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Abstract. Currently, active research is focused on investigating the mechanisms that regulate the development of 
various pathologies and their evolutionary dynamics. Epigenetic mechanisms, such as DNA methylation, play a sig
nificant role in evolutionary processes, as their changes have a faster impact on the phenotype compared to muta
genesis. In this study, we attempted to develop an algorithm for identifying differentially methylated regions asso
ciated with metabolic syndrome, which have undergone methylation changes in humans during the transition from 
a huntergatherer to a sedentary lifestyle. The application of existing wholegenome bisulfite sequencing methods 
is limited for ancient samples due to their low quality and fragmentation, and the approach to obtaining DNA methy
lation profiles differs significantly between ancient huntergatherer samples and modern tissues. In this study, we 
validated DamMet, an algorithm for reconstructing ancient methylomes. Application of DamMet to Neanderthal 
and Denisovan genomes showed a moderate level of correlation with previously published methylation profiles 
and demonstrated an underestimation of methylation levels in the reconstructed profiles by an average of 15–20 %. 
Additionally, we developed a new Pythonbased algorithm that allows for the comparison of methylomes in ancient 
and modern samples, despite the absence of methylation profiles in modern bone tissue within the context of obe
sity. This analysis involves a twostep data processing approach, where the first step involves the identification and  
filtration of tissuespecific methylation regions, and the second step focuses on the direct search for differentially 
methylated regions in specific areas associated with the researcher’s target condition. By applying this algorithm 
to test data, we identified 38 differentially methylated regions associated with obesity, the majority of which were 
located in promoter regions. The pipeline demonstrated sufficient efficiency in detecting these regions. These 
results confirm the feasibility of reconstructing DNA methylation profiles in ancient samples and comparing them 
with modern methylomes. Furthermore, possibilities for further methodological development and the implemen
tation of a new step for studying differentially methylated positions associated with evolutionary processes are 
discussed.
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For citation: Borodko D.D., Zhenilo S.V., Sharko F.S. Search for differentially methylated regions in ancient and mo
dern genomes. Vavilov skii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2023;27(7):820828. 
DOI 10.18699/VJGB2395

Поиск дифференциально метилированных регионов  
в геномах древних и современных людей
Д.Д. Бородко , С.В. Женило, Ф.С. Шарко

Федеральный исследовательский центр «Фундаментальные основы биотехнологии» Российской академии наук, Москва, Россия
  daria.borodko@gmail.com

Аннотация. В настоящее время активно исследуются механизмы, регулирующие развитие различных патоло
гий и их эволюционную динамику. Эпигенетические механизмы, такие как метилирование, играют значимую 
роль в эволюционных процессах, поскольку их изменения гораздо быстрее отражаются на фенотипе, чем ре
зультаты мутагенеза. В данном исследовании мы предприняли попытку разработать алгоритм для выявления 
дифференциально метилированных областей, связанных с метаболическим синдромом, которые изменили 
свое метилирование у человека при переходе от охоты и собирательства к оседлой жизни. Применение суще
ствующих методов полногеномного бисульфитного секвенирования ограничено для древних образцов изза 
их низкого качества и фрагментации, и подход к получению профилей метилирования охотниковсобирателей 
значительно отличается от подходов, используемых для современных тканей. В этой работе мы валидировали 
DamMet – алгоритм, реконструирующий древние метиломы. Применение DamMet к геномам неандертальца 
и денисовца показало средний уровень корреляции с профилями метилирования, опубликованными ранее, 
а также продемонстрировало занижение уровня метилирования реконструированных профилей в среднем 
на 15–20 %. Также мы разработали новый алгоритм на языке Python, позволяющий сравнивать метиломы в 
древних и современных образцах, не смотря на отсутствие профилей метилирования современных образцов 
костной ткани в контексте ожирения. Такой анализ подразумевает двухступенчатую обработку данных, где 
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на первом этапе происходит идентификация тканеспецифичных областей метилирования и их фильтрация, 
а на втором этапе осуществляется непосредственно поиск дифференциально метилированных регионов в 
заданных областях, ассоциированных с интересую щим исследователя заболеванием. В результате использо
вания алгоритма на тестовых данных мы обнаружили 38 дифференциально метилированных регионов, ассо
циированных с ожирением, большая часть которых принадлежала промоторным областям, и разработанный 
пайплайн показал достаточную эффективность в их поиске. Эти результаты подтверждают возможность вос
становления профилей метилирования в древних образцах и их сравнения с современными метиломами. Так
же обсуждаются возможности дальнейшего развития методологии и внедрения нового шага, позволяющего 
изучать дифференциально метилированные позиции, связанные с эволюционными процессами.
Ключевые слова: древняя ДНК; метилирование; эпигенетика; DamMet; ДМР.

Introduction
Lately, increasing attention is being paid to the study of 
mechanisms regulating the development of various pathologies 
and their evolutionary dynamics (Briggs et al., 2009a; Niiranen 
et al., 2022). Epigenetic mechanisms, such as methylation, 
play a particularly important role in this process since they 
are capable of inducing phenotypic changes much faster 
than conventional mutagenesis processes (Jablonka, Raz, 
2009; Feinberg, Irizarry, 2010; Zhur et al., 2021). The main 
goal of this study was to identify differentially methylated 
regions (DMRs) associated with metabolic syndrome, which 
could potentially serve as targets for epigenetic therapy of 
metabolic syndrome.

Nowadays, scientists are often hindered from conducting 
evolutionary research due to the lack of suitable methods for 
comparing DNA profiles of ancient and modern samples. 
Laboratory protocols used to obtain these profiles significantly 
differ from one another, each having its peculiarities and er-
rors. Ancient DNA (aDNA) is often found in a fragmented 
state, and over time, natural molecule degradation and spon-
taneous deamination of nitrogenous bases occur, limiting the 
availability of high-quality data (Briggs et al., 2007, 2009b). 
To address this issue, a specific sample processing protocol 
was developed, which uses uracil-DNA glycosylase (UDG) 
and endonuclease combination (known as USER-treatment) 
to facilitate the extraction of methylation profiles and enhance 
their distinguishability (Briggs et al., 2010). Additionally, 
several programs have been developed that allow the calcula-
tion of methylation levels in ancient samples, the sequences of 
which were sequenced using the USER treatment (Gokhman 
et al., 2014; Orlando et al., 2015; Hanghøj et al., 2019).

At present, two methylation reconstruction algorithms tai-
lored for ancient samples are available, characterized by their 
command-line functionality and user-friendliness. The ante-
cedent algorithm, epiPALEOMIX, draws its foundation from 
the initial historical approach to methylation reconstruction, 
as first elucidated by D. Gokhman in 2014. EpiPALEOMIX 
encompasses diverse modules, among which the MethylMap 
module stands out, permitting users to derive methylation lev-
els in regions that can be defined by the user (Hanghøj et al., 
2016). However, this limitation is inherent to its usage; the user 
is required to have an understanding of the particular regions 
associated with the condition under study. The outcome of this 
algorithm is the calculated count of deaminated methylated 
cytosines in the CpG context and the corresponding coverage, 
representing their ratio, thereby denoting the methylation level 
at the particular genomic position. In contrast, the DamMet 

algorithm exhibits greater versatility. Unlike epiPALEOMIX, 
it is designed for whole-genome investigations. Furthermore, 
DamMet can calculate deamination levels in both methylated 
and unmethylated CpGs at each read position, thus employing 
a model that most accurately characterizes the deamination of 
cytosines in aDNA fragments as a random process (Hanghøj 
et al., 2019).

Regarding the handling of modern tissue samples, whole-
genome bisulfite sequencing (WGBS) is the prevalent 
method for investigating DNA methylation (Olova et al., 
2018; Suzuki et al., 2018). Several methods are available for 
reconstructing methylation from samples sequenced using this 
technology (Clark et al., 1994; Bock et al., 2005), with the 
most well-known being Bismark, BoostMe, and WGBStools. 
Currently, the Bismark algorithm is the most frequently used 
for preprocessing WGBS data. This involves the mapping 
of reads to the converted reference genome, followed by the 
quantification of methylated and unmethylated cytosines at 
each genomic position (Krueger, Andrews, 2011). Similar to 
many read-count-based methods, this approach is not well-
suited for overcoming the challenge of low sample coverage, 
a common occurrence in cases involving low-quality samples 
or single-cell experiments. To address this concern, machine 
learning-based algorithms like DeepCPG and BoostMe have 
been created.

DeepCPG is a deep learning neural network-based al-
gorithm designed to predict the methylation states of low-
coverage sites and uncover motifs associated with changes in 
methylation levels and intercellular variability (Angermueller 
et al., 2017). This tool is primarily utilized to enhance the 
quality of data from single-cell experiments. BoostMe, which 
is based on a machine learning approach, addresses this issue 
during the genome preprocessing stage by employing imputa-
tion (Zou et al., 2018). The XGBoost gradient boosting tech-
nique employed in this tool amalgamates data from multiple 
samples (more than 3) to rectify missing methylation levels 
in contemporary tissue samples. This enables the utilization 
of low-coverage genome samples for methylation reconstruc-
tion. Additionally, a notable feature of BoostMe is its capacity 
to restore not only the state of a given CpG site (methylated/
unmethylated) but also its methylation level. WGBStools, 
comprising a collection of methods developed in the context 
of the modern tissue methylation atlas project, is utilized for 
a highly efficient representation of mapped reads, statistical 
analysis, and visualization of data ranging from small genomic 
segments to entire chromosomal loci (https://github.com/
nloyfer/wgbs_tools).
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However, despite the variety of methylation reconstruction 
algorithms available, the application of WGBS technology 
to aDNA samples is limited. This limitation arises from the 
requirement for a high concentration of well-purified DNA 
for bisulfite conversion. Additionally, the bisulfite conver-
sion process leads to DNA fragmentation, further compro-
mising the quality of aDNA, which is already significantly 
fragmented due to degradation (Gu et al., 2011). Therefore, 
methylation level calculation algorithms commonly used for 
modern samples cannot be employed for the reconstruction 
of methylation profiles in ancient individuals. Consequently, 
our focus has been on developing a novel algorithm that en-
ables the comparison of methylomes in ancient and modern 
samples, considering the lack of available bone tissue samples 
for conducting whole-genome bisulfite sequencing in the 
context of obesity.

Materials and methods
Sample selection. For our analysis, we curated a dataset from 
the NCBI GEO database, consisting of 11 ancient genomes and 
12 modern methylation profiles obtained using Whole Genome 
Bisulfite Sequencing (WGBS) methods. When selecting the 
ancient samples, particular attention was given to the age of the 
samples, library preparation strategy, and genome coverage. 
We exclusively included samples that underwent prior USER 
treatment, were dated to be at least 3,000 years Before the 
Common Era (BCE), and had a minimum coverage of 5x. 
The complete genomes of ancient samples were sequenced 
with USER treatment, except for samples Vi33 and PES001 
(Peschanitsa), which were not subjected to UDG treatment 
before sequencing (Table 1).

The selection of the 12 contemporary samples (Loyfer et al., 
2023) was based on the mesodermal origin of the tissues used 
for library preparation, in conjunction with the utilization of 
whole-genome bisulfite sequencing. Additional information 
about these samples is presented in Table 2.

Ancient genomes preprocessing. The ancient genomes 
were obtained from ftp server in bam format along with their 
corresponding indices. As per previous studies (Ohm et al., 
2010; Gokhman et al., 2014), it is well-recognized that UDG 
treatment is not sufficiently effective at the DNA termini. To 
ensure precise aDNA analysis, we employed the trimBam 
utility to trim two nucleotides from both the 3ʹ and 5ʹ ends 
of sequences (Gansauge, Meyer, 2013; Jun et al., 2015). It’s 
important to note that for the Vi33 and PES001 samples, this 
trimming procedure was omitted due to the absence of UDG 
treatment during library preparation. Moreover, we applied 
Trimmomatic (Bolger et al., 2014) for the filtration of sample 
reads based on criteria such as average quality and length. In 
our subsequent analysis, only sequences that aligned with the 
CRCh37 (hg19) assembly and exhibited an average quality 
score exceeding 20, as well as a minimum length of 25 base 
pairs, were retained for further investigation.

Reconstruction of DNA methylation profiles in ancient 
humans. To reconstruct the methylation profiles of ancient 
samples, we utilized the DamMet software (Hanghøj et 
al., 2019). The pipeline consisted of three main stages: the 
filtration of single-nucleotide variants, the calculation of 
deamination levels for each read position, and the estimation 
of methylation levels.

The single-nucleotide variant (SNV) calling was performed 
using the GATK HaplotypeCaller v4.3.0.0 (Poplin et al., 

Table 1. Ancient genomes selected for analysis

Sample Group Sample 
age, kya

Sex Tissue Coverage Methylation  
profile

Genomic 
smoothing 
window 
(CpG)

Reference

Altai 
Neanderthal 

Ancient 120 Female Toe phalanx 50 Gokhman et al., 
2014, 2020

25 Prüfer et al., 2014

Denisovan 75 Female Toe phalanx 30 25 Meyer et al., 2012

Vindija33 50 Female Unknown bone 30 50 Prüfer et al., 2017

Ust’Ishim HG 45 Male Femur 42 (22 XY) Gokhman et al.,  
2020

25 Fu et al., 2014

Sunghir 35 Male Femur + teeth 10.7 This study 38 Sikora et al., 2017

USR1 11.5 Female Petrous bone 17 50 MorenoMayar  
et al., 2018a

Spirit Cave 11 Male Petrous bone +  
teeth

18 33 MorenoMayar  
et al., 2018b

Peschanitsa 11 Male Teeth 5 50 Saag et al., 2021

SF12 9 Female Femur 57.79 28 Günther et al., 
2018

2H10 (France) 3.2 Male Teeth 13.9 33 SeguinOrlando  
et al., 2021

2H11 (France) 3.2 Male Teeth 23.9 33 SeguinOrlando  
et al., 2021

Note.  Smoothing window – a parameter for averaging deamination levels in the subsequent analysis stage. HG – huntergatherers.
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2017). SNVs with coverage of less than 5 and quality less 
than 30 were filtered out. Additionally, variants were filtered 
when they exhibited homozygosity for the alternative allele or 
more than two alternative alleles when the position contained 
a cytosine. This stage followed the recommendations of the 
DamMet algorithm author, as described in Hanghøj et al., 
2019, and supplementary materials provided therein.

Subsequently, methylation levels were reconstructed, ex-
cluding the identified variants.
DamMet estDEAM -b <bam-file> -r <fasta-file> -c 
<chromosome> -M <expected-average-methylation> 
-O <out-file-prefix> -E <vcf-to-exclude> -L 25 
-P 50 -q 20 -Q 20

Subsequently, we determined the methylation levels based 
on the identified deamination levels at positions with both 
methylated and demethylated cytosines. The genomic window 
size for each sample is indicated in the respective column of 
Table 1 and was selected through empirical evaluation.
DamMet estF -b <bam-file> -r <fasta-file> -c 
<chromosome> -M <expected-average-methylation> 
-O <out-file-prefix> -N <genomic-window-size-
in-CpGs>

The acquired methylation profiles were additionally sub-
jected to smoothing using a Python script that applied a mov-
ing average with a smoothing window size of 25 CpG sites.

Validation of the reconstructed methylomes. The compa-
rison of Neanderthal, Denisovan, and Ust-Ishim hunter-gatherer 
methylomes obtained in the previous stage was conducted 
using the R programming language. We employed packages 
like ggplot, psych, corr.test, and the tidyverse family for data 
preprocessing, correlation analysis, and graph generation.

Identification of tissue-specific methylated regions. 
We designed a Python script for the identification of regions 
exhibiting relatively consistent methylation levels across all 
mesodermal tissues. This script takes the methylation values 
obtained using the Bismark algorithm (Krueger, Andrews, 
2011) after aligning the aforementioned samples as input. It 
conducts a per-position comparison of methylation values 
through ANOVA to detect variations within three tissue 
groups (fibroblasts, myocytes, osteoblasts) and exclude posi-
tions showing statistically significant differential methylation  
(p < 0.05) from both ancient bone and modern adipocyte 
methylation profiles.

DMR identification. The prepared methylation profiles of 
hunter-gatherers (HG) and modern individuals were compared 
using the ANOVA method, similar to the tissue-specific me-
thylation search. In the first iteration, the samples were divided 
into three groups: hunter-gatherer bone samples, healthy 
individuals’ adipocytes, and obese patients’ adipocytes. CpG 
sites with a significance level of p < 0.05 were selected for 
subsequent analysis using the Tukey post hoc test. A CpG site 
was considered differentially methylated if the methylation 
change was significant (p < 0.05) when comparing HG bones 
to adipocytes of obese individuals and not significant when 
comparing HG bones to controls.

In the second iteration, we modified the grouping: all sam-
ples were bone samples, and the groups represented samples 
of different ages (anatomically ancient humans, hunter-gath-
erers, and modern humans). Comparisons were made only in 
regions associated with obesity to reduce the computational 
load. To aggregate the obtained differentially methylated 
sites into regions, we used the combined-pvalues software 

Table 2. Contemporary genomes used for identifying tissuespecific methylated regions and DMRs

GEO accession Sex Age of patient Organ Tissue

GSM5652198 Male 37 Colon Fibroblasts

GSM5652202 Female 35 Heart

GSM5652204 Male 73 Derma

GSM5652205 Female 59 Skeletal muscle Smooth myocytes

GSM5652207 Male 22 Aorta

GSM5652209 Female 51 Bladder

GSM5652210 Male 24 Prostate

GSM5652211 Male 57 Lung bronchus

GSM5652212 Male 83 Heart Cardiomyocytes

GSM2637888 – – Bone –

GSM2637887 – – Bone –

GSM5652218 Female 7 Bone Osteoblasts

GSM5652177 Female 35 Subcutaneous adipose tissue Adipocytes

GSM5652176 Female 53 Subcutaneous adipose tissue

GSM5652178 Female 37 Subcutaneous adipose tissue



D.D. Borodko, S.V. Zhenilo 
F.S. Sharko

824 Вавиловский журнал генетики и селекции / Vavilov Journal of Genetics and Breeding • 2023 • 27 • 7

Search for differentially methylated regions 
in ancient and modern genomes

(https://github.com/brentp/combined-pvalues), which is based 
on the Stouffer–Liptak multiple testing correction method 
(Pedersen et al., 2012). The methylation change status was 
determined by comparing the mean methylation values in the 
regions between groups.

Results
In this study, we reconstructed 11 DNA methylation profiles 
of ancient humans using the DamMet tool. Firstly, we needed 
to develop a pipeline that would allow us to reconstruct 
methylomes with high precision. For this purpose, we used 
the genomes of Neanderthals and Denisovans, which had 
undergone UDG treatment, as input data for the pipeline. 

Profiles for these organisms had previously been published 
(Gokhman et al., 2014, 2020), enabling us to validate the 
pipeline. We found that our calculated methylation levels 
were, on average, 15–20 % lower than those previously 
published, but overall, the methylation profiles were similar 
(Fig. 1). The correlation coefficients for methylation profiles 
in both cases were over 85 %: rDenisovan = 0.87, rNeanderthal = 0.9 
( p < 0.05).

As we had several samples that didn’t undergo USER 
treatment during library preparation, we also aimed to con-
firm whether DamMet could reconstruct methylation profiles 
without this step. To address this, we selected sample Vi33, for 
which sequences both with and without USER treatment were 
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Fig.  1.  Comparison of the methylation profiles of a Denisovan and a Neanderthal reconstructed by DamMet and published  
by D. Gokhman.
In focus: a demethylated CpG island at chr1:1406845–1407821.

Fig. 2. Comparison of methylation levels on a region of chromosome 2 in sample Vi33, in the presence and absence of USER 
treatment during library preparation, with previously published profiles by D. Gokhman.
Methylation levels of all samples were smoothed using a 25 CpG moving average.
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publicly available. The pipeline parameters were consistent for 
these analyses, ensuring uniform conditions for reconstructing 
methylomes from both libraries.

Our findings revealed that the methylation profile obtained 
in the presence of USER treatment showed an average cor-
relation of 0.57 with the profile calculated by D. Gokhman, 
as depicted in Figure 2. In contrast, the methylome obtained 
without any treatment displayed a weak correlation (r = 0.14) 
with the published profile. Notably, the methylation patterns 
primarily matched in demethylated CpG islands, irrespective 
of whether we applied subsequent smoothing using a moving 
average.

Next, we processed eight genomes of hunter-gatherers 
using our pipeline, for which methylation profiles had not 
been reconstructed previously (see Table 1). The resulting 
profiles generally exhibited a similar methylation pattern to 
other ancient methylomes, including complete demethylation 
of some CpG islands (Fig. 3), resembling the profile of the 
previously reconstructed Ust-Ishim hunter-gatherer (Gokhman 
et al., 2020). Even though sample PES001 was not subjected 
to USER treatment during library preparation, our obtained 
methylation profile exhibited overall trends similar to other 
hunter-gatherer profiles and thus was not excluded from fur-
ther analysis.

According to the authors of the method, the reconstructed 
methylation profiles using DamMet can be used for direct 
comparison with modern data. However, methylation can vary 
between cells of different origins, so direct comparisons should 
be limited to methylation profiles obtained from the same tis-
sues. To the best of our knowledge, there has been no sequenc-
ing of bone tissues in the context of obesity. Therefore, for the 
final comparison, we selected samples from subcutaneous and 
visceral adipocyte tissues, which exhibit similar methylation 
patterns. However, these patterns may significantly differ 
from those observed in bones and other mesodermal tissues. 
As a result, we developed a Python script that performs a 

search for differentially methylated positions in mesodermal 
tissues and excludes them from further analysis. The script 
is based on dispersion analysis in three groups, followed by 
pairwise comparisons and multiple testing corrections. The 
mesodermal tissue samples were divided into groups accord-
ing to tissue type: fibroblasts, muscle cells, and osteoblasts. In 
total, about 26.5  million CpG positions were analyzed, with 
approximately 206,000 showing differential methylation in at 
least one group, while more than 26 million did not exhibit 
significant differences.

We conducted a search for Differentially Methylated Re-
gions (DMRs) in modern bone tissue samples, but focused our 
search on only 642 regions that had been previously associ-
ated with differential methylation in the context of obesity, 
as reported in the literature. In this case, we performed a per-
position ANOVA analysis for groups of ancient individuals, 
hunter-gatherers, and modern individuals (bone tissue), with 
prior filtering of non-tissue-specific CpG sites. We identi-
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fied 38 DMRs, where the overlap with the aforementioned 
642 regions included more than 20 CpG sites. As depicted in 
Figure 4, approximately 60 % of these DMRs are located in 
gene promoter regions, 35 % are within gene body regions, 
and only 5 % of the DMRs are situated in intergenic regions. 
Notably, 94 % of these DMRs exhibit hypermethylation, 
potentially leading to the suppression of gene expression, 
particularly in genes associated with obesity.

Supplementary data and source code
The methylation profiles of ancient humans and the Python 
scripts used for the analysis in this study are available in the 
GitHub repository: https://github.com/bor-d/ancDMR

Conclusions
There are currently several methods available for recon-
structing methylation profiles of ancient organisms, with  
epiPALEOMIX (Hanghøj et al., 2016) and DamMet (Hang-
høj et al., 2019) being the two most commonly used ones. 
While both of these methods are known for their significant 
accuracy, their performance is often constrained by the 
quality of ancient DNA samples. In our study, we opted to 
utilize the DamMet method due to its versatility, specifi-
cally its capacity to compare the reconstructed methylation 
values with profiles generated using alternative sequencing 
technologies. However, during the validation of our pipeline, 
we observed notable discrepancies between the methylation 
values obtained with DamMet and those previously published 
by D. Gokhman, in both 2014 and 2020. The developers of 
DamMet acknowledge that their tool tends to yield lower 
methylation values in comparison to profiles generated using 
epiPALEOMIX, which does not account for factors such as 
single nucleotide variants (SNVs), sequencing errors, and the 
demethylation of unmethylated cytosines. This was evident 
in our reconstruction of Neanderthal and Denisovan profiles. 
Nonetheless, our analysis indicated a positive correlation 
between the methylation values reconstructed by DamMet 
and the previously published data. This reaffirms the tool’s 
effectiveness in reconstructing previously uncharacterized 
methylation profiles, which can then be used for subsequent 
comparisons with modern methylomes.

In a demonstration of the pipeline we had devised, we 
attempted to identify DMRs within the genomic profiles of 
hunter-gatherers and contemporary humans, specifically in 
the context of obesity. We identified 38 regions, with ap-
proximately two-thirds of them located in promoter regions. 
This observation implies a plausible association between 
alterations in methylation patterns within these promoters and 
the regulation of gene expression. Certainly, the well-defined 
procedural stages within our pipeline effectively tackle poten-
tial hurdles researchers might face. This is especially valuable 
when dealing with situations where there is a lack of published 
methylation profiles related to the specific tissues of interest. 
These steps help reduce the likelihood of false-positive DMRs 
due to tissue-specificity.

When utilizing this pipeline to investigate DMRs related 
to different medical conditions, researchers are advised to 
conduct a thorough review of relevant scientific literature. 
This exploratory endeavour should ultimately lead to the 
discovery of regions where methylation patterns are inherently 

connected to the specific condition being studied. However, 
it is imperative to underscore that despite the explicit precau-
tions taken, including the exclusion of tissue-specific regions 
and stringent filtering in the context of disease-associated 
regions, the investigation of DMRs may still encompass 
CpG sites, the methylation profiles of which underwent 
alterations during the evolutionary transition from archaic 
humans (Homo sapiens neanderthalensis) to contemporary 
Homo sapiens sapiens.
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