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Abstract. The development of objective methods for assessing stress levels is an important task of applied neuro
science. Analysis of EEG recorded as part of a behavioral self-control program can serve as the basis for the develop-
ment of test methods that allow classifying people by stress level. It is well known that participation in meditation 
practices leads to the development of skills of voluntary self-control over the individual’s mental state due to an in-
creased concentration of attention to themselves. As a consequence of meditation practices, participants can reduce 
overall anxiety and stress levels. The aim of our study was to develop, train and test a convolutional neural network 
capable of classifying individuals into groups of practitioners and non-practitioners of meditation by analysis of event-
related brain potentials recorded during stop-signal paradigm. Four non-deep convolutional network architectures 
were developed, trained and tested on samples of 100 people (51 meditators and 49 non-meditators). Subsequently, 
all structures were additionally tested on an independent sample of 25 people. It was found that a structure using a 
one-dimensional convolutional layer combining the layer and a two-layer fully connected network showed the best 
performance in simulation tests. However, this model was often subject to overfitting due to the limitation of the 
display size of the data set. The phenomenon of overfitting was mitigated by changing the structure and scale of 
the model, initialization network parameters, regularization, random deactivation (dropout) and hyperparameters of 
cross-validation screening. The resulting model showed 82 % accuracy in classifying people into subgroups. The use 
of such models can be expected to be effective in assessing stress levels and inclination to anxiety and depression 
disorders in other groups of subjects.
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Аннотация. В настоящее время разработка объективных методик для оценки уровня стресса является чрез-
вычайно актуальной задачей прикладной нейронауки. Анализ электроэнцефалограммы (ЭЭГ), записанной в 
условиях выполнения заданий на самоконтроль поведения, может служить основой для разработки тестовых 
методик, позволяющих классифицировать людей по уровню стресса. Хорошо известно, что одним из следствий 
медитационной практики является выработка у участников навыков произвольного контроля над собственным 
ментальным состоянием за счет повышенной концентрации внимания на самом себе. На фоне медитационной 
практики часто происходит снижение общего уровня тревожности и стресса. Целью нашего исследования было 
разработать, обучить и протестировать сверточную нейронную сеть, способную классифицировать людей на 
группы участвующих или не участвующих в медитационной практике на основе анализа вызванных потенциа-
лов головного мозга, записанных при выполнении заданий парадигмы стоп-сигнал. Были разработаны четыре 
архитектуры неглубоких сверточных сетей, которые были обучены и протестированы на выборке из 100 че-
ловек (51 медитатор и 49 не-медитатор). В дальнейшем все структуры были дополнительно протестированы 
на независимой выборке в 25 человек. Установлено, что структура, использующая одномерный сверточный 
слой, который объединяет слой и двуслойную полностью подключенную сеть, показала наилучшие результаты 
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работы в имитационных тестах. Однако эта модель была часто подвержена переобучению из-за ограничения 
размера отображения набора данных. Явление переобучения было смягчено при помощи изменения структу-
ры и масштаба модели, параметров сети инициализации, регуляризации, случайной деактивации (dropout) и 
гиперпараметров скрининга перекрестной проверки. В итоге нами получена модель, которая показала 82 % 
точность в классификации людей на подгруппы. Можно ожидать, что использование таких моделей окажется 
эффективным методом для оценки уровня стресса и предрасположенности к тревожным и депрессивным рас-
стройствам в других группах испытуемых.
Ключевые слова: сверточные нейронные сети; ЭЭГ; вызванные потенциалы мозга; медитация; парадигма стоп-
сигнал.

Introduction
Stress is one of the most common problems in modern so-
ciety, and the search for effective methods to assess stress 
levels is important for early detection of the risk of mental 
and psychosomatic disorders (Kuh et al., 2003; Kuznetsova 
et al., 2016). Most psychological methods of assessing stress 
levels are based on the use of questionnaires, in which the 
respondent answers questions about their subjective mental 
condition. The weak point of this approach is the high pro­
bability of incorrect self-assessments, arising either from a 
person’s unwillingness to report their problems, or as a result 
of a low ability to recognize changes in their own condition 
(Iwata, Higuchi, 2000; McCrae et al., 2000). A possible solu-
tion to this problem is to develop objective approaches to the 
diagnosis of mental traits or conditions based on the analysis 
of brain signals, such as fMRI or EEG.

Meditation is a system of special mental practices aimed 
at establishing voluntary self-control over one’s mental state. 
Although meditation initially appears as part of religious 
practices, especially common in oriental religions, at present 
this phenomenon is a popular topic of interest among scientific 
researchers. Meditation is considered as a basis for the creation 
of non-invasive, non-drug techniques that reduce the risk of 
a wide range of mental or psychosomatic diseases. A number 
of studies have shown that meditation has many positive 
effects on mental health, including a  general reduction in 
stress and the level of propensity to depression (Chiesa et al., 
2011; Saeed et al., 2019). The analysis of the EEG recorded 
during recognition of emotional stimuli revealed significant 
effects of meditation on the state of the human brain (Aftanas, 
Golosheykin, 2005; Atchley et al., 2016; Savostyanov et al., 
2020). Therefore, the comparison of EEG in practitioners 
and non-practitioners of meditation can be considered as an 
experimental model that allows the development of methods 
for assessing stress levels.

Stop-signal paradigm (SSP) is an experimental method for 
evaluating an individual’s ability for voluntary self-control 
of their own movements in a changing external environment 
(Logan, Cowan, 1984; Band et al., 2003). The SSP allows us to 
assess the balance of two processes – activation and inhibition 
of behavior under conditions of insufficient time for making 
a decision. A number of studies have shown that SSP is an 
effective method for diagnosing the level of personal anxiety 
and propensity to depression (Hsieh et al., 2021; Zelenskih et 
al., 2022). It can be assumed that the dynamics of brain activity 
during SSP will serve as a marker distinguishing practitioners 
and non-practitioners of meditation from each other.

Artificial neural network is a developing technology based 
on machine learning, which is widely used in various fields. 
Compared to other traditional methods of machine classifi-
cation, such as linear discriminant analysis and the k-nearest 
neighbor algorithm, artificial neural networks provide more 
accurate results of classifying individuals according to their 
behavioral and neurophysiological characteristics (Khosla et 
al., 2020). Therefore, in comparison with the support vector 
machine, an artificial neural network is better suited for the 
tasks of multiple classification, providing convenience for 
further research, as well as more efficient fitting of complex 
nonlinear relationships.

The purpose of our research is to develop, train and test 
an artificial neural network that allows, based on the analysis 
of event-related brain potentials in the stop-signal paradigm, 
to classify individuals according to the criterion of whether 
they practice meditation. We assume that afterwards the 
neural network created in this way will be able to assess in-
dividual level of stress and propensity to anxiety-depressive  
disorders.

Methods of experimental research
Participants. A group of people practicing samadhi medita-
tion (also called “mindfulness meditation”) was examined in 
July–August 2018 on the premises of the Baikal Retreat Center 
(http://www.geshe.ru/). The experimental group included 
51 healthy, right-handed participants from 25 to 66 years old 
(32 men; average age = 41.0, SD = 8.3), practicing meditation 
for a period of 5 to 15 years. The control group was examined 
in October–November 2019 on the premises of the medical 
college of the village of Khandyga, Tomponsky district of 
the Republic of Sakha (Yakutia). The control group included 
49  healthy, right-handed participants from 22 to 58  years 
old (22 men; average age = 38.0, SD = 8.3) who had never 
participated in meditation or yoga practices.

The protocol of the study was approved by the local Ethics 
Committee of the Research Institute of Neurosciences and 
Medicine in accordance with the Helsinki Declaration of Bio-
medical Examinations. All the participants signed informed 
consent to participate in the surveys.

Experimental procedure. The experiment was organized 
on the basis of the stop-signal paradigm proposed in 1984 
(Logan, Cowan, 1984) and modified by A.N. Savostyanov 
and co-authors (Savostyanov et al., 2009). The experiment 
was organized in the form of the computer interactive game 
“Hunt”. One of two images appeared on the computer screen: 

http://www.geshe.ru/
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a deer, or a tank. The participant had to press the keyboard 
button corresponding to the picture. The response time was 
limited to 0.75 seconds. If the participant pressed the button 
correctly and faster than 0.75 seconds, their game score in-
creased. If the participant pressed the buttons incorrectly or 
reached a time out, then their game score decreased.

In total, 135 stimuli were presented to each participant. In 
35 cases, after the onset of the target signal, a stop-signal was 
presented (a red square with the inscription “Stop”), which 
meant that the participant had to interrupt the movement that 
had already begun. If the participant did not press the button af-
ter the stop-signal, their score did not change. If the participant 
pressed the button after the stop-signal, their score decreased. 
The order of activation and stopping trials was randomized. 
The sequence of “deer” and “tank” stimuli was also rando­
mized. The interval between the end of the previous task and 
the start of a new task varied from 3 to 7 seconds. The total 
duration of the experiment was approximately 12 minutes.

Preprocessing of experimental data. EEG rejection of 
artifacts was done by the ICA method (Delorme, Makeig, 
2004). The initial EEG signal was filtered at 1–40 Hz and 
referenced to average of all channels. The data was epoched 
relative to the onset trigger of the target stimulus (deer or tank) 
at a time interval from –1 to +3 seconds. The baseline EEG 
level was set in the range from –1000 to –250 ms. In total, 80 
to 90 EEG epochs were obtained for each participant, after 
exclusion of all the trials containing the stop-signal or artifacts. 
After excluding artifacts, event-related potentials (ERPs) were 
calculated separately for each EEG channel, averaged over 
all trials and all participants.

The ERP calculation was conducted in the ERPLAB toolbox 
for MATLAB. Amplitude-time ERP graphs were made for 
each EEG channel. Then a visual preview of the ERP graph 
for the C3 channel was performed. In this lead, the ERP mo-
tor peaks stand out the most. In particular, two peaks were 
selected for this lead – an early premotor peak, the amplitude 
of which precedes pressing the button (the so-called readi-
ness potential) and a late motor peak, the amplitude of which 
reaches a maximum when the button is pressed. From viewing 
this visual, the time limits of both the early and late peak were 
established. After that, the amplitude in each of these time 

windows was calculated separately for each person and each 
EEG channel, but averaged over all trials of the activation 
condition of the task for each participant. The calculation of 
the averaged amplitude was made using the ERPLAB tool-
box (https://erpinfo.org/erplab). The amplitude values were 
surveyed to the baseline level for each participant separately. 
The obtained values were used as training and test data for 
artificial neural networks.

EEG data acquisition. The general structure of the input 
data is shown in Figure  1. For each participant, EEG was 
analyzed for 64 channels located at different points of the head 
surface. According to the international scheme of 10–20 %, 
the name of the electrode reflects its spatial position. The ini-
tial EEG signal for each channel is presented as a continuous 
series of measurements of the potential difference between 
the surface electrode and the referent with a time resolution 
of 1,000 measurements per second. 

ERP extraction. When calculating the ERP (event-related 
potential) amplitude, the researcher selects several time 
windows, in each of which all amplitude values are summed 
over all time points and averaged over all tests. The amplitude 
values in different windows reflect the temporal dynamics 
of the neurophysiological process. We selected two time 
windows (250–350 and 550–900 ms after the target signal), 
which reflect, respectively, the physiological processes asso-
ciated with the preparation and execution of the movement. 
A numerical value of the ERP amplitude was obtained for 
each participant separately for each time window and for each 
EEG channel. Since ERP in different parts of the head can 
deviate from the zero value of the potential both up (positive 
peak) and down (negative peak), then the numerical values 
of the amplitude can be both positive and negative. Thus, our 
data takes into account both spatial (the name of the channel, 
i. e. its position on the head) and temporal (the first or second 
ERP window) characteristics of the brain response to the task 
in the stop-signal paradigm, as well as the electrical direction 
of the reaction (positive or negative peak amplitude values).

For each examined individual, the data dimension was 2×64 
values. Since 50 participants were included in each group of 
people, the data size for each of our samples is approximately 
50×2×64, and the total size of the data set is 100×2×64.

Fig. 1. The scheme of obtaining input data for the neural network.
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Designing the structure and framework  
of a neural network
Since the input set of ERP data is small, a non-deep neural 
network was designed to predict whether an individual 
participated in long-term meditations or not. However, the 
initial EEG recording also has time series characteristics, so 
a convolutional neural network was additionally used for its 
analysis as a deep neural network for training and prediction. 
The main components of the convolutional neural network 
include convolutional layers, pooling layers, and fully con-
nected layers.

In our case, the input layer of the convolutional network 
receives EEG data transformed into a two-dimensional ma-
trix with a sample size of 2×64, where each row represents 
an individual ERP peak and each column represents an 
EEG recording channel. The hidden layer of the convolu-
tional neural network includes three common architectures: 
a convolutional layer, a pooling layer, and a fully connected 
layer. We used the Conv1d() tool in PyTorch as the convo-
lutional kernel, which prevented overfitting caused by using 
more complex convolutional kernels with more parameters 
(https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.
html#torch.nn.Conv1d, 21.02.2023).

The parameters of the convolutional layer include the kernel 
size, stride size, and padding, which collectively determine 
the size of the output feature map of the convolutional layer 
and are hyperparameters of the convolutional neural network. 
Due to the characteristics of EEG data, there are both spatial 
and temporal relationships, so we developed two schemes. 
The first scheme involves using a total of two one-dimensional 
convolutions. One extracts spatial features, which represent 
connections between ERP peaks in different electrode chan-
nels, and the other extracts temporal features. In this scheme, 
the PyTorch Conv1d() function wrapper was used to complete 
the corresponding function. The second approach involves 
applying only one one-dimensional convolution, but this 
convolution can extract both temporal and spatial features, 
for which the PyTorch Conv1d() function wrapper was also 
chosen.

The convolutional layers contain activation functions that 
help represent complex objects. In our study, three activation 
functions were used: sigmoid(), relu(), and softmax() from 
PyTorch (https://pytorch.org/docs/stable/generated/torch.
nn.BCELoss.html, 15.04.2023). After extracting objects in the 
convolutional layer, the output feature map was passed to the 
pooling layer for object selection and information filtering. 
The pooling layer selects the pooling region in the same way 
as the kernel scanning stage of the convolutional layer, which 
is controlled by the pooling size, stride size, and padding. 
The convolutional and pooling layers in the convolutional 
neural network can extract features from the input data. The 
role of the fully connected layer is to nonlinearly combine 
the extracted features to obtain output data. In our case, two 
fully connected layers were created to prevent overfitting due 
to the small size of the dataset, for which the Linear() tool 
in PyTorch was applied. A fully connected layer is typically 
located before the output layer in a convolutional neural net-
work. We used different loss and activation functions during 
training based on these two scenarios to improve the accuracy 
and performance of the model.

According to the above-described scheme, four network 
structures were designed and used for classifying surveyed 
individuals (Fig. 2). The only difference between these four 
architectures lies in the number of convolutional layers and 
the number of output neurons at the end.

In the first structure, a convolutional layer is used to extract 
both temporal and spatial objects. Then, two fully connected 
layers are used, and two values are output after normaliza-
tion using the softmax activation function. Cross-entropy is 
used as the loss function, and Adam is used as the gradient 
descent algorithm.

The second structure also uses a  convolutional layer to 
extract both temporal and spatial objects. Then, two fully 
connected layers are used, and the value is output after ac-
tivation with the sigmoid function. Binary cross-entropy is 
used as the loss function, and Adam is used as the gradient 
descent algorithm.

The third structure uses two types of convolutions to extract 
spatial and temporal characteristics of the data, respectively. 
Then, two fully connected layers are used, and two values are 
output after normalization using the softmax activation func-
tion. Cross-entropy is used as the loss function, and Adam is 
used as the gradient descent algorithm.

Finally, the fourth structure uses two types of convolutions 
to extract spatial and temporal characteristics of the data, 
respectively. Then, two fully connected layers are used, and 
the value is output after activation with the sigmoid function. 
Binary cross-entropy is used as the loss function, and Adam 
is used as the gradient descent algorithm.

Optimal hyperparameters were found for each structure and 
are described in the model evaluation section.

Neural network training
The process of training an artificial neural network can be 
divided into four stages: initialization, forward propagation, 
backward propagation, and weight update.

During initialization, we assigned random initial values to 
each parameter (weights and biases) of the neural network 
to break symmetry and allow each neuron to have a different 
gradient and learn different functions. Later, during hyper-
parameter search, we determined the optimal initialization 
function for each architecture. During forward propagation, 
the training data (input and output) were fed into the neural 
network, and the activation value of each neuron was calcu-
lated sequentially from the input layer to the hidden layer, and 
then to the output layer according to the structure of the neural 
network. The activation values were obtained from the linear 
combination of the input data and weights plus bias, followed 
by a non-linear function such as sigmoid or ReLU. The goal 
of forward propagation was to obtain the predicted result of 
the neural network and compare it with the true result. The 
goal of backward propagation was to obtain the gradient of 
each parameter, which can be used to update the parameters. 
In our case, we used cross-entropy loss function and binary 
cross-entropy loss function for this purpose (https://pytorch.
org/docs/stable/generated/torch.nn.CrossEntropyLoss.html, 
20.03.2023). The cross-entropy loss function was used to 
measure the distance between the probability distribution 
predicted by the model and the true probability distribution. 
Using this, we evaluated the performance of the model and 
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selected the optimal model and parameter by comparing the 
loss values of different models or different parameters.

Each parameter is updated with a certain learning rate 
(step size) according to its gradient, so that the loss func-
tion decreases. The goal of weight update is to optimize the 
parameters of the neural network so that it can better fit the 
training data. For this task, we applied the Adam optimiza-
tion method. Adam is an algorithm for stochastic gradient 
descent with adaptive momentum, which was proposed at 
the ICLR conference in 2015 and has become one of the 
most popular and effective optimizers in deep learning. Adam 
combines two classical optimization algorithms, Adagrad and 
RMSProp, which are capable of handling sparse gradients 
and non-stationary objective functions, and uses the idea of 
momentum to accelerate convergence. Adam is equivalent to 
having a separate learning rate for each parameter, and this 
learning rate is adaptively adjusted according to the change in 
gradient. Specifically, when the gradient is large, the estimate 
of the second moment increases, which reduces the learning 
rate. When the gradient is small or sparse, the estimate of the 
first moment increases, which increases the learning rate. This 

effectively avoids oscillations caused by a too large learning 
rate, or increased complexity of convergence caused by a too 
small learning rate, or even getting trapped in a local minimum 
or saddle point.

To reduce overfitting and better train the model, we used 
batch normalization. Batch normalization is an approach that 
solves the problem of vanishing gradients by improving the 
smoothing of losses, speeding up network convergence, and 
increasing accuracy (Loffe, Szegedy, 2015). This method 
normalizes the data in mini-batches so that the mean value 
is 0 and the standard deviation is 1. At the same time, two 
trainable parameters, scale and shift, are introduced so that 
the model can learn its corresponding distribution during 
backward propagation. To implement this function, we used 
the BatchNorm1d() tool from PyTorch.

Overfitting is a common problem in the process of train-
ing an artificial neural network, where the model performs 
well on the training set but poorly on the test set or new data, 
indicating poor generalization. In our case, the problem was 
in overfitting due to a small dataset. To solve this problem, 
we applied initialization, L2 regularization, and dropout, as 
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Fig. 2. Flowcharts of four models (structures) for the neural network architecture.
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Fig.  4.  Results of testing four different neural network models on the 
independent sample.
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well as cross-validation to evaluate the model and select hy-
perparameters that best train the model, reducing overfitting 
to some extent. We used L2 regularization (weight decay), 
which involves adding a penalty term to the loss function 
proportional to the sum of squares of the model’s parameters. 
L2 regularization can cause the model’s parameters to tend 
towards smaller values, thereby reducing the model’s sensitiv-
ity to noise or outliers. Random deactivation (dropout) means 
the random zeroing of certain neurons or connection layers 
with a certain probability during training, which reduces the 
number of model parameters, thereby increasing the reliability 
and generalization ability of the model.

Cross-validation is the reuse of data, splitting the resulting 
dataset, combination into various training and test sets, a train-
ing set for training the model and a test set for evaluating the 
quality of model prediction. We used the K-fold multiplication 
method as a cross-validation method to reduce overfitting.

Evaluation of model performance on training data
In accordance with the characteristics of the EEG data 
sample and the indicators of the benchmark classification 
model, we used the metrics “F1-score”, “AUC” (area under 
curve), and “accuracy” as evaluation indicators for the model 
(https://keras.io/api/models/model_training_apis). The higher 
these indicators, the better the model’s performance. F1-score 
and AUC are comprehensive evaluation indicators for clas-
sification models, but they have different inaccuracies. AUC 
is less affected by the ratio of positive and negative samples 
in the dataset. For the purposes of this development, it became 
clear that predicting a person with a high level of stress as a 
person with a low level of stress would mean fundamentally 
incorrect results. Therefore, we chose F1-score as the most 
prioritized indicator for evaluating the model’s effectiveness. 
We evaluated the model’s hyperparameters using five-fold 
cross-validation to select the most suitable hyperparameters 
to prevent overfitting and improve model performance.

The results of evaluating the model on the training dataset 
are presented in Figure 3. Looking at each of the selected 
indicators, we can see that model 2 showed the most effec-
tive classification. Its effectiveness exceeded 80  % for all 
selected indicators. Models 1 and 4 also show good classifi-
cation results, while model 3 performs the worst. Therefore, 
we assume that the output of one neuron surpasses the use 
of two neurons in the EEG binary classification task. Binary 
cross-entropy loss is obviously more suitable for our classi-

fication task based on the available dataset. When evaluating 
the model’s effectiveness, the number of samples was 100, 
with 51 individuals practicing meditation (low stress level) 
and 49 individuals not practicing meditation. The number of 
samples is balanced, so it does not significantly affect the train-
ing and performance of the model. Moreover, for data with 
only two ERP peaks in 64 electrode channels, one convolution 
extracting both temporal and spatial characteristics worked 
better than two convolutions extracting temporal and spatial 
characteristics separately.

Evaluation of model performance on independent data. 
To evaluate the performance of the model on independent data, 
we prepared EEG data obtained from 25 individuals who were 
not included in the training set. Out of these 25 individuals, 
12 practiced meditation, while 13 did not. The equipment, 
experimental design, and preprocessing of the EEG  data 
were the same as in the training set. In this part of the study, 
all previously trained models were tested on new data that 
was not included in the training set. Accuracy, reliability, 
responsiveness, F1-score, ROC-AUC, specificity, and sensi-
tivity were used as performance indicators for evaluating the 
models. Despite using parameter initialization functions, the 
weights were still randomly initialized within a certain range. 
Therefore, we adjusted the initial value of the random number 
to ensure the stability of the model’s performance.

The performance metrics for different models on the inde-
pendent test set are shown in Figure 4. According to the test 
results, structure 4 showed the best results for most selected 
parameters. Structure 2 also achieved good results. This struc-
ture exhibited the lowest sensitivity to overfitting, indicating 
its higher reliability compared to structure 4.

Conclusion
In our study, a neural network was successfully developed 
that classifies individuals into groups practicing or not practi­
cing meditation based on the analysis of their EEG data with 
an accuracy of approximately 80–85  %. We used an EEG 
dataset collected and collated during our own experiments, 
selecting the amplitude of the ERP peak before button press at 
250–350 ms and the amplitude value of the peak after button 
press at 550–900 ms for 64 recording channels. The sample 
size was 1×2×64.

Four architectures of non-deep convolutional networks 
were developed, among which structures 2 and 4 performed 
best in tests on independent data samples. Structure 2, which 

Fig.  3.  Results of testing four different neural network models on the 
training sample.
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used a one-dimensional convolutional layer, pooling layer, 
and a two-layer fully connected network, showed the highest 
reliability. During the development of this model, it was noted 
that it was often prone to overfitting due to the limitation of 
the dataset size. This was mitigated by modifying the struc-
ture and scale of the model, specific network initialization 
parameters, regularization, random deactivation (dropout), 
and hyperparameter screening of cross-validation.

Overall, the approach proposed by us was tested on two 
relatively small samples of non-clinical subjects. A similar 
method on experimental data from the stop-signal paradigm 
had been previously tested by us in classifying samples of 
clinical patients with depressive disorders and healthy indi-
viduals (Zelenskih et al., 2022). The results of the research 
presented in this article complement the previous work, as they 
demonstrate that despite the small sample sizes, the convolu-
tional neural network method allows to achieve a high level of 
accuracy in classifying different independent groups of people 
differing in stress levels. Taken together, the results of both 
studies show that applying neural networks to data obtained 
from individuals during the stop-signal paradigm is a promis-
ing method for assessing their stress levels and the severity 
of anxiety-depressive symptoms. It should be noted that the 
results of M.O.  Zelenskih and colleagues’ study are based 
solely on the application of behavioral data obtained in the 
stop-signal paradigm. The results of our new publication are 
based on the analysis of brain electrical responses obtained in 
the same experiment. The continuation of our research should 
involve the application of convolutional neural networks for 
the simultaneous analysis of behavioral and neurobiological 
data in order to more accurately classify participants based 
on their stress levels.

It is important to note that most standard methods for as-
sessing stress levels or predisposition to anxiety-depressive 
disorders are based on the use of psychological questionnaires 
or interviews with a psychiatrist (e. g., Beck et al., 1988). 
However, such methods have a disadvantage: patients may not 
want to inform the interviewer about their condition or may 
inaccurately assess themselves. Inaccurate self-assessment by 
the patient is often the cause of incorrect conclusions regard-
ing their susceptibility to illness (Nock et al., 2010). Another 
approach is based on the analysis of behavioral or neurophysi-
ological reactions to emotional stimuli. Such stimuli can be 
either photographs of faces expressing the patient’s or other 
people’s emotional states (Quevedo et al., 2016), or emotional 
messages (Bocharov et al., 2020). This method allows for an 
objective assessment of the degree of impairment of the brain’s 
affective functions but is less sensitive to changes in a person’s 
overall ability to self-control behavior. Our proposed method, 
on the other hand, is based on the use of non-emotional stimuli 
to induce a complex sensorimotor reaction that requires either 
activation or inhibition of movement. Our approach allows for 
the assessment of the overall level of self-control of behavior 
but does not provide an opportunity to assess the patient’s 
affective state. It is obvious that these three approaches  
(i. e., testing using questionnaires, analysis of reactions to af-
fective stimulation, and analysis of reactions in motor control 
tasks) are mutually complementary, i. e., they should all be 
used together for a more detailed assessment of the same 

patient. Although our proposed approach currently requires 
further testing, it may yield significant results in the future 
in the development of diagnostic tools for stress-induced 
diseases.
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