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Identification of fungal diseases in strawberry by analysis
of hyperspectral images using machine learning methods
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Abstract. Leaf spot, leaf scorch and phomopsis leaf blight are the most common fungal diseases of strawberry in
Western Siberia, which significantly reduce its yield and quality. Accurate, fast and non-invasive diagnosis of these
diseases isimportant for strawberry production. This article explores the ability of hyperspectral imaging to detect and
differentiate symptoms caused to strawberry leaves by pathogenic fungi Ramularia tulasnei Sacc., Marssonina potentil-
lae Desm. and Dendrophoma obscurans Anders. The reflection spectrum of leaves was acquired with a Photonfocus
MV1-D2048x1088-HS05-96-G2-10 hyperspectral camera under laboratory conditions using the line scanning method.
Five machine learning methods were considered to differentiate between healthy and diseased leaf areas: Support
Vector Machine (SVM), K-Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), Partial Least Squares Discrimi-
nant Analysis (PLS-DA), and Random Forest (RF). In order to reduce the high dimensionality of the extracted spectral
data and to increase the speed of their processing, several subsets of optimal wavelengths were selected. The follow-
ing dimensionality reduction methods were explored: ROC curve analysis method, derivative analysis method, PLS-DA
method, and ReliefF method. In addition, 16 vegetation indices were used as features. The support vector machine
method demonstrated the highest classification accuracy of 89.9 % on the full range spectral data. When using vegeta-
tion indices and optimal wavelengths, the overall classification accuracy of all methods decreased slightly compared
to the classification on the full range spectral data. The results of the study confirm the potential of using hyperspectral
imaging methods in combination with machine learning for differentiating fungal diseases of strawberries.
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VigeHTudukamnyus rpuoHbIX 60/1e3Hel 3eMJISHUKY CaZloBOi
Ha OCHOBE aHa/Il3a I'UIepCcIIeKTPaabHbIX M300paskeHU
MeTOodaMM MalIMHHOTO O6yUeHs
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AHHoTauusA. benas, 6ypas 1 yrnosaTaa NATHUCTOCTU ABAAIOTCA Hambonee pacnpoCcTpaHeHHbIMY FPUOHBIMU 6ores-
HAMY 3eMAAHVKM CafoBoN B 3anagHoin Cnbrpu, 3HaUMTENbHO BAUAIOLUMM Ha e YPOXKalHOCTb 1 KauecTBo. TouHas,
ObICTPan N HEMHBA3UBHAA AMArHOCTMKA 3TUX 3a00/1eBaHU UMEET BaXKHOE 3HaueHVe B MPOMbILWIEHHOM NPOV3BOA-
CTBe 3eMNAHMKM. B HacToALen cTaTbe NCCenyloTCA BOSMOXKHOCTU NPUMEHEHNA METOA0B MaLUMHHOTO obyyeHus 1
rMnepcneKkTpanbHON Br3yanusaunm gna obHapyxeHnsa u anuddepeHumaLnuy Ha MUCTbAX 3eMAAHMKN CUMMNTOMOB, Bbl-
3BaHHbIX MaToreHHbIMK rpubamu Ramularia tulasnei Sacc., Marssonina potentillae Desm. n Dendrophoma obscurans
Anders. CnekTp oTpa)KeHs NNCTbEB PErMCTPUPOBaNM MnepcneKkTpanbHon kKamepoi Photonfocus MV1-D2048x1088-
HS05-96-G2-10 B 1abopaTopHbIX YCIOBUAX METOAOM JIMHENHOrO CKaHMpoBaHuA. Ona anddepeHumaumnm 30poBbix
1 MopakeHHbIX obnacTelt NMNCTbEB N3YyYeHO MATb METOAOB MALUVHHOIO 0B6yYeHNA: METOA OMOPHbIX BEKTOPOoB (SVM),
meTop K-6nmxanwumx cocegein (KNN), nMHeNnHbIN AUCKPUMUHAHTHBIN aHanu3 (LDA), AUCKPUMUHAHTHBIA aHanm3 ya-
CTUYHBIX HaMMeHbLunX KBagpaTtoB (PLS-DA) n cnyvainbin nec (RF). C uenbto ymeHbLUeHNA BbICOKOW pa3MepHOCTY U3-
B/IEYEHHbIX CMEeKTPasibHbIX AAHHbIX 1 YBEJIMUEHUA CKOPOCTY X 06PpabOoTKM ObII0 OTO6PAHO HECKOSIBKO MNOAMHOMXECTB
ONTUMAsbHbIX AAVH BOJH, HECYLLMX Hanbonee BaxkHYI CreKTpanbHyto uHdopmMaLuio. PaccMoTpeHbl criepytoe Me-
TOAbl COKpaLLeHNA pa3mepHOCTU: meTog aHanu3a ROC-KpuBbIX, MeTo aHanmsa npounssoaHbix, metog PLS-DA, meton
ReliefF. Kpome Toro, 16 BereTauoHHbIX UHAEKCOB 3a1eICTBOBAHO B KauecTBe MHGOPMATUBHbBIX NPU3HaKoB. Hanbonb-
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NaeHTndrKaumsa 6onesHen 3eMnsaHNKN
METOAOM FnepcrnekTPanbHO Br3yanusawumm

LIyI0 TOYHOCTb KnaccuourKkaumm, 89.9 %, nokasan MeTof OMOPHbIX BEKTOPOB Ha MOJIHOM CMeKTpe 3HaueHwni. Mpu nc-
MoJIb30BaHNMN BEreTaUMoHHbIX MHAEKCOB 1 HAGOPOB OMNTVMAsbHBIX AJIMH BOSH 06LLas TOYHOCTb KnaccubrKaLmm BCex
METOA0B CHM3MSIAaCb HE3HAUUTENbHO MO CPaBHEHMIO C Knaccudukaymein Ha NOMHOM CNeKTpe 3HaueHuin. Pesynbratsl
nccnefoBaHysA MOATBEPXKAAIOT NEPCNEKTUBHOCTb NMPUMEHEHV METOAOB MNepCneKTpanbHOWM BU3yanv3auum B coye-
TaHUW C MeToaMy MaLIMHHOTO 06ydeHuna ana auddepeHUmaLm rprbHbIX 6one3Hel 3eMNAHNKN CaoBOI.

KnioueBble cnoBa: runepcnekTpanbHble N306paxeHns; rpubHble 60Ne3HN 3eMIAHNKY; METOAbI MALUMHHOTO obyue-

HUA; COKpPalleHne pa3smepHOCTA

Introduction

Strawberry is one of the most popular fruits among consumers
by flavor, nutritional value and health benefits (Zheng et al.,
2021). Strawberry has high productivity and profitability and
is capable of rapid vegetative reproduction. One of the limit-
ing factors for increasing the production of strawberries is the
significant damage to cultivated varieties by fungal diseases,
which leads to a decrease in yield and economic losses. The
most common fungal diseases of strawberries in Western
Siberia are leaf spot, leaf scorch and phomopsis leaf blight
(Govorova, Govorov, 2015). Early detection of these diseases
is crucial for targeted application of appropriate plant protec-
tion measures.

Traditional disease diagnostic methods such as visual as-
sessment and microbiological laboratory analysis are time-
consuming, error-prone and labor-intensive, which limits their
application in precision agriculture. Recently, hyperspectral
image analysis (Mishra et al., 2017; Mahlein et al., 2018;
Cheshkova, 2022) has demonstrated great potential as an ef-
fective and non-invasive method for monitoring plant biotic
and abiotic stress. The influence of pathogens causes changes
of the physiological and biochemical parameters in the pro-
cess of disease occurrence, creating a reflectance spectrum
that is different from the spectrum of healthy plants. Modern
optical sensors register up to several hundred bands of the
electromagnetic spectrum over a wide range of wavelengths
and form a spectral profile for each pixel combining spectral
and spatial information (Mishra et al., 2017). Hyperspectral
imaging combines the advantages of computer vision and
optical spectroscopy, allowing simultaneous assessment of
both physiological and morphological parameters. Currently,
scientific publications provide examples of the successful
use of hyperspectral imaging for the recognition of various
strawberry diseases, such as powdery mildew (Mahmud et
al., 2020), anthracnose (Lu et al., 2017; Jiang et al., 2021),
verticillium wilt (Cockerton et al., 2019), gray mold (Wu et
al., 2023), and spotting (Cheshkova, 2023).

Machine learning is one of the most effective ways to
process and analyze the vast amounts of data obtained by
remote sensing techniques (Nagaraju et al., 2020; Benos et
al., 2021). Numerous studies show that using vegetation indi-
ces as features for building machine learning models allows
achieving good results in identifying and recognizing diseases
of agricultural crops (Mahlein, 2013; Lu et al., 2017).

Hyperspectral data has high collinearity. A large number of
wavelengths complicates models and reduces performance.
Dimension reduction is specific and significant for hyper-
spectral-based plant disease analysis, the purpose of which
is to remove spectral redundancy while preserving important
information. Optimal waveband selection has always been
a primary concern in hyperspectral data analysis (Liu et al.,

2014; Sun, Du, 2019). YMmenblieHHe pasMEPHOCTH MOXKET
OBITh IOCTHTHYTO 32 CYET BBIOOPA ONPEICIICHHBIX JTHH BOJH
7100 BbIACICHNS HHOOPMATUBHBIX IIPH3HAKOB.

The objective of this study was to determine the efficiency
of hyperspectral imaging techniques for differentiating sym-
ptoms on strawberry leaves caused by pathogenic fungi Ra-
mularia Tulasnei Sacc., Marssonina potentillae Desm. and
Dendrophoma obscurans Anders.; to assess the accuracy of
different machine learning methods for identifying fungal
diseases of strawberry; to explore the possibility of using
dimensionality reduction methods and vegetation indices to
optimize the machine learning models.

Materials and methods

Plant material and fungal diseases. In our study, three types
of fungal diseases of strawberry, most common in Western
Siberia, were considered: leaf spot, leaf scorch and phomopsis
leaf blight.

Strawberry leafspot is caused by Mycosphaerella fragariae
(Tul.) Lindau (conidial stage: Ramularia Tulasnei Sacc.). The
disease is first noticed as small, purplish circular spots on the
surface of young leaflets. As the lesion enlarges, the center of
the spot becomes gray to white and is surrounded by distinct
reddish-brown borders.

Strawberry leaf scorch is caused by Diplocarpon earliana
(Ell. et Ev.) Wolf (conidial stage: Marssonina potentillae
(Desm.) P. Magn., M. fragariae (Lib.) Ohl.). The marks of
the disease consist of many small irregular purple spots that
appear on the outward leaf’s surface. The lesions may enlarge
to 5 mm across and appear irregular.

Phomopsis leaf blight is caused by Dendrophoma obscurans
(Ell. et Ev.) H.W. Anderson (synonym: Phomopsis obscurans
(EllL. et Ev.) Sutton). Lesions begin as circular to elliptical,
purple spots that can appear identical to those of common
leaf spot or leaf scorch. The purple spots develop dark brown
centers as they enlarge. Some infected leaves display large
V-shaped lesions, with the widest part at the leaf edge.

The strawberry plants grown at the experimental field of
Siberian Federal Scientific Centre of Agro-BioTechnologies of
the Russian Academy of Sciences (Krasnoobsk, Novosibirsk
region, Russia) in 2021-2023 were used in the overall experi-
ment. During the growing seasons, 120 plants were selected,
including 30 healthy plants and 30 plants for each disease:
with visible symptoms of leaf spot, leaf scorch or phomopsis
leaf blight. One leaf from each plant was detached for further
research in the laboratory. Identification of the disease was car-
ried out through visual expertise by symptoms of the disease
(Garrido et al., 2011; Govorova, Govorov, 2015).

Image acquisition and calibration. Imaging was per-
formed by a Photonfocus MV 1-D2048x1088-HS05-96-G2-10
hyperspectral camera, with an IMEC CMV2K-LS150-VNIR
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sensor (Photonfocus AG, Switzerland, wavelength range
470-900 nm, spectral resolution 3 nm, spatial resolution
2048 x 1088 pixels) by the linear scanning method using a
moving platform. The software and hardware equipment as
well as related parameters can be referred to article (Maxi-
mov et al., 2023). The strawberry leaves were placed on a
white platform for imaging. The illumination source was
two halogen lamps. The scanning step, exposure time and
camera mounting height were determined experimentally.
Additionally, reference images were created for radiometric
correction. The dark image was obtained by covering the
camera lens with a non-reflective opaque black cap, and the
white reference image was obtained by surveying the spectral
image of the Teflon white board with 99.9 % reflectance. The
calibrated image was calculated using the following formula:

Is—1Ip
:—’
lw—1Ip

Identification of strawberry diseases
based on hyperspectral imaging

where |5 — intensity value of the sample image, Ip — intensity
value of the dark reference image, ly — intensity value of
the white reference image, R — the corrected hyperspectral
reflectance image.

Three-dimensional data sets (hypercubes) containing two
dimensions of spatial information and additionally one dimen-
sion of spectral information (2048 x 1088 x 131) were formed
from the scanning results.

Spectral features extraction and processing. The result-
ing image files were divided into two groups: 96 leaf images to
form a training set (24 in each of the four classes) and 24 leaf
images to form a validation set (six in each of the four classes).
Spectral data extraction was performed using ENVI 5.2 (NV5
Geospatial Solutions, Inc., USA). In each strawberry leaf
image, regions of interest (ROIs) corresponding to healthy leaf
tissue and to color spots of the diseased tissue were manual-
ly selected (Fig. 1). From each region, 250 pixels were ran-

Fig. 1. BROI selection: a — healthy regions, b — regions with symptoms of leaf spot, ¢ - regions with symptoms of leaf scorch,

d - regions with symptoms of phomopsis leaf blight.
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Table 1. Vegetation indices used as features
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No. Index
1 NDVI (normalized difference vegetation index)
2 RENDVI (red edge normalized difference vegetation index)
3 PhRI(physiological reflectance index)
4 RVSI (red-edge vegetation stress index)
5  MCARI (modified chlorophyll absorption ratio index)
6  TVI(triangular vegetation index)
7  VOGT (Vogelman index 1)
8  VOG2 (Vogelman index 2)
9  VOGS3 (Vogelman index 3)
10  PSRI (plant senescence reflectance index)
11 NRI(nitrogen reflectance index)
12 PSSRa
13 PSSRb (pigments specific simple ratio)
14 CRI(carotenoid reflectance index)
15 ARl (anthocyanin reflectance index)

16 PRI (photochemical/physiological reflectance index)

domly selected. As a result, a training dataset of 24,000 spec-

trum values (6,000 px for each class) and a validation data-

set of 6,000 spectrum values (1,500 px for each class) were
formed.

To smooth the spectrum and correct for scattering, the
Savitzky—Golay filter (Savitzky, Golay, 1964) and standard
normal variate normalization (Vidal, Amigo, 2012) were ap-
plied to the spectral data.

Optimal wavelengths selection. In order to decrease the
dimension of the raw spectral information and to find the
optimal wavelengths for classification we examined the fol-
lowing dimensionality reduction methods:

— receiver operating characteristic (ROC) analysis (Luo et al.,
2012); in this method, the area under curve (AUC) value is
used as a metric that determines the variable importance;
from the entire data spectrum, those wavelengths are left
for which the AUC exceeds a certain threshold value;

— the derivative analysis (Savitzky, Golay, 1964); in this me-
thod, the most important wavelengths are selected as the
high peaks and low valleys in the second derivative plot;

— partial least squares discriminant analysis (PLS-DA) (Meh-
mood et al., 2012); in this method, the wavelengths that
correspond to the highest absolute values of f-coefficients
are considered optimal wavelengths;

— ReliefF algorithm (Kononenko, 1994; Urbanowicz et al.,
2018); it’s a feature weighting algorithms that assigns dif-
ferent weights to features based on the category and correla-
tion of each feature; features with weights below a certain
threshold value are removed.

Equation

(Reoo — Re70)/ (Rgoo + Rez0)

(R750 = R705)/(R750 + R705)

(Rsso — Rs31)/(Rsso + Rs3)

[(R712 + R755)/2] = Ry3,

[(R700 = Re70) = 0-2:(R700 = Rss0)1(R700/ Re70)
0.5:[120:(R750 — Rs50) — 200+(Rg70 — Rs50)]
R740/R720

(R734 = R747)/(Ry15 + Ry26)

R715/R70s

(Rego— Rso0)/R7s0

(Rs70 = Re70)/ (Rs70 + Rez0)

Rsoo/Reso
Rsoo/Re3s
1/Rs10 = 1/Rss0
1/Rss0=1/Rz00

(Rs31 = Rs70)/(Rs31 + Rs0)

Vegetation indices extraction. Vegetation indices are
algebraic combinations calculated from reflectance spectrum
values for two or more selected wavelengths.

For our study, 16 vegetation indices (Table 1) were selected,
characterizing the photochemical reflectance (PRI), physio-
logy (NDVI, RENDVI, RVSI, PhRI), content of chlorophyll
(MCARI, TVI, VOGI1, VOG2, VOG3), pigments (PSSRa,
PSSRb, CRI, ARI), nitrogen (NRI) and carbon (PSRI) in plant
leaves (Wu et al., 2023).

Machine learning methods. Five machine learning me-
thods (SVM, KNN, LDA, PLS-DA, RF), most commonly used
in hyperspectral data classification (Singh et al., 2016; Benos
et al., 2021), were considered in our study to differentiate
healthy and diseased regions of strawberry leaves.

The Support Vector Machine (SVM) method. The main
idea of the SVM method is to transfer the original vectors to
a higher-dimensional space and search for the separating hy-
perplane with the largest gap in this space. The Gaussian radial
basis function was taken as the classifier kernel.

The K-Nearest Neighbors (KNN) method. The classifica-
tion is achieved by assigning the test object to the class that
is most common among its K-nearest neighbors, the classes
of which are already known. It applies the Euclidean distance
in the multidimensional space as a similarity measurement to
separate the test objects.

The Linear Discriminant Analysis (LDA) method. The
high-dimensional data are projected into a lower-dimensio-
nal space to promote class separability. The optimal projec-
tion in classical LDA is obtained by maximizing the distance
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Fig. 2. Average reflectance spectrum of healthy and infected regions of strawberry leaves.

between different classes and minimizing the distance within
a class.

The Partial Least Squares Discriminant Analysis (PLS-DA)
method. It is a variant of combining Partial Least Squares
regression (PLSR) and discriminant analysis (DA). Unlike
classical discriminant analysis, which searches for hyperplanes
of maximum variance of independent predictors, PLS-DA
builds a linear regression model by projecting predicted and
observed variables into a new reduced space.

The Random Forest (RF) method. It is a non-parametric
method that uses multiple decision trees to classify data and
is well suited to spectral data analysis.

The overall accuracy, calculated as the percentage of cor-
rectly classified objects to the total number of objects, was
used as a metric to evaluate the quality of the models.

All calculations and data analysis were performed in the
R software using the caret, kernlab, randomForest, klaR, pls,
CORElearn, class, MASS and terra packages.

Results

Spectral behaviors

Figure 2 shows the averaged reflectance spectra of healthy
and fungal disease-affected regions of strawberry leaves. The
spectral curves are typical for plants (Mishra et al., 2017).
A common feature of all spectral curves is a lower reflectance
in the visible wavelength range, compared to the near-infrared
range. At wavelengths around 670 nm, a decrease in reflec-
tance is observed, which is due to the strong absorption of
light by chlorophyll in the leaves. In the range of 670—760 nm,
the reflectance of leaves increases sharply due to light scat-
tering in the intercellular space. In the wavelength range of
760-900 nm, the reflectance remains high.

Certain differences between the spectra are observed.
Thus, healthy green leaf regions have a characteristic peak
at a wavelength of 550 nm (nitrogen absorption zone), while
diseased regions have a decline in this area. In the range of

720-810 nm, healthy regions and regions affected by leaf
scorch have a higher reflectance, compared to regions affected
by leaf spot and phomopsis leaf blight. And in the range of
810-900 nm, on the contrary, it is lower. The reflectance of
leaves affected by leaf spot disease increases uniformly over
the entire wavelength range.

Optimal wavelengths selection

Analysis of variance (ANOVA) revealed the statistically
significant differences between mean reflectance by disease
type for each of the wavelengths, according to the F-criterion
with a p-value < 0.001. In addition, a recursive feature elimi-
nation method was applied to each of the considered models,
which also revealed that all wavelengths were significant for
classification.

To reduce the dimensionality of the data, four different
techniques were considered, which determined four different
sets of optimal wavelengths (Figures S1-S4 in Supplementary
Materials)®.

Using ROC curve analysis, 23 wavelengths (nm) were
identified for which the AUC exceeded the threshold value
of 0.99: [541.39, 545.04, 548.92, 550.41, 553.99, 557.94,
561.3,565.18,568.58,745.48,748.98, 751.75,756.45, 759.36,
763.0,765.97,769.44,772.39,775.92,778.56, 781.11, 784.53,
787.2].

Using the second derivative analysis method with a thresh-
old value of 1.0, the following 15 wavelengths (nm) were
selected: [677.11, 680.47, 682.99, 685.28, 688.76, 691.62,
695.25, 697.97, 709.54, 712.19, 729.07, 732.25, 736.15,
739.20, 742.67].

Using the PLS-DA method, the following 16 wavelengths
(nm) were selected for a threshold value of regression coef-
ficients of 0.4: [498.68, 502.7, 505.97, 510.11, 513.5,517.33,
522.39, 526.49, 529.98, 533.99, 541.39, 680.47, 682.99,
688.76, 691.62, 722.02].

T Figures $1-55 are available at:
https://vavilov.elpub.ru/jour/manager/files/Suppl_Cheshkova_Engl_29_2.pdf
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Fig. 3. Sets of optimal wavelengths determined by different methods.

Using the ReliefF method, the following 24 wavelengths
(nm) were selected for the weight threshold of 0.5: [537.27,
541.39, 545.04, 548.92, 550.41, 557.94, 561.3, 565.18,
657.08, 662.06, 664.83, 668.35, 670.93, 674.46, 677.11,
680.47, 682.99, 685.28, 688.76, 691.62, 751.75, 756.45,
759.36, 763.00].

A comparison of the sets of optimal wavelengths selected
by different methods (Fig. 3) allows us to conclude that the
most informative wavelength ranges for classification are
[542-565 nm] and [680—-691 nm].

Vegetation indices calculation and analysis

Sixteen vegetation indices were calculated using the cor-
responding formulas (Table 1) for each pixel in the dataset.
Analysis of variance (ANOVA) was performed for each index
to determine the statistical significance of differences between
mean values of indices by disease type. All 16 indices had
statistically significant differences between means with a
p-value < 0.001.

Classification results based

on the full range of wavelengths

In our study, five different models (SVM, KNN, LDA, PLS-
DA, RF) were applied to differentiate healthy and fungal
disease-affected strawberry leaves. First, models were built
for the full spectrum of wavelengths (131 wavelengths in the
range 470-900 nm). The following optimal hyperparameters
were selected using the cross-validation: SVM (sigma = 0.03,
C=6), KNN (K=9), RF (mtry = 11), PLS-DA (ncomp = 38).
The classification results are shown in Table 2. Analysis of
the results allows us to conclude that the main errors in clas-
sification occur when differentiating between leaf scorch
and phomopsis leaf blight, since these areas have a similar
reflectance spectrum.

The support vector machine method on the full range of
wavelengths demonstrated the highest classification accuracy
(90 %), while the K-nearest neighbors method showed the
lowest accuracy (85 %).

Classification results based on sets
of optimal wavelengths and vegetation indices
Each of the five classification models (SVM, KNN, LDA,
PLS-DA, RF) was trained on sets of optimal wavelengths
obtained by applying four different dimensionality reduction
methods (ROC curve analysis, derivative analysis, PLS-DA,
ReliefF), as well as on a set of 16 vegetation indices (Table 3).
As can be seen from the results presented in Table 3, the
overall classification accuracy of all methods decreased com-
pared to the classification using the full spectrum. The highest
classification accuracy for all models was obtained for the set
of vegetation indices and for the set of wavelengths selected
by the PLS-DA method.

Identification of fungal diseases of strawberry

Trained and optimized models can be used to detect and dif-
ferentiate fungal diseases of strawberry. Figure 4 shows an
example of the application of the SVM model for the diagnosis
of different types of fungal diseases.

Discussion

The analysis of hyperspectral images by machine learning
methods has already been successfully applied in scientific
research to detect strawberry diseases. For example, G. Wu
et al. (2023) focused on the potential of using hyperspectral
imaging (HSI) combined with spectral features, vegetation
indices (VIs), and textural features (TFs) for the detection of
gray mold on strawberry leaves under laboratory conditions.
Three machine learning models (ELM, KNN, SVM) were
trained and optimized. The overall classification accuracy of
the models reached 96 %.

In (Jiang et al., 2021) six machine learning methods (SVM,
ELM, KNN, PLS-DA, RF, NB) were developed based on the
selected spectral fingerprint features for early identification
of anthracnose and gray mold in strawberries using a hyper-
spectral imaging system. Most classification models obtain
relatively good accuracy (100 %) and robust performance,
recognizing asymptomatic fungus infections classes before
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Table 2. Confusion matrices for hyperspectral image classification by different methods using the full spectrum

Predicted Actual Overall
Healthy Leaf spot Leaf scorch Phomopsis leaf blight accuracy, %

SVM 89.90

Healthy 98.07 0.73 0.07 0.00

Leaf spot 0.73 95.13 1.07 1.27

Leaf scorch 0.33 3.20 92.67 25.00

Phomopsis leaf blight 0.87 0.93 6.20 73.73

KNN 85.17

Healthy 98.73 1.13 0.33 0.00

Leaf spot 0.27 90.80 1.27 1.73

Leaf scorch 0.27 533 92.13 39.27

Phomopsis leaf blight 0.73 2.73 6.27 59.00

RF 86.93

Healthy 98.20 0.87 0.20 0.00

Leaf spot 0.40 93.27 0.67 0.47

Leaf scorch 0.27 3.53 90.40 33.67

Phomopsis leaf blight 1.13 2.33 8.73 65.87

LDA 89.15

Healthy 99.00 1.00 0.07 0.0

Leaf spot 0.07 93.07 0.93 0.4

Leaf scorch 0.93 3.53 89.53 24.6

Phomopsis leaf blight 0.00 2.40 9.47 75.0

PLS-DA 87.63

Healthy 99.93 1.87 1.07 0.00

Leaf spot 0.00 94.60 1.87 0.33

Leaf scorch 0.00 1.47 81.13 24.80

Phomopsis leaf blight 0.07 2.07 15.93 74.87

Note. SVM - the support vector machine method; KNN - the K-nearest neighbors method; LDA - the linear discriminant analysis method; PLS-DA - the partial
least squares discriminant analysis method; RF — the random forest method.

Table 3. Overall classification accuracy (%) for different models using selected wavelengths and vegetation indices

Model Dimensionality reduction method 16 vegetation indices
ROC curve analysis Derivative analysis PLS-DA ReliefF

SVM 77.37 83.03 85.13 78.32 89.75

KNN 76.40 81.60 83.27 77.48 82.65

RF 77.55 82.67 83.50 78.57 84.25

LDA 74.32 80.55 85.88 76.93 84.62

PLS-DA 69.00 75.45 85.60 77.15 84.70

Note.SVM - the support vector machine method; KNN - the K-nearest neighbors method; RF - the random forest method; LDA - the linear discriminant analysis
method; PLS-DA - the partial least squares discriminant analysis method.
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Fig. 4. Visualization of strawberry disease classification using support vector machines on a full range of values.

The left column shows the original color images of the strawberry leaves and the right column visualizes the classification results after applying the SVM model

to the full spectrum in every single pixel in the images.

the obvious signs of disease appear notably in the strawberry.
In our study, the obtained accuracy of disease classification
did not exceed 90 %. This result can be explained by several
reasons. First, three types of disease were considered at once,
rather than one or two as in other studies. Secondly, successful
differentiation of diseases requires a difference in the spectral
characteristics of plant leaves affected by pathogens. Our study
revealed that the main errors in classification occur when
differentiating leaf scorch and phomopsis leaf blight, since

these diseases have a similar reflectance spectrum. A possible
way to improve classification accuracy is to use convolutional
neural networks that take into account not only spectral but
also textural characteristics of the affected leaves, such as
shape and location of spots.

The choice of classification method depends on the diseases
under study. Among the five popular machine learning models
we considered (SVM, KNN, LDA, PLS-DA, RF), the support
vector machine (SVM) demonstrated the best classification
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accuracy, which is in agreement with the results of other stu-
dies (Benos et al., 2021).

In order to reduce dimensionality and select optimal wave-
lengths for model building, researchers have applied various
methods. Thus, the CARS, CARS-RF, ReliefF, and ROC
algorithms were used in (Luo et al., 2012; Jiang et al., 2021;
Wu et al., 2023). In many studies, dimensionality reduction
does not reduce the accuracy of the models, but in our case, all
wavelengths were significant and the classification accuracy
decreased slightly compared to the full spectrum.

The obtained results of laboratory studies indicate the po-
tential of using hyperspectral imaging methods for diagnosing
fungal diseases of strawberries in agricultural production.
Scientific publications have already described examples of
successful application of hyperspectral sensors mounted on
UAVs for diagnostics of biotic and abiotic plant stresses (Yang
etal., 2017).

In our further research, we plan to test the application of
hyperspectral imaging methods in field conditions to automate
the diagnosis of fungal diseases of strawberries.

Conclusion

This study explored the feasibility of using hyperspectral
imaging technique combined with machine learning for
the detection and identification of leaf spot, leaf scorch and
phomopsis leaf blight diseases on strawberry leaves in the
presence of visible symptoms. In order to identify the straw-
berry leaves disease effectively, diverse classifiers (SVM,
KNN, LDA, PLS-DA, RF) were developed and evaluated
using the full spectrum. The Support Vector Machine (SVM)
demonstrated the highest classification accuracy of 89.9 %
on 131 wavelengths in the range of 470-900 nm. In order
to simplify the models and increase the speed of data pro-
cessing, four different dimensionality reduction methods
were considered (ROC curve analysis, derivative analysis,
PLS-DA, ReliefF). Moreover, 16 vegetation indices were
used as features. The overall classification accuracy of all
methods decreased slightly compared to classification using
the full spectrum. The set of 16 optimal wavelengths obtained
by the PLS-DA method and the set of 16 vegetation indices
had higher classification accuracy than the other wave-
length sets.
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