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Abstract. Biologization is a priority direction of agricultural production. One of the promising approaches to solve the 
biologization problem is the use of chitosan-based biopreparations to stimulate plant growth and protect plants from 
a wide range of pathogens. Currently, active work is underway to create and test new chitosan preparations. Novochizol 
was obtained as a result of intramolecular crosslinking of linear chitosan molecules and has a globular shape. Previ-
ously, a Novochizol-stimulating e�ect on the growth and development of common wheat was demonstrated. However, 
the induced resistance mechanisms against rust diseases have not been studied before. The reported studies have re-
vealed the dose e�ect of the preparation on the development of wheat stem rust. The best results of visual estimation 
of plant reactions were obtained with 0.125 and 0.75 % Novochizol pretreatment four days before rust infection. After 
pretreatment of susceptible cv. Novosibirsk 29 seedlings, a resistant reaction appeared and the urediniopustule density 
was decreased. Cytophysiological studies have shown that 0.75 % Novochizol stimulated an intensive accumulation 
of hydrogen peroxide Н2О2 in the leaves of the infected and healthy plants within 48 hours post inoculation (h p/in). 
 During the period of 48–144 h p/in, H2O2 gradually disappeared from tissues, but its content increased significantly at 
the sporulation stage around pustules. However, Novochizol did not induce the hypersensitivity reaction in infected 
plants. The preparation induced an earlier and more intensive (compared with untreated plants) accumulation of phe-
nolic substances with di�erent autofluorescence in the zones around pathogen colonies. Novochizol induced a change 
in the ratio of phenols with di�erent spectral characteristics towards compounds with an increased content of syringin 
derivatives. This work is the first stage in the study of Novochizol e�ects on wheat defense mechanisms against stem 
rust. The research will be continued using molecular genetics, biochemical and cytophysiological methods.
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Аннотация. Биологизация земледелия считается приоритетным направлением сельскохозяйственного произ-
водства. Одним из перспективных подходов к решению задачи биологизации является применение препаратов 
на основе хитозана для стимуляции роста и защиты растений от широкого круга патогенов. В настоящее время 
проводятся активные работы по созданию и испытанию новых форм хитозановых препаратов. Препарат «Ново-
хизоль» получен в результате внутримолекулярных сшивок линейных молекул хитозана и имеет глобулярную 
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форму. Ранее установлено стимулирующее влияние Новохизоля на рост и развитие мягкой пшеницы, однако 
индуцируемые защитные механизмы против ржавчинных болезней не изучались. Проведенные исследования 
показали дозовый эффект препарата на развитие стеблевой ржавчины пшеницы. При обработке за четверо су-
ток до заражения лучшие результаты по развитию устойчивой реакции растений, сокращению числа и размеров 
пустул были получены с Новохизолем в концентрации 0.125 и 0.75 %. После предобработки на проростках вос-
приимчивого сорта Новосибирская 29 проявилась устойчивая реакция и снизилось число пустул. Цитофизиоло-
гические исследования показали, что обработка 0.75 % Новохизолем стимулировала интенсивное накопление 
пероксида водорода Н2О2 в листьях инфицированных и здоровых растений в течение 48 ч после инокуляции. 
В период 48–144 ч после инокуляции Н2О2 постепенно исчезал из тканей, но на стадии спороношения его содер-
жание значительно возрастало в зоне колоний и пустул. Новохизоль не индуцировал развитие реакции сверх-
чувствительности в зараженных растениях. Применение препарата способствовало более раннему и интен-
сивному (по сравнению с необработанными растениями) накоплению фенольных веществ с разным спектром 
автофлуоресценции в зоне колоний патогена. Препарат повлиял на изменение соотношения фенолов с разны-
ми спектральными характеристиками в сторону соединений с повышенным содержанием остатков сирингина. 
Данная работа является первым этапом изучения действия Новохизоля на защитные механизмы пшеницы про-
тив стеблевой ржавчины. Исследования будут продолжены с применением молекулярно-генетических и био-
химических методов.
Ключевые слова: биопестициды; Новохизоль; мягкая пшеница; стеблевая ржавчина; механизмы устойчивости; 
АФК; фенолы

Introduction
Due to the proposed rise in the world’s population to 9.5 bil-
lion people by 2050, it is necessary to increase grain produc-
tion by 1.7 times (USDA, 2016). An increase in wheat grain 
harvests can be achieved by breeding more productive and 
stress-resistant varieties, as well as reducing losses caused by 
abiotic and biotic factors. Synthetic pesticides are traditionally 
widely used to protect crops from diseases and pests. These 
protective agents are highly effective; however, they can be 
accumulated in plants and soils, having a negative effect on 
the ecological situation in agrocenoses and product quality 
(Sternshis et al., 2016). The use of biological pest manage-
ment agents (BPMA) increases stress resistance mechanisms 
(Chandler et al., 2011). 

BPMA based on natural compounds and beneficial microor-
ganisms attract the attention of researchers and practitioners. 
These substances are often close to chemical pesticides in ef-
fectiveness, but do not have their disadvantages (Chakraborty 
et al., 2020). The range of biopesticides and their application 
schemes are very diverse, which is determined by the patho-
gens and pests’ biology, as well as their interaction with plants. 
BPMA may inhibit the pathogens and pests directly or induce 
a complex of plant resistance reactions (Orzali et al., 2017; 
Yarullina et al., 2023). 

Chitin and chitosan derivatives are widely used as BPMA 
(Tyuterev, 2015; Malerba, Cerana, 2016). Polymer carbo-
hydrate chitin is widespread in nature, as components of 
integuments of arthropods (including crustaceans and insects) 
and fungi. Chitosan is produced by chitin hydrolysis and 
deacetylation. Chitosan-based preparations have a stimulating 
effect on plant growth and development, as well as enhance 
resistance to abiotic stresses (Haggag et al., 2014; Orzali et 
al., 2017). Chitosan derivatives are also of particular interest 
as inducers of resistance to fungal, bacterial, and viral diseases 
(Chakraborty et al., 2020; Shcherban, 2023).

Chitosan preparations may differ in their main charac-
teristics: molecular weight, deacetylation degree, and poly-
dispersity index (Richter et al., 2012). The effectiveness of 

chitosan derivatives can be significantly enhanced by their 
modification, such as the introduction of functional groups 
of Schiff bases, halogen atoms (Cl or F), metal nanoparticles, 
urea groups, etc. (Varlamov et al., 2020; Yarullina et al., 2023). 
Preparations based on conjugates of chitosan with phenolic 
hydroxycinnamic acids (ferulic and caffeic) have proven 
promising for protecting plants from fungal and viral diseases 
(Rkhaila et al., 2021; Yarullina et al., 2024a). A positive effect 
of combining chitosan preparations with other biologically ac-
tive substances and beneficial microorganisms (Plant Growth 
Promoting Bacteria, PGPB) has been established (Rkhaila 
et al., 2021; Yarullina et al., 2024b). The protective effects 
strengthening is due to the synergistic action of different drug 
components (Tyuterev, 2015). Currently, a wide range of 
chitosan-based BPMA have been created in the world and their 
tests have been carried out on various cultures. A comparison 
of the results showed that their stimulating and protective 
effects depended on preparation compositions, as well as 
plant and pathogen species (Rabea et al., 2005; Orzali et al.,  
2017).

A number of complex chitosan preparations with the ad-
dition of biologically active substances have been developed 
in Russia, including “Narcissus” with succinic and glutamic 
acids; “Chitosar M” with salicylic acid (SA); “Chitosar F” 
with arachidonic acid; an agent with SA and vanillin, etc. 
(Tyuterev, 2015; Popova et al., 2018). The combined agents 
were effective against different pathogenic fungi, viruses and 
pests. Their application enhanced crop resistance to diseases, 
such as that of wheat to leaf rust, spot blotch and root rot; 
rice, to Pyricularia; tomatoes, to late blight and Fusarium 
fruit rot; potatoes, to late blight and Y virus; cucumbers, to 
downy mildew, etc. (Tyuterev, 2015; Badanova et al., 2016; 
Popova et al., 2018).

A promising new chitosan derivative is “Novochizol”, 
obtained by intramolecular crosslinking of linear chitosan 
molecules. Novochizol has a globular shape, which gives 
it a number of advantages over chitosan, namely increased 
solubility in aqueous solutions, chemical stability, resistance 
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to biodegradation, high adhesion and ability to penetrate tis-
sues. This form is able to absorb various substances and slowly 
release them into plants after application (Novochizol SA, 
www.novochizol.ch). These properties are important for creat-
ing promising combined agents with other biologically active 
substances. Novochizol has a growth-stimulating effect when 
processing seeds and leaves. It was shown that this substance 
enhanced common wheat seed germination, contributed to 
an increase in root and total plant weight (Teplyakova et al., 
2022). The effectiveness of complex Novochizol preparations 
with usnic acid or Siberian pine bark extract for protecting 
wheat from root rot and Septoria blotch was proved in the 
field (Burlakova et al., 2025).

It is known that after plant recognition of non-specialized 
or avirulent pathogen effectors (elicitors), a set of defence 
reactions is activated. The earliest responses include the 
reactive oxygen species (ROS) and nitric oxide NO genera-
tion (Manjunatha et al., 2009; Singh et al., 2021; Plotnikova, 
Knaub, 2024). ROS (     •–O2 , H2O2, •OH, 1O2) accumulation 
leads to a splash of oxidative reactions, called an oxidative 
burst. The enzyme superoxide dismutase (SOD) converts 
the superoxide anion      •–O2  into the hydrogen peroxide H2O2 
(Maksimov, Cherepanova, 2006). H2O2 has a toxic effect on 
pathogens, and is a messenger in NADP·H-oxidase signal-
ing system implemented through a SA-dependent signaling 
cascade (Tarchevsky, 2000; Yarullina et al., 2023). As a result 
of SA-dependent cascade action, a complex of resistance 
mechanisms against biotrophic pathogens is implemented in 
the infection zone, including ROS generation, hypersensitive 
reaction (HR), defence PR proteins (Pathogenesis-Related 
Proteins) and phenolic substances synthesis. Defence reactions 
against necrotrophic pathogens are realized using a signaling 
cascade dependent on jasmonic acid (JA), abscisic acid and 
ethylene. The resistance to hemibiotrophs is ensured by the 
combined action of the SA- and JA-dependent cascades (Singh 
et al., 2021; Yarullina et al., 2023). The study of the chitosans’ 
effects on defence reactions showed activation of the ROS and 
phenolic metabolism enzymes, PR proteins accumulation and 
cell wall strengthening with the lignin and callose (Orzali et 
al., 2017; Shcherban, 2023).

To develop BPMA technology, it is necessary to learn their 
effect on defence mechanisms and the development of the most 
devastating diseases. Novochizol action on wheat resistance 
mechanisms against rust diseases has not been studied before. 
The aim of the work was to study the Novochizol effect on 
the defence mechanisms of a susceptible common wheat 
variety infected with the stem rust fungus Puccinia grami-
nis f. sp. tritici Erikss. et Henn. 

Materials and methods
Plant material. The objects of the research were 10-day-old 
seedlings of the spring common wheat cv. Novosibirskaya 29 
susceptible to stem rust. Plants were grown in pots with soil as 
recommended for experiments with rust fungi by international 
protocols (Woldeab et al., 2017). The seedlings were treated 
with Novochizol solutions at concentrations of 0.125, 0.75, 
1.5, and 2.5 %. Solutions were applied to plants (15 ml per 
100 plants) using a sprayer four days before infection with 

stem rust. Such a pretreatment period is sufficient to induce 
defensive effects by BPMA, including chitosan derivatives, 
against oomycetes and rust fungi (Faoro et al., 2008; Bel-
lameche et al., 2021; Elsharkawy et al., 2022). Plants treated 
with bidistilled water served as a control. 

The seedlings were inoculated with urediniospores of a 
mixed sample of the West Siberian population of P. grami-
nis f. sp. tritici (Pgt), included isolates with avirulence/ viru-
lence genes to wheat genes Sr11Sr24Sr30Sr31/Sr5Sr9aSr9b 
Sr9dSr9gSr10Sr17Sr38SrMcN. The urediniospores were 
stored at –70 °C before the experiment and revitalized using 
susceptible common wheat cv. Khakasskaya (Rsaliyev A.S., 
Rsaliyev Sh.S., 2018). Urediniospore suspension at the con-
centration of 0.8 mg/ml Novec 7100 (Sørensen et al., 2016) 
was applied to seedlings using a sprayer. Inoculated plants 
were incubated for 24 h in a humid chamber in the dark at 
a temperature of 15–20 °C for maximal spore germination. 
After that, the plants were transferred to growth chambers 
and incubated under 16 h illumination with an intensity of 
10,000 lux at a temperature of 26–28 °C. Such temperature is 
critical for full appressoria structure formation and pathogen 
penetration into the stomata, and infection hyphae develop-
ment in the plant tissue (Roelfs et al., 1992).

Phytopathological assessment of plant reaction to infec-
tion. The effect of Novochizol was assessed by quantitative 
and qualitative characteristics used to describe the resistance of 
wheat seedlings to stem rust, such as pustule density (number 
per leaf, 10 plants per variant) and reaction type. Plant reaction 
(infection type, IT) was determined 12–14 days post inocula-
tion (p/in) using a modified Stackman scale. The ITs “0”, “;”, 
“1”, and “2” were interpreted as resistant (R), and “3”, “3+” 
and “4”, as susceptible (S) (Roelfs et al., 1992).

Cytological and cytochemical methods. The studies were 
carried with plants treated with 0.75 % Novochizol. The mate-
rial was fixed at 0, 24, 96, 144 and 240 h p/in in lactophenol 
fixative (phenol, lactic acid, glycerin, distilled water, 96 % 
ethanol, in the ratio of 1 : 1 : 1 : 1 : 8) (Plotnikova, Meshkova, 
2009). Infection structures on the surface and in plant tissues 
were detected using the fluorescent dye Uvitex 2B (Sigma-
Aldrich, USA) by a modified method (Moldenhauer et al., 
2006). For this, the material fixed in lactophenol was washed 
with distilled H2O, and afterwards it was kept for 3 h in acetic 
alcohol (96 % ethanol and glacial acetic acid, in the ratio of 
3 : 1). After washing with distilled H2O, the leaf pieces were 
kept in a series of liquids, such as 50 % ethanol (20 min), 
0.5N NaOH (30 min), distilled H2O (5 min), 0.1M Tris-HCl 
buffer pH 5.8 (30 min), and distilled H2O (5 min). Staining 
was carried out for 15 minutes in 0.1 % Uvitex 2B in 0.1M 
Tris-HCl (pH 5.8), preheated at 60 °C. To differentiate the 
colour, the material was kept in distilled water for 90 min. 
The observations were carried out in reflected light with an 
excitation wave of λmax = 355 nm and an emission wave of 
λmax = 420 nm. Undamaged fungal structures showed a blue 
fluorescence, the damaged plant cells and pathogen hyphae 
were light blue or white.

For hydrogen peroxide H2O2 localization in tissues, a vital 
staining of the material with 0.02 % 3,3′-diaminobenzidine 
tetrachloride (DAB, Sigma-Aldrich, USA) was implemented 
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Table 1. Results of a visual assessment of the Novochizol concentration e�ect  
on the development of P. graminis f. sp. tritici in wheat seedlings 

Indicator Control Novochizol concentration, %

0.125 0.75 1.5 2.5

Reaction, IT 4 2 2, 2– 2, 2+ 3, 3+

Average pustule number, pcs./leaf 20.4 ± 0.54 8.3 ± 0.35* 18.1 ± 0.32* 15.1 ± 0.28* 14.3 ± 0.28*

* Significant di�erences with the control at р ≤ 0.05.

before fixation (Plotnikova, Meshkova, 2009). The DAB solu-
tion was infused into the leaves by vacuum infiltration and 
incubated for 30 min. Insoluble cherry formazane was formed 
in the presence of H2O2. 

Phenolic substances distribution in the leaves was studied 
using special reaction with aniline sulfate to common phenols 
(low molecular weight phenols and polymer lignin). The mate-
rial was stained with 1 % aniline sulfate (aniline sulfate, glacial 
acetic acid, and 50 % ethyl alcohol, in the ratio of 1 : 2 : 97) 
for 1 h, followed by washing in distilled water (Japaridze, 
1953). The lignins in the veins and plant cell walls in the in-
fection zones were coloured yellow-brown. Additionally, the 
phenols autofluorescence in reflected light with an excitation 
wave of λmax = 355 nm and emission of λmax = 530 nm (green 
fluorescence) or λmax = 605 nm (red fluorescence) was studied 
(Plotnikova, Meshkova, 2009). Cytological studies were car-
ried out using an ARSTEK E62 light microscope (ARSTEK, 
China) with a Sony Alpha A6400 APS-C digital camera (the 
resolution of 24.2 MP/inch, Sony, Japan). 

The results of 30–50 vbgPgt urediniospores development 
in each of the five plants per variant were studied at each ex-
periment stage, and were counted as repetitions. The areas of 
mycelium and urediniopustule (35–50 pcs. per variant) were 
measured after 240 h p/in, using the camera software. The 
mean values and standard errors were determined (in tables 
and graphs), and the least significant difference at p ≤ 0.05 
(LSD0.05) was calculated.  

Results 

Visual assessment of the Novochizol e�ect  
on stem rust development
At the first stage of the work, the effect of different Novochizol 
concentrations on the disease development in the susceptible 
cv. Novosibirskaya 29 seedlings was studied. A wide range of 
preparation concentrations was used in the experiments, from 
0.125 to 2.5 %. The pustules with IT “4” were formed on plants 
treated with water (control). Any Novochizol concentration 
influenced the disease development. It could be seen in the 
decrease of pustule density, pustule size reduction, and chlo-
rosis appearance around the pustules (Table 1). IT de creased 
to the least extent when 2.5 % Novochizol solution was used 
(IT “3”, “3+”). The treatments with 0.125, 0.75 and 1.5 % 
concentrations induced resistant reactions. The pustules sizes 
decreased to the greatest extent when the plants were treated 
with 0.75 % Novochizol (IT “2”, “2–”). This experimental 
variant was used for studying plant defence reactions.

Results of cytophysiological studies  
of the Novochizol e�ect on pathogenesis
The Novochizol effects were assessed by Pgt development 
on the leaf surface and in the tissues, and plant reactions in 
the infection zone. After contact with the moistened plant 
surface, the urediniospores swelled and formed growing tubes 
(Fig. 1a). The appressoria were formed at the ends of most 
growing tubes, which were necessary for penetration into the 
stomata (Fig. 1b). A big part of the appressoria (73–78 %) were 
located on the stomata, and more than 93 % of them ensured 
pathogen penetration into the tissues. No significant differ-
ences in the development of Pgt on the surfaces of untreated 
and Novochizol-treated plants have been established (Table 2). 
The main appressoria proportion was formed 18–24 h p/in. 
After penetration into the stoma, the fungus formed infection 
hyphae with haustorial mother cells (Fig. 1c), and the first 
haustoria in mesophyll cells were formed 24–48 h p/in. Pgt 
formed large pustules with the next urediniospore generation 
240 h p/in (Fig. 1d).

The localization of hydrogen peroxide and phenolic com-
pounds in the leaves was studied to determine active reactions. 
A high H2O2 concentration was revealed in leaf cuts by DAB 
staining at the beginning of the experiment in each variant 
(control untreated uninfected, Pgt-infected, Novochizol-
treated, and Novochizol-treated infected plants) (Fig. 1e, n). 
In areas far from the cuts, DAB staining was weak (Fig. 1e). 
At the end of the experiment, DAB staining decreased sig-
nificantly at the ends of all leaves (Fig. 1f, k). Probably, H2O2 
generation at leaf ends was associated with plant stress reac-
tion to mechanical damage.

The distribution of total phenols in the leaves was firstly 
studied using a special aniline sulphate staining. The phenols 
were detected in the cytoplasm and plant cell walls in the 
zone of Pgt development, as well as in the vein cell walls, 
which corresponds to the presence of polymer lignin. The 
phenols were low in other leaf parts (Fig. 1g). Phenol auto-
fluorescence coincided with their localization, determined by 
aniline sulphate staining. Under different observation modes, 
a bright green or red fluorescence appeared (with emission 
at λmax = 530 nm or λmax = 605 nm, respectively). Different 
fluorescence colour is associated with the presence of different 
phenol compounds. In the control plants, red fluorescence was 
brighter in the midveins, and green fluorescence was more 
active in small veins, in particular, in the walls of stomatal 
guard and mesophyll cells (Fig. 1h, i). 

In the untreated plants, significant changes in the cells in the 
infection zones were not found during pathogenesis, up to the 
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Fig. 1. Development of P. graminis f. sp. tritici and distribution of hydrogen peroxide and phenols in tissues. a–d, g, k–m – infected 
untreated plants; e, f, h, i – control uninfected plants; n–z – Novochizol-treated infected plants.
a – growing tubes development on the leaf surface; b – appressorium on stoma; c – infection hyphae and haustorial mother cell in the 
tissue; d – colony with urediniopustule; e – intensive H2O2 accumulation on the leaf cut of the control plant, 24 h p/in; f – weak H2O2 ac-
cumulation on the leaf section cut of the control plant, 240 h p/in; g – phenols in plant cytoplasm in the urediniopustule area and lignins 
in the parallel veins; h, i – phenols autofluorescence in the leaf of the control plant; k – H2O2 accumulation in the colony area with the 
urediniopustule and on the leaf cut (arrow), 240 h p/in; l, m – phenols autofluorescence in the tissues surrounding urediniopustules; 
n – intensive H2O2 accumulation on the leaf cut and in the plant tissue, 24 h p/in; o – H2O2 localization in the stomata area, 96 h p/in; p – 
empty appressorium shell on the plant stoma (black arrow, selected fragment) and intensive accumulation of H2O2 under other stomata 
(white arrows), 48 h p/ in; q – auto�uorescence of dead plant cells and fungal infection hyphae, damaged cells (light blue) and normal 
hyphae (blue), 48 h p/ in; r – abortive colony (arrow); s, t – phenols and lignin autofluorescence in the same abortive colony (arrow) zone, 
96 h p/in; u – actively developed colony (arrow); v, w – phenols auto�uorescence in actively developed colony zone (arrows), 144 h p/ in; 
x – intensive H2O2 accumulation (arrow) in the colony zone with urediniopustule, 240 h p/in; y, z – intensive phenols accumulation with 
di�erent colour illumination in the colony with urediniopustule zone, 240 h p/in. Designations: ap – appressorium; ih – infection hypha; 
l – lignin; hmc – haustorial mother cell; m – mycelium; ve – vein; gt – growing tube; sp – spore; st – stoma; up – urediniopustule. Stain-
ing: a–d, q – Uvitex 2B; e, f, k, n–p, r, u, x – DAB; g – aniline sulfate; h, l, s, v, y – phenols autofluorescence at emission λmax = 530 nm;  
i, m, t, w, z – phenols autofluorescence at emission λmax = 605 nm.
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Cytophysiological manifestations of wheat’s defense 
reactions induced by the biofungicide Novochizol

Table 2. Development of P. graminis f. sp. tritici on the surface of wheat plants treated with Novochizol

Experimental variant Germinated spore 
proportion, %

Proportion of appressoria, %

from the number  
of germinated spores

on stomata  
from their total number

penetrated  
into stomata

Control 77.2 ± 1.6 61.3 ± 5.1 72.7 ± 3.6 93.8 ± 1.3

Novochizol 80.2 ± 1.9 63.8 ± 3.9 78.0 ± 2.7 93.2 ± 1.5

LSD0.05 3.2 3.4 6.2 2.1

Fig. 2. The e�ect of Novochizol treatment on P. graminis f. sp. tritici colonies and pustules development.
a – сaverage area; b – distribution of colonies by area; c – distribution of pustules by area. С – control; Nh – Novochizol. * Significant di�erence at р ≤ 0.05. 
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sporulation stage. High H2O2 accumulation was determined 
in the tissues under the pustules, and less in the surrounding 
mycelium area at 240 h p/in (Fig. 1k). A moderate accumula-
tion of phenols with green fluorescence and that of phenols 
with brighter red autofluorescence were detected around the 
pustules in the mycelium zones (Fig. 1l, m). 

In the Novochizol-treated uninfected plants, H2O2 ac-
cumulation of varying intensity was noted in the leaves in 
the form of spots for 48 h p/in. The H2O2 distribution was 
irregular, which may be due to uneven Novochizol distribu-
tion by spraying. The stomatal guard cells, as well as meso-
phyll cells under the stomata and between the veins, were 
strongly stained (Fig. 1n). The H2O2 gradually disappeared 
from the tissues after 96–144 h p/in, but remained in the 
guard cells and in small zones below them in small amounts  
(Fig. 1o, r, u).

In Novochizol-treated infected plants, the H2O2 content in 
tissues for 96 hours was similar to that described above. The 
fungus penetrated into the stomata between H2O2 accumula-
tion zones without deviations, and empty appressoria shells 
remained on the surface of guard cells (Fig. 1p). In areas with 
a high ROS content, the cytoplasm of dead plant cells showed 
a white glow, while damaged ones showed light blue fluores-
cence. The dead fungal hyphae had white autofluorescence, 
and the intact ones had a blue colour (Fig. 1q). The colonies 
died (aborted) at early developmental stages in the ROS ac-
cumulating loci. The phenols in the cytoplasm and lignin on 
the cell walls accumulated in the zones of the dead colonies. 
These substances had a brighter green and a less pronounced 
red autofluorescence after 96 h p/in. The accumulation of 

green and red lignins was also enhanced in the adjacent vein 
regions. At the same time, phenols did not accumulate near 
the stomata area with a high H2O2 content (Fig. 1s, t).

Significant H2O2 generation was not detected near the 
actively developing colonies 144 h p/in, and simultaneously 
its content decreased in the stomatal zones (Fig. 1u). Phenols 
with brighter green and less vivid red fluorescence covered 
the mycelium area (Fig. 1v, w). Intensive H2O2 accumula-
tion was determined in the large colony and pustule areas 
240 h p/ in (Fig. 1x), and strong phenol accumulation was noted 
around such colonies in a wider than H2O2 zone. Phenols and 
lignin with green autofluorescence were synthesized more 
intensively and spread over a larger area than ones with red 
colour (Fig. 1y, z). 

A study of Pgt development showed that in Novochizol-
treated plants, the average colony and pustule areas decreased 
(by 1.5 and 2.2 times to untreated, respectively) (Fig. 2a). 
The preparation’s effect resulted in a significant change in 
distribution of the colonies and pustules by sizes, compared 
with untreated plants. The proportion of small colonies and 
pustules increased sharply, and some colonies (22 %) died 
before sporulation (Fig. 2b, c).

Discussion
The biological properties of the BPMA based on chitin and 
chitosan have been investigated since the 1980s. During this 
time, numerous tests have been carried out on the chitosan 
derivatives effects on pathogens (fungi, bacteria, and viruses) 
development and disease manifestations. The fungicidal ef-
fects of chitosans have been mainly studied on pathogens with 
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a necrotrophic or hemibiotrophic feeding type. These groups 
include the most harmful species of the Botrytis, Fusarium, 
Alternaria, Colletotrichum, Phytophthora, Rhizoctonia ge-
nera (Chakraborty et al., 2020; Zheng et al., 2021; Shcherban, 
2023). The cultivation of these fungi is available on artificial 
media, which makes it possible to evaluate the drug’s effects 
in vitro. Using different pathogen species, it was showed that 
the chitosan preparations manifested fungicidal effects by the 
suppression of spore germination, inhibition of growing tubes 
development, disruption of cell walls and membranes, and an 
impenetrable film formation around fungal cells (Ghaouth et 
al., 1994; Abd El-Kareem, Haggag, 2014). Growth suppres-
sion could also be associated with calcium and copper ions 
chelation and deposition of chelate complexes on cell surface, 
which reduced the metabolic activity of fungi (Chakraborty 
et al., 2020). The effects of preparations in planta are realized 
after chitosan recognition by plant receptors and signalling 
systems activation (Yarullina et al., 2023).

The mechanisms of Novoсhizol action on wheat stem rust 
development have been studied for the first time. The Novo-
chizol concentration effect on the disease development has 
been revealed. This confirms the results of previous studies on 
the effect of drug doses on plant resistance reactions (Orzali 
et al., 2017; Varlamov et al., 2020). In the 0.75 % Novochizol 
variant, the greatest inhibiting effect on Pgt development 
was noted. In contrast to previous results, obtained with chi-
tosan (Ghaouth et al., 1994; Abd El-Karee, Haggag, 2014), 
Novochizol had no negative effect on Pgt development on the 
leaf surface, as well as penetration into stomata. 

In the 0.125 % Novochizol variant, a more intense pus-
tule development suppression was found. The effect of the 
0.125 % Novochizol on stem rust will be studied at the next 
research steps.

In the 2000s, a hypothesis of a two-level organization of 
plant immunity was formulated, called PTI-ETI (Gill et al., 
2015). It was assumed that plants have PRRs (Pattern Rec-
ognition Receptors) that recognize molecules of non-patho-
genic (MAMPs, Microbe-Associated Molecular Patterns) 
and non-specialized pathogenic microorganisms (PAMPs, 
Pathogen-Associated Molecular Patterns), as well as plant cell 
destruction products (DAMPs, Damage-Associated Molecular 
Patterns). As a result of the recognition of these molecules, 
the first level of PTI (PAMP-triggered immunity) defence is 
triggered. After PTI is overcome, the second resistance level 
is activated, associated with the recognition of specific effec-
tors – ETI (Effector-Triggered Immunity). PTI corresponds 
to the response of non-host species, while ETI is similar to 
varietal resistance and is usually accompanied by hypersensi-
tive reaction (Gill et al., 2015). Later, an improved model of 
plant immunity was proposed, according to which ETI is a 
PTI-dependent module for the reactions amplification, but not 
an isolated system (Yuan M. et al., 2021; Zhao et al., 2022).

Two peaks of ROS generation have been identified in resis-
tant plants previously. The first peak occurs a few minutes after 
elicitor recognition and is associated with the activation of the 
NADP·H-oxidase enzyme, which is constitutively present in 

the membrane. NADP·H-oxidase produces the superoxide 
anion      •–O2 , which is rapidly converted by the SOD enzyme to 
H2O2 (Boller, Keen, 2000). The second ROS peak appears 
3–5 days later, and is associated with de novo synthesis of 
the pro/antioxidant system enzymes (peroxidases, oxalate 
oxidases). The pro/antioxidant system maintains optimal ROS 
levels in the tissues. Catalase cleaves H2O2 to water, and at 
the same time the peroxidases, polyphenol oxidase, and ascor-
bate oxidase utilize ROS in oxidative reactions (Maksimov, 
Cherepanova, 2006). 

Previously, when studying the interactions between the 
rust fungi P. triticina and P. coronata with non-host species 
(oats and wheat, respectively), the      •–O2  generation by stomatal 
guard cells contacting with appressoria, which led to pathogen 
death, was revealed (Plotnikova, 2008). Pgt dies on the plant 
surface before penetration into the stomata of non-host species 
Secale cereale and Thinopyrum ponticum. When Pgt interacts 
with cultivars carrying resistance genes of non-hosts (Sr31, 
Sr24, Sr25, Sr26), the appressoria dies on the stomata after 
the peak of superoxide anion generation (Plotnikova et al., 
2022, 2023). On the example of chitosan-treated rice, a similar 
NADP·H-dependent      •–O2  synthesis was shown (Lopez-Moya 
et al., 2021). An enhanced synthesis of enzymes involved in 
ROS accumulation was also found in millet plants treated 
with chitosan and infected with Alternaria kikuchiana (Meng  
et al., 2010). The chitosan application on barley induces an 
oxidative burst and synthesis of phenolic compounds, which 
increases the resistance to fungal diseases complex (Faoro 
et al., 2008). 

Novoсhizol is similar to MAMPs in its origin. A histochemi-
cal study of Novochizol-treated plants revealed intensive 
H2O2 accumulation in tissues four days after its application. 
Obviously, this is due to the second peak of oxidative burst 
manifestation and confirms the inducing resistance activity 
of Novochizol. Zones with a high H2O2 content were found 
both in the stomata areas and between the veins. Such results 
may be explained by increased Novochizol ability to penetrate 
through the leaf epidermis and induce ROS production. The 
H2O2 content in the tissues decreased after 96–144 h p/in of 
Pgt inoculation, so did the traumatic ROS on leaf cuts to the 
end of the experiment in all variants. Such dynamics may be 
related to the synthesis of the antioxidant system components 
(both the enzymes and non-enzymatic substances) that utilize 
ROS. The activation of antioxidant enzymes following ROS 
accumulation was shown in potatoes treated with the chitin-
ferulic acid conjugate and beneficial bacteria Bacillus subtilis 
(Yarullina et al., 2024a). It is also possible that the antioxidant 
activity increased with the age of the plants. 

Defense reactions did not appeared before sporogenesis 
in infected untreated plants. In Novochizol-treated plants, 
a small number of host cells and mycelium fragments died 
in the areas with increased H2O2 content. At the same time, 
the dead plant cells did not exhibit the yellow fluorescence 
characteristic for HR (Vander et al., 1998). This indicates that 
Novochizol induces reactions that partially differ from those 
occurring during HR in resistant varieties. 
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Some colonies died at the early pathogenesis stages. H2O2 
was not detected in the zones of abortive colonies 96 h p/ in. 
ROS accumulation has also not been established in the areas 
of medium and large developing colonies before sporogen-
esis, and even a decrease in H2O2 near the colonies has been 
noted. The decrease in H2O2 content can be explained both 
by the accumulation of antioxidant plant enzymes and by the 
pathogen activity. Currently, it is known that biotrophic rust 
fungi secrete hundreds of effectors into plant cytoplasm and 
apoplast. The pathogens are able to suppress protective reac-
tions, as well as to alter or reprogram host metabolism by the 
effectors. It was shown that a virulent isolate of wheat yellow 
rust pathogen P. striiformis f. sp. tritici secreted an effector 
catalase cleaving H2O2, which led to plant resistance sup-
pression (Yuan P. et al., 2021). At the same time, Novochizol 
treatment stimulated increasing H2O2 accumulation in the 
colony zones at the stage of sporogenesis.

It has previously been shown that the phenols synthesis and 
the strengthening of cell walls with lignins after treatment with 
chitosans were the most typical protective reactions against 
necrotrophic and hemibiotrophic fungi (Orzali et al., 2017; 
Shcherban, 2023). In our experiments, it was found that No-
vochizol treatment stimulated an earlier and more intensive 
phenols accumulation than in untreated plants. For the first 
time, it was shown that Novochizol promotes the changing 
in the phenols ratio towards compounds with a green fluores-
cence, while phenols with a red light prevailed in untreated 
plants. It was previously determined that lignin with green 
autofluorescence includes syringin derivatives and accumu-
lates in wheat tissues after treatment with SAR inducer Bion 
(Plotnikova, 2009). Previously, it was shown that in plants 
treated with the chitosans and infected with necrotrophic 
fungi, the PR proteins’ (chitinases, glucanases, peroxidases, 
polyphenol oxidases, PR-1, PR-5, etc.) genes expression 
increased (Manjunatha et al., 2008, 2009; Nandeeshkumar 
et al., 2008; Orzali et al., 2014). Similar accumulation of PR 
proteins with different functions was also revealed in potatoes 
treated by chitosan conjugates with ferulic or caffeic acids 
(Yarullina et al., 2024a, b). Accumulation of PR-proteins 
in Novochizol-treated plants, which are not detectable by 
cytological me thods, is also likely. The complex action of 
Novochizol-induced defence mechanisms led to the death of a 
significant part of the colonies at the early development stages, 
as well as to a significant reduction in the pustule density and 
suppression of the pathogen’s reproduction.

The reported studies were the first stage of investigation 
of the Novochizol effect on the wheat resistance mechanisms 
against stem rust. At the next stage, detailed studies of the 
preparation’s action on the pathogenesis will be carried out 
using molecular genetics, biochemical and cytophysiological 
methods. 

Conclusions 
Studies have shown that Novohizol can be used as a resistance 
inducer to wheat stem rust. The dose effect of the treatment 
was revealed, with the best results at 0.125 and 0.75 % con-
centrations. 

Novochizol treatment of leaves at the 0.75 % concentration 
did not affect the urediniospore germination and fungal struc-
tures development on the plant surface, but led to a significant 
reduction in the number of colonies, as well as the mycelium 
and pustule sizes. 

Intensive hydrogen peroxide accumulation in infected and 
uninfected plant tissues 4–8 days after Novochizol treatment 
was found (corresponds to 0–4 days after inoculation), which 
decreased by the end of the experiment. 

Partial death of plant cells and pathogen mycelium was 
noted in the zones of intensive H2O2 accumulation. The dead 
plant cells did not show the autofluorescence characteristic 
for HR. 

Novochizol stimulated earlier and more intensive phenols 
accumulation in infection zones, such as a change in the ratio 
of phenolic compounds towards substances with syringin 
derivatives.
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