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Abstract. Analysis of hyperspectral images is of great interest in plant studies. Nowadays, this analysis is used more and 
more widely, so the development of hyperspectral image processing methods is an urgent task. This paper presents a 
hyperspectral image processing pipeline that includes: preprocessing, basic statistical analysis, visualization of a multichan-
nel hyperspectral image, and solving classification and clustering problems using machine learning methods. The current 
version of the package implements the following methods: construction of a confidence interval of an arbitrary level for 
the difference of sample averages; verification of the similarity of intensity distributions of spectral lines for two sets of 
hyperspectral images on the basis of the Mann–Whitney U-criterion and Pearson’s criterion of agreement; visualization 
in two-dimensional space using dimensionality reduction methods PCA, ISOMAP and UMAP; classification using linear or 
ridge regression, random forest and catboost; clustering of samples using the EM-algorithm. The software pipeline is imple-
mented in Python using the Pandas, NumPy, OpenCV, SciPy, Sklearn, Umap, CatBoost and Plotly libraries. The source code 
is available at: https://github.com/igor2704/Hyperspectral_images. The pipeline was applied to identify melanin pigment 
in the shell of barley grains based on hyperspectral data. Visualization based on PCA, UMAP and ISOMAP methods, as well 
as the use of clustering algorithms, showed that a linear separation of grain samples with and without pigmentation could 
be performed with high accuracy based on hyperspectral data. The analysis revealed statistically significant differences in 
the distribution of median intensities for samples of images of grains with and without pigmentation. Thus, it was demon-
strated that hyperspectral images can be used to determine the presence or absence of melanin in barley grains with great 
accuracy. The flexible and convenient tool created in this work will significantly increase the efficiency of hyperspectral 
image analysis.
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Аннотация. Анализ гиперспектральных изображений представляет большой интерес при изучении растений. В на-
стоящее время такой анализ используется все более широко, поэтому создание методов обработки гиперспектраль-
ных изображений является актуальной задачей. В статье представлен конвейер для работы с гиперспектральными 
изображениями, который включает: предварительную обработку, базовый статистический анализ, визуализацию 
многоканального гиперспектрального изображения, а также решение задач классификации и кластеризации с 
применением методов машинного обучения. В текущей версии пакета программ реализованы следующие методы: 
построение доверительного интервала произвольного уровня для разницы выборочных средних; проверка сход-
ства распределений интенсивности линий спектра для двух наборов гиперспектральных изображений на основе 
U-критерия Манна–Уитни и критерия согласия Пирсона; визуализация в двухмерном пространстве с применением 
методов понижения размерности PCA, ISOMAP и UMAP; классификация с использованием линейной или гребневой 
регрессии, случайного леса и градиентного бустинга; кластеризация образцов с помощью EM-алгоритма. Программ-
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ный конвейер реализован на языке Python с использованием библиотек Pandas, NumPy, OpenCV, SciPy, Sklearn, Umap, 
CatBoost и Plotly. Исходный код доступен по адресу: https://github.com/igor2704/Hyperspectral_images. Данный кон-
вейер был применен для идентификации пигмента меланина в оболочке зерен ячменя на базе гиперспектральных 
данных. Визуализация на основе методов PCA, UMAP и ISOMAP, а также использование алгоритмов кластеризации 
показали, что на базе гиперспектральных данных с высокой точностью можно провести линейное разделение об-
разцов зерен с пигментацией и без нее. Анализ выявил статистически значимые различия в распределении медиан 
интенсивности для выборок изображений зерен с пигментом и без него. Таким образом, продемонстрировано, что 
с помощью гиперспектральных изображений с большой точностью можно определить наличие или отсутствие ме-
ланина в зернах ячменя. Созданный в данной работе гибкий и удобный инструмент позволит существенно повысить 
эффективность анализа гиперспектральных изображений.
Ключевые слова: гиперспектральные изображения; машинное обучение; статистический анализ; зерна ячменя; 
пигментный состав.

Introduction
The presence of pigments in the grain shell affects its various 
technological properties. For example, flavonoids, anthocya-
nins and carotenoids have a number of valuable properties, are 
antioxidants and affect the nutritional value of the grain. The 
addition of wheat bran with purple pericarp or blue aleurone 
layer to flour can improve the quality of bakery products 
through taste, texture and color characteristics (Machálková 
et al., 2017). Phlobaphenes, which impart red coloration to the 
grain pericarp, have a positive effect on the duration of grain 
dormancy and prevent preharvest germination (Flintham et 
al., 2002). Therefore, wheat genotypes with red grain color-
ation are used in breeding as donors of genes for resistance 
to preharvest grain germination (Krupnov et al., 2013; Fak-
thongphan et al., 2016). 

Genetic control of color formation of both grains and other 
plant organs is carried out by genes encoding enzymes in-
volved in pigment biosynthesis, as well as regulatory genes 
(Khlestkina, 2014; Lachman et al., 2017; Shoeva et al., 2018). 
For a number of pigments, these genes have been investigated 
quite well, to the point of fully deciphering their nucleotide 
sequences and location in the genome. However, for some pig-  
ments, such as melanin, which determines the black color-  
ation of barley grains, the molecular mechanisms of biosyn-
thesis are not yet fully known (Glagoleva et al., 2017; Shoeva 
et al., 2018).

High-performance, non-destructive and accurate measure-
ment techniques play an important role in assessing seed 
quality and improving agricultural production (Afonnikov 
et al., 2016, 2022). Hyperspectral and multispectral imaging 
techniques covering visible, near-infrared wavelength ranges 
provide spectral and spatial information for each image pixel. 
Hyperspectral images represent reflected intensity values for 
hundreds of wavelength intervals, which is significantly larger 
than for multispectral images with multiple wavelength ranges 
(Gowen et al., 2007).

By reducing the total amount of data, multispectral imag-
ing systems aim to rapidly acquire images with relatively low 
spatial resolution and can be used in real time. Hyperspectral 
images, on the other hand, are typically used as datasets from 
which optimal wavelength ranges can be determined, which 
will be further used in multispectral imaging for a specific 
application problem (Qin et al., 2013). Such technologies 
allow obtaining more accurate information about the charac-
teristics of reflected radiation of objects, compared to digital 
RGB images.

Hyperspectral data analysis has been successfully applied 
to crop yield estimation and prediction. L. Serrano et al. pre-
dicted biomass and yield of winter wheat using spectral indices 
(Serrano et al., 2000). W.S. Weber et al. (Weber et al., 2012) 
predicted grain yield using spectra (495–1,853 nm) of canopy 
and leaf reflectance of maize plants grown under different 
water regimes and obtained the most appropriate wavelengths 
for yield prediction. X. Zhang and Y. He (Zhang, He, 2013) 
developed a method for early and rapid seed yield estimation 
using hyperspectral images of oilseed rape leaves in the visible 
and near-infrared regions (380–1,030 nm). Soybean (Glycine 
max) seed yield was predicted based on hyperspectral data 
(395–1,005 nm) and machine learning algorithms: multilayer 
perseptron, support vector method and random forest, which 
also identified the most significant reflectance spectrum 
(395 nm) (Yoosefzadeh-Najafabadi et al., 2021).

Hyperspectral reflectance analysis can provide reliable in-
formation on seed viability of both weedy (Matzrafi et al., 
2017) and cultivated plants: rice (He et al., 2019; Jin et al., 
2022), wheat (Zhang et al., 2018), maize (Ambrose et al., 2016; 
Wakholi et al., 2018), peanut (Zou et al., 2023), melon (Kand-
pal et al., 2016), Japanese spinach mustard (Ma et al., 2020).

Based on hyperspectral technologies, innovative methods 
for diagnosing plant diseases are being developed (Cheshko-
va, 2022). Hyperspectral imaging technology covering the 
visible and near-infrared wavelength range (400–1,000 nm) 
was used to analyze rice to detect discolored, diseased seeds 
infected with bacterial panicle blight (Burkholderia glumae). 
It has been shown that determining the intensity of reflected 
radiation in a small number of wavelength bands is sufficient 
for accurate (> 90 %) classification of pathogen-affected and 
healthy plants (Baek et al., 2019).

Hyperspectral images are used to determine the chemi-
cal composition of seeds of cultivated plants. Near-infrared 
(895–2,504 nm) reflectance analysis has been shown to have 
potential in predicting anthocyanin content in black rice grains 
(Amanah et al., 2021). C. Liu et al. (Liu et al., 2020) demon-
strated the feasibility of using near-infrared (930–2,500 nm) 
hyperspectral data analysis to determine the starch content of 
maize grains. G. Yang et al. (Yang et al., 2018) applied Raman 
hyperspectral technology with line scanning to determine the 
chemical composition of maize seeds. It was found that the 
characteristic Raman peaks identified at 477, 1,443, 1,522, 
1,596 and 1,654 nm in the spectrum from 380 to 1,800 nm 
were associated with corn starch, oil and starch mixture, zea-
xanthin, lignin and oil in corn seeds, respectively.



Конвейер обработки гиперспектральных изображений  
на примере исследования зерен ячменя, содержащих меланин

И.Д. Бусов, М.А. Генаев, Е.Г. Комышев, В.С. Коваль 
Т.E. Зыкова, А.Ю. Глаголева, Д.А. Афонников

2024
28 • 4

445КОМПЬЮТЕРНАЯ БИОЛОГИЯ РАСТЕНИЙ / COMPUTATIONAL PLANT BIOLOGY

A method for non-destructive estimation of the concentra-
tions and spatial distribution of moisture, protein and sugars 
at different developmental stages of vigna seeds has been 
proposed based on multispectral data from 20 discrete wave-
lengths in the ultraviolet, visible and near-infrared regions 
(ElMasry et al., 2022). Handheld near-infrared spectroscopy 
and hyperspectral imaging techniques have been used to 
quantify oil and fatty acid content and to classify seed spe-
cies of the genus Brassica (da Silva Medeiros et al., 2022). 
Hyperspectral images have been used to solve the classifica-
tion problem for grains of rice (Díaz-Martínez et al., 2023), 
ryegrass (Reddy et al., 2023) and many other crops important 
for the agricultural industry. 

Platforms are being developed to provide hyperspectral 
information on seeds, such as HyperSeed, which includes a 
high-throughput line-scan spectrograph (600–1,700 nm) and 
open-source software based on a graphical user interface. The 
system was used to classify rice seeds (with 97.5 % accuracy) 
grown under heat stress and in control environments using 
both traditional machine learning and neural network (3D 
CNN) models (Gao et al., 2021).

Thus, the analysis of hyperspectral images is of great in-
terest in various tasks related to plant research. However, deve-
loping algorithms to analyze such data is a time-consuming 
task. 

This paper presents a hyperspectral image analysis pipe-
line, the use of which can significantly reduce the time cost 
in hyperspectral imaging-related research. We applied the 
developed pipeline to determine the melanin content of barley 
grains. Although the presence of melanin accounts for the 
dark coloration of the grain, in practice, visual determination 
of its presence is difficult. The dark color of the grain may be 
associated with the accumulation of anthocyanin pigments, 
which accumulate in the aleurone of the grain, giving ripe 
grains a gray color. Barley grains can also darken during 
storage. Therefore, accurate determination of the presence of 
melanin requires additional analysis, for example, immersion 
of grains in alkali solution for its extraction.

In this paper, we present a tool for hyperspectral image 
research, a pipeline, the use of which can significantly reduce 
time costs in such research. The capabilities of the developed 
pipeline are demonstrated on the example of the task of mela-
nin content determination in barley grains. The task of study-
ing the spectrum of melanin-containing and non-melanin-con-
taining grains was chosen for testing, since it is known that 
there are significant differences in their spectrum. Our analysis 
also showed significant differences in the spectrum of grains 
containing melanin and samples without this pigment. Unlike 
other works in this area, in addition to classifying the samples, 
we had the task of implementing a pipeline to facilitate and 
automate the acquisition of hyper spectral images. The deve-
loped pipeline allows us to visualize and cluster the input data, 
as well as to perform their statistical analysis. 

Materials and methods
Plant material. Seeds of 313 barley (Hordeum vulgare) ac-
cessions were selected for the study, of which 117 accessions 
contained melanin and the remaining 196 accessions lacked 

this pigment (Supplementary Material)1. The material was 
obtained from the barley collection of the All-Russian Institute 
of Plant Genetic Resources named after N.I. Vavilov (VIR, 
https://www.vir.nw.ru), barley collection of the Institute of 
Cytology and Genetics of the Siberian Branch of the Rus-
sian Academy of Sciences (ICG, http://www.bionet.nsc.ru). 
Material from the Oregon Wolfe Barleys population (OWB, 
https://barleyworld.org/owb) was also used. Biochemical ana-  
lysis of samples with stained grain, as well as a detailed de-
scription of the melanin detection method were performed by 
A.Y. Glagoleva et al. (Glagoleva, et al. 2022).

Chemical method for determination of pigment com-
position of grains. To determine the qualitative presence of 
melanin in the grain, extraction with 2 % NaOH followed 
by blackening of the solution was performed. Based on this 
method, each of the samples was assigned a pigmentation type 
based on the presence of pigment: “contain melanins” or “do 
not contain melanins”. 

Image acquisition. Hyperspectral images of grains were 
obtained using a Cubert S185 camera with a Cinegon 1.8/16 
lens. For this purpose, a plastic petri dish with a diameter of 
55 mm filled with grains without gaps was placed on a white 
matte sheet of A3 paper. A diffusing light was placed on the 
sides, and the camera was fixed on a tripod from above, 
with the lens vertically downward. At the output, the camera 
produced a 138-channel hyperspectral image, each channel 
of which corresponded to the reflection intensity in a certain 
wavelength range (Fig. 1). The size of the hyperspectral image 
was: 50 by 50 pixels, spectral range: 450–998 n.m., spectral 
channel width: 4 n.m. The images were saved in tiff format.

Thus, the hyperspectral image obtained by a Cubert S185 
camera is a hypercube, in which indices i, j (i, j = 1, ... 50) cor-
respond to spatial coordinates (image pixels), index k = 1, ... 
138, corresponds to hyperspectral lines with a certain wave-
length. Each element of this hypercube corresponds to the 
intensity of reflected radiation from the subject for a pixel in 
the image with spatial coordinates i, j and spectral line with 
serial number k.

Images for the study of the pigment composition of barley 
grains were obtained from several series of surveys over 
several days.

Pipeline description. The input data for the pipeline are 
hyperspectral images in tiff format described in the previous 
section and calibration hyperspectral images (black and white 
background images in tiff format). 

Multichannel hyperspectral image analysis is performed 
in several steps including preprocessing, feature extraction, 
normalization and direct data analysis (Fig. 2).

Hyperspectral image preprocessing and feature ex-
traction. The nature of ambient light can affect the reflected 
spectrum intensities (Zahavi et al., 2019). In order that the 
reflected emission intensities on different spectrum lines could 
be compared for different imaging conditions, we used image 
calibration according to the following formula: 

Rijk = 
Sijk – Dijk

Wijk – Dijk
 ,

1 Supplementary Material is available at:  
https://vavilov.elpub.ru/jour/manager/files/Suppl_Busov_Engl_28_4.pdf

https://vavilov.elpub.ru/jour/manager/files/Suppl_Busov_Engl_28_4.pdf
https://vavilov.elpub.ru/jour/manager/files/Suppl_Busov_Engl_28_4.pdf
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Fig. 1. Image of barley grains in a Petri dish in shades of gray (a) and visualization of reflected radiation intensity in the wave length intervals of  
450 nm (b), 554 nm (c), and 986 nm (d).

Fig. 2. Pipeline schematic for hyperspectral image analysis.

a b c d

Multichannel 
hyperspectral 
images

Normalization
(optional)

Data analysis

Visualization  
into two-dimentional space 
using PCA, UMAP and ISOMAP

Clustering  
using EM algorithm

Statistical analysis  
using chi-square  
and Mann–Whitney U-criteria

Classification  
using logistic regression, 
ridge regression,  
random forest  
and CatBoost method

Hyperspectral image preprocessing  
and feature extraction
1. Calibration
2. Segmentation
3. Median extraction
4. Median smoothing

where Sijk is the barley hyperspectral image hypercube ele-
ment, Dijk is the black background calibration image element, 
Wijk is the white background calibration image element, Rijk 
is the calibrated image element.

The calibrated images are converted to a three-channel 
image approximating RGB based on intensities for wave-
lengths 450 nm (blue), 510 nm (green), 630 nm (red) using a 
threshold transformation (OpenCV library threshold() func-
tion (Howse J., 2013)). This image is converted to a grayscale 
image (OpenCV library function cvtColor()) and binarized to 
highlight the Petri dish region with grains. If necessary, the 
pipeline allows you to use your own implementation of seg-
mentation, but for the task at hand, segmentation by threshold 
value is sufficient.

Then, for each image, the medians for each hyperspectral 
channel are calculated from the pixel values in the segmented 
area occupied by grains. The Savitzky–Golay filter (Savitzky, 
Golay, 1964) is used to smooth the median values. The ob-
tained vector of medians characterizes hyperspectral data for 
each studied sample. 

Normalization. In order to eliminate differences arising 
between imaging series, 2 methods of image normalization 
were implemented in the pipeline. The first way of normaliza-
tion is standardization (subtraction of the sample mean and 

division by standard deviation) by identical samples of each 
image (vectors of medians). The second method is standardiza-
tion by identical groups (samples containing/not containing 
melanin), within each series.

Data analysis. Dimensionality reduction methods. The 
pipeline uses 3 dimensionality reduction methods: PCA (prin-
cipal component analysis) (Jolliffe, 2002), ISOMAP (isometric 
mapping) (Balasubramanian, Schwartz, 2002), and UMAP 
(uniform manifold approximation and projection) (McInnes, 
et al., 2018) to visualize samples clearly in hyperspectral data 
space. PCA is a linear dimensionality reduction method that 
preserves the largest percentage of variance. 

ISOMAP, UMAP are nonlinear dimensionality reduction 
methods. The UMAP method builds a weighted graph where 
only the nearest neighbors are connected by edges (the number 
of neighbors is given as a pipeline parameter). The ISOMAP 
method first constructs a sparse graph where, just as in the 
graph for UMAP, only the nearest neighbors are connected 
by edges (the number of neighbors is given as a pipeline pa-
rameter). Then, either the Dijkstra algorithm (Cormen et al., 
2002) or the Floyd–Worshall algorithm (Cormen et al., 2002) 
is used to compute the distances between objects in the sparse 
graph for the ISOMAP method. After constructing the graphs 
and the distance matrix for them, the UMAP and ISOMAP 
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methods are used to determine the position of the samples in 
a space of lower dimensionality (usually 2 or 3) that preserves 
the distances between objects. The dimensionality reduction 
methods were implemented using the Sklearn (Hao et al., 
2019) and Umap (Becht et al., 2019) libraries.

Visualization. After the preprocessing and feature extrac-
tion stages, each sample (hyperspectral image) is presented as 
a vector lying in a dimensionality space equal to the number of 
hyperspectral image channels. The elements of the vector cor-
respond to the reflected radiation intensity for the correspond-
ing channel. After obtaining the coordinates of the samples 
in lower dimensionality spaces, visualization in the form of 
a scatter diagram was performed using the plotly.express.
scatter function of the Plotly library (Stančin I. et al., 2019).

Clustering. The pipeline implemented clustering using the 
EM algorithm (Dempster et al., 1977). It was assumed that 
each sample could belong to each cluster with a probability 
obeying the Gaussian distribution mixture model. The pa-
rameters of the distributions were found using the maximum 
likelihood method, using the EM algorithm. The main hyper-
parameters of clustering are: dimensionality of the space in 
which clustering takes place, method of dimensionality reduc-
tion, method of initialization of weights (random initialization, 
initialization by the k-means method). The pipeline returns a 
table with information about the most frequent group in each 
cluster and the percentage of samples in it. The Sklearn library 
was used to implement clustering.

Statistical analysis. In the created pipeline for the differ-
ence of sample averages of two groups of images, it is possible 
to determine the confidence interval at a given level of sig-
nificance, which is based on the central limit theorem (CLT). 
According to the CLT, if the sample size is sufficient, we can 
assume that the difference of sample averages is normally 
distributed. For this random variable, the sample mean and 
sample variance are calculated, and thus confidence intervals 
of arbitrary level are constructed.

Tests based on the Mann–Whitney U-criterion (Wilcoxon, 
1945) and chi-square criterion (Greenwood, Nikulin, 1996) 

were added to the pipeline to test the hypothesis that the 
distributions of the two groups coincide. Statistical analysis 
was implemented using the SciPy library (Nunez-Iglesias et 
al., 2017).

Classification. The developed pipeline classifies hyper spe-
ctral images using methods such as logistic regression (Nor-
man, Harry, 2007), ridge regression (Norman, Harry, 2007), 
random forest (Ho,1995) and gradient boosting (Prokhoren-
kova et al., 2017). The pipeline returns tables with classifica-
tion results on metrics such as accuracy, F1, precision and 
recall, as well as error matrices for each classifier. The first 
table contains classification results for macro metrics and the 
second, for micro metrics. If a function that converts a group 
into a vector is passed to the pipeline, the pipeline returns a 
third table with the averaged binary classification results for 
each individual component of the vector. Classification is 
implemented using the Sklearn and CatBoost libraries (Han-
cock, Khoshgoftaar, 2020).

Results
Sample images for pigment composition analysis were ob-
tained from three series of surveys. In two series, grains con-
taining melanin were absent. In one series, both grains with 
melanin and grains without this pigment were present. There 
were no identical samples in different series of imaging. For 
each sample, two images were obtained: a hyperspectral image 
and a high-resolution image. Since samples without pigment 
were present in all imaging series, normalization by samples 
of grains with no pigment was performed.

Median graph
The obtained medians were used to plot the dependence of 
intensity on wavelength for each image (Fig. 3). As can be 
noted, the hyperspectrum of grains containing melanin dif-
fers markedly from the hyperspectrum of grains without this 
pigment. 

The plot without normalization for the median curves shows 
local maxima in the 600–700 nm range, and local minima in 
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Fig. 3. Graph of the dependence of the median intensity of reflected radiation for barley grain samples as a function of wave-
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Fig. 4. Plots of distributions in two-dimensional space obtained with PCA (a), UMAP (b) and ISOMAP (c). 
Blue points correspond to samples without melanin and red points, to samples with melanin. 
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the 700–800 nm range. Most of the median curves of grains 
with melanin are more tightly clustered (wavelength-averaged 
dispersion is smaller) and have smaller mean values than the 
curves of samples without pigment over the entire wavelength 
range. Despite the partial overlap, most of the median curves of 
the samples with pigment are distinguishable from the median 
curves of the samples without pigment. 

Visualization in two-dimensional space
In the PCA (Fig. 4a) and ISOMAP (Fig. 4c) plots, it can be 
observed that the dispersion in grains without melanin is larger 
than in grains with this pigment.

Clustering results
Clustering was performed into 2 clusters representing samples 
with melanin and samples without pigment. Clustering con-
firms that the medians of hyperspectral images are separable 
with high accuracy (Fig. 5, Table 1). 

The samples with and without pigment were least clearly 
separated in the PCA plot (Fig. 4a): samples without pig-
ment (blue dots) are present near the cluster of samples with 
melanin (red dots on the right). These samples were assigned 
to the second cluster (green dots) during clustering (Fig. 5a). 
In contrast, in the UMAP plot, all samples with pigment were 
arranged in isolation (Fig. 4b), on the top left, while samples 
without pigment formed clusters of dots on the right. How-
ever, in the clustering plot (Fig. 5b), single samples on the 
left were assigned to the second cluster. The ISOMAP plot 
(Fig. 4c) shows a good clustering of samples with melanin, 

while samples without pigment were distributed on the left, 
and to a lesser extent, on the right side of the plot, partially 
overlapping with samples with melanin. In clustering (Fig. 5c), 
some of these samples were assigned to the second cluster 
(green dots in the right part of the graph).

Table 1 numerically confirms that the median vectors of 
hyperspectral images of grains of different classes (contain-
ing and not containing melanin) in clustering mainly fall into 
different clusters, which indicates the existence of significant 
differences in the spectrum of grains with and without pigment. 
It is also worth noting that the first cluster includes samples 
exclusively without melanin.

Statistical analysis
Figure 6a shows the differences of sample mean values of re-
flected radiation intensity for barley samples for all wavelength 
intervals. As can be noted, the mean values of different groups 
of grains are statistically significantly different in the whole 
wavelength interval under consideration. Figure 6b shows a 
plot of the dependence of the logarithm of the reliability of 
differences ( p-value) on wavelength for the Mann–Whitney 
U-criterion. This criterion (taking into account the Bonferroni 
correction) allowed us to detect statistically significant dif-
feren ces for the entire hyperspectrum under study.

Classification results
The task of classifying hyperspectral grain images based on 
melanin content is a binary classification task. Table 2 shows 
the classification accuracy estimates for accuracy, F1, preci-



Конвейер обработки гиперспектральных изображений  
на примере исследования зерен ячменя, содержащих меланин

И.Д. Бусов, М.А. Генаев, Е.Г. Комышев, В.С. Коваль 
Т.E. Зыкова, А.Ю. Глаголева, Д.А. Афонников

2024
28 • 4

449КОМПЬЮТЕРНАЯ БИОЛОГИЯ РАСТЕНИЙ / COMPUTATIONAL PLANT BIOLOGY

Table 1. Clustering accuracy by the EM algorithm with random initialization in dimension space 15,  
using the UMAP dimensionality reduction method 

Cluster Prevailing class Dimensionality reduction method Frequency of the most frequently 
occurring class in the cluster

2 Melanin PCA 0.79

1 Melanin-free PCA 1.00

2 Melanin UMAP 0.96

1 Melanin-free UMAP 1.00

2 Melanin ISOMAP 0.80

1 Melanin-free ISOMAP 1.00

Notе. The prevalent class is the most frequent class of samples in the cluster.

Fig. 5. Visualization of the clustering results using the EM algorithm. Initialization was performed using the k-means method in a 
space of dimensionality 15, using the dimensionality reduction methods PCA (a), UMAP (b) and ISOMAP (c).  
Blue dots correspond to grains that do not contain melanin and are in the first cluster. Red dots correspond to grains that contain melanin 
and are in the second cluster. Green dots stand for grains that do not contain melanin and belong to the second cluster. Samples contain-
ing melanin but assigned to the first cluster were absent.
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sion and recall metrics for each dimensionality reduction 
method. The test sample size was 47 samples and the train-
ing sample size was 266 samples. The k-fold cross validation 
(k = 4) was used in training. 18 samples in the test sample con- 
tained melanin; 29 samples were without melanin; 99 samples 
in the training sample were with melanin; 167 samples were 
without this pigment.

The studied grain samples contained anthocyanins in addi-
tion to melanin, which allowed us to study the possibility of 
differentiation between melanins and anthocyanins. Samples 
were classified in the 15-dimensional space previously ob-
tained by PCA using logistic regression (266 samples for the 
training sample and 47 samples for the test sample). As a re-
sult, classification errors occurred mainly between the classes 
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Table 2. Classification results of the test sample in dimension space 15, using PCA, UMAP and ISOMAP for dimensionality reduction  

Model Accuracy F1 Precision Recall

Logistic regression 0.979 0.971 0.944 1.000

Ridge regression 0.979 0.971 0.944 1.000

Random forest 0.979 0.971 0.944 1.000

Gradient boosting (catboost) 0.979 0.971 0.944 1.000

Notе. For the obtained training and test samples, the results when using different dimensionality reduction methods on the test sample were the same.

“without pigments” and “with anthocyanins only”, as well as 
in identifying samples containing both pigments and grains 
containing only melanin (Fig. 8).

Based on the results of the statistical analysis, no statisti-
cally significant differences ( p-value < 0.05/138, taking into 
account the Bonferroni correction) were found across the 
spectrum for grains containing only melanin and grains with 
both pigments. The lowest p-value for the Mann–Whitney 
criterion for these groups was reached at 774 nm and was 
0.0438 (Fig. 9a). For grains containing only anthocyanins 
and grains without pigments, statistically significant differ-
ences ( p-value < 0.05/138, taking into account the Bonferroni 
correction) were found at wavelengths falling in the red and 
infrared bands (> 714 nm) (Fig. 9b).

Discussion

Pipelines in the field of hyperspectral image processing
There are many state-of-the-art approaches to automate the 
pro cess of hyperspectral data analysis. They utilize a wide 
range of machine learning, computer vision and advanced 
data processing techniques. Hyperspectral images are charac-
terized by high dimensionality, large data volume, are affected 
by noise, require calibration and normalization, and are more 
difficult to visualize compared to RGB images. In addition, 
there is a problem of training sample size. To solve this prob-  
lem, various methods of increasing the size of training sets 

(augmentation) are used. On the other hand, the high dimen-
sionality of hyperspectral data can easily lead to a high level 
of data redundancy. To solve this problem, algorithms for 
ranking and filtering significant features, as well as for select-
ing groups of significant spectra are used.

The acquired hyperspectral raw data are preprocessed: 
out lier detection using principal component analysis (PCA), 
group averaging, scaling and centering (Yoosefzadeh-Naja-
fabadi et al., 2021); calibration of the acquired images using 
reference images (dark and white); normalization; Savitzky–
Golay filtering; and parameter ranking and filtering for clas-
sification to improve model accuracy and generality (Amanah 
et al., 2021). 

The use of dimensionality reduction techniques may lead to 
a decrease in classification accuracy, however, it may be justi-
fied in order to increase the generality of the models – to avoid 
overfitting them. Thus, the development of approaches for 
solving individual problems using hyperspectral data requires 
multi-stage processing, the realization of which is possible in 
a software pipeline architecture, where each individual stage 
is replaceable and can be carefully tuned and adapted.

To solve such problems, pipeline approaches are currently 
being actively developed. For example, in the work of  F. Zhu 
et al. (Zhu et al., 2024), the authors investigated ways to pre-
process spectral data to effectively reduce the effect of different 
illumination on chlorophyll estimation in basil crops grown 
under different light intensities. The authors determined the 
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Fig. 7. Error matrix for the test sample in di-
mension space 15. 
For the obtained training and test samples, the 
results using different dimensionality reduction 
methods and different classification models on 
the test sample were the same.

Fig. 8. Classification error matrix based on logistic regression of grain samples into 4 classes: con-
taining melanin and anthocyanins, only anthocyanins, only melanin and without pigments.

Fig. 9. Plots of the logarithm of the p-value for the Mann–Whitney U-criterion for the difference in mean values of reflected spec-
trum intensity and 95 percent confidence intervals for the difference in sample mean medians.
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optimal analysis pipeline for near-field hyperspectral imaging 
data by evaluating the performance of regression modeling and 
obtaining satisfactory chlorophyll distribution maps consistent 
with observed differences in chlorophyll levels. 

In their work, H. Feng et al. (Feng et al., 2017) developed 
an integrated image analysis pipeline for automatic processing 
of large volumes of hyperspectral data. Models were built to 
accurately quantify 4 pigments (chlorophyll a, chlorophyll 
b, total chlorophyll, and carotenoids) from rice leaves and 
identified important wavelength groups (700–760 nm) as-
sociated with these pigments. At the tillering stage, the R2 
values and mean absolute percentage errors of the models 
were 0.827–0.928 and 6.94–12.84 %, respectively. 

By establishing a four-stage image processing and data 
analysis management pipeline, the applicability of  hyperspec-
tral remote sensing for early detection of drought stress and 
root-knot nematodes (RKN) infestation in tomato plants was 
evaluated (Žibrat et al., 2019). The pipeline included: image 
acquisition, data extraction, preprocessing and analysis. By 
combining discriminant analysis based on partial least squares 
and support vector machine with time series analysis, the 
authors achieved 100 % classification success in determining 
irrigation regime and infestation rate. Thus, the development 
of pipelined solutions for hyperspectral data analysis is an 
actively developing area at the moment.

The hyperspectral data analysis example presented in this 
paper also uses a pipeline approach, which includes prepro-
cessing and dimensionality reduction data analysis (principal 
component analysis, group averaging, calibration using refer-
ence images, normalization, Savitzky–Golay filtering). The 
pipeline structure allows the use of different dimensionality 
reduction methods: PCA (Jolliffe, 2002), ISOMAP (Bala-
subramanian, Schwartz, 2002) and UMAP (McInnes, et al., 
2018) in combination with different classification methods: 
logistic regression (Norman, Harry, 2007), ridge regression 
(Norman, Harry, 2007), random forest (Ho, 1995), gradient 
boosting (Prokhorenkova et al., 2017).

Methods of plant image classification  
based on hyperspectral data
Hyperspectral images are used to classify the physiological 
state of plants. T. Zhang et al. (2018) investigated the feasibil-
ity of using hyperspectral imaging techniques in the visible and 
near-infrared ranges (VIS/NIR, 400–1,000 nm) to recognize 
viable and non-viable wheat seeds. For this purpose, clas-
sification models, partial least squares discriminant analysis 
(PLS-DA) and support vector machines (SVM) combined 
with some preprocessing techniques and sequential projec-
tion algorithm (SPA) were used. The results showed that the 
standard normal variation (SNV)-SPA-PLS-DA model had 
high classification accuracy for whole seeds (> 85.2 %) and 
viable seeds (> 89.5 %).

Y. Lu et al. (Lu et al., 2022) were able to achieve up to 
99.6 % accuracy in differentiating five cannabis varieties, and 
100 % accuracy in distinguishing between five growth stages 
and two plant organs (leaves and flowers) using a desk top 
hyperspectral imaging system in the spectral range of 400– 
1,000 nm and machine learning based on regularized linear 
discriminant analysis.

The work published by B.C. da Silva et al. (2024) evaluated 
the performance of five ML algorithms and the sensitivity of 
90 spectra in the task of predicting the content of nitrogen 
and pigments (chlorophyll and carotenoids) in maize leaves 
at different phenological stages to optimize nitrogen fertiliza-
tion. In predicting the contents of chlorophyll a and b, the 
value of Pearson correlation coefficient between predicted 
and observed data was about 0.6, and the mean absolute error 
(MAE) was below 0.5. When flavonoid content was predicted, 
the value of the correlation coefficient between predicted and 
observed data was about 0.6 and the MAE was 0.07. When 
nitrogen content was predicted, the correlation coefficient 
values were above 0.35 and the MAE was below 2.75.

In the paper published by Changyeun Mo et al. (2014), the 
authors developed a method to assess the viability of pepper 
(Capsicum annuum L.) seeds based on hyperspectral imag-
ing in the 400–700 nm range obtained using blue, green, red 
and RGB LED illumination. For this purpose, a partial least 
squares discriminant analysis (PLS-DA) model was developed 
based on the standard normal variant of RGB LED illumina-
tion (400–700 nm), which provided recognition accuracies 
ranging from 96.7 to 100 %.

R. Falcioni et al. (2023) developed a method to estimate 
pigments such as chlorophylls, carotenoids, anthocyanins and 
flavonoids in six agronomic crops: maize, sugarcane, coffee, 
rapeseed, wheat and tobacco based on hyperspectral data. 
Clustering based on principal component analysis (PCA) and 
Kappa coefficient analysis yielded accuracies ranging from 
92 to 100 % in the ultraviolet (UV-VIS), near-infrared (NIR) 
and shortwave infrared (SWIR) bands. 

In our study, we obtained quite high precision values: 
accuracy = 0.979, F1 = 0.971 with precision = 0.944 and 
recall = 1.000 for all prediction models, which is comparable 
to similar values in other works, in particular, those described 
above. The resulting estimates were similar for all models, 
probably due to the fact that the sample size was small and 
homogeneous. As a result, with the resulting partitioning, 
all models in the test sample made one error, misclassifying 
one sample. On the other hand, this demonstrates the high 
stability of the predictions based on hyperspectral data and 
the proposed models. 

In our previous work (Komyshev et al., 2023), we deve-
loped a method for estimating the presence of anthocyanins 
and melanin in barley grain shells based on the analysis of 
digital RGB images using computer vision and machine learn-
ing algorithms. We used a similar imaging protocol  using Petri 
dishes for grains, but imaging was performed with a conven-
tional RGB camera. The samples were taken from a similar 
collection. In that case, the best accuracy (accuracy = 0.821) 
was shown by the U-Net model based on the EfficientNetB0 
topology. Thus, even when using deep machine learning 
methods, the classification accuracy was lower than in the 
present work. It can be concluded that more hyperspectral 
images allow more accurate classification of plant grains 
by pigment content using less resource-intensive “shallow” 
machine learning methods.

We studied the effect of the presence of anthocyanins on 
the accuracy of melanin determination in barley samples. 
The accuracy of melanin determination in samples contain-
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ing anthocyanins was lower (accuracy = 0.95) compared to 
samples without this pigment (accuracy = 1) (Fig. 8). Thus, 
the presence of anthocyanins insignificantly reduces the ac-
curacy of melanin determination in samples.

The ability to differentiate samples with only melanin from 
those with both melanin and anthocyanins was poor (Fig. 9a). 
Determination of anthocyanins, based on the hyperspectral 
data obtained, seems to be possible with high accuracy due 
to the spectrum in wavelengths falling in the red and infra-
red ranges (> 714 nm) (Fig. 9b). Thus, this approach allows 
differentiating grains without pigments from grains with an-
thocyanins, but does not allow determining the presence of 
anthocyanins in samples with melanin.

Our goal was to explore the possibility of distinguishing 
between melanin-containing and non-melanin-containing seed 
samples using hyperspectral data alone. We also tested several 
approaches consisting of interchangeable methods that form 
a typical hyperspectral data processing pipeline and formed it 
into a software tool. This software tool can be used to quickly 
build a hyperspectral data analysis algorithm that includes the 
main data processing steps such as image loading, preprocess-
ing, analysis and visualization.

Conclusion
Visualization based on the PCA, UMAP and ISOMAP me-
thods, as well as clustering in dimension space 15, showed 
that barley samples with and without melanin could be divided 
into two respective classes with high accuracy on the basis 
of hyperspectral images. The analysis revealed statistically 
significant differences in the distribution of reflected intensity 
for these samples for all hyperspectral lines. 

Advantages of using the developed pipeline over classi-
cal and more accurate biochemical methods of solving the 
classification problem are low time and labor costs, as well 
as objectivity of the obtained results. Neural networks/deep 
machine learning methods were not used in this version of 
the package for classification. The disadvantages of neural 
network approaches compared to the methods implemented 
in the pipeline may be the difficult interpretability of the pre-
diction results, as well as the need for a training sample of a 
very large volume. 

In this paper, an open-source Python-based computational 
pipeline has been developed for hyperspectral image analy-
sis, which includes visualization in two-dimensional space, 
clustering, basic statistical analysis and classification. The 
proposed software package can significantly reduce the time 
cost in studies involving hyperspectral image analysis. The 
developed pipeline was tested in the task of investigating the 
effect of melanin on the hyperspectrum of barley grains. 
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