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Abstract. The development of objective methods for assessing stress levels is an important task of applied neuro-
science. Analysis of EEG recorded as part of a behavioral self-control program can serve as the basis for the develop-
ment of test methods that allow classifying people by stress level. It is well known that participation in meditation
practices leads to the development of skills of voluntary self-control over the individual’s mental state due to an in-
creased concentration of attention to themselves. As a consequence of meditation practices, participants can reduce
overall anxiety and stress levels. The aim of our study was to develop, train and test a convolutional neural network
capable of classifying individuals into groups of practitioners and non-practitioners of meditation by analysis of event-
related brain potentials recorded during stop-signal paradigm. Four non-deep convolutional network architectures
were developed, trained and tested on samples of 100 people (51 meditators and 49 non-meditators). Subsequently,
all structures were additionally tested on an independent sample of 25 people. It was found that a structure using a
one-dimensional convolutional layer combining the layer and a two-layer fully connected network showed the best
performance in simulation tests. However, this model was often subject to overfitting due to the limitation of the
display size of the data set. The phenomenon of overfitting was mitigated by changing the structure and scale of
the model, initialization network parameters, regularization, random deactivation (dropout) and hyperparameters of
cross-validation screening. The resulting model showed 82 % accuracy in classifying people into subgroups. The use
of such models can be expected to be effective in assessing stress levels and inclination to anxiety and depression
disorders in other groups of subjects.
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AHHOTauuA. B HacToALlee BpeMA pa3paboTka 06beKTMBHbIX METOAVK AJIA OLEHKM YPOBHA CTpecca ABNAETCA Ypes-
BblYaliHO aKTyanbHOW 3ajayein NPUKNagHoON HelpoHayKu. AHanu3 snekTposHuedanorpammbl (33r), 3anncaHHon B
YCIIOBUAX BbIMOSIHEHNA 3aaHNI Ha CAMOKOHTPOb MOBEfEHNIS, MOXKET CITY>KITb OCHOBOW ANA pa3paboTKy TeCTOBbIX
METOAMK, NO3BONALMX KNaccuduLmMpoBaThb JIIOAEN MO YPOBHIO CTpecca. XOPOLLO N3BECTHO, YTO OAHUM U3 CeacTBUIA
Me[MTaLMOHHON NPAKTVKU ABAAETCA BbIPabOTKa Y y4aCTHNKOB HaBbIKOB MPOV3BOJIbHOrO KOHTPOJA Haf, COGCTBEHHBIM
MEHTaSIbHbIM COCTOAHMEM 3@ CYET MOBbILLIEHHOW KOHLEHTPaLMN BHUMaHUA Ha camoMm cebe. Ha poHe meanTaLMoHHOM
NPaKTVKM YacTo NMPOUCXOANT CHUXKEHME 06LLEro ypoBHA TPEBOXKHOCTM 1 cTpecca. Lienbio Hallero nccnefosaHus 6bi1o
paspaboTatb, 06yunTb 1 NPOTECTMPOBATL CBEPTOUHYIO HEMPOHHYIO CETb, CMOCOOHYI0 KnaccnduumpoBaTb nogel Ha
rpynMnbl y4acTBYIOWMX WM He YYacTBYIOLWMX B MeANTaLMOHHON MpaKT/Ke Ha OCHOBE aHan3a Bbl3BaHHbIX NOTEHLMa-
NIOB rOSIOBHOIO MO3ra, 3anvCaHHbIX NPY BbINOAHEHNW 3afaHNIi MapagurMbl CToN-curHan. bbinv paspaboTtaHbl yeTbipe
APXUTEKTYPbI HEFNYOOKUX CBEPTOYUHBIX CETel, KoTopble Gbiny 06yYeHbl 1 MPOTECTUPOBaHBI Ha Bbibopke 13 100 ye-
nosek (51 megutaTtop u 49 He-meguTaTop). B fanbHeliwem Bce CTPYKTYpbl ObINN LOMOMAHUTENBHO NPOTECTUPOBAHDI
Ha He3aBMCUMON BblbOpKe B 25 yenoBeK. YCTaHOBMEHO, YTO CTPYKTYpa, UCNOMb3ylowas O4HOMEPHbIA CBEPTOYHbIN
C/I01, KOTOPbIN 06BEAUHAET CJION 1 ABYC/IONHYIO MOTHOCTbIO NOAKIIIOUYEHHYIO CETb, MOKa3asna Haunyuylumne pesynbTaTbl
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Neural networks to classify people
by their participation in meditation according to EEG

paboTbl B UMUTALMOHHbBIX TecTax. OfHaKo 3Ta Mofenb Obina YacTo NoABepPKeHa NepeobyyeHuto 13-3a OrpaHnyeHrs
pa3mepa oTobpaxeHUs Habopa AaHHbIX. ABneHne nepeobyuyeHrs BbIN0 CMArYEHO NPY MOMOLLM N3MEHEHUA CTPYKTY-
pbl 1 MacwTaba Moaenu, mapameTpoB CETU MHULMANM3aLMW, Perynapusaumu, ciydanHon geaktmsauyuy (dropout) v
runepnapameTpoB CKPpUHUHIA NEePEKPEeCcTHOWM NPOBepKU. B ntore Hamm nonydyeHa Moaenb, KoTopas rnokasana 82 %
TOYHOCTb B Knaccudukauyum nopein Ha noarpynnbl. MOXXHO OXUAATb, UTO UCMOMb30BaHUE TaKUX MOAENe OKaXeTcs
3bEKTMBHBIM METOLOM AJ1si OLIEHKU YPOBHSA CTPECca 1 NpefpacronoXeHHOCTU K TPEeBOXHbIM 1 AeNPecCBHbIM pac-

CTPOICTBaM B APYr1X rpynmnax NCrblTyembiX.

KnioueBble crnoBa: CBEPTOUHbIE HeI7IpOHHbIe ceTu; I3[; BbI3BaHHbIE noTeHUwnanbl MO3ra; MeanTaumnaA; napagnrma cton-

CuUrHan.

Introduction

Stress is one of the most common problems in modern so-
ciety, and the search for effective methods to assess stress
levels is important for early detection of the risk of mental
and psychosomatic disorders (Kuh et al., 2003; Kuznetsova
etal., 2016). Most psychological methods of assessing stress
levels are based on the use of questionnaires, in which the
respondent answers questions about their subjective mental
condition. The weak point of this approach is the high pro-
bability of incorrect self-assessments, arising either from a
person’s unwillingness to report their problems, or as a result
of a low ability to recognize changes in their own condition
(Iwata, Higuchi, 2000; McCrae et al., 2000). A possible solu-
tion to this problem is to develop objective approaches to the
diagnosis of mental traits or conditions based on the analysis
of brain signals, such as fMRI or EEG.

Meditation is a system of special mental practices aimed
at establishing voluntary self-control over one’s mental state.
Although meditation initially appears as part of religious
practices, especially common in oriental religions, at present
this phenomenon is a popular topic of interest among scientific
researchers. Meditation is considered as a basis for the creation
of non-invasive, non-drug techniques that reduce the risk of
a wide range of mental or psychosomatic diseases. A number
of studies have shown that meditation has many positive
effects on mental health, including a general reduction in
stress and the level of propensity to depression (Chiesa et al.,
2011; Saeed et al., 2019). The analysis of the EEG recorded
during recognition of emotional stimuli revealed significant
effects of meditation on the state of the human brain (Aftanas,
Golosheykin, 2005; Atchley et al., 2016; Savostyanov et al.,
2020). Therefore, the comparison of EEG in practitioners
and non-practitioners of meditation can be considered as an
experimental model that allows the development of methods
for assessing stress levels.

Stop-signal paradigm (SSP) is an experimental method for
evaluating an individual’s ability for voluntary self-control
of their own movements in a changing external environment
(Logan, Cowan, 1984; Band et al., 2003). The SSP allows us to
assess the balance of two processes — activation and inhibition
of behavior under conditions of insufficient time for making
a decision. A number of studies have shown that SSP is an
effective method for diagnosing the level of personal anxiety
and propensity to depression (Hsich et al., 2021; Zelenskih et
al., 2022). It can be assumed that the dynamics of brain activity
during SSP will serve as a marker distinguishing practitioners
and non-practitioners of meditation from each other.
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Artificial neural network is a developing technology based
on machine learning, which is widely used in various fields.
Compared to other traditional methods of machine classifi-
cation, such as linear discriminant analysis and the k-nearest
neighbor algorithm, artificial neural networks provide more
accurate results of classifying individuals according to their
behavioral and neurophysiological characteristics (Khosla et
al., 2020). Therefore, in comparison with the support vector
machine, an artificial neural network is better suited for the
tasks of multiple classification, providing convenience for
further research, as well as more efficient fitting of complex
nonlinear relationships.

The purpose of our research is to develop, train and test
an artificial neural network that allows, based on the analysis
of event-related brain potentials in the stop-signal paradigm,
to classify individuals according to the criterion of whether
they practice meditation. We assume that afterwards the
neural network created in this way will be able to assess in-
dividual level of stress and propensity to anxiety-depressive
disorders.

Methods of experimental research

Participants. A group of people practicing samadhi medita-
tion (also called “mindfulness meditation”) was examined in
July—August 2018 on the premises of the Baikal Retreat Center
(http://www.geshe.ru/). The experimental group included
51 healthy, right-handed participants from 25 to 66 years old
(32 men; average age =41.0, SD = 8.3), practicing meditation
for a period of 5 to 15 years. The control group was examined
in October—November 2019 on the premises of the medical
college of the village of Khandyga, Tomponsky district of
the Republic of Sakha (Yakutia). The control group included
49 healthy, right-handed participants from 22 to 58 years
old (22 men; average age = 38.0, SD = 8.3) who had never
participated in meditation or yoga practices.

The protocol of the study was approved by the local Ethics
Committee of the Research Institute of Neurosciences and
Medicine in accordance with the Helsinki Declaration of Bio-
medical Examinations. All the participants signed informed
consent to participate in the surveys.

Experimental procedure. The experiment was organized
on the basis of the stop-signal paradigm proposed in 1984
(Logan, Cowan, 1984) and modified by A.N. Savostyanov
and co-authors (Savostyanov et al., 2009). The experiment
was organized in the form of the computer interactive game
“Hunt”. One of two images appeared on the computer screen:
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a deer, or a tank. The participant had to press the keyboard
button corresponding to the picture. The response time was
limited to 0.75 seconds. If the participant pressed the button
correctly and faster than 0.75 seconds, their game score in-
creased. If the participant pressed the buttons incorrectly or
reached a time out, then their game score decreased.

In total, 135 stimuli were presented to each participant. In
35 cases, after the onset of the target signal, a stop-signal was
presented (a red square with the inscription “Stop”), which
meant that the participant had to interrupt the movement that
had already begun. If the participant did not press the button af-
ter the stop-signal, their score did not change. If the participant
pressed the button after the stop-signal, their score decreased.
The order of activation and stopping trials was randomized.
The sequence of “deer” and “tank™ stimuli was also rando-
mized. The interval between the end of the previous task and
the start of a new task varied from 3 to 7 seconds. The total
duration of the experiment was approximately 12 minutes.

Preprocessing of experimental data. EEG rejection of
artifacts was done by the ICA method (Delorme, Makeig,
2004). The initial EEG signal was filtered at 1-40 Hz and
referenced to average of all channels. The data was epoched
relative to the onset trigger of the target stimulus (deer or tank)
at a time interval from —1 to +3 seconds. The baseline EEG
level was set in the range from —1000 to —250 ms. In total, 80
to 90 EEG epochs were obtained for each participant, after
exclusion of all the trials containing the stop-signal or artifacts.
After excluding artifacts, event-related potentials (ERPs) were
calculated separately for each EEG channel, averaged over
all trials and all participants.

The ERP calculation was conducted in the ERPLAB toolbox
for MATLAB. Amplitude-time ERP graphs were made for
each EEG channel. Then a visual preview of the ERP graph
for the C3 channel was performed. In this lead, the ERP mo-
tor peaks stand out the most. In particular, two peaks were
selected for this lead — an early premotor peak, the amplitude
of which precedes pressing the button (the so-called readi-
ness potential) and a late motor peak, the amplitude of which
reaches a maximum when the button is pressed. From viewing
this visual, the time limits of both the early and late peak were
established. After that, the amplitude in each of these time
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windows was calculated separately for each person and each
EEG channel, but averaged over all trials of the activation
condition of the task for each participant. The calculation of
the averaged amplitude was made using the ERPLAB tool-
box (https://erpinfo.org/erplab). The amplitude values were
surveyed to the baseline level for each participant separately.
The obtained values were used as training and test data for
artificial neural networks.

EEG data acquisition. The general structure of the input
data is shown in Figure 1. For each participant, EEG was
analyzed for 64 channels located at different points of the head
surface. According to the international scheme of 10-20 %,
the name of the electrode reflects its spatial position. The ini-
tial EEG signal for each channel is presented as a continuous
series of measurements of the potential difference between
the surface electrode and the referent with a time resolution
of 1,000 measurements per second.

ERP extraction. When calculating the ERP (event-related
potential) amplitude, the researcher selects several time
windows, in each of which all amplitude values are summed
over all time points and averaged over all tests. The amplitude
values in different windows reflect the temporal dynamics
of the neurophysiological process. We selected two time
windows (250-350 and 550-900 ms after the target signal),
which reflect, respectively, the physiological processes asso-
ciated with the preparation and execution of the movement.
A numerical value of the ERP amplitude was obtained for
each participant separately for each time window and for each
EEG channel. Since ERP in different parts of the head can
deviate from the zero value of the potential both up (positive
peak) and down (negative peak), then the numerical values
of the amplitude can be both positive and negative. Thus, our
data takes into account both spatial (the name of the channel,
i. . its position on the head) and temporal (the first or second
ERP window) characteristics of the brain response to the task
in the stop-signal paradigm, as well as the electrical direction
of the reaction (positive or negative peak amplitude values).

For each examined individual, the data dimension was 2x64
values. Since 50 participants were included in each group of
people, the data size for each of our samples is approximately
50x2x64, and the total size of the data set is 100xX2x64.

: Time, ms
: 1-premotor peak, 2 - postmotor peak
[

N

V

Fig. 1. The scheme of obtaining input data for the neural network.
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Designing the structure and framework

of a neural network

Since the input set of ERP data is small, a non-deep neural
network was designed to predict whether an individual
participated in long-term meditations or not. However, the
initial EEG recording also has time series characteristics, so
a convolutional neural network was additionally used for its
analysis as a deep neural network for training and prediction.
The main components of the convolutional neural network
include convolutional layers, pooling layers, and fully con-
nected layers.

In our case, the input layer of the convolutional network
receives EEG data transformed into a two-dimensional ma-
trix with a sample size of 2x64, where each row represents
an individual ERP peak and each column represents an
EEG recording channel. The hidden layer of the convolu-
tional neural network includes three common architectures:
a convolutional layer, a pooling layer, and a fully connected
layer. We used the Conv1d() tool in PyTorch as the convo-
lutional kernel, which prevented overfitting caused by using
more complex convolutional kernels with more parameters
(https://pytorch.org/docs/stable/generated/torch.nn.Convld.
html#torch.nn.Convld, 21.02.2023).

The parameters of the convolutional layer include the kernel
size, stride size, and padding, which collectively determine
the size of the output feature map of the convolutional layer
and are hyperparameters of the convolutional neural network.
Due to the characteristics of EEG data, there are both spatial
and temporal relationships, so we developed two schemes.
The first scheme involves using a total of two one-dimensional
convolutions. One extracts spatial features, which represent
connections between ERP peaks in different electrode chan-
nels, and the other extracts temporal features. In this scheme,
the PyTorch Conv1d() function wrapper was used to complete
the corresponding function. The second approach involves
applying only one one-dimensional convolution, but this
convolution can extract both temporal and spatial features,
for which the PyTorch Conv1d() function wrapper was also
chosen.

The convolutional layers contain activation functions that
help represent complex objects. In our study, three activation
functions were used: sigmoid(), relu(), and softmax() from
PyTorch (https://pytorch.org/docs/stable/generated/torch.
nn.BCELoss.html, 15.04.2023). After extracting objects in the
convolutional layer, the output feature map was passed to the
pooling layer for object selection and information filtering.
The pooling layer selects the pooling region in the same way
as the kernel scanning stage of the convolutional layer, which
is controlled by the pooling size, stride size, and padding.
The convolutional and pooling layers in the convolutional
neural network can extract features from the input data. The
role of the fully connected layer is to nonlinearly combine
the extracted features to obtain output data. In our case, two
fully connected layers were created to prevent overfitting due
to the small size of the dataset, for which the Linear() tool
in PyTorch was applied. A fully connected layer is typically
located before the output layer in a convolutional neural net-
work. We used different loss and activation functions during
training based on these two scenarios to improve the accuracy
and performance of the model.
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According to the above-described scheme, four network
structures were designed and used for classifying surveyed
individuals (Fig. 2). The only difference between these four
architectures lies in the number of convolutional layers and
the number of output neurons at the end.

In the first structure, a convolutional layer is used to extract
both temporal and spatial objects. Then, two fully connected
layers are used, and two values are output after normaliza-
tion using the softmax activation function. Cross-entropy is
used as the loss function, and Adam is used as the gradient
descent algorithm.

The second structure also uses a convolutional layer to
extract both temporal and spatial objects. Then, two fully
connected layers are used, and the value is output after ac-
tivation with the sigmoid function. Binary cross-entropy is
used as the loss function, and Adam is used as the gradient
descent algorithm.

The third structure uses two types of convolutions to extract
spatial and temporal characteristics of the data, respectively.
Then, two fully connected layers are used, and two values are
output after normalization using the softmax activation func-
tion. Cross-entropy is used as the loss function, and Adam is
used as the gradient descent algorithm.

Finally, the fourth structure uses two types of convolutions
to extract spatial and temporal characteristics of the data,
respectively. Then, two fully connected layers are used, and
the value is output after activation with the sigmoid function.
Binary cross-entropy is used as the loss function, and Adam
is used as the gradient descent algorithm.

Optimal hyperparameters were found for each structure and
are described in the model evaluation section.

Neural network training

The process of training an artificial neural network can be
divided into four stages: initialization, forward propagation,
backward propagation, and weight update.

During initialization, we assigned random initial values to
each parameter (weights and biases) of the neural network
to break symmetry and allow each neuron to have a different
gradient and learn different functions. Later, during hyper-
parameter search, we determined the optimal initialization
function for each architecture. During forward propagation,
the training data (input and output) were fed into the neural
network, and the activation value of each neuron was calcu-
lated sequentially from the input layer to the hidden layer, and
then to the output layer according to the structure of the neural
network. The activation values were obtained from the linear
combination of the input data and weights plus bias, followed
by a non-linear function such as sigmoid or ReLU. The goal
of forward propagation was to obtain the predicted result of
the neural network and compare it with the true result. The
goal of backward propagation was to obtain the gradient of
each parameter, which can be used to update the parameters.
In our case, we used cross-entropy loss function and binary
cross-entropy loss function for this purpose (https://pytorch.
org/docs/stable/generated/torch.nn.CrossEntropyLoss.html,
20.03.2023). The cross-entropy loss function was used to
measure the distance between the probability distribution
predicted by the model and the true probability distribution.
Using this, we evaluated the performance of the model and
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Structure 3 Structure 4
input input
1x2x64 1x2x64 1x2x64 1x2x64
W (8x1x7) W (1x2x1) W (6x1x7) W (1x2x1)
B (8) B (1) B (6 B (1)
shape (2) shape (2) shape (2) shape (2)
B (128x264) B (128x206)
c(128) c(128)
B (2x128) B(1x128)
(2 c(n
1x2 1x1
output output

Fig. 2. Flowcharts of four models (structures) for the neural network architecture.

selected the optimal model and parameter by comparing the
loss values of different models or different parameters.

Each parameter is updated with a certain learning rate
(step size) according to its gradient, so that the loss func-
tion decreases. The goal of weight update is to optimize the
parameters of the neural network so that it can better fit the
training data. For this task, we applied the Adam optimiza-
tion method. Adam is an algorithm for stochastic gradient
descent with adaptive momentum, which was proposed at
the ICLR conference in 2015 and has become one of the
most popular and effective optimizers in deep learning. Adam
combines two classical optimization algorithms, Adagrad and
RMSProp, which are capable of handling sparse gradients
and non-stationary objective functions, and uses the idea of
momentum to accelerate convergence. Adam is equivalent to
having a separate learning rate for each parameter, and this
learning rate is adaptively adjusted according to the change in
gradient. Specifically, when the gradient is large, the estimate
of the second moment increases, which reduces the learning
rate. When the gradient is small or sparse, the estimate of the
first moment increases, which increases the learning rate. This
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effectively avoids oscillations caused by a too large learning
rate, or increased complexity of convergence caused by a too
small learning rate, or even getting trapped in a local minimum
or saddle point.

To reduce overfitting and better train the model, we used
batch normalization. Batch normalization is an approach that
solves the problem of vanishing gradients by improving the
smoothing of losses, speeding up network convergence, and
increasing accuracy (Loffe, Szegedy, 2015). This method
normalizes the data in mini-batches so that the mean value
is 0 and the standard deviation is 1. At the same time, two
trainable parameters, scale and shift, are introduced so that
the model can learn its corresponding distribution during
backward propagation. To implement this function, we used
the BatchNorm1d() tool from PyTorch.

Overfitting is a common problem in the process of train-
ing an artificial neural network, where the model performs
well on the training set but poorly on the test set or new data,
indicating poor generalization. In our case, the problem was
in overfitting due to a small dataset. To solve this problem,
we applied initialization, L2 regularization, and dropout, as
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well as cross-validation to evaluate the model and select hy-
perparameters that best train the model, reducing overfitting
to some extent. We used L2 regularization (weight decay),
which involves adding a penalty term to the loss function
proportional to the sum of squares of the model’s parameters.
L2 regularization can cause the model’s parameters to tend
towards smaller values, thereby reducing the model’s sensitiv-
ity to noise or outliers. Random deactivation (dropout) means
the random zeroing of certain neurons or connection layers
with a certain probability during training, which reduces the
number of model parameters, thereby increasing the reliability
and generalization ability of the model.

Cross-validation is the reuse of data, splitting the resulting
dataset, combination into various training and test sets, a train-
ing set for training the model and a test set for evaluating the
quality of model prediction. We used the K-fold multiplication
method as a cross-validation method to reduce overfitting.

Evaluation of model performance on training data
In accordance with the characteristics of the EEG data
sample and the indicators of the benchmark classification
model, we used the metrics “F1-score”, “AUC” (area under
curve), and “accuracy’ as evaluation indicators for the model
(https://keras.io/api/models/model_training_apis). The higher
these indicators, the better the model’s performance. F1-score
and AUC are comprehensive evaluation indicators for clas-
sification models, but they have different inaccuracies. AUC
is less affected by the ratio of positive and negative samples
in the dataset. For the purposes of this development, it became
clear that predicting a person with a high level of stress as a
person with a low level of stress would mean fundamentally
incorrect results. Therefore, we chose F1-score as the most
prioritized indicator for evaluating the model’s effectiveness.
We evaluated the model’s hyperparameters using five-fold
cross-validation to select the most suitable hyperparameters
to prevent overfitting and improve model performance.

The results of evaluating the model on the training dataset
are presented in Figure 3. Looking at each of the selected
indicators, we can see that model 2 showed the most effec-
tive classification. Its effectiveness exceeded 80 % for all
selected indicators. Models 1 and 4 also show good classifi-
cation results, while model 3 performs the worst. Therefore,
we assume that the output of one neuron surpasses the use
of two neurons in the EEG binary classification task. Binary
cross-entropy loss is obviously more suitable for our classi-
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Fig. 3. Results of testing four different neural network models on the
training sample.
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fication task based on the available dataset. When evaluating
the model’s effectiveness, the number of samples was 100,
with 51 individuals practicing meditation (low stress level)
and 49 individuals not practicing meditation. The number of
samples is balanced, so it does not significantly affect the train-
ing and performance of the model. Moreover, for data with
only two ERP peaks in 64 electrode channels, one convolution
extracting both temporal and spatial characteristics worked
better than two convolutions extracting temporal and spatial
characteristics separately.

Evaluation of model performance on independent data.
To evaluate the performance of the model on independent data,
we prepared EEG data obtained from 25 individuals who were
not included in the training set. Out of these 25 individuals,
12 practiced meditation, while 13 did not. The equipment,
experimental design, and preprocessing of the EEG data
were the same as in the training set. In this part of the study,
all previously trained models were tested on new data that
was not included in the training set. Accuracy, reliability,
responsiveness, F1-score, ROC-AUC, specificity, and sensi-
tivity were used as performance indicators for evaluating the
models. Despite using parameter initialization functions, the
weights were still randomly initialized within a certain range.
Therefore, we adjusted the initial value of the random number
to ensure the stability of the model’s performance.

The performance metrics for different models on the inde-
pendent test set are shown in Figure 4. According to the test
results, structure 4 showed the best results for most selected
parameters. Structure 2 also achieved good results. This struc-
ture exhibited the lowest sensitivity to overfitting, indicating
its higher reliability compared to structure 4.

Conclusion
In our study, a neural network was successfully developed
that classifies individuals into groups practicing or not practi-
cing meditation based on the analysis of their EEG data with
an accuracy of approximately 80-85 %. We used an EEG
dataset collected and collated during our own experiments,
selecting the amplitude of the ERP peak before button press at
250-350 ms and the amplitude value of the peak after button
press at 550-900 ms for 64 recording channels. The sample
size was 1x2x64.

Four architectures of non-deep convolutional networks
were developed, among which structures 2 and 4 performed
best in tests on independent data samples. Structure 2, which

B Model 1 Model 2 B Model 3 Model 4

Average evaluation
of model’s effectiveness

Accuracy

Reliability Responsi- F1-score  ROC-AUC Specificity
veness

Fig. 4. Results of testing four different neural network models on the
independent sample.
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used a one-dimensional convolutional layer, pooling layer,
and a two-layer fully connected network, showed the highest
reliability. During the development of this model, it was noted
that it was often prone to overfitting due to the limitation of
the dataset size. This was mitigated by modifying the struc-
ture and scale of the model, specific network initialization
parameters, regularization, random deactivation (dropout),
and hyperparameter screening of cross-validation.

Overall, the approach proposed by us was tested on two
relatively small samples of non-clinical subjects. A similar
method on experimental data from the stop-signal paradigm
had been previously tested by us in classifying samples of
clinical patients with depressive disorders and healthy indi-
viduals (Zelenskih et al., 2022). The results of the research
presented in this article complement the previous work, as they
demonstrate that despite the small sample sizes, the convolu-
tional neural network method allows to achieve a high level of
accuracy in classifying different independent groups of people
differing in stress levels. Taken together, the results of both
studies show that applying neural networks to data obtained
from individuals during the stop-signal paradigm is a promis-
ing method for assessing their stress levels and the severity
of anxiety-depressive symptoms. It should be noted that the
results of M.O. Zelenskih and colleagues’ study are based
solely on the application of behavioral data obtained in the
stop-signal paradigm. The results of our new publication are
based on the analysis of brain electrical responses obtained in
the same experiment. The continuation of our research should
involve the application of convolutional neural networks for
the simultaneous analysis of behavioral and neurobiological
data in order to more accurately classify participants based
on their stress levels.

It is important to note that most standard methods for as-
sessing stress levels or predisposition to anxiety-depressive
disorders are based on the use of psychological questionnaires
or interviews with a psychiatrist (e. g., Beck et al., 1988).
However, such methods have a disadvantage: patients may not
want to inform the interviewer about their condition or may
inaccurately assess themselves. Inaccurate self-assessment by
the patient is often the cause of incorrect conclusions regard-
ing their susceptibility to illness (Nock et al., 2010). Another
approach is based on the analysis of behavioral or neurophysi-
ological reactions to emotional stimuli. Such stimuli can be
either photographs of faces expressing the patient’s or other
people’s emotional states (Quevedo et al., 2016), or emotional
messages (Bocharov et al., 2020). This method allows for an
objective assessment of the degree of impairment of the brain’s
affective functions but is less sensitive to changes in a person’s
overall ability to self-control behavior. Our proposed method,
on the other hand, is based on the use of non-emotional stimuli
to induce a complex sensorimotor reaction that requires either
activation or inhibition of movement. Our approach allows for
the assessment of the overall level of self-control of behavior
but does not provide an opportunity to assess the patient’s
affective state. It is obvious that these three approaches
(i. e., testing using questionnaires, analysis of reactions to af-
fective stimulation, and analysis of reactions in motor control
tasks) are mutually complementary, i. e., they should all be
used together for a more detailed assessment of the same
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patient. Although our proposed approach currently requires
further testing, it may yield significant results in the future
in the development of diagnostic tools for stress-induced
diseases.
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