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Abstract. The infectious disease caused by human immunodeficiency virus type 1 (HIV-1) remains a serious threat to hu-
man health. The current approach to HIV-1 treatment is based on the use of highly active antiretroviral therapy, which has
side effects and is costly. For clinical practice, it is highly important to create functional cures that can enhance immune
control of viral growth and infection of target cells with a subsequent reduction in viral load and restoration of the immune
status. HIV-1 control efforts with reliance on immunotherapy remain at a conceptual stage due to the complexity of a set
of processes that regulate the dynamics of infection and immune response. For this reason, it is extremely important to
use methods of mathematical modeling of HIV-1 infection dynamics for theoretical analysis of possibilities of reducing
the viral load by affecting the immune system without the usage of antiviral therapy. The aim of our study is to examine
the existence of bi-, multistability and hysteresis properties with a meaningful mathematical model of HIV-1 infection.
The model describes the most important blocks of the processes of interaction between viruses and the human body,
namely, the spread of infection in productively and latently infected cells, the appearance of viral mutants and the develop-
ment of the T cell immune response. Furthermore, our analysis aims to study the possibilities of transferring the clinical
pattern of the disease from a more severe state to a milder one. We analyze numerically the conditions for the existence
of steady states of the mathematical model of HIV-1 infection for the numerical values of model parameters correspond-
ing to phenotypically different variants of the infectious disease course. To this end, original computational methods of
bifurcation analysis of mathematical models formulated with systems of ordinary differential equations and delay differ-
ential equations are used. The macrophage activation rate constant is considered as a bifurcation parameter. The regions
in the model parameter space, in particular, for the rate of activation of innate immune cells (macrophages), in which the
properties of bi-, multistability and hysteresis are expressed, have been identified, and the features characterizing transi-
tion kinetics between stable equilibrium states have been explored. Overall, the results of bifurcation analysis of the HIV-1
infection model form a theoretical basis for the development of combination immune-based therapeutic approaches to
HIV-1 treatment. In particular, the results of the study of the HIV-1 infection model for parameter sets corresponding to
different phenotypes of disease dynamics (typical, long-term non-progressing and rapidly progressing courses) indicate
that an effective functional treatment (cure) of HIV-1-infected patients requires the development of a personalized ap-
proach that takes into account both the properties of the HIV-1 quasispecies population and the patient’s immune status.
Key words: mathematical model; HIV infection; ordinary differential equations; bifurcation analysis; stationary solutions;
bistability; multistability; hysteresis; optimal control.
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AHHoTayuA. MIHdeKuroHHoe 3aboneBaHune, BbI3BaHHOE BUPYyCamyi UMMyHoAeduLUMTa yenoBeka nepsoro Tuna (BUY-1),
0OCTaeTcA cepbe3HON yrpo3om 380poBbio nogei. CylecTByoWwmin NOAXOA K neyeHnto BUY-1 ocHoBaH Ha NpuMeHeHUn Bbl-
COKOAKTVBHOW aHTVPETPOBMPYCHON Tepanuu, umetoLien nobouHble 3¢pdeKTbl AnA 3A0POBbA 1 BbICOKYIO CTOMMOCTb. [nA
NpaKTMYecKol MeAnLMHbI akTyanbHO ABNAETCA 3afaya Nomncka MeTofjoB GyHKLMOHANIbHOIO IeYeHA, CBA3aHHbIX C HTEH-
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Bifurcation analysis of multistability
and hysteresis in a model of HIV infection

cndrKaumen UMMYHHOTO KOHTPOJA Pa3MHOMXEHUA BMPYCOB 1 3apa)KeHUA KNeTOK-MULLEHel C NOCNeayoWmnM CHUKEHEM
YPOBHS BUPYCHOW Harpysky 1 BOCCTAHOBMIEHNA UMMYHHOTO cTaTyca. MiccnegoBaHua B obnacti uMmyHoTepanuu B/Y-1
HaxoOATCA Ha CTagun KOHL[,EI'ITyaﬂbHOVI pa3pa60TK|/| B CUY CNOXHOCTW COBOKYMHOCTU MpoUeccoB, perynnpyrowmnx anHa-
MUKY UHGEKLMM 1 UMMYHHOTO oTBeTa. [1o 3Toi NpuyMHe upe3BblUaliHO aKTyanbHbIM ABNAETCA UCMONIb30BaHe METOA0B
MaTeMaT1yeckoro MoAennpoBaHna AnHamukn BUY-1 nHpekuum ana TeopeTnyeckoro aHanmsa BO3MOXHOCTEN CHIKEHNA
BUPYCHOW Harpysku nyTem BO3AeiCTBMA Ha IMMYHHYI0 cucTemMy 6e3 nprMeHeHUa aHTUBMPYCHOW Tepanuu. Lienbio nccne-
[I0BaHNA ObINO U3yYeHWe, BO-NePBbIX, CBONCTB OU1-, MyNbTUCTaOMIbLHOCTM U TUCTePe3nca Ha Npumepe copepaTesibHow
mogenu BUY-1 nHdekumn, Kotopasa onucbiBaeT BaxkHeNLWMe 61OKM NPOLIECCOB B3aVIMOAENCTBIA BUPYCOB 1 OpraHn3ma ye-
NOBEKa, a UMEHHO: pacnpocTpaHeHne NHEKLMM B MPOAYKTUBHO U aTEHTHO 3apakeHHbIX KNeTKax, MoABeHe MyTaHTOB 1
pa3BuTre T-KNeToUHOro MMYHHOIO OTBETa, 1, BO-BTOPbIX, BO3MOXHOCTEI NepeBoAa KIIMHNUECKON KapTrHbl 3aboneBaHnA
13 6onee TAXKeNOro coctoaHUa B 6onee nerkoe. B agaHHom paboTe NpoBefieH YNCIEHHbI aHann3 yClIoBUiA CyLLLEeCTBOBaHNA
CTaLMOHaPHbIX pelleHnii MaTemaTnueckon mogenu BUY-1 nhdekuum ana Habopos NnapameTpoB, OTBEYAOLUX GpeHoTUNN-
YecKn pasNYHbIM BapriaHTaM TeuyeHna NHPEKLMOHHOTO 3aboneBaHus. [Ins 3Toro UCNonb30BaHbl pa3paboTaHHble aBTopa-
MU MeToAbl 6MPYPKALMOHHOIO aHann3a Mofenei, NpeacTaBAAloLLmnX coboi cncTeMbl 0O6bIKHOBEHHbIX AddepeHLmanbHbIX
ypaBHeHUin 1 anddepeHumanbHbIX ypaBHEHW ¢ 3ana3fbiBaHneM. B KauecTse 61dypKaLMOHHOro napameTpa paccmaTpusa-
eTCA KOHCTaHTa CKOPOCTUM akTuBaLun Makpodaros. OnpeaeneHbl 061acT B NPOCTPaHCTBE NapamMeTpoB MOfENN, B HaCTHO-
CTW, ANA CKOPOCTY aKTVBaLMMN KIETOK BPOXKAEHHOIO NMMYHIWTEeTa (Makpodaros), Mpy KOTOPbIX MMeIT MecTo CBOWCTBa 61—,
MyJbTUCTabMBHOCTY 1 TUCTepe3sica, M UccnefoBaHbl 0COGEHHOCTU KMHETUKM Nepexoa Mexzy yCTOMUMBbIMU MONOXKeHNSA-
My paBHOBecuA. B Lenom pesynbtaTbl 6udypKaLnoHHoro aHannsa mogenu BUY-1 nHdekunm Gopmmnpyiot TeopeTuyeckyio
OCHOBY AJ1A Pa3paboTKN KOMOMHMPOBAHHBIX IMMYHOTEPaneBTUYECKUX BO3AENCTBUN AniA nedeHus BUY-1. PesynbTatbl npo-
BEAEHHOrO nccnefoBaHns mogenu B/Y-1 uHdekuun ana napameTpos NpoLeccoB, OTBEYALWYX pa3HbiM GeHoTUnam au-
HaMVKK 3aboneBaHuA (TNMYHOE, ANUTENBHO He MporpeccupyioLlee 1 BbICTPO NporpeccupyloLLee), ykasbiBaloT Ha TO, YTO
ana 3¢pdeKTUBHOro GpyHKLMOHaNbHOro nedeHnsa 6onbHbIx BUY-nHdeKkumein TpebyeTca pa3sutrie NnepcoHan3nMpoBaHHOrO
MoJX0Aa, yUNTbIBaIOLLEro Kak CBONCTBa MOMynALMMY KBa3uernaos BUY-1, Tak n MMMYyHHBIN CTaTycC naumeHTa.

KnioueBble croBa: MatemaTtuyeckas mMopaenb; BUY-nHdekuma; obbikHOBeHHble AnddepeHUmanbHble ypaBHeHUs; brdypKa-
LlVIOHHbII?I aHanms; CtayMoHapHble peLleHns; 6I/ICTa6I/U1bHOCTb; MyJ'IbTVICTa6I/II'IbHOCTb; rmcrepesnc; ontTMmasnibHoe ynpasneHume.

Introduction

Human infectious disease caused by human immunodeficiency
virus type 1 (HIV-1) remains a serious threat to human health
worldwide, with the number of infections and deaths from as-
sociated complications of the order of 1.5x10% and 0.65x10¢,
respectively (Landovitz et al., 2023). The current approach to
HIV-1 treatment involves the continued use of highly active
antiretroviral therapies (Gandhi et al., 2023), which inhibit
various stages of the intracellular viral reproduction cycle
and thus reduce the viral load in the patient’s body. However,
this approach has significant adverse side effects, as well as
high treatment costs and suffers from interruption of the drug
regimen (Trickey et al., 2022). For this reason, the search for
therapies (Rasmussen, Sggaard, 2018; Niessl et al., 2020),
including those related to the activation of immune control
of virus reproduction and infection of target cells, and phy-
siological mechanisms for boosting cellular homeostasis, is
an urgent task (Grossman et al., 2020) that needs to be ad-
dressed following a systems immunology approach (Ludewig
et al., 2012, Villani et al., 2018). The research in the field of
immunotherapy-based treatment of HIV-1 is at the concep-
tualization stage due to the complexity of the set of processes
that regulate the dynamics of infection and immune response
(Landovitz et al., 2023). In this regard, the use of methods
of mathematical modeling of HIV-1 infection dynamics is
a tool for theoretical analysis of opportunities for viral load
reduction by influencing the immune system without the use
of antiviral therapy (Bocharov et al., 2022).

As has been previously noted (Bocharov et al., 2021), one of
the goals of the development of mathematical models created
to describe and study the dynamics of infectious diseases is
the analysis of the characteristics of the dynamics sensitivity
to influences of different nature, for example, in relation to

perturbations of the parameters of regulatory processes or the
state of the system in phase space. The results of modeling
allow one to translate into a rational mode the design of com-
bined control actions for correction of unfavorable infection
course, in particular, from the region characterized by a high
viral load to the region with a low viral load. The feasibility
of the corresponding transitions is determined by the funda-
mental characteristics of the modeled system — the presence
of bistability and/or multistability and hysteresis. Bistability,
as an ability of the system “virus—human host” to coexist in
two stable steady states, justifies the search for functional cure
regiments of viral infection leading to transition from a chronic
stable steady state with a higher viral load to a more favor-
able stable steady state with a lower viral load by inducing
the activation of immune system components. The presence
of the hysteresis property in bifurcation curves of a dynami-
cal system makes the backstory significant, in particular, the
critical importance of the branch on which the steady state of
the system has been located before the subsequent change of
bifurcation parameters (Khristichenko et al., 2022).
Research on mathematical modeling of HIV-1 infection
dynamics in the human host has been actively developing
for the last 30 years (Perelson, Nelson, 1999; Nowak, May,
2000). The key research areas were systematically presented
in our earlier review (Bocharov et al., 2012). The main focus
of the related papers is aimed at studying the infection kinetics
during the application of antiretroviral therapy using low-
dimensional models (Akmn et al., 2020). Models of HIV-1
infection that consider the development of antiviral immune
response are also related to the problem of estimating the
infection parameters from individual patient’s data (Banks et
al., 2017). Conceptual aspects of HIV-1 infection dynamics,
such as multistability and hysteresis, remain an underexplored
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problem and the study of steady states is mainly reduced to
elucidating the conditions for the existence of an infection-
free equilibrium and the state of the infected organism as a
function of the model parameters combined together in the
basic reproductive number (Perelson, Nelson, 1999; Nowak,
May, 2000).

The aim of this study is to investigate, firstly, the proper-
ties of bi-, multistability and hysteresis for a model of HIV-1
infection that describes the most important blocks of virus-hu-
man host interaction processes for sets of model parameters
corresponding to different phenotypes of disease dynamics,
i.e. known as typical progression, long-term non-progression
and rapid progression courses, and, secondly, the conditions
for transferring the mode of disease course from a more severe
to a less severe state.

The specific objectives of this research include the bifurca-
tion analysis of the model of the HIV-1 infection to identify
the ranges of parameter values in which several steady states
coexist, and the study of transitions between them, which are
characterized by dependence on the prehistory of the state
of the “virus—human host” system (hysteresis property). As
a reference mathematical model for the study of stationary
modes of HIV-1 infection dynamics and transitions between
them, we consider a previously developed mathematical mo-
del (Hadjiandreou et al., 2009), which is characterized by the
following essential properties:

* it describes the entire kinetics of infectious disease from
early infection to the AIDS stage,

* it comprises a fairly complete spectrum of infection and
immune response processes,

* the model parameters corresponding to different phenotypes
of infection dynamics are provided,

» the description of antiretroviral therapy is included,

» the antiretroviral therapy with consideration of side effects
is discussed and analyzed as an optimal control problem.
Previously, we used this model to develop a more complete

description of the immune response to HIV infection that takes
into account neuroendocrine regulation of the immune system,
in particular, the influence of hormones (TSH, T3, T4) on the
immune response, and to examine an optimal antiviral therapy
on its basis (Savinkova et al., 2019).

The present work consists of four sections. Section “Ma-
terials and metods” describes the considered mathematical
model of HIV-1 infection and the numerical methods used to
analyze the model. Section “Results” presents the results of
studying the steady states of the model system by tracing them
by varying the model parameters, and the analysis of steady
state changes under therapeutic interventions, which are de-
scribed in the model as additional control variables on the
right-hand sides of the model equations, i.e. in the terms for
infection of target cells and virus replication processes. The
application of the results of this work to the theoretical deve-
lopment of new approaches to HIV-1 treatment is discussed
in Section “Discussion”.

Materials and methods
Let us define the basic concepts that will be used throughout
the paper.
* “Functional cure of HIV-1 infection” is an approach to the-
rapy of the chronic infection associated with activation of
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immune control of viral replication and target cell infection
that allows to exclude the use of antiretroviral drugs.

* “Bi-(multi)stability” is the property of a dynamical system
to have two (or more) stable steady state solutions at the
same parameter values.

* “Hysteresis” is a property of a dynamical system that is
characterized by the dependence of its steady state on the
backstory curve for the parameter being varied, which can
be used for transition from one steady state to another by
varying the parameters.

Mathematical model of HIV infection

The considered mathematical model of HIV infection is for-
mulated in (Hadjiandreou et al., 2009) as a system of 11 or-
dinary differential equations. It describes the rate of change
in time of the following concentrations: wild-type (wt) virus
Vy; mutated virus V,; CD4* T cells T; wt virus-infected CD4*
T cells, T; CD4* T cells infected with mutated T,; latently
wt virus infected T cells T, ;; CD4* T cells, latently-infected
with mutated virus-infected T cells T,,; macrophages M;
wt virus-infected macrophages My; macrophages infected
with mutated virus M,; cytotoxic CD8* T lymphocytes CTL.
The system includes three blocks of equations: (1) the CD4*
T cell block, (2) the macrophage and CTL block, and (3) the
wild-type and mutant virus block.

The first block includes the equation for CD4* T cells:

dT _ , Pu(Vi+ V)T
q oSt Vavyes, ~ @)k Vit koM)T - "
— (K Vy+ kM)T + T |1 T+T1+TTz+TL1+TL2 5T,

max

where the Ist term describes the constant influx of CD4*
T cells from the thymus, the 2nd term describes antigen-
induced division, the 3rd term describes the loss due to
infection by wt viruses and population of wt virus-infected
macrophages, the 4th term describes the infection by mutated
viruses and population of mutant virus-infected macrophages,
the 5th term describes the homeostatic proliferation, and the
6th term describes natural cell death. It also includes the fol-
lowing two equations for infected CD4* T cells:

dt
and

A-uDyk V,+ kM) T+, T, —5,T, -k, T,CTL (2)

02—y (kY M+ Ty, 8,T, K, T,CTL, (3
where in each equation, the 1st term describes population
growth due to infections by wt or mutated virus and wt and
mutated virus-infected macrophages; the 2nd term describes
the transition of latently infected cells to productively infected
cells; the 3rd term describes natural cell death, and the 4th term
describes the CTL-mediated destruction of infected cells. The

last two equations of the first block read as follows:

dT + T—o, T, ,— I
dil:_l — (1 ul)(l _\V)(klvl kle) 111 83 L1 ( )
and
dT + T—a —0,1
d:z = _‘V)(P(klvz kzMz) 1'L2 83 L2 (5)

where in each of the equations the 1st term describes popula-
tion growth due to infection by wt or mutated viruses and wt
or mutated virus-infected macrophages; the 2nd term describes
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the transition of latently infected cells to productively infected
cells, and the 3rd term describes natural cell death.

The second block for macrophage and CTL dynamics
consists of the equation:

dM _ - Pa(V1+ V)M

E— 2 m—(1—flul)k4V1M—(pk4V2M—84M, (6)

where the 1st term describes the constant influx of cells from
the bone marrow, the 2nd term describes the process of activa-
tion of macrophages with the possibility of their subsequent
division due to chronic inflammation caused by HIV-1 infec-
tion, the 3rd term describes the infection of macrophages by
wt viruses, the 4th term describes infection of macrophages
by mutated viruses, and the 5th term describes natural death.
This block also includes two equations for infected macro-
phages:

dg/'l = (L-fu )k V,M = 8M, ~kM,CTL  (7)
and
dg’t'z ok, V,M = 3.M, — k;M,CTL, (8)

where the 1st term describes the population growth due to in-
fection of macrophages by wt or mutated viruses, the 2nd term
describes natural death, and the 3rd term describes destruction
by CTL effect. Finally, it includes the equation:

dCTL

dt
where the 1st term describes a constant influx of CD8* T cells
from the thymus, the 2nd term describes the clonal prolifera-
tion induced by infected CD4* T cells, the 3rd term describes
the clonal proliferation induced by infected macrophages, and
the 4th term describes cell death.

The third block of wt and mutant virus dynamics consists
of two equations

= 5, +ky(T, + T)CTL + k,(M, + M,)CTL — 5,CTL, (9)

dVl—(l Up)(1—p)KgT, + (1=Fou ) (1 —p)kgM, +
(10)

+ uekgTy + uokgMy — (ki T+ky M)V, =k ViM =8,V

and

dV2

= (1-pokgT, + (1-pwekgM, + (1-u,)pkgT; + an

+ (1—1‘2u2)pk9M1 — (Ko T+k M)V, — Ky, VoM = 3.V,
where in each of the equations the 1st term describes virus
production by infected CD4* T cells, the 2nd term describes
virus production by infected macrophages, the 3rd term de-
scribes virus production by infected CD4* T cells following
mutations, the 4th term describes virus production by infected
macrophages following mutations, the 5th term describes
virus uptake by cells when infecting target cells, the 6th term
describes virus elimination by the innate system immune cells,
and the 7th term describes natural virus death. The biological
meaning of the system parameters and their acceptable ranges
are taken from the original work (Hadjiandreou et al., 2009)
and summarized in Table 1.

Optimal control problem
In the article (Hadjiandreou et al., 2009), the possibility of
optimizing the mode of administration of protease (RDV)
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and reverse transcriptase (3TC, ZDV) inhibitors was studied.
Their concentrations are described by the following equa-
tions,

Ci(h = Cipe kW +

F D, k! i i .

v kafk'[ e 0] (i=1,2,3)
where i is the drug index, t; is the time of drug administra-
tion, D; is the dose of the administered drug, F; is the ab-
solute bioavailability of the drug, k; is the drug absorption
rate, ke = Cli/\{ is the drug elimination rate constant (ClI;
is the elimination rate, /' is the drug distribution volume).
The values of all the above parameters are summarized in
Table 2.

Control variables u; and u, were assumed to depend on the
concentration of these drugs as follows:

1y = (C2ONC) * (Ca/ICsy)
B 1+ (CON1ICE) + (Co(®/1C)

B Cy(t)
U0 = 0+ mick’

where C; (t) is the concentration of drug i in plasma at time t,
ICs is the average concentration of the drug that provides
50 % inhibition of virus replication processes. The parame-
ter o is a conversion factor between the value of the average
concentration of the drug providing 50 % inhibition of virus
replication processes ICsj obtained in vitro, and the same value
obtained in vivo. The value o = 1 was used in the computations.
The goal of optimization in the original work was to achieve
the maximum concentration of CD4* T cells (variable T in
the system (1-11)) with the minimum index of adverse drug
effects (Joly, Pinto, 2006)

(12)

where

Here J; is the set of side effects from the drug i, C; is the
average concentration of the drug i at steady state at standard
dosage, that is, according to the regulation rules of antiretro-
viral therapy, e; (€;) is the magnitude (normalized value) of
the side effect caused by the drug i at the standard dosage,
h;, j is the frequency of occurrence of the side effect j when
exposed to the drug i at the standard dosage, and g; is the
relative magnitude of the side effect j, that is, its “undesir-
ability”.

The optimal control problem was formulated as a problem
of maximizing the functional that depends on the concentra-
tion of CD4* T lymphocytes and the severity of side effects:

j [ALT - AS Jdt — maX

Cy 12 Taps =Tt

where A; = 1 and A, = 1000 are weight coefficients, t; and
t; specify the optimization time interval, and the condition
T > Taps prevents the cell concentration from falling below
the threshold corresponding to the development of AIDS
(200 cells/mm-3).

Three sets of parameter values corresponding to different
phenotypic variants of HIV infection course were considered:
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Table 1. Biological meaning of the model parameters and their admissible ranges

Parameter  Biological meaning Range

U} The fraction of CD4* T cells that become productively infected, 0.93-0.98
and (1 - ) stand for the fraction which becomes latently infected
o Factor describing the reduction of the infection rate and replication of the mutated virus 01-09
v Rate constant of the homeostatic proliferation of uninfected CD4* Tcells 003
T Maximum concentration of CD4*Tcells 1500-2000mm=
“ Thefracnonof\,.rusesthatmutate ............................................................................................................ 3 10_5_10_3 ...........................
£ Thereduction of the treatment efficacy for macrophages as compared to CD4* Tcells 034

Table 2. Parameter values for the pharmacokinetic equations (12)

Parameter RDV, G, 3TC, G, ZDV, G
D

28.7 91 112
F10 ....................................................... 086 ..................................................... 064 ....................................................
T[d] ..................................................... 05 ....................................................... 05 ....................................................... 05 ......................................................
Icso[mgL_1] ....................................... 0” ...................................................... 034 ..................................................... 013 ....................................................
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Table 3. Values of model parameters (1-11) corresponding to a typical course of HIV infection (TP)

Parameter Values Parameter Values Parameter Values
5110mm73d71 .............................. k 5 ........................... 31076mm3d71 .......................... 5 ‘.1 ........................... 51073d71 ................................

52 ........................... 015mm73d71 ........................... k 6 ........................... 331074mm3d71 ....................... 6 5 ........................... 51073d71 ................................

53 ........................... Smm_3d_1 ................................ k 7 ........................... 610_9 mm3d_1 ......................... 6 6 ........................... 001 5 . d - 1 .................................

p1 ........................... 016d_1 ..................................... k 8 ........................... 53710_1d_1 ............................. 5 7 ........................... 239d_1 ...................................

pz ........................... 015d_1 ..................................... k 9 ........................... 28510_1d_1 ............................. c; 1 ........................... 310_4d_1 ................................

51 ........................... 556mm73 ................................ k 1.(.) .......................... 7791076mm3d71 ..................... lp ............................ 0 97 .........................................

52188mm73 ................................. k ”1076mm3d71 ............................. (p ............................ 0 9 ...........................................

k1 ........................... 38710_3mm3d_1 ..................... k 1; .......................... 410_5mm3d_1 ......................... , ............................. 0 03d_1 ...................................

k210_6mm3d_1 ............................. 5 1 ........................... OOZd_1 ..................................... Tmax1500mm_3 .............................

k3 ........................... 4510_4mm3d_1 ....................... 5 2 ........................... 028d_1 ..................................... u ............................ 0001 .......................................

k4 ........................... 5221074mm3d71 ..................... 5 3 ........................... 005d71 ..................................... fl ............................. 0 34 .........................................

Parameter RP TP LTNP

k 5 ................. 264 1 . 0_6 m m3d_13 10_6mm 3d_1 ....... 66 10_6 mde_1 .....
k6 ................. 291074mm3d71 ...... 331074mm3d713631074mm3d71
k7 ................. 5281079mm3d7161079mm 3d71 ....... 661079mm3d71 .....
ku ................ 35210_5mm3d_1410_5mm 3d_1 ....... 4410_5mm3d_1 .....
r ................... 003 ........................... 003 ......................... 0072 ........................

Parameter RP TP LTNP

p1 ................. 013d_1 ..................... 016d_1 ................... 020d-1 ..................
pz ................. 01365d71 ................. 015d71 ................... 01638d71 ..............
51 ................. SOOmm% ................ 556mm73 .............. 556mm73 .............
52 ................. 1692mm_3 .............. 188mm_3 ............... 188 m m_3 ..............
P 396-10-4 mmid1 45-104mmid-1 9.9-104 mmid-T

typical progression course (TP), rapid progression course (RP)
and long-term non-progression course (LNTP). The parameter
values in these sets are summarized in Tables 3 and 4.

In the original study (Hadjiandreou et al., 2009), a more
effective regimen of drug administration based on optimiza-
tion results was found to be superior to the standard treatment
regimen for the parameters of a patient with a typical course
of HIV infection with an initial CD4* T cell concentration
equal to 350 mm-3, While the standard treatment of the patient
managed to keep the concentration of CD4* T cells above the
AIDS threshold for about 2,500 days, the treatment regimen
based on the optimization results extended it to longer than
10,000 days with a more than four times lower value of the
side-effect index S.

Numerical methods

To numerically integrate the system (1-11), we used an im-
plicit second-order BDF2 scheme (Hairer et al., 1987) on a
sufficiently fine uniform grid built in half-interval t > 0. The
accuracy of the results for the selected grid step was checked
in all experiments requiring time integration. Symbolic com-
putation methods (Geddes et al., 1992) implemented in the
NSolve procedure of Mathematica were used to find steady
states for given parameter values. To trace the solutions by
varying parameters (i.e., to investigate the dependence of
steady states of the system (1-11) on the parameters), we
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used the original algorithm proposed in (Nechepurenko et al.,
2020). The study of asymptotic stability of a given steady state
was reduced to the computation of eigenvalues of the system
linearized with respect to this steady state and checking that
all the found eigenvalues lie strictly in the left half-plane. To
compute the eigenvalues, we used the standard QR algorithm
(Golub, Van Loan, 1989).

Results

Bifurcation analysis

This section presents the results of the study of the dependence
of steady states of the model of HIV infection dynamics on
the activation rate of macrophages p, leading to their divi-
sion, for three sets of values of the other parameters as given
in “Materials and methods”. Earlier, for the mathematical
model of hepatitis B virus infection we showed the key role
of the activation rate of innate immunity in the determina-
tion of different modes of hepatitis dynamics (Khristichenko
et al., 2023), the analog of which in this model is p,. The
parameter p, was varied in the range from 0.13 to 0.17. The
range of variation of the parameter p, was chosen to cover
those values that correspond to the kinetics of innate immunity
activation for three different modes of disease course (typical
progression, long-term non-progression and rapid progression)
shown in Table 4.
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Fig. 1. Tracing of steady states by parameter p, for typical progression (TP) showing the presence of bistability and hysteresis.

Solid lines indicate stable steady states, dashed lines indicate unstable steady states, and different colors indicate different steady states.
The vertical orange dotted line indicates the value of the parameter p, corresponding to a TP course of infection.

Figures 1-3 summarize the tracing results. The vertical
orange dotted line indicates the value of parameter p, taken
from the corresponding parameter set, solid lines show stable
steady states and dashed lines show unstable steady states,
different colors indicate different steady states. It should be
noted that the leading eigenvalues of the linearized equations
corresponding to unstable steady states were real in all cases
considered. Therefore, stable periodic solutions, which could
otherwise be in the neighborhood of unstable steady states
(Khristichenko, Nechepurenko, 2021), were absent in the
considered cases.

Bistability. For a typical progression (TP) infection cour-
se (see Fig. 1), it can be seen that bistability is present at
0.138 < p, <0.144 (black and green lines) and at 0.147 <p, <
< 0.17 (green and purple lines). For a rapid progression (RP)
course (see Fig. 2), bistability is present at 0.135 < p, < 0.17
(black and green lines). For a long-term non-progression
(LTNP) course (see Fig. 3), bistability is presentat 0.161 < p, <
< 0.17 (blue and purple lines). The presence of two different
stable steady states means that there is a possibility of estab-
lishment of a milder or more severe form of the disease in
the same patient, depending on the patient’s backstory. Note
that for a RP infection course, both equilibria are character-
ized by a depleted CD4* T cell population, with macrophages
being the dominant source of viruses. For such patients, the
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task of treatment becomes more complicated, because it is
necessary to find changes in the system parameters, at which
the equilibrium with a higher level of CD4* T cells would
emerge.

In general, the obtained estimates of the areas of bistabil-
ity together with the characteristics of bifurcation diagrams
show that as the severity of the infection increases, i.e., as we
move from long-term non-progressors to typical progressors
and further to rapid progressors, the range of values of the
activation rate of innate immunity cells, at which bistability
takes place, increases. At the same time, some features of
bifurcation diagrams change as well. These specific features
of the response of an HIV-infected patient should be taken
into account and used in the design of immunomodulatory
regimes.

Multistability. The multistability property, as shown in
Figure 3, occurs in the case of a LTNP infection course at
0.146 <p,<0.161 (black, blue and purple lines). The respec-
tive stable steady states correspond to different forms of the
disease course in terms of the severity and efficacy of the im-
mune response. Thus, the spectrum of possible stable steady-
state modes of HIV-1 infection dynamics is more diverse in
long-term non-progressors.

Hysteresis. The presence of the hysteresis property for this
model is demonstrated in Figure 1. In particular, the behavior
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Fig. 2. Tracing of steady states by p, for rapid progression (RP) showing bistability.

Solid lines indicate stable steady states, dashed lines indicate unstable steady states, and different colors indicate different steady states.
The vertical orange dotted line indicates the value of the parameter p, corresponding to a RP course of the infection.
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The vertical orange dotted line indicates the value of the parameter p, corresponding to a LTNP course of the infection.
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Fig. 4. Demonstration of the transition kinetics from a less favorable steady state to a more favorable steady state in the presence of hysteresis for
typical progression (TP), where p, = 0.143 in regions 1 and 3, and p, = 0.136 in region 2.

The horizontal axis indicates time in days. The red solid line shows the dynamics of the model variables, the blue vertical dotted lines show the partitioning into
regions 1-3, and the horizontal solid lines show the stable steady states of the variables in these regions.

of the curves shows that if a patient belonging to typical pro-
gressors was initially on the lower green branch at p, = 0.14,
then it is sufficient to reduce the value of p, to a value slightly
less than 0.138, which will cause a spontaneous transition to
the state depicted by the black line, characterized by a higher
T cell concentration and lower viral load. It is then possible
to increase the value of the parameter p, to the original value
while staying on the same black line.

Hysteresis also occurs for parameters corresponding to
the LTNP infection course, as demonstrated in Figure 3. The
state depicted by the blue line at p, = 0.155 is stable, but it
loses stability at p, smaller than 0.146. With further reduc-
tion of the parameter value, the system will move from a less
favorable state (green branch) to a stable state with a higher
concentration of CD4* T cells and lower viral load, depicted
by the black solid line. After that, it is possible to return to the
initial value of the parameter while remaining on this stable
steady state branch.

Of practical importance is the question of the kinetics of the
transition between different steady states when utilizing the

-
103 0.06
102 0.04
10! 0.02
100

0 0.5 1 0

hysteresis property. For a TP disease course, Figure 4 shows
the transition dynamics from a less favorable state to a more
favorable state for a system with hysteresis. It takes about
5,000 days to realize this transition with constant values of
other system parameters. These results justify the relevance
of further detailed study of such transitions.

Changes in steady states
with a single administration of drugs
Itis of independent interest to understand how the steady states
of a system change under optimal control (Hadjiandreou et
al., 2009). To this end, we investigated the time dependence
of equilibria under therapeutic interventions uy(t), u,(t), which
enter the right-hand sides of the model equations in the terms
for the processes describing the infection of target cells and
virus replication. Figure 5 shows the appearance of two new
steady states at t > 0.0005, i.e., a change in the structure of
the phase space of the model.

Figures 6-8 illustrate the steady-state changes when RDV,
3TC, and ZDV drugs are administered, the effects of which

Uy uy
03
0.2
0.1
0.5 1 0 0.5 1 tx1073

Fig. 5.Time dependencies t (in days) of the steady state variable Tand control variables u;(t) and u,(t) at 0 < t < 0.001 for long-term

non-progression (LTNP).

Solid lines on the graph T{(t) correspond to stable steady states, dashed lines - to unstable ones.
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Fig. 6. Steady states and control actions for typical progression (TP) infection course.

Solid lines indicate stable steady states, dashed lines indicate unstable steady states, different colors indicate different steady states. The horizontal
axis shows time in days.
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Fig. 7. Steady states of the model and control actions for long-term non-progressive flow (LTNP).

Solid lines indicate stable steady states, dashed lines indicate unstable steady states, different colors indicate different steady states. The horizontal
axis indicates time in days.
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Fig. 8. Steady states of the model and control variables for rapid progression (RP) infection course.

Solid lines indicate stable steady states, dashed lines indicate unstable steady states, and different colors indicate different steady states. The horizontal

axis indicates time in days.

are modeled using functions C,(t), Cy(t), Cs(t) through the
control variables u; and u,. The drugs are administered once
at time t = 0. The solid lines indicate stable steady states and
the dashed lines indicate unstable states, different colors in-
dicate different steady states. The numerical results indicate
that as the values of the control variables change, both stable
and unstable steady states appear and then disappear. Thus,
the application of optimal control methods leads to a change
in the structure of the phase space of the model.

For all three variants of the course of HIV-1 infection, for
one branch of the steady-state solutions, there is a short-term
decrease in the values of variables characterizing the number
of CD4* T cells and an increase in viral load due to an in-
crease in the number of mutants and a decrease in steady-state
concentrations of wild-type viruses. On the second stable
branch, an opposite process takes place. In this case, in the
case of a long-term non-progression course of HIV-1, the third
branch of the stable equilibrium appears, which is characte-
rized by a low viral load and, therefore, corresponds to more
favorable dynamics. Thus, the impact of optimal control on
the characteristics of equilibrium states depends essentially
on the disease course phenotype (model parameters) and the
neighborhood of the equilibrium in which the patient is in the
case of bistability.

Thus, the response to the perturbation of the right-hand
sides of the equations is qualitatively the same. The structure
of the phase space changes, and as the control function impact
is weakened, both stable and unstable steady states emerge
and then disappear.
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Discussion

A stable coexistence of the HIV-1 population and immune
processes in the human body in various quantitative ratios is
fundamentally important for the development of new strate-
gies of HIV-1 therapy that belong to the category of func-
tional treatment (cure) (Bocharov et al., 2022). In essence,
it is the possibility of transferring the “virus—human host”
system from a clinically more severe state to a milder infec-
tion stable steady state due to activation of immune defense
mechanisms without further use of antiretroviral drugs that
block viral replication. The presence of bi- or multistability
indicates that by perturbing a certain trajectory of the system
in the phase space, the transfer of the infectious disease to
a more favorable regime can be accomplished. Both clas-
sical optimal control methods (Hadjiandreou et al., 2009;
Bocharov et al., 2015) and our previously proposed methods
based on optimal disturbances (Nechepurenko, Khristichen-
ko, 2019; Khristichenko, Nechepurenko, 2022) exist as tools
for constructing an appropriate control. Furthermore, there
could be a case when a change in the kinetic parameters of
biological and physiological processes is required to move the
system into the region of bi- or multistability. The presence
of hysteresis allows one to develop treatment approaches that
utilize temporary parametric shifts with subsequent return to
the initial values of the changed parameters. The identified
properties of the mathematical model of HIV-1 infection,
which has a fairly typical structure, theoretically confirm the
potential feasibility of corresponding combination immune-
based therapeutic interventions (Landovitz et al., 2023).
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The obtained estimates of the parameter regions enabling
the existence of bistability together with the characteristics of
bifurcation diagrams show that as the severity of the HIV-1
infection increases, i. e. in the transition from long-term non-
progressor to typical progressor and further to rapid progres-
sor phenotype, the range of values of the activation rate of
innate immunity cells, at which the bistability takes place,
increases. Meanwhile, the properties of bifurcation diagrams
also change. These specific features of the response of an
HIV-infected patient should be taken into account and used
in the design of immunomodulatory regiments.

Finally, we showed that the impact of optimal control on
the characteristics of equilibria depends significantly on the
phenotype of HIV-1 infection (determined by system param-
eters) and the neighborhood of the equilibrium in which the
patient is located in the case of bi- or multistability.

Conclusion

In this paper, we have computed and numerically analyzed the
steady states of the mathematical model of HIV-1 infection for
sets of parameters corresponding to phenotypically different
variants of the course of the infection: typical progression,
long-term non-progression and rapid progression. The re-
sults of the bifurcation analysis of the HIV-1 infection model
indicate that implementation of an effective functional cure
of infected patients requires the development of a personal-
ized approach that takes into account both the properties of
the HIV-1 quasispecies population and the patient’s immune
status. Overall, our study forms a theoretical basis for the
development of combination immune-based therapy of HIV-1
infected patients.
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