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Abstract. Aneuploidy is defined as the loss or gain of a whole chromosome or its region. Even at early stages of de-
velopment, it usually leads to fatal consequences, including developmental defects/abnormalities and death. For a
long time, it was believed that the disruption of gene balance results in pronounced effects at both the cellular and
organismal levels, adversely affecting organism formation. It has been shown that the gene imbalance resulting from
aneuploidy leads to proteotoxic and metabolic stress within the cell, reduced cell proliferation, genomic instability, oxi-
dative stress, etc. However, some organisms have exhibited tolerance to aneuploidies, which may even confer adaptive
advantages, such as antibiotic resistance in pathogenic fungal strains. A significant factor likely lies in the complexity
of the tissue and organ organization of specific species. Polyploid organisms are generally more tolerant of aneuploidy,
particularly those that have recently undergone whole-genome duplication. This review places special emphasis on
the examination of sex chromosome aneuploidies in humans. In addition to primary effects, or cis effects (changes in
the quantity of the transcripts of genes located on the aneuploid chromosome), aneuploidy can induce secondary or
trans effects (changes in the expression levels of genes located on other chromosomes). The results of recent studies
have prompted a reevaluation of the impact of aneuploidy on the structural-functional organization of the genome,
transcriptome, and proteome of both the cell and the entire organism. Despite the fact that, in the cases of aneuploidy,
the expression levels for most genes correlate with their altered copy numbers in the cell, there have been instances
of dosage compensation, where the transcript levels of genes located on the aneuploid chromosome remained un-
changed. The review presents findings from recent studies focused on compensatory mechanisms of dosage compen-
sation that modify gene product quantities at post-transcriptional and post-translational levels, alleviating the negative
effects of aneuploidy on cellular homeostasis. It also discusses the influence of extrachromosomal elements on the
spatial organization of the genome and the changes in gene expression patterns resulting from their presence. Addi-
tionally, the review specifically examines cases of segmental aneuploidy and changes in copy number variants (CNVs)
in the genome. Not only the implications of their composition are considered, but also their localization within the
chromosome and in various compartments of the interphase nucleus. Addressing these questions could significantly
contribute to enhancing cytogenomic diagnostics and establishing a necessary database for accurate interpretation of
identified cases of segmental aneuploidy and CNVs in the genome.
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AHHOTaLMsA. AHeynIoVAVEN NPYHATO CYMTaTb NOTEPIO UM NMPUOBPETEHME KOMUK LIENON XPOMOCOMbI UM ee palioHa.
YKe Ha paHHUX CTagnAX PasBUTMA OHa, KaK MPaBuUo, NPUBOANT K daTanbHbIM NOCNEACTBYAM, BKoYas rubenb opra-
HK3Ma 1 MOPOKW/aHOManum passutia. AnnTtenbHoe Bpems Npeanosnaranoch, YTo MMEHHO HapyLieHre 6anaHca reHoB
NPUBOAUT K BblpaXXeHHbIM 3bdpeKTam Kak Ha KNEeTOYHOM, TaK 1 Ha OpraHN3MeHHOM YPOBHE, HEraTUBHO CKa3blBasACh Ha
bopmrpoBaHuy opraHn3ma. bbiio NokKasaHo, YTO BO3HUKLLMIA BCIEACTBME aHeynonann ancbanaHc reHoB NHAyUm-
pyeT NPOTEOTOKCUYECKMIN N METAOONMUYECKNI CTPECC B KNETKE, ee 3amef/IeHHyIo nponudepamio, HeCTabUnbHOCTb ee
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reHoMa, OKCMAATMBHBIN cTpecc 1 np. OfHaKo AN HEKOTOPbIX OPraHM3MOoB Obiia ONMcaHa TOIEPAHTHOCTb K aHeynon-
OUAM, KOTopas Aaxe Morna Croco6CcTBOBaTb BOSHUKHOBEHMIO Y HUX afAanTMBHBIX MPenMyLecTB (Hanpumep, pesu-
CTEHTHOCTb K aHTMOUOTMKAM Y NMaTOreHHbIX WTaMMOB rpr6oB). BepoaTHO, 3HaUMMbIM GaKTOPOM ABAAETCA CNIOXKHOCTb
TKaHEBOW 1 OpraHHOW opraHm3aumm ocobel KOHKpeTHoro Buaa. K aHeynnongum npermyLiectBeHHO bonee TonepaHT-
Hbl MOSIMAOUAHBIE OPraHN3Mbl U BUfbl, OTHOCUTENIbHO HeJaBHO MpoLLeLre NoSIHOreHOMHY0 Ayrnvkaumio. Ocoboe
BHVMaHVe B 0630pe yfieNeHo PacCMOTPEHMIO aHeYNIOUAMIA NMOSTOBbIX XPOMOCOM YenoBeka. MoMUMO NepBryHbIX 3¢-
beKToB nnn LUC-3GpHEKTOB (M3MEHEHVE KONMYECTBA TPAHCKPUMTOB FeHOB, HAXOAALMXCA Ha aHEYMIOUAHON XPOMO-
COMe), aHeyNoNANA MOXET Bbi3biBaTb BTOPUUHbBIE UW TPAHC-3GPEKTbI (M3MeHEHME YPOBHSA SKCMPEeCcCcUn reHoB, pac-
NMONOXEHHbIX Ha APYTUX XPOMOCOMax). Pe3ynbTaTbl nccnefoBaHWii NOCNEAHMX JIET 3aCTaBUY NO-HOBOMY B3MNAHYTb Ha
BIVSIHVE aHEYNNIONANN Ha CTPYKTYPHO-GYHKLMOHAbHYIO OpraH13aLmio reHoMa, TPaHCKPUMTOM 1 NMPOTEOM KakK KieT-
K, TaK U L|efioro opraHriama. HecmMoTps Ha To 4YTO MpwW aHeymnjIonany YpoBeHb SKCNPeccum anis 6osbLUMHCTBA reHOB
KOppenupyeT C M3MEHEHHBIM YKC/IOM KOMWIA FTeHOB B KNETKe, OblN ONMCcaHbl Cllyyan [JO30BOW KOMMEHCALUMK, Mpy Ko-
TOPOIi YPOBEHb TPAaHCKPUINTOB FEHOB, PACMOJIOKEHHBIX HA aHEYMIOUAHON XPOMOCOME, OCTaBancA HeM3MeHHbIM. B 06-
30pe NPUBOAATCA pe3ynbTaTbl MOCIEAHVX NCCIef0BaHUIA, NOCBALLEHHBIX N3YUYEHNI0 KOMMEHCAaTOPHbIX MEXaHU3MOB
[030BO1 KOMMEHCaLMU M3MEHEHMA KONTMYeCTBa MPOAYKTOB reHOB Ha MOCTTPAHCKPUMLMOHHbIX M MOCTPAHCALMOHHbIX
YPOBHSIX, CHV/XKAIOLLMX HEFaTUBHbIN 3G dEKT aHeYNNonaANM Ha FOMeOoCTas KNeTKH, a TakxKe BIVAHUI0 IKCTPaXPOMOCOM Ha
NPOCTPAHCTBEHHYIO OPraHn3aLio FeHOMa, U3MEHEHMIO NMaTTePHOB SKCMPEeCcCcUr reHoB BCIeACTBME ee Hannuus. Kpome
TOro, OTAENbHO OOCY>KAAITCSA BaPUAHTbI CETMEHTHbIX aHEeYMIOVANIA U N3MEHEHMS YMCia KOMWIA y4acTKOB reHoma. Pac-
CMOTPEHO He TOJMIbKO 3HauYeHMne UX COCTaBa, HO TaKKe ero SIoKanm3aLms B XPOMOCOME U B Pa3HbIX KOMMApTMEHTaX VH-
TepdaszHoro siapa. PelleHne NOAHATBIX BOMPOCOB MOXET BHECTW GOMbLLO BKNAf B COBEPLIEHCTBOBAHME LITOF€HOM-
HOW IMarHOCTVKM 1 B CO3AaHNe HeobXoanMoi 6a3bl JaHHBIX A1 KOPPEKTHON MHTEPPeTaLU BbIABMEHHbIX CJTyYaes 1
CermMeHTHOW aHeyNIonanK, 1 BapbUPYIOLLKX MO YNCIY KOMKIA y4acTKOB reHoMa.

KnioueBble C/I0Ba: aHeymNIoMams; XPOMOCOMHasA HeCTabuibHOCTb; reHOMHOe pa3HoOo6pasve; Mo3anuusm; A030Bas
KomneHcauus; guddepeHLranbHas 3KCNPeCcus reHoB; MOHOAENbHAA SKCNPeCcus; Aerpagaumns 6enkos; yoOnKBUTUH-

npoTeacoOMHaA CUCTEMa; apPXUTEKTOHMKa I/IHTepd)a3HOFO Afpa

Introduction

The loss or gain of a copy of a whole chromosome or its part
is referred to as aneuploidy (Tang, Amon, 2013). However,
whole-genome sequencing and microarray-based comparative
genomic hybridization have dramatically increased our under-
standing of the variation of the human genome; the view of
variations in the copy number of genomic regions has become
ambiguous (Pinkel et al., 1998). A high level of polymorphism
was identified, and variations in the copy number of certain
genomic regions (CNV, Copy Number Variant) quite often rep-
resented variants of normal genetic diversity. Unfortunately,
the principle of describing the human genome based on a sepa-
rate assembly of the haploid set often does not allow us to give
an unambiguous answer to the question of what a particular
case of CNV represents. It might be possible to distinguish
between normal genomic diversity and its pathological vari-
ants more clearly in the future thanks to the generation of a
human pangenome (Liao et al., 2023; Miga 2024). However,
at present, it is frequently not possible to determine whether
a polymorphism is a normal or pathological variant. CNV is
the difference in the copy number of DNA segments found
by comparing an individual genome to the reference human
genome assembly, which is identified through cytogenomic
analysis methods. In contrast to CNV, segmental aneuploidy
is more frequently associated with a pathogenic effect, as it
has a larger size and typically leads to chromosomal changes
that can be detected using cytogenetic methods.

In this review, we will consider CNV as one of three types
of segmental aneuploidy, differing in the size and structural
organization of the corresponding region of the genome:
1) whole-chromosome aneuploidy — aneuploidy of the entire
chromosome; 2) segmental aneuploidy — a change in the copy
number of large regions of the genome, detected using clas-
sical cytogenetic methods; 3) CNV — a change in the copy
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number of a region of the genome of 1 thousand base pairs
(Dtirrbaum, Storchova, 2016). The distinction between these
aneuploidy types can occasionally be very arbitrary, and they
can also be categorized as distinct aneuploidy types at the
same time. For instance, aneuploidy in a chromosomal region
is caused by the presence of a small supernumerary marker
chromosome in humans.

Aneuploidies on an entire chromosome are the result of
errors in chromosome segregation. The main cause of these
mistakes is the absence or insufficient cohesion of sister
chromatids, defects in spindle formation in meiosis or mito-
sis (multipolar spindle, merotelic kinetochore attachment),
and errors in cell cycle checkpoints (Thompson et al., 2010).
Segmental aneuploidies often result from the formation of
unbalanced gametes in carriers of inversions and balanced
translocations. They, like CNVs, can arise due to errors in
DNA replication and repair, leading to deletions or ampli-
fications of DNA sequences and structural chromosomal
rearrangements (Colnaghi et al., 2011). An abnormal number
of chromosomes in the zygote leads to constitutive aneu-
ploidy, the state where all cells are aneuploid. The occurrence
of aneuploidy at later stages of organism development leads
to somatic mosaicism, which may not have a pathological
effect. For example, in some human tissues (brain, liver), a
significant number of aneuploid cells are normally detected
in the absence of a negative effect on the normal function
of these organs (Rehen et al., 2005; Duncan et al., 2012). In
this work, we will separately consider the aforementioned
variants of aneuploidy, starting with whole-chromosome
aneuploidy.

Constitutive whole-chromosome aneuploidy
Both the complexity of the tissue and organ organization and
the peculiarities of the structural and functional organization
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of the genomes of species belonging to different taxa can cause
fundamental differences in the frequency and manifestation of
constitutive aneuploidy in different eukaryotic species. Whole-
chromosome aneuploidy causes developmental defects, which
are frequently severe and fatal, in the majority of species. In
some organisms, it may nevertheless represent a variation of
the norm. By excluding species with microchromosomes in
their karyotypes, we may conclude that whole-chromosome
aneuploidy results in gene imbalance, which alters the ex-
pression of genes located on the aneuploid chromosome.
It is widely accepted that this genetic imbalance affects the
development and fitness of an organism at the cellular and
organismal level (Torres et al., 2007; Williams, Amon, 2009;
Rutledge, Cimini, 2016). The transcriptome studies of aneu-
ploids revealed that the expression levels of genes located on
euploid chromosomes also changed, in addition to the number
of transcripts of genes directly associated with the aneuploid
chromosome (Letourneau et al., 2014; Diirrbaum, Storchova,
2016). Even when the copy number of gene transcripts in a cell
changes — for instance, genes with a changed copy number —
the amount of their protein product may remain unchanged,
which makes evaluating the effect of aneuploidy exceedingly
challenging (Muenzner et al., 2024).

Human aneuploidy

In humans, all constitutive variants of autosomal aneuploidy,
with the exception of the most common trisomies of auto-
somes 13, 18, and 21 (Tr13, Trl8, and Tr21, respectively),
lead to embryonic mortality. Trisomies of chromosomes 13,
18, and 21 lead to serious developmental abnormalities and
are associated with certain clinical phenotypes: Patau syn-
drome (Tr13), Edwards syndrome (Tr18), and Down syndrome
(Tr21) (Lejeune et al., 1959; Edwards et al., 1960; Patau et
al., 1960).

Sex chromosome aneuploidies are characterized by dif-
ferent clinical features and outcomes. The most common
syndromes are Turner (45,X), Klinefelter (47,XXY), trisomy
of the X chromosome (47,XXX), and disomy of the Y chromo-
some (47,XYY) (Berglund et al., 2020), demonstrating high
phenotypic variability with a wide range of clinical manifes-
tations. Clinical phenotypes of patients with various variants
of sex chromosome aneuploidies (45,X,47,XYY, 48,XYYY,
48,XXYY, 49, XXYYY, mos 46,XY/47,XYY, 48,XXYY,
49, XXXYY, 47, XXX, 48, X XXX, 49, XXXXX, and 47,XXY)
are described in the atlas of K. Jones et al. (Jones et al., 2022).
It is worth noting that monosomy of the X chromosome (45,X)
in 99 % of cases leads to the death of the embryo in the early
stages of development; a small percentage of the embryos
survive, which is probably linked to the mosaic form of the
karyotype (Gravholt et al., 2019).

In humans, males are haploid for almost all X-linked
genes, which suggests a more stringent natural selection of
X chromosome variants during evolution in comparison with
autosomes based on the presence of pathogenic gene vari-
ants and genes, a change in the copy number of which leads
to developmental abnormalities. When considering variants
of X-chromosome aneuploidy, one should mention inactiva-
tion of one of its copies (XCI, X-Chromosome Inactivation).
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However, in early human embryogenesis, in the cells of the
trophectoderm and inner cell mass, both X chromosomes
remain active (Deng X. et al., 2014). In humans, XCI is in-
complete, with about 20-25 % of genes remaining active. On
the one hand, the result of incomplete XCI can be considered
as segmental aneuploidy; on the other hand, the inactivated
X chromosome is a heterochromatic extrachromosome, the
presence of which can lead to a change in the pattern of the
entire cellular transcriptome through epigenetic changes
(Deng X. et al., 2014). XCI occurs randomly; the mecha-
nisms by which copies of the X chromosome are selected to
be inactivated are unknown. The consequence of such inac-
tivation is the emergence of mosaicism in the expression of
allelic variants of genes (i. e., unequal expression of parental
alleles) associated with the X chromosome (Werner et al.,
2024). Random XCI results in approximately half of the cells
having the paternal X chromosome inactivated and the other
half having the maternal X chromosome inactivated. However,
in some cases, unequal XCI may occur, with different tissues
having different ratios of cells with inactivated maternal or
paternal X chromosomes. Disturbances in equiprobable X-
chromosome inactivation (e. g., a mutant allele of an X-linked
gene is expressed in most cells) can lead to the development
of X-linked diseases (Minks et al., 2008).

About 12-15 % of X-linked genes remain active in all cells,
while for another 8-10 % of X-linked genes, transcription
is observed only in some cell types (Carrel, Willard, 2005;
Balaton et al., 2015). Altered transcription levels, in addition
to mRNA, were also detected for non-coding RNA genes
(including microRNA, IncRNA, and circular RNA). The
expression level of genes that are not subject to inactiva-
tion varies widely (10-95 %) in different cell types. Mosaic
aneuploidies of sex chromosomes deserve special mention.
Since samples of patients’ peripheral blood are most often
used for cytogenetic analysis, it is extremely problematic to
assess the level of mosaicism of sex chromosomes in different
tissues. However, even in the blood of such patients, more than
30 % of mosaic variants were detected for 45,X and 47,XXX
karyotypes and a lower level of mosaicism for 47, XXY and
47,XYY (6-7 and 11 %, respectively) (Gravholt et al., 2019;
Pavlicek et al., 2022; Tallaksen et al., 2023). The question
of to what extent the imbalance in gene copy number is cor-
rected at the proteome level in sex chromosome aneuploidies
remains open.

Whole-chromosome aneuploidy

in different species of eukaryotes

The negative impact of aneuploidy manifests itself at both the
cellular and organismal levels. In most species of eukaryotes,
it leads to developmental abnormalities, diseases, and non-
viability. However, the frequency of aneuploidy and its effect
on the host phenotype can vary greatly among representatives
of different taxa. In mammals, autosomal aneuploidies have
a pronounced negative effect, including fatal developmental
abnormalities. In addition to humans, a high frequency of
aneuploidy has been described in frozen embryos and piglet
embryos with developmental defects and in calf embryos
obtained in vitro. Sex chromosome monosomies have been
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identified in sterile sheep and cattle (Bouwman et al., 2023).
Genome imbalance leads to proteotoxic and metabolic stress
in the cell, slow proliferation, genomic instability, oxidative
stress, etc. (Stingele et al., 2012).

However, in some species from a number of taxa, tolerance
to aneuploidy has been revealed, for example, in plants — sal-
sify, Tragopogon miscellus (Chester et al., 2012); in fungi —
Saccharomyces cerevisiae, Candida albicans (Rustchenko,
2007; Kvitek et al., 2008); in protozoa — Leishmania, Giardia,
Trypanosoma (Sterkers et al., 2010); and among flatworms —
some representatives of the genus Macrostomum (Zadesenets
et al., 2020). Moreover, in aneuploids of some species, an
unbalanced karyotype may likely contribute to adaptation to
various environments. For example, in a number of patho-
genic yeasts, aneuploidy leads to the formation of genomic
diversity and the emergence of antibiotic resistance (Pavelka
etal., 2010).

Karyotypes of protozoans of the genus Leishmania (the
causative agent of leishmaniasis in mammals, including
humans) contain from 34 to 36 chromosomes, and a number
of studies have shown that aneuploid variants predominate
among them (Lachaud et al., 2014). Moreover, an ama-
zing feature in the form of constitutive mosaic aneuploidy
was revealed in L. major: individuals of the same line, even
having the same clonal origin, are mosaic and contain mono-,
di-, and trisomic cells on different chromosomes (Sterkers et
al., 2011, 2012). Mosaic aneuploidy was later identified in
other Leishmania species (Lachaud et al., 2014). In addition
to pronounced genotypic and karyotypic diversity, Leishmania
is characterized by maintaining high genetic heterogeneity in a
population consisting of homozygous individuals. The authors
believe that genomic variability, due to the high plasticity of
the karyotype, provides phenotypic diversity and is an adaptive
mechanism of Leishmania to environmental changes during
a complex life cycle (Sterkers et al., 2012).

An unusual variant of aneuploidy was discovered in natural
populations and laboratory lines of free-living flatworms of
the genus Macrostomum (Zadesenets et al., 2016, 2020). The
genomes of M. lignano, M. janickei, and M. mirumnovem
arose due to a recent whole-genome duplication followed
by intensive reorganization of the duplicated genome (chro-
mosomal fusions, inversions, indels, etc.) (Zadesenets et al.,
2020, 2023; Zadesenets, Rubtsov, 2021). In these species,
the karyotype evolution involved the fusions of all ancestral
chromosomes into one large chromosome. In M. lignano,
the presence of aneuploids with tri- and tetrasomy on a large
chromosome, exhibiting no phenotypic and reproductive
features, was recorded (Zadesenets et al., 2016). The karyo-
typic variation in M. mirumnovem was so high that a specific
nomenclature for the species’ chromosomes had to be estab-
lished. A hypothetical basic karyotype had to be introduced
in order to apply the standards for characterizing karyotypes
that are recognized in modern cytogenetics (Zadesenets et al.,
2020). A large chromosome with extensive paralogous regions
that were highly homologous to the chromosomes of the an-
cestral set was linked to the whole-chromosome aneuploidy
observed in the Macrostomum species (Zadesenets et al.,
20174, b).
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Adistinct, less noticeable manifestation of aneuploidy in or-
ganisms with an increased genome ploidy is worth discussing
separately, in addition to species with a recent whole-genome
duplication. Comparing the effects of aneuploidy across spe-
cies reveals its species specificity, which may be related to
varying levels of tissue and organogenesis complexity.

Model systems to study aneuploidy

The presence of species tolerant to aneuploidy would seem to
facilitate a simple and effective establishment of experimental
models for its study. Indeed, numerous studies performed
on aneuploid yeast strains have significantly expanded the
fundamental knowledge of the causes and consequences
of the effect of aneuploidy on the genome, transcriptome,
and proteome of the cell (Torres et al., 2007; Pavelka et al.,
2010; Torres, 2023). Moreover, mechanisms for correcting
imbalances in gene dosage have been proposed.

In humans, modeling of aneuploidies has naturally been
limited to experiments with cell cultures obtained from patients
with aneuploidies and/or the creation of aneuploid cells using
chromosome engineering methods (MMCT, Microcell-
Mediated Chromosome Transfer; targeted chromosome
elimination with Cre/loxP, CRISPR/Cas9; induction of CIN)
(Fournier, Ruddle, 1977; Thomas et al., 2018; Leibowitz et al.,
2021; Zhang X.M. et al., 2022; Truong et al., 2023).

Whole-chromosome aneuploidy in cells cultured in vitro

Cell cultures and lines maintained in vitro are tolerant of
aneuploidy. To identify the effect of aneuploidy, their pro-
liferative potential is usually assessed. Whole-chromosome
monosomy is rare in cell lines. Note that some authors believe
that monosomies, in contrast to whole-chromosome and seg-
mental tri- and tetrasomies, less often lead to chromosomal
instability (CIN, Chromosomal Instability) (Taylor et al.,
2019). In vivo, monosomies are most often associated with
hematological malignancies; monosomies on the arms of some
chromosomes are also associated with malignant neoplasms
(deletion of 1p — neuroblastoma, 3p — lung cancer, 7q or entire
HSA7—myeloid leukemia) (Taylor et al., 2019). This is likely
due to loss of heterozygosity for tumor suppressor genes; for
example, deletion of 17p in many tumors is associated with the
loss of a copy of the TP53 gene in the absence of its normal al-
lele on the homologous chromosome (Chundury et al., 2021).

The problem of loss of heterozygosity should probably be
considered in detail separately, taking into account the possi-
bility of obtaining and maintaining haplodiploid cell cultures.
For example, sequencing the genome of cells from one of these
cultures allowed for the complete assembly of its haploid set
from telomere to telomere (T2T-CHM13), including extended
regions of heterochromatin (Nurk et al., 2022). The result was
the announcement of the successful completion of the human
genome sequencing program (Nurk et al., 2022).

Aneuploid cells in vitro typically exhibit a reduced proli-
feration rate. Taking into account that they undergo excessive
protein synthesis, some of which can be leveled by the ubig-
uitin-proteasome system, such a slowdown in proliferation
seems natural but not critical for obtaining and maintaining
cell cultures in vitro. At the same time, a decreased rate of
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cell proliferation during the development of the organism
at various stages of ontogenesis can be critical and lead to
serious disorders.

It should be noted that when cultivating cell lines in vitro,
as in cells at an early stage of tumorigenesis in vivo, genome
doubling (WGD, Whole Genome Duplication) can occur, lea-
ding to its tetraploidization. Subsequently, these cells, due to a
reduction in the number of chromosomes due to tolerance to
chromosome segregation errors in mitosis, become aneuploid
(hypotetraploid). This may subsequently induce additional
genomic instability. Consequently, for cells to simply prolifer-
ate, it is not necessary to maintain a balance in the number of
chromosomes; moreover, when they overcome the prolifera-
tive barrier (the Hayflick limit) and become malignant, it is
often accompanied by CIN. In this case, aneuploid cells are
better adapted to environmental conditions and proliferate
faster. However, rapid proliferation does not ensure coordi-
nated behavior of cells in the organism. Rather, it leads to
the formation of various developmental abnormalities, for
example, pathologies in histo- and organogenesis.

Effect of gene dosage

on the transcriptome in aneuploidy

The effect of aneuploidy on gene expression has been studied
in a variety of experimental models, both cell lines and model
organisms. Unfortunately, most studies only assessed the num-
ber of transcripts of differentially expressed genes (DEGs).
The effect of aneuploidy on the expression of genes localized
directly on the chromosome with an altered copy number
has been proven in yeast (et al., 2007; Torres et al., 2007),
Arabidopsis (Huettel et al., 2008; Sheltzer et al., 2012), maize
(Birchler et al., 2013), as well as for mouse (Williams et al.,
2008) and human (Nawata et al., 2011; Stingele et al., 2012)
cell lines. It is worth noting that aneuploid models included
variants of the presence of additional copies of chromosomes
and not the loss of one of the copies, i. e., tri- and tetrasomy,
not monosomy.

To date, experiments conducted in cell cultures and aneu-
ploid model organisms have shown that aneuploidy may have
a broader effect on gene expression than previously thought.
In addition to the primary cis-effects (changes in the level of
transcripts of genes located on the aneuploid chromosome),
secondary trans-effects (changes in the expression level of
genes located on other chromosomes) were identified (Sheltzer
et al., 2012; Birchler, 2013; Diirrbaum, Storchova, 2016).

In in vivo models, the trans effect of aneuploidy on gene
expression was first described in maize (Guo, Birchler, 1994).
Later, using the example of various cellular and organismal
model systems, it was shown that in aneuploidy, the list of
DEGs is not limited to the genes of aneuploid chromosomes
and includes a significant number of genes from euploid
chromosomes. This phenomenon was called the aneuploidy-
induced transcriptional response (Sheltzer et al., 2012). Trans
effects of aneuploidy have been identified in aneuploid cells
of yeast, mice, and humans. In yeast, the trans effect of aneu-
ploidy affects about 5—7 % of genes. When comparing euploid
human fibroblasts and fibroblasts with trisomy 21, about 88 %
of DEGs are not associated with chromosome 21 but are
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distributed on other chromosomes (Sullivan et al., 2016). In
Turner and Klinefelter syndromes, more than 75 % of DEGs
were identified in autosomes, while in carriers of karyotypes
46, XXX and 47,XYY, less than 30 % of DEGs were autosomal
(Raznahan et al., 2018). The extent to which trans effects of
aneuploidy occur varies among species, and the underlying
mechanisms are still poorly understood (Li R., Zhu, 2022).

Thus, the physiological and phenotypic effects of aneu-
ploidy may be associated either directly with changes in the
copy number of genes located on the aneuploid chromosome
or indirectly with changes in the expression of many genes on
euploid chromosomes. The result may be additive or syner-
gistic expression and functional effects at the transcriptional
and/or posttranscriptional levels (Pavelka et al., 2010). This
is consistent with the nonlinear nature of gene dosage effects
that determine subsequent biochemical processes in the cell
(Veitia et al., 2013; Pires, Conant, 2016). Although many of
the biological effects caused by aneuploidy are consistent with
the gene dosage balance hypothesis (Birchler, Veitia, 2012;
\eitia, Potier, 2015), it is worth considering the impact of the
presence of extra chromosomes on the spatial organization of
the nucleus and potentially on the genome-wide transcriptional
activity of a wide variety of genes.

Separately, it is worth noting that often in studies of the ef-
fect of aneuploidy on the transcriptome, non-isogenic lines are
used when analyzing DEGs (especially in studies conducted on
human cells), which, when conducting a comparative analysis,
introduces additional difficulties for correctly assessing the
contribution of aneuploidy and the existing genetic diversity.
The use of isogenic lines, differing only in the presence of
an additional chromosome, could significantly increase the
efficiency and reliability of the analysis. Such lines can be
obtained by cloning mosaic samples. An alternative approach
currently implemented is the comparison of transcriptomes
and genomes of individual cells obtained from mosaics based
on chromosomal anecuploidies (Wang S. et al., 2024).

Note that the effect of aneuploidy on one chromosome on
the cell transcriptome as a whole significantly complicates the
analysis and assessment of the effect of aneuploidy. Among
the genes listed in the OMIM database (Online Mendelian
Inheritance in Man, https://omim.org), only a part of them
showed a pathogenic effect when their copy number changed,
but the secondary effect of aneuploidy may be an extremely
important component of its total pathogenic effect. Neverthe-
less, it is logical to expect that the more dosage-sensitive genes
and genes encoding transcription factors, peptides, proteins,
and small RNAs that affect the transcriptional activity of
many genes there are in a given chromosome, the stronger the
change in the transcriptome and disturbance of homeostasis in
the cell, and the more pronounced the pathologies observed
during histo- and organogenesis.

Possible outcomes of gene copy

number alterations in individual cells

Monoallelic expression in individual cells should be taken
into consideration when analyzing transcriptional changes
caused by aneuploidy. In contrast to the data of the single-
cell transcriptomes, the gene expression patterns obtained
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earlier represented averaged data and did not accurately
reflect the real gene expression in single human cells. Studies
have revealed variability in monoallelic expression for most
autosomal genes and gradations in gene expression during
parent-of-origin imprinting and X-chromosome inactiva-
tion (Borel et al., 2015; Santoni et al., 2017; Garieri et al.,
2018). The latter is likely a result of the stochastic and pulsed
nature of transcription, in which transcription of each copy of
agene, including its allelic variants, is independently regulated
and determines the monoallelic expression of most autoso-
mal genes in a significant proportion of cells (Reinius, Sand-
berg, 2016; Larsson et al., 2019). Thus, despite aneuploidy, in
some cells, transcription may occur from one copy of the gene,
but at the same time, there will also be cells with transcription
from a larger number of its copies. In cells with trisomy, there
is an increase in the proportion of cells with simultaneous
transcription from two or more copies of the gene, leading to
an increase in the number of transcripts by one and a half
times when analyzing the cell pool. Moreover, the picture
may differ for different genes in one cell, creating a large
diversity in the transcriptome of individual cells (Ramskdld
etal., 2024).

Some studies have been devoted to the study of trans-
criptional bursting in individual cells, in which the frequency
of transcriptional bursting (the time between acts of tran-
scriptional bursting), its intensity (the number of transcripts
synthesized in one act), and the stability of the synthesized
mRNA were assessed (Deng Q. et al., 2014; Stamoulis et al.,
2019; Larsson et al., 2021; Ramskold et al., 2024). In this
paper, we only note that the pulsed transcription of different
copies of genes in a cell is independent, and at a sufficiently
low frequency of the transcription act in a cell containing
three copies of a gene, it can occur from one or several co-
pies of the gene (Larsson et al., 2021). In most diploid cells,
the expression of only one allele is predominant (monoallelic
expression) (Stamoulis et al., 2019), while in a triploid cell,
different transcript variants can be formed due to mono- or
biallelic gene expression (Larsson et al., 2021). The stochastic
determination of the transcription pattern and its time results
in a distribution of cells based on the level of transcripts from
various copies of the gene. Among cells with trisomy, the dis-
tribution includes cells with transcription from one copy, from
two, and, rarely, from three copies, which provides an average
value of the number of transcripts corresponding to a transcript
level one and a half times higher than in a diploid cell.

Therefore, the concept of pulsed transcription assumes
variability in the level of transcripts within the cell, as well
as a high level of variability in the level of transcripts in
aneuploidy. This is characterized by the appearance of cells
with a high transcript content, the ability to select cells based
on the number of transcripts of the corresponding genes, and
the reproduction of variability in the number of transcripts
in each subsequent generation of cells. Negative selection of
cells by a high transcript level for dosage-dependent genes
can lead to a delay of cell cycle progression or even induction
of apoptosis. In other words, during ontogenesis, aneuploidy
causes a continuous loss of cells involved in the formation
of new tissues and organs. In some instances, the instability
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of the epiblast’s development and changes in the develop-
ment of the hypoblast and trophectoderm are evident at the
early stages of development in human embryos with trisomy
(Wang S. et al., 2024).

Dosage compensation

at the transcriptome and proteome levels

Despite the fact that in aneuploidy the expression level for the
majority of genes correlates with the altered number of gene
copies in the cell, there have been instances of dosage com-
pensation where the level of gene transcripts of genes on the
aneuploid chromosome remains constant (Guo, Birchler, 1994;
Birchler et al., 2001; Hose et al., 2015; Gasch et al., 2016).
Some studies have shown that in aneuploidy, transcriptional
dosage compensation may be provided by autoregulation
of gene expression, suppression of mRNA translation, and
mRNA decay. For example, in wild yeasts with an additional
copy of chromosome 12, autoregulation (overproduction of
a certain protein reduces the transcription of its gene) of the
RPL15A and RPL22A genes encoding ribosomal proteins
leads to their dosage compensation (Hose et al., 2015). The in-
creased expression of genes encoding certain microRNAs (for
example, miR-155) and localized on human chromosome 21
in Tr21 may lead to dosage compensation of genes localized
on this chromosome or affect the expression level of genes
on other chromosomes. For example, an increase in miR-155
can suppress the expression of the transcriptional regulator
BACHT1 located on chromosome 21 (Li R., Zhu, 2022).

A pronounced effect of post-translational dosage compen-
sation has been described in aneuploids from natural isolates
and laboratory strains of S. cerevisiae (Muenzner et al., 2024).
Despite the fact that 20 % of the studied natural isolates were
stable aneuploids, similar aneuploid laboratory-engineered
strains were less stable. The transcriptomic profiles of the cor-
responding pairs of natural isolates and laboratory strains were
similar, but while approximately 70 % of proteins encoded
on aneuploid chromosomes were corrected to normal levels
in natural aneuploid isolates, such a correction in laboratory
strains was described for less than 50 % of such proteins.
Moreover, if a decrease in the excess amount in laboratory
strains was mainly observed for complex protein complexes,
then in natural aneuploid isolates, the decrease in the excess
amount of proteins affected all classes of proteins (Storchova,
2024). An increased level of ubiquitinylation was detected
for proteins encoded on aneuploid chromosomes, and their
abundance was reduced via the ubiquitin-proteasome system
(UPS, Ubiquitin Proteasome System) (Muenzner et al., 2024).

Therefore, in yeast, the ubiquitin-mediated proteasomal
degradation system plays an important, and possibly key, role
in maintaining the balance of the proteome of an aneuploid cell
(Storchova, 2024). The stability of natural aneuploid isolates
of S. cerevisiae suggests that in their genome, there is an adap-
tation to the presence of an additional chromosome, or there is
a selection of a genome variant in which aneuploidy not only
does not have a negative effect but even has a positive adaptive
effect. In addition to the UPS, other proteolytic mechanisms
for correcting the proteome (autophagic-lysosomal system,
calpain, and caspase enzymes) exist in the cell to regulate

Vavilovskii Zhurnal Genetiki i Selektsii / Vavilov Journal of Genetics and Breeding - 202529+ 3



K.C.3apgeceHey,
H.B. Py6uoB

protein homeostasis (Noormohammadi et al., 2018). For
example, during proteotoxic stress in aneuploid human cells,
the transcription factor TFEB is activated, which regulates
the expression of genes involved in the autophagic-lysosomal
pathway for the degradation of excess protein aggregates, and
an additional mechanism for correcting the abundance of pro-
tein products in the cell is triggered (Santaguida et al., 2015).

Obviously, the idea of the pathogenic effect of aneuploidy,
caused by a single disturbance in the balance of gene copies
localized on the aneuploid chromosome, is too simplified. For
instance, clinical manifestations with Tr21 vary significantly,
which may likely be due to large differences between personal
genomes, which can result in differences in the correction of
the abundance of proteins encoded on chromosome 21, similar
to what happens in aneuploid yeast.

Studies of the transcriptome and proteome of individual
human cells at the stages of early embryogenesis (Wang S.
et al., 2024) have significantly expanded the understanding
of the role and mechanisms of manifestation of aneuploidy.
A transcriptome analysis of about 15 thousand individual
cells from 203 eu- and aneuploid human blastocysts (epi-
and hypoblasts, polar and mural trophectoderm) showed that
changes in the copy number of chromosomes are significant
for ~20 % of genes. About 90 dosage-dependent domains
have been identified in aneuploid chromosomes. Especially
in monosomies, common consequences like apoptosis were
found, which helps to explain why autosomal monosomies
occur in fewer cells. It is likely that with autosomal mono-
somies, critical developmental disorders occur even before
implantation. Of course, the cause of such disorders may be
not only or not so much a change in gene dosage but a loss of
heterozygosity, leading to the absence of complete copies of
some genes in the cell. In this regard, it is not surprising that
the sets of dosage-dependent genes in complementary tri- and
monosomies turned out to be different. The downregulation
of TGF-B and FGF signaling, which led to deficient trophec-
toderm maturation, was another lineage-specific consequence
that caused unstable epiblast formation in aneuploids (Wang S.
etal., 2024).

Aneuploidy and architecture

of interphase nuclei

Previously, it was believed that changes in the copy number
of chromosomes of the main set have an effect on the pheno-
type, mainly due to the imbalance of gene copies. However,
in humans, the manifestation of a number of syndromes (at
least with Tr21) is caused not only by an increased expres-
sion of genes from the aneuploid chromosome (Olson et al.,
2004). Trans effects of aneuploidy have also been identified,
and it has been hypothesized that the disruption of cellular
homeostasis is caused by the presence of an extra chromosome
(Krivega et al., 2022).

In the interphase nucleus, chromosomes and their regions
are not randomly located relative to transcriptionally active
and inactive compartments (Cremer T., Cremer C., 2001; Cre-
mer T., Cremer M., 2010; Cremer M. et al., 2020). Moreover,
the architectonics of the nucleus and chromosomal territories
may differ both at different stages of ontogenesis and in differ-
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ent cell types (Croft et al., 1999; Tanabe et al., 2002). In the
nuclei of cells that differ in morphology and tissue affiliation,
different principles of spatial localization of chromosomes and
chromosomal regions can be implemented (Cremer M. et al.,
2003; Mayer et al., 2005; Solovei et al., 2013), determining its
functional compartmentalization due to the specific distribu-
tion of transcriptionally active and inactive chromatin regions
in the nucleus (Meaburn, Misteli, 2007).

The development of 3D genomics (3C, chromosome con-
formation capture, Hi-C, ChIA-PET, Micro-C, snHi-C, etc.)
has significantly expanded the understanding of the levels
of hierarchical and spatial organization of chromatin in the
nucleus and the dynamics and plasticity of the structural
and functional compartments of the nucleus (Dekker et al.,
2002; Li G. et al., 2010; van Berkum et al., 2010; Nagano et
al., 2013; Hsieh et al., 2020). For the human genome, topo-
logically associated domains (TADs), A/B compartments and
their subcompartments (Oji et al., 2024), chromatin loops,
lamina-associated domains (LADs), nucleolus-associated
domains (NADs), and their variants in different cell types and
at different stages of development/differentiation are described
in detail. Recent studies have investigated the influence of
structural and numerical chromosomal aberrations on the
spatial organization of chromatin (Shao et al., 2018; Wang Y.
et al., 2023; Zhegalova et al., 2023).

The mechanisms of the influence of aneuploidy on changes
in the spatial organization of chromatin in the nucleus are
unknown, and in this work, we present only data from studies
describing changes in nuclear architecture in aneuploid hu-
man cells. Important factors that determine the structural and
functional organization of the genome are the connection of
its specific sections with the nuclear lamina, the localization
of chromatin relative to the nucleolus, and the formation of in-
terchromatin compartments (nuclear bodies) (Razin, Ulianov,
2022). The spatial organization of the nucleus is determined
primarily by the anchoring of chromosomal territories on the
nucleolus (helped by NADs) and the nuclear lamina (helped
by LADs), as well as the presence of interchromatin compart-
ments (nuclear bodies) (Razin, Ulianov, 2022).

Although about a third of the human genome contains
potential LADs (van Steensel, Belmont, 2017) in different
cell types, only about 30 % of potential LADs are associated
with the lamina (Zhegalova et al., 2023). Most genes located
in lamina-associated regions are not expressed or expressed at
low levels. Alterations in the composition of lamina-associated
regions lead to changes in the transcriptome of the cell (van
Steensel, Belmont, 2017; Shah et al., 2023). An important
role is played by the distribution of LADs along the chromo-
some; chromosomes with a small proportion of LADs tend to
be found medially, in the center of the nucleus; for example,
human chromosome 19 is characterized by the highest gene
density and has an internal position in the nucleus (Croft et
al., 1999). Due to the altered chromosome copy number, the
conditions of competition of potential LADs for association
with the lamina may change, which can lead to changes in
the structural organization of chromatin, and not only that of
the aneuploid chromosome. This, in turn, can lead to changes
in the transcriptional activity of genes located on different
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chromosomes, and such changes can be critical, leading to
disorders already at early stages of development (Zhegalova
etal., 2023).

As an example, we can consider the organization of chro-
matin in the nuclei of aneuploid human colonic epithelial cells
(HCEC) with trisomy of chromosome 7. 3-D FISH, a whole-
chromosome probe that specifically stains the corresponding
chromosomal territory did not reveal fundamental changes in
the localization of the territory of the aneuploid chromosome
in the interphase nucleus. However, Hi-C analysis, in addition
to an increase in the frequency of interchromosomal contacts
of DNA regions of chromosome 7, revealed changes in A/B
compartmentalization and in the boundaries of TADs. Changes
in the chromatin of chromosome 4 were detected: a reduction
in the number of TADs (from 133 to 109) and movement of
the chromatin of a chromosome 14 region (chr14:62.4Mb—
63.8Mb) from the active A to the inactive B compartment
(Braun et al., 2019).

In human chorionic villi cells at Tr21, changes in the nuclear
localization of chromosomal territories of chromosomes 1
and 3 were noted (Kemeny et al., 2018). When studying other
trisomies (Tr13, Tr16 in chorion cells; Tr18 in in vitro cultured
fibroblasts), changes in patterns of interchromosomal contacts
were noted for all human chromosomes (Zhegalova et al.,
2023). These studies revealed a correlation between the num-
ber of loci with altered compaction and the number of LADs
in the aneuploid chromosome (Tr13, Tr18). It turned out that
the number of LADs in chromosomes 13 and 18 is three times
higher than in chromosome 16, which could potentially cause
amore pronounced effect on the chromatin-lamin interactome
in the nucleus, leading to changes in chromatin compaction.
In addition, it turned out that the number of loci with altered
compaction in small chromosomes is higher in Tr16 compared
to Tr13 and Tr18. The presence of an extra chromosome 16
also significantly reduced the frequency of DNA contacts of
small chromosomes (chromosomes 16-22) in chorion cells
(up to 20 % for a single pair of chromosomes). The authors
suggest that additional copies of small chromosomes, compe-
ting with copies of similar small chromosomes, lead to changes
in the distribution of their material in the nucleus, reducing
the frequency of contacts (Zhegalova et al., 2023). In NPCs
(neuronal progenitor cells), an extra copy of chromosome 21
increased the frequency of DNA contacts within the group of
small chromosomes HSA16-22. Thus, aneuploidies of dif-
ferent chromosomes can lead to different changes in the spatial
organization of chromatin in the interphase nucleus, and such
changes can be different in different cell types (Meharena et
al., 2022; Zhegalova et al., 2023).

The authors believe that in trisomies, different variants of
spatial DNA contacts can be formed in different subpopu-
lations of cells (Zhegalova et al., 2023), and the observed
differences in the Hi-C data array may reflect the combined
effect of several factors (the presence of an extra chromosome,
the proliferative activity and age of the cell, the degree of its
differentiation, etc.). Changes in the structural and functional
organization of chromatin are probably of critical importance
in early embryogenesis and are the cause of formation of
multiple abnormalities in different tissues and organs observed
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in trisomy (Zhegalova et al., 2023). The authors believe that
changes in the spatial organization of chromatin, systematic
and stochastic, are determined by a combination of many
factors, including the size of the chromosome, its LAD cove-
rage, and the density of gene localization in it (Zhegalova
et al., 2023). However, it should be recognized that most
questions about the effect of aneuploidy on the architecture
of the nucleus and the structural and functional organization
of chromatin remain unanswered.

The small amount of research conducted, which sheds only
a little light on the effect of aneuploidy on the spatial organiza-
tion of the nucleus in trisomies in human cells, leaves open
the question of the presence of features or general patterns
in changes in the spatial organization of the genome during
chromosomal aberrations.

Mosaic aneuploidy
As a result of errors that occur in mitosis during the proli-
feration of somatic cells, cells with an altered genome con-
stantly appear in the body. As a result, most organisms are
mosaics. In humans, aneuploid cells are present in various
tissue types, including hepatocytes (2.2 %), neurons (<5 %),
lymphocytes, etc. (Knouse et al., 2014). Aneuploidies of
different chromosomes (HSAL, 7, 8, 9, 10, 11, 14, 15-18,
21, and X/Y) have been identified in brain cells (Graham et
al., 2019). It is possible that somatic mosaicism contributes
to the formation of diversity, in which neurons of the same
lineage perform different functions (McConnell et al., 2017).
It turned out that somatic mosaicism is more often observed
for sex chromosomes than for autosomes (Machiela et al.,
2016). In lymphocytes, mosaicism on the Y chromosome
associated with its loss (mLOY) is the most common type of
aneuploidy (1.7-20 %) (Graham et al., 2019). Several cha-
racteristics should be considered when examining mosaicism
studies. Accordingly, if the percentage of cells with a different
karyotype was at least 5 % when mosaicism was detected
using FISH conducted on interphase nuclei, it was deemed
significant (Modi et al., 2003; Yurov et al., 2007); however,
1.6 % was already deemed significant when mosaicism on
the X chromosome was examined (Guttenbach et al., 1995).
The phenotype of mosaics depends on the proportion of
aneuploid cells, which may vary in different tissues and at
different stages of development. Analysis of individual cells
of embryos at the preimplantation stage (blastocyst) showed
the presence of aneuploid and mosaic embryos. According
to different studies, the proportion of mosaic embryos varied
from 2 to 90 % (Starostik et al., 2020; Rana et al., 2023). It
is worth noting that in a number of cases, when analyzing a
pool of cells, mosaicism in embryos was not detected, since
aneuploidy in the cells was compensatory (trisomy and mono-
somy on the same chromosome in different cells). The use
of methods for analyzing the genome and transcriptome of
single cells (scWGS, scRNAseq) of the embryo has made it
possible to describe in more detail the levels of mosaicism at
different stages of embryonic development. It was found that
100 % of the analyzed embryos were mosaics at the blastocyst
stage; during the development of the embryo, at later stages of
its development (5-26 weeks of gestation), the proportion of
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aneuploid cells decreased. In addition, cases of healthy chil-
dren being born with a normal karyotype, although aneuploidy
was detected during retrospective analysis of their embryonic
cells, have been described (Zhai et al., 2024).

Concluding a brief discussion of the problems of mosaicism
associated with aneuploidy of different chromosomes, we
note that it can occur in cancer cells after WGD in the early
stages of tumorigenesis (Lambuta et al., 2023) and/or as a
result of CIN, including both numerical and structural chro-
mosome aberrations (Li R., Zhu, 2022). According to recent
data, WGD is detected in 30 % of tumors at the early stages
of tumorigenesis (Lambuta et al., 2023). Up to 90 % of solid
tumors and 70 % of hematopoietic malignancies are associated
with aneuploidy (Xiao et al., 2024). An increased frequency
of chromosomal abnormalities, including aneuploidy, is also
observed in in vitro cultured human embryonic stem cells,
which may contribute to their potential tumorigenicity (Baker
etal.,2007). The phenomenon of CIN, associated with WGD
and/or aneuploidy, is often accompanied by genomic instabil-
ity and manifests itself in the form of diversity of tumor cell
karyotypes and high intra- and inter-tumor heterogeneity of
the cancer cell genome (Burrell et al., 2013).

Segmental aneuploidy and CNVs

Segmental aneuploidy and CN'V might have distinct origins. In
carriers of balanced translocations, unbalanced gametes arise,
leading to various clinically significant forms of segmental
aneuploidy. Despite the 50 % frequency of such gametes,
the percentage of children with partial trisomy and partial
monosomy in such parents is lower. It is unknown when
selection favors carriers of a balanced genome, and it may
vary depending on the type of chromosomal rearrangement.
Even standard cytogenetic techniques can easily determine a
balanced translocation in parents if both translocation-related
chromosomal regions are relatively large. Unfortunately,
detecting such a balanced translocation can be difficult if
one of the chromosomal regions is small and distal. To do
this, FISH using DNA probes specific to distal regions of the
chromosomes or microarray-CGH is required. The goal of
medical cytogenetics is to discover and characterize carriers
of these combined partial trisomies and monosomies as well
as carriers of balanced chromosomal translocations, whose
offspring may also be carriers of combined partial trisomies
and monosomies. It should be noted that these combinations
have a pathogenic effect.

DNA replication and repair errors result in the loss or gain
of chromosome regions, leading to CNVs and segmental
aneuploidies. In studying the clinical significance of such seg-
mental aneuploidies and CNVs, researchers have encountered
unique challenges. Whole-genome sequencing of thousands
of personal human genomes has revealed a huge number of
bi- and multiallelic single nucleotide variants (SNVs, Single
Nucleotide Variants), biallelic indels, and structural variants
(SVs, Structural Variants) of the genome, including large
insertions, deletions, inversions, and variations of genomic
regions by copy number (The 1000 Genomes Project Con-
sortium et al., 2015). Given this variability, assessing the
potential pathogenic significance of variations in a specific
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genome region’s copy number frequently proves to be quite
a challenging task. In this section, we will consider cases of
appearance of additional copies of genome regions because,
in a diploid organism, loss of a chromosomal region leads
to haploidization of part of the genome and usually has a
pronounced pathogenic effect or a delayed pathogenic effect.
However, in the case of a tetraploid genome, the loss of one
copy of a genomic fragment may be one of the first stages
towards genomic rediploidization, which is a very important
stage in genomic evolution, but its consideration is beyond
the scope of this review.

A bioinformatics study of an aneuploid chromosome re-
gion’s composition usually involves considering a number
of hypotheses. Due to the enormous genomic diversity in
humans, analysis of a large number of patients is required to
make a definitive conclusion about the clinical significance of
specific CNVs. In addition, since the same CNVs or segmental
aneuploidies can manifest themselves in fundamentally differ-
ent ways in different genomes, analysis of a large number of
cases of a particular CNV in relatives may not provide a defini-
tive answer. Finding patients with identical CNVs is often a
challenging task because the frequency of each specific CNV
is low, and the study of patients and their relatives reduces the
ability to assess its clinical significance when found in dif-
ferent genomes. As a result of the analysis of a large sample
of patients, CNVs can be classified as either variants without
pathogenic influence, or without potential pathogenic influ-
ence, or as CNVs with unknown influence on the phenotype,
or as CN'Vs with possible potential pathogenic influence, and
finally as CNVs with pathogenic influence (Zhang F. et al.,
2009; Auwerx et al., 2022). It should be taken into account
that the genomes of people from diverse populations have sub-
stantial differences and are well divided into clades (Mallick
et al., 2016). Moreover, they may also differ in the presence
of DNA that originates from other, long-extinct hominins
(Neanderthals, Denisovans, etc.) (Vernot et al., 2016). Thus,
it cannot be ruled out that a conclusion drawn for one group
of populations will be incorrect for another.

Importance of localization

of segmental duplications in the genome

The location of the chromosome’s changed copy number
region is important. Duplications may occur as a single
structural and functional element of the chromosome (TAD)
or as a tandem cluster of duplicons, distant from the original
sequence, in a human small supernumerary marker chromo-
some (sSMC), or in an extra chromosome (B chromosome)
in other eukaryotic species. If the structural and functional
organization of the duplicated region and its localization are
in tandem relative to the original region and are preserved,
one can expect the presence of transcriptional activity of the
genes included in this region.

It is more difficult to assess the impact of additional material
in human sSMC due to their variable content. The majority
of them are composed of the original chromosome’s pericen-
tromeric region, which includes nearby heterochromatin and
perhaps euchromatin with a variable number of genes. It has
been observed that if the size of the euchromatic region of
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human sSMC does not exceed 3—5 Mb, it usually does not
have a pathogenic effect. It can be assumed that the absence
of negative phenotypic traits in the carrier of such sSMC is
associated with inactivation of the sSSMC material due to the
localization of its domains in the transcriptionally inactive
compartment of the interphase nucleus in comparison with the
homologous region of the original chromosome. Therefore,
conducting a number of studies on the spatial organization of
the genome with sSSMCs of varying sizes and DNA content is
an urgent and highly intriguing task, the resolution of which
would enable us to assess the potential pathogenic effect of
different sSSMCs.

Conclusion

Considering the data on the manifestation of various variants
of aneuploidy, it should be noted that there are a huge number
of factors that can play a very significant role and influence
their manifestation. A significant factor is probably the com-
plexity of the tissue and organ organization of the organism
of a particular species. Thus, yeast, like cell cultures, is quite
tolerant of chromosomal aneuploidy. Polyploid organisms and
species that have relatively recently undergone whole-genome
duplication are usually much more resistant to aneuploidy.
A special position is occupied by aneuploidy of sex chromo-
somes, which may be due to the peculiarities of their gene
composition formed during the process of evolution.

Aspecial variant of aneuploidy is represented by segmental
aneuploidies and CNVs. In these cases, the composition of the
additional material, its localization in the chromosome, and
its localization in different compartments of the interphase
nucleus may be of particular importance. Of particular inte-
rest are the mechanisms of dosage compensation for changes
in the level of gene product during aneuploidy at the post-
transcriptional and post-translational levels.

The study of aneuploidies and their clinical significance
is of great interest in light of data on the huge diversity of
personal human genomes, including SNVs, SVs, and CNVs.
It can make a great contribution to improving cytogenomic
diagnostics by creating the necessary database for the correct
interpretation of identified cases of CNVs and segmental
aneuploidy.
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