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Abstract. The pigment composition of plant seed coat affects important properties such as resistance to patho-
gens, pre-harvest sprouting, and mechanical hardness. The dark color of barley (Hordeum vulgare L.) grain can be 
attributed to the synthesis and accumulation of two groups of pigments. Blue and purple grain color is associated 
with the biosynthesis of anthocyanins. Gray and black grain color is caused by melanin. These pigments may ac-
cumulate in the grain shells both individually and together. Therefore, it is difficult to visually distinguish which pig-
ments are responsible for the dark color of the grain. Chemical methods are used to accurately determine the pre-
sence/absence of pigments; however, they are expensive and labor-intensive. Therefore, the development of a new 
method for quickly assessing the presence of pigments in the grain would help in investigating the mechanisms 
of genetic control of the pigment composition of barley grains. In this work, we developed a method for assess-
ing the presence or absence of anthocyanins and melanin in the barley grain shell based on digital image analysis 
using computer vision and machine learning algo rithms. A protocol was developed to obtain digital RGB images 
of barley grains. Using this protocol, a total of 972  images were acquired for 108 barley accessions. Seed coat from 
these accessions may contain anthocyanins, melanins, or pigments of both types. Chemical methods were used to 
accurately determine the pigment content of the grains. Four models based on computer vision techniques and 
convolutional neural networks of different architectures were developed to predict grain pigment composition 
from images. The U-Net network model based on the  EfficientNetB0 topology showed the best performance in the 
holdout set (the value of the “accuracy” parameter was 0.821).
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Аннотация. Пигментный состав оболочек семян растений влияет на такие важные их свойства, как устойчи-
вость к действию патогенов, прорастание на корню, а также механическая прочность. У ячменя (Hordeum vul­
gare L.) темная окраска зерен может быть обусловлена синтезом и накоплением двух групп пигментов. Голу-
бая и фиолетовая окраска зерна связана с синтезом антоцианов. Серую и черную окраску придают пигменты 
меланины. Данные пигменты могут накапливаться в оболочках зерна независимо либо совместно, поэтому 
визуально определить, накопление каких именно пигментов придает темный цвет зерна, затруднительно. 
Для точного определения наличия/отсутствия пигментов используются химические и генетические методы, 
которые дороги и трудоемки. Поэтому создание нового метода для быстрой оценки наличия определенных 
пигментов в зерновке является актуальной задачей, решение которой поможет при исследовании механиз-
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Determination of melanin and anthocyanin content 
in barley grains by digital image analysis

мов генетического контроля пигментного состава зерна. Настоящая работа посвящена разработке метода 
оценки пигментного состава зерен ячменя на основе анализа цифровых изображений с помощью алгорит-
мов компьютерного зрения и машинного обучения. Разработан протокол съемки для получения двумерных 
цифровых цветных изображений зерен. С использованием данного протокола получено 972 изображения 
для 108 образцов ячменя. Каждый образец мог содержать пигменты антоцианы и/или меланины. Для точ-
ного определения содержания пигментного состава образцов применялись химические методы. Для пред-
сказания пигментного состава зерна на основе изображений было разработано четыре модели, основанных 
на методах компьютерного зрения и сверточных нейронных сетях различной архитектуры. Лучшую произ-
водительность на отложенной выборке показала модель сети U-Net, основанная на топологии EfficientNetB0 
(значение параметра «точность» составило 0.821).
Ключевые слова: анализ цифровых изображений; машинное обучение; зерна ячменя; пигментный состав.

Introduction
The color of cereal grain shell is an important trait charac­
terizing the pigments and metabolites contained in it. The 
presence of pigments in the shell affects various technological 
properties of the grain (Souza, Marcos-Filho, 2001; Flintham 
et al., 2002). Grains with dark grain coloration are more cold- 
and drought-tolerant and also have increased resistance to 
pathogens (Ceccarelli et al., 1987; Choo et al., 2005). Such 
properties of colored grains are associated with high anti­
oxidant content as well as additional mechanical hardness 
of grain shells (Ferdinando et al., 2012; Jana, Mukherjee,  
2014). The dark color of barley grains occurs due to the 
synthesis and accumulation of two groups of pigments. Blue 
and purple coloration of the grain shell is associated with 
the biosynthesis of anthocyanins. Gray and black color of 
barley grains is caused by melanin pigment. These two types 
of pigments can accumulate in the grain shell depending on 
the genotype both individually and together. Therefore, it 
is difficult to determine which pigments cause dark grain 
color by eye.

A number of regulatory genes and genes encoding enzymes 
involved in pigment biosynthesis control grain shell color­
ation. Currently, the pathway of anthocyanin biosynthesis has 
been investigated quite well, but the molecular mechanisms of 
melanin biosynthesis are still poorly understood (Shoeva et al., 
2018; Glagoleva et al., 2020). When studying the mechanisms 
of genetic control of grain coloration, breeders and geneticists 
need to assess the pigment content of grain shells. Chemical 
methods for estimating pigment content allowed to accurately 
determine the presence/absence of pigments; however, they 
are expensive and labor-intensive. Other approaches to solving 
this problem include spectrophotometers, spectrometers, and 
hyperspectral cameras. However, these cameras are expensive, 
especially those with high resolution, both spatial and spectral. 
An alternative is the use of digital RGB cameras that produce 
high-quality images with high spatial and color resolution 
(Afonnikov et al., 2016; Li et al., 2020; Kolhar, Jagtap, 2023). 
In this regard, methods for estimating color and textural 
characteristics of cereal grains based on the analysis of two-
dimensional images acquired by digital cameras or scanners 
have recently been intensively developed in the field of grain 
phenotyping (Komyshev et al., 2020; Sharma et al., 2021; 
Afonnikov et al., 2022; Arif et al., 2022; Khojastehnazhand, 
Roostaei, 2022; Wang, Su, 2022). 

The aim of this work is to develop a method for estimating 
the pigment composition of barley grain based on the analysis 
of digital images using computer vision and machine learning 
algorithms.

Materials and methods
Plant material. Grains of 39 barley accessions with dark 
colored grain and 40 accessions with light grains were selected 
for the study. The material was obtained from the barley col­
lection of the All-Russian Institute of Plant Genetic Resources 
named after N.I. Vavilov (VIR, https://www.vir.nw.ru), the 
barley collection of the Institute of Cytology and Genetics 
of the Siberian Branch of the Russian Academy of Sciences 
(ICG, https://www.icgbio.ru) and the material from the Oregon 
Wolfe Barleys population (OWB, https://barleyworld.org/
owb). The material description is summarized in Supplemen­
tary Material 11. Twenty-nine barley accessions from the VIR 
collection with different combinations of pigments in the grain 
were also separately selected (Supplementary Material 2). 
The material included hulled and hulless barley accessions. 
58 hulled and 21 hulless accessions were chosen to create 
training and test datasets. 22 hulled and 7 hulless accessions 
were used in the holdout dataset.

Chemical methods for determining the pigment compo-
sition of grains. To determine the presence of anthocyanins 
in the grain shell, extraction in 1 % HCl solution in metha­
nol, followed by detection of pink coloration of the solution, 
was performed (Abdel-Aal, Hucl, 1999). The presence of 
melanin was determined using 2 % NaOH, in which melanin 
extraction occurs and stains the solution dark (Downie et al., 
2003). Based on this method, each of the accessions was as­
signed a type of pigmentation based on the presence of these 
pigments (“anthocyanins”, “melanins”) or “no pigments” if 
both pigments were absent in the grain shell. The presence of 
pigments of a particular type in the accession seed shells is 
summarized in Supplementary Materials 1 and 2.

Image acquisition. Color images of grains were obtained 
using a Canon EOS 600D digital camera, Canon EF 100mm 
f/2.8 Macro USM lens with a resolution of 18 MP. A 55 mm 
diameter plastic Petri dish filled with grains without gaps was 
placed on a white A3 sheet of matte paper. Diffusing light was 
placed on the sides, and the camera was fixed on a tripod from 
above, with the lens vertically downward (Supplementary 
1 Supplementary Materials 1–8 are available at: 
https://vavilov.elpub.ru/jour/manager/files/Suppl_Komyshev_Engl_27_7.pdf

https://vavilov.elpub.ru/jour/manager/files/Suppl_Komyshev_Engl_27_7.pdf
https://vavilov.elpub.ru/jour/manager/files/Suppl_Komyshev_Engl_27_7.pdf
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Material 3). Images were saved in JPEG format. Figure 1 
shows an example of an image resulting from the protocol.

The Petri dish contained about 100–160 grains. For each 
accession, 9 images of its replicas were obtained by randomly 
mixing grains in a Petri dish.

Data markup. In order to develop a segmentation algorithm 
for 212 images of 59 randomly selected accessions, manual 
marking of grains and Petri dish boundaries was performed 
using the LabelMe program (https://github.com/wkentaro/
labelme). An example of a labeled image fragment is shown 
in Supplementary Material 4. In addition, each image was la­
beled according to the pigmentation type of the corresponding 
accession based on experimentally obtained data.

Prediction of grain pigmentation based on machine 
learning methods. The general scheme for pigmentation 
type prediction involved segmenting the image into the back­
ground and the area occupied by grains and predicting the 
presence of pigments of a particular type using three methods: 
(1) a Random Forest algorithm using image color descrip­
tors; (2) a convolutional neural network of the ResNet-18 
architecture; and (3) a convolutional neural network of the 
EfficientNetB0 architecture.

Data partitioning scheme for validation and testing. For 
machine learning methods, the images were divided into three 
datasets: training (60 % of data: 423 images, 47 accessions); 
validation (20 % of data: 144 images, 16 accessions); and test 
(20 % of data: 144 images, 16 accessions). A holdout dataset 
of 29 accessions including 261 images was used for the final 
accuracy evaluation. Stratification was used to partition the 
acquired images (see Supplementary Material 5). Data on the 
partitioning of the accessions into subsamples are presented 
in Supplementary Material 5.

Evaluating the accuracy of grain image classification. 
The output of the trained classification models for each 
image was represented by two binary numbers, each of which 
characterized the presence or absence of anthocyanins and 
melanin. To evaluate the accuracy of the method on the test 
dataset for each image, the predicted set of such numbers 

and the true set were compared. The following metrics were 
calculated based on these comparisons: true positive class 
predictions (TP), true negative class predictions (TN), total 
number of positive (P) and negative (N) class representatives. 
Based on these values, the ACC (accuracy) was calculated 
according to the formula:

ACC = TP + TN
P + N .

A model for identifying the grain region in an image. 
To distinguish grains in Petri dishes from the background, 
the U-Net neural network model with a ResNet-18 encoder 
was used. The U-Net model was chosen as this architecture 
had been developed specifically for biomedical image seg­
mentation (Ronneberger et al., 2015). The model is based on 
the use of convolution and consists of two parts: an encoder 
and a decoder (Fig. 2). The full-size image at the input of the 
network is transformed by the encoder through several steps 
including two consecutive convolution layers of size 3×3 
followed by a ReLU transform (labeled as ̒ conv 3×3, ReLUʼ 
layers in Fig. 2) and pooling with a maximum 2×2 function 
with a step size of 2 (labeled as ʻmax pool 2×2ʼ layers). The 
encoder performs downsampling of the image. The decoder, 
on the other hand, performs upsampling of the image using 
a series of inverse pooling operations that expand the feature 
map. This is followed by 2×2 convolution, which reduces the 
number of feature channels (labeled as ̒ up-conv 2×2ʼ layers). 
This is followed by a concatenation with an appropriately 
edge-cropped feature map from the compressive path and two 
3×3 convolutions (labeled as ̒ copy and cropʼ layers in Fig. 2), 
after each of which a ReLU operation is applied.

Segmentation allowed us to select a region of the Petri dish 
with grains in the image, which was used to calculate their 
color descriptors. For each image, 2,380 numerical parameters 
characterizing the pixel color of the grains were extracted. 
These are average values of channel intensities for 4 color 
spaces (RGB, HSV, Lab, YCrCb), values of histograms of 
color component intensity distributions, etc. Detailed descrip­
tion of the obtained characteristics is given in Supplementary 
Material 6.

Data filtering. We removed from the prediction input data 
features, the values of which were identical for all images or 
did not exceed the value of 0.01 for more than 20 % of images. 
Additionally, we selected features with pairwise Spearman 
correlation coefficient less than 0.97 in the image dataset to 
eliminate redundancy. As a result, 345 color features out of 
2,380 remained for our analysis.

Data analysis. In order to estimate the distribution of acces­
sions in the feature space under study, the principal component 
method (Jolliffe, 2002) and t-SNE algorithm for the nonlinear 
dimensionality reduction (van der Maaten, Hinton, 2008) were 
used. These methods allow visualization of multidimensional 
data by mapping objects from a multidimensional space to 
a lower dimensional space.

A model for classification  
of pigment composition of grains based  
on color descriptors by the Random Forest method
The classification of grain images into four classes was 
considered: (1) no pigmentation, (2) presence of anthocyanins 
only, (3) presence of melanin only, (4) presence of both 

Fig.  1.  A typical image obtained by the protocol for barley grain phe-
notyping.
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anthocyanins and melanins. The first classification model was 
built using the Random Forest algorithm implemented in the 
Scikit-learn package (Pedregosa et al., 2011). The values of 
345 color descriptors described above were used as input. The 
data processing scheme for this model is shown in Figure 3. 
Additionally, using the principal component method, the 
number of features was reduced to 13, which explain 81.2 % of 
the variance in the data and give the maximum accuracy on the 
test dataset. We have termed this classification model RF13.

Grain pigment composition classification  
models based on deep machine learning
ResNet-18 architecture network-based classification 
model. In addition to the above described RF13 model, 
three models based on deep machine learning methods were 

implemented to predict the grain shell pigmentation type. 
These methods are now widely used to analyze plant images 
and have been shown to be highly accurate. 

One of the models is the ResNet-18 neural network archi­
tecture (He et al., 2016). ResNet is a family of convolutional 
neural networks (CNNs) of similar architecture differing in 
the number of layers (18, 34, 50, 101, and 152). In this work, 
we used a model with 18 layers as the simplest and fastest 
one. It consists of 17 layers in series including convolution 
transform, connected by an alternate path for the signal and 
one full-link layer (Fig. 4). Every four layers, a subsampling 
operation takes place, where the length and width of the layer 
becomes 2 times smaller and the number of channels doubles. 
In Figure 4, these are the layers labeled as “3×3 convolu­
tion, N”, where N is the number of channels.
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Fig.  2.  U-Net network architecture used for image segmentation into grain and background regions, from (Ronneberger  
et al., 2015).
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The input of the network was rectangular images, 
which included regions of Petri dishes (Fig. 5). The output 
layer included two numbers between 0 and 1 predicting the  
presence (1) of melanin or anthocyanins. In case the number 
value was greater than 0.5, the corresponding pigment was 
considered to be present in the grain shell. This method 
allowed us to classify images based on the presence of the 
two pigments in the grains both individually and jointly, 
and to identify their absence in case both numbers were less 
than 0.5. This classification model was termed ResNet-18 
in our work.

A segmentation-based model with a head for classifica-
tion. The neural network parameters that were obtained during 
image segmentation using the U-Net algorithm can be used 
to classify grains by the presence of pigments. This allows to 
improve the prediction accuracy for algorithms and to solve 
two problems simultaneously (segmentation and classifica­
tion). To this end, an additional output classification layer 
(“classification head”) was added to the existing segmentation-
based model with U-Net architecture (Fig. 6). The output of 
this layer, as in the ResNet-18 model, contains two numbers 
to determine the presence of anthocyanins and/or melanin in 
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Fig. 4. Schematic diagram of ResNet-18 network architecture.
Different-colored rectangles show network layers of different structure.

Fig. 5. Schematic of the ResNet-18 model of barley grain image classification based on convolutional neural network.

U-Net encoder
(EfficientNetB0)

U-Net decoder

Classification head

Classification loss

Se
gm

en
ta

tio
n 

lo
ss

D
ow

nw
ar

d 
co

nv
ol

ut
io

n

Melanins

Anthocyanins

Fig. 6. Schematic of the U-Net+ClassHead model based on U-Net segmentation with a head for simultaneous segmentation and 
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the grains (see Fig. 6). For this network, the coder topology 
of the EfficientNetB0 architecture was used (Tan, Le, 2019). 
This network topology allowed not only to segment the image 
by selecting a region of grains in a Petri dish on the image, 
but also to simultaneously perform classification of the whole 
image based on the presence or absence of the two pigments. 
This classification model was termed U-Net+ClassHead in 
the paper.

2-channel segmentation model. For image classification, 
a modified U-Net can be used to segment each pixel in the 
image based on the presence of a particular pigmentation. This 
network outputs a two-channel mask, in which each channel 
segments the image region if the grain shells contain a particu­
lar pigment (Fig. 7). This model, U-Net+ClassSegment, was 
based on the U-Net architecture with the ResNet-34 encoder. 
To determine the class of the whole image, we considered that 
if a single pixel was classified as containing a pigment after 
segmentation, the whole sample was considered to contain 
that pigment.

Other technical parameters of training models such as the 
number of training epochs, batched size, loss function used and 
optimizer parameters are given in Supplementary Material 7.

Thus, two classification models based on U-Net seg­
mentation of the original image (U-Net+ClassHead and U-
Net+ClassSegment) and two classification models for which 
the grain region in the original images was separately extracted 
using the U-Net segmentation model (RF13 and ResNet-18) 
were considered in this paper. The general scheme of image 
analysis by the proposed segmentation and classification 
models is shown in Figure 8.

Results

Color characteristics of grains
PCA and t-SNE methods were applied to map grain images 
for accessions into a generalized feature space of dimension 2 
using 345 informative features (see Materials and methods). 
The feature values were subjected to normalization before this 
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Fig. 7. Schematic of the U-Net+ClassSegment model for classification based on 2-channel segmentation of barley grain images 
by the presence/absence of anthocyanins or melanin.
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Fig. 10. Scatter diagram of the grain images for barley accessions in the space of the first two components 
resulting from the t-SNE algorithm for the color characteristics of grains.
The X axis is the C1 component, the Y axis is the C2 component. Fractions of dispersion for the components are 
given in parentheses. Grain type designations for pigments and hull presence are shown on the right (A, AM, M,  
NP – anthocyanins, anthocyanins and melanin, melanin, and no pigments, respectively; H – hulled grains).

Fig. 9. Scattering diagram of the grain images for barley accessions in the space of the first two components 
derived from PCA for the color characteristics of grains.
The X axis is the PC1 component, the Y axis is the PC2 component. Fractions of dispersion for the components are 
given in parentheses. Grain type designations for pigments and hull presence are shown on the right (A, AM, M, NP – 
anthocyanins, anthocyanins and melanin, melanin, and no pigments, respectively; H – hulled grains). 

analysis (to obtain mean equal to 0 and standard deviation 
equal to 1). Each point in PCA (Fig. 9) and t-SNE (Fig. 10) 
diagrams corresponds to a particular image. 

These diagrams show that pigmented (filled markers) and 
non-pigmented (empty markers) grains are well separated in 
both diagrams (see Fig. 9 and 10). This separation is more 
pronounced in the t-SNE diagram (see Fig. 10). Images of 
grains with the presence of anthocyanins in the shell (purple 
icons) and those containing both pigments (red icons) are well 
separated. The areas occupied by these images in the diagrams 
do not overlap. At the same time, it is noticeable that the 
regions occupied by the images of grains with anthocya - 
nins (filled purple markers) and melanin (filled black markers) 

overlapped. It is also clear from the diagrams that regions for 
the images of grains containing both anthocyanins and mela - 
nin and those containing only melanin have considerable 
overlap (the right part of the plots close to 0 values for the 
Y axis). Separating these two types of grains seems most 
problematic. 

The influence the presence of the grain hull has on their color 
characteristics is also noticeable in the two graphs. First of all, 
the presence of the grain hull does not affect the separation of 
areas for different classes of grains by pigmentation except 
for the pair containing anthocyanins or melanin: hulled and 
hulless grains with the same type of pigmentation are closer 
to each other than grains with another type of pigmentation. 
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This is particularly evident for grains without pigmentation 
(empty markers). For grains with melanin, one of the groups 
of hulled grains has color characteristics very similar to those 
of grains with anthocyanins presence (on the graphs, this 
group is located inside the area occupied by samples with 
anthocyanins and is far away from other grains containing 
melanin). At the same time, it is clearly visible that for 
grains of the same pigment class, hulled and hulless grains 
occupy different regions and are well separated (characteristic 
examples in Fig. 10: images of grains without pigmentation, 
images of grains with anthocyanins, and images of grains with 
anthocyanins and melanins). These results show that, in most 
cases, the presence of the hull does not affect separation by 
the type of grain pigmentation, but significantly affects the 
variation of shell color characteristics.

Classification of grains by pigment content
As a result of training the models to classify grain images by 
pigment content, accuracy estimates on validation, test and 
holdout datasets were obtained. They are presented in Table 1.

The best accuracy on the holdout dataset is achieved 
by the segmentation model with “classification head”  
(U-Net+ClassHead). The data on the parameters of perfor­
mance estimates of this model are given in Table 2.

The prediction error matrix of the grain pigmentation type 
(Supplementary Material 8) allows us to determine that most 
of the model errors are in predicting the anthocyanin content 

of hulled grains, which is consistent with the PCA and t-SNE 
plots (see Fig. 9 and 10), where regions for hulled grain images 
containing melanin and anthocyanins overlap significantly 
with those containing only melanin. Moreover, the number of 
images with grain containing anthocyanins (A) predicted as 
not containing pigments (NP) is significantly larger than the 
number of images of grains without pigments (NP) predicted 
as anthocyanins (A). Errors are also observed for hulless 
grains, for which the presence of anthocyanins was errone­
ously not predicted. A small number of images of grains with 
melanins were predicted as “no pigments”, some images of 
grains containing anthocyanins were identified as containing 
melanins. 

The results of the non-parametric Mann–Whitney test 
showed that the accuracy of anthocyanins presence prediction 
differs significantly (p-value = 0.004) for hulless and hulled 
grains. For melanin presence, the hull does not significantly 
affect the prediction performance.

The U-Net+ClassSegment method showed slightly lower 
accuracy. It can be concluded that models that simulta-
neously solve several different tasks (multi-task learning) 
have better generalization ability. Both models based on this 
approach significantly outperform both the method based 
on Random Forest and color descriptors (lowest accuracy) 
and the ResNet-18 classification. It is worth noting that the 
accuracy results on the holdout dataset are lower than on 
the test dataset.

Table 1. Assessment of classification accuracy (ACC) of barley grain images  
based on anthocyanins and melanin presence in grain coat for four models on validation, test and holdout datasets

Classification  
model

Validation Test Holdout

RF13 0.896 0.903 0.652

ResNet-18 0.938 0.934 0.817

U-Net+ClassHead 0.906 0.962 0.821

U-Net+ClassSegment 0.917 0.903 0.819

Note.  The best value for the holdout dataset is shown in bold.

Table 2. Parameters for evaluation of classification performance of barley grain images  
by anthocyanins and melanin presence in the grain coat for the U-Net+ClassHead model on test and holdout datasets

Parameter Test Holdout

Melanin Anthocyanins Melanin Anthocyanins

F-measure 1.0 0.937 0.983 0.488

Sensitivity 1.0 0.881 1.0 0.389

Positive predictable value 1.0 1.0 0.966 0.656
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Discussion
Methods for analyzing digital RGB images to study the 
physiological properties of grains have been widely applied 
to cereals (Neuman et al., 1989; Huang et al., 2015; Sabanci 
et al., 2017; Kozłowski et al., 2019; Komyshev et al., 2020; 
Zykin et al., 2020). In particular, they are used to classify 
grains both by pigment composition and by variety. 

In our work, we analyzed methods for classifying grains 
by color characteristics into classes based on the presence 
of two types of pigments. We showed that deep machine 
lear ning methods yield higher accuracy in grain classifica - 
tion than using color descriptors. Similar findings were ob­
tained when classifying barley grains into species (Kozłowski 
et al., 2019). Our results also show that using a multi-task 
learning approach produces more accurate classification 
results. 

The results on the holdout image dataset showed lower ac­
curacy compared to the test dataset. Presumably, one of the 
reasons for this could be that the balance of labels of different 
classes in the training, validation, and test datasets was the 
same and was not close to the ratio in the holdout dataset. In 
particular, the number of images with grains without pigments 
in the holdout dataset was 1.5 times lower than in the training 
sample. For classification, such an image set appears to be the 
easiest case. Also, based on the extracted color descriptors, 
a binary classifier was trained that distinguished grains from 
the holdout dataset from other grains with ACC = 1. This 
implies that there are significant differences between these 
image series, which can be explained by the fact that grains 
from other collections were selected in the holdout dataset or 
the protocol for capturing these images was slightly different. 
This can explain the slight decrease in accuracy in the clas­
sification quality of the Random Forest model.

Our analysis also demonstrated that the presence of the 
hull affects grain color characteristics and, thus, the classi­
fication performance with respect to the pigment presence 
in the shell. 

Conclusion
The proposed methods based on the analysis of digital 
images using computer vision and machine learning algo­
rithms showed acceptable classification ability in the task of 
determining melanin and anthocyanins presence or absence 
in the barley grain shell. The results of this work showed 
that the application of the Random Forest algorithm based 
on color features is inferior to convolutional neural network 
approaches in the classification performance. This method 
proves to be sensitive to small changes in protocol or imag­
ing conditions, losing generalization ability compared to 
convolutional neural networks. Possible ways to improve 
the model based on this algorithm are careful selection of 
features and preliminary normalization of the images fed to 
the input. The classical classification model architecture is 
inferior in accuracy to the 2-channel whole image segmen­
tation model. Segmentation by U-Net neural network with 
“classification head”, showed the best results (ACC = 0.821) 
and is the preferred choice in the task of determining the pig­
ment content of barley.
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