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Abstract. To study the mechanisms of growth and development, it is necessary to analyze the dynamics of the tis-
sue patterning regulators in time and space and to take into account their effect on the cellular dynamics within a
tissue. Plant hormones are the main regulators of the cell dynamics in plant tissues; they form gradients and maxima
and control molecular processes in a concentration-dependent manner. Here, we present DyCeModel, a software
tool implemented in MATLAB for one-dimensional simulation of tissue with a dynamic cellular ensemble, where
changes in hormone (or other active substance) concentration in the cells are described by ordinary differential
equations (ODEs). We applied DyCeModel to simulate cell dynamics in plant meristems with different cellular struc-
tures and demonstrated that DyCeModel helps to identify the relationships between hormone concentration and
cellular behaviors. The tool visualizes the simulation progress and presents a video obtained during the calculation.
Importantly, the tool is capable of automatically adjusting the parameters by fitting the distribution of the sub-
stance concentrations predicted in the model to experimental data taken from the microscopic images. Noteworthy,
DyCeModel makes it possible to build models for distinct types of plant meristems with the same ODEs, recruiting
specific input characteristics for each meristem. We demonstrate the tool’s efficiency by simulation of the effect of
auxin and cytokinin distributions on tissue patterning in two types of Arabidopsis thaliana stem cell niches: the root
and shoot apical meristems. The resulting models represent a promising framework for further study of the role of
hormone-controlled gene regulatory networks in cell dynamics.
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AHHOTauuA. [1na U3yyeHns MexaHM3MOB POCTa 1 Pa3BUTMA HEOOXOAUMO aHaNM3MPOBaTb AMHAMUKY pacnpeaese-
HUA PerynATopoB Mo TKaHU BO BPEMEHUN U NPOCTPAHCTBE N yUMTbIBaTb UX BIVAHME Ha KNETOYHYIO AUHAMUKY BHYTPY
TKaHW. PacTrTenbHble FOPMOHbI ABATCA OCHOBHBIMY PETYAATOPAaMU AUHAMUKN KNETOK B TKAHAX PAaCTEHUIA; OHN 06-
pasyioT rpagneHTbl Y MaKCUMYMbl N KOHTPONMPYIOT MOSIeKYIAPHbIe MPOLEeCChl B 3aBUCUMOCTM OT KOHLLeHTpauun. Mbl
npeactasnsem DyCeModel, nporpaMmHbIf MHCTPYMEHT, pean3oBaHHbI B cpene MATLAB ans ofHOMEPHOro MoAe-
NNPOBAHMNA TKaHW C JUHAMUYECKUM KJTIETOYHbIM aHcambneMm, rae N3MeHeHUA KOHLEeHTPpauuy ropMmoHa (nv gpyroro
AKTUBHOIO BELLECTBA) B K/IeTKaX ONMCbIBAOTCA 0ObIKHOBEHHBIMU AnddepeHLmanbHbIMK ypaBHEHUAMU. Mbl nprmMe-
Hunn DyCeModel gna mofennpoBaHNA AMHAMUKK KNETOK B MeprcTeMax PacTeHU C Pa3fIiHON KNETOUHON CTPYK-
TypoWi 1 npogemoHcTpuposany, yto DyCeModel nomoraeT BbisiBUTb B3aUMOCBA3b MEXAY KOHLEHTpaLmen ropmo-
HOB 1 NOBeAeHneM KeToK. IHCTpyMeHT B13yanu3npyeT Xof MOAeIMPOBaHWA 1 NPefoCcTaBNAeT BUAEO, NONyYeHHoe
B XOfe pacyeTa. BaXKHO OTMETUTb, YTO MHCTPYMEHT CMOCO6EH aBTOMAaTUYECKM NogbMpaTh NapameTpbl, NOArOHAA pac-
npeaeneHne KOHLEHTPaLMI BelecTs, Npefcka3aHHoe B MOAENN, K SKCMepyMeHTabHbIM AaHHbIM, MOJTyYEHHbIM MO
1306paxxeHnam ¢ M1Kpockona. MpumeuatenbHo, yto DyCeModel no3sonsaeT cTponTb Mogeny Ans pasfanyHbIX TUMOB
MepUCTEM PaCTEHUI Ha OCHOBE OfHUX U TeX e 0ObIKHOBEHHbIX AnddepeHLnanbHbIX ypaBHEHUIA, UCNONb3ya ANA
Karkaoln mepurcTembl creurduyeckrne BXoLHbIE XapaKTepucTuKn. DGHeKTUBHOCTb MHCTPYMEHTa MPOLEMOHCTPUPO-

© Azarova D.S., Omelyanchuk N.A., Mironova V.V., Zemlyanskaya E.V., Lavrekha V.V., 2023

This work is licensed under a Creative Commons Attribution 4.0 License



[.C. AsapoBa, H.A. OmenbaHuyK
B.B. MnpoHoBa, E.B. 3emnaHckas, B.B. JlaBpexa

2023
277

DyCeModel: nporpammHoe cpeacTso Afid OAHOMEPHOro
MOZAENMPOBaHUA pacrpeaeneHrs ropMOHOB PacTEHUIA

BaHa NyTeM MOAENMPOBaHUA BVSAHNA pacnpeaeneHns aykcMHa 1 LMTOKMHMHA Ha GOpMUpOBaHMe NaTTepHa TKaHu
B ABYX TUMax HWL CTBOMOBbIX KNeTok Arabidopsis thaliana: anukanbHbix MepucTeMax KOpHa 1 no6era. MonyyeHHble
MOAENN NpeAcTaBnAlT COO60M NepcneKTVBHbIA GPeiMBOPK A faSibHeLLero N3y4YeHUs pony KOHTPOIMPYeMbIX
rOPMOHAMU FeHHbIX PEryNATOPHbIX CETel B AUHAMUKE KIETOK.

KntoueBble croBa: KOMMNbIOTEPHOE MOAENMPOBAHNE; TPAEKTOPUA Pa3BUTUSA; BXOLHbIE AAHHbIE; FTEHETUYECKUIA anro-

pUTM; GUTOrOPMOHDI.

Introduction

Understanding the control of cell division and differentiation
in stem cell niches is among the major issues in plant deve-
lopmental biology (Hayashi et al., 2023). Although many com-
ponents of the molecular regulatory networks, which underlie
these processes, have been identified, complex interactions and
numerous players hinder detailed study on the mechanisms
of their functioning. For example, it is still largely unknown
how the formation of plant hormone concentration gradients
results in particular alterations in the cellular dynamics of
developing tissues and organs (Rutten et al., 2022). Dissec-
tion of these issues requires application of computer modeling
to predict the output in cellular dynamics and to determine
whether various developmental pathways exist under certain
conditions (Fisher et al., 2023).

Nowadays, developmental biology has recruited experts in
mathematical modeling and computer sciences to create ap-
propriate tools. Numerical simulations were successfully used
to study the influence of phytohormone concentration distribu-
tion on the functioning of plant stem cell niches in 1D and 2D
models describing cell divisions, growth, and differentiation
under control of signaling molecules (Kitano et al., 2005;
Nikolaev et al., 2006; Mironova et al., 2010; Muraro et al.,
2013; Band et al., 2014; De Rybel et al., 2014; Lavrekha et
al., 2014; Dubreuil etal., 2018; Savina et al., 2020; Hartmann
et al., 2021). At the same time, these models stay within the
limits of a certain meristem, and are not applicable to a wider
range of plant stem cell niches. A general description of the
basic set of processes related to the redistribution of hormone
gradients and cellular response to this may serve as a basis
for the investigation of the common and specific features of
various plant meristems.

To solve this kind of problem, professional tools have
started to be developed, helping researchers to create ex-
tensible computer models, which enable applying the same
mathematical model equations to various plant systems (Hay
Mele et al., 2015; Scholzel et al., 2021). For example, Cell
Designer is a tool for simulating biochemical networks (Ki-
tano et al., 2005) without reference to the tissue topology.
A similar tool, PySB, has ample opportunity to create, extend
and combine models based on genetic networks with high
complexity (Lopez et al., 2013). This Python-based software
is highly flexible because it provides the possibility of direct
manipulation of equations. BioNetGen allows to create models
both using a graphic editor and describing models manually
inside the program code that simplifies reconstruction of mo-
lecular networks (Harris et al., 2016). BioNetGen has a con-
venient graphical representation for the solution of equations.
SBMLToolbox provides the possibility to create, validate and
calculate models with ODEs using SBML in MATLAB and
Octave (Keating et al., 2006). DBSolve features abundances
of certain molecules in a system, displaying it dynamically as
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a bar graph (Gizzatkulov et al., 2010). MGSmaodeller is a Java
application, which enables hierarchical data presentation and
editing, and implements dynamic calculation tools in recon-
structing molecular genetic networks and solving inverse
problems (Kazantsev et al., 2008). The COPASI software is
able to describe models of biological processes, such as meta-
bolic networks, cellular signaling pathways, regulatory net-
works, infectious diseases and many others, simulate and ana-
lyze these models, create analysis reports and import/export
models (reviewed in Bergmann et al., 2017). In COPASI,
models are defined as chemical reactions between molecules.
The model analyzer includes steady-state analysis, stoichio-
metric analysis, time history modeling using deterministic and
stochastic modeling algorithms, metabolic control analysis,
optimization and parameter estimation. VCell is a computing
system for modeling physicochemical and electrophysiologi-
cal processes in living cells (Loew, Schaff, 2001; Moraru et
al., 2008). The tool allows the user to enter a description of
cell physiology, biochemical reactions, and automatically
or manually input mathematical equations. The resulting
simulations are displayed on dynamic spatial regions of vari-
ous shapes, including irregular 3D geometries derived from
experimental images. VCell can also implement rule-based
models, which allows the representation of species as struc-
tured objects consisting of molecules and uses reaction rules
to define molecular interactions. SpringSal.aD is a software
platform based on spatial stochastic modeling of biochemi-
cal systems (Michalski, Loew, 2016). SpringSaLaD models
molecules as a group of connected spherical regions with ex-
cluded volume. This allows establishing a connection between
molecular dynamics modeling and processes at the cellular
level. SpringSaLaD is a standalone tool that supports model
building, simulation, visualization, and data analysis through
a graphical user interface.

The tools listed above develop models for metabolic and
signal transduction pathways, and gene regulation networks.
Such tools do not implement embedding of the generated ma-
thematical models into cell ensembles to study the influence of
regulatory networks on cell divisions, growth and differentia-
tion (Kitano et al., 2005; Keating et al., 2006; Kazantsev et
al., 2008; Gizzatkulov et al., 2010; Lopez et al., 2013; Harris
etal., 2016).

On the other hand, there are programs that along with simu-
lation of gene networks also consider the influence of regulato-
ry circuits on cell growth or divisions. CompuCell3D is a tool
for constructing dynamic multicellular 2D and 3D models to
simulate cells that lack a cell wall (Swat et al., 2012). It is
based on the lattice-based Glazier—-Graner—-Hogeweg (GGH)
Monte Carlo multi-cell modeling, which employs an energetic
approach to model growth, intercellular communication and
maintenance of cell shape. Molecular processes, namely, the
production and diffusion of substances, are described via ODE
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solvers. The VirtualLeaf program simulates the relationship
between gene expression and the biophysics of plant cell
growth (Merks et al., 2011). The model is a set of cells and
cell walls, through which chemical substances can move,
affecting gene expression and properties of the cell wall.
Cellzilla is a 2D tissue modeling platform using Cellerator,
a tool describing biochemical interactions via simplified no-
tation as reactions and converting them automatically to the
corresponding differential equations by an inner computer
algebra system (Shapiro et al., 2013). In Cellzilla, cells are
represented by a polygonal grid of well-mixed compartments.
Cell components can interact through Cellerator reactions,
which describe diffusion and transport. Dynamic simulation
consists of cell growth and division. Despite these advantages,
modern software tools for modeling usually use manual setting
of parameters, and do not support automatic parameter fitting,
which may be critical for some models.

A recent trend is further improvement of computer tools,
which can be used by biologists for in-depth study of develop-
mental processes at the multicellular level. One of the current
challenges is the creation of software that constructs numerical
models along various plant organs utilizing uniformly de-
scribed processes and provides automatic parameters setting.
Here we present a tool creating one-dimensional computer
models that provide embedding of signaling molecules into
adynamically developing cellular ensemble, where, based on
the same set of processes, it is possible to model cellular dy-
namics in various plant tissues. To build realistic computer
models, it is necessary to apply experimental data. The tool
we have developed takes experimental data into account al-
ready at the first stage of parameter fitting, which brings the
constructed models as close to reality as possible.

The model template
ODEs for synthesis,
degradation, passive
and active transport etc.

Experimental data
Microscopic image

substance_eq.m parameters_fitting.m

Parameters of ODEs
for synthesis, degradation,
passive and active transport

tool_1d_model.m

DyCeModel: a tool for 1D simulation
for plant hormones controlling tissue patterning

Materials and methods

DyCeModel overview. DyCeModel allows creating a dyna-
mic one-dimensional cell lattice, embedding it into a mathe-
matical model in ODE, and performing numerical analysis. It
contains five script files (.m files) executed in the MATLAB
software environment (Fig. 1). The substance_eg.m block
incorporates an ODE system for description of synthesis,
degradation, passive and active transport for the substances
of interest. By default, DyCeModel provides examples of
functions, which describe these processes for two substances
according to Michaelis—Menten kinetics and Generalized Hill
function method (Likhoshvai, Ratushny, 2007), Fick’s law of
diffusion and the mass action law (for describing active trans-
port). Alternatively, users can build their own functions instead
of the default ones. The parameters_fitting.m block describes
the realization of a genetic algorithm to assess the similarity
of the modeled substance distribution to the experimental
data. The model_parameters.m block contains all model pa-
rameter default values for the ODE system and describes the
model configuration of substance influxes. The grow eq.m
block describes the cell growth function, tool_1d_model.m
ensures the simulation procedure. Importantly, there are
two different strategies of applying DyCeModel: using the
parameters_fitting.m block or omitting it. In the latter case, the
user should define all parameters in the model parameters.m
file.

The input data. A pre-processed experimentally obtained
microscopic image, which visualizes the distribution profile
of the substance concentration within the modeled tissue, is an
input for the parameters_fitting.m block. DyCeModel accepts
TIFF, GIF, JPEG, PNG formats and some other graphic file
formats supported by MATLAB, and it is capable of process-

Parameters settings
- for ODE system
- model configuration
- growth and division setting
— initial conditions

model_parameters.m

The growth rules

grow_eg.m
ODEs for cell growth

Output
Calculation results table

Statistical summary on the cellular composition
Video file containing cell dynamics and substance distributions

Fig. 1. DyCeModel pipeline for creating mathematical models.

The input data are marked in red. The output data are depicted in blue. Gray circles indicate the presence of visualization modules. Five

script files are given in rhombuses.
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ing the signal localized in the cytosol or in the nucleus. The
image must be well focused. The aforementioned image pre-
processing consists in excision of a rectangular area containing
the modeled axis along the tissue, which should be parallel
to the long side of the rectangle. This area should not contain
microscope artifacts. To obtain noise-free measurements, the
user can decrease the size of the rectangular area (the minimum
size of the uploaded rectangular image is 1 pixel in width
and 90 pixels in length). There are no strict requirements for
image resolution.

The ODE system of the mathematical model is an input,
which is written in the substance eq.m file block (see Fig. 1).
The default example equations can be changed according to
the user’s request. The model configuration is defined by the
initial number of cells and position of the substance influxes
in model parameters.m file. For the model simulation, initial
concentrations of all substances, as well as growth and division
settings should be defined. The user also sets the number of
calculation steps in order to define the time of investigation.
If automatic parameter fitting is going to be omitted, the
user can optionally set the parameters for the ODE system
in the model parameters.m file. All default example model
parameters are consistent with the default ODE system and
calculation procedure.

The parameter fitting. First, the parameters_fitting.m
script quantifies the distribution of the substance concentration
along the selected axis from the microscopic image. These data
will be used as target distribution, which the algorithm should
reproduce as precisely as possible according to the model
equations and configuration. At this stage, the concentration
distribution can be manually corrected if it is distorted in the
microscopic image. Next, the genetic algorithm is used to find
a set of model parameters, which allow reproducing the input
experimental data on the distribution of the substance concen-
tration the most accurately (Fig. 2) (Dubitzky et al., 2013).

Initially, the parameters_fitting.m script generates indivi-
duals: the sets of model parameters assigned to random values.
Each individual is characterized with the fitness function value
that scores the similarity of the modeled distribution of the
substance concentration to the experimental data. The root-
mean-square deviation (RMSD) metric is used as a fitness
function. A lower fitness value corresponds to a better quality
of the solution. The genetic algorithm is implemented in the
following three steps.

Step 1 is “mutation”, which changes a randomly selected
parameter in each parameter set by the value of A (which is
also randomly selected in the interval from 0 to 1). For each
individual, we calculate the model with a new parameter
set. “Mutation” is fixed if it brings the solution closer to the
target distribution. Step 2 is “crossover”, the exchange of the
parameter values between two individuals. In the first new set
of parameters, a few (the number is defined randomly at each
step of the algorithm) are picked from individual 1, and the rest
are taken from individual 2. The second new set of parameters
incorporates the values for the corresponding few parameters
from individual 2, and the values for the rest of the parameters
are taken from individual 1. The model is calculated with two
new sets of parameters after the “crossover”, and the recom-
bination event is fixed if it brings the solution closer to the
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target. Step 3 supports biologically reasonable limitations on
parameter values, which the user can set up manually in the
“Biological limits” block of the parameters_fitting.m script
(see Fig. 2). The restrictions may apply, for example, to the
parity of the passive transport of different substances, the pa-
rity of active and passive transport of the same substance, the
parity of the substance inflow and synthesis, etc. Taking into
account reasonable biological restrictions, the algorithm “re-
wards” the realistic parameter values during selection, which
both favors identification of the local optimum corresponding
to the real processes, and speeds up the algorithm.

The fitting ends when the difference between the substan-
ce distribution calculated with the adjusted parameters and
target substance distribution from the microscopic image be-
comes less than the threshold. The selected parameters set
(the “Par” variable) is saved in a file. After executing the
parameters_fitting.m script, it is recommended to inspect the
selected parameters, since not all biological limitations could
be taken into account during the selection. The user can view
the “Par” variable and, if there are obvious inconsistencies in
parameter matching, restart the parameter fitting.

Calculation of the mathematical model. When the ODE
system and cell growth rules are defined, the user can load
the mandatory parameters of the model with the model_pa-
rameters() function, including the initial number of cells,
the initial concentrations of substances, the initial cell sizes,
the maximum number of cells to be monitored, cell division
parameters and cell growth settings according to the function
described in the grow_eq.m file. Then the user uploads the set
of parameters for the model ODE system, which are either ob-
tained during the parameter fitting procedure or defined manu-
ally in the model_parameters.m script. After that, the model
can be calculated (Fig. 3). We proceed under the assumption
that cell dynamic events such as division or differentiation
are discrete processes. Therefore, the calculation of ODEs
is periodically interrupted to check if the conditions for cell
division and differentiation specified in the tool 1d model.m
and model parameters.m files are met. Optionally, the user
decides which substances will regulate the ability to divide
and the probability of cell division. All calculation results
obtained during the simulation of the model are recorded in
a video file, which represents the redistribution of the sub-
stance concentrations on a one-dimensional dynamic cellular
ensemble.

Images used in the study. To model root apical meristem,
we used publicly available images for 9-day-old Arabidop-
sis thaliana seedlings expressing DR5::GFP auxin sensor
(Ottenschl&ger et al., 2003) or TCSn::GFP cytokinin sensor
(Zurcher et al., 2013), which were obtained using a confocal
fluorescence microscope (FV-1200, Olympus) (Sakamoto et
al., 2019). To model shoot apical meristem, we took publicly
available images for 7-day-old A. thaliana seedlings ex-
pressing TCSn::GFP cytokinin sensor obtained by a confocal
microscope (Leica) (Zurcher et al., 2016). As a visualization
of auxin distribution in the shoot apical meristem, we used
images of auxin immunolocalization in the inflorescences
of 22-day-old A. thaliana seedlings taken by a confocal
microscope (LSM, FluoView1000, Olympus) (Banasiak et
al., 2019).
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Parameters settings
- for ODE system

ODEs for synthesis,
degradation, passive
and active transport etc.

The growth rules
ODEs for cell growth

- model configuration
- growth and division setting
- initial conditions

\ﬂ

Output

Calculation
ODE system of the model

- Calculation results table
- Statistical summary on the cellular composition
- Video file containing cell dynamics and

Y

substance distributions

Y

Testing rules
for cell dividing

Visualization

Testing rules
for cell differentiation

4

Cell division

Cell differentiation

(new cell occurs)

(cell is deleted from ensemble)

Fig. 3. The framework for calculation of the ODE system on a dynamic cell ensemble.

Input data are marked by red. Output data are depicted in blue.
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Fig. 4. DyCeModel solutions on auxin and cytokinin distribution within the root (a-c) and shoot (d-f) apical meristems along the central axis.
a, d, Obtained signal intensity of hormone distributions along the allocated area; b, e, visualization of the parameter fitting process; ¢, f, the result of

automatic parameter fitting.

Pink or burgundy indicates the signal intensity distribution obtained from the experimental data. The distributions of phytohormones during each step of para-
meter selection are indicated in green. Blue marks the distribution of the substances when calculating the model with the automatically selected set of para-

meters.

Results and discussion

A one-dimensional model of Arabidopsis thaliana

root apical meristem built with DyCeModel

To demonstrate the performance of DyCeModel, we used it to
create a 1D model of A. thaliana root apical meristem. Plant
hormones auxin and cytokinin play major roles in regulation
of maintenance of its structure (Yamoune et al., 2021). We
built an ODE system based on mathematical models of auxin
and cytokinin distribution published earlier (Mironova et al.,
2010; Lavrekha et al., 2014). To set the parameters for the
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model ODE system, we used automatic parameter fitting. To
define the target distribution of the hormone concentrations
in the root tip, we used publicly available microscopic images
described in the “Materials and methods” section. We used the
following parameter value limitations during parameter fitting:
approximately equal diffusion parameter values for auxin and
cytokinin, prevalence of active auxin transport over the passive
transport, prevalence of auxin flow into the meristem over
its biosynthesis, which is typical for the root apical meristem
(Overvoorde et al., 2010). Figure 4, a—c demonstrates auxin
and cytokinin distributions in the root apical meristem gener-
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ated using the DyCeModel tool. The equation describing the
dependence of cell growth on auxin was built on principles
similar to the Hartmann model (Hartmann et al., 2021), where
the growth rate is directly proportional to auxin concentration
in the cell and inversely proportional to the cell size. Cell divi-
sion can occur if the cell attains minimum size required for
division and possesses a certain ratio of auxin and cytokinin
concentrations. The probability of cell division is 0.1, the
values were obtained by analyzing images and 24-hour videos
with marked division events in the meristem of A. thaliana
(Marhava et al., 2019). Cell differentiation occurs if the cell
size approaches the “maximum cell size” parameter value.

Then we built a functional model of the root apical meristem
and obtained a stationary solution. Analysis of the steady-state
solution of the root apical meristem model showed that it is
consistent with experimental data (Garcia-Gomez et al., 2017;
Huetal., 2021). The distribution of auxin had the shape of an
inverted dome and reached a maximum in cells representing
the quiescent center. The concentration of cytokinin decreased
nonlinearly towards the stem cell niche and reached a mini-
mum in the initial cells, which corresponds to experimental
data. In the constructed model obtained with DyCeModel,
the correct location and size of the zone of high proliferative
activity were specified and remained stable for a long period
of calculation, corresponding to those in the root meristem
invivo. Similar zones of proliferative activity were also formed
in two other models of the root apical meristem (Mironova et
al., 2010; Lavrekha et al., 2014).

DyCeModel enables modeling distinct types

of plant meristems based on the same ODEs

We speculated that recruiting specific input characteristics
for distinct meristems could enable the modeling of distinct
types of plant meristems with DyCeModel based on the
same ODEs. Therefore, we applied DyCeModel to build
a model of A. thaliana shoot apical meristem using the same
mathematical model equations and rules as for root apical
meristem. The images used for automatic parameter fitting are
described in the “Materials and methods” section. We used the
following parameter value limitations during parameter fitting:
approximately equal diffusion parameter values for auxin and
cytokinin and a low level of auxin synthesis. In the model of
the shoot apical meristem, we obtained a hormone distribution
profile that qualitatively corresponds to experimental data
(Heisler, Jonsson, 2006). Auxin and cytokinin concentrations
decreased nonlinearly with distance from the stem cells.
One-dimensional simulations of the shoot apical meristem of
A. thaliana established a dynamic balance between dividing
and differentiated cells. In this way, zones of proliferative
activity were identified, and the number of cells within this
zone was maintained at a certain level throughout the entire
model calculation. At the same time, the identified parameters
of passive transport, degradation, and growth were the same
for the model of shoot meristem and root meristem, and the
parameters determining cell division remained similar.

Conclusion

The DyCeModel tool constructs mathematical models of
hormone distribution based on the processes of their synthesis,
degradation, diffusion and active transport in a dynamically
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developing cellular ensemble. Such models are necessary to
consider the influence of hormone distribution on cell growth
and division. The developed DyCeModel tool is quite flexible,
it provides embedding, addition, mixing of already exist-
ing mathematical models. Adding each model to the scripts
switches on machine selection of unknown parameters, which
speeds up the work with the model and makes it more stable.
In addition, DyCeModel makes a statistical summary on the
cellular composition that can be used for predictions about the
influence of hormones on proliferative cell activity.

Using DyCeModel, we built a functional model of the root
apical meristem, which was consistent with the experimental
data. Next, we applied DyCeModel to build a model of the
shoot apical meristem using the same mathematical model
equations as for the root apical meristem model and demon-
strated that the parameters of passive transport, degradation,
growth, even the parameters determining cell division remain
similar between root and shoot models. The resulting one-
dimensional models can be further used as a framework to
study the role of hormone-controlled gene networks in cell
dynamics in two types of meristem.
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