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Abstract. Wheat is one of three main food crops around the world, which has the largest distribution area due to its 
adaptation to the different environments. This review considers polymorphisms and allelic variation of the vernaliza-
tion response genes Vrn controlling the major adaptation traits in wheats (the genus Triticum L.): growth habit (spring 
vs. winter) and length of vegetative period (earliness). The review summarizes available information on the allelic 
diversity of the Vrn genes and discusses molecular-level relationships between Vrn polymorphisms and their effect 
on growth habit (spring vs. winter) and earliness (length vegetative period in spring plants) in di-, tetra- and hexa-
ploid wheat species. A unique attempt has been made to relate information on mutations (polymorphisms) in domi-
nant Vrn alleles to the values of the commercially most important trait “length of plant vegetative period (earliness)”. 
The effects of mutations (polymorphisms) in the recessive vrn genes on vernalization requirement in winter wheats 
are considered, and this trait was formalized. The evolution of the winter/spring growth habit in the genus Triticum 
 species is discussed. A scheme of phylogenetic interactions between Vrn alleles was constructed on the basis of these 
polymorphisms; the paper considers the possibilities to enhance the diversity of polymorphisms for the dominant 
Vrn genes and their alleles using wheat related species and rarely used alleles and discusses the prospects of breeding 
for improved earliness for concrete agroecological zones.
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Аннотация. Пшеница, являясь одной из трех основных продовольственных культур мира, занимает самый ши-
рокий ареал за счет адаптивности к разнообразным условиям возделывания. В обзоре рассматриваются поли-
морфизм и аллельная изменчивость генов Vrn (от англ. response to vernalization), контролирующих важнейшие 
адаптационные признаки пшениц – тип (яровость vs. озимость) и скорость развития у диких и возделываемых 
видов пшениц (род Triticum L.). Суммируется информация об аллельном разнообразии генов Vrn и обсуждается 
связь полиморфизмов этих генов на молекулярном уровне с их влиянием не только на признак «тип развития 
(яровость vs. озимость)», но и на признак «скороспелость (длина вегетационного периода яровых растений, 
ДВП)» у ди-, тетра- и гексаплоидных видов. Предпринята попытка связать полученную информацию о мута-
циях (полиморфизмах) доминантных аллелей генов Vrn с выраженностью наиболее важного с хозяйственной 
точки зрения признака «продолжительность ДВП (скороспелость)», которая ранее в обзорах не предприни-
малась. Рассматривается влияние мутаций (полиморфизмов) в последовательностях рецессивных генов vrn 
на признак «потребность в яровизации» у озимых форм растений пшениц и выполнена его формализация. 
Обсуждается эволюция озимости/яровости в роде Triticum. На основе выявленных полиморфизмов построена 
схема филогенетических взаимодействий аллелей генов Vrn и рассматриваются возможности расширения по-
лиморфизма по доминантным генам Vrn и их аллелям за счет видов-сородичей и редко используемых алелей и 
перспективы селекции на изменение ДВП (скороспелости) для конкретных зон возделывания.
Ключевые слова: пшеница; гены Vrn; яровость; озимость; длина вегетационного периода; скороспелость.
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Introduction
Many of the cultivated and wild herbaceous plant species 
growing in temperate climates have developed the spring 
growth habit (cryophobic plants) or the winter growth habit 
(cryophilic plants) as adaptations to natural environments 
(Gupalo, Skripchinsky, 1971). The spring plants complete 
their entire development cycle during a single vegetation 
season, while the winter ones do not proceed to reproduc-
tion unless they have been exposed to low temperatures.

In wild and cultivated wheat species, delays in transition 
from vegetative to reproductive development are controlled 
by the vernalization response genes Vrn regulating growth 
habit (spring vs. winter) and earliness, the vernalization 
requirement duration genes Vrd controlling duration of 
vernalization treatment in winter wheats, and the photo-
period sensitivity/insensitivity gene Ppd for response to 
photoperiod. Any of the dominant genes Vrn: Vrn-1 (Yan 
et al., 2003), Vrn-3 (Yan et al., 2006) and Vrn-D4 (Kippes 
et al., 2016), controls spring growth habit and is epistatic 
over the recessive alleles of these genes. An exception is 
the dominant gene Vrn2 described in Triticum monococ- 
cum L. (Yan et al., 2004a) and controlling winter growth 
habit: this gene expression are destroyed in polyploid 
wheat species.

An any dominant allele of the gene Vrn, except Vrn2, 
is enough for a plant to become a spring (Pugsley, 1971; 
Yan et al., 2004b; Fu et al., 2005; Knippes et al., 2018). 
Winter hexaploid wheat varieties are homozygous for 
the recessive alleles of all the three Vrn-1 genes at once 
(Stelmakh, 1987); while winter tetraploids, for two genes, 
Vrn-A1 and Vrn-B1, because the dominant genes Vrn-3 
and Vrn-D4 have no recessive alleles, and so all winter 
varieties carry their null-alleles. No interaction between 
Vrd and Vrn has been described. A number of investigations 
have proposed schemes for the interaction between the Vrn 
with Ppd (Chen A. et al., 2014). However, the mechanisms 
underlying the interactions between these genes are not 
yet fully understood (Goncharov, 2012; Kiseleva, Salina, 
2018). The Vrn genes are estimated to account for about 
75 % of the control of variability of the trait duration of the 
vegetative period (DVP), and the Ppd genes, for about 20 % 
(Stelmakh, 1981). The third group of loci, EPS (earliness 
per se), controlling earliness per se, is under polygenic 
control (van Beem et al., 2005; Royo et al., 2020) and ex-
plains only about 5 % of DVP variation (Stelmakh, 1981).

The Vrn-1 controlling the adaptability of wheat to en-
vironments (the traits spring/winter growth habit and ear-
liness) are transcription factor genes (Trevaskis et al., 2003; 
Yan et al., 2003) that determine the expression of many 
genes involved in response to environmental stresses. 
Mutations in such genes not only disrupt their function, but 
also cause remarkable phenotypic changes. In wheat, DVP 
(earliness) is one of the important traits allowing the wild 
and cultivated species to take full advantage of the spring-
summer season. At the same time, the Vrn genes have direct 

effects on plant productivity, yield and resistance to stresses, 
such as drought, low temperatures, pests and diseases, to 
mention a few (Zotova et al., 2019).

This paper considers the results of the modern molecular 
and genetic studies concerning spring/winter growth habit 
control and the effect of the allelic diversity of the Vrn genes 
on DVP in spring plants.

How many VRN loci does wheat have?
To date, six dominant Vrn genes (three Vrn-1: Vrn-A1, 
Vrn- B1, and Vrn-D1) (Yan et al., 2003), two Vrn-3 (Vrn-A3, 
and Vrn-B3) (Nishimura et al., 2018), one Vrn-D4 (Kippes 
et al., 2016)) and one recessive gene, vrn-2 (Yan et al., 
2004a) have been described as the ones controlling spring 
growth habit. Let us consider their main features.

VRN-1 locus. In di-, tetra- and hexaploid wheats, the 
spring growth habit is most commonly controlled by the 
Vrn-1 genes (Genotypes…, 1985; Catalogue…, 1987; 
Goncharov, 1998; Lysenko et al., 2014; among others). 
These genes are located in distal part of long arms of the 
homeologous group 5 chromosomes: Vrn-A1 on 5AL (Law 
et al., 1976; Galiba et al., 1995; Dubcovsky et al., 1998), 
Vrn-B1 on 5BL (Barrett et al., 2002; Iwaki et al., 2002) and 
Vrn-D1 on 5DL (Law et al., 1976). It has been shown that 
the Vrn-1 genes are orthologous to the Arabidopsis tha-
liana (L.) Heynh. closely related CAULIFLOWER (CAL), 
APETALA1 (AP1) and FURITFULL (FUL) meristem iden-
tity genes controlling the reproductive/flowering meristem 
transition (Ferrándiz et al., 2000; Yan et al., 2003; Preston, 
Kellogg, 2006; Dhillon et al., 2010). As was found, in  Ara-
bidopsis, FUL controls not only the development of carpels 
and fruits, but also flowering time (Ferrándiz et al., 2000). 
Later, another gene, WAP1 (Wheat APETALA1) were cha-
racterized as AP1-like MADS-box gene in common wheat), 
was found and characterized as an activator of the transi-
tion from vegetative to reproductive development (Yan et 
al., 2003). It was shown that WAP1 in wheat corresponds 
to Vrn-1 (Trevaskis et al., 2003). WAP1 expression begins 
before the transition to reproductive phases and continues 
until maturity (Murai et al., 2003).

The dominant Vrn-A1 alleles have insertions and/or de-
letions in the promoter regions as well insertions and/or 
deletions and single nucleotide polymorphisms (SNPs) in 
the first intron, which the native recessive gene vrn-A1 
does not (Supplementary Material)1. Deletions in the first 
intron is what differentiates most of the dominant Vrn-B1 
alleles differ from the recessive vrn-B1 allele. Additionally, 
deletions or insertions within the first intron are features of 
the dominant Vrn-D1 alleles.

Although molecular biological methods allowed a large 
number of alleles of the dominant Vrn genes to be described 
(Yan et al., 2004a, b; Fu et al., 2005; Liu et al., 2012; Milec 
et al., 2023), the effects of these alleles on the duration of 
1 Supplementary Material is available  
https://vavilov.elpub.ru/jour/manager/files/Suppl_Smolen_Engl_27_8.pdf

https://vavilov.elpub.ru/jour/manager/files/Suppl_Smolen_Engl_27_8.pdf
https://vavilov.elpub.ru/jour/manager/files/Suppl_Smolen_Engl_27_8.pdf
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vernalization treatment and flowering time were not always 
identified (see Supplementary Material).

VRN-2 locus. The Vrn2 gene (Vrn-Am2) has been re-
vealed only in the diploidic wheat T. monococcum (Dub-
cov sky et al., 1998). This gene was mapped to the distal 
part of the long arm of chromosome 5Am within the seg-
ment translocated from 4AmS (Dubcovsky et al., 2006). 
The VRN-2 locus includes two completely linked zinc 
finger-CCT domain genes ZCCT1 and ZCCT2 that act 
as flowering repressors down-regulated by vernalization 
(Yan et al., 2004a). However, it was established that the 
main determinant for Vrn-2 expression in diploid wheat 
T. monococcum and T. boeoticum Boiss. and barley Hor-
deum vulgare L is day length (Dubcovsky et al., 2006; 
Trevaskis et al., 2006).

The sequence of the Vrn-2 genes was revealed in the 
winter common wheat Jagger and 2174. No allelic variants 
of Vrn-A2 in the A genome or Vrn-D2 in the D genome 
were found (Chen Y. et al., 2009). Two duplicated copies 
of Vrn-B2 were found in 2174. The Vrn-B2 allele was not 
found in Jagger, suggesting this variety carries a null allele 
of this gene. The null-allele had no effect on flowering time 
in a segregated population. Mapping of Vrn-B2 showed 
that both of its copies in 2174 were closely associated with 
a SNP on chromosome 4BL, suggesting that the Vrn-B2 
duplicates were located in a tandem-like manner at the 
same locus. Identical Vrn-B2 sequences have been found 
in contig sequences of chromosomes 4BS, 2BS and 5DL 
in Chinese Spring (CS) (International Wheat Genome Se-
quencing Consortium..., 2018). In Aegilops squarrosa L. 
(=syn. Ae. tauschii Coss.), the sequence of the gene Vrn-D2 
was not found (Chepurnov et al., 2023). Thus, the gene 
Vrn-2 in tetra- and hexaploid wheats is inactivated (Tan, 
Yan, 2016).

VRN-3 locus. The dominant gene Vrn-B3 (formerly 
Vrn 5 or Vrn-B4) was mapped to the short arm of chromo-
some 7B using 82 recombinants obtained from crosses 
between CS and the substitution line CS/Hope 7B (Yan et 
al., 2006). The gene is activated by vernalization and long 
day; it has been identified as an orthologue of the gene 
FLOWERING LOCUS T (FT ) in Arabidopsis (Yan et al., 
2006; Cockram et al., 2007). It is not easy to understand 
the role of TaFT in flowering regulation, because both 
common wheat and barley each possesses a 78 % identical 
paralogous copy of FT2 (TaFT2 and HvFT2, respectively) 
(Yan et al., 2006; Faure et al., 2007). As the TaFT/TaFT2 
duplication event took place after these cereals and Ara-
bidopsis split off, this event is unrelated to the duplication 
of FT/TSF, the twin sister of FT found in Arabidopsis (Li, 
Dubcovsky, 2008).

The dominant gene Vrn-A3 (homologous to Vrn-B3) has 
only been revealed in tetraploid wheats and mapped on the 
short arm of chromosome 7A (Nishimura et al., 2018). It 
is unlikely that it has homologs in common wheat, and it 
must be inactive as is vrn-2 in T. monococcum.

VRN-4 locus. The dominant gene Vrn-D4 was dis-
covered in the line Gabo-2 (Knott, 1959; Pugsley, 1972; 
Goncharov, 2003) selected from the Australian commercial 
common wheat cv. Gabo. This gene was localized on chro-
mosome 5D (Kato, 1993) and mapped to the centromeric 
region of the same chromosome (Kippes et al., 2015). The 
most current hypothesis is that the dominant gene Vrn-D4 
can have emerged in polyploid wheats due to a translocation 
of a ~290 kb-fragment of the long arm of chromosomes 5A 
to the proximal part of the short arm of chromosome 5D 
(Kippes et al., 2015). The translocated segment includes 
a Vrn-A1 copy that carries mutations in the coding and 
regulatory regions (Kippes et al., 2015).

The gene is expressed at earlier stages of spring plants2, 
and its sequence does not contain any of mutations that 
were previously described for the dominant gene Vrn-A1 
and that endow common wheat with spring growth habit 
(Yan et al., 2003, 2004b). The dominant gene Vrn-D4 has 
instead three SNPs in the first intron, where the binding site 
for the TaGRP2 protein described as a negative regulator 
for Vrn-A1 is located (Fu et al., 2005).

At present, no B-genome genes homologous to Vrn-4 
are known. As the dominant gene Vrn-D4 has not been 
found in Ae. tauschii, the D-genome donor to hexaploid 
wheat (Chepurnov et al., 2023), it can be concluded that 
this mutation occurred in polyploids.

Thus, spring wheat carry mutations in the promoter or 
the first intron of the Vrn genes (Yan et al., 2004b; Fu et 
al., 2005). At the same time, most of the dominant alleles 
of the Vrn-1 genes described to date (Vrn-A1a, Vrn-Am1a, 
Vrn-A1b, Vrn-A1d, Vrn-A1e, Vrn-Am1g, Vrn-A1h and Vrn- 

A1i) carry mutations in the promoter regions, within the 
VRN box, including SNPs, indels or its full elimination 
(Shcherban, Salina, 2017). The mutations found in the Vrn 
genes are presented in Supplementary Material. Chromo-
somal locations of the Vrn genes are detailed in Table 1. 
They were confirmed by molecular biological studies (Ki-
seleva, Salina, 2018).

The fact that the dominant alleles of the Vrn-1 genes carry 
insertions and deletions that the recessive (intact) alleles 
do not may be an indication that they are evolutionarily 
younger (Milec et al., 2023). This allows their phylogenetic 
relationships to be inferred (see the Figure).

Vernalization of winter and spring wheats  
and its molecular and genetic network
Vernalization is the need of winter plants adapted to tem-
perate climates for exposure to low temperatures, ensuring 
the transition of them from vegetative to reproductive de-
velopment. A requirement for vernalization is an adaptive 
trait that helps prevent flowering before winter and permits 
flowering in the favorable conditions of spring. Winter 
plants are assumed to carry recessive (native) alleles of the 
2 See scales for growth and development in cereals (Efremova, Chumanova, 
2023).
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Table 1. Designation and localization in chromosomes of genes for growth habit in spring and winter wheat  
(after Goncharov (2012) with addition)

Phenotype Haploid genotype Allelism and chromosomal  
localization

Reference

Tetra- and hexaploid wheats
according to hypothesis and data of K. Tsunewaki, B.S. Jenkins (1961) and K. Tsunewaki (1962)

Spring Sg1Sg2Sg3*
sg1sg2sg3
Sg1sg2Sg3*

Sg1–Sg1c–sg1 (5D) Tsunewaki, Jenkins, 1961;  
Tsunewaki, 1962

Sg1cSg2cSg3* Sg2–Sg2c–sg2 (5A)

Sg1cSg2Sg3* 
Sg1cSg2Sg3*

Sg3–sg3 (2B)

sg1sg2sg3Sg5* Sg5–sg5 (5B) Singh, 1967

Winter sg1sg2Sg3 Tsunewaki, 1962

According to A.T. Pugsley (1972) hypothesis and to a number of author data

Spring Vrn-A1vrn-B12vrn-D1 Vrn-A1–vrn-A1 (5AL) Law et al., 1976

vrn-A1Vrn-B12vrn-D1 Vrn-B1–vrn-B1 (5BL) Barrett et al., 2002

vrn-A1vrn-B12Vrn-D1 Vrn-D1–vrn-D1 (5DL) Law et al., 1976

vrn-A1vrn-B12vrn-D1Vrn-B3 Vrn-B3 (7BS)** Yan et al., 2006 

vrn-A1vrn-B12vrn-D1Vrn-A3 Vrn-A3 (7AS)** Nishimura et al., 2018

vrn-A1vrn-B12vrn-D1Vrn-D4 Vrn-D4 (5DS)** Kippes et al., 2014

and an any combination of dominant genes

Winter vrn-A1vrn-B1vrn-D1 Pugsley, 1972

Diploid T. boeoticum and T. monococcum 
according to J. Dubcovsky et al. (1998) hypothesis and to a number of author data

Spring Vrn-A1vrn-A2 Vrn-A1-vrn-A1 (5AL) Dubcovsky et al., 1998

vrn-A1vrn-A2 Vrn-A2–vrn-A2 (4AL) Yan et al., 2004b

Winter vrn-A1Vrn-A2 Dubcovsky et al., 1998

  * Spring growth habit is observed for any allelic state of the gene Sg3.
** The gene does not have recessive alleles.

vrn genes, with mutations in any of them leading to partial 
or complete inhibition of response to vernalization (Fu et 
al., 2005; Milec et al., 2023) and to a conversion of winter 
growth habit to spring ones. Spring plants form ears with-
out vernalization, even though late-ripening spring forms, 
including the facultative growth ones3, may respond to 
vernalization by promoting earliness and a reducing DVP. 
Vernalization in the late-ripening spring plants is poorly 
studied. In southern latitudes, vernalization is believed to 
provide autumn-sown late-ripening spring plants protection 
against damage from early-autumn light frosts.
3 Facultative growth habit is an agrotechnological characteristic. Faculta-
tive growth habit plants can be both autumn-sowing and spring-sowing as 
reserve crops. At present, the State Register of RF includes three facultative 
growth habit cultivars produced in the Lukyanenko National Grain Center 
(Krasnodar, Russia) (State Register…, 2023).

A major obstacle to the study of the transition from vege-
tative to reproductive development is misidentification of 
the functions performed by the alleles of the Vrn genes. The 
misidentification arose from a terminological confusion 
started by Australian scientists A.T. Pugsley (1968) and 
R.A. McIntosh (1973), who were unfortunate to replace 
“spring growth” (Tsunewaki, 1962) with “response to 
ver nalization” (Pugsley, 1971) (see Table 1). This term re-
placement were certain reasons (Pugsley, 1968); however, 
they were rather speculative. Years went by, but even so 
J. Dubcovsky, a molecular biologist, overlooked the issue 
and allowed this terminological mess to become part of 
the subsequent editions of “Catalogue of Gene Symbols 
for Wheat” (McIntosh et al., 2013). Note that the gene 
symbol Sg (spring growth) has immediate relevance to the 
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Scheme of Triticum and Aegilops genera evolution (according to Goncharov, 2011, with additions).  
Different alleles of Vrn-A1 gene among wheat species are presented in appropriate boxes next to the species names. Section Timopheeevii 
is presented in grey boxes, while section Monococcon, Dicoccoides and Triticum are in white ones (after Konopatskaia et al., 2016, with 
additions).

trait spring growth habit vs. winter growth habit and allows 
this trait to be explicitly formalized (Goncharov, 2004). In 
this case, the classification of the trait is genotype-based, 
not phenotype-based (Steinfort et al., 2017). 

Need to pay attention that genotyping and phenotyp-
ing data may be inconsistent (see Table 2 in M. Makhoul 
(2022)). This relates to autumn-sown spring cultivars in 
the southern regions of the Eastern Hemisphere (Makhoul 
et al., 2022). Unfortunately, it is becoming more and more 
popular to state (postulated) the phenotypes depending on 
the sowing season (Steinfort et al., 2017). While, the phe-
notyping has to base solely on growth habit of plant (spring 
vs. winter). A.T. Pugsley (1983) begins his terminology-
related considerations with “winter growth habit”, that 
is, the physiological condition of a wheat plant requiring 
treatment to low temperatures (vernalization) and, conse-
quently, having “response to vernalization” before it can 
come to reproductive phase. 

And only the next step (question) is about phenotyping 
based on growth habit (spring vs. winter). The trait has to 
phenotyped as a qualitative morphological one (Goncharov, 
2004). Plant phenotypes differ in that some plants switch 
to reproductive growth within a single spring-summer 
season and some do not. Wheat varieties are phenotyped 
with respect to this trait in the summer, at high positive 

temperatures, during ontogenesis after planting in the field 
or a greenhouse. 

Response to vernalization is a quantitative trait, and so 
the accessions should be phenotyped using low tempera-
tures (vernalization). In this case, the ultimate question is 
one about the duration of vernalization treatment (Dol-
gushin, 1935). Spring plants, even late-ripening ones, do 
not require vernalization to proceed to reproductive growth. 
Producing a unified approach for phenotyping spring/winter 
will make it possible to correctly compare all available 
research results.

In the database Wheat Trait Ontology, the traits plant 
growth habit (vernalization) and earliness are in the same 
subclass Development of class Trai and are associated with 
plant phenotype (Nédellec et al., 2020). The trait response 
to vernalization is not there, it is in the subclass Response 
to environmental conditions, meaning are the response of 
plants to the influence of the external environment (to a 
stress factor).

An important part of a unified approach to defining and 
phenotyping a trait is not only the terminology, but also 
the symbols of wheat genes. After the power to decide 
was shifted from one group of researchers (Ausemus et 
al., 1946) to another (McIntosh et al., 1973), the mislead-
ing terms “response to vernalization” became “legalized”. 

Common ancestor

×

Ancestor of genus Triticum

T. urartu:
recessive vrn1, vrn-A1u

T. araraticum:
Vrn-Ab, Vrn-A1f

T. timopheevii:
Vrn-A1f

Ae. speltoides

Tetraploid wheat

T. aestivum:  
Vrn-Aa, Vrn-A1b,  
Vrn-A1f, vrn-A1u

T. carthlicum: Vrn-A1e
T. durum: Vrn-A1b, Vrn-A1e, vrn-A1u
T. polonicum: Vrn-A1b
T. turanicum: Vrn-A1b, Vrn-A1f, vrn-A1u
T. turgidum: Vrn-Ab, Vrn-A1d, vrn-A1u
T. aethiopicum: vrn-Au

Ae. tauschii
T. boeoticum:
recessive vrn1,  

Vrn-A1h, Vrn-A1g

T. monococcum:
recessive vrn1,  

Vrn1f, Vrn1g, Vrn-A1g

T. sinskajae:
recessive vrn1

T. dicoccoides:
Vrn-Ab, Vrn-A1d,  

Vrn-A1dic, Vrn-Af, vrn-Au

T. dicoccum:
Vrn-A1a, Vrn-A1b,  

Vrn-A1e, vrn-Au

Ancestor of genus Aegilops
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Table 2. Polymorphism of recessive alleles of the Vrn genes in winter wheat

Gene/locus Allele Mutation Accession Reference

Diploid wheat (2n = 2x = 14)

Vrn-A1 vrn-A1u Identical to sequences  
of polyploid wheats

T. urartu Thum. ex Gandil.  IG 44829 Golovnina et al., 2010

VRN-2 (ZCCT1) vrn2 Point mutation at position 35  
in the coding region of the CCT domain

T. monococcum DV92 Yan et al., 2004а

vrn2 Complete deletion of ZCCT1 T. monococcum

vrn2 Data not present T. monococcum TRI 17025  Shcherban et al., 
2015b

Tetraploid wheat (2n = 4x = 28)

Vrn-A1 vrn-A1b.3 Deletion of the “T” upstream and the 20 bp 
deletion downstream of the VRN-box

T. turgidum PI 223173,  
T. durum PI 655432

Muterko et al., 2016

vrn-A1b.4 » T. dicoccoides PI 466941

Hexaploid wheat (2n = 6x = 42)

Vrn-A1 vrn-1a / vrn-A1b SNP in exon 4 Jagger (PI 593688)/2174 (PI 602595) Chen Y. et al., 2009

vrn-A1b.3 Deletion of the “T” upstream and the 20 bp 
deletion downstream of the VRN-box

T. spelta L. PI 168680
T. vavilovii Jakubz. PI 428342

Muterko et al., 2016

Vrn-B1 vrn-B1 5’ UTR 1-bp deletion + 8 bp start  
of a 2nd deletion

i: Triple Dirk C Yan et al., 2004b

Vrn-D1 vrn-D1 5’ UTR 1-bp deletion + 15 bp start  
of a 2nd deletion 

i: Triple Dirk C

Vrn-D1 vrn-D1r SNP polymorphism CArG-boxes  
of the vrn-A1 promoter

Strejčková et al., 2021; 
Makhoul et al., 2022

Vrn-B3 Null-allele cv. Yanzhan 4110 Chen F. et al., 2013

Notе. Mutations in the recessive alleles of the gene vrn-A1 in hexaploid wheat (Chen Y. et al., 2009) and the gene Vrn-2 in diploidic wheat (Yan et al., 2004b)  
are in the coding regions.

That is why, although Vrn is a legal abbreviation and late-
ripening spring and facultative (intermediate) growth habit 
varieties have response to vernalization, we will be using 
a more relevant term “growth habit (spring vs. winter)” 
throughout. We suggest the term “vernalization response” 
be left only for winter wheat (Fayt et al., 2018). Whether 
or not the recessive genes vrn really control vernalization 
response in winter varieties is still a question. Let us have 
a closer look at the matter.

Polymorphism of the recessive alleles of Vrn genes  
in winter wheat
All dominant Vrn genes known to date that control the 
qualitative difference between spring and winter wheats 
have been cloned. Two mutually exclusive hypotheses have 
been proposed: one stating that the duration of vernaliza-
tion treatment in winter plants depends on the variability 
of the recessive alleles vrn-A1 for winter growth habit 
(Pugsley, 1971; Chen Y. et al., 2009, 2010) and the other 
stating that it depends on a system of genes independent of 

them (Gotoh, 1979; Bulavka, 1984; Fayt, 2003, 2006a, b; 
Stelmakh et al., 2005) and unrelated to the expression of 
the recessive vrn genes. 

This process has been poorly studied genetically and not 
studied at all at the molecular and biological level. Now it 
is obvious that the polymorphisms for the recessive genes 
vrn in winter wheat varieties do not explain differences 
in the duration of vernalization treatment between these 
varieties (Table 2). Not a single exception invalidating this 
genetic model has been reported in the studies, in which a 
large number of cultivars/germplasms from wheat species 
with different ploidy levels were screened using molecular 
markers for the recessive alleles of the each of Vrn-1 genes 
(Yan et al., 2003, 2004a, b; Fu et al., 2005; Bonnin et al., 
2008; Zhang X.K. et al., 2008; Santra et al., 2009; Chen Y. 
et al., 2010). The polymorphism for the Vrn-3B and Vrn-4D 
genes, in which the recessive allele is represented only by 
only as a null allele, makes an exception.

The alleles that have SNPs in exon 4 of the recessive 
gene vrn-A1 are associated with the regulation of the de-
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velopment of winter plants and are designated vrn-A1a in 
Jagger (PI 593688) and vrn-A1b in 2174 (PI 602595). In a 
field assessment of a population of 96 recombinant inbred 
lines from crosses between Jagger and 2174, Y. Chen et 
al. (2009) showed that the vrn-A1a plants had an earlier 
onset of shooting. At the same time, the effects of the alleles 
on the duration of vernalization treatment have not been 
checked experimentally.

Plants with the 3_SNPs haplotype showed higher tran-
scription levels of the gene Vrn-A1 than 1_SNP plants (Kip-
pes et al., 2018). An assumption was made that the single 
nucleotide polymorphism in the regulatory region of the 
first intron should probably be associated with differences in 
the duration of vernalization treatment in the winter wheat. 
However, the attempt made by N. Kippes et al. (2018) to 
associate the SNPs in the recessive gene vrn-A1 with the 
duration of vernalization treatment cannot be recognized 
successful: the authors used the winter near-isogenic line 
Triple Dirk C, a derivative of the spring cv. Triple Dirk, 
and in our experiments, Triple Dirk C plants, in the field, 
progressed into shooting (and some came to ear) within four 
months without vernalization (Goncharov, 2012).

It can be concluded that none of the known changes 
(point mutations) in the sequences of the recessive genes 
vrn has any effect on the duration of vernalization treatment 
in the winter wheat accessions (see Table 2).

Note that isogenic lines for the Vrd genes controlling 
variation in the duration of vernalization treatment in 
winter common wheat have long since been created (Fayt, 
2006b) and can now be used in molecular and biological 
experiments. These genes reside on the winter common 
wheat’s chromosomes: Vrd1 on 4A and Vrd2 on 5D (Fayt 
et al., 2007).

Allelic variability at the VRN locus and winter growth 
habit. Mutations in the regulatory regions of the Vrn-1 gene 
are associated with prevalent spring growth habit, while 
the point mutations of a gene (or genes) at the VRN-2 
locus (the vrn-2a allele) or the deletion of an entire gene 
(the vrn-2b allele) are also associated with spring growth 
as a recessive trait in diploid wheat T. monococcum and 
barley H. vulgare (Yan et al., 2004b; Dubcovsky et al., 
2005). No multiple allelism of the dominant gene Vrn-2 
controlling winter growth habit has been revealed. This 
offers indirect evidence that this gene is not associated 
with the duration of vernalization treatment in the diploid 
T. monococcum or T. boeoticum. What genes control it at 
barley is not known either.

Variability of dominant alleles  
of the Vrn genes in spring accessions of di-,  
tetra- and hexaploid wheats and their effect  
on duration of the vegetative period
The number of works analyzing the distribution of the 
dominant genes Vrn and their alleles in the main wheat 
cultivation areas is impressive (Catalogue…, 1987; Gon-

charov, 1998; Fu et al., 2005; Zhang X.K. et al., 2008; Ly-
senko et al., 2014; Smolenskaya et al., 2022; and  others). 
Differences of the regions by alleles is shown (Geno-
types…, 1987; Stelmakh, 1990; Goncharov, 1998). As far 
as modern spring common wheat are concerned, Vrn-A1a 
is prevalent in cold-winter areas where spring wheat are 
sown only in the spring. By contrast, the dominant alleles 
of the homologous genes Vrn-B1a and Vrn-D1a are highly 
frequent in the varieties cultivated in the Mediterranean 
climate, where spring wheats are sown in the autumn 
(Stelmakh, 1990; Zhang X.K. et al., 2008; Shcherban, et 
al., 2015a). Noteworthy, Vrn-D1a emerged in Southern 
Europe in the 1930s together with photoperiod-insensitivity 
and reduced height genes coming from Japanese common 
wheat (Goncharov, 2012). The question as to whether the 
dominant gene Vrn-B3 can be widely used outside China 
(Bonnin et al., 2008) requires special close consideration. 
This gene has not been found in Russia’s cultivars (Lysenko 
et al., 2014), nor has it been found in the progeny of the 
variety Hope (Goncharov, Gaidalenok, 2005), the gene 
Vrn-B3 donor for the isogenic line CS/Hope 7B.

Facultative growth habit plants. In English-language 
literature, facultative growth plants are known as “inter-
mediate” (Flood, Halloran, 1986). According to B.V. Rigin 
and the colleagues, the spring growth habit in them should 
be determined by the dominant Vrn-A1 gene (Genotypes…, 
1985), while in A.F. Stelmakh’ opinion, exclusively by the 
dominant gene Vrn-B1 (Stelmakh, 1981). In Chinese wheat, 
the facultative growth habit plants possess the dominant 
allele Vrn-D1b (Zhang X.K. et al., 2008).

Because facultative growth habit plants (sometimes 
called semi-spring) play an important role in wheat pro-
duction in some areas (Fayt et al., 2018), 689 Chinese 
varieties were studied for the frequency and distribution 
of the allele Vrn-D1b in them. The results showed that al-
lele Vrn-D1a, Vrn-D1b and vrn-D1 were present in 27.3, 
20.6 and 52.1 % of the specimens, respectively. Pedigree 
analysis indicates that Vrn-D1b originated from Chinese 
landraces (Guo et al., 2015).

A study of F2 hybrid segregating for Vrn-D1b and Vrn-
D1a in greenhouse long-day conditions without vernaliza-
tion showed that the Vrn-D1b homozygote plants would 
heading 32 days later than Vrn-D1a homozygotes. Because 
Vrn-D1b has the same deletion in the first intron as does 
Vrn-D1a and a single nucleotide mutation in the promoter 
region and is associated with facultative growth habit, the 
authors proposed that the mutation in the promoter can 
change the basal activity level of gene Vrn-D1, which is 
al ready active due to the deletion in the first intron (Zhang J. 
et al., 2012).

Copy number of the Vrn genes. Change in the copy 
number (CNV) of the Vrn-1 genes is one of the sources 
of genetic variability in hexaploid wheat (Díaz et al., 
2012; Würschum et al., 2015). In most cases, CNV is as-
sociated with changes in gene Vrn expression (Muterko, 
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2023); however, data on their effect on the DVP are incon- 
sistent.

Hexaploid wheat species (2n = 6x = 42)
The most economically important point in the study of 
allelism of the dominant genes Vrn is the search for their 
functional association with the DVP. Data on DVP (earli-
ness) in spring wheat are quite inconsistent. According to 
K.A. Flaksberger (1938), it is in a range between 76 and 
140 or more days. Other authors report variations from 
70–80 to 120–130 days (Kumakov, 1980). Opinions differ 
as to how to classify commercial common wheat varieties 
by maturity (Goncharov N.P., Goncharov P.L., 2018), as 
this classification has a clear-cut region-specific flavor. At 
the same time, earliness can be associated with different 
combinations of the dominant alleles of the Vrn genes (see 
Supplementary Material).

VRN-A1 allele. The distribution of spring common 
wheat into ripeness groups revealed that this trait is influ-
enced by a combinations of certain dominant genes Vrn 
and their alleles (Stelmakh, 1993; Likhenko et al., 2014; 
Smolenskaya et al., 2022). Spring varieties with the domi-
nant gene Vrn-A1 are usually more early-ripening than the 
varieties with dominant genes Vrn-B1 and Vrn-D1 (Stel-
makh, 1993). It has been demonstrated the main contributor 
to the reduction in duration between emergence of plant 
seedlings and heading is the dominant allele Vrn-A1a, while 
Vrn-A1b, in contrast, accounts for later heading (Efremova 
et al., 2016). Additionally, the varieties with the dominant 
allele Vrn-A1b is rare in Siberia, 8 % (Smolenskaya et al., 
2022). The Vrn-A1a has an insertion in promoter region 
and Vrn-A1b, in contrast, a deletion (Yan et al., 2004b).

B.V. Rigin and the colleagues (2021) stated that the ul-
tra-ripening lines Rico (K-65588) and Rimax (K-67257) 
had the shortest time from emergence plant shootings to 
heading among all spring common wheat accessions in the 
VIR collection. Their genotypes revealed dominant alleles 
for three Vrn genes at once, Vrn-A1, Vrn-B1 (respectively 
Vrn-B1a or Vrn-B1c), and Vrn-D1.

Any of the dominant alleles, Vrn-A1a or Vrn-A1b, dis-
ables response to vernalization, while any of the dominant 
alleles of the Vrn-B1 or Vrn-D1 genes induces a residual 
response and leads to later flowering (Stelmakh, 1993). 
These data were confirmed by studies showing that the 
dominant alleles Vrn-A1a and Vrn-A1b in combination with 
the dominant gene Vrn-B1 can provide optimum flowering 
time and potentially high yield in the Pacific Northwest 
region of the USA, while spring wheat varieties with the 
dominant gene Vrn-D1 may have advantage in Idaho and 
Oregon, where the vegetation periods are longer (Santra 
et al., 2009).

VRN-B1 allele. A novel allele, Vrn-B1c, probably asso-
ciated with earlier ripening in late-ripening spring varieties 
was revealed using near-isogenic lines with different alleles 
of the Vrn-B1 gene (Shcherban et al., 2012a). Its prevalence 

among common wheat varieties in Western Siberia and the 
North Kazakhstan, when spring growth habit being under 
monogenic control, was demonstrated (Shcherban et al., 
2012b). In the absence of epistatic effects of the dominant 
Vrn-A1 gene, this allele causes earlier heading than does 
Vrn-B1a (Shcherban et al., 2013). The effect of Vrn-B1f on 
heading time is similar to that of Vrn-B1c, but the mecha-
nism of its regulation most likely appears to be different 
(Strejčková et al., 2021).

VRN-D1 allele. The dominant gene Vrn-D1 occurs 
only in hexaploid wheat cultivars in the Asian region and 
some Italian varieties (Stelmakh, 1993; Goncharov, 1998). 
K. Iwaki and the colleagues (2000, 2001) found the domi-
nant allele Vrn-D4 in a large number of common wheat 
cultivars from different regions worldwide (55 cultivars 
out of 272 studied). The highest frequency of occurrence 
was observed in accessions from India and the bordering 
countries (Iwaki et al., 2000, 2001). This dominant gene 
had previously been found in most accessions of the In-
dian hexaploid endemic species T. sphaerococcum Perciv. 
(Goncharov, Shitova, 1999).

The dominant allele Vrn-D t1 with a 5.4-kb deletion in the 
first intron was found in spring plants of Ae. tauschii from 
the Middle East (Takumi et al., 2011). One more dominant 
allele was described later (Chepurnov et al., 2023). This 
allele has effect on heading time.

All the variants identified in three Vrn-1 homeologs in 
wheat were designated as separate alleles, but not all of 
them were experimentally confirmed to have any effect on 
DVP (earliness) (see Supplementary Material).

VRN-B3 allele. The nucleotide substitutions or inser-
tions/deletions in the copies of the FT gene (Vrn-B3) in 
the A and D genomes in 239 local, old local and modern 
commercial cultivars from different regions cause DVP 
polymorphisms (Bonnin et al., 2008). In contrast to Vrn-1, 
the homeologous copies of the FT gene showed no evi-
dence of epistatic interactions (Bonnin et al., 2008). TaFT 
overexpression in transgenic T. aestivum plants consider-
ably accelerated flowering compared to the non-transgenic 
control (Yan et al., 2006).

The absence of isogenic lines does not allow its different 
alleles to be compared for the strength of their phenotypic 
manifestation. Note that, line 620 with Vrn-B3 had much 
later heading (Goncharov, 2012). Later heading was also 
observed in cultivars carrying various Vrn-B3 alleles, Vrn-
B3a and Vrn-B3b (Chen F. et al., 2013), and Vrn-B3d and 
Vrn-B3e (Berezhnaya et al., 2021).

Two hundred and seventy eight Chinese spring com-
mon wheat cultivars were characterized using molecular 
markers of the Vrn-A1, Vrn-B1, Vrn-D1 and Vrn-B3 genes. 
The varieties possessing from three to four dominant Vrn 
genes, including the rare dominant gene Vrn-B3, were the 
earliest (30–31 days to heading on average), and one-, two-, 
or three-gene combinations, including the dominant gene 
Vrn-A1, but not Vrn-B3, followed (38 days to heading on 
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average). On the basis of these data, the dominant Vrn-1 
genes were ranked according to the amount of their influ-
ence on DVP reduction in the Chinese cultivars: Vrn-A1 > 
Vrn-B1 > Vrn-D1 (Zhang X.K. et al., 2008). This ranking 
is not the same as those reported elsewhere (Gotoh, 1979; 
Goncharov, 2003).

VRN-D4 allele. The dominant gene Vrn-D4 has a weaker 
effect on DVP than have the Vrn-A1, Vrn-D1 or Vrn-B3 
genes (Kippes et al., 2014), but stronger than Vrn-B1 (Go-
toh, 1979; Goncharov, 1998).

Tetraploid wheat species (2n = 4x = 28)
Based on the analysis of Vrn-A3 expression using sister 
lines, earlier flowering in accession TN26 of T. dicoccum 
Schrank ex Schuebl. than in accession TN28 of T. pyra mi-
dale Perciv. is due to a 7-bp insert in the promoter region 
of the gene which, this insert including a cis-element of the 
GATA box (Nishimura et al., 2018). The analysis revealed 
the presence of the early-flowering alleles of Vrn-A3 in spelt 
wheat from Ethiopia and India and their absence in the 
accessions of T. durum Desf. and common wheats. These 
re sults led the authors to the conclusion that the Vrn-A3a- h1  
and Vrn-A3a-h2 alleles should be useful in breeding for 
earliness in durum and common wheat (Nishimura et al., 
2021).

T. carthlicum Nevski and T. dicoccum accessions pos-
sessing the Vrn-B1c allele with a retrotransposon insertion 
passed to flower without vernalization. Transcripts in the 
winter DH-lines possessing the recessive vrn-B1 allele 
were observed no sooner than after vernalization (Chu et 
al., 2011).

Two spring accessions, PI 208912 (Iraq) of T. turgidum 
and PI 74830 (China) of T. durum and one winter accession 
PI 221422 (Serbia) of T. turgidum started to flower without 
vernalization. However, they did so substantially later than 
plants with the dominant Vrn-A1 or Vrn-B1 genes. Interest-
ingly, winter accession PI 221422 started to flower 25 days 
later than did spring accessions PI 208912 and PI 74830. 
All of them have recessive vrn-B1 alleles and null alleles 
vrn-B3. It is proposed that their late flowering is due to the 
Vrn-A1i allele (Muterko et al., 2016).

The combination of the dominant Vrn-A1 and Vrn-B1s 
alleles was associated with early flowering the tetraploid 
species T. dicoccum and T. dicoccoides (Körn. ex Asch. et 
Graebn.) Schweinf. (Muterko et al., 2016). Vrn-A1 allelism 
is a possibility in T. dicoccum (Rigin et al., 1994).

The gene’s allelic variant coming from T. militinae Zhir. 
et Migusch. was designated Vrn-A1f-like. QTL analysis 
showed that it caused a 1.9–18.6-day delay in the flowering 
time of Tähti and Mooni, depending on cultivation condi-
tions (Ivaničová et al., 2016).

In all T. timopheevii (Zhuk.) Zhuk. accessions studied, 
the spring growth habit was associated with the dominant 
Vrn-A1f-ins and Vrn-A1f-del/ins alleles (Golovnina et al., 
2010; Shcherban et al., 2016). The same allele was found 

in wild T. araraticum Jakubz. (Golovnina et al., 2010). 
Noteworthy, this species has an extremely limited number 
of spring forms (Goncharov, 1998).

Diploid wheat species (2n = 2x = 14)
It is possible that the pattern of inheritance in diploid 
wheats is more sophisticated than it used to be thought 
before, as spring growth habit in the wild T. boeoticum 
has recently been shown to be under digenic control (Fu 
Hao, Boguslavskyi, 2023). Similar results obtained for the 
T. monococcum by L. Smith (1939) have remained un-
noticed. Spring accessions of T. urartu, the Au-genome 
donor for polyploid wheat species, were found to have 
a Vrn-A1 mutation typical for the section Triticum spe-
cies (Golovnina et al., 2009). However, as few as four 
T. urartu accessions from among 400 studied were spring 
(Goncharov, 1998), of which two were “odd” in that they 
were T. urartu phenotypically (with velvety pubescence of 
leaves), but T. boeoticum karyotypically (Adonina et al., 
2015) and, therefore, Vrn-A1 polymorphism is most likely 
to have emerged no sooner than in polyploid wheats.

In field conditions, T. monococcum with various dele-
tions in the promoter region of the Vrn-A1f and Vrn-A1g 
alleles showed 59–60 days to heading on average and did 
not differ significantly from each other in terms of this 
measure ( p = 0.842) (Chepurnov, Blinov, 2022).

Enhancing the diversity of polymorphisms  
in the Vrn genes and prospects in breeding  
for reduced duration of the vegetative period
The polymorphism in dominant Vrn genes controlling 
spring growth habit in varieties of Siberia and the Euro-
pean part of Russian Federation is extremely low (Lysenko 
et al., 2014; Smolenskaya et al., 2022). In 75 % of the cul-
tivars in Siberia, this trait is under digenic control exerted 
by the dominant Vrn-A1 and Vrn-B1 genes; in 25 %, under 
monogenic control exerted by dominant genes (among  
24 cultivars, 19 are controlled by a single dominant gene 
Vrn-A1 and 5, by a single dominant gene Vrn-B1). Trigenic 
control was discovered for one cultivar, Tulun 15, (Li-
khenko et al., 2014). The conclusion made by E.A. Moi-
seeva and N.P. Goncharov (2007) that spring growth habit 
in the of Western and Eastern Siberian wheat cultivars is 
controlled by two dominant Vrn genes has been confirmed. 
An increased prevalence of the allele Vrn-B1c in West Si-
berian cultivars and of the allele Vrn-B1a in East Siberian 
cultivars has been observed, suggesting their selectivity to 
environments of these regions (Smolenskaya et al., 2022). 
Other regions of the Russian Federation have not yet been 
considered with this amount of scrutiny (Lysenko et al., 
2014).

Our assumption is that, the level of DVP-related poly-
morphism in spring wheat cultivars in Siberia in particular 
and Russia in general can be enhanced by introgression 
of the dominant alleles of the Vrn genes from their wild 
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ancestor (Goncharov, Chikida, 1995; Goncharov, 1998) 
or by using rare alleles that are present in their gene pool 
(Stel makh, Avsenin, 1996; Koval, Goncharov, 1998) but 
have not been studied by a molecular genetic methods and 
are rarely used in the breeding. Note that T. urartu Thum. ex 
Gandil. – the donor of the Au genome of polyploid wheats 
does not carry any mutation that could be new to spring 
common wheat (Golovnina et al., 2010). The use of the 
diploid species T. monococcum carrying the Ab genome 
(Goncharov et al., 2007; Nishiura et al., 2018) appears to 
be impracticable either, due to its evolutionary unrelated-
ness to cultivated wheat. Consequently, the model based on 
T. monococcum is not successful, as it leads modern plant 
cultivation nowhere.

The aim of the future efforts is to develop a simple model 
predicting wheat phenology, with effects of vernalization 
and photoperiods taken into account. New facts about the 
expression of the Vrn genes, their allelic composition, and 
interaction with other genes will allow us to learn more 
about the associations known to date (Distelfeld et al., 
2009; Jin, Wei, 2016; Krasileva et al., 2017; Kiseleva, 
Salina, 2018; Milec et al., 2023). This knowledge will 
undoubtedly contribute to increasing the efficiency of next 
generation breeding.
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