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Abstract. Gene regulatory networks (GRNs) – interpretable graph models of gene expression regulation – are a  pivotal 
tool for understanding and investigating the mechanisms utilized by cells during development and in response to vari-
ous internal and external stimuli. Historically, the first approach for the GRN reconstruction was based on the analysis 
of published data (including those summarized in databases). Currently, the primary GRN inference approach is the 
analysis of omics (mainly transcriptomic) data; a number of mathematical methods have been adapted for that. Ob-
taining omics data for individual cells has made it possible to conduct large-scale molecular genetic studies with an 
extremely high resolution. In particular, it has become possible to reconstruct GRNs for individual cell types and for 
various cell states. However, technical and biological features of single-cell omics data require specific approaches for 
GRN inference. This review describes the approaches and programs that are used to reconstruct GRNs from single-cell 
RNA sequencing (scRNA-seq) data. We consider the advantages of using scRNA-seq data compared to bulk RNA-seq, 
as well as challenges in GRN inference. We pay specific attention to state-of-the-art methods for GRN reconstruction 
from single-cell transcriptomes recruiting other omics data, primarily transcription factor binding sites and open chro-
matin profiles (scATAC-seq), in order to increase inference accuracy. The review also considers the applicability of GRNs 
reconstructed from single-cell omics data to recover and characterize various biological processes. Future perspectives 
in this area are discussed.
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Аннотация. Генные регуляторные сети – интерпретируемые графовые модели регуляции экспрессии генов – яв-
ляются важным инструментом для понимания и исследования механизмов, которые клетки реализуют в процес-
се развития и при ответе на различные внутренние и внешние стимулы. Исторически первый подход для рекон-
струкции генных регуляторных сетей основывался на анализе литературных сведений, в том числе обобщенных 
в базах данных. В настоящее время основной способ системной реконструкции генных регуляторных сетей – 
анализ омиксных (в первую очередь транскриптомных) данных; разработан ряд математических подходов для 
решения этой задачи. Развитие технологий получения омиксных данных для отдельных клеток сделало воз-
можным проведение широкомасштабных молекулярно-генетических исследований с беспрецедентно высоким 
уровнем разрешения. В частности, появилась возможность реконструировать генные регуляторные сети для 
отдельных клеточных типов и для различных стадий развития клеток. Однако технические и биологические осо-
бенности омиксных данных отдельных клеток требуют специальных программ для решения этой задачи. В об-
зоре описаны подходы и программы, которые разработаны и используются для построения генных регулятор-
ных сетей по транскриптомным данным отдельных клеток (scRNA-seq). Разбираются преимущества применения 
транскриптомных данных для отдельных клеток по сравнению с транскриптомами многоклеточных образцов, 
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а также их недостатки в рамках решения задачи реконструкции регуляторных генных сетей. Существенное вни-
мание уделяется повышению точности генных регуляторных сетей, построенных по транскриптомным данным 
отдельных клеток с помощью привлечения других омиксных данных, в первую очередь данных по сайтам свя-
зывания транскрипционных факторов и профилирования районов открытого хроматина (scATAC- seq). Рассмат-
риваются вопросы применимости получаемых сетей в молекулярно-генетических исследованиях, приводятся 
примеры успешного использования генных регуляторных сетей, реконструированных различными методами с 
применением омиксных данных отдельных клеток для решения конкретных биологических задач. Обсуждаются 
перспективные направления развития этой области.
Ключевые слова: регуляторная генная сеть; данные для отдельных клеток; секвенирование РНК; scRNA-seq; 
scATAC-seq.

Introduction
A gene network is a group of coordinately expressed genes that 
interact with each other through the RNAs and proteins they 
encode, as well as the products of protein activity (Kolchanov 
et al., 2013). Gene networks are a central object of systems 
biology. To explore specific aspects more deeply, specialized 
types of gene networks are distinguished. Among them, gene 
regulatory networks (GRNs) hold a special place, as they 
describe the regulation of gene expression by transcription 
factors (TFs) – a key mechanism for a flexible implementa-
tion of genetic information (Huynh-Thu, Sanguinetti, 2019). 
GRNs are visualized as graphs of interactions between TFs 
and the genes they regulate (Fig. 1a) (Badia-i-Mompel et al., 
2023). Each node in a GRN represents a gene (some of which 
encode TFs), while edges correspond to regulatory relation-
ships between TF-encoding genes and other genes (these re-
lationships may reflect true molecular interactions  between 
TFs and promoters of their target genes or merely their 
statistical correlation). An edge may have a sign indicating 
whether it describes activation or inhibition of transcription, 
and a weight reflecting the strength of the regulator’s influ-
ence. Thus, GRNs represent models of the logic of regulatory 
events between genes during execution of cellular programs 
(Tieri, Castiglione, 2021). They provide a viable alternative 
to classical modeling with differential equations when kinetic 
information is unavailable.

GRNs can be constructed based on information about TFs 
and their target genes from publications or inferred de novo 
from transcriptomic data (Badia-i-Mompel et al., 2023). 
Bulk RNA-seq results in expression levels for each gene 
aggregated across all cells in a tissue or organ sample. Bulk 
RNA-seq data can be presented as a so-called expression 
matrix, which provides the expression values for each gene 
(depicted in lines) across different samples (depicted in co-
lumns) (Fig. 1b). Given that gene expression levels in these 
matrices result from regulation mediated by TF binding to 
gene promoters, a mathematical model can be constructed 
to explain the observed gene expression levels (Mercatelli et 
al., 2020; Nguyen et al., 2021). Most GRN inference methods 
designed for transcriptomic data are based on this premise 
(Mercatelli et al., 2020). Currently, GRN reconstruction from 
RNA-seq data is one of the topics in systems biology, within 
which a large number of methods and software programs 
have been developed (Nguyen et al., 2019; Mercatelli et al.,  
2020).

At the same time, the approach described above has draw-
backs. First, transcriptomic data do not contain explicit infor-
mation about specific regulatory events (e. g., TF binding to 

the promoters of the genes they regulate); all TF-target links 
are mathematically inferred from gene expression le vels. As 
a result, non-existent (erroneous) connections may be recon-
structed. Incorporating data that directly describe transcrip-
tional regulation (e. g., genome-wide open chromatin profiles 
or TF binding sites) can significantly improve GRN accuracy 
(Sönmezer et al., 2020; Isbel et al., 2022). Second, RNA-seq 
data do not account for the heterogeneity of cell populations, 
whereas gene expression can vary dramatically among differ-
ent cell types. This issue is addressed by scRNA- seq (Tang 
et al., 2009). 

Single cell transcriptomic data represent an expression ma-
trix where lines correspond to genes and columns correspond 
to cells (Fig. 1c), which can be grouped by cell types using 
special approaches (Luecken, Theis, 2019). scRNA-seq opens 
up opportunities to investigate biological processes at the level 
of individual cell types and provides new perspectives for 
GRN reconstruction and analysis (Nguyen et al., 2021). GRNs 
for individual cell types will allow the discovery of regulatory 
circuits specific to cell states or degrees of differentiation. 

In this review, we discuss methods for GRN inference from 
scRNA-seq data, with a detailed focus on the incorporation of 
other omics data, primarily TF binding sites and open chro-
matin profiles. Special attention is given to biological results 
that have been achieved through GRN analysis.

Single-cell transcriptomes  
as a data source for GRN inference
Besides enabling inference of cell-type specific GRNs, 
scRNA-seq data offer other advantages over bulk RNA-seq. 
Since the number of interactions within a GRN is typically 
quite large, a substantial number of transcriptomic profiles 
(columns in the expression matrix, Fig. 1) is required for 
their accurate reconstruction. This is not always achievable 
with bulk RNA-seq data (Fig. 1b) (Altay, 2012), whereas 
scRNA-seq data contain a representative set of transcriptomes 
(ranging from several hundred to several thousand) (Fig. 1c) 
(Luecken, Theis, 2019).

The ultimate purpose of GRNs is to outline the dynamics 
of gene expression regulation in biological processes, includ-
ing cell differentiation and responses to various internal and 
external stimuli. For the most accurate GRN inference from 
bulk RNA-seq data, time series experiments are required. In 
contrast, scRNA-seq data from one sample can contain infor-
mation about gene expression changes over time if cells within 
the sample participate in the same biological process (e. g., 
differentiation) and are undergoing different stages (Saelens 
et al., 2019; Hou et al., 2023). In such cases, computational 
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Fig. 1. Gene regulatory network and transcriptomic data behind its construction.
а – visualization of a GRN graph model; b – gene expression matrix constructed from bulk RNA-seq data for several samples (s1–s4); c – gene expression matrix 
constructed from scRNA-seq data for a single sample. The graph nodes denote genes, edges reflect regulatory links, including their direction, type (activation or 
inhibition of transcription), and magnitude (the larger the weight of the edge, the stronger the regulator’s influence on transcription). Red nodes correspond to 
TF-coding genes, white nodes correspond to other genes. In the GRN, edges originate only from TF-coding genes. In panel (c), different colors denote different 
cell types.
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positioning of cells along a pseudotime trajectory (with the 
order of cells defined by the distance between their transcrip-
tomes) allows for a good approximation of gene expression 
dynamics throughout the process. 

However, it is important to remember that, in some samples, 
cells may be in the same state or they can participate in numer-
ous independent processes, making reconstruction of  biologi-
cally meaningful pseudotime trajectories impossible (Prata pa 
et al., 2020). Therefore, when selecting a method for GRN 
inference, it is crucial to determine whether pseudotime infor-
mation is present in the single-cell transcriptome dataset, as 
some methods are designed specifically for data with cellular 
dynamics, while others are only suitable for static data. There 
are also methods that can be applied to both types of data.

At the same time, scRNA-seq data have some features that 
complicate their analysis, in particular, GRN reconstruction 
(Wagner et al., 2016; Nguyen et al., 2021). These concern 
transient activation or low expression of certain genes, gene 
expression changes during cell cycle, and other factors. The 
widespread use of scRNA-seq technology in biology has 
led to development of multiple algorithms for analyzing the 
data it generates, each addressing these challenges in dif- 
ferent ways.

Reconstruction of GRNs from scRNA-seq data
In this section, we describe the main categories of popular 
algorithms used for GRN inference from scRNA-seq data 
(correlation- and mutual information-based methods, regres-
sion, Bayesian and logical networks, mathematical modeling 
with differential equations) (Fig. 2). It is worth noting that 
in benchmarking of GRN inference  tools on both simulated 
and real scRNA-seq data, no single method has proven to be 
universally superior (Chen, Mar, 2018; Blencowe et al., 2019; 
Pratapa et al., 2020). Such variability may be attributed to the 
fact that each method is suitable for specific types and sources 
of data for which it was developed.

Correlation-based algorithms
Pearson correlation, a widely recognized statistical index for 
calculating the association between two variables, has been 

applied to measure the co-expression of TF-coding genes and 
their potential targets in RNA-seq and scRNA-seq datasets 
(Hong et al., 2013; Nguyen et al., 2021). Being symmetric in 
its arguments, correlation does not predict the directionality 
of regulatory interactions. It can identify associations between 
pairs of genes that do not necessarily have a direct regulatory 
relationship. Methods such as PPCOR (Kim, 2015) account 
for the influence of other genes by calculating semi-partial 
correlation coefficients. LEAP (Specht, Li, 2017), an algo-
rithm specifically designed for the analysis of single-cell data, 
computes the maximum Pearson correlation between each pair 
of genes over varying lag-windows, given that the cells were 
arranged in a pseudotime order. Since this type of correlation 
is not symmetric, LEAP is capable of reconstructing directed 
gene regulatory networks. As a result of testing this program 
on transcriptomes from 564 individual mouse dendritic cells, 
LEAP identified several thousand previously unknown links 
between genes (Shalek et al., 2014).

Mutual information-based algorithms
Information-theoretic approaches utilize mutual information, 
which measures the reduction in entropy for one variable 
(e. g., the expression level of one gene) given the value of 
another variable (e. g., the expression level of another gene) 
(Chan et al., 2017; Qiu et al., 2020; Chang et al., 2024). To 
reduce false positives arising from indirect interactions be-
tween two genes, methods such as PIDC (Chan et al., 2017) 
use partial information decomposition (PID) to compute the 
proportional unique contribution (PUC) for a pair of genes that 
cannot be explained by the expression of a third gene. Since 
this relationship is symmetric, the reconstructed edges are  
undirected. 

PIDC has been successfully applied to reconstruct GRNs 
from single-cell transcriptomes for three processes in mice: 
differentiation of megakaryocytes and erythrocytes from a 
common precursor, early embryogenesis, and embryonic he-
matopoiesis. In all three examples, PIDC identified previous ly 
unknown links, effectively highlighted gene modules at dif-
ferent stages of differentiation, and suggested gene interac-
tions that facilitate transitions between stages. In a systematic 
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Fig. 2. The main categories of popular algorithms used for GRN inference from scRNA-seq data.
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evaluation of 12 different GRN inference tools, PIDC was 
identified as one of the most effective (Pratapa et al., 2020).

Scribe (Qiu et al., 2020) uses pseudotime to compute re-
stricted directed information (RDI). This measure assesses the 
mutual information between the preceding expression level 
of a TF-coding gene and the current expression level of a 
target gene, which is conditioned by the regulator expression 
earlier in the pseudotime series. Since the mutual information 
between preceding and current expression is asymmetric, 
Scribe can infer directed edges. Scribe has been applied both 
for verifying the existence of individual connections in various 
gene networks and for inferring the GRN of early embryoge-
nesis in Caenorhabditis elegans, where the known hierarchy 
of transcriptional regulation of genes was reproduced.

The third program, SINUM, which also evaluates mutual 
information between any two genes and determines whether 
they are dependent or independent in a specific cell, has been 
tested on various types of data and has shown high effective-
ness in identifying cell types, their marker genes, and gene 
connections, as well as in studying changes in gene associa-
tions during the differentiation of human embryonic stem cells 
into endoderm (Chang et al., 2024).

Regression-based algorithms
GRNs can be reconstructed by modeling the expression of 
each gene as a function of the expression levels of other 
genes and solving the resulting system of equations by using 
regression-based methods (Huynh-Thu et al., 2010; Gao et 
al., 2017; Moerman et al., 2018). GENIE3 employs a random 
forest method, which is based on an ensemble of regression 
trees (Huynh-Thu et al., 2010). The weight of the edge from 
a TF to a target gene arises from the significance of the TF 
in predicting the expression of the target gene, averaged 
across all regression trees in the random forest. GENIE3 was 
developed and has been widely used for bulk RNA-seq data 
analysis. The GRNBoost2 software enhances the scalability 
of GENIE3, particularly in terms of efficiently processing 
large datasets from single cells (Moerman et al., 2018). Both 
GENIE3 and GRNBoost2 have demonstrated their effective-
ness in reconstructing GRNs from single-cell transcriptomes, 
showing good overlap with known biological interactions 
(Kang et al., 2021).

The SINCERITIES algorithm was specifically designed 
for single-cell transcriptomes and solves a regression model, 
which is based on temporal or pseudo-temporal changes in 
the distributions of gene expression levels (Gao et al., 2017). 
GRNBoost2 and SINCERITIES have been identified among 
the most effective algorithms for GRN inference in bench-
marking of 12 programs based on different types of modeling 
(Pratapa et al., 2020). However, a recent comparative analysis 
of performance across different datasets and metrics revealed 
that GRNBoost2 generally outperforms SINCERITIES 
and more accurately identifies hubs in GRNs (Stock et al.,  
2024).

Bayesian networks
Another GRN inference approach models regulatory interac-
tions within a Bayesian network. The GRNVBEM algorithm 
works with time samples, i.e. it requires that cells be sorted 
according to pseudotime beforehand (Sanchez-Castillo et al., 
2017). Then it models the fold changes in gene expression 
between successive time points as a linear combination from 
the expression of gene regulators at the immediate previous 
time sample within the Bayesian network. The reconstruction 
of GRNs for early embryogenesis in mice and kidney cells of 
Danio rerio using this method allowed for the identification 
of hubs and the formation of hypotheses about differentiation 
regulators.

The HBFM method is based on gene co-expression analysis 
that employs a sparse hierarchical Bayesian factor model to 
reduce the impact of high intercellular variability and noise 
in single-cell datasets on the predicted network (Sekula et 
al., 2020). When analyzing single-cell transcriptomes from 
mouse brains, the program identified a significant number 
of known and putative protein-protein interactions from the 
STRING database.

Logical networks
While the previously presented methods infer networks that 
describe the regulatory effects of individual TFs, they do 
not account for the logical rules governing the combinato-
rial effect of multiple TFs on the expression of a target gene 
(Nguyen et al., 2021). For example, regulatory mechanisms 
may involve the activation of a gene only in the presence of 
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several specific TFs or, alternatively, its inhibition by another 
TF regardless of additional factors. Boolean networks are ca-
pable of characterizing these combinations of interactions by 
representing the active or inactive state of a gene as a binary 
variable, discretized using a gene expression threshold, and 
combining these states using AND, OR, and NOT operations 
to explain the expression of all genes in the system.

The SCNS program computes logical rules that explain the 
progression of gene expression from one pseudotime point 
to another (Woodhouse et al., 2018). Application of this pro-
gram to transcriptomes from early-stage human embryo cells 
resulted in reconstruction of a core GRN for preimplantation 
embryonic development. The LogicNet algorithm employs 
probabilistic continuous logic to build a Boolean network, in 
which gene expression is modeled as a continuous rather than 
binary variable between 0 and 1, allowing for the construc-
tion of GRNs with directed and signed edges (Malekpour et 
al., 2020). Using LogicNet, GRNs for early embryogenesis 
in mice were constructed.

Dif﻿ferential equations
The presence of pseudotime information in scRNA-seq data 
allows for modeling gene expression using ordinary dif-
ferential equations (ODEs) (Nguyen et al., 2021). Here, the 
rate of expression changes for a target gene is a function of 
expression of the gene encoding its TF regulator. By solv-
ing this system of equations, regulatory relationships can be 
determined based on the weight of each TF in the function, 
which describes changes in gene expression. The SCODE al-
gorithm makes a simplifying assumption that changes in gene 
expression can be defined as a linear combination of reduced 
dimensional spaces to effectively solve a less complex system 
of equations using linear regression (Matsumoto et al., 2017). 
Alternatively, GRISLI estimates the rate at which the expres-
sion of each gene changes according to the dynamic process 
in each cell (Aubin-Frankowski, Vert, 2020). It subsequently 
simplifies the system of equations based on the assumption 
that the inferred GRN has few regulatory edges compared 
to the number of genes in the network, thereby reducing the 
problem to sparse regression. 

A valuable feature of GRISLI is that it allows cells to 
follow multiple differentiation trajectories, whereas most 
methods permit only a linear, non-branching trajectory. The 
DynGENIE3 algorithm applies the random forest approach of 
GENIE3 to solve a system of ODEs, where the change in the 
expression of one gene is defined as a potentially nonlinear 
combination of the expression of other genes (Huynh-Thu, 
Geurts, 2018).

Another class of approaches is based on the observation 
that variations in gene expression from cell to cell may arise 
from the stochastic nature of molecular regulatory interactions 
(Nguyen et al., 2021). The piecewise-deterministic Markov 
process (PDMP) defines ODEs for gene expression as a 
func tion of a stochastic two-state Markov process indicating 
whether the transcription of the gene is activated, rather than 
directly as a function of the expression of regulating TFs 
(Her bach et al., 2017). 

For each gene, the probability function representing transi-
tions between active and inactive states includes a weight for 

each potential regulator. PDMP uses maximum likelihood 
estimation to determine these weights and thus infers the edges 
of the GRN. The WASABI algorithm implements an alterna-
tive maximum likelihood estimation based on the concept that 
observed increases or decreases in gene expression should 
precede transitions between active and inactive states in an 
earlier time window (Bonnaffoux et al., 2019). The applica-
tion of WASABI for reconstructing the GRN of erythrocyte 
differentiation in birds revealed its unusual pro perties of this 
GRN – absence of hubs, a distributed network structure, and 
control of the expression of most genes directly by the factor 
inducing differentiation.

Refinement of GRNs reconstructed  
from scRNA-seq data through the recognition 
of TF binding sites
Despite the widespread use of scRNA-seq data for inferring 
GRNs, the accuracy of reconstructing the actual regulatory 
mechanisms based on these data remains unsatisfactory (Chen, 
Mar, 2018; Pratapa et al., 2020). This issue arises because pro-
grams for GRN inference from transcriptomic data are based 
on the assumption that the identified associations between 
the expression levels of TF-coding genes and their potential 
target genes imply direct transcriptional regulation. However, 
the observed associations may be caused by other biological 
phenomena or even random factors. Transcriptomic data do 
not contain direct information about regulatory events (e. g., 
TF binding to gene regulatory regions). Thus, it is challenging 
to distinguish between direct and indirect regulation based 
solely on scRNA-seq data. 

To address these issues and enhance the effectiveness of 
GRN inference, it is necessary to incorporate additional data 
that directly characterize the factors involved in transcriptional 
regulation. For example, genome sequences bearing regulatory 
codes can be used to identify potential TF binding sites. In 
this case, the presence of a TF binding motif in the regulatory 
region of the target gene testifies in favor of direct TF-target 
gene regulation.

Accordingly, SCENIC utilizes a database of TF binding 
motifs to refine GRNs inferred with GENIE3 (Aibar et al., 
2017). It keeps the links in the network only if the motifs, 
which correspond to the TF binding sites, are enriched in 
the promoter regions of the target genes. A later version, 
pySCENIC, employs parallelization to improve SCENIC ef-
ficiency (Van de Sande et al., 2020). In both studies,  SCENIC 
successfully identified cell types in mouse and human brains 
(including those represented by as few as two to six cells), 
as well as stages of tumor development that are more dif-
ficult to distinguish than cell types (Aibar et al., 2017; Van 
de Sande et al., 2020). It also found a specific set of TFs for 
each cell type and tumor stage, including previously unknown 
oncological markers. The role of some of these markers in 
tumor progression was experimentally validated in the same  
studies.

Integration of scRNA-seq and scATAC-seq data  
for GRN reconstruction
In the genome, DNA is packaged into nucleosomes – the 
basic structural units of chromatin, which hinder TF bind-
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ing to DNA, thereby preventing gene transcription (Parmar, 
Padinhateeri, 2020). Activation of genes is only possible 
when their regulatory regions are free from nucleosomes. The 
nucleosomal packaging of DNA is a regulated process and va-
ries depending on conditions and cell types. The scATAC- seq 
(single-cell Assay for Transposase-Accessible Chromatin 
using sequencing) technology allows for identification of 
open chromatin areas, i. e., DNA regulatory regions that are 
accessible for TF binding, in individual cells (Buenrostro et 
al., 2015). Thus, scATAC-seq data can contribute to a more 
accurate reconstruction of direct regulatory relationships 
between TFs and their targets in GRNs.

It has been shown that integrating bulk RNA-seq and 
ATAC-seq (or other epigenomic data) significantly enhances 
the accuracy of GRN inference (Qin et al., 2014; Wang et 
al., 2015; Ackermann et al., 2016). This methodology is also 
applicable to single-cell sequencing data. However, due to 
the specificity of transcriptomic and epigenomic profiles 
by cell type and conditions, combining RNA-seq data with 
ATAC-seq or ChIP-seq data typically requires that both da-
tasets be obtained from cells of the same type under identical  
conditions.

Current technologies allow for simultaneous sequencing 
of the transcriptome and epigenome in the same cell (Anger-
mueller et al., 2016; Hu et al., 2016; Chen et al., 2019). An 
alternative is the integration of scRNA-seq and scATAC-seq 
data obtained from different biological samples of the same 
nature. In this case, an additional challenge for GRN recon-
struction is establishing the correspondence between cell 
clusters representing the same type, condition, or state across 
two types of sequencing data. So-called diagonal integration 
methods are being developed to address this challenge (Ar-
gelaguet et al., 2021).

Since scATAC-seq is most frequently used for epigenome 
profiling in individual cells, several bioinformatics tools have 
been developed to integrate scRNA-seq and scATAC-seq 
data for GRN inference (Loers, Vermeirssen, 2024). GRNs 
reconstructed based on these data are specifically referred to 
as enhancer GRNs (eGRNs). STREAM reconstructs eGRNs 
based on jointly profiled scRNA-seq and scATAC-seq data, 
using a Steiner tree problem model, a hybrid biclustering 
pipeline, and submodular optimization to infer gene networks 
(Li et al., 2024). STREAM has been tested on single-cell data 
from human organs with pathologies (Alzheimer’s disease and 
lymphocytic lymphoma) and has demonstrated its effective-
ness in reconstructing TF–open binding site–gene connections 
along a pseudotime trajectory and in identifying transcriptional 
regulations specific to these diseases. 

There are also programs that utilize the results of prelimi-
nary separate analyses of scRNA-seq and scATAC-seq data. 
For example, scMTNI takes as input a cell differentiation 
scheme, scRNA-seq results, and prior networks based on 
scATAC-seq for each cell type (Zhang et al., 2023). The ap-
plication of scMTNI to scRNA-seq and scATAC-seq data 
on cell reprogramming in mice and differentiation of human 
hematopoietic cells allowed for the construction of eGRNs 
for both linear and branching lineages and the identification 
of regulators and other components of eGRNs specific to their 
fate transitions.

Conclusion
The identification of gene relationships in regulation of their 
expression is a key to understanding the mechanisms that 
ensure the realization of genetic information into specific 
phenotypic traits. The reconstruction of GRNs based on omics 
data from individual cells provides a unique opportunity to 
systematically investigate the mechanisms of cellular dif-
ferentiation, as it theoretically allows for the reconstruction 
of regulatory gene networks for specific cell types and even 
at distinct stages of their development. To date, a number of 
methods have been worked out for reconstructing such GRNs, 
many of which are available to users as a software. However, 
despite the promising nature of this approach, its potential 
has not yet been fully realized. Not all available methods are 
user-friendly or easy to interpret. 

The shortage of methods for verifying the reconstructed 
GRNs is also an ongoing challenge. Perhaps for this reason, 
the use of these models in specific biological studies remains 
limited, and there are only a handful of successful applications 
of single cell GRNs to address biological questions. Further 
advancements in molecular genetic technologies for studying 
individual cells and computational methods for analyzing the 
data they generate (particularly for the purpose of reconstruct-
ing and analyzing GRNs) will significantly narrow the gap 
between our knowledge of the molecular determinants of traits 
(including at the cellular level) and the transcriptional cas-
cades triggered by external or internal stimuli. Breakthrough 
discoveries made with GRNs reconstructed from single cell 
omics data are likely awaiting us in the future.
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