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Abstract. Soybean [Glycine max (L.) Merr.] is one of the important crops that are constantly increasing their cultivation 
area in Kazakhstan. It is particularly significant in the southeastern regions of the country, which are currently predomi-
nant areas for cultivating this crop. One negative trait reducing yield in these dry areas is pod dehiscence (PD). Therefore, 
it is essential to understand the genetic control of PD to breed new cultivars with high yield potential. In this study, 
we evaluated 273 soybean accessions from different regions of the world for PD resistance in the conditions of south-
eastern regions of Kazakhstan in 2019 and 2021. The field data for PD suggested that 12 accessions were susceptible 
to PD in both studied years, and 32 accessions, in one of the two studied years. The genotyping of the collection using 
a DNA marker for the Pdh1 gene, a major gene for PD, revealed that 244 accessions had the homozygous R (resistant) 
allele, 14 had the homozygous S (susceptible) allele, and 15 accessions showed heterozygosity. To identify additional 
quantitative trait loci (QTLs), we applied an association mapping study using a 6K SNP Illumina iSelect array. The results 
suggested that in addition to major QTL on chromosome 16, linked to the physical location of Pdh1, two minor QTLs 
were identified on chromosomes 10 and 13. Both minor QTLs for PD were associated with calmodulin-binding protein, 
which presumably plays an important role in regulating PD in dry areas. Thus, the current study provided additional 
insight into PD regulation in soybean. The identified QTLs for PD can be efficiently employed in breeding for high-yield 
soybean cultivars.
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Аннотация. Соя [Glycine max (L.) Merr.] – одна из важнейших сельскохозяйственных культур, площади которой в 
Казахстане постоянно увеличиваются. Особенно эта культура значима в южных и юго-восточных регионах страны, 
которые являются основными регионами выращивания сои. К негативным факторам, влияющим на урожайность 
сои в засушливых районах, относится растрескивание стручков. Поэтому понимание генетического механизма 
растрескиваемости стручков сои важно для выведения новых высокоурожайных сортов. В настоя щем исследова-
нии мы изучили 273 сорта и линии сои из разных регионов мира на устойчивость к растрескивае мости в условиях 
Южного Казахстана в 2019 и 2021 гг. Наблюдения за признаком «растрескиваемость стручков сои» в полевых ус-
ловиях Алматинской области выявили, что в 2019 г. растрескиванию были подвержены 23 сор та, в 2021 г. – 21 сорт. 
Двенадцать сортов сои повторно подвергались растрескиванию в оба года эксперимента. Согласно средним дан-
ным испытаний, всего подвержены растрескиванию 32 сорта сои. При генотипировании коллекции с использо-
ванием ДНК-маркера гена Pdh1, основного гена растрескиваемости стручков сои, у 244 образцов был выявлен 
устойчивый аллель, у 14 образцов – восприимчивый, а 15 образцов обладали гетерозиготностью. Для идентифи-
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Identification of QTLs associated  
with pod dehiscence in soybean

кации дополнительных локусов количественных признаков (quantitative trait locus, QTL) мы применили полно-
геномный анализ с использованием 6 тысяч SNP-маркеров на основе чипа 6K SNP Illumina iSelect. В дополнение к 
основному QTL на хромосоме 16, связанному с физическим расположением гена Pdh1, были идентифицированы 
два минорных QTL на хромосомах 10 и 13. Оба минорных локуса ассо циированы с растрескиванием стручков сои 
и связаны с кальмодулин-связывающим белком, который, вероятно, играет важную роль в регулировании растре-
скиваемости стручков сои в засушливых регионах. Таким образом, нами получена дополнительная информация о 
регуляции растрескиваемости в сое. Идентифицированные QTL для признака «растрескиваемость стручков сои» 
могут быть эффективно использованы при селекции высокоурожайных сор тов сои. 
Ключевые слова: соя; растрескивание бобов; урожай зерна; полногеномный анализ; локусы количественных 
признаков; QTL.

Introduction
Soybean [Glycine max (L.) Merr.] is a major crop among 
oil seeds worldwide and a global source of edible protein and 
oil, providing approximately 60 and 28 % of the world sup-
ply, respectively (Vollmann et al., 2000; Zhou et al., 2020). 
According to the USDA, Brazil, the United States of America, 
and Argentina are the largest soybean production countries, 
while Kazakhstan is on the list of the top forty producers 
(https://ipad.fas.usda.gov). Kazakhstan is one of the largest 
agro-industrial countries in Central Asia and is interested in 
increasing soybean production areas (Abugalieva et al., 2016; 
Didorenko et al., 2016; Zatybekov et al., 2017). Therefore, 
developing new competitive cultivars for new cultivation areas 
is a priority for the local breeding community. 

One of the limiting factors for the increase in soybean 
productivity, particularly in southern regions, is pod dehiscen-
ce (PD), which leads to a substantial yield loss (Zhang Q. et 
al., 2018). For wild plants, PD is an important mechanism for 
spreading progenies (Benvenuti, 2007; Fuller, 2007), but for 
cultivated plants, it is an unfavorable agronomic trait because 
mature pods open to release seeds before harvesting (Kang et 
al., 2009; Zhang L., Boahen, 2010). PD was nearly eliminated 
during soybean domestication and breeding (Liu et al., 2007; 
Krisnawati, Adie, 2017). Nevertheless, the yield losses due to 
PD today may range from 34 to 99 % depending on genetic 
background, environmental factors, pod morpho logy and 
anatomy, and management (Romkaew, Umezaki, 2006; Bhor 
et al., 2014; Parker et al., 2021).

Pod dehiscence  is a highly heritable and complex trait; it 
was shown that its broad sense heritability may range from 
90 to 98 % in different populations (Tsuchiya, 1987; Bailey 
et al., 1997; Kang et al., 2009). Previously, two genes, Pdh1 
and SHAT1-5, were identified and mapped on chromosome 16 
(Funatsuki et al., 2008, 2014; Dong et al., 2014). The gene 
pdh1 was identified in cultivated soybeans by Funatsuki and 
co-authors in 2014 (Funatsuki et al., 2014). The dominant 
Pdh1 encodes a dirigent family protein in soybean and is 
highly expressed in the pod endocarp layer, increasing dehisc-
ing forces. The recessive pdh1 in dehiscence-resistant types 
includes a premature stop codon, which blocks proper protein 
synthesis (Funatsuki et al., 2014). The effect of pdh1 on pod 
dehiscence is generally larger among the other genes that had 
important value in worldwide soybean cultivation (Funatsuki 
et al., 2014; Hu et al., 2019; Zhang J., Singh, 2020). SHAT1-5 
gene activates secondary wall synthesis and stimulates the de-
hiscence site’s thickening in pods. The domestication process 
resulted in extra SHAT1-5 expression compared to the wild 
soybean allele (Dong et al., 2014). Previous research suggested 
that all domesticated soybeans carry SHAT1-5 haplotypes 

derived from a haplotype that differs from wild soybeans 
(Funatsuki et al., 2014; Sedivy et al., 2017).

Recently, a genome-wide association study (GWAS) 
described another dehiscence-associated candidate gene, 
Glyma09g06290 (Hu et al., 2019). This gene is highly ex-
pressed in developing pods; however, the biological func-
tions of this gene should be further investigated (Hu et al., 
2019). Later, another GWAS showed that the NST1A gene 
(Glyma.07G050600) has a potential role in soybean pod 
dehiscence (Zhang J., Singh, 2020). NST1A codes a NAC 
fa mily transcription factor and a paralog of SHAT1-5 (NAC 
are NAM, ATAF1/2, and CUC2 proteins, the largest families 
of transcription factors in plants: NAM – no apical meristem 
proteins, ATAF1/2 – Arabidopsis transcription activation fac-
tor, CUC2 – cup-shaped cotyledon; NST1-NAC secondary 
thickening1) (Zhang J., Singh, 2020). The authors identified 
an indel in its coding sequence, leading to a premature stop 
codon. Epistatic analyses showed that NST1A works with Pdh1 
to provide durable resistance to pod dehiscence (Zhang J., 
Singh, 2020; Parker et al., 2021).

Apart from genes, several QTLs were repeatedly identified 
throughout the soybean genome on different chromosomes. 
To date, several QTLs for PD have been identified on almost 
all chromosomes in different soybean populations (Bailey et 
al., 1997; Liu et al., 2007; Kang et al., 2009; Yamada et al., 
2009; Han et al., 2019; Hu et al., 2019). The identified QTL 
on chromosome 16 was located near the major gene pdh1 and 
had a high value of the coefficient of determination (Seo et 
al., 2020; Jia et al., 2022). 

Most new QTLs were identified using GWAS, a powerful 
tool for detecting natural variation involving the regulation 
of complex traits based on genotype-phenotype association 
(Rafalski, 2010; Huang, Han, 2014). Although many QTLs 
for PD in soybeans were discovered, some can be unstable 
in different environments and may vary in diverse genetic 
backgrounds (Hu et al., 2019; Seo et al., 2020; Jia et al., 
2022). Hence, additional studies for searching QTLs for PD 
are important for breeding practices in new soybean environ-
ments. Therefore, this study aimed to identify QTLs for PD 
in the southeast region of Kazakhstan using a diverse world 
soybean collection.

Materials and methods
Field evaluation of the collection. The soybean collection 
consisted of 273 cultivars and lines from Eastern and Western 
European countries, North America, and East and Central Asia 
(Supplementary Material 1)1 (Zatybekov et al., 2017, 2018). 
1 Supplementary Materials 1–5 are available at: 
https://vavilovj-icg.ru/download/pict-2024-28/appx19.pdf

https://vavilovj-icg.ru/download/pict-2024-28/appx19.pdf
https://vavilovj-icg.ru/download/pict-2024-28/appx19.pdf
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The collection was grown in 2019 and 2021 at the experi-
mental stations of Kazakh Research Institute of Agriculture 
and Plant Growing (KRIAPG, Almaty region, Kazakhstan) 
located at an altitude of 740 m above sea level, 43°15′ N, 
76°54′ W (Doszhanova et al., 2019). This site is characterized 
by continental climatic conditions: mild and cool winters, cool 
spring, hot and dry summers, and warm and dry fall. The me-
teorological data registered for the experiments are provided 
in Supplementary Material 2. The collection was planted in 
four rows per plot, 25 cm plant spacing, 50 cm row spacing, 
and 1 m row length without soil fertilizers.

The yield component traits screened in soybean accessions 
are the number of fruiting nodes (NFN, pcs), the number of 
seeds per plant (NSP, pcs), yield per plant (YP, g), thousand 
seed weight (TSW, g). The PD data was collected by visually 
estimating the percentage of pods at the R8 stage in a plot that 
had dehisced at the full maturity stage on a scale of 1–5, where 
1 ≤ 1–20 %, 2 ≤ 21–40 %, 3 ≤ 41–60 %, 4 ≤ 61–80 % and 
5 ≤ 81–100 % (Supplementary Material 1). Correlation analy-
sis was conducted using RStudio software (Allaire, 2011).

DNA extraction and PCR procedure. DNA was extracted 
from young leaves by a modified CTAB method (Suzuki et 
al., 2012). Amplification of DNA was performed using an 
allele-specific PCR method with four primers for the SNP 
marker of the Pdh1 gene associated with pod dehiscence 
in soybean (Funatsuki et al., 2014). PCR reaction of 10 μl 
of the solution containing the DNA template (50 ng/μl), 
AmpliTaqGold MasterMix (Applied Biosystems by Thermo 
Fisher Scientific), two pairs of primers (forward and reverse 
outer primers, forward and reverse inner primers), and M13 
primer, labeled with fluorescent (FAM, NED, VIC and PET, 
Applied Biosystems). PCR amplification used an initial 95 °C 
for 7 min; 35 cycles of 94 °C for 30 sec, 56 °C for 30 sec, 
and 72 °C for 1 min, and a final 72 °C extension for 7 min. 
PCR products were analyzed on an ABI Prism 3500 Genetic 
Analyzer (Applied Biosystems) with GeneMapper software 
as described previously (Suzuki et al., 2012). 

Linkage disequilibrium, population structure, and 
genome-wide association study. For GWAS, the genomic 
DNA of all samples in the collection was genotyped using 
the 6K SNP Illumina iSelect array (Song et al., 2013) at the 
Trait Genetics Company (TraitGenetics GmbH Gatersleben, 
Germany). SNP genotype analysis was carried out using Illu-
mina Genome Studio software (GS V2011.1). The quality 
control of genotyped data was performed by filtering SNPs 
with call rate ≥90 % and minor allele frequency (MAF) ≥5 %. 
Accessions with missing data being greater than 10 % were 
removed. SNP loci with more than 10 % heterozygous calls 
were also removed (Bradbury et al., 2007). Pairwise linkage 
disequilibrium (LD) between the markers based on their corre-
lations (R2) was calculated using TASSEL. R statistical soft-
ware was used to plot the correlation between pairwise R2 
and the genetic distance, LD decay plot (www.R-project.org). 

The population structure (Q) analysis was performed using 
STRUCTURE software version 2.3.4 (Pritchard et al., 2000). 
The optimal number of clusters (K) was chosen based on the 
ΔK as described by (Evanno et al., 2005). The obtained values 
were then transformed into a population structure (Q) matrix. 
The kinship matrix (K) was generated by TASSEL software 
V5.0 (Bradbury et al., 2007).

GWAS was conducted based on the Mixed Linear Model 
(Q + K) using TASSEL software V5.0 (Bradbury et al., 2007). 
The statistical significance thresholds, Bonferroni correction, 
and alternative method False Discovery Rate (FDR) were 
used to distinguish true positives from false positives and 
false negatives. The significance level of 5 % after Bonfer-
roni multiple test correction was used to identify significant 
associations (Buckler et al., 2011). The Benjamini–Hochberg 
procedure was calculated to control the FDR threshold at 5 % 
(Benjamini, Hochberg, 1995). The SoyBase database (www.
soybase.org) was used to search genes for identified marker-
trait associations.

Results

Field experiments and traits evaluation
Observing PD in the field conditions of the Almaty region 
showed that 23 accessions in 2019 and 21 accessions in 2021 
dehisced their pods in the field conditions (Fig. 1), and 12 ac-
cessions repeatedly fully or almost fully dehisced their pods 
with grade 4 or 5 in two years of experiments in the Almaty 
region (Supplementary Material 1). 

The results of two years of experiments showed that the 
vast majority of the soybean collection was resistant to PD in 
the Almaty region conditions, but 32 accessions were found 
to be susceptible to PD in one of the two years of study. Af-
ter harvesting, the soybean collection was analyzed by yield 
components, such as NSP, NFN, YP, and TSW. The soybean 
collection studied in the Almaty region was more productive 
in 2021 than in 2019. The average values of two years for 
NFN, NSP, YP, and TSW were 15.01 nodes, 37.88 seeds, 
9.62 g, and 149.12 g, respectively. The ranges of soybean 
yield components in the Almaty region in two experimental 
years and average data are shown in Table 1.

Pearson correlation analysis suggested that the average data 
of the PD trait in the field conditions of the Almaty region were 
negatively and significantly associated with all yield com-
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ponents, NFN, NSP, YP, and TSW, with coefficients of cor-
relation –0.27, –0.29, –0.2, and –0.27 respectively ( p < 0.01, 
RStudio). In their turn, NSP, YP, and TSW had a significant 
and positive correlation with each other ( p < 0.01) (Fig. 2).

Genotyping of soybean collection
The soybean collection consisted of 273 samples and was 
genotyped using four primers for the SNP marker of the Pdh1 
gene, which is associated with PD. The SNP analysis of soy-

bean accessions identified three alleles: S – pod dehiscence 
susceptible, R – pod dehiscence resistant, and H – heterozy-
gous (Fig. 3). A t-test with significance confirmed the differ-
ence among groups of three alleles at p < 0.001. 

The results of Pdh1 genotyping using an allele-specific SNP 
marker showed that 244 out of 273 accessions were with the 
homozygous R (resistant) allele, 14 had the homozygous S 
(susceptible) allele, and 15 samples were heterozygotes 
(Supplementary Material 1). Figure 4 illustrates the distribu-
tion of alleles of different origins in the soybean collection. 

Most of the accessions carrying the susceptible S alleles in 
homozygous or heterozygous genotypes were from Eastern 
Europe (10 and 8 accessions, respectively). In accessions 
from East Asia, three cultivars were with the homozygote 
S allele (ʻKheikhek14ʼ, ʻDong doe 641ʼ and ʻKen feng 20ʼ, 
China), and one was heterozygous (ʻKharbinʼ, China). In ac-
cessions from Northern America, two cultivars were with the 
homozygous S allele (ʻKG 20ʼ, Canada and ʻCarolaʼ, USA), 
and three were heterozygous genotypes (ʻMaple Arrowʼ and 
ʻGEOʼ, Canada and ʻLinkolnʼ, USA). In accessions from 
Western Europe, one cultivar carried the S allele (ʻSepiaʼ, 
France), and one was heterozygous (ʻFiskeby5ʼ, Sweden). All 
Central Asian accessions carried the homozygous R allele of 
the pdh1 (Fig. 4). 

The results of field screening for PD of the average data 
for the two years of experiments and genotyping data by 

Table 1. The variability ranges of yield component traits in 2019, 2021, and the average of two years

Year Ranges NFN NSP YP TSW

2019 Max 31.3 87.7 39.3 310.9

Min 4.9 8.4 1.5 18.9

Mean ± SE 14.38 ± 0.33 36.28 ± 0.95 10.38 ± 0.34 124.28 ± 3.38

2021 Max 52 126 55.6 276

Min 3.7 6.3 0.3 118

Mean ± SE 15.63 ± 0.44 39.43 ± 1.25 8.85 ± 0.41 173.18 ± 1.51

Average Max 34.05 81.85 31.5 228.4

Min 5.2 10.5 1.95 97.05

Mean ± SE 15.01 ± 0.35 37.88 ± 1.01 9.62 ± 0.32 149.12 ± 1.63

Note. NFN – number of fruiting nodes (pcs), NSP – number of seeds per plant (pcs), YP – yield per plant (g), TSW – thousand seed weight (g), SE – standard error.
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DNA marker showed a moderate correlation link ( p < 0.01). 
Comparative assessment of PD in field studies and Pdh1 
genotyping indicated that in 14 accessions with the homozy-
gous S allele, only seven cultivars were susceptible to PD in 
both years, and ten samples, in one of the two studies years 
(Supplementary Material 1). These seven cultivars were from 
Eastern Europe (6 accessions) and Northern America (1 ac-
cession). In 244 identified samples with the homozygous 
R allele, four accessions were susceptible to PD in both years, 
and 19 accessions, in at least one out of two studied years 
(Supplementary Material 1). These four cultivars were from 
Eastern Europe (3) and North America (1).

Linkage disequilibrium, population structure,  
and genome-wide association study
After filtering the genotyping data by MAFs, missing data 
in individuals, and heterozygous calls, a total of 4,651 SNPs 
remained. The average density of the SNP map was one marker 
per 246 Kb. Linkage disequilibrium (LD) decayed at 3.3 Mb 
for the whole genome at R2 of 0.1 (Fig. 5a). The popula-
tion structure (Q) based on the results of STRUCTURE and 
STRUCTURE Harvester analyses showed three subpopula-

tions (Fig. 5c). The Q matrix was developed using K = 3 as 
the optimum (Fig. 5b).

The Manhattan plot with SNP markers associated with PD 
and the QQ plot are illustrated in Figure 6, the Manhattan plot 
and the QQ plot of each year of the experiment are illustrated 
in Supplementary Materials 3, 4. The threshold is 1.0×10–5 
at a significance level of 5 % after Bonferroni multiple test 
correction. A significance threshold of 5 % FDR was used to 
identify putative SNP associations. If two SNPs were closer 
than the genome average LD decay value of 3.3 Mbp, they 
were considered to belong to the same locus.

The GWAS with significance thresholds of FDR and Bon-
ferroni correction allowed the identification of three QTLs for 
PD on chromosomes 10, 13, and 16 (Fig. 6, Table 2, Supple-
mentary Materials 3–5). For each identified QTL, one most 
significant SNP marker with the lowest p-value was selected: 
Gm10_47774781 on chromosome 10, Gm13_6207590 on 
chromosome 13, and Gm16_29681065 on chromosome 16. 
The information about the marker positions on the chromo-
somes, p-values, effects, and phenotypic variations for alleles 
is shown in Table 2.

Gm16_29681065 was located in the vicinity of Pdh1 on 
chromosome 16 (Table 2). Other two minor QTLs were identi-
fied on chromosomes 10 and 13. Identified SNPs with the most 
significant p-values of Gm16_29681065, Gm10_47774781, 
and Gm13_6207590 were designated as qPD16-1, qPD10-1, 
and qPD13-1. 

The influence of the allelic status of the most significant 
SNPs of three stable QTLs for the PD phenotype is shown in 
Table 3. The results in Table 3 indicate that the combination 
of effective SNP alleles (TTG) in three QTLs resulted in PD 
resistance with a value of 0.1. In contrast, the combination 
of alternative alleles (GCA) showed susceptibility to PD 
with a value of 3.9. Interestingly, two plants with the TCA 
combination (a resistant allele for Gm16_29681065 and two 
susceptible alleles for Gm10_47774781 and Gm13_6207590) 
showed PD phenotype with the value of 4.5 (Table 3), sug-
gesting that the effective allele in Gm16_29681065 alone is 
not sufficient for PD resistance. 
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Fig. 6. Manhattan (a) and QQ plots (b) for the pod dehiscence trait in the world soybean collection for average data of 2019 and 2021 in the Almaty 
region.

Table 2. The list of identified significant SNP markers associated with PD for 2019 and 2021 
and the average data for the two years of the experiment using the genome-wide association study

Parameter Gm16_29681065, qPD16-1 Gm10_47774781, qPD10-1 Gm13_6207590, qPD13-1

Chromosome 16 10 13

Position, bp 29681065 47774781 6207590

Allele G C A

2019

p-value/FDR 1.7576E-10/8,17E-07 0.00203/4,50E-01 0.00391/6,99E-01

Effect* 1.05999 0.36111 0.29456

R2** 0.1645 0.03655 0.03527

2021

p-value/FDR 1.5159E-6/2,35E-03 2.1195E-5/1,97E-02 5.89E-4/1,61E-01

Allele effect 0.38581 0.24986 0.17689

R2 0.08677 0.06757 0.04363

Average

p-value/FDR 4.7063E-10/2,19E-06 3.8127E-5/2,22E-02 1.0165E-4/3,64E-02

Allele effect 0.45428 0.20783 0.1743

R2 0.15097 0.06413 0.05917

Candidate loci Pdh1/Glyma16g25580 
(Gm16:29601346...29601897)  
(Funatsuki et al., 2014)

Glyma10g40330  
(Calmodulin-binding protein,  
start 47773565–stop 47775599) 
(Schmutz et al., 2010)

Near Glyma13g05890  
(Calmodulin-binding protein,  
start 6199393–stop 6203098) 
(Schmutz et al., 2010)

* Absolute effect; ** R2 – marker phenotypic variation.

Table 3. Mean of PD scores for allelic combinations of SNP markers in three identified quantitative trait loci of PD in field conditions 

Gm16_29681065 Gm10_47774781 Gm13_6207590 Number of lines Mean PD score

T T G 192 0.1

T T A 29 0.3

T C G 19 0.4

T C A 2 4.5

G T G 9 1.5

G C G 4 4.5

G C A 4 3.9
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Discussion
The assessment of the collection in the field conditions of the 
southeast of Kazakhstan has confirmed a high negative impact 
of PD on yield performance (Fig. 2). The field evaluation of 
 average data revealed that 32 genotypes were susceptible to 
PD in at least one of the two studied years (Fig. 1). The phe-
notypic results for PD over two years of study were stable and 
largely coincided with genotypic results using an allele-speci-
fic SNP marker of Pdh1, confirming the fact that Pdh1 played 
a critical role in soybean expansion (Funatsuki et al., 2014). 
Nevertheless, 19 out of 244 accessions with homozygous 
R alleles showed susceptibility to PD in the field conditions of 
southeast Kazakhstan, suggesting that more genes are involved 
in regulating PD. Therefore, GWAS was applied to identify 
additional genetic factors that can potentially be involved in 
the genetic control of PD. The application of GWAS suggested 
that three stable QTLs for PD were significant in this study.

The three identified QTLs (qPD10-1, qPD13-1, and 
qPD16- 1) were located on chromosomes 10, 13, and 16, re-
spectively (Table 2). As QTL qPD16-1 was highly significant 
both in 2019 and 2021, it can be considered a major genetic 
factor showing a remarkable effect on PD. The location of 
QTN qPD16-1 coincided with the genetic position of Pdh1 
(Funatsuki et al., 2014) (Table 2). The literature survey sug-
gests that Pdh1 (Gm16:29601346–Gm16:29601897) encodes 
a dirigent family protein known to be involved in lignification, 
which increases dehiscing forces by promoting torsion of 
dried pod walls (Funatsuki et al., 2014). The loss-of-function 
pdh1 gene has been widely used in soybean breeding as a pod 
dehiscence resistance gene (Funatsuki et al., 2014). 

The other significant SNP for PD identified on chromo-
some 10, qPD10-1, was located in Glyma10g40330 (Schmutz 
et al., 2010), the gene that is responsible for the expression of 
plant calmodulin-binding protein (soybase.org). Previously, 
another QTL for PD was identified on chromosome 10, which 
was located within 10 cM of Satt243 (Gm10:46088332–
46088382, soybase.org) (Kang et al., 2009), suggesting a 
strong genetic linkage between QTNs in two association 
findings. Interestingly, the significant QTL identified on chro-
mosome 13 was located in the vicinity of Glyma13g05890, 
which is also expressing plant calmodulin-binding protein 
(Schmutz et al., 2010; soybase.org).

The results of influences of all three identified genetic fac tors 
on PD performance suggest that although the role of qPD16- 1 
is remarkable, the allelic statuses of Gm10_47774781 and 
Gm13_6207590 are also essential (Table 3). Hence, it can 
be hypothesized that calmodulin-binding protein is part of 
the gene network controlling PD. Calmodulin (CAM) is a 
Ca2+ sensor known to regulate the activity of many eucaryote 
proteins and plays an important role in plant growth and de-
velopment (Yu et al., 2021). An increasing number of studies 
have illustrated that plant calcium signals play a vital role 
in life processes by acting as a messenger transducer in the 
complicated signal network to regulate plant growth and de-
velopment and the response and adaptation to environmental 
stresses (Hong-Bo et al., 2008). Hypothetically, drought or 
high temperature as environmental stress can induce responses 
by activating calmodulin-binding protein, leading to a change 
in the structure of soybean pods. In general, the results of the 
soybean PD study in conditions of southeast Kazakhstan sug-

gest that it is controlled by one major and two minor QTLs, 
which is congruent with results of previous reports, where one 
major and few minor QTLs were revealed (Tsuchiya, 1987; 
Bailey et al., 1997; Ogutcen et al., 2018; Seo et al., 2020). 
Nevertheless, qPD13-1, identified in this work, has not been 
reported in any previous PD studies, and, therefore, it can be 
considered a putatively novel genetic factor for the regulation 
of PD in soybeans.

Conclusion
The evaluation of the collection consisting of 273 soybean ac-
cessions with different origins for PD has confirmed a strong 
influence of the Pdh1 gene on trait performance and a nega-
tive impact on yield and yield components over two studied 
seasons in southeast Kazakhstan. The application of GWAS 
has allowed the identification of one major (qPD16-1) and two 
minor (qPD10-1 and qPD13-1) QTLs for PD. The location of 
the major QTL has coincided with the physical position of the 
Pdh1. Two minor QTLs have been associated with the genes 
for calmodulin-binding protein on chromosomes 10 and 13. 
The assessment of available scientific reports for the genetic 
control of PD suggests that the QTL for PD on chromosome 13 
is a novel genetic factor for regulating the studied trait.
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