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Abstract. Genetic diversity among biological entities, including populations, species, and communities, serves as a fun-
damental source of information for understanding their structure and functioning. However, many ecological and evolu-
tionary problems arise from limited and complex datasets, complicating traditional analytical approaches. In this context,
our study applies a deep learning-based approach to address a crucial question in evolutionary biology: the balance
between sexual and asexual reproduction. Sexual reproduction often disrupts advantageous gene combinations favored
by selection, whereas asexual reproduction allows faster proliferation without the need for males, effectively maintain-
ing beneficial genotypes. This research focuses on exploring the coexistence patterns of sexual and asexual reproduction
within a single species. We developed a convolutional neural network model specifically designed to analyze the dynamics
of populations exhibiting mixed reproductive strategies within changing environments. The model developed here allows
one to estimate the ratio of population members who originate from sexual reproduction to the clonal organisms produced
by parthenogenetic females. This model assumes the reproductive ratio remains constant over time in populations with
dual reproductive strategies and stable population sizes. The approach proposed is suitable for neutral multiallelic marker
traits such as microsatellite repeats. Our results demonstrate that the model estimates the ratio of reproductive modes with
an accuracy as high as 0.99, effectively handling the complexities posed by small sample sizes. When the training dataset’s
dimensionality aligns with the actual data, the model converges to the minimum error much faster, highlighting the sig-
nificance of dataset design in predictive performance. This work contributes to the understanding of reproductive strategy
dynamics in evolutionary biology, showcasing the potential of deep learning to enhance genetic data analysis. Our find-
ings pave the way for future research examining the nuances of genetic diversity and reproductive modes in fluctuating
ecological contexts, emphasizing the importance of advanced computational methods in evolutionary studies.
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AHHoOTauus. [eHeTUYecKoe pa3HOO6pasvie GONOrNYecKX 0ObEKTOB, TaKMX Kak MOMyNALMM, BUAbI 1 COOOLLECTBA, ABNAET-
CSl BOXKHEWLUMM NCTOUYHNKOM MHGOPMaLMm Ana NOHUMAHUA UX CTPYKTYPbl U GYHKUMOHUPOoBaHMA. OfHAKO MHOTMe 3KoMo-
TYECKMe 1 BOSIIOLMOHHbIE MPOGIEMbI BO3HMKAIOT 13-3a TOrO, YTO Habopbl JaHHbIX COAEPXaT OTHOCUTEIbHO HEGONbLLOE
KOMMYeCTBO BbIGOPOK, UTO 3aTPYAHSET UCMOJIb30BaHVE TPAANLMOHHBIX METOIOB aHanu3a. B cBA3m ¢ 3Tum Hawe nccnefo-
BaHVie NpeAasnaraeT HOBbI MOAXOM, OCHOBAHHbIN Ha rMy6oKOoM 06yUYeHUy, AN PelleHns OQHOM U3 CamMbIX aKTyaslbHbIX 3a-
[iay 3BOJIOLMOHHON Grionorimn — noucka 6anaHca Mexzy nosoBbiM 1 6ecrnosnbiM pasmMHoOXeHVeM. MONOBOe Pa3MHOXEHNE
YacTo NPMBOAMT K HAPYLIEHUIO BbIFOLHbBIX KOMOMHALMIA reHOB, KOTopble 6bINK 0To6paHbI B NpoLiecce 3osnouumn. C Apyron
CTOPOHbI, 6ecrnonoe pasmMHOXeHVe NO3BOJIAET OpraHN3Mam ObiCcTpee pasmMHOXaTbCA 6e3 yyacTua camuoB, 3bGeKTVBHO
nofAepXKrBas nosnesHble reHoTUnNbI. ViccnegoBaHne NOCBALLEHO N3YYEHNIO 3aKOHOMEPHOCTEN COCYLLECTBOBAHUA NOMOBO-
ro 1 6ecrnosnoro pasMHOXeHVA B pamKax ogHoro Braa. Mbl paspaboTany cneumanbHyo CBEePTOUHYIO MOZEeNb HePOHHOM
ceTu, NpefHa3HaueHHyIo 4N aHanM3a AUHAMUKKU NOMNyNAUUiA, KOTopble JEMOHCTPUPYIOT CMeLaHHble PenpoayKTUBHbIE
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Artificial intelligence
distinguishes reproductive modes

CTpaTernn B U3MEHSIOLMXCA YCIOBUAX. Ta MOAENb MO3BONAET OLEHUTb JOM0 MOTOMKOB PENPOAYKTUBHOTO Pa3MHOXe-
HWAA, €CNN 3Ta AONIA OCTAETCA NOCTOAHHON B TeUeHVe JOCTaTOYHOrO Nepuoaa BpemMeHu, B MOnynsaLusax, COCTOALMX 13 No-
CTOAHHOTO YMC/la OPraHN3MOB, C UCMOMb30BaHNEM MYSIbTUANENbHbIX MPU3HAKOB, TAKUX KaK MUKPOCATENINTHbIE MOBTOPbI.
Pe3ynbTtaTbl MoKasanu, YTo MOAesb C TOUHOCTbIO 0.99 OLleHVBAET COOTHOLLEHME PENPOAYKTUBHBIX PEXNMOB, 3GdeKTUBHO
CNpaBnAAcb C TPYAHOCTAMM, CBA3aHHbIMU C He6ONbLLMMU BbiGopKamu. bonee Toro, Koraa pasmMepHOCTb obyyatoLero Habo-
pa [AaHHbIX COOTBETCTBYET GaKTUYECKM JaHHbIM, MOAeNb ObICTpee AOCTUrAeT MUHUMANbHOW OLIMGKM, YTO NOAYEepKMBaeT
Ba’KHOCTb NMoAbopa CTPYKTYypbl Habopa AaHHbIX AS1A TOYHOCTU NPefcKasaHuii. OTa paboTa BHOCUT 3HAUMTENbHbIV BKNIaA B
NOHVMaHWe AVHAMUKM PENPOLYKTUBHOW CTpaTernn B 3BOSIIOLMOHHON 61ONIOrK, AEMOHCTPYPYA NoTeHuMan rny6okoro
obyueHus Ans ynyJlleHns aHanm3a reHeTUYecKmx AaHHbix. Halm pesynbTaTbl OTKPbIBAIOT ABepU AnA 6yayLmnx nccneaosa-
HI, MOCBALLEHHbIX TOHKOCTAM FEHETUYECKOro Pa3sHoobpasysa 1 Cnocobam PasMHOXKEHUA B U3MEHUMBbIX SKOJTOTMYECKMX
YCIOBUSAX, MOAYEPKMBas BAXKHOCTb COBPEMEHHBIX BbIUMCIINTESNIbHbIX METOAOB B 3BOJIOLIVIOHHbIX MCCIIEA0BAHNMSAX.

KnioueBble cnoBa: rny6okoe obyyeHue; cBepTouHas HelipoHHasa ceTb (CNN); paBHoBecue Xapan-BaiiHbepra; yacTnyHo

KNOoHanbHaA nonynAauna; MUKpOCaTesIJINTbI

Introduction and motivation

Genetic diversity of biological entities such as populations,
species, species communities is the main source of information
allowing one to make numerous conclusions about their setup
and functioning (Korfmann et al., 2023). Hence, the variety
of sampling methods and ways of subsequent experimental
data processing have been developed. In contrast to big data
applications, where sample sizes typically exceed minimal
requirements for robust conclusions, certain problems rely
on limited and hard-to-acquire datasets, which complicates
processing.

Deep learning has been applied successfully in population
genetics in order to study various microevolutionary processes.
A recurrent neural network model has been developed to
predict recombination maps (Adrion et al., 2020), identify
possible cases of positive natural selection (Anders, Korn,
1999; Egrioglu et al., 2008) and to estimate the time since the
nearest common ancestor (Montinaro et al., 2021). A good
predictive effectiveness on simulated data has been shown
(Korfmann et al., 2023).

Neural networks were used to elucidate the demographic
history of an individual population using genomic data without
any preliminary knowledge of the recombination rate (Sanchez
et al., 2021). In this study, the authors showed that network
architecture is crucial for its performance. A poor design could
lead to overfitting and loss of information.

When SNP frequencies were analyzed using MLP (multi-
layer perception), it led to high prediction errors, since the
genomic information was encoded as a simple set of values
where the order did not matter, and thus the information
provided by the data structure was not used. The MLP con-
figuration has several disadvantages for SNP analysis: (a) the
number of estimated network parameters is large, which can
lead to an increase in model training time; (b) MLP can extract
data geometry only by training, without a guarantee that it will
study the spatial structure of the genome. But MLP still works
much better than random assumptions or constant prediction
(by 32 %) (Sanchez et al., 2021).

In this paper, we apply a deep learning-based approach to
one of the most intriguing questions of evolutionary biology:
the balance between sexual and asexual reproduction (Schon
et al., 2009; Baer, 2020; Otto, 2021; Cohen, Marron, 2023).
Sexual reproduction can destroy favorable combinations of
genes supported by selection, while the asexual one allows
to reproduce twice as fast, since there is no need to produce
males for continuous reproduction, and preserve favorable
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genotypes (Barton, Charlesworth, 1998; Gutiérrez-Valencia
etal., 2021).

There are various patterns of coexistence of sexual and
asexual reproductive modes in a single species. The sexual
and asexual organisms belonging to the same species coexist
in the same population, either alternating throughout their life
cycle or in spatially or temporarily isolated subpopulations
(Tagg et al., 2005; Rossi et al., 2007). Exclusively asexual
vertebrates are usually closely related to sexually reproducing
species (Janko et al., 2007; Schurko et al., 2009).

Asexual lines (clones) can develop by various mechanisms
(spontaneous, contagious or infectious origin, hybridization)
from ancestral sexual species (Avise et al., 1992), but the
mechanisms of transition may be extremely diverse (Thielsch
etal., 2012; Poroshina, Sherbakov, 2023). In order to analyze
the exact population processes in organisms able to follow
both ways of reproduction, one must be able to estimate
the population-wide ratio of reproductive modes. Computer
modeling previously allowed us to show that it is possible to do
using distortions from equilibrium frequencies of microsatel-
lite alleles (Messer, 2016). Here, we describe the development
and testing of a deep learning model designed to study the
dynamics of populations with a mixed type of reproduction
in a changing environment.

Methods

Experimental data. The experimental data were taken from
a published article and represent sets of allele lengths of
microsatellites from 44 natural populations of Daphnia cu-
cullata, D. galeata and D. longispina (1715 individuals) ex-
pressed in nucleotide pairs (Thielsch et al., 2012). The lengths
of microsatellites are converted into matrices reflecting the
frequency of occurrence of alleles and analyzed in this form
by a neural network.

Simulated data. The training data were generated by a
modified version of the Wright-Fisher model (WF), consider-
ing a mixed breeding strategy in a population (Messer, 2016).
The model describes a population with discrete, nonoverlap-
ping generations. In each generation, the entire population
is replaced by the offspring of the previous generation. The
parents are selected by random sampling with substitution. In
a haploid population of constant size N, the probability that
an allele present in i individuals will be present in j indivi-
duals in the next generation follows the binomial probability:

Pjj = ['}'] (NI -iN)NT, 0<ij<N. (D)
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The transition probabilities P;; determine the Markov process
with discrete time in the space of allele frequencies:

x(t) = i(t)/N. 2

The expected frequencies of alleles remain constant across
generations, whereas the variance for each generation is:

Var[x] = x(1 — x)/N. 3)

The probability that an allele will eventually become fixed is
simply its initial frequency. In particular, the probability of
fixing a new mutation present in a single copy is 1/N (Ratner,
1972).

Models of genotype distributions resulting in different
reproductive modes. If all allele and gene combinations are
believed to be of the same adaptive value and the conditions
for the WF model are fulfilled, in a sufficiently big popula-
tion reproducing exclusively sexually the Hardy—Weinberg
equilibrium has to be true. In its traditional form, it describes
a single locus having two alleles. For this study, we need
an expanded model describing equilibrium for multiallelic
loci which would be suitable for multiallelic microsatellites
markers. Thus, for a gene having m alleles (for microsatellite
markers m>2), an array of allele frequencies P =[py, ..., pu]

and Z'i\ilpi =1, where M is the number of alleles. The equilib-
riumprobabilities of diploid genotypes will be:

S=P®P. )
In matrix shape:
Pm
S={Pn1®[py py ... pul=
P1
PPy PP - PR
—|[Pm-1P1 Pm_1 P Pm—1Pm | ©)
P2 pips P1 Py
And Hardy—Weinberg equilibrium will be:
2 p= 1. (6)

And, according to the WF model, it will hold for genera-
tions. In case of asexual reproduction, all ancestors of a given

(3,47,32)

(10,98, 16) (5,49, 16)

(12,100, 1)

Convolution Max-pool

Fig. 1. The structure of the neural network.
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organism will inherit its genotype unless a mutation will trans-
form the ancestral allele into a different one. It is important
to note that we assume a fixed number of allowed alleles M,
possibly different for each polymorphic locus; therefore, no
mutation may increase M and frequencies of alleles will be:

A=[py s Pul* P2 - P U]

Assuming that the ratio of organisms resulting from asexual
reproduction to the ones resulting from sexual reproduction
is o, the genetic setup of a population with two coexisting
reproduction strategies will be:

AS:U‘([pll LS| pM]*[plv ey pM]) +
Jr(17(1)*(“:)1! "'va]®[pli va]) (8)

Neural network architecture and training. Two sources
of noise in real world data have been modeled. Sampling error
was mimicked by substituting probabilities of genotypes with
their frequencies sampled from a small set of organisms. These
frequencies were then converted to probabilities and used for
training the network. The resulting values deviate from the
expected pattern because of the small sample size.

Possible reasons for additional noise may include mis-
identification of samples, pipetting mistakes etc. They were
simulated by the addition of a random value sampled from a
normal distribution with average set to 0 and standard devia-
tion set to 0.05 or any other sufficiently small value.

Neural networks are trained using a matrix of dimension
mxn, where m is the number of different alleles of a gene,
n is the number of genes, and the element of the matrix a;; is
the frequency of occurrence of a combination of the i-th and
j-th alleles.

The training set was obtained by repeating simulation of
genotype distributions at different a for n genes, for different
numbers of alleles M; for each gene. The allele frequencies
were sampled from a uniform distribution and then the geno-
type frequencies were obtained using (5).

A convolutional neural network (CNN) has been developed.
It contains two external and six internal layers, including two
convolution layers followed by max-pooling, a flatten layer
and two fully connected dense layers (Fig. 1).

The mean absolute error (MAE) was chosen as the loss func-
tion. MAE is a measure of errors between paired observations

736

1,23,32
( ) 32

Convolution Max-pool Flatten Dense  Dense

A convolutional neural network contains two external and six internal layers: two convolution layers followed by a max-pooling one,

a flattening layer and two dense layers.
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expressing the same phenomenon. It is calculated as the sum
of absolute errors divided by the sample size:

" lYi—Xi " e
MAE:Z|:1|nyI I|:Z|:r£|'_| Il. (9)

The optimization strategy was based on the Adaptive Mo-
ment Estimation algorithm (ADAM). It combines both the
idea of accumulation of movement and the idea of a weaker
update of weights for typical signs. It is one of the most popular
adaptive step-size methods (Kingma, Ba, 2014).

Gradient descent (CD) is a method that uses the fixed-point
method to zero out the first derivative of the cost function, but
it creates difficulties in complex applications.

Estimation of the model’s precision. The accuracy of the
model was estimated using the coefficient of determination
(R?). The coefTicient of determination is the proportion of va-
riance of the dependent variable explained by the dependence
model in question, that is, the explanatory variables:
DX\

Zi(yi*)Ti) .

Artificial noise in data. Small data size was modelled by
first making a sample of a certain size with genotype quantities
(integers) proportional to genotype probabilities calculated as
described above and then normalized again to obtain frequen-
cies. Thus, the smaller was the “sample size”, the bigger was
the distortion. This procedure allowed us to obtain the training
set of genetic setups similarly distorted.

Other sources of mistakes include diverse aberrations like
misidentification of samples, size calibration errors in the
course of fragment analysis, etc. It was modelled by making
a vector of random values sampled from normal distribution
with the average set to 0 and the standard deviation set to a
desired value, and adding this vector to the vector of values
delimiting different classes of ratios of individuals resulting
from sexual or asexual reproduction.

R2 (10)

Results

A deep learning-based method for estimating the ratio of
asexual and sexual reproduction in populations capable of
switching between these reproductive modes has been de-
veloped. In its current form, the method is intended to use

1.01
— Real shape (12, 5)
— Shape (14, 7)
0.8 — Shape (16, 9)
— Shape (20, 13)
T o6l — Shape (28, 21)
— Shape (44, 37)
04
0.2
0 i 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14

Epoch

Fig. 2. The dependence of the error value on the learning epoch for
different dimensions of a frequency matrix of the training sample.
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multiallelic traits, the most common of which are micro-
satellite repeats. The method achieved an accuracy value of
0.99. The method of training the neuron network appears to
be critically important: our findings reveal that ignoring the
variability in allele counts across genes and using uniform
genotype matrices significantly reduces model precision. This
underscores the importance of accounting for allelic diversity
during training. In this regard, for each data set, the model
was trained on a simulated data set of a similar dimension to
a frequency matrix of the original data.

When the size of the training dataset matches the dimen-
sionality of the actual data, the mean squared error converges
to zero more rapidly compared to situations where the training
dataset has a larger size (Fig. 2).

With the model architecture chosen, the optimal number
of learning epochs turned out to be 15, with the value of the
number of epochs, the learning rate equal to 0.01 and the size
of the training sample equal to 16, the minimal error value
is achieved. With the learning rate of the model equal to 0.1,
the error quickly takes a value less than 0.05 and does not rise
above this value with the sample sizes of 16 and 32. With a
learning rate of 0.1, the result is unstable, and the error value
varies from 0.29 to 0.3 and does not drop below even with
50 training epochs (Fig. 3).

a
0.07 — batch_size=8
— batch_size=16
— batch_size =32
A
o
|
b
0.3100
— batch_size=8
03075 — batch_size =16
03050 | — batch_size =32
0.3025
4 0.3000
o
|
0.2975
0.2950
0.2925
0.2900

Epoch

Fig. 3. The dependence of the error value on the learning epoch for
different sizes of the training sample and different learning rates.

a - the graph shows the error value depending on the learning epoch, with
a model learning rate equal to 0.01; b - the graph shows the error value
depending on the epoch with a learning rate equal to 0.1.
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When noise occurs in the frequency values of the ratio of
sexual and asexual reproduction, which may indicate errors
occurring during sequencing, the average error values when
noise occurs are higher than without noise, but with a standard
deviation value of 0.05 differ by no more than 0.01 (Fig. 4).
This computational experiment tests the method’s resistance
to noise caused by sequencing errors.

As the number of individuals in the sample increases, the
confidence interval in the early epochs of model learning
decreases. When comparing noisy data by sample size and
non-noisy data, it can be concluded that the error does not
differ much; at the initial stages of model training, the con-
fidence interval is larger, but at the end of model training,
both the average and the confidence interval differ slightly
(Fig. 5). This computational experiment tests the method’s
resistance to noise arising from limited sampling for analysis.
The model was tested on experimental data, and values. The
models obtained as a result of calculations coincided with the
experimental data.

Discussion

The model proposed here does not take into account a set
of complications quite common in the real-world data. Dif-
ferent loci are often inherited dependently due to topological
associations in chromosomes which per se may be of posi-
tive selective value and may change the expression level of
some genes. These associations may be supported by assorted
mechanisms bringing even distant loci physically together.
Also, many microsatellites are organized in a more complex
way than just a simple repeat of short sequences; in this case,
the inheritance of microsatellite alleles may be distorted by
non-allelic mutations in the adjacent areas of the genome.
These accomplishments become a serious challenge when
setting up models, which in turn may cause an unnaturally

0.06 Noise
No noise

0 2 4 6 8 10 12 14
Epoch
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R2
0.06

No noise
0.05 Noise alpha

0.03

0 2 4 6 8 10 12 14
Epoch

Fig. 4. The effect of noise in the frequency of occurrence of a combination
of alleles on the prediction error of the model.

The green color shows the error distribution when training the model on
simulated data with artificial noise in the frequencies of occurrence of
a combination of alleles having a Gaussian distribution with a standard
deviation of 0.05. The grey color shows the error distribution when training
the model on simulated data without noise.

high level of mistakes in models or the necessity to develop
models with many more parameters. This increases the num-
bers of model parameters’ computational time and complexity
(Putman, Carbone, 2014).

The advantage of our convolutional neural network com-
pared to traditional approaches is the ability to efficiently
extract and process information from multidimensional data

RZ
0.035 175
100
0.030 20
0.025
0.020
0.015

0.010

0.005

0 2 4 6 8 10 12 14
Epoch

Fig. 5. The dependence of the error value on the epoch of model training with a limited sample.

a - the blue color shows the error distribution when training the model on simulated data containing noise in the form of limiting the sample to the training
data and rounding the value of the sum of frequencies in a sample size from 10 to 200, followed by averaging the frequency of occurrence of a combination of
alleles. The orange color shows the error distribution when training the model on simulated data without noise. The lines are depicting approximation curves for
data with and without noise. The confidence intervals are shown in translucent color; b - the red color shows the error distribution for a sample size of 20 out of
200 possible; the purple color shows the error distribution for a sample size of 100 out of 200 possible; the yellow color shows the error distribution for a sample

size of 175 out of 200 possible.
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structures, which is critically important when analyzing
genetic data. In particular, this means an increased ability to
recognize complex relationships and mechanisms, which can
provide more accurate predictions and a better understanding
of genetic interactions. The model proposed is characterized
by a high degree of accuracy, it is trained on data, the size
of which exactly corresponds to the size of experimentally
obtained genetic matrices, thereby minimizing the risk of
overfitting, which often occurs when using larger, artifact
datasets. This approach made it possible to achieve a signifi-
cant level of accuracy already at the initial stages of training,
which indicates the high efficiency of model training and its
ability to quickly adapt to new data.

When training with data that are selected depending on the
structure of the actual analyzed data, the model quickly reaches
an accuracy of 0.95, after which the overtraining of the model
does not happen. Overtraining of a neural network may not
occur in some cases, for example, when a linear perceptron
is used. In this case, all the minima of the error function are
approximately equivalent to the desired point of the global
minimum, thus overtraining cannot be achieved.

Noise in the data has a significant impact on neural net-
work prediction results, especially in the cases of analyzing
biological data such as DNA sequencing (Kircher, Kelso,
2010). Errors in data acquisition may be due to diverse rea-
sons such as insufficient sample quality: poor quality of DNA
or RNA, for example, due to degradation or contamination,
can lead to errors in sequencing (Levin et al., 2020), and so
can faults in sequencing technology (different sequencing
methods have their own limitations and sources of errors).
For example, some technologies may have difficulty with
repeating sequences or with long DNA fragments (Adiconis
et al., 2013). The very PCR process may become a source of
noise: when samples are amplified using polymerase chain
reaction (PCR), errors can occur, which are then transmitted
to the sequencing results (Hsiao, 2019).

Frequency values of the ratio of sexual and asexual repro-
duction are subject to random deviations. This may make it
difficult for the neural network to correctly identify patterns
and dependencies. Incorrect or distorted data can cause the
model to make incorrect assumptions about the distribution
of data, which reduces its generalizing ability.

However, as the results of the present experiment show,
with a noise standard deviation of no more than 0.05, which
roughly corresponds to the real situation, the difference in pre-
dictions is only 0.01. This indicates that the proposed method
is sufficiently resistant to frequency noise that occurs during
the acquisition of real data.

Modern approaches, such as the use of model ensembles or
techniques for estimating the uncertainty of predictions, can
also help to effectively deal with noise (Zhou, 2025). This
is especially true in biological research, where data may be
distorted due to a large variety of reasons. The reasons are not
specified in this work, since the noise level in the frequencies,
when receiving real data, which are further analyzed, often
does not exceed 0.05.

The noise caused by a limited sample size may result in an
increase in the prediction error, and its negative impact can
be mitigated by using a sufficient sample size. The observed
decrease in the confidence interval with an increase in the
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number of objects in the sample indicates an increase in the
accuracy of the model’s predictions as more data are accumu-
lated. A comparison of error distributions in noisy and non-
noisy data at different stages of training shows that although
the confidence interval for noisy data is wider at the initial
stages, the error differences become less significant at later
stages of training. This may indicate that with an increase in
the number of training iterations, the model is able to adapt to
noise and adjust its predictions. It is also worth noting that the
simulation results agree with experimental data, which con-
firms the adequacy of the proposed method and its resistance
to noise arising from a limited sample size. This opens up the
possibility for applying this approach in various fields were
working with noisy data is an everyday task, such as genetic
research, medical diagnostics, and other scientific fields that
otherwise would require the analysis of a larger amounts of
complex data.

Conclusion

Application of the described approach has its limits since
violations of the equilibrium frequencies of genotypes can
arise for a number of reasons not related to reproductive
strategy, from genetic drift to sudden demographic changes.
Therefore, in each specific case, it is necessary to involve
external knowledge regarding the biology of the organisms
under study. Further studies of populations with a mixed re-
productive strategy and, accordingly, methods for detecting
the characteristics of their genetic diversity should take into
account, firstly, the inconstancy of the ratios of strategies in
a number of generations, and secondly, possible sharp demo-
graphic fluctuations. The combinations of these two factors
result in unusual patterns of genetic diversity.
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