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Abstract. Currently, active research is focused on investigating the mechanisms that regulate the development of
various pathologies and their evolutionary dynamics. Epigenetic mechanisms, such as DNA methylation, play a sig-
nificant role in evolutionary processes, as their changes have a faster impact on the phenotype compared to muta-
genesis. In this study, we attempted to develop an algorithm for identifying differentially methylated regions asso-
ciated with metabolic syndrome, which have undergone methylation changes in humans during the transition from
a hunter-gatherer to a sedentary lifestyle. The application of existing whole-genome bisulfite sequencing methods
is limited forancient samples due to theirlow quality and fragmentation, and the approach to obtaining DNA methy-
lation profiles differs significantly between ancient hunter-gatherer samples and modern tissues. In this study, we
validated DamMet, an algorithm for reconstructing ancient methylomes. Application of DamMet to Neanderthal
and Denisovan genomes showed a moderate level of correlation with previously published methylation profiles
and demonstrated an underestimation of methylation levels in the reconstructed profiles by an average of 15-20 %.
Additionally, we developed a new Python-based algorithm that allows for the comparison of methylomesin ancient
and modern samples, despite the absence of methylation profiles in modern bone tissue within the context of obe-
sity. This analysis involves a two-step data processing approach, where the first step involves the identification and
filtration of tissue-specific methylation regions, and the second step focuses on the direct search for differentially
methylated regions in specific areas associated with the researcher’s target condition. By applying this algorithm
to test data, we identified 38 differentially methylated regions associated with obesity, the majority of which were
located in promoter regions. The pipeline demonstrated sufficient efficiency in detecting these regions. These
results confirm the feasibility of reconstructing DNA methylation profiles in ancient samples and comparing them
with modern methylomes. Furthermore, possibilities for further methodological development and the implemen-
tation of a new step for studying differentially methylated positions associated with evolutionary processes are
discussed.
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AHHOTaLuA. B HacToALLee BpemaA aKTUBHO NCCNey0TCA MeXaHM3Mbl, PErynvpyloLne pa3sBruTe pasinyHbIX NaTono-
TUIA 1 X DBOJTIOLMOHHYIO AUHAMUKY. DMUreHeTUYecKne MexaH3Mbl, Takue Kak METUIMPOBAHWNE, UTPALOT 3HAYVIMYIO
POnb B 3BOMIOLMOHHBIX NPoLieccax, MOCKOMbKY UX M3MeHeHMA ropa3fo GbicTpee oTpaxkaloTca Ha deHoTuNe, Yem pe-
3ynbTaThl MyTareHesa. B faHHOM nccnefoBaHUM Mbl TPEANPUHAM NOMbITKY pa3paboTaTb anroputm A BblsBAEHNA
anddepeHUManbHO METUNMPOBaHHbBIX 06M1acTel, CBA3aHHbIX C MeTaboNMYECKNM CYHAPOMOM, KOTOPble U3MEHWUN
CBOE MeTU/IMPOBaHMe y YenoBekKa Npu nepexope oT 0XOTbl M COBMpaTENbCTBa K 0CeASIoN XKn3Hu. [prMmeHeHne cyLue-
CTBYIOLUMX METOLOB MOTHOFEHOMHOTO 6UCYIbGUTHOrO CEKBEHMPOBAHMWSA OrpaHNyeHo Ana ApeBHMX 06pa3LoB K3-3a
X HU3KOTO KauecTBa 1 dparmeHTaLmu, v MOAXoZ K MoSTyYeHunio Npodunein MeTUIMpPOBaHA OXOTHUKOB-CobupaTenen
3HaUNTENbHO OT/INYAETCA OT NMOAXOAOB, MCMOJNb3yeMblX ANA COBPEMEHHbIX TKaHel. B aTol paboTe Mbl Banuanposan
DamMet — anropnTm, peKoHCTPYMpYIoLWMI ApeBHNE MeTuioMbl. MprmeHeHne DamMet kK reHomam HeaHaepTanbLa
1 AeHMCOBLIA MOKa3asio CPefjHNI YPOBEHb KOPPENALMN C NpopuamMy METUIIMPOBaHNSA, ONy6IMKOBaHHbIMW paHee,
a TakXKe NPOAEMOHCTPUPOBANO 3aHIKEHNE YPOBHA METUIMPOBAHNA PEKOHCTPYMPOBAHHbIX Npodunen B cpefHem
Ha 15-20 %. Take Mbl pa3paboTany HOBbIN anropuTm Ha A3bike Python, no3sonAwowWwwmin cpaBHMBaTL METUNOMbI B
APeBHVX U COBPeMEeHHbIX 06pasLiax, HeCMOTPA Ha OTCYTCTBME NPOdUNet METUIMPOBAHUA COBPEMEHHbIX 06pa3L0oB
KOCTHOW TKaHM B KOHTEKCTe oXMpeHuA. Takol aHanv3 noapasymeBaeT ABYXCTyneHuaTyo o0paboTKy AaHHbIX, rae
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Mownck ,U,I/I(I)d)epeHLll/laﬂbHO METUNNPOBAHHbLIX PErMOHOB
B reHOMax ApeBHNX N COBPEMEHHbIX mo,qe|7|

Ha NepBOM 3Tarne NPOUNCXOAUT NaeHTUOUKALMA TKaHecneundryHbIX obnactein MeTUANPOBAHNA U UX GUNbTPaLUS,
a Ha BTOPOM 3Tane OCyLIeCcTBAETCA HeMOCPeACTBEHHO NOUCK AnddepeHLanbHO METUMPOBAHHbBIX PErMOHOB B
3aJlaHHbIX 06M1ACTAX, aCCOLMMPOBAHHBIX C MHTEPECYLNM NCCIeaoBaTens 3aboneBaHrem. B pesynbTtate ncnonbso-
BaHVA anroprTMa Ha TeCTOBbIX iaHHbIX Mbl 06HapYxunu 38 anddepeHuUranbHO METUANPOBAHHBIX PEFMOHOB, aCCo-
LMNPOBaHHbBIX C OXMUPEHMeM, 60MbLLAA YaCcTb KOTOPbIX NPUHaANEXana MPOMOTOPHbIM 06/1aCTAM, U pa3paboTaHHbIN
nannnaniH nokasan AoCTaTouHyo 3GPeKTUBHOCTb B UX MOWCKE. DT pe3ynbTaTbl MOATBEPKAAIOT BO3MOXHOCTb BOC-
CTaHOBNEHWA Npodunent METUANPOBaHNA B APEeBHMX 00pa3Lax 1 NX CPaBHEHMA C COBPEMEHHBbIMU MeTUIoMamu. Tak-
e 06CyK[aloTCA BO3MOXHOCTY AanbHeNLWero pa3sButTna MeTOA0N0MMI N BHEAPEHNA HOBOTO Lara, No3BoNALEero
n3yyatb anddepeHLnanbHO METUANPOBAHHbIE MO3ULUN, CBA3AHHbIE C SBOOLVOHHBIMU NMPOLeccamu.

Kniouesble cnosa: gpeBHAAa [1HK; meTunmnpoBaHue; asnureHeTrka; DamMet; JMP.

Introduction

Lately, increasing attention is being paid to the study of
mechanisms regulating the development of various pathologies
and their evolutionary dynamics (Briggs et al., 2009a; Niiranen
et al., 2022). Epigenetic mechanisms, such as methylation,
play a particularly important role in this process since they
are capable of inducing phenotypic changes much faster
than conventional mutagenesis processes (Jablonka, Raz,
2009; Feinberg, Irizarry, 2010; Zhur et al., 2021). The main
goal of this study was to identify differentially methylated
regions (DMRs) associated with metabolic syndrome, which
could potentially serve as targets for epigenetic therapy of
metabolic syndrome.

Nowadays, scientists are often hindered from conducting
evolutionary research due to the lack of suitable methods for
comparing DNA profiles of ancient and modern samples.
Laboratory protocols used to obtain these profiles significantly
differ from one another, each having its peculiarities and er-
rors. Ancient DNA (aDNA) is often found in a fragmented
state, and over time, natural molecule degradation and spon-
taneous deamination of nitrogenous bases occur, limiting the
availability of high-quality data (Briggs et al., 2007, 2009b).
To address this issue, a specific sample processing protocol
was developed, which uses uracil-DNA glycosylase (UDG)
and endonuclease combination (known as USER-treatment)
to facilitate the extraction of methylation profiles and enhance
their distinguishability (Briggs et al., 2010). Additionally,
several programs have been developed that allow the calcula-
tion of methylation levels in ancient samples, the sequences of
which were sequenced using the USER treatment (Gokhman
et al., 2014; Orlando et al., 2015; Hanghgj et al., 2019).

At present, two methylation reconstruction algorithms tai-
lored for ancient samples are available, characterized by their
command-line functionality and user-friendliness. The ante-
cedent algorithm, epiPALEOMI X, draws its foundation from
the initial historical approach to methylation reconstruction,
as first elucidated by D. Gokhman in 2014. EpiPALEOMIX
encompasses diverse modules, among which the MethylMap
module stands out, permitting users to derive methylation lev-
els in regions that can be defined by the user (Hanghgj et al.,
2016). However, this limitation is inherent to its usage; the user
is required to have an understanding of the particular regions
associated with the condition under study. The outcome of this
algorithm is the calculated count of deaminated methylated
cytosines in the CpG context and the corresponding coverage,
representing their ratio, thereby denoting the methylation level
at the particular genomic position. In contrast, the DamMet
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algorithm exhibits greater versatility. Unlike epiPALEOMI X,
it is designed for whole-genome investigations. Furthermore,
DamMet can calculate deamination levels in both methylated
and unmethylated CpGs at each read position, thus employing
a model that most accurately characterizes the deamination of
cytosines in aDNA fragments as a random process (Hanghgj
etal., 2019).

Regarding the handling of modern tissue samples, whole-
genome bisulfite sequencing (WGBS) is the prevalent
method for investigating DNA methylation (Olova et al.,
2018; Suzuki et al., 2018). Several methods are available for
reconstructing methylation from samples sequenced using this
technology (Clark et al., 1994; Bock et al., 2005), with the
most well-known being Bismark, BoostMe, and WGBStools.
Currently, the Bismark algorithm is the most frequently used
for preprocessing WGBS data. This involves the mapping
of reads to the converted reference genome, followed by the
quantification of methylated and unmethylated cytosines at
each genomic position (Krueger, Andrews, 2011). Similar to
many read-count-based methods, this approach is not well-
suited for overcoming the challenge of low sample coverage,
acommon occurrence in cases involving low-quality samples
or single-cell experiments. To address this concern, machine
learning-based algorithms like DeepCPG and BoostMe have
been created.

DeepCPG is a deep learning neural network-based al-
gorithm designed to predict the methylation states of low-
coverage sites and uncover motifs associated with changes in
methylation levels and intercellular variability (Angermueller
et al., 2017). This tool is primarily utilized to enhance the
quality of data from single-cell experiments. BoostMe, which
is based on a machine learning approach, addresses this issue
during the genome preprocessing stage by employing imputa-
tion (Zou et al., 2018). The XGBoost gradient boosting tech-
nique employed in this tool amalgamates data from multiple
samples (more than 3) to rectify missing methylation levels
in contemporary tissue samples. This enables the utilization
of low-coverage genome samples for methylation reconstruc-
tion. Additionally, a notable feature of BoostMe is its capacity
to restore not only the state of a given CpG site (methylated/
unmethylated) but also its methylation level. WGBStools,
comprising a collection of methods developed in the context
of the modern tissue methylation atlas project, is utilized for
a highly efficient representation of mapped reads, statistical
analysis, and visualization of data ranging from small genomic
segments to entire chromosomal loci (https://github.com/
nloyfer/wgbs_tools).
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However, despite the variety of methylation reconstruction
algorithms available, the application of WGBS technology
to aDNA samples is limited. This limitation arises from the
requirement for a high concentration of well-purified DNA
for bisulfite conversion. Additionally, the bisulfite conver-
sion process leads to DNA fragmentation, further compro-
mising the quality of aDNA, which is already significantly
fragmented due to degradation (Gu et al., 2011). Therefore,
methylation level calculation algorithms commonly used for
modern samples cannot be employed for the reconstruction
of methylation profiles in ancient individuals. Consequently,
our focus has been on developing a novel algorithm that en-
ables the comparison of methylomes in ancient and modern
samples, considering the lack of available bone tissue samples
for conducting whole-genome bisulfite sequencing in the
context of obesity.

Materials and methods

Sample selection. For our analysis, we curated a dataset from
the NCBI GEOQ database, consisting of 11 ancient genomes and
12 modern methylation profiles obtained using Whole Genome
Bisulfite Sequencing (WGBS) methods. When selecting the
ancient samples, particular attention was given to the age of the
samples, library preparation strategy, and genome coverage.
We exclusively included samples that underwent prior USER
treatment, were dated to be at least 3,000 years Before the
Common Era (BCE), and had a minimum coverage of 5x.
The complete genomes of ancient samples were sequenced
with USER treatment, except for samples Vi33 and PES001
(Peschanitsa), which were not subjected to UDG treatment
before sequencing (Table 1).

Table 1. Ancient genomes selected for analysis

Search for differentially methylated regions
in ancient and modern genomes

The selection of the 12 contemporary samples (Loyfer et al.,
2023) was based on the mesodermal origin of the tissues used
for library preparation, in conjunction with the utilization of
whole-genome bisulfite sequencing. Additional information
about these samples is presented in Table 2.

Ancient genomes preprocessing. The ancient genomes
were obtained from ftp server in bam format along with their
corresponding indices. As per previous studies (Ohm et al.,
2010; Gokhman et al., 2014), it is well-recognized that UDG
treatment is not sufficiently effective at the DNA termini. To
ensure precise aDNA analysis, we employed the trimBam
utility to trim two nucleotides from both the 3’ and 5’ ends
of sequences (Gansauge, Meyer, 2013; Jun et al., 2015). It’s
important to note that for the Vi33 and PES001 samples, this
trimming procedure was omitted due to the absence of UDG
treatment during library preparation. Moreover, we applied
Trimmomatic (Bolger et al., 2014) for the filtration of sample
reads based on criteria such as average quality and length. In
our subsequent analysis, only sequences that aligned with the
CRCh37 (hg19) assembly and exhibited an average quality
score exceeding 20, as well as a minimum length of 25 base
pairs, were retained for further investigation.

Reconstruction of DNA methylation profiles in ancient
humans. To reconstruct the methylation profiles of ancient
samples, we utilized the DamMet software (Hanghgj et
al., 2019). The pipeline consisted of three main stages: the
filtration of single-nucleotide variants, the calculation of
deamination levels for each read position, and the estimation
of methylation levels.

The single-nucleotide variant (SNV) calling was performed
using the GATK HaplotypeCaller v4.3.0.0 (Poplin et al.,

Sample Group Sample  Sex Tissue
age, kya

Altai Ancient 120 Female Toe phalanx
Neanderthal
Denisovan 75 Female Toe phalanx
Vindija33 50 Female Unknown bone
Ust’-Ishim HG 45 Male Femur
Sunghir 35 Male Femur + teeth
USR1 11.5 Female Petrous bone
Spirit Cave 1 Male Petrous bone +

teeth
Peschanitsa 1 Male Teeth
SF12 9 Female Femur
2H10 (France) 32 Male Teeth
2H11 (France) 3.2 Male Teeth

Coverage Methylation Genomic  Reference
profile smoothing
window
.................................................................. e
50 Gokhman et al,, 25 Prufer et al., 2014
2014, 2020
30 25 Meyer et al.,, 2012
30 50 Prufer et al., 2017
42(22XY)  Gokhmanetal., 25 Fuetal., 2014
2020
10.7 This study 38 Sikora et al., 2017
17 50 Moreno-Mayar
etal., 2018a
18 33 Moreno-Mayar
etal, 2018b
5 50 Saag et al., 2021
57.79 28 Glinther et al.,
2018
13.9 33 Seguin-Orlando
etal, 2021
23.9 33 Seguin-Orlando

etal., 2021

Note. Smoothing window - a parameter for averaging deamination levels in the subsequent analysis stage. HG — hunter-gatherers.
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Table 2. Contemporary genomes used for identifying tissue-specific methylated regions and DMRs

GEO accession Sex Age of patient
GSM5652198 .......................... Ma|e ................... 37 ........................................
GSM5652202 .......................... Fema|e ............... 35 ........................................
GSM5652204 .......................... Ma|e ................... 73 ........................................
GSM5652205 .......................... Fema|e ............... 59 ........................................
GSM5652207 .......................... Ma|e ................... 22 ........................................
GSM5652209 .......................... Fema|e ............... 51 ........................................
GSMSGSZNO .......................... Ma|e ................... 24 ........................................
GSM5652211 .......................... Ma|e ................... 57 ........................................
GSM5652212 .......................... Ma|e ................... 83 ........................................
GSM2637888 .......................... _ ......................... _ ..........................................
GSM2637887 .......................... _ ......................... _ ..........................................
GSM5652218 .......................... Fema|e ............... 7 ..........................................
GSM5652177 .......................... Fema|e ............... 35 ........................................
GSM5652176 .......................... Fema|e ............... 53 ........................................
GSM5652]78 .......................... Fema|e ............... 37 ........................................

2017). SNVs with coverage of less than 5 and quality less
than 30 were filtered out. Additionally, variants were filtered
when they exhibited homozygosity for the alternative allele or
more than two alternative alleles when the position contained
a cytosine. This stage followed the recommendations of the
DamMet algorithm author, as described in Hanghgj et al.,
2019, and supplementary materials provided therein.

Subsequently, methylation levels were reconstructed, ex-
cluding the identified variants.
DamMet estDEAM -b <bam-file> -r <fasta-file> -c
<chromosome> -M <expected-average-methylation>
-0 <out-file-prefix> -E <vcf-to-exclude> -L 25
-P 50 -g 20 -Q 20

Subsequently, we determined the methylation levels based
on the identified deamination levels at positions with both
methylated and demethylated cytosines. The genomic window
size for each sample is indicated in the respective column of
Table 1 and was selected through empirical evaluation.
DamMet estF -b <bam-file> -r <fasta-file> -c
<chromosome> -M <expected-average-methylation>
-0 <out-file-prefix>
in-CpGs>

The acquired methylation profiles were additionally sub-
jected to smoothing using a Python script that applied a mov-
ing average with a smoothing window size of 25 CpG sites.

Validation of the reconstructed methylomes. The compa-
rison of Neanderthal, Denisovan, and Ust-Ishim hunter-gatherer
methylomes obtained in the previous stage was conducted
using the R programming language. We employed packages
like ggplot, psych, corr.test, and the tidyverse family for data
preprocessing, correlation analysis, and graph generation.

-N <genomic-window-size-
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Organ Tissue
..... Co|on|:|brob|asts
..... Heart
..... Derma

Smooth myocytes

Heart Cardiomyocytes
..... Bone_
..... Bone_
Bone Osteoblasts
""" Subcutancousadiposetissue  Adipocytes

Identification of tissue-specific methylated regions.
We designed a Python script for the identification of regions
exhibiting relatively consistent methylation levels across all
mesodermal tissues. This script takes the methylation values
obtained using the Bismark algorithm (Krueger, Andrews,
2011) after aligning the aforementioned samples as input. It
conducts a per-position comparison of methylation values
through ANOVA to detect variations within three tissue
groups (fibroblasts, myocytes, osteoblasts) and exclude posi-
tions showing statistically significant differential methylation
(p < 0.05) from both ancient bone and modern adipocyte
methylation profiles.

DMR identification. The prepared methylation profiles of
hunter-gatherers (HG) and modern individuals were compared
using the ANOVA method, similar to the tissue-specific me-
thylation search. In the first iteration, the samples were divided
into three groups: hunter-gatherer bone samples, healthy
individuals’ adipocytes, and obese patients’ adipocytes. CpG
sites with a significance level of p < 0.05 were selected for
subsequent analysis using the Tukey post hoc test. A CpG site
was considered differentially methylated if the methylation
change was significant (p < 0.05) when comparing HG bones
to adipocytes of obese individuals and not significant when
comparing HG bones to controls.

In the second iteration, we modified the grouping: all sam-
ples were bone samples, and the groups represented samples
of different ages (anatomically ancient humans, hunter-gath-
erers, and modern humans). Comparisons were made only in
regions associated with obesity to reduce the computational
load. To aggregate the obtained differentially methylated
sites into regions, we used the combined-pvalues software
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in ancient and modern genomes

Altai Neanderthal (DamMet)
Altai Neanderthal (Gokhman et al., 2014)
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Denisovan (Gokhman et al., 2014)
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Fig. 1. Comparison of the methylation profiles of a Denisovan and a Neanderthal reconstructed by DamMet and published

by D. Gokhman.
In focus: a demethylated CpG island at chr1:1406845-1407821.

1.00

0.75

0.50

Methylation level, %

0.25

5880000
Position on chromosome

5850000

Gokhman et al., 2014
non-UDG-treated (B8747)

UDG-treated (B8747)

5910000

Fig. 2. Comparison of methylation levels on a region of chromosome 2 in sample Vi33, in the presence and absence of USER
treatment during library preparation, with previously published profiles by D. Gokhman.

Methylation levels of all samples were smoothed using a 25 CpG moving average.

(https://github.com/brentp/combined-pvalues), which is based
on the Stouffer—Liptak multiple testing correction method
(Pedersen et al., 2012). The methylation change status was
determined by comparing the mean methylation values in the
regions between groups.

Results

In this study, we reconstructed 11 DNA methylation profiles
of ancient humans using the DamMet tool. Firstly, we needed
to develop a pipeline that would allow us to reconstruct
methylomes with high precision. For this purpose, we used
the genomes of Neanderthals and Denisovans, which had
undergone UDG treatment, as input data for the pipeline.

824

Profiles for these organisms had previously been published
(Gokhman et al., 2014, 2020), enabling us to validate the
pipeline. We found that our calculated methylation levels
were, on average, 15-20 % lower than those previously
published, but overall, the methylation profiles were similar
(Fig. 1). The correlation coefficients for methylation profiles
in both cases were over 85 %: 'y gnisovan = 0-87, Feanderthal = 0-9
(p <0.05).

As we had several samples that didn’t undergo USER
treatment during library preparation, we also aimed to con-
firm whether DamMet could reconstruct methylation profiles
without this step. To address this, we selected sample Vi33, for
which sequences both with and without USER treatment were
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Altai Neanderthal
Denisovan
France 2H10
France 2H11
Peschanitsa

SF12

Spirit Cave
Sunghir

Ust'-Ishim

Position on chromosome

Fig. 3. Methylation profiles of hunter-gatherers reconstructed using DamMet.
The region of extensive demethylation corresponds to the CpG island at chr21:18884807-18886111 (GRCh37 hg19).

publicly available. The pipeline parameters were consistent for
these analyses, ensuring uniform conditions for reconstructing
methylomes from both libraries.

Our findings revealed that the methylation profile obtained
in the presence of USER treatment showed an average cor-
relation of 0.57 with the profile calculated by D. Gokhman,
as depicted in Figure 2. In contrast, the methylome obtained
without any treatment displayed a weak correlation (r = 0.14)
with the published profile. Notably, the methylation patterns
primarily matched in demethylated CpG islands, irrespective
of whether we applied subsequent smoothing using a moving
average.

Next, we processed eight genomes of hunter-gatherers
using our pipeline, for which methylation profiles had not
been reconstructed previously (see Table 1). The resulting
profiles generally exhibited a similar methylation pattern to
other ancient methylomes, including complete demethylation
of some CpG islands (Fig. 3), resembling the profile of the
previously reconstructed Ust-Ishim hunter-gatherer (Gokhman
et al., 2020). Even though sample PES001 was not subjected
to USER treatment during library preparation, our obtained
methylation profile exhibited overall trends similar to other
hunter-gatherer profiles and thus was not excluded from fur-
ther analysis.

According to the authors of the method, the reconstructed
methylation profiles using DamMet can be used for direct
comparison with modern data. However, methylation can vary
between cells of different origins, so direct comparisons should
be limited to methylation profiles obtained from the same tis-
sues. To the best of our knowledge, there has been no sequenc-
ing of bone tissues in the context of obesity. Therefore, for the
final comparison, we selected samples from subcutaneous and
visceral adipocyte tissues, which exhibit similar methylation
patterns. However, these patterns may significantly differ
from those observed in bones and other mesodermal tissues.
As a result, we developed a Python script that performs a

3BOJIIOLUMOHHAA KOMIMbIOTEPHAA BUOJIOTUA / EVOLUTIONARY COMPUTATIONAL BIOLOGY
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Fig. 4. Percentage distribution of DMRs in various genomic regions.

search for differentially methylated positions in mesodermal
tissues and excludes them from further analysis. The script
is based on dispersion analysis in three groups, followed by
pairwise comparisons and multiple testing corrections. The
mesodermal tissue samples were divided into groups accord-
ing to tissue type: fibroblasts, muscle cells, and osteoblasts. In
total, about 26.5 million CpG positions were analyzed, with
approximately 206,000 showing differential methylation in at
least one group, while more than 26 million did not exhibit
significant differences.

We conducted a search for Differentially Methylated Re-
gions (DMRs) in modern bone tissue samples, but focused our
search on only 642 regions that had been previously associ-
ated with differential methylation in the context of obesity,
as reported in the literature. In this case, we performed a per-
position ANOVA analysis for groups of ancient individuals,
hunter-gatherers, and modern individuals (bone tissue), with
prior filtering of non-tissue-specific CpG sites. We identi-
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fied 38 DMRs, where the overlap with the aforementioned
642 regions included more than 20 CpG sites. As depicted in
Figure 4, approximately 60 % of these DMRs are located in
gene promoter regions, 35 % are within gene body regions,
and only 5 % of the DMRs are situated in intergenic regions.
Notably, 94 % of these DMRs exhibit hypermethylation,
potentially leading to the suppression of gene expression,
particularly in genes associated with obesity.

Supplementary data and source code

The methylation profiles of ancient humans and the Python
scripts used for the analysis in this study are available in the
GitHub repository: https://github.com/bor-d/ancDMR

Conclusions

There are currently several methods available for recon-
structing methylation profiles of ancient organisms, with
epiPALEOMIX (Hanghgj et al., 2016) and DamMet (Hang-
hgj et al., 2019) being the two most commonly used ones.
While both of these methods are known for their significant
accuracy, their performance is often constrained by the
quality of ancient DNA samples. In our study, we opted to
utilize the DamMet method due to its versatility, specifi-
cally its capacity to compare the reconstructed methylation
values with profiles generated using alternative sequencing
technologies. However, during the validation of our pipeling,
we observed notable discrepancies between the methylation
values obtained with DamMet and those previously published
by D. Gokhman, in both 2014 and 2020. The developers of
DamMet acknowledge that their tool tends to yield lower
methylation values in comparison to profiles generated using
epiPALEOMIX, which does not account for factors such as
single nucleotide variants (SNVs), sequencing errors, and the
demethylation of unmethylated cytosines. This was evident
in our reconstruction of Neanderthal and Denisovan profiles.
Nonetheless, our analysis indicated a positive correlation
between the methylation values reconstructed by DamMet
and the previously published data. This reaffirms the tool’s
effectiveness in reconstructing previously uncharacterized
methylation profiles, which can then be used for subsequent
comparisons with modern methylomes.

In a demonstration of the pipeline we had devised, we
attempted to identify DMRs within the genomic profiles of
hunter-gatherers and contemporary humans, specifically in
the context of obesity. We identified 38 regions, with ap-
proximately two-thirds of them located in promoter regions.
This observation implies a plausible association between
alterations in methylation patterns within these promoters and
the regulation of gene expression. Certainly, the well-defined
procedural stages within our pipeline effectively tackle poten-
tial hurdles researchers might face. This is especially valuable
when dealing with situations where there is a lack of published
methylation profiles related to the specific tissues of interest.
These steps help reduce the likelihood of false-positive DMRs
due to tissue-specificity.

When utilizing this pipeline to investigate DMRs related
to different medical conditions, researchers are advised to
conduct a thorough review of relevant scientific literature.
This exploratory endeavour should ultimately lead to the
discovery of regions where methylation patterns are inherently
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connected to the specific condition being studied. However,
it is imperative to underscore that despite the explicit precau-
tions taken, including the exclusion of tissue-specific regions
and stringent filtering in the context of disease-associated
regions, the investigation of DMRs may still encompass
CpG sites, the methylation profiles of which underwent
alterations during the evolutionary transition from archaic
humans (Homo sapiens neanderthalensis) to contemporary
Homo sapiens sapiens.
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