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Abstract. Parkinson’s disease is the second most common neurodegenerative disease characterized by accumulation of 
alpha-synuclein and Lewy bodies in the brain’s substantia nigra. Genetic studies indicate an association of various SNPs, 
many of which are located in intergenic and intronic regions, where retrotransposons and non-coding RNA genes derived 
from them reside, with this disease. Therefore, we hypothesize the influence of SNPs in retroelement genes on Parkinson’s 
disease development. A susceptibility factor is retrotransposons activation with age, since the disease is associated with 
aging. We hypothesized that alpha-synuclein accumulates in the brain due to its interaction with transcripts of activated 
retroelements. As a result of a defective antiviral response and a large number of RNA targets for this protein, its aggre-
gates form Lewy bodies in neurons with inflammation and neurodegeneration development in the substantia nigra. As 
evidence, data are presented on the role of alpha-synuclein in the antiviral response with binding to RNA viruses, which are 
characterized by the ability to activate retroelements that have evolved from exogenous viruses integrated into the human 
genome. Activation of LINE1s in the brain, endogenous retroviruses, and LINE1s in the blood serum of Parkinson’s disease 
patients was detected. An additional mechanism contributing to the progression of the disease is mitochondrial dysfunc-
tion due to insertions of Alu elements into their genomes using LINE1 enzymes. Mechanisms of activated retrotransposons’ 
influence on microRNAs that evolved from them are described. Analysis of the scientific literature allowed us to identify 35 
such microRNAs (miR-1246, -1249, -1271, -1273, -1303, -151, -211, -28, -31, -320b, -320d, -330, -335, - 342, -374a, -374b, -421, 
-4293, -4317, -450b, -466, -487b, -493, -495, -5095, -520d, -576, -585, -6088, -619, -625, -626, -769, -885, -95) associated with 
Parkinson’s disease, which may become promising targets for its treatment and diagnosis.
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Аннотация. Болезнь Паркинсона – второе по распространенности нейродегенеративное заболевание, характери-
зующееся накоплением альфа-синуклеина и телец Леви в черной субстанции головного мозга. Генетические иссле-
дования свидетельствуют об ассоциации с болезнью различных SNP, многие из которых расположены в межгенных 
и интронных областях, где локализованы также ретротранспозоны и произошедшие от них гены некодирующих 
РНК. В связи с этим сделано предположение о влиянии SNP в генах ретроэлементов на развитие болезни Паркинсо-
на. Фактором предрасположенности является активация ретротранспозонов с возрастом, поскольку заболевание 
ассоциировано со старением. Предложена гипотеза о том, что альфа-синуклеин накапливается в головном мозге 
вследствие его взаимодействия с транскриптами активированных ретроэлементов. В результате дефектного про-
тивовирусного ответа и большого количества РНК-мишеней для данного белка его агрегаты образуют тельца Леви 
в нейронах с последующим воспалением черной субстанции и активацией нейродегенеративных процессов. В ка-
честве доказательства приведены данные о роли альфа-синуклеина в противовирусном ответе со связыванием с 
РНК вирусов, которые характеризуются способностью активировать ретроэлементы, произошедшие в эволюции 
от встроенных в геном человека экзогенных вирусов. Обнаружены также активированные LINE1-ретроэлементы 
в головном мозге, эндогенные ретровирусы и LINE1 в сыворотке крови пациентов с болезнью Паркинсона. Допол-
нительный механизм, способствующий прогрессированию болезни, представляет собой дисфункция митохондрий 
вследствие инсерций в их геномы Alu-элементов с помощью ферментов LINE1. Описаны механизмы влияния ак-
тивированных ретротранспозонов на произошедшие от них в эволюции микроРНК. Анализ научной литературы 
позволил выявить 35 таких микроРНК (miR-1246, -1249, -1271, -1273, -1303, -151, -211, -28, -31, -320b, -320d, -330, -335, 
-342, -374a, -374b, -421, -4293, -4317, -450b, -466, -487b, -493, -495, -5095, -520d, -576, -585, -6088, -619, -625, -626, -769, 
-885, -95), ассоциированных с болезнью Паркинсона, которые могут стать перспективными мишенями для ее лече-
ния и диагностики.
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List of abbreviations 

AS – alpha-synuclein
GWAS – Genome Wide Association Study
HERV – Human Endogenous RetroVirus
HIV – Human Immunodeficiency Virus
HLA – Human Leukocyte Antigen
LINE – Long Interspersed Nuclear Element
LTR – Long Terminal Repeat, ncRNA – non-coding RNA
ncRNA – non-coding RNA
NHEJ – non-homologous end joining
ORF – Open Reading Frame
PD – Parkinson’s disease
RC-LINE1 – retrotransposition-competent LINE1
RdDM – RNA-dependent DNA methylation
REs – retroelements
SINE – Short Interspersed Nuclear Element
siRNA – small interfering RNA
SNP – Single Nucleotide Polymorphism
SVA – SINE-VNTR-Alu
SV-SVA – structurally variable SVA
TEs – transposable elements
TLR3 – Toll-like receptor 3
WEEV – Western equine encephalitis virus
WNV – West Nile virus

Introduction
Parkinson’s disease (PD) is the second most common neuro-
degenerative disease after Alzheimer’s disease, affecting 2 % 
of the world’s population over 65 years of age (Morais et al., 
2016). PD is characterized by the degeneration of dopamin
ergic neurons in the substantia nigra of the brain due to the 
accumulation of alphasynuclein (AS) and Lewy bodies in 
them (Leblanc, Vorberg, 2022). This disease is characterized 
by prionlike spread of AS (Park et al., 2021). As a result, 
symptoms such as rigidity, tremors, gait disturbances, and 
slowness of movement progress clinically slowly. Subse-
quently, speech, gait, and the performance of daily activities 
are impaired, and dementia develops (Hossain et al., 2022). 
The overall heritability of PD risk ranges from 0.27 (Blauwen-
draat et al., 2019) to 0.36 (Nalls et al., 2019). In most cases, 
PD is a multifactorial disease associated with polymorphic 
variants of various genes (Blauwendraat et al., 2019). How-
ever, 10 % of patients with PD have monogenic forms of the 
disease, the most common cause of which are mutations in 
the LRRK2 gene, which encodes leucine-rich repeat kinase 
(Oliveira et al., 2021).

A GWAS conducted in 2019 on DNA samples from 
28,568 patients with PD identified more than 40 loci reliably 
associated with PD, including SNPs located in the GBA, 
INPP5F/SCARB2, LRRK2, MCC1, SNCA, VPS13C genes 
(Blauwendraat et al., 2019). In another GWAS of the same 
year, 78 PDassociated polymorphic loci were identified in 
37,688 PD patients (Nalls et al., 2019). Most of these SNPs 
are located in intergenic, promoter and intronic regions (Ohn-
macht et al., 2020), where the bulk of retroelement (REs) 
and noncoding RNA (ncRNA) genes are located (Nurk et 
al., 2022). Therefore, it can be assumed that the influence 
of many PD-associated polymorphisms is due to changes 
in the functioning of REs and ncRNAs, which play a role in 
regulating the expression of brain neuronal genes (Mustafin, 
Khusnutdinova, 2020). This is supported by both indirect and 
direct evidence of the role of REs in the pathogenesis of PD. 
In particular, the characteristic strong association of PD with 
aging (only 4 % of PD patients worldwide are under 50 years 
of age (Hossain et al., 2022)) may be due to the activation 
of REs during aging (Gorbunova et al., 2021) due to DNA 
methylation and heterochromatin destruction changes (Ravel
Godreuil et al., 2021).

REs are transposable elements (TEs), which are specific 
regions of the genome that move to new loci by a “copy and 
paste” mechanism. TEs also include another class, DNA 
transposons, which use a “cut and paste” mechanism (Gorbu
nova et al., 2021). In total, transposons occupy about 1.4 bil
lion bp in the human genome, which is 46.7 % of all DNA 
sequences. The largest share is made up of autonomous LINEs 
(0.63 billion bp) that do not contain long terminal repeats 
(LTR) and nonautonomous SINEs (0.39 billion bp) containing 
LTR REs (human endogenous retroviruses (HERVs)), which 
make up 0.27 billion bp (Nurk et al., 2022). About 0.13 % 
of the human genome is occupied by nonautonomous SVA  
(SINEVNTRAlu) REs in the amount of about 3,000 ele-
ments (Fröhlich et al., 2024). DNA transposons occupy 
0.108 billion bp (Nurk et al., 2022). REs are important sources 
of evolutionary emergence of ncRNAs such as microRNAs 
(Mustafin, Khusnutdinova, 2023). This may explain the results 

of the analysis of the human genome using specific oligo-
nucleotides complementary to transposons, which showed 
that RE sequences (not only the REs themselves, but also the 
regulatory elements derived from them, introns, ncRNA genes 
and tandem repeats) occupy at least 2/3 of the entire human 
genome (de Koning et al., 2011). 

The close relationship between the functioning of REs 
and the ncRNAs they generate in regulating gene expression 
suggests the role of transposons as drivers of epigenetic regu-
lation. Therefore, the failure of evolutionarily programmed 
speciesspecific control due to individual RE sequence poly-
morphisms detected by GWAS (Nalls et al., 2019; Ohnmacht 
et al., 2020; Bantle et al., 2021) under the influence of aging 
(Gorbunova et al., 2021) and environmental factors (such as 
past viral infections (Jang et al., 2009; Batman et al., 2015; 
Marreiros et al., 2020; Park et al., 2021; Leblanc, Vorberg, 
2022)) can cause epigenetic dysregulation in the brain, cha
racterized by the most pronounced TEs activity (Mustafin, 
Khusnutdinova, 2020). As a result, a neurodegenerative pro
cess develops, in which the accumulation of AS and Lewy 
bodies may reflect a failure in the protective mechanisms of 
cells against hyperactivated REs, which is due to the role of 
AS in antiviral processes.

The role of alpha-synuclein in antiviral defense
REs evolved from exogenous viruses (Mustafin, 2018), which 
explains one of the modern concepts of aging being caused by 
hyperactivation of REs (Gorbunova et al., 2021), which stimu-
late the antiviral interferon response with the development of 
systemic aseptic inflammation, progressive degeneration of 
organs and tissues (De Cecco et al., 2019). Therefore, the role 
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of REs in the development of PD may be evidenced by both 
the influence of viruses on PD and the protective function of 
AS against viruses. Indeed, according to metaanalyses and 
systematic reviews of the scientific literature, PD is caused by 
influenza viruses, Coxsackie, HIV, Japanese encephalitis B, 
West Nile virus (WNV), St. Louis (Jang et al., 2009), influ-
enza A viruses, herpes viruses and flaviviruses. An increased 
risk of developing PD after hepatitis B and C infections has 
been identified (Wang et al., 2020; Leblanc, Vorberg, 2022). 
Influenza A H1N1 virus has been found to promote proteo
stasis disruption and AS aggregation (Marreiros et al., 2020). 
Coxsackie virus B3 induces formation of ACassociated in
clusion bodies in neurons acting as PD triggers (Park et al., 
2021). Neuroinvasive WNV activates AS expression in neu-
rons (Beatman et al., 2015). 

A model was presented in which WNVinduced AS lo-
calized to endoplasmic reticulum membranes, modulating 
virusinduced stress signaling and inhibiting viral replication 
(Beatman et al., 2015). Experiments with infection of mice 
with the WEEV (western equine encephalitis virus) revealed 
protein aggregation in many areas of the brain, including the 
substantia nigra, with loss of dopaminergic neurons, per-
sistent activation of microglia and astrocytes (Bantle et al., 
2021). HIV promotes accumulation of AS in neurons, which 
explains the development of cognitive and motor disorders in 
HIVinfected patients, among whom the frequency of SNCA/
alpha-synuclein staining is higher than in healthy people of 
the same age (Santerre et al., 2021). 

AS has many biophysical characteristics of antiviral pep-
tides, binding to viruscarrying vesicles. AS promotes neuronal 
resistance to viral infections by signaling the immune system 
and recruiting neutrophils, macrophages, and activating 
dendritic cells. It has been noted that chronic gastrointestinal 
infections can lead to the accumulation of AS forming neuro-
toxic aggregates, as from there AS enters the brain, providing 
immunity before infection (Barbut et al., 2019). 

The mechanism of ASinduced immune responses to RNA 
viral infections was investigated and it was determined that 
AS is required for neuronal expression of interferon-stimu-
lated genes. Human AS knockout neurons failed to induce 
a broad range of interferonstimulated genes. In the nuclei 
of interferon-treated human neurons, AS accumulates, with 
interferonmediated phosphorylation of STAT2 depending on 
its expression and localized together with AS after such stimu-
lation. Increased levels of phosphoserine129 alphasynuclein 
are expressed in brain tissue from patients with viral (WNV 
and VEEV) encephalitis (Monogue et al., 2022). A systematic 
review of the scientific literature in 2024 showed that SARS
CoV2 induces AS aggregation, promoting the development 
of PD by stably binding alphasynuclein to the S1 protein 
and activating AS as part of the immune response to infection 
(Iravanpour et al., 2024).

Direct role of transposable elements  
in the development of Parkinson’s disease
AS plays a critical physiological role in immune responses 
and inflammation. Similar to amyloidbeta in Alzheimer’s 
disease, AS fibrillation represents the brain’s innate immunity 
against viruses (Vojtechova et al., 2022). Since REs have an 
evolutionary relationship with viruses (Mustafin, 2018), it 

can be assumed that mRNA of pathologically activated REs 
also contributes to the fibrillization of AS. This is evidenced 
by the results of a study of the abdominal cavity, in which AS 
is involved in the normal functioning of the immune system, 
 being a mediator of immune responses and inflammation 
(Alam et al., 2022). Similar to exogenous viruses, degradation 
and processing products of Res transcripts are stimulators of 
the interferon response, which contributes to the development 
of inflammation (GazquezGutierrez et al., 2021). This can 
be induced not only by LINE1, but also by nonautonomous 
Alu, which use the enzymes of activated LINE1 for their own 
transpositions (Elbarbary, Maquat, 2017). As a result, aseptic 
inflammation characteristic of aging develops (De Cecco et al., 
2019), which has been detected in the brain of mice modeled 
for PD (Ghosh et al., 2016). 

In the brain of patients with PD, activation of the immune 
cytokine network and increased levels of tolllike receptor 3 
in response to doublestranded RNA are detected. A C3 com
plement antisense oligonucleotide, which switches splicing 
and promotes splicing of unproductive C3 mRNA, has been 
shown to prevent AS changes (Thomas et al., 2023). The 
accumulation of pathological AS aggregates (Lewy bodies) 
in PD may be due to the ineffectiveness of AS action on 
pathologically activated REs. In the normal brain, REs are 
also activated, but the interaction of proteins with them may 
play a role in specific functions of neurons and glial cells. 
However, in pathological interactions caused by the activation 
of REs that are not specific to certain structures of the brain 
(which is due to the spatiotemporal features of REs activation 
during neuronal differentiation (Mustafin, Khusnutdinova, 
2020)), protein conglomerates are formed, especially under 
the influence of aging (Gorbunova et al., 2021), viruses (Jang 
et al., 2009; Beatman et al., 2015; Marreiros et al., 2020; Park 
et al., 2021; Leblanc, Vorberg, 2022) and in the presence of a 
genetic predisposition caused by polymorphisms in the loci 
of the location of TEs (Blauwendraat et al., 2019; Nalls et al., 
2019; Ohnmacht et al., 2020) (Fig. 1).

Despite the enormous number of REs in the human ge-
nome, only a small fraction of them have retained the ability 
to transpose. This is due to the accumulation of many inac-
tivating mutations during evolution, and the conservation of 
sequences is due to the use of retroelements by the “hosts” as 
sources of regulatory elements and ncRNA genes (Mustafin, 
Khusnutdinova, 2017).  For example, LINE1s are distributed 
in the human genome as over 1 million copies, of which less 
than 100 have been confirmed to be capable of retrotranspo-
sition. Such REs are called “RCLINE1” (retrotransposition 
competent LINE1). In addition to these RCLINE1s, which are 
contained in the reference genome, there are a small number 
of nonreference LINE1 insertions (Pfaff et al., 2020). 

However, the persistence of activity of even hundreds of 
REs causes significant insertional polymorphism between 
individuals, meaning the presence or absence of REs in cer-
tain regions of the human genome. Statistical analysis has 
shown that new Alu insertions occur in every 40th newborn, 
new LINE1 insertions, in every 63rd, and those of SVA, in 
every 63rd (Feusier et al., 2019). Wholegenome sequencing 
showed association of 16 highly active RCLINE1s with PD 
compared to healthy controls (Pfaff et al., 2020). 81 reference 
SVAs were also identified that were polymorphic in presence 
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Fig. 1. Scheme of retroelements’ involvement in Parkinson’s disease pathogenesis.

or absence in PD patients, of which seven were associated with 
disease progression and PDspecific gene expression changes 
(Pfaff et al., 2021). 

The presence or absence of humanspecific SVA_67 cor-
relates with PD progression. SVA_67 exerts a regulatory 
effect throughout the human genome, being polymorphic in 
its variablenumber tandem repeat (VNTR) domain (Fröhlich 
et al., 2024). The analysis of polymorphic 2886 Alu, 360 L1, 
128 SVA, which are not included in the reference human 
genome, by their presence or absence in PD compared with 
healthy controls allowed us to detect REs that have a signifi-
cant effect on longitudinal changes in clinically significant 
outcomes of PD (Koks et al., 2022).

LINE1 insertional polymorphisms influence PD progres-
sion, as most novel LINE1 insertions are able to regulate gene 
expression in trans. An association with longitudinal changes 
in PD progression has been identified for 70 LINE1 markers 
of degeneration and disease severity (Fröhlich et al., 2023). 
Using bioinformatics studies and wholegenome sequenc-
ing data from 1,000 genomes from different populations, 
46 polymorphic HERVK insertions have been identified. 
Further analysis of experimental factor ontology enrichment 

has shown that polymorphic HERVK insertions (rs12185268, 
rs17577094, rs17649553, rs183211, rs199515, rs199533, 
rs415430, rs8070723, rs2395163, rs9275326) are associated 
with PD features (Wallace et al., 2018). 

Nonallelic recombination between homologous repeat 
elements Alu and LINE1 is widespread in the human genome 
with tissuespecific features that may act as recombination 
hotspots. An association between recombination of these REs 
and genomic instability in PD has been identified (Pascarella 
et al., 2022). REs are also the cause of most large deletions 
due to nonhomologous end joining (NHEJ) in monogenic 
forms of PD caused by mutations in the PARK2 gene (Morais 
et al., 2016). Structurally variable SVAs (SVSVA) associated 
with PD and differential gene expression in this disease were 
identified, which are associated with SNP and differential 
expression of the BCKDK gene associated with the risk of 
developing PD. The BCKDK gene encodes branchedchain 
keto acid dehydrogenase kinase. 

The minor risk allele rs14235, located in the BCKDK exon, 
is associated with a 1.36fold increase in the mean number of 
Lewy bodies in PD (Van Bree et al., 2022). Experiments in 
En+/– mice, a model of PD, revealed loss of heterochromatin 
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Fig. 2. Mechanisms of retroelements’ influence on the development of Parkinson’s disease.
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and increased LINE1 expression in dopamine neurons. De-
generation of these cells was blocked by direct transcriptional 
repression using the nucleoside analogue reverse transcriptase 
inhibitor stavudine, LINE1targeted small interfering RNAs 
and expression of viral Piwi1, as well as the specific protein 
Engrailed, which directly suppresses LINE1 in dopaminergic 
neurons. LINE1 activation promoted DNA doublestrand 
breaks (Blaudin de Thé et al., 2018). In another study, over
expression of multifactorial protein Gadd45b, involved in 
DNA demethylation, was induced in the midbrain. In these 
mechanisms of neurodegeneration, DNA damage was pre-
ceded by activated LINE1s with changes characteristic of PD. 
It has been suggested that agingrelated changes in the brain 
contribute to dopaminergic neurons degeneration with poten-
tial implications for PD (RavelGodreuil et al., 2021). REs 
are also sources of DNA damage during aging, which leads 
to neurodegeneration in PD (PezeHeidsieck et al., 2022).

The development of PD is also influenced by somatic 
transpositions in the brain, which affect the biosynthesis of 
dopamine, serotonin, 3methoxytyramine, homovanillate, 
phenethylamine and taurine (Abrusán, 2012). In PD pa-
tients, Alu integration into mitochondrial genomes disrupts 
populations of these organelles in neurons, contributing to 
the progression of neuronal dysfunction (Larsen et al., 2017). 
Inhibition of mitochondrial chain complex I in a PD model 
results in a significant increase in LINE1 element ORF1 
pro tein expression in human dopaminergic LUHMES cells. 

Activation of these REs was accompanied by loss of DNA 
cytosine methylation. These mechanisms were blocked by the 
mitochondrial antioxidant phenothiazine. Such activation of 
LINE1 is a consequence of mitochondrial distress, which is 
characteristic of PD (Baeken et al., 2020). 

A study of the SVA influence in the composition of the genes 
of the major histocompatibility complex HLA in patients with 
PD showed that the expressed alleles of the SVA and HLA 
genes in circulating leukocytes are differently coordinated 
in the regulation of immune responses, as well as in the pro-
gression of PD (Kulski et al., 2024). Thus, the development 
of PD can be influenced by structural polymorphisms in the 
REs genes, the characteristics of the distribution of REs in 
the genome, reflected in their recombinations and somatic 
transpositions (Fig. 2).

Role of retroelement-derived microRNAs  
in Parkinson’s disease development
An analysis of the scientific literature on changes in the 
expression of microRNAs originating from REs (according 
to a published systematic review (Mustafin, Khusnutdinova, 
2023)) in PD revealed 35 such microRNAs (see the Table). 

Pathological activation of REs in PD may influence the 
expression of their derived microRNAs in several ways 
(Fig. 3). First, activated REs act as “sponges” for microRNAs 
by complementarily binding to nucleotide sequences due to 
their evolutionary relationship, thus blocking the effects of 
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Retroelement-derived microRNAs associated with Parkinson’s disease

Source  
of microRNA

microRNA/ 
change in level in the disease/references

Function of microRNA/references

ERVL-MaRL miR-1246/
increased/(Hossain et al., 2022)

Inhibits the expression of the CKS2 (regulatory subunit of cyclin-dependent 
kinase 2), TAPBP (TAP-binding protein) genes/(Hossain et al., 2022)

LINE2 miR-1249/
increased/(Soreq et al., 2013)

Regulates the VEGFA and HMGA2 genes/(Chen et al., 2019)

LINE2 miR-1271/
decreased/(Ma, Zhao, 2023)

Suppresses PAX4, Grb2, NADPH genes expression, inhibits the Wnt/beta-
catenin pathways/(Ma, Zhao, 2023)

SINE/Alu miR-1273/
decreased/(Kamenova et al., 2021)

Regulates PDP2 gene expression/(Kamenova et al., 2021)

SINE/Alu miR-1303/
decreased/(Boros et al., 2021)

Interacts with lncRNA NEAT1/(Boros et al., 2021)

LINE2 miR-151/
decreased/(Martins et al., 2011)

Regulates CRK, FAM5C, RBM5, TWIST1 genes expression/ 
(Martins et al., 2011)

LINE2 miR-211/
increased/(Motawi et al., 2022)

Regulates CHOP gene expression/(Motawi et al., 2022)

LINE2 miR-28/
increased/(He S. et al., 2021)

Suppresses FOXO gene expression/(He S. et al., 2021)

LINE2 miR-31/
increased/(Li L. et al., 2021)

Regulates apoptosis by potentiating PI3K/AKT signaling/(Li L. et al., 2021)

LINE2 miR-320b/
decreased/(Soreq et al., 2013)

Inhibits the FOXM1 gene (encodes a transcriptional activator that regulates 
cell proliferation)/(Jingyang et al., 2021)

LINE1 miR-320d/
decreased/(Chatterjee, Roy, 2017)

Suppresses the expression of TUSC3 (tumor suppressor)/ 
(Yufeng et al., 2021)

SINE/MIR miR-330/
increased/(Ravandis et al., 2020)

Targets mRNAs of proteins involved in activity-dependent synaptic 
plasticity in the hippocampus/(Ravandis et al., 2020)

SINE/MIR miR-335/
decreased/(Oliveira et al., 2021)

Suppresses LRRK2 gene expression/(Oliveira et al., 2021)

SINE/tRNA-RTE miR-342/
increased/(Wu et al., 2019)

Suppresses the expression of PAK1, GLT1, GLAST, TH genes,  
Wnt signaling pathways and anti-apoptotic genes/(Wu et al., 2019)

LINE2 miR-374a/
increased/(He S. et al., 2021)

Inhibits translation of the Wnt5a gene mRNA/(Sun et al., 2018)

LINE2 miR-374b/
increased/(He S. et al., 2021)

Inhibits translation of the Wnt5a gene mRNA/(Sun et al., 2018)

LINE2 miR-421/
increased/(Dong et al., 2021)

Inhibits translation of the mRNA of the MEF2D gene  
(encodes myocyte-specific enhancer factor 2)/(Dong et al., 2021)

SINE/tRNA miR-4293/
decreased/(Soreq et al., 2013)

Inhibits WFDC21P gene expression/(Zhang Q. et al., 2021)

SINE/MIR miR-4317/
increased/(Soreq et al., 2013)

Inhibits FGF9 and CCND2 genes expression/(He X. et al., 2018)

LINE1 miR-450b/
increased/(Khoo et al., 2012)

Inhibits the KIF26B gene (encodes an intracellular protein  
that transports organelles along microtubules)/(Li H. et al., 2019)

LINE1 miR-466/
increased/(Kamenova et al., 2021)

Inhibits PPARGC1A and GSK3B genes expression/(Kamenova et al., 2021)

SINE/MIR miR-487b/
decreased/(Kern et al., 2021)

Suppresses inflammation and neuronal apoptosis by targeting the mRNA  
of the Ifitm3 gene/(Tong et al., 2022)

LINE2 miR-493/
decreased/(Kern et al., 2021)

Directly affects mRNA of the Wnt5A gene, inhibits p-PI3K/p-AKT and c-JUN 
with an increase in p21/(Bian et al., 2021)

ERV-L miR-495/
increased/(Ravandis et al., 2020)

Inhibits the expression of the CDK1 gene encoding the serine/threonine 
protein kinase factor G2/M transition in the cell cycle/(Tang et al., 2021)



R.N. Mustafin 

296 Vavilovskii Zhurnal Genetiki i  Selektsii / Vavilov Journal of Genetics and Breeding • 2025 • 29 • 2

The role of retroelements  
in Parkinson’s disease development

Table (end)

Source  
of microRNA

microRNA/ 
change in level in the disease/references

Function of microRNA/references

SINE/Alu miR-5095/
increased/(Kamenova et al., 2021)

Inhibits the expression of the LRP10, PRKN, RBBP5, SLC14A1 genes/ 
(Kamenova et al., 2021)

SINE/Alu miR-520d/
increased/(Jin et al., 2018)

Inhibits ceruloplasmin expression/(Jin et al., 2018)

LINE1 miR-576/
increased/(Liu et al., 2023)

Inhibits the expression of the SGK1 gene, which encodes serine/threonine 
protein kinase, responsible for stress responses and neuronal excitability/
(Greenawalt et al., 2019)

ERV-L/MaLR miR-585/
increased/(Zhang Y. et al., 2020)

Regulates PIK3R3 (phosphatidylinositol 3-kinase), influencing apoptosis/
(Zhang Y. et al., 2020)

SINE/Alu miR-6088/
increased/(Marsh et al., 2016)

Regulates DNA polymerase eta (POLH)/(Sonobe et al., 2024)

LINE1 miR-619/
increased/(Cai et al., 2021)

Inhibits the expression of the LRP10, PRKN, RBBP5, SLC14A1 genes/ 
(Kamenova et al., 2021)

LINE1 miR-625/
decreased/(Zhong et al., 2023)

Inhibits the expression of the HMGA1 gene/(Zhong et al., 2023)

LINE1 miR-626/
decreased/(Qin et al., 2021)

Inhibits the expression of the LRRK2 gene/(Qin et al., 2021)

LINE/CR1 miR-769/
decreased/(Soreq et al., 2013)

Regulates HEY1 gene expression (encodes a protein of the helix-loop-helix 
family of basic transcriptional repressors)/(Han et al., 2018)

SINE/MIR miR-885/
increased/(Behbahanipour et al., 2019)

Inhibits IGF-1 expression by affecting the PI3K/Atk/GSK-3β, CTNNB1  
(key regulatory protein of Wnt signaling) signaling pathways/ 
(Behbahanipour et al., 2019)

LINE2 miR-95/
increased/(Nair, Ge, 2016)

Regulates the expression of genes of glutamate ionotropic receptors  
GR1D1 and GR1A2, metabotropic receptors GRM4/(Nair, Ge, 2016)

Fig. 3. Scheme of the pathways of influence of retroelements on microRNAs derived from them.
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RNA interference on the mRNAs of the target genes of these 
microRNAs (Cornec, Poirier, 2023). This regulatory principle 
has been identified not only in animals but also in plants. For 
example, the transcript of the LTRcontaining retroelement 
MIKKI (translated from Korean as “bait”), expressed in rice 
roots, is a mimic for miR171, which destabilizes the mRNA 
of root transcription factors like SCARECROW. Processed 
MIKKI transcripts act as decoys for miR171, triggering their 
degradation and promoting the accumulation of rootspecific 
mRNA transcription factors (Cho, Paszkowski, 2017). 

Second, LTRcontaining REs transcripts (Lu et al., 2014) 
and LINE1s function as long ncRNA molecules, interacting 
with specific chromatin regions and regulating the expres-
sion of genes controlled by microRNA molecules (Honson, 
Macfarlan, 2018). 

Third, some miRNAs are formed directly from REs genes, 
which are the basis for premiRNA hairpin structures. Such 
miRNAs lead to spatiotemporal dynamic expression networks, 
for the analysis of which the Brain miRTExplorer web appli-
cation was created (Playfoot et al., 2022). Therefore, patho-
logical activation of REs leads to the formation of various 
microRNAs from their transcripts, which affect the regulatory 
networks of other microRNAs in the body. 

Fourth, REs exert regulatory effects on miRNAs by generat-
ing small interfering RNAs (siRNAs) from REs transcripts. 
In these mechanisms, siRNAs are competitive molecules for 
binding to mRNA targets of microRNAs, neutralizing their 
effect on gene expression. This effect is associated with the 
host cells’ defense systems against activated REs in their 
genomes, triggering the degradation of REs transcripts by 
ribonucleases to miRNAs. The latter exert posttranscriptional 
inhibition of gene mRNAs due to partial complementarity 
(McCue et al., 2013). 

Fifth, one of the ways in which microRNAs interact with 
REs in regulating gene activity is also the suppression of their 
expression when microRNAs bind to specific DNA structures 
formed by REs embedded in these regions. 

In the human genome, the Zform of DNA is formed by 
endogenous retroviruses, which provide functional genes 
with alternative promoters (Lee et al., 2022). In addition, the 
phenomenon of RNAdirected DNA methylation (RdDM) 
has been described in humans, due to which microRNAs 
(Playfoot et al., 2022) and miRNAs (McCue et al., 2013) 
formed from REs transcripts can affect the expression of 
REs through complementary interactions of sequences in the 
genome structure (Chalertpet et al., 2019).

Conclusion
The data presented in the review suggest that the development 
of PD is caused by the activation of REs as a result of indi-
vidual characteristics of their distribution and the presence of 
polymorphisms associated with PD in them. This is evidenced 
by the following: 
1) The results of scientific studies on the association of specific 

RCLINE1 sets with PD were obtained. 
2) The influence of LINE1 insertional polymorphism on the 

development of PD was revealed. 
3) The significance of 360 LINE1s, 128 SVAs and 2886 Alu 

in the progression of PD was determined. 

4) PD is associated with aging, which is characterized by 
the activation of REs and the associated inflammation and 
neurodegeneration. 

5) 35 REderived microRNAs, the expression of which was 
significantly altered in PD, were identified. 

6) The role of Alu distribution in the genome as a source of 
mutations in PD was discovered. 

7) The influence of Alu insertions into mitochondrial genomes 
on the progression of PD was determined.

8) The role of synuclein in antiviral protection, with the in-
fluence of viruses on the formation of aggregates of this 
protein, was described. 
Similarly, transcripts of pathologically activated REs, 

evolutionarily related to and interacting with exogenous and 
viral REs, can stimulate synuclein expression and fibrilliza-
tion. The probable cause of damage to the substantia nigra is 
the spatiotemporal features of activation of specific REs in 
neurons of the brain, which is reflected in the results of their 
pathological activation in certain most vulnerable areas.
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