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Abstract. Imputation is a method that supplies missing information about genetic variants that could not be direct-
ly genotyped with DNA microarrays or low-coverage sequencing. Imputation plays a critical role in genome-wide 
association studies (GWAS). It leads to a significant increase in the number of studied variants, which improves the 
resolution of the method and enhances the comparability of data obtained in different cohorts and/or by using dif-
ferent technologies, which is important for conducting meta-analyses. When performing imputation, genotype in-
formation from the study sample, in which only part of the genetic variants are known, is complemented using the 
standard (reference) sample, which has more complete genotype data (most often the results of whole-genome 
sequencing). Imputation has become an integral part of human genomic research due to the benefits it provides 
and the increasing availability of imputation tools and reference sample data. This review focuses on imputation 
in human genomic research. The first section of the review provides a description of technologies for obtaining 
information about human genotypes and characteristics of these types of data. The second section describes the 
imputation methodology, lists the stages of its implementation and the corresponding programs, provides a de-
scription of the most popular reference panels and methods for assessing the quality of imputation. The review 
concludes with examples of the use of imputation in genomic studies of samples from Russia. This review shows 
the importance of imputation, provides information on how to carry it out, and systematizes the results of its ap-
plication using Russian samples.
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Аннотация. Импутация – это метод, позволяющий восстанавливать недостающую информацию о генетиче-
ских вариантах, которые не удалось генотипировать напрямую с помощью ДНК-микрочипов или секвени-
рования с низким покрытием. Импутация играет важнейшую роль в полногеномном анализе ассоциаций 
(genome wide associations study, GWAS). Она приводит к существенному увеличению количества изучаемых 
вариантов, что повышает разрешающую способность метода и увеличивает сопоставимость данных, полу-
ченных в разных когортах и/или с помощью разных технологий, что важно при проведении метаанализов. 
При ее выполнении информацию о генотипах в исследуемой выборке, у которой известна только часть гене-
тических вариантов, дополняют за счет эталонной (референсной) выборки, имеющей более полные данные 
о генотипах (чаще всего это результаты полногеномного секвенирования). Импутация стала неотъемлемой 
частью геномных исследований человека благодаря преимуществам, которые она дает, а также увеличению 
доступности инструментов для импутации и данных референсных выборок. Обзор посвящен импутации в 
геномных исследованиях человека. В первом разделе приводятся описание технологий получения инфор-
мации о генотипах человека и характеристика получае мых типов данных. Во втором разделе представлена 
методология импутации, перечисляются этапы ее проведения и соответствующие программы, дается опи-
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сание наиболее популярных референсных панелей и способов оценки качества импутации. В заключении 
представлены примеры использования импутации в геномных исследованиях выборок из России. Настоя-
щий обзор показывает важность проведения импутации, дает информацию о том, как ее выполнять, и систе-
матизирует результаты ее применения на примере российских выборок.
Ключевые слова: импутация; генотипирование; секвенирование; полногеномный анализ ассоциаций; чело-
век; ДНК-микрочип.

Fig. 1. DNA microarray. 
Pseudocolor (red, yellow or green) is determined by the number of molecules bound to the probe and labeled with different dyes. For 
further explanation of the figure, see the text below.

Technologies for obtaining  
human genotype data and their features
Human genotype data are a key aspect for many genetic stu­
dies. There are several technologies developed to read, analyze 
and interpret genetic information. The most commonly used 
methods include Sanger sequencing, next generation sequenc­
ing (NGS), and DNA microarrays.

Genotyping using DNA microarrays
A DNA microarray (or simply a “microchip” or “chip”, not 
to be confused with an RNA microarray, which is a different 
technology) is a small glass or silicon substrate, to which tens 
of thousands of probes (short single­stranded DNA fragments 
complementary to certain nucleotide sequences) are attached. 
These probes are arranged on the chip in such a way that each 
fragment can be identified by its location (Fig. 1).

During the analysis, fluorescent markers are attached to the 
studied DNA molecules, which were cut into fragments by 
restriction endonucleases, and placed on the chip. The target 
DNA fragments are bound to complementary DNA probes, 
and all remaining fragments are removed from the chip. Laser 
beams and computer processing are used to detect the fluores­
cence of fragments, record the emission (radiation) patterns 
and subsequently identify the sequences. This method is very 
fast and allows to simultaneously determine the nucleotide se­
quence of several DNA fragments (Govindarajan et al., 2012).

An alternative approach to solving the problem of genotyp­
ing was implemented by academician A.D. Mirzabekov in 
domestic developments to create gel microchips (Mirzabekov, 
2003). They are a substrate made of glass, plastic or silicone 
with hemispherical drops of hydrogel fixed on its surface. 
The distinction of this method is that DNA fragments are im­
mobilized in three­dimensional space, which provides greater 

sensitivity and capacity of the microchip. This technology 
has also found its application in RNA analysis, protein and 
cell biochips.

There are several strategies for identifying single nucleotide 
polymorphism (SNP) for microarrays (Fig. 2).

Allele distinction by hybridization (Fig. 2a). The labeled 
target DNA hybridizes with probes containing a polymorphic 
site in the center. Correctly paired oligonucleotides are more 
stable (have a higher melting temperature) compared to 
duplexes with a non­complementary base. Therefore, after 
washing the chip under harsh temperature conditions, only 
correctly paired chains remain on it. It is common to use 
multiple fragments for each allele to improve the quality of 
the signal relative to noise (Wang D.G. et al., 1998).

“Golden Gate” analysis by the Illumina company 
(Fig. 2b). Two allele-specific oligonucleotides, each of which 
has a 5′ end with different universal primers (P1 and P2) (the 
primers are labeled with a unique fluorophore for subsequent 
site discrimination), hybridize in solution with genomic DNA. 
The third oligonucleotide, in addition to the universal primer 
(P3), has a tail with a “barcode” sequence complementary to 
the fragment on the chip. The allele-specific primers extended 
by a polymerase are ligated to a third oligonucleotide, after 
which the resulting fragments are amplified using the poly­
merase chain reaction and hybridized onto the chip. The use 
of multiple barcodes (one for each locus of interest) allows for 
analysis of several genomic regions at once (Fan et al., 2003).

Arrayed Primer Extension (APEX, Fig. 2c). Here, the 
chip contains a DNA fragment, the 5′ end of which is fixed 
to the substrate, and the 3′ end finishes with the nucleotide 
preceding the SNP being detected. Fragments of genomic 
DNA are hybridized to the chip, while the desired SNP re­
mains unpaired. During the sequencing reaction, the nucleo­
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Fig. 2. SNP detection strategies for DNA microarrays. 
а – allele-specific hybridization; b – “Golden Gate” analysis by the Illumina company; c – arrayed primer extension.

tide sequence attached to the substrate is extended by one 
terminating nucleotide labeled with a dye (Kurg et al., 2000). 
This nucleotide prevents further growth of the DNA chain, 
and the color of its dye allows you to determine which of the 
nucleotides (A, T, G or C) is located at the given position.

One of the main advantages of DNA microarrays is their 
high throughput capability (Hayat, 2002; Brown et al., 
2024). The microarray provides the basis for simultaneous 
genotyping of thousands of different loci and detection of 
single nucleotide substitutions. Thus, microarrays are used 
to analyze large samples in order to genotype frequently oc­
curring genetic variants (with a minor allele frequency in the 
population > 0.01).

However, there are some limitations in interpreting the 
results. Microarray data are typically binary (indicating the 
presence or absence of a specific allele), high-throughput (al­
lowing the analysis of thousands or millions of SNPs), and 
requiring specialized analysis techniques to extract meaning­
ful information. In this case, we are talking about software 
(for example, GenomeStudio (Illumina Inc., San Diego, CA, 
США)), which includes tools for quality control, genotype 
identification, visualization and data analysis. In addition, 
microchips can produce both false positive and false nega­
tive results. These issues highlight the importance of careful 
data interpretation and the need to use appropriate statistical 
methods to control quality and validate results.

Genome sequencing
This chapter describes various sequencing technologies. 
Around 1976, two methods that could read hundreds of 
bases in half a day were developed – Sanger and Coulson 
strand termination and Maxam and Gilbert chemical cleavage 

(Maxam, Gilbert, 1977; Sanger et al., 1977). In both methods, 
the analyzed DNA is placed into four test tubes with different 
compositions of the reaction mixture for a specific type of 
nitrogenous base (A, T, G or C). Gilbert’s method uses DNA, 
radioactively labeled at one end, and a mixture of enzymes 
that specifically cut it before a certain type of nucleotide. 
Sanger sequencing, in contrast, involves primers and dide­
oxynucleotides that stop chain synthesis when radiolabeled 
dideoxynucleoside triphosphate (ddNTP; different in each 
tube) is included. Hence, as a result of implementing either 
method, labeled DNA fragments of different lengths that end 
with the same base are formed in each tube. Sequences are 
separated by length using polyacrylamide plate gel electropho­
resis (one lane per base type) at single nucleotide resolution. 
The image obtained on X-ray film after electrophoresis allows 
researchers to restore the original sequence. The described 
methods immediately came into use, and by 1987, automated 
fluorescent Sanger sequencers could read about 1,000 bases 
per day (Smith et al., 1986; Connell et al., 1987).

In 2005, next generation sequencing (NGS) technologies 
were first introduced, which are based on two approaches. 
The first of these is sequencing by hybridization (SBH). The 
essence of the method is as follows: first, short sections of 
DNA are fixed on a glass substrate (DNA chip). Then the 
fragments to be identified are labeled with fluorophore and 
applied to the chip for hybridization with the fixed areas. 
Single­stranded DNA is washed away, and the hybridization 
pattern is read from the color marks and their brightness. An 
alternative approach in NGS is sequencing by synthesis (SBS) 
(Shendure et al., 2017).

As a rule, in technologies that use the SBS technique, pre­
fragmented sequences are fixed in a flow cell, where cyclic 
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Fig. 3. Third generation sequencing. 
а – Pacific Biosciences; б – Oxford Nanopore Technology. See the text below for explanation.

synthesis of a new chain occurs. By sequentially adding one 
of the four deoxynucleotides to the mixture, having removed 
the previous ones in advance, it is possible to read signals 
from the cells where the synthesis reaction was successful. 
Therefore, the output provides information about where which 
nucleotide is located.

Sequencing technologies with an approach other than NGS 
were first described in 2008–2009 and named “third generation 
sequencing” (Check Hayden, 2009). They include two main 
approaches (Fig. 3).

The first technology, Pacific Biosciences (PacBio) (Rhoads, 
Au, 2015), is designed to optically monitor DNA synthesis 
using a polymerase in real time. The structure has a hole less 
than half the light wavelength that limits fluorescent excita­
tion to a small volume containing only the polymerase and 
its template (Fig. 3a). With such a device, only fluorescently 
labeled nucleotides included in the growing DNA strand emit 
signals of sufficient duration to be read. The error rate in this 
sequencing method is very high (about 10 %), but the errors 
are distributed randomly. With long reads and tolerance for 
high GC content and random errors, PacBio provides de novo 
assemblies of unprecedented quality in terms of accuracy and 
continuity.

The second major third­generation sequencing technology 
is Oxford Nanopore (ONT) (Deamer et al., 2016). This tech­
nique was first proposed in the 1980s. The special chamber 
where the sequencing process takes place is filled with an 
electrolytic solution and divided by a two­layer membrane 

with a nanopore (its dimensions are in the nanorange). Once 
voltage is applied, the electrolyte ions and the DNA molecule 
begin to move through the pore. Nucleic acid physically inter­
feres with the migration of ions, which leads to fluctuations 
in current strength, which allows the nucleotide sequence to 
be determined (Fig. 3b). The main difference from other se­
quencing technologies is the extreme portability of nanopore 
devices, which can be as small as a memory stick (USB), as 
they rely on detecting electronic rather than optical signals. 

Comparison of technologies  
and their application to solve different problems
Most often, Illumina NGS technologies are used for large­
scale projects (whole­genome sequencing, transcriptome ana­
lysis and epigenetic profiling), but PacBio is more useful for 
de novo assembly, and ONT is more applicable for portable 
sequencing. The Sanger method is suitable for sequencing 
short DNA fragments such as individual genes, plasmids or 
viral genomes.

Also worth mentioning is a sequencing technology com­
peting with Illumina, developed by Complete Genomics and 
MGI Tech, DNBSEQ-T7 (formerly known as MGISEQ-T7). 
In DNBSEQ-T7, the clonal amplification process occurs as a 
rolling circle, i. e., always from the original template, which 
eliminates the accumulation of DNA polymerase errors 
(Drmanac et al., 2010). The main advantages of  MGI include 
lower cost compared to Illumina and the ability to process a 
larger volume of samples in a shorter time. As recent studies 
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Fig. 4. Imputation of genotyping data. 
1 – Phasing; 2 – Imputation itself. See the text below for explanations. 

show, the new MGISEQ­2000 sequencer can be used as a full­
fledged alternative to Illumina sequencers when conducting 
whole-genome studies (search for variants, identification of 
indels), the differences between the two platforms are insignifi­
cant (Korostin et al., 2020; Jeon et al., 2021; Feng et al., 2024).

Recently, the effectiveness of using whole-genome sequenc­
ing (WGS) for GWAS has been demonstrated (DePristo et al., 
2011; Chat et al., 2022). This approach is a promising alterna­
tive to genotyping using DNA microarrays, as it allows one 
to obtain information on a larger proportion of genetic varia­
tions, increasing the power of association tests and subsequent 
fine-mapping analyses (Wang Q.S., Huang, 2022). However, 
despite the decreasing cost of NGS­based technologies, GWAS 
mainly use high­throughput and relatively cheap DNA micro­
arrays containing hundreds of thousands to millions of com­
mon genetic markers, which make it possible to test almost 
the entire genome for associations with the trait being studied. 
SNP genotyping using DNA microarrays can contain up to 
5 % errors depending on the manufacturer (Lamy et al., 2006; 
Yang et al., 2011; Guo et al., 2014). However, existing proto­
cols for quality control of the obtained data can significantly 
reduce the number of errors (on average by 1.7 %) (Zhao et al., 
2018). Thus, microarrays allow fairly accurate genotyping of 
samples even for species with high heterozygosity (i. e., with 
greater genetic variation than expected at Hardy–Weinberg 
equilibrium) (Bourke et al., 2018). Moreover, at the end of 
2023, the cost of genotyping a sample on a microchip was an 
order of magnitude lower than the cost of NGS sequencing, 
which makes it possible to cover a much larger sample size 
with the same project budget. Their main disadvantage when 
conducting GWAS is that they do not allow detection of an 
association between an SNP and a trait if the genetic variant 
is not represented on the microarray. 

Additional difficulties in using DNA microarrays may arise 
because the information (such as the location of SNPs on the 
chromosome) used to design the chip is out of date or differs 
between manufacturers. The above problems can be solved 
by imputation of genotyping data (Pasaniuc et al., 2012). 
This approach allows us to increase the density of coverage 
for the genetic variants studied (total number of markers) 
and the proportion of common variants when conducting a 
meta-analysis (combining data from different studies and/or 
genotyping platforms) (Li Y. et al., 2009).

A replacement for DNA microarrays could be low­coverage 
WGS (lcWGS), in which random regions of the genome are 
sequenced (Chat et al., 2022). Research shows that lcWGS 
significantly outperforms microarrays in marker density, 
which also allows for a more thorough assessment of asso­
ciations with less common variants. Such data also require 
imputation using haplotypes (e. g., from the 1000 Genomes 
Project) (Auton et al., 2015). The costs of ultra-low coverage 
WGS (sequencing depth ≤ 0.5x) may be comparable to or 
lower than those of using DNA microarrays, but its potential 
as an alternative has not yet been sufficiently assessed (Martin 
et al., 2021).

DNA sequencing and genotyping solve the task of analyzing 
genetic information in different ways. As such, sequencing 
allows you to read entire DNA fragments and is therefore 
applied to identify rare (minor allele frequency < 0.01 %) and 
de novo mutations, and is widely used to study the structure 
of individual genes or genome regions. Genotyping, on the 
other hand, is a faster and more cost-effective method for 
analyzing genetic variation, which is particularly useful for 
large­scale genomic studies involving thousands or even mil­
lions of samples. Thus, if the goal of a study is to comprehen­
sively examine the genetic architecture of a trait or disease, 
sequencing is likely the best approach. However, if the focus 
of the study is on common genetic variants, or analysis of the 
population or kinship structure of the sample, then genotyping 
is often sufficient and more effective (Gresham et al., 2008).

Imputation of genotyping data
Although sequencing the entire genome of hundreds of 
thousands of people is not yet feasible, significant progress 
can be made by identifying only a relatively small number 
of genetic variants in each person. This type of “incomplete” 
information is still useful because data on any set of SNPs in 
a group of people allow inferences to be made about many 
other unobserved variants in the same people. The approach 
to accomplish this is called imputation.

Methodology
The imputation procedure includes the following stages: 
quality control of genotyping data, phasing, imputation itself, 
and at the final step – quality control of imputed genotypes  
(Fig. 4). 
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Genetic variants that are located nearby on a chromosome 
are more likely to be inherited together, which occurs because 
there are only a few recombinations per chromosome. This 
principle is called “linkage disequilibrium” (LD). Due to this 
principle, we observe blocks of haplotypes (haploblocks) – 
sets of closely spaced genetic variants that were inherited 
together during evolution.

In imputation, haploblocks are used to identify common 
short stretches of DNA on chromosomes that individuals in 
a randomly selected population may have inherited from a 
common ancestor. By comparing haplotypes in two samples 
(study and reference) based on a set of common genetic 
variants, imputation algorithms provide inferences about the 
genotypes of the studied individuals. Both of these samples 
must be from the same ethnic group for imputation to produce 
accurate results (Mills et al., 2020).

Although genotyping data do not contain haplotype infor­
mation, it can be inferred and reconstructed using stepwise 
analysis. Phasing is the process of statistically estimating hap­
lotypes. Imputation can be performed on both raw unphased 
genotyping data and reconstructed mixed haplotypes, although 
phasing is known to improve imputation accuracy (Anderson 
et al., 2010). In addition, phasing is often necessary due to 
the fact that standard imputation algorithms (more about them 
below) work specifically with haploblocks.

Quality control of genotyping data
An important step in any genomic study is to conduct data 
quality control. The importance of this step is illustrated by the 
example of a paper published in Science that was retracted due 
to insufficient consideration of technical errors in genotyping 
on an Illumina chip (Marees et al., 2018).

Quality control of DNA microarray genotyping data is di­
vided into two main steps: control at the individual level and 
control at the marker level. Individual­level control involves 
removing a sample in the following cases (Anderson et al., 
2010):
– there is an observed discrepancy between the phenotype 

and the genotype (in particular, the phenotypic sex differs 
from the genetic one);

– the number of heterozygous loci in the genome deviates 
from the expected value (an overestimation or underestima­
tion of this indicator may indicate sample contamination or 
inbreeding, respectively);

– the sample contains duplicates, relatives of the first or se-
cond degree (similar genotypes will be overrepresented, as 
a result of which allele frequencies in the population may 
be displayed unreliably);

– has a different ethnic origin, that is, there is a stratification of 
the population (the most common approach for identifying 
such individuals is principal component analysis (PCA) on 
a kinship matrix).
Data quality control at the level of individual markers also 

consists of several points that involve the removal of SNPs if:
– minor allele frequency (MAF) < 0.01;
– they are absent from a large part of individuals in the 

sample;
– they deviate significantly from Hardy–Weinberg equilib­

rium.

To carry out quality control, a number of publicly available 
programs are used: PLINK 1.9/PLINK 2 (Purcell et al., 2007; 
Chang et al., 2015), RICOLI (Lam et al., 2020), SMARTPCA 
(Price et al., 2006) and FlashPCA (Abraham et al., 2017).

Imputation Tools
Over the past twenty years, several different research groups 
have developed and published a number of tools for phasing 
and subsequent imputation, most of which are based on the 
hidden Markov model (HMM) of Li and Stephens (Li N., 
Stephens, 2003). This statistical model, first described in 2003, 
assumes that haplotypes are inherited as haploblocks and that 
recombination events occur at their boundaries. The model 
probabilistically reconstructs the studied haplotypes in the 
form of a mosaic composed of haplotypes from a small refe­
rence sample (Fig. 5). It has been shown that methods based on 
Li and Stephens’ HMM are more accurate and efficient (Weale, 
2004) than approaches such as Clark’s algorithm (Clark, 1990) 
or the EM algorithm (Expectation­Maximization) (Dempster 
et al., 1977) (Browning S.R., Browning B.L., 2011). Currently, 
the most commonly used programs implementing Li and 
Stephens’ HMM are Beagle 5 (Browning B.L. et al., 2021), 
Eagle2 (Loh et al., 2016) and ShapeIT (Delaneau et al., 2012) 
for phasing, and also Beagle 5 (Browning B.L. et al., 2018), 
Impute5 (Rubinacci et al., 2020) and Minimac4 (Das et al., 
2016) for imputation. Beagle 5 and ShapeIT2 allow you to 
perform both of these procedures.

A comparative analysis of current phasing and imputation 
software showed that, overall, Beagle 5.4 performed slightly 
better than Impute5 and Minimac4, with a higher concordance 
rate and high performance even on large data sets (De Marino 
et al., 2022). However, Minimac4 and Impute5 tend to perform 
better on rare variants because, unlike Beagle 5.4, which com­
putes clusters of haplotypes and performs calculations based 
on them, Impute5 and Minimac4 search the entire haplotype 
space. Minimac4 requires the least amount of memory, but 
calculations take longer. If memory usage is limited and the 
loss of accuracy is acceptable, then Minimac4 may be the 
optimal choice of imputation software.

Fig. 5. Visualization of the performance of HMM-based algorithms for 
four individuals from the reference sample. 
Each column is a separate SNP with two alleles (empty and crossed out squares 
represent different alleles of the same SNP), and each pair of rows represents 
two copies of DNA (from each parent). Closely related SNPs are grouped 
by color, and each haplotype is modeled as a mosaic of color combinations 
(Scheet, Stephens, 2006).

1
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4
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The above programs can be run from a local server and 
require reference haplotypes. Nevertheless, most of these 
large-scale datasets are not publicly available. For this reason, 
special servers that contain information about different refe-
rence panels are most often used for imputation of  human data, 
such as Michigan Imputation Server1 (Das et al., 2016) and 
TOPMed Imputation Server2 (Das et al., 2016). Researchers 
can upload their datasets there, configure parameters through 
the web user interface (select tools, reference panels, etc.), 
perform phasing and genotype imputation on the server, and 
download the output files. 

As disadvantages of this approach, it is worth noting the 
need to send your data outside the local server (albeit using 
secure connection protocols) and possible queues. In addition, 
users are often limited in the choice of programs or reference 
panels, and cannot combine multiple panels or integrate their 
own. However, it is possible to bypass these restrictions, for 
example, using Docker software (Das et al., 2016), and run 
imputation on your server. The problem with standalone run­
ning is a little more complexity due to manual settings, where 
the user needs to install additional programs for the pipeline 
and account for library conflicts.

In Supplementary Material 13 compares the tools available 
on the two servers described above.

Reference panels for imputation  
of human genotyping data
One important issue in genotype imputation is how to select 
a reference panel that provides high imputation accuracy in 
the population of interest. As it was shown (Huang, Tseng, 
2014), the quality of imputation is affected not only by the size 
of the panel, but also by the ethnic composition of the refe­
rence sample. The most commonly used panels for European 
populations currently are 1000 Genomes (Sudmant et al., 
2015), Haplotype Reference Consortium (HRC) (Haplotype 
Reference Consortium, 2016) and Trans-Omics for Precision 
Medicine (TOPMed) (Taliun et al., 2021).

The 1000 Genomes Phase 3 Version 5 reference panel was 
prepared as part of the 1000 Genomes Project in 2008 (Auton 
et al., 2015). In total, while using a combination of low-co-
verage whole­genome sequencing, high­coverage exome 
sequencing and microarray genotyping, this project was able 
to characterize 88 million genetic variants (84.7 million SNPs, 
3.6 million short insertions/deletions and 60,000 structural 
variants). This version of the reference panel includes 49 mil­
lion markers from 2,504 individuals from a mixed population.

The HRC r1.1 2016 reference panel was compiled by the 
HRC (The Haplotype Reference Consortium) to create a large 
haplotype reference panel. The HRC panel combines data­
sets from 20 different studies, most of which were obtained 
using low-coverage (4–8x) whole­genome sequencing and 
consist of samples of individuals of predominantly European 
ancestry. The reference panel consists of 64,976 haplotypes 
of 32 thousand individuals with 39,235,157 SNPs; it does not 
contain deletions or insertions.

1 https://imputationserver.sph.umich.edu/index.html#!pages/home  
2 https://imputation.biodatacatalyst.nhlbi.nih.gov/#!pages/home  
3 Supplementary Materials 1–3 are available at:  
https://vavilov.elpub.ru/jour/manager/files/Suppl_Berd_Engl_28_6.pdf

The TOPMed (The Trans­Omics for Precision Medicine) 
project was initiated in 2010 with the goal of collecting and 
analyzing whole­genome sequencing data. As of September 
2021, TOPMed has approximately 180 thousand participants, 
predominantly of non-European origin, from more than 85 
different studies. A reference panel was created based on 
the TOPMed database, which includes 286,068,980 SNPs; 
5,815,513 insertions and 16,222,592 deletions in the genotypes 
of 97,256 individuals. These genetic variants are distributed 
across 22 autosomes and the X chromosome. TOPMed (Ver­
sion r2) is the first panel that is based solely on deep whole-
genome sequencing data and is significantly superior to 
pre viously published alternatives.

Although most genetic studies and reference panels focus 
on samples of individuals of European ancestry, it is worth 
noting that there are various projects aimed at studying the 
genetic diversity of other populations. These include China­
MAP (10,588 samples and 136.7 million SNPs) (Li L. et al., 
2021), NARD (1,779 individuals, 40.6 million SNPs) (Yoo et 
al., 2019), GAsP (1,739 samples, 1 million autosomal SNPs) 
(Wall et al., 2019), SG10K (4,810 samples, 89.1 million SNPs) 
(Wu et al., 2019) for samples of people of Asian descent, 
AFAM (2,269 samples, 45 million SNPs) (O’Connell et al., 
2021) and UGR (4778 samples, 2.2 million markers) (Fatumo 
et al., 2022) for African Americans. The TOPMed panel can 
also be used to impute non­European samples of individuals 
of both African and Asian descent.

The ideal solution when selecting a panel for imputation is 
to combine data from multiple reference samples to construct 
a combined reference panel. However, different studies tend 
to use different quality control and variant filtering strategies, 
which can make pooling results difficult. 

Another major issue is restrictions on shared data use. For 
example, individual­level genotype information in many refe­
rence panels is not publicly available; therefore, it may not be 
possible to directly combine it with sequencing results from 
other samples. In this regard, the meta­imputation method was 
proposed (Yu et al., 2022). Instead of combining reference 
panels, genotypes are first imputed using multiple reference 
panels separately and then the imputed results are combined 
into a consistent data set.

Assessment of imputation quality
The quality of genotyping data imputation can be assessed: 
1) using standard imputation quality metrics; 2) empirically 
(for example, conduct a GWAS on the trait of interest and 
check the reproducibility of association signals known from 
the literature, or calculate a polygenic estimate of the trait and 
compare it with real phenotypes).

Imputation quality metrics can also be divided into two large 
groups (Stahl et al., 2021): 1) those that assess the quality of 
imputation without using directly genotyped SNPs and are 
calculated automatically when running the corresponding 
imputation software, and 2) those that allow the comparison 
between imputed SNPs and genotypes and are calculated 
manually.

Quality metrics in the first group are specific to each in­
dividual program. For example, for Minimac4 and Beagle 5, 
the R2 indicator is estimated (Marchini, Howie, 2010), which 

https://vavilov.elpub.ru/jour/manager/files/Suppl_Berd_Engl_28_6.pdf
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is calculated differently for each program, while Impute5 
calculates the Info parameter (Marchini, Howie, 2010). Be­
cause of their specificity, they are not suitable for comparing 
the quality of data imputed by different methods. This task is 
successfully accomplished by metrics from the second group, 
which include: concordation rate (CR), Imputation Quality 
Score (IQS) (Lin et al., 2010), Hellinger score (Roshyara et 
al., 2014), squared Euclidean norm score (SEN) (Roshyara et 
al., 2014) and others. In practice, standard metrics of the first 
group are most often used.

While conducting imputation, the posterior probabilities 
of the genotype are estimated. Thus, for biallelic SNPs in an 
additive model (where the genotype is coded as 0, 1 and 2, and 
the reference and alternative allele are 0 and 1, respectively), 
the estimated probability of individual i to have genotype j at 
a particular locus is denoted as G i    j  ( j = 0, 1, 2). This indica­
tor is calculated by appropriate imputation software based 
on data from the reference and target samples using built­in 
algorithms (for example, a hidden Markov model, as described 
above). The dose of the alternative allele is calculated as  
Di = G i    1 + 2G i    2.

The R2 metric is an approximation of the squared correlation 
between the imputed allele dose and the expected genotype 
and is calculated as the ratio of the allele dose dispersion and 
the expected dispersion under Hardy–Weinberg equilibrium

    
 ^R2
    d

 = 
1
N ∑

N
     i = 1

(Di – 2p̂)2
 

2p̂(1 – p̂)
 ,                         (1)

p̂ =
 N 

      i = 1 

Di
2N  ,

where N is the number of individuals in the sample; Di is the 
dose of the imputed allele for the i­th individual; p̂ is the allele 
frequency estimate.

Many modern algorithms (such as Minimac) carry out 
imputation on pre­phased genotypes, that is, they work with 
haplotypes. The formula undergoes slight changes, as the set 
of genotypes is now described as a pool of 2N binary encoded 
alleles

    
 ^R2
    h

 = 
1

2N  ∑
2N

     i = 1
(Hi – p̂)2

 
p̂(1 – p̂)

,       (2)

p̂ =
2N 

     
i = 1 

Hi
2N  ,

where Hi is the probability of the imputed allele in the i­th 
haplotype (varies from 0 to 1 and is estimated by built-in hid­
den Markov model algorithms); N is the sample size; p̂ is the 
allele frequency estimate. The derivation of the formulas can 
be found in Supplementary Materials 2 and 3.

When calculating metrics of the second type, part of the 
information about genotypes in the sample under study is ar­
tificially “masked” (removed from the general data set, while 
maintaining information about these SNPs). Then the result­
ing gaps are imputed and compared with real genotypes. For 
instance, CR represents the proportion of correctly calculated 
SNPs to all SNPs. The Hellinger exponent is a measure of 
the distance between two genotype probability distributions 
and is based on the Bhattacharyya coefficient (Bhattacha­

ryya, 1943), which measures the degree of overlap between 
two distributions. The SEN metric is the scaled Euclidean 
distance between the true and imputed dose distributions. 
Both the Hellinger score and the SEN score are calculated 
for each individual’s distinct SNPs. IQS is based on Cohen’s 
kappa statistic and allows for random co­occurrence between 
imputed and real SNPs.

As mentioned at the beginning, in addition to the listed 
metrics, a polygenic score (PGS) of the trait can be used to 
control the quality of imputation (Choi et al., 2020). It is a 
measure of an individual’s genetic risk for a trait, obtained 
by summing the quantified effect of many common variants 
(typically with minor allele frequencies ≥ 1 %) in the genome, 
each of which may make a small contribution to an individual’s 
genetic risk for that trait or disease. PGS is typically calculated 
as a weighted sum of a set of genetic variants, usually SNPs, 
defined as single base pair variations from a reference genome. 
The resulting score has a distribution close to normal in the 
general population, with higher scores indicating higher risk.

In general, the equation for calculating a weighted polygenic 
risk score for an individual is as follows (Collister et al., 2022):

PGSi =∑M
     j

^β*dosageij ,
where M is the number of SNPs in the model; ^βj is an estimate 
of the effect size of the j­th variant; dosageij is the genotype 
encoded 0, 1, 2 for the j­th variant in the genotype of the 
i-th individual. SNP effect sizes (β) are often obtained from 
GWAS results.

After calculating the PGS score for a trait, its values are 
compared with the values of real phenotypes. If there is a 
significant correlation between these two data sets, we can 
conclude that the data is of high quality after imputation.

Examples of imputation  
in genomic studies on Russian samples
Despite the advantages of imputation and phasing described 
above, there is very little reference to their use in studies of 
Russian samples. As such, in a 2023 study on depression in a 
sample of 4,520 individuals from various regions of Russia, 
imputation was carried out using the HRC and 1000G refe-
rence panels using Beagle 5.1 (Pinakhina et al., 2022). Simi­
larly, in a study of the genetic structure of the Western Russian 
population (sample of 4,145 individuals), the HRC panel was 
chosen as the panel for imputation; the procedure itself was 
carried out using Beagle 4.0 and allowed to consider another 
10,454,514 imputed genotyped variants in the analysis, in ad­
dition to 623,249 genotyped ones (Usoltsev et al., 2023). And 
in a 2022 study of markers associated with muscle strength 
and power in 292 Russians (83 of them professional athletes), 
not only imputation on a 1000G panel, but also phasing using 
SHAPEIT was carried out (Moreland et al., 2022).

As stated earlier, one of the most important factors for 
performing high­quality imputation is the correct choice of 
reference panel. The authors of one work (Kolosov et al., 2022) 
assessed the reliability of imputation of genotypes of a sample 
of 230 elderly people from St. Petersburg (501,100 SNP) by 
such panels as HRC, 1000G, HGDP (Human Genome Diver­
sity Project (Cann et al., 2002) – a reference panel based on 
929 people of various ethnic backgrounds). They were able 
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to increase the total number of variants studied to 37.6, 37.5 
and 26.6 million SNPs for each of the panels, respectively, 
using Beagle 5.1 (the data were pre-phased). In addition, 
HRC, compared to the other two panels, showed the highest 
imputation accuracy (IQS and CR metrics).

All of these works use HRC or 1000G as reference panels, 
but this approach is somewhat outdated and is subject to revi­
sion due to the emergence of a larger TOPMed data set, the 
use of which serves as a kind of gold standard in international 
studies at the moment. As for the software, various versions 
of Beagle are used in the reviewed works.

In the mentioned studies on Russian samples, meta­analyses 
or fine mapping of genes were not carried out; however, as 
examples from other works show (Barton et al., 2021), thanks 
to imputation and phasing such analyzes can be done with a 
significant quality improvement.

Conclusion
From the above, we can conclude that, at the moment, impu­
tation of genotyping data is an integral part of many human 
genomic studies, in particular GWAS. It provides an increase 
in the number of SNPs analyzed and makes it possible to 
combine the results of different studies. Imputation also sig­
nificantly improves the results of fine mapping, allowing the 
most accurate identification of specific genetic variants and 
genes that determine the association of the entire genome 
region with the trait being studied (Chundru et al., 2019).

It is worth noting that for large­scale studies where sample 
size and genotyping coverage are important, the combina­
tion of DNA microarrays/sequencing with low coverage and 
further imputation is the most optimal and cheapest data 
acquisition strategy suitable for most genomic study designs. 
This combination is used in all major national biobanks, such 
as UK Biobank (Sudlow et al., 2015), AllOfUs (Ramirez et 
al., 2022) and others.

Along with the listed advantages, the imputation method 
has a number of disadvantages and limitations. In particular, 
reading errors due to low coverage, as well as incorrect selec­
tion of parameters for imputation along with an inappropriate 
reference panel, often lead to low accuracy of the imputed 
data, which can negatively affect the results of further stages 
of analysis. It must also be remembered that imputation uses 
information about haplotypes from the reference sample, so 
when it becomes outdated, genetic variants that have become 
frequent in the population relatively recently may be imputed 
worse (Ali et al., 2022). In addition, a high level of recombina­
tion reduces the accuracy of phasing and subsequent imputa­
tion of genotypes, and therefore, in some cases, additional 
recombination analysis is necessary (Weng et al., 2014). 

Also, imputation can smooth out genetic differences be­
tween individuals in case­control samples (Lau et al., 2024): 
imputed data may introduce inaccurate genotypes in regions 
where differences between case and control are expected, 
and this effect appears regardless of how large and diverse 
the reference panel is. Finally, when using the method, it is 
important to remember that what is true for the population 
as a whole may not always be true for a specific individual.

Currently, there is a wide variety of programs and referen ce 
panels for imputation of human genomic data, and, as a conse­

quence, many combinations of them. Due to this, researchers 
have the opportunity to select the optimal set of imputation 
tools for the characteristics of the sample and the objectives 
of a particular study. A review of works on Russian samples 
showed that the most popular software for imputation is 
Beagle of various versions, and among reference panels, HRC 
and 1000G are most often used, which is somewhat different 
from international practices, where the leader among reference 
panels is TOPMed. 

Greater awareness of the intricacies of imputation and a 
deliberate approach to the selection of tools will improve 
the quality of genomic data without increasing the cost of 
obtaining them, facilitate their integration with the results of 
other studies, and provide more accurate information about 
the genetic control of human traits. 
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