
Deep learning approach to the estimation of the ratio  
of reproductive modes in a partially clonal population
T.A. Nikolaeva 1, 2 , A.A. Poroshina 1, D.Yu. Sherbakov 1, 2

1 Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
2 Novosibirsk State University, Novosibirsk, Russia

 t.maryanovskaya@alumni.nsu.ru

Abstract. Genetic diversity among biological entities, including populations, species, and communities, serves as a fun­
damental source of information for understanding their structure and functioning. However, many ecological and evolu­
tionary problems arise from limited and complex datasets, complicating traditional analytical approaches. In this context, 
our study applies a deep learning­based approach to address a crucial question in evolutionary biology: the balance 
 between sexual and asexual reproduction. Sexual reproduction often disrupts advantageous gene combinations favored 
by selection, whereas asexual reproduction allows faster proliferation without the need for males, effectively maintain­
ing beneficial genotypes. This research focuses on exploring the coexistence patterns of sexual and asexual reproduction 
within a single species. We developed a convolutional neural network model specifically designed to analyze the dynamics 
of populations exhibiting mixed reproductive strategies within changing environments. The model developed here allows 
one to estimate the ratio of population members who originate from sexual reproduction to the clonal organisms produced 
by parthenogenetic females. This model assumes the reproductive ratio remains constant over time in populations with 
dual reproductive strategies and stable population sizes. The approach proposed is suitable for neutral multiallelic marker 
traits such as microsatellite repeats. Our results demonstrate that the model estimates the ratio of reproductive modes with 
an accuracy as high as 0.99, effectively handling the complexities posed by small sample sizes. When the training dataset’s 
dimensionality aligns with the actual data, the model converges to the minimum error much faster, highlighting the sig­
nificance of dataset design in predictive performance. This work contributes to the understanding of reproductive strategy 
dynamics in evolutionary biology, showcasing the potential of deep learning to enhance genetic data analysis. Our find­
ings pave the way for future research examining the nuances of genetic diversity and reproductive modes in fluctuating 
ecological contexts, emphasizing the importance of advanced computational methods in evolutionary studies.
Key words: deep learning; convolutional neural network (CNN); Hardy–Weinberg equilibrium; partially clonal population; 
microsatellites
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Аннотация. Генетическое разнообразие биологических объектов, таких как популяции, виды и сообщества, являет­
ся важнейшим источником информации для понимания их структуры и функционирования. Однако многие эколо­
гические и эволюционные проблемы возникают из­за того, что наборы данных содержат относительно небольшое 
количество выборок, что затрудняет использование традиционных методов анализа. В связи c этим наше исследо­
вание предлагает новый подход, основанный на глубоком обучении, для решения одной из самых актуальных за­
дач эволюционной биологии – поиска баланса между половым и бесполым размножением. Половое размножение 
часто приводит к нарушению выгодных комбинаций генов, которые были отобраны в процессе эволюции. С другой 
стороны, бесполое размножение позволяет организмам быстрее размножаться без участия самцов, эффективно 
поддерживая полезные генотипы. Исследование посвящено изучению закономерностей сосуществования полово­
го и бесполого размножения в рамках одного вида. Мы разработали специальную сверточную модель нейронной 
сети, предназначенную для анализа динамики популяций, которые демонстрируют смешанные репродуктивные 
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стратегии в изменяющихся условиях. Эта модель позволяет оценить долю потомков репродуктивного размноже­
ния, если эта доля остается постоянной в течение достаточного периода времени, в популяциях, состоящих из по­
стоянного числа организмов, с использованием мультиаллельных признаков, таких как микросателлитные повторы. 
Результаты показали, что модель с точностью 0.99 оценивает соотношение репродуктивных режимов, эффективно 
справляясь с трудностями, связанными с небольшими выборками. Более того, когда размерность обучающего набо­
ра данных соответствует фактическим данным, модель быстрее достигает минимальной ошибки, что подчеркивает 
важность подбора структуры набора данных для точности предсказаний. Эта работа вносит значительный вклад в 
понимание динамики репродуктивной стратегии в эволюционной биологии, демонстрируя потенциал глубокого 
обучения для улучшения анализа генетических данных. Наши результаты открывают двери для будущих исследова­
ний, посвященных тонкостям генетического разнообразия и способам размножения в изменчивых экологических 
условиях, подчеркивая важность современных вычислительных методов в эволюционных исследованиях. 
Ключевые слова: глубокое обучение; сверточная нейронная сеть (CNN); равновесие Харди–Вайнберга; частично 
клональная популяция; микросателлиты

Introduction and motivation
Genetic diversity of biological entities such as populations, 
species, species communities is the main source of information 
allowing one to make numerous conclusions about their setup 
and functioning (Korfmann et al., 2023). Hence, the variety 
of sampling methods and ways of subsequent experimental 
data processing have been developed. In contrast to big data 
applications, where sample sizes typically exceed minimal 
requirements for robust conclusions, certain problems rely 
on limited and hard-to-acquire datasets, which complicates 
processing. 

Deep learning has been applied successfully in population 
genetics in order to study various microevolutionary processes. 
A recurrent neural network model has been developed to 
predict recombination maps (Adrion et al., 2020), identify 
possible cases of positive natural selection (Anders, Korn, 
1999; Eğrioğlu et al., 2008) and to estimate the time since the 
nearest common ancestor (Montinaro et al., 2021). A good 
predictive effectiveness on simulated data has been shown 
(Korf mann et al., 2023). 

Neural networks were used to elucidate the demographic 
history of an individual population using genomic data without 
any preliminary knowledge of the recombination rate (San chez 
et al., 2021). In this study, the authors showed that network 
architecture is crucial for its performance. A poor design could 
lead to overfitting and loss of information.

When SNP frequencies were analyzed using MLP (multi-
layer perception), it led to high prediction errors, since the 
genomic information was encoded as a simple set of values 
where the order did not matter, and thus the information 
provided by the data structure was not used. The MLP con-
figuration has several disadvantages for SNP analysis: (a) the 
number of estimated network parameters is large, which can 
lead to an increase in model training time; (b) MLP can extract 
data geometry only by training, without a guarantee that it will 
study the spatial structure of the genome. But MLP still works 
much better than random assumptions or constant prediction 
(by 32 %) (Sanchez et al., 2021).

In this paper, we apply a deep learning-based approach to 
one of the most intriguing questions of evolutionary biology: 
the balance between sexual and asexual reproduction (Schön 
et al., 2009; Baer, 2020; Otto, 2021; Cohen, Marron, 2023). 
Sexual reproduction can destroy favorable combinations of 
genes supported by selection, while the asexual one allows 
to reproduce twice as fast, since there is no need to produce 
males for continuous reproduction, and preserve favorable 

genotypes (Barton, Charlesworth, 1998; Gutiérrez-Valencia 
et al., 2021).

There are various patterns of coexistence of sexual and 
asexual reproductive modes in a single species. The sexual 
and asexual organisms belonging to the same species coexist 
in the same population, either alternating throughout their life 
cycle or in spatially or temporarily isolated subpopulations 
(Tagg et al., 2005; Rossi et al., 2007). Exclusively asexual 
vertebrates are usually closely related to sexually reproducing 
species (Janko et al., 2007; Schurko et al., 2009). 

Asexual lines (clones) can develop by various mechanisms 
(spontaneous, contagious or infectious origin, hybridization) 
from ancestral sexual species (Avise et al., 1992), but the 
mechanisms of transition may be extremely diverse (Thielsch 
et al., 2012; Poroshina, Sherbakov, 2023). In order to analyze 
the exact population processes in organisms able to follow 
both ways of reproduction, one must be able to estimate 
the population-wide ratio of reproductive modes. Computer 
model ing previously allowed us to show that it is possible to do 
using distortions from equilibrium frequencies of microsatel-
lite alleles (Messer, 2016). Here, we describe the development 
and testing of a deep learning model designed to study the 
dynamics of populations with a mixed type of reproduction 
in a changing environment.

Methods
Experimental data. The experimental data were taken from 
a published article and represent sets of allele lengths of 
 microsatellites from 44 natural populations of Daphnia cu­
cul lata, D. galeata and D. longispina (1715 individuals) ex-
pressed in nucleotide pairs (Thielsch et al., 2012). The lengths 
of microsatellites are converted into matrices reflecting the 
frequency of occurrence of alleles and analyzed in this form 
by a neural network.

Simulated data. The training data were generated by a 
modified version of the Wright–Fisher model (WF), consider-
ing a mixed breeding strategy in a population (Messer, 2016). 
The model describes a population with discrete, nonoverlap-
ping generations. In each generation, the entire population 
is replaced by the offspring of the previous generation. The 
parents are selected by random sampling with substitution. In 
a haploid population of constant size N, the probability that 
an allele present in i individuals will be present in  j indivi-
duals in the next generation follows the binomial probability:

              Pij = N
j   (i/N )  j (1 – i/N )N – j,      0 ≤ i, j ≤ N.         (1)
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The transition probabilities Pij determine the Markov process 
with discrete time in the space of allele frequencies:

             x(t) = i(t)/N.       (2)

The expected frequencies of alleles remain constant across 
generations, whereas the variance for each generation is:

      Var[x] = x(1 – x)/N.       (3)

The probability that an allele will eventually become fixed is 
simply its initial frequency. In particular, the probability of 
fixing a new mutation present in a single copy is 1/N (Ratner, 
1972). 

Models of genotype distributions resulting in different 
reproductive modes. If all allele and gene combinations are 
believed to be of the same adaptive value and the conditions 
for the WF model are fulfilled, in a sufficiently big popula-
tion reproducing exclusively sexually the Hardy–Weinberg 
equilibrium has to be true. In its traditional form, it describes 
a single locus having two alleles. For this study, we need 
an expanded model describing equilibrium for multiallelic 
loci which would be suitable for multiallelic microsatellites 
markers. Thus, for a gene having m alleles (for microsatellite 
markers m > 2), an array of allele frequencies P = [ p1, …, pM]
and ∑M   pi = 1

     i = 1  , where M is the number of alleles. The equilib-
riumprobabilities of diploid genotypes will be:
              S = P ⊗ P.           (4)
In matrix shape:

S = 

pm
pm – 1

⁝
p1

 ⊗ [ p1  p2  …  pm] =

             = 

pm p1
pm – 1 p1

⁝
   2p1

     

pm p2
pm – 1 p2

⁝
p1 p2

     

…
…

…
     

   2pm
pm – 1 pm

⁝
p1 pm

 .   (5)

And Hardy–Weinberg equilibrium will be:

            ∑M   ∑M   pij = 1
     i = 1     j = 1  .        (6)

And, according to the WF model, it will hold for genera-
tions. In case of asexual reproduction, all ancestors of a given 

organism will inherit its genotype unless a mutation will trans-
form the ancestral allele into a different one. It is important 
to note that we assume a fixed number of allowed alleles M, 
possibly different for each polymorphic locus; therefore, no 
mutation may increase M and frequencies of alleles will be:

           A = [ p1, …, pM] * [ p1, …, pM].       (7)

Assuming that the ratio of organisms resulting from asexual 
reproduction to the ones resulting from sexual reproduction 
is α, the genetic setup of a population with two coexisting 
reproduction strategies will be:
AS = α ([ p1, …, pM] * [ p1, …, pM]) +

          + (1 – α) * ([ p1, …, pM] ⊗ [ p1, …, pM]).     (8)

Neural network architecture and training. Two sources 
of noise in real world data have been modeled. Sampling  error 
was mimicked by substituting probabilities of genotypes with 
their frequencies sampled from a small set of organisms. These 
frequencies were then converted to probabilities and used for 
training the network. The resulting values deviate from the 
expected pattern because of the small sample size. 

Possible reasons for additional noise may include mis-
identification of samples, pipetting mistakes etc. They were 
simulated by the addition of a random value sampled from a 
normal distribution with average set to 0 and standard devia-
tion set to 0.05 or any other sufficiently small value. 

Neural networks are trained using a matrix of dimension 
m × n, where m is the number of different alleles of a gene, 
n is the number of genes, and the element of the matrix aij is 
the frequency of occurrence of a combination of the i-th and 
j-th alleles.

The training set was obtained by repeating simulation of 
genotype distributions at different α for n genes, for different 
numbers of alleles Mi for each gene. The allele frequencies 
were sampled from a uniform distribution and then the geno-
type frequencies were obtained using (5).

A convolutional neural network (CNN) has been developed. 
It contains two external and six internal layers, including two 
convolution layers followed by max-pooling, a flatten layer 
and two fully connected dense layers (Fig. 1).

The mean absolute error (MAE) was chosen as the loss func-
tion. MAE is a measure of errors between paired observations 

(1, 23, 32)

Convolution ConvolutionMax­pool Max­pool Flatten Dense Dense

736

32
(3, 47, 32)

(5, 49, 16)(10, 98, 16)

(12, 100, 1)

Fig. 1. The structure of the neural network. 
A convolutional neural network contains two external and six internal layers: two convolution layers followed by a max­pooling one, 
a flattening layer and two dense layers.
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expressing the same phenomenon. It is calculated as the sum 
of absolute errors divided by the sample size: 

          MAE = 
∑n  
     i = 1  | yi – xi| 

n  = 
∑n  
     i = 1  |ei| 

n .        (9)

The optimization strategy was based on the Adaptive Mo-
ment Estimation algorithm (ADAM). It combines both the 
idea of accumulation of movement and the idea of a weaker 
update of weights for typical signs. It is one of the most popular 
adaptive step-size methods (Kingma, Ba, 2014).

Gradient descent (CD) is a method that uses the fixed-point 
method to zero out the first derivative of the cost function, but 
it creates difficulties in complex applications.

Estimation of the model’s precision. The accuracy of the 
model was estimated using the coefficient of determination 
(R2). The coefficient of determination is the proportion of va-
riance of the dependent variable explained by the dependence 
model in question, that is, the explanatory variables:

        R2 = 
         ˄∑ i(yi – yi)

2 
∑ i(yi – yi) 

.        (10)

Artificial noise in data. Small data size was modelled by 
first making a sample of a certain size with genotype quantities 
(integers) proportional to genotype probabilities calculated as 
described above and then normalized again to obtain frequen-
cies. Thus, the smaller was the “sample size”, the bigger was 
the distortion. This procedure allowed us to obtain the training 
set of genetic setups similarly distorted. 

Other sources of mistakes include diverse aberrations like 
misidentification of samples, size calibration errors in the 
course of fragment analysis, etc. It was modelled by making 
a vector of random values sampled from normal distribution 
with the average set to 0 and the standard deviation set to a 
desired value, and adding this vector to the vector of values 
delimiting different classes of ratios of individuals resulting 
from sexual or asexual reproduction.

Results
A deep learning-based method for estimating the ratio of 
asexual and sexual reproduction in populations capable of 
switching between these reproductive modes has been de-
veloped. In its current form, the method is intended to use 
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Fig. 2. The dependence of the error value on the learning epoch for 
different dimensions of a frequency matrix of the training sample. 

Fig. 3. The dependence of the error value on the learning epoch for 
different sizes of the training sample and different learning rates. 
a – the graph shows the error value depending on the learning epoch, with 
a model learning rate equal to 0.01; b – the graph shows the error value 
depending on the epoch with a learning rate equal to 0.1.

multiallelic traits, the most common of which are micro-
satellite repeats. The method achieved an accuracy value of 
0.99. The method of training the neuron network appears to 
be critically important: our findings reveal that ignoring the 
variability in allele counts across genes and using uniform 
genotype matrices significantly reduces model precision. This 
underscores the importance of accounting for allelic diversity 
during training. In this regard, for each data set, the model 
was trained on a simulated data set of a similar dimension to 
a frequency matrix of the original data. 

When the size of the training dataset matches the dimen-
sionality of the actual data, the mean squared error converges 
to zero more rapidly compared to situations where the training 
dataset has a larger size (Fig. 2).

With the model architecture chosen, the optimal number 
of learning epochs turned out to be 15, with the value of the 
number of epochs, the learning rate equal to 0.01 and the size 
of the training sample equal to 16, the minimal error value 
is achieved. With the learning rate of the model equal to 0.1, 
the error quickly takes a value less than 0.05 and does not rise 
above this value with the sample sizes of 16 and 32. With a 
learning rate of 0.1, the result is unstable, and the error value 
varies from 0.29 to 0.3 and does not drop below even with 
50 training epochs (Fig. 3).
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Fig. 4. The effect of noise in the frequency of occurrence of a combination 
of alleles on the prediction error of the model. 
The green color shows the error distribution when training the model on 
simulated data with artificial noise in the frequencies of occurrence of 
a combination of alleles having a Gaussian distribution with a standard 
deviation of 0.05. The grey color shows the error distribution when training 
the model on simulated data without noise.

Fig. 5. The dependence of the error value on the epoch of model training with a limited sample. 
a – the blue color shows the error distribution when training the model on simulated data containing noise in the form of limiting the sample to the training 
data and rounding the value of the sum of frequencies in a sample size from 10 to 200, followed by averaging the frequency of occurrence of a combination of 
alleles. The orange color shows the error distribution when training the model on simulated data without noise. The lines are depicting approximation curves for 
data with and without noise. The confidence intervals are shown in translucent color; b – the red color shows the error distribution for a sample size of 20 out of 
200 possible; the purple color shows the error distribution for a sample size of 100 out of 200 possible; the yellow color shows the error distribution for a sample 
size of 175 out of 200 possible.

When noise occurs in the frequency values of the ratio of 
sexual and asexual reproduction, which may indicate errors 
occurring during sequencing, the average error values when 
noise occurs are higher than without noise, but with a standard 
deviation value of 0.05 differ by no more than 0.01 (Fig. 4). 
This computational experiment tests the method’s resistance 
to noise caused by sequencing errors. 

As the number of individuals in the sample increases, the 
confidence interval in the early epochs of model learning 
decreases. When comparing noisy data by sample size and 
non-noisy data, it can be concluded that the error does not 
differ much; at the initial stages of model training, the con-
fidence interval is larger, but at the end of model training, 
both the average and the confidence interval differ slightly 
(Fig. 5). This computational experiment tests the method’s 
resistance to noise arising from limited sampling for analysis. 
The model was tested on experimental data, and values. The 
models obtained as a result of calculations coincided with the 
experimental data.

Discussion 
The model proposed here does not take into account a set 
of complications quite common in the real-world data. Dif-
ferent loci are often inherited dependently due to topological 
associations in chromosomes which per se may be of posi-
tive selective value and may change the expression level of 
some genes. These associations may be supported by assorted 
mechanisms bringing even distant loci physically together. 
Also, many microsatellites are organized in a more complex 
way than just a simple repeat of short sequences; in this case, 
the inheritance of microsatellite alleles may be distorted by 
non-allelic mutations in the adjacent areas of the genome. 
These accomplishments become a serious challenge when 
setting up models, which in turn may cause an unnaturally 

high level of mistakes in models or the necessity to develop 
models with many more parameters. This increases the num-
bers of model parameters’ computational time and complexity 
(Putman, Carbone, 2014).

The advantage of our convolutional neural network com-
pared to traditional approaches is the ability to efficiently 
extract and process information from multidimensional data 
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structures, which is critically important when analyzing 
genetic data. In particular, this means an increased ability to 
recognize complex relationships and mechanisms, which can 
provide more accurate predictions and a better understanding 
of genetic interactions. The model proposed is characterized 
by a high degree of accuracy, it is trained on data, the size 
of which exactly corresponds to the size of experimentally 
obtained genetic matrices, thereby minimizing the risk of 
overfitting, which often occurs when using larger, artifact 
datasets. This approach made it possible to achieve a signifi-
cant level of accuracy already at the initial stages of training, 
which indicates the high efficiency of model training and its 
ability to quickly adapt to new data.

When training with data that are selected depending on the 
structure of the actual analyzed data, the model quickly reaches 
an accuracy of 0.95, after which the overtraining of the model 
does not happen. Overtraining of a neural network may not 
occur in some cases, for example, when a linear perceptron 
is used. In this case, all the minima of the error function are 
approximately equivalent to the desired point of the global 
minimum, thus overtraining cannot be achieved. 

Noise in the data has a significant impact on neural net-
work prediction results, especially in the cases of analyzing 
biological data such as DNA sequencing (Kircher, Kelso, 
2010). Errors in data acquisition may be due to diverse rea-
sons such as insufficient sample quality: poor quality of DNA 
or RNA, for example, due to degradation or contamination, 
can lead to errors in sequencing (Levin et al., 2020), and so 
can faults in sequencing technology (different sequencing 
methods have their own limitations and sources of errors). 
For example, some technologies may have difficulty with 
repeating sequences or with long DNA fragments (Adiconis 
et al., 2013). The very PCR process may become a source of 
noise: when samples are amplified using polymerase chain 
reaction (PCR), errors can occur, which are then transmitted 
to the sequencing results (Hsiao, 2019).

Frequency values of the ratio of sexual and asexual repro-
duction are subject to random deviations. This may make it 
difficult for the neural network to correctly identify patterns 
and dependencies. Incorrect or distorted data can cause the 
model to make incorrect assumptions about the distribution 
of data, which reduces its generalizing ability.

However, as the results of the present experiment show, 
with a noise standard deviation of no more than 0.05, which 
roughly corresponds to the real situation, the difference in pre-
dictions is only 0.01. This indicates that the proposed method 
is sufficiently resistant to frequency noise that occurs during 
the acquisition of real data.

Modern approaches, such as the use of model ensembles or 
techniques for estimating the uncertainty of predictions, can 
also help to effectively deal with noise (Zhou, 2025). This 
is especially true in biological research, where data may be 
distorted due to a large variety of reasons. The reasons are not 
specified in this work, since the noise level in the frequencies, 
when receiving real data, which are further analyzed, often 
does not exceed 0.05.

The noise caused by a limited sample size may result in an 
increase in the prediction error, and its negative impact can 
be mitigated by using a sufficient sample size. The observed 
decrease in the confidence interval with an increase in the 

number of objects in the sample indicates an increase in the 
accuracy of the model’s predictions as more data are accumu-
lated. A comparison of error distributions in noisy and non-
noisy data at different stages of training shows that although 
the confidence interval for noisy data is wider at the initial 
stages, the error differences become less significant at later 
stages of training. This may indicate that with an increase in 
the number of training iterations, the model is able to adapt to 
noise and adjust its predictions. It is also worth noting that the 
simulation results agree with experimental data, which con-
firms the adequacy of the proposed method and its resistance 
to noise arising from a limited sample size. This opens up the 
possibility for applying this approach in various fields were 
working with noisy data is an everyday task, such as genetic 
research, medical diagnostics, and other scientific fields that 
otherwise would require the analysis of a larger amounts of 
complex data.

Conclusion
Application of the described approach has its limits since 
violations of the equilibrium frequencies of genotypes can 
arise for a number of reasons not related to reproductive 
strategy, from genetic drift to sudden demographic changes. 
Therefore, in each specific case, it is necessary to involve 
external knowledge regarding the biology of the organisms 
under study. Further studies of populations with a mixed re-
productive strategy and, accordingly, methods for detecting 
the characteristics of their genetic diversity should take into 
account, firstly, the inconstancy of the ratios of strategies in 
a number of generations, and secondly, possible sharp demo-
graphic fluctuations. The combinations of these two factors 
result in unusual patterns of genetic diversity.
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