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Abstract. Vision plays a key role in the lives of various organisms, enabling spatial orientation, foraging, predator
avoidance and social interaction. In species with relatively simple visual systems, such as insects, effective behav-
ioral strategies are achieved through high neural specialization, adaptation to specific environmental conditions,
and the use of additional sensory systems such as olfaction or hearing. Animals with more complex vision and
nervous systems, such as mammals, have greater cognitive abilities and flexibility, but this comes with increased
demands on the brain’s energy costs and computational resources. Modeling the features of such systems in a
virtual environment could allow researchers to explore the fundamental principles of sensorimotor integration and
the limits of cognitive complexity, as well as test hypotheses about the interaction between perception, memory
and decision-making mechanisms. In this work, we implement and investigate a model of virtual organisms with a
visual system operating in a three-dimensional physical environment using the Unity ML-Agents software — one of
the most high-performance simulation platforms currently available. We propose a hierarchical control architecture
that separates locomotion and navigation tasks between two modules: (1) visual perception and decision-making,
and (2) coordinated control of limb movement for locomotion in the physical environment. A series of numerical
experiments was conducted to examine the influence of visual system parameters (e.g, resolution of the “first-
person” view), environmental configuration and agent architectural features on the efficiency and outcomes of
reinforcement learning (using the PPO algorithm). The results demonstrate the existence of an optimal range of
resolutions that provide a trade-off between computational complexity and success in accomplishing the task,
while excessive dimensionality of sensory inputs or action space leads to slower learning. We performed system
performance profiling and identified key bottlenecks in large-scale simulations. The discussion considers biological
parallels, highlighting cases of high behavioral efficiency in insects with relatively low-resolution visual systems,
and the potential of neuroevolutionary approaches for adapting agent architectures. The proposed approach and
the results obtained are of potential interest to researchers working on biologically inspired artificial agents, evolu-
tionary modeling, and the study of cognitive processes in artificial systems.
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AHHOTaLMA. 3peHyie UrpaeT KIIYeBYI0 POSb B >KN3HM MHOXECTBA Pa3/IyHbIX OpraH13moB, obecneynBas opreHTa-
LMito B MPOCTPAHCTBE, MOUCK NULLK, 36eraHne XMLLHNKOB V1 coLMaibHOe B3auMogencTaye. Y BUAOB C OTHOCUTENbHO
NPOCTO 3pUTENIbHOM CUCTEMON, TaKMX Kak Hacekomble, 3bPeKTUBHaA NoBeAeHYeCKan cTpaTerna JOCTUraeTcs 3a
CYeT BbICOKOW cneuvanv3aunm HeMpoHOB, afanTalny K KOHKPETHbIM YCIOBUAM Cpefbl, @ TakxKe 6narogapa fonos-
HUTENIbHbIM CEHCOPHbIM CUCTEMAM — OOOHAHNIO UK CITYXY. Y XKUBOTHBIX C 6051ee CNOXKHbIM 3peHNEM U HEPBHOW CU-
CTEMOW, TaKMX Kak MineKonuTaloLme, KOrHUTUBHbIE BO3MOXXHOCTM 1 CNOCOBHOCTY K ajanTaLyy 3HauYMTesbHO BbliLUe,
O[JHaKO BbILLIE 1 SHeprosaTpaTbl Ha paboTy mosra. MofenupoBaHrie 0COGEHHOCTEN TaKUX CUCTEM B BUPTYasbHOW
cpepe no3Bonusio 6bl NcciefoBath GyHAAMEHTaIbHbIE MPUHLMMbBI GYHKLMOHNPOBAHNA 1 00YUYEHNS KOTHUTVBHbIX
cuCTeM, BKoYaa MexaHn3Mbl BOCMPUATAA, NaMATU, MPUHATAA peLueHnid 1 Ux B3anmogencTame. B gaHHol paboTte
06bEKTOM UCCefoBaHNA ABNAIOTCA BUPTYasibHble OpraH13Mbl, 065agatoLLye 3pUTesibHOM CUCTEMO U GYHKLMOHN-
pytowme B TpexmepHoi ¢usnyeckor cpefe Ha 6ase Unity ML-Agents — ogHOro 13 Hanbonee BbICOKOMPON3BOAN-
TeJIbHbIX COBPEMEHHbIX CUMYNATOPOB. MpeanoxeHHaa nepapxuyeckans apxuTeKkTypa yrnpas/eHus, pasaenaiolas
KOFHUTUBHbIE 3afjaun MeXay ABYMA MOAYSAMU — 3PUTENbHOrO BOCMPUATUA/MPUHATUA PELIEHUIN 1 ynpaBieHna
KOOPAVMHUPOBAHHbIM ABVXXEHNEM KOHEYHOCTE Al NepemelleHns B GUsnueckol cpefie — nokasana CyLecTBEHHO
60nblUy0 CKOPOCTb 1 3GHEKTUBHOCTL 0OYUEHNA MO CPABHEHNIO C eAVHOW c1cTeMoit. [poBeaeHa cepusa UNCieH-
HbIX 3KCMEPUMEHTOB, HanpPaBAeHHbIX Ha BblAABMEHVE BAUAHWA NapaMeTPOB 3pUTESTIbHOW CUCTEMbI, KOHOUrypaLum
cpeabl N apPXUTEKTYPHbIX OCOOEHHOCTEN areHTOB Ha YCMeLWHOCTb UX 06yyeHuna ¢ noakpenneHrem (anroputm PPO).
Moka3aHo, UTO CylLecTBYeT [Mana3oH pa3peLleHnii, ob6ecneunBatoLLnii KOMIPOMUCC MEXAY BbIUMCINTENIbHON
CJIOXHOCTBIO 1 YCMELIHOCTbIO BbIMOMHEHNA 33[ia4L, @ U36bITOYHAA Pa3MePHOCTb CEHCOPHbIX BXOAHBIX AAHHBIX U
NPOCTPaHCTBa AeNCTBUI NPUBOAUT K 3aMeasieHno 06yyeHus. [JomKHOe BHYMaHVE YAENEHO TakKe OLieHKe BbluMC-
NUTENIbHOW CNOXHOCTU CUCTEMbI U MPOGUANPOBAHNIO NMPON3BOANUTENBHOCTM €€ OCHOBHbIX KOMMNOHEHTOB. ony-
YeHHble pe3ybTaTbl NPeACTaBAAT NOTEHLMAbHbIN MHTEPEC B KOHTEKCTE UCCe[0BaHNI UCKYCCTBEHHBIX areHTOoB,
BAOXHOB/NEHHbIX OMOIOMMUYECKMIN CUCTEMAMU, SBOSTIOLIIOHHOTO MOAENMPOBaHNA, BKJTIOUYaA HEPO3BOMIOLMOHHbIE
noaxoAbl Ana co3faHuns 6onee afanTUBHBIX Y YMHbIX areHTOB, 1 N3yUYeHWsA KOTHUTVBHbIX NMPOLECCOB B HYX.

KnioueBble cnoBa: BUPTYyaNibHbIi OPraHn3M; KOMMbOTEPHOE MOLENIMPOBAHWNE; BbIUNCINTENbHAA CIIOKHOCTb; 3pU-

TeNbHasA CMCTeMa; HePOHHaA ceTb; cumynaTop; PPO; obyueHue ¢ nogkpennexmem; Unity ML-Agents

Introduction

Modeling cognitive activity, behavior, and evolutionary me-
chanisms in virtual environments constitutes an important
step toward the development of artificial intelligence systems
capable of learning, adaptation, and interaction with complex
environments (Bongard, 2013; Stanley et al., 2019). The
advancement of such systems has been facilitated by modern
agent-based learning platforms, in particular Unity ML-Agents
(Juliani etal., 2018), which allow the creation of fully featured
three-dimensional simulations incorporating physics, vision,
and multiple trainable agents.

Despite the relatively small number of neurons due to their
small body size (compared, for instance, to mammals), the
nervous systems of many invertebrates, including insects,
exhibit remarkably complex, diverse, and adaptive behavior.
For example, ants possess approximately 250,000 neurons,
which is several orders of magnitude less than mammals
(a mouse has about 7.1-107), but these insects are capable of
solving complex tasks of navigation, social interaction, co-
ordination of collective actions, and route memory (Chittka,
Niven, 2009). Moreover, according to a number of studies,
certain species of ants are capable of passing the mirror test,
a behavioral indicator of self-awareness (Cammaerts M.-C.T.,
Cammaerts R., 2015). This makes them unique among insects
and highlights the potential of minimal but efficiently orga-
nized nervous systems, which are of considerable interest to
modern science.

Insect visual systems also serve as a source of inspiration
for the design of artificial agents. In particular, compound eyes
provide a wide field of view and high refresh rates, enabling
efficient responses to rapidly changing stimuli (Land, Nils-
son, 2012). However, their angular resolution is significantly
inferior to that of humans, but this limitation is compensated

by high sensitivity to movement and the capacity for learning
at the level of entire behavioral sequences.

These considerations give rise to several fundamental
research questions: what are the minimal requirements for
an agent’s visual system that enable successful adaptation to
its environment? What control architecture ensures cognitive
modularity under constrained computational resources? In
other words, how to construct an “artificial organism” — an
agent with simple but functional elements of perception and
decision-making. The present study addresses these questions
by investigating virtual organisms endowed with vision and
operating in a 3D environment, with a focus on their ultimate
cognitive efficiency, scalability, and capacity for learning in
tasks of search and navigation.

The interest in structures that enable movement with mini-
mal design complexity is also evident in engineering systems.
For example, a recent study (Song et al., 2022) examines the
control of hybrid soft limbs, reflecting the pursuit of struc-
turally simple but functionally efficient solutions for motion
control. The body model of the virtual organism used in the
present study, in terms of degrees of freedom and segment
composition, is comparable to those employed in such con-
structions. This makes it possible to regard it as comparable
in complexity to its physical counterparts.

In our previously published work (Devyaterikov, Palyanov,
2022), we presented a simulator of the evolution of virtual or-
ganisms in a 3D environment, where each agent was equipped
with a visual system and a neural network for processing
sensory input. The system was based on a combination of
neuroevolution and agent—environment interaction, enabling
agents to perform elementary cognitive tasks that required
the use of vision (such as searching for “food” necessary for
“survival”) and allowing the assessment of agent survivability
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within a population. The present work provides estimates
of the computational complexity of calculations related to
physics (agent bodies, the environment, and their interactions),
first-person 3D rendering for each agent, and the operation of
their neural networks. In addition, it introduces a new hierar-
chical agent model and presents the results of a quantitative
analysis of training time, speed, and efficiency as a function of
visual system resolution. The (Aksoy, Camlitepe, 2018) study
provides data on the number of ommatidia (photosensitive
sensors) for various ant species (from 100 to 3,000). Roughly
approximating such vision with a square pixel matrix, this
corresponds to a visual resolution from 10 x 10 to 55 x 55.

The present work combines reinforcement learning me-
thods (PPO (Schulman et al., 2017)), convolutional neural
networks (O’Shea, Nash, 2015), approaches to hierarchical
agent training (Vezhnevets et al., 2017), and practical analysis
of resource-saving simulation schemes (Peng et al., 2018).
We demonstrate that a hierarchical agent approach (e.g., a
“Walker/Searcher” pair) enables more stable and interpretable
behavior while reducing training time at a comparable level
of task complexity.

Particular attention is given to investigating the impact of
visual system resolution on agent learning rate, with an as-
sessment of the minimal input image size at which the ability
to perform visual search and navigation tasks is preserved.
Such investigations are relevant both for biologically inspired
modeling and for the development of compact and efficient
Al agent architectures capable of functioning under limited
computational resources (Hassabis, Humaran, 2017; Zador,
2019).

In addition, this study examines the effect of task decom-
position strategies (navigation and locomotion) on training
efficiency. This approach provides deeper insights into the
principles underlying cognitive modularity and distributed
control in complex agent systems (Botvinick et al., 2020;
Tschantz et al., 2020). The introduced Searcher agent, relying
exclusively on visual perception, interacts with the Walker
agent, responsible for physical movement. Such a scheme
enhances the adaptability of the model and improves the
interpretability of agent behavior.

Thus, the aim of the present work is to conduct a systematic
investigation of the limits of cognitive complexity in agents
equipped with visual systems, to develop optimal control
architectures and perceptual parameters, and to evaluate the
performance and scalability of the proposed system imple-
mented on the Unity ML-Agents platform.

Materials and methods

Problem statement. The problem under consideration is

formulated in terms of a Markov decision process, where the

agent interacts with a three-dimensional physical environment
and learns to maximize cumulative reward. The task performed
by the agent is described below:

Environment E: a square arena bounded by walls. Targets
with radius r appear randomly within the arena and must be
collected. Once a target is reached, a new one is generated.

Agent state s;: consists of an RGB image from the first-person
camera of size hxwx 3, long with a vector of control pa-
rameters (joint angles of the limbs and the corresponding
torques).
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Agent action a;: a single scalar value representing a normal-
ized rotation angle in the interval [—1, 1]. This parameter
determines the direction of the agent’s body movement. The
actual rotation angle is defined as 0 = a;* 0,5y, Where 05y
is the maximum allowable rotation angle specified in the
experimental parameters. In different experimental series,
various values of this parameter were used, which allowed
us to investigate its impact on policy efficiency (results are
reported in Section “Results with varying rotation angles”).
The restriction to a single control variable is due to the fact
that low-level locomotion tasks (coordination of limbs and
balance maintenance) are delegated to a separate Walker
module, enabling the focus to remain on the cognitive
aspects of the task, i.e., perception and decision-making.

Reward function R(s;, &;): an agent receives a positive reward
for successfully reaching the target.

Obijective: to maximize the cumulative reward over an epi-
sode of time T, i. e., to develop a policy that enables efficient
navigation in the environment and target collection based
on visual information.

One of the goals of our study is to identify the minimal
input image resolution at which the agent can still successfully
learn within a reasonable amount of time. The formal problem
formulation is as follows:

Training success is defined as achieving an average reward of
at least Ryoq = 5 per episode (where the reward is granted
for target collection by the agent). The value of Ryoy Was
determined experimentally. As shown in the training results
(see Section “Dependence of learnability on image resolu-
tion”), an untrained agent, due to random wandering, attains
on average no more than 2.

Training time of the agent until reaching the threshold value:
T(N) eR,.

Average reward R(Res, 7)) achieved by the agent after training
with input resolution Res = hxwx 3 over time T.

Admissible set of resolutions Rese N, from 20x20x 3 to
100x 100 x 3 with a step of 20 and with an additional case
of 84 x84 x 3, used as the default resolution in Unity ML-
Agents.

Itis required to find min, c gesT(NV), Where R(Res, T') > Ryoa),
that is, the minimal training time over admissible resolu-
tion for which the achieved reward meets or exceed the
threshold Ry,q-

Simulator architecture. The proposed system employs
a hierarchical control architecture for the agent, separating
perception and motion functions across two levels. The lower-
level agent (Walker) is responsible for physical locomotion
in the environment, relying on local sensors and a pre-trained
locomotion model. The higher-level agent (Searcher) receives
visual input from the camera and decides on the movement
direction, transmitting a control signal to the Walker agent in
the form of a normalized rotation angle. This approach makes
it possible to isolate the complex problem of sensorimotor
transformation (from image to action) from the tasks of motion
stabilization and limb coordination. As a result, training of
the Searcher becomes faster and more stable, since it controls
only a single variable. The internal communication between
agents is implemented within the Unity environment through
the transmission of the direction parameter to the Walker
controller. In the training mode, the Searcher agent processes
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Fig. 1. Unity model of the Walker agent, with the first-person camera view shown in the bottom right corner. Two environments,
the agents, and a number of targets are also presented.

visual data and generates a rotation angle, which is used as
the control parameter for selecting the body orientation at the
next step. The Walker, in turn, executes the specified direction,
ensuring movement in the intended direction.

During simulation, the environment is dynamically up-
dated: after a target (a unit of “food” required for survival) is
collected by the Searcher agent, a new one is generated at a
random position (to maintain the number of available “food”
units at a constant level). When the agent falls or the maximum
number of steps is reached, the episode is reset. The archi-
tecture supports parallel execution of multiple environments,
each containing one Searcher and one Walker, which enables
training to be scaled within the Unity ML-Agents framework.

Simulation environment. For the experiments, we selected
the modern Unity ML-Agents platform, which demonstrates
high performance and provides convenient tools for building
complex three-dimensional simulations with reinforcement
learning integration. Unity also offers built-in support for
parallel environments, visual sensors, and integration with
the PyTorch library.

Each environment represents a bounded square arena
(DynamicPlatform) with walls, a floor, and randomly placed
targets that the agent must collect. The platform size is fixed,
and the target spawn coordinates are uniformly sampled across
the available area. When the agent collides with a target, it
disappears and is immediately replaced by a new one. The
walls are impenetrable and serve as physical boundaries of
the environment.

Simulation parameters are specified via the CrawlerSettings
component and include the simulation tick rate of the physical
world, gravity, episode duration (max_step — the number of
simulation steps at which the agent receives observations and
performs actions), and the number of parallel environments.
If the agent falls (detected by body contact with the floor), the
environment is automatically reset. Each parallel environment
contains one Searcher agent, embedding a nested Walker,
equipped with an individual camera mounted at the front of
the head, which supplies the agent’s neural network with a
stream of first-person visual information.

Fig. 2. Walker agent model in Unity.

The number of simultaneously running environments
(num_envs) depended on the agent type: for the Walker agent,
which does not use visual input, 10 environments were em-
ployed, while for the Searcher agent, four environments were
used. This configuration enabled efficient utilization of GPU
resources and accelerated data collection through parallel in-
teraction with the environment. For each environment, actions
data, observations, and rewards were collected independently
and synchronized with the training strategy in Python via the
Unity ML-Agents gRPC interface. Figure 1 presents a view of
the simulation from the observer’s perspective, showing two
environments, the agents, and a number of targets.

Walker agent model. The lower-level agent (Walker) is
a complex articulated model with six limbs, implemented in
the Unity engine using the Rigidbody and ConfigurableJoint
components. Each limb consists of two segments: upper and
lower — with three degrees of freedom (resulting in a total of
18 degrees of freedom for all legs). This design enables the
agent to perform realistic locomotion and maintain stability
during movement. The agent model in the Unity environment
is shown in Figure 2.

The control system is implemented through the JointDrive
Controller module, which converts control signals into desired
jointangles and forces. The control parameters are represented
as a vector of dimension 30: 18 values control joint angles,
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Fig. 3. Walker agent model in motion.

and 12 correspond to the torques applied to them. Specifically,
for each of the six legs, the upper segment is controlled by
two angles (rotation about the X and Y axes), and the lower
segment by one angle (rotation about the X axis), yielding
18 control parameters in total. In addition, for each of these
12 segments, a control force is specified, determining the
intensity of movement, which yields another 12 parameters.
At each step, the agent receives observations that include
information on current joint angles, velocities, surface con-
tacts, target direction vector, body orientation, and ground
raycast data. The Walker agent model in motion is shown in
Figure 3.

The neural network architecture of the Walker consists of
three fully connected layers with LeakyReL U activation func-
tions and two outputs: an actor (30 action parameters) and a
critic estimating the value function (Fig. 4a). The input layer
has a dimensionality of 223 (vector features and joint param-

a Y
Vector
observations

~—

)

Joint control
data
-
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eters), while the hidden layers each contain 512 neurons. The
total size of the model is 655,903 parameters and 1,567 neu-
rons, making it lightweight enough for real-time training.

The reward function for the Walker agent is defined based
on the deviation of the agent’s current body velocity from the
target velocity and the alignment of its movement direction
with the specified vector. This enables the agent to learn pur-
poseful locomotion in the desired direction while maintaining
physical stability. After training, the Walker agent is used in
inference mode as part of the Searcher agent, providing stable
execution of movement.

During training, the critic block receives the same input
as the actor — the state feature vector. Based on these data,
it learns to approximate the expected cumulative reward the
agent will obtain in the future if it continues to act according to
the current policy. At the early stages of training, this estimate
is inaccurate, but it is gradually refined through backpropa-
gation of the error, grounded in the actual rewards received
by the agent. Thus, the critic does not initially “know” what
is good or bad — it learns to distinguish this by comparing
predicted rewards with the real rewards accumulated during
simulations.

After training, the Walker agent is used in inference mode
as part of the Searcher agent, ensuring stable motion execu-
tion based on the deviation of the current body velocity from
the target and the alignment of the movement direction with
the specified vector. This allows the agent to learn purpose-
ful locomotion in the desired direction while maintaining
physical stability.

Searcher agent model. The higher-level agent (Searcher)
is responsible for perceiving the environment and selecting
the direction of body movement. Unlike the Walker agent,
it does not interact directly with the physical components of
the simulation but instead controls the Walker by transmit-
ting a normalized rotation angle in the interval [—1, 1]. Thus,
the Searcher serves as a cognitive module that implements a
target-search strategy based on visual information. The pri-
mary input source for the Searcher agent is the image obtained

Vector .
. Actions
observations
Joint control Value
dat function
ata estimate

Value
Actions function
estimate
Actor head

[Critic head }

Fig. 4. Schematic representation of the Walker (a) and Searcher (b) agent’s neural network architecture.
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from a camera mounted on the agent’s body (at the front of
the head). The camera is oriented forward and positioned at
a height corresponding to the head of the virtual organism.
The image resolution varies across experiments from 20 x 20
to 100 x 100 pixels, with increments of 20 in each dimension
(three-channel RGB), allowing for analysis of the impact
of visual load and frame resolution on the model’s learning
performance.

For image processing, a convolutional neural network is
employed, consisting of two convolutional layers (Conv2D),
a flattening layer (Flatten), and subsequent fully connected
layers. The output of the visual input processing is concate-
nated with vector observations and fed into two output layers:
the actor (a single value representing the rotation angle) and
the critic (value function estimate). The activation functions
used are LeakyReL U and Swish. A schematic representation of
the Searcher agent’s neural network architecture is presented
in Figure 4b.

The Searcher agent is trained using the Proximal Policy
Optimization (PPO) algorithm with a continuous action space.
The objective function is to maximize the cumulative reward
for collecting targets in the arena. Upon colliding with a target,
the agent receives a positive reward; upon colliding with a
wall or remaining inactive, it is penalized. When max_step is
exceeded or the body falls, the simulation episode terminates
and a new one begins.

Unlike the Walker agent, which is pre-trained once and then
used only to execute the learned behavior (inference mode),
the Searcher agent is trained from scratch, and its neural
network includes image processing, which increases com-
putational costs but enables the realization of biologically
plausible behavior based solely on visual perception. This
makes it possible to model cognitive constraints and analyze
the impact of visual resolution on the speed and stability of
learning.

Training algorithms and hyperparameters. The PPO
algorithmis a gradient-based policy optimization method that
belongs to the family of actor-critic approaches. Such methods
combine the training of a policy and a value function. By
avoiding abrupt policy updates, in contrast to classical me-
thods of this type, PPO is designed to improve the stability and
reliability of training. The Actor, the component responsible
for selecting an action in each state, implements the agent’s
policy. The Critic, in turn, evaluates how good the chosen ac-
tion was by using the value function. This approach combines
the advantages of stochastic action selection (important for
exploration of the environment) with the evaluation of these
actions based on accumulated experience.

The PPO algorithm operates within the framework of a
Markov decision process (S, A, P, R, y), where S — the set of
states, A — the set of actions, P(S’|S, a) — the state transition
probability, R(s, a) — the reward function, y [0, 1] — the
discount factor.

The parameterized policy my(a|s) defines the probability of
selecting action a in state s, where 0 signifies the parameters of
the actor neural network. The critic Vy(s) is an approximation
of the value function '7(S) = E[R,|s, = s], with parameters ¢,
where R;= Iy + g + Y2l + ... is the discounted sum of
future rewards. In PPO, instead of direct gradient updates, the
so-called clipped objective function is used:

Self-learning virtual organisms
in a physics simulator

LCLIP(9) = E,[(r,(0) - A,, clip(r,(8), 1 —¢, 1 +€)- A)],

mo(@ysy)
Toog (at |ST)
new and the old policy, € (0, 1) the clipping parameter, typi-
cally e = 0.1 or 0.2, A, — the advantage estimate.

If the new action deviates too strongly from the old one
(i.e., r falls outside the interval [1 — ¢, 1 + ¢€]), the gradient is
suppressed. This prevents abrupt changes in the policy.

To estimate Ay, the generalized advantage estimation (GAE)
is used:

where: r(0) = — the probability ratio between the

Tt
A= EO (YN8t 8¢ = e+ yV(Se1) — V(S),

where A € [0, 1] — is the smoothing parameter. This method
improves training stability by reducing variance.
The loss function in PPO consists of:
« the policy loss LCLIP,
« the value critic loss (MSE between the predicted V(s;) and
the target value),
* an entropy bonus to encourage action diversity:

L{CLIP+VF+S - Et [LCLIP(Q) _ 01'(V(St) 7Vttarget)2 +Cy H[ne](st)]:

where H[x] is the policy entropy and ¢4, C, are the correspond-
ing coefficients.

Aschematic representation of the proximal policy optimiza-
tion algorithm is shown below:

Algorithm: PPO

1: foriteration=1,2, ... do

2 foractor=1,2,...,Ndo

3 run policy my,, in environment for T timesteps
4: compute advantage estimates ,il, e ﬁT

5 end for

6 optimize surrogate L w.r.t. 6, with K epochs and

minibatch size M<NT

& L= E{[LCHP(0) — c1-(V(sp) — V\¥"9)? + cpr H[m](5y)]
8: 60|d —0
9: end for

where N is the number of parallel actors collecting data over T
time steps, and K is the number of epochs. Neural networks are
used to approximate the target policy and the value function.

The choice of PPO in this work is motivated by several
factors: the algorithm supports continuous action spaces,
which is critical for the locomotion of virtual organisms with
multi-joint limbs. The update constraint allows the agent’s
policy to evolve incrementally without disrupting previously
learned behaviors. PPO can also be effectively applied in
architectures incorporating convolutional neural networks
(CNNs) that process images from the agents’ cameras. In
addition, the Unity ML-Agents environment provides a built-
in PPO implementation, which simplifies configuration and
accelerates the cycle of computational experiments.

The actor network receives state features (velocities, joint
positions, surface contacts, etc.) together with visual data
processed through convolutional layers. The agent’s objective
is to maximize the reward associated with locomotion and
stability while moving in the chosen direction. PPO enables
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smooth adaptation of the policy to complex dynamics and

noisy feedback from the environment.

For the Walker agent, the action space is represented by
a vector of 30 continuous values (18 for joint angles and
12 for actuation forces/torques controlling joint movements),
whereas the Searcher agent controls only a single parameter —
the movement direction (a normalized rotation angle in the
range [—1, 1]). Both models are trained asynchronously using
multiple parallel environment simulations (from 4 to 10),
which enables efficient data collection and accelerates the
optimization process.

The main training parameters are (detailed in the documen-
tation (Juliani et al., 2018)):

« algorithm: PPO (proximal policy optimization);

 framework: Unity ML-Agents + PyTorch backend;

* learning_rate: 3x 104, A coefficient that determines the step
size when updating neural network parameters;

* batch_size —the size of the data batch used for one training
step: Searcher: 1,024, Walker: 2,048;

* buffer size: 10,240. The number of environment interac-
tions used for one training cycle. Configured as a multiple
of batch_size x num_envs;

» num_epochs: 3. The number of optimizer passes (epochs)
over one data buffer before it is updated;

» gamma (discount factor): Searcher: 0.99, Walker: 0.995;

 lambda (GAE): 0.95;

« clip_range: 0.2.

The Walker agent was trained separately in an isolated en-
vironment until stable and straight locomotion was achieved.
The average number of steps to convergence was approxi-
mately 2—3 million. After this stage, the model weights were
fixed, and the agent was used only in inference mode.

The Searcher agent was trained independently of the
Walker. The average number of steps per experiment ranged
from 5 to 10 million, depending on the environment configura-
tion (camera resolution, max_step, number of target objects
in the environment, etc.).

Simulation parameters were specified through YAML con-
figurations of ML-Agents. To ensure stable and reproducible
results, a fixed parameter was used to set the initial value for
the random number generator applied in both the environment
and training (random_seed), along with consistent settings:
when the number of environments (num_envs) was changed,
buffer size was necessarily adjusted proportionally, as re-
quired by the ML-Agents framework.

All experiments were conducted on a computer equipped
with a CUDA-compatible GPU (see Section “System perfor-
mance and profiling”). The software versions used were: Uni-
ty 2022.3, ML-Agents 21.0, PyTorch 2.0.1, and Python 3.10.

Experiments. The experimental part of the study (nu-
merical experiments) was aimed at investigating the influence
of visual system parameters, environment configuration,
and architectural constraints on the training efficiency of
agents. All experiments were carried out in isolated envi-
ronments using a fixed Walker agent model and a trainable
Searcher agent. The main directions of investigation were as
follows:

1. Impact of camera image resolution on learnability. Arange

of resolutions was considered: 20 x 20, 40 x40, 60 x 60,

80x 80, 84 x84 (the default resolution for Unity ML-
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Agents), and 100 x 100 pixels. For each of these, a separate

training of the Searcher was conducted under otherwise

identical parameters. The objective was to determine the
minimal resolution at which the agent consistently achieves
the target behavior (Reward >5).

2. Impact of speed control capability. In one of the experi-
ments, the Searcher agent was additionally given the ability
to control the target movement speed (a second continuous
output parameter). The objective was to determine whether
this would lead to more flexible behavior or instead com-
plicate the learning task.

3. Variation of maximum rotation angle. The Searcher agent
transmits a body rotation command. In different experi-
ments, the maximum allowable rotation angles were tested:
90, 120, 180, and 270°. The hypothesis examined was that
larger angles may simplify navigation but make the behavior
less precise and stable.

4. Impact of episode length (max_step parameter). In the
experiments, two values of the max_step parameter were
considered: 5,000 and 20,000. The value max_step = 5,000
was used as the baseline, as it allowed the agent to receive
rewards quickly enough and provided timely feedback to
the learning algorithm. The value 20,000 was considered
as an alternative, applicable to tasks with longer action
sequences and delayed rewards.

5. Verification with manual control. To validate the behavior
of the trained Walker model, manual control of the agent
was implemented (via the A/D keys, left/right). This made
it possible, on the one hand, to confirm that the observed
effects (e. g., halting of movement) were caused by body
dynamics rather than the Searcher agent’s policy, and on the
other hand, to test whether a human, using the same type
of control, could successfully perform the target-search
task (an assessment of controllability and environment
perception).

All experiments were recorded using the Unity ML-Agents
logging system and analyzed in TensorBoard, a visualization
tool for monitoring the training process that allows real-time
plotting of reward dynamics, loss functions, simulation speed,
and other metrics. The success criteria are described in Section
“Problem statement”.

Results

Dependence of learnability on image resolution

The results of the series of experiments with different input
image resolutions showed that the minimal resolution at which
the agent consistently achieved the target behavior (average
reward >5) was 84 x 84 pixels. At resolutions of 20 x 20,
40x 40, and 60x% 60, training required substantially more
time, although the trend toward improvement was preserved.
The resolution of 100 x 100 also allowed the target reward to
be reached, but training at 84 x 84 was slightly faster due to
lower computational load. The results of this experiment are
presented as TensorBoard plots in Figure 5.

Impact of speed control on training

The addition of a second control parameter (movement speed)
increased the dimensionality of the action space and signifi-
cantly complicated training. The agent required more time to
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converge (approximately 33 % longer under otherwise identi-
cal conditions), and the resulting behavior was less stable — for
the given task, speed control is largely a redundant parameter.
This supports the simple hypothesis that increasing the number
of degrees of freedom requires a more complex policy and
hinders model training. The results of this experiment are
shown as a TensorBoard plot in Figure 6.

Average Reward

Step num

2.5

2.0

1.5

Average Reward

1.0

Step num

Self-learning virtual organisms
in a physics simulator

Results with varying rotation angles

The best results were obtained with a maximum rotation angle
of 90°. Increasing the angle to 120° led to a slight decrease in
stability, while at 180 and 270°, the agent did not reach the
target reward level, requiring longer and less efficient training.
This indicates that an excessively wide action space hinders
the development of a stable navigation policy.

Fig. 5. Training results of the Searcher agent at different input image resolutions.

The upper panel shows the average reward curves for all investigated resolutions; the magenta curve corresponds to 84 x84,
and the orange curve to 100 x 100. The lower panel presents the same data with the dominant curves removed, allowing a more

detailed view of the remaining variants (20 x 20, 40 x40 1 60 X 60, 80 x 80).

Average Reward

Step num

Fig. 6. Training results of the Searcher agent with input image resolution 84 x84 and the addition of a second control parameter (movement speed)

alongside the primary one (rotation angle).
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Impact of episode length (max_step)

With max_step = 5,000, the agent demonstrated stable train-
ing, receiving timely feedback on goal achievement. Increas-
ing the episode length to 20,000 did not improve training
quality, while simulation time and resource load increased.
Therefore, max_step = 5,000 was used as the primary set-
ting, as it provided a balance between training efficiency and
computational cost.

System performance and profiling

To evaluate the scalability and computational efficiency of
the simulator, profiling of key system components was con-
ducted under varying visual sensor resolutions and numbers
of parallel environments. All measurements were performed
on a machine equipped with an NVIDIA GeForce RTX 3070
GPU and an AMD Ryzen 5 7500F CPU (6 cores, 12 threads,
3.7 GHz base clock, 5.0 GHz in turbo mode).

The contribution of main simulation components to com-
putational costs:

 Physics Engine — less than 1 ms per step, virtually inde-
pendent of resolution;

 graphics and sensors (Camera.Render, PostProcess) —
from 3.2 to 9.5 ms depending on resolution (almost linear
dependence);

 neural network (PyTorch Inference) — approximately
35 ms per step when using convolutional architecture for
Searcher;

* Unity—Python communication (gRPC, serialization) —
from 45 to 60 ms. With an increasing number of agents, this
component becomes one of the main system bottlenecks,
since communication costs (serialization/deserialization,
data exchange) grow proportionally to the number of
agents;

* other (UI, garbage collection, VSync) — up to 20 % of
runtime, may increase during active debugging.

At a resolution of 84 x84 with four parallel agents, the
average simulation step time was approximately 3.6 ms,
corresponding to about 278 steps per second. At a resolution
of 100 x 100, the step time increased to 3.8 ms, reducing per-
formance to roughly 263 steps per second. All measurements
were conducted without scene visualization. In all experiments
with the Searcher agent, the number of simultaneously running
environments was set to 4.

Thus, the main limiting factor in scaling is not physics or
rendering, but data exchange between Unity and Python. This
should be considered when planning large-scale experiments
or transitioning to population-level modeling. Aworking pro-
totype for reproducing the results is available in the repository
at: https://github.com/DerpyFox/organism_simulator.

Discussion

Results interpretation

The obtained results demonstrate that the success of train-
ing agents with visual perception directly depends on the
resolution of the input image. Too low a resolution (up to
60 x 60) leads to a loss of spatial structure of the scene and
the agent’s inability to develop a stable strategy. On the other
hand, resolutions above 84 x84 do not provide a noticeable
gain in efficiency but increase the computational load. This

2025
29.7

CamoobyuatoLmecs BUPTYasibHble OpraHn3mbl
B dU3MUeCcKom cumynaTope

confirms the existence of an optimal range of visual percep-
tion, comparable to that evolutionarily formed in insects: their
vision developed to be sufficiently detailed for performing
behavioral tasks (Chittka, Niven, 2009).

Despite the observed dependence between visual system
resolution and the success of agent training, it should be noted
that in nature there are organisms capable of effective behavior
even with extremely low visual resolution. For example, in
some ant species, as mentioned in the introduction, the visual
system is comparable in scale to a resolution of about 10 x 10,
yet this does not prevent them from confidently navigating,
locating food, interacting with their environment, and even
passing the mirror test (Cammaerts M.-C.T., Cammaerts R.,
2015). Such efficiency is determined not only by vision but
also by the developed olfactory system, which plays a key
role in perceiving the surrounding world. In addition, the
neural systems of real insects may possess a range of pro-
perties that enhance their effectiveness. These systems were
shaped through long evolutionary processes and are adapted
to specific living conditions and the typical tasks of a living
organism — for example, navigating in complex environments,
searching for food, and interacting with conspecifics. They
exhibit a high degree of neuronal specialization and mecha-
nisms of adaptation to changing stimuli. Such “tuning” to
real-world conditions makes it possible to efficiently process
even limited or fragmentary sensory signals, including visual,
olfactory, and mechanosensory inputs.

The addition of speed control and the increase in rotation
angle showed that even a slight expansion of the action space
leads to slower learning. Thus, it is important to maintain
a balance between the expressiveness of the model and its
learnability. The division of perception and body control tasks
between the Searcher and Walker agents proved to be critical
for achieving stable behavior.

Biological parallels and cognitive efficiency

The results resonate with principles observed in insects:
minimal but functionally redundant visual systems enable
successful navigation and real-time decision-making. Simi-
larly, the proposed architecture allows the agent to achieve
target strategies with limited resolution and a relatively small
neural network.

When the obtained results are considered in the context
of real biological systems, a parallel can be drawn with the
evolutionary trade-offs that arise between sensory accuracy,
computational cost, and behavioral adaptability. For example,
the visual systems of insects such as fruit flies (~150,000 neu-
rons) or honeybees (~960,000 neurons) provide basic object
recognition and spatial orientation with a minimal number of
neurons and extremely limited bandwidth (Menzel, 2012).
These organisms do not possess high-resolution visual sys-
tems, but they achieve high efficiency through a combination
of rapid response, sensorimotor architecture, and decision-
making strategies (Chittka, Niven, 2009). Such considerations
are well illustrated by insects with a high level of social or-
ganization. In ants, division of labor and communication are
shaped not only as innate behavioral patterns but also as the
result of flexible adaptation at the level of individual workers.
The distribution of roles within a colony may vary depending
on age, physiological state, and the current situation, while
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information transfer between ants is achieved through a wide
range of signals (Chittka, Muller, 2009). Thus, even simple
agents with limited cognitive capacities can achieve high ef-
ficiency through the organization of interactions and simple
behavioral rules.

Agents in our simulator demonstrate the ability for adap-
tive behavior even at relatively low visual resolutions (e.g.,
84 x 84 pixels), which allows further analogies to be drawn
with minimal cognitive systems in nature. Such models can be
employed as artificial systems that reproduce key behavioral
aspects of simple organisms and serve as a basis for generat-
ing hypotheses about the neurophysiological mechanisms of
perception and behavior in invertebrates.

System limitations

The main limitation of the system lies in the communication
overhead between the Unity environment and the PyTorch
training framework. Even with high computational perfor-
mance of the processing units, serialization and data transfer
via gRPC become the bottleneck. In addition, at this stage, the
environment remains limited in complexity: it lacks obstacles,
dynamic topography, and inter-agent interactions. Finally, the
agent architectures are fixed and do not undergo evolution or
temporal adaptation (only parameter weights change, while
network topology remains unchanged).

Future directions

Further development is possible in several directions. The in-
troduction of neuroevolutionary mechanisms (e. g., the NEAT
approach — NeuroEvolution of Augmenting Topologies) would
make it possible to investigate not only changes in neural
network weights but also the evolutionary optimization of
network structure. This is particularly relevant in the context
of energy costs: with excessive brain complexity, resource
consumption increases, whereas in simpler environments it
may be advantageous to reduce the number of neurons. In this
way, agents could autonomously adapt the size and potentially
the architecture of their neural networks, reducing redundancy
under conditions of low cognitive load. In biological systems,
even a slight increase in nervous system complexity can lead
to a noticeable rise in energy expenditure. For example, in the
fly Calliphora vicina, the retina alone consumes about 8 % of
the organism’s resting metabolic rate (Niven, Laughlin, 2008).
In humans, by contrast, the brain accounts for only about 2 %
of body mass yet consumes up to 20 % of the body’s energy
(Attwell, Laughlin, 2001). These data indicate that the benefit
of reducing the number of neurons or decreasing the complex-
ity of the sensory system can be substantial.

Introducing environmental elements involving resource
competition (multiple agents, a limited number of targets, and
the ability of more advanced agents to select and solve more
complex cognitive tasks from those available in the system,
thereby gaining additional advantages) would make it pos-
sible to analyze behavioral strategies at the population level.

A promising direction is the addition of an olfactory model —
a sensory channel based on short-term “traces” in the environ-
ment, analogous to pheromone markings in ants. Such traces
may decay over time, differ in content (e.g., distinguishing
between a satiated and a hungry ant), and influence an agent’s
trajectories, thereby reinforcing elements of indirect communi-

Self-learning virtual organisms
in a physics simulator

cation and collective behavior. It would also be reasonable to
incorporate memory and recurrent modules into the Searcher
model to study navigation under partial observability.

Conclusion

This study was aimed at the quantitative and qualitative evalu-
ation of architectural and sensory parameters in the task of
training visually guided agents in a three-dimensional simu-
lation. We proposed and implemented a hierarchical control
model in which the locomotion agent (Walker) functions as
a low-level executor of movements, while the perception and
navigation agent (Searcher) makes strategic decisions based
on visual information.

A systematic analysis demonstrated that even under lim-
ited sensory input (due to low resolution), agents are capable
of developing stable behavioral strategies, provided that
the model and environmental conditions are designed with
cognitive load in mind. It was established that a resolution of
84 x 84 pixels offers a compromise between computational ef-
ficiency and minimal cognitive adequacy, whereas increasing
the dimensionality of the action space without a correspond-
ing increase in training resources leads to degraded per-
formance.

Our results support the hypothesis that minimally complex
neural network agents can realize sophisticated behavioral
patterns under conditions of limited sensory perception, where
the agent receives only partial information about the environ-
ment. These findings are consistent with observed examples
of cognitive efficiency in invertebrates, such as ants and bees,
and open up prospects for the use of such models in bio-
logical modeling, robotics, and research in the field of neuro-
evolution.

In the future, the system may be extended toward popu-
lation-level simulations incorporating competition, inter-
agent communication, and strategy adaptation in a changing
environment. The architecture can be further enhanced with
memory modules, recurrent connections, or neuroevolutionary
mechanisms, enabling the study of more complex cognitive
phenomena in virtual populations.

It was also shown that the use of visual information, de-
spite its expressiveness, requires substantial computational
resources and, in some cases, may be less efficient than simpler
sensory models. These observations highlight the importance
of sensory architecture choice when designing minimally suf-
ficient cognitive agents.

Another key finding was the recognition of the critical role
of environment design and training structure in the success of
modeling. Initial attempts to train behavior through a single
neural network model that combined locomotion and strat-
egy did not lead to the emergence of the ability to detect and
collect targets (“food” units), due to difficulties in balancing
rewards and formulating the task. The introduction of a func-
tionally separated approach (search and locomotion) made it
possible to achieve a substantial improvement in learnability
and behavioral stability.

Thus, the obtained results demonstrate the potential of
neuro-agent systems in biologically inspired modeling tasks
and provide a foundation for further experiments aimed at
exploring the limits of cognitive complexity under constrained
perceptual and control resources.
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