drugs.

The largest dataset of ASE events at present, containing
431 million such events, is derived from data on RNA-seq and
whole-genome sequencing from the GTEx Consortium (GTEx
Consortium, 2020) and is published in a paper by Castel et
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al. (Castel et al., 2020). This dataset can serve as a source for
mass discovery of rSNPs, for example, in a comparison with
data from GWASSs or from eQTL analysis. It is worth noting
that in the absence of whole-genome sequencing data, relevant
information can be acquired by more sophisticated methods
of bioinformatic search for allele-specific events directly in
RNA-seq data (Harvey et al., 2015; Moyerbrailean et al., 2016;
Fan et al., 2020; Korbolina et al., 2021).

ChIP-seq experiments based on antibodies to various TFs
make it possible to directly register events of allele-asym-
metric interaction of these proteins with their binding sites
in the case of a heterozygous state of SNPs at these sites.
In a pioneering work in the laboratory of Claus Wadelius,
they analyzed all the then-available data from the ENCODE
project on binding profiles of TFs in cell lines GM12878
(B cells), HI-hESC, K562, and SK-N-SH, thereby revealing
9,962 SNPs featuring an allelic imbalance in the binding of
a TF (ASB) (Cavalli et al., 2016b). By the same approach,
3,713 SNPs have been found showing an allelic imbalance
in the binding of TFs in HepG2 and HeLa-S3 cells; testing
39 of them in a luciferase reporter system has confirmed the
effect of an allele on reporter gene expression for 27 SNPs
(Cavalli et al., 2016a). A detailed analysis of one of them,
rs953413, indicates that the A allele disrupts the binding site
of TF FOXA, resulting in reduced binding of not only this
TF but also of TF HNF4a cooperatively interacting with it,
thereby ultimately leading to underexpression of ELOVL2
and possibly serving as a factor in the pathogenesis of non-
alcoholic fatty liver disease (Pan et al., 2020).

Because allele-asymmetric alterations in profiles of histone
modifications and of open chromatin can reflect SNP-induced
changes in the binding of TFs (Kar et al., 2014; Hatayama,
Aruga, 2018; Huang et al., 2018; Yi et al., 2020), these data
are also widely utilized to find ASB events. For instance, Mau-
rano et al. (Maurano et al., 2015) have examined 493 open-
chromatin profiles (DNase-seq) obtained in various cell
lines, where 64,599 SNPs with ASB have been found. Their
bioinformatic analysis using position weight matrices for
2,203 motifs of TFBSs from different sources indicates that
most of the identified SNPs can affect the binding of TFs
and hence the accessibility of the respective DNA regions
to DNase I (Maurano et al., 2015). A newer technique for
detecting open chromatin, ATAC-seq, is based on the ability
of a hyperactive mutant of Tn5 transposase to detect open
DNA regions in chromatin (Marinov, Shipony, 2021) and is
also used to search for ASB events. In particular, it has been
employed to identify 53 rSNPs in breast cancer MCF-7 cells
and 125 rSNPs in a line of human mesenchymal stem cells
(MSCs); in total, 30 % of the rSNPs found in MCF-7 cells and
43 % of those found in MSCs have been identified as eQTLs
in GTEx data, indicating their influence on gene expression
(Xu et al., 2020). Examples of use of data from ChIP-seq
(involving antibodies to histone marks) for registering ASB
events can be found in refs (Sun J. et al., 2016; D’Oliveira
Albanus et al., 2021; Li M. et al., 2021).

The combination of searches for ASE events and ASB
events can be considered the most productive approach to
identifying rSNPs. For example, in our work (Korbolina et
al., 2018), at first, ASB events were identified in ChIP-seq
data from the ENCODE project for histone modifications
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H3K27ac, H3K4mel, H3K4me2, H3K4me3, and H3K27me3
as well as for 456 TFs and their associated proteins in human
cell lines K562, MCF-7, and HCT-116. Then, by means of
RNA-seq data obtained from the same cell lines, SNPs (rSNPs)
that are associated with changes in gene expression levels were
identified. According to GWASs, out of 1,633 rSNPs found in
this way, 27 have shown associations with cancers (Korbolina
etal., 2018), and 14, with cognitive disorders (Bryzgalov et al.,
2018). Another 30 rSNPs have been implicated in colorectal
cancer with the help of data from the International Cancer Ge-
nome Consortium (ICGC) (Seshagiri et al., 2012). Genotyping
of patients with colorectal cancer and healthy individuals for
six of these SNPs has revealed an association of rs590352,
154796672, and rs2072580 with this disease (Leberfarb et al.,
2020). A correlation with breast cancer has been found for
rs2072580 (Degtyareva et al., 2020). Later, the same approach
has allowed to identify 14,266 rfSNPs during the processing
of data obtained in a study by Reyes-Palomares et al. (Reyes-
Palomares et al., 2020) on H3K4me3 histone marker profiling
(ChIP-seq) and RNA-seq data on pulmonary-artery epithelial
samples from 19 individuals (Korbolina et al., 2021).

MPRA

Research into the effect of polymorphic-site alleles on reporter
gene expression via simultaneous transfection of hundreds
and thousands of barcoded plasmid constructs into eukaryotic
cells with subsequent transcriptome sequencing is also an
informative approach to finding rSNPs (Vockley et al., 2015;
Tewhey et al., 2016; Movva et al., 2019). The largest-scale
study based on this approach has been conducted in the labora-
tory of Bas van Steensel (van Arensbergen et al., 2019). Using
a promoterless plasmid and fragmented genomes (fragment
length 150-500 bp) of four individuals belonging to diffe-
rent ethnic groups, two barcoded libraries were constructed
for each individual, where inserts were expected to play the
role of a promoter. At the same time, on the basis of data on
transcription initiation in enhancer regions (Natoli, Andrau,
2012; van Arensbergen et al., 2017), those authors expected
to detect not only promoters but also enhancers. The use of
DNA from humans of genetically distant ethnic groups al-
lowed those investigators to hope for an analysis of the largest
possible number of polymorphic sites that are homozygous
for different alleles in at least two of those people.

After transfection of K562 and HepG2 cells with the result-
ing libraries, 19 and 14 thousand potential rSNPs, respectively,
were found, most of which did not overlap, once again indicat-
ing tissue specificity of the supragenomic (protein) regulatory
machine. The identified SNPs showed significant enrichment
within regulatory regions of the genome. In this case, the
enrichment (approximately 15-fold) was three times higher
in promoter regions than in enhancer regions (approximately
5-fold); this outcome is obviously due to the design of the
reporter constructs. For several rSNPs, by mass-spectrometric
analysis of proteins interacting with oligonucleotides contain-
ing minor alleles, those authors were able to identify TFs the
binding sites of which are altered by a nucleotide substitution.
In particular, the A allele of 15623853 was found to disrupt
the binding of TFs of the ELF family, whereas the C allele of
1s554591 weakens the binding of ZNF787 while enhancing
the binding of KLF and SP (van Arensbergen et al., 2019).
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Fig. 2. The scheme of an integrative approach to the search for SNPs func-
tionally important for the development of a trait (pathology) on the basis
of two opposite principles: from an association with a trait to its function
(solid arrows) and vice versa, from a function to a trait (dashed arrows).
Cross-containing arrows show ways to increase the evidence base for
functional significance of sets of SNPs, and dotted arrows represent ways
to study individual SNPs in detail.

Conclusion

Programs — of coordinated switching on, switching off, and
changes of the expression of various genes — that underlie
(1) ontogenesis events, (2) the existence of many types of
differentiated cells, and (3) the abilities of cells to respond to
various factors of the external and internal environment are
implemented by the regulatory part of the genome of multicel-
lular organisms. The information encoded in the regulatory
regions is converted into a desired pattern of gene expression
primarily via the binding of TFs to specific sequences in the
regulatory regions (e. g., promoters, enhancers, and silencers)
(Lan et al., 2012; Merkulova et al., 2013; Dubois-Chevalier
et al., 2018; Chen, Pugh, 2021; Tobias et al., 2021). Accord-
ing to present-day concepts, the SNPs located in regulatory
regions of genes, affecting binding sites of TFs, and changing
the level of gene expression play a central part in the varia-
tion of phenotypic traits, including predisposition/resistance
to multifactorial diseases (Maurano et al., 2015; Deplancke
et al., 2016; Carrasco Pro et al., 2020). In this regard, there
is a strong interest both in functional interpretation of SNPs
having an association with various diseases (primarily ac-
cording to GWAS data) and in the development of massive
function-based approaches to the discovery of rSNPs. Inter-
pretation of data from GWASs is carried out either at the level
of individual SNPs or for all SNPs collectively by a variety
of functional genomics techniques (Fig. 2). Meanwhile, the
same methods of functional genomics are used for personal
searches for rSNPs, but at the same time, it is necessary to
solve the inverse problem: determining a relation between the
found rSNPs and a trait (disease). The most popular solution
to this problem is to compare the obtained data with available
information from GWASs (see Fig. 2). On the other hand, in
this way, usually only 1.5-3.0 % of found rSNPs are impli-
cated in various traits (Cavalli et al., 2016b, 2019; Korbolina
et al., 2021). In this regard, it seems very promising to take
advantage of results of eQTL analysis, enabling an investiga-
tor to determine an influence of many specific rSNPs on the
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expression of fairly large groups of genes, the subsequent
analysis of which by modern functional annotation tools (Gene
Ontology, Kyoto Encyclopedia of Genes and Genomes, and
others) allows to get an idea about a possible affected trait
(Korbolina et al., 2021).

To sum up, there are two approaches — based on opposite
principles — to finding SNPs that are important for the develop-
ment of a trait (pathology): on the one hand, starting from data
on an association of an SNP with some trait, and on the other
hand, starting from determination of allele-specific changes at
the molecular level (in the transcriptome or regulome). It can
be concluded that comprehensive use of the two approaches
appreciably enriches our knowledge about the participation
of genetic determinants in molecular mechanisms of trait
formation, including predisposition to multifactorial diseases.
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