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Abstract. The study of molecular genetic mechanisms of plant responses to specific growth conditions and stress 
factors is a central focus of scientific research aimed at developing new valuable crop varieties, particularly rice and 
wheat. These factors include abiotic stresses (high or low temperatures, drought, salinity, soil metal contamination), 
biotic stresses (pathogens, pests), as well as plant responses to regulatory factors (fertilizers, hormones, elicitors, 
and other compounds). Modern research in plant genetics is based on the understanding that the formation of 
any phenotypic characteristics (molecular genetic, biochemical, physiological, morphological, etc.) is controlled 
by gene networks – groups of coordinately functioning genes interacting through their products (RNA, proteins, 
and metabolites). Previously, we developed the ANDSystem intelligent technology designed to extract knowledge 
from scientific publication texts for the reconstruction of gene networks in biology and biomedicine. In this work, 
using an adapted version of ANDSystem for plants, we created the SmartCrop knowledge base designed to address 
challenges related to studying molecular genetic mechanisms of genotype-phenotype-environment interactions 
for agriculturally valuable rice and wheat crops. SmartCrop is designed to assist researchers in solving tasks such 
as interpreting omics technology results (establishing connections between gene sets and biological processes, 
phenotypic traits, etc.); reconstructing gene networks describing relationships between molecular genetic objects 
and concepts in breeding, phenomics, seed production, phytopathology, diagnostics, protective agents, etc.; 
identifying regulatory and signaling pathways of plant responses to specific growth conditions and biotic and 
abiotic stresses; predicting candidate genes for genotyping; searching for markers for marker-assisted selection; and 
identifying potential targets for substances (including external factors) affecting plants to ensure timely and uniform 
germination, better vegetative growth, efficient nutrient uptake, and improved stress resistance.
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Аннотация. Изучение молекулярно-генетических механизмов реакций растений на специфические условия 
роста и стрессовые факторы – одно из приоритетных направлений исследований, нацеленных на создание 
новых сортов сельскохозяйственных культур, в частности риса и пшеницы. К числу таких факторов относятся 
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SmartCrop knowledge base

абиотические стрессы (высокие или низкие температуры, засуха, засоление, загрязнение почвы металлами), 
биотические стрессы (патогены, вредители), а также реакции растений на регуляторные факторы (удобрения, 
гормоны, элиситоры и другие соединения). Современные исследования в области генетики растений основаны 
на понимании того, что формирование любых фенотипических характеристик (молекулярно-генетических, 
биохимических, физиологических, морфологических и др.) контролируется генными сетями – группами 
согласованно функционирующих генов, взаимодействующих через свои продукты (РНК, белки и метаболиты). 
Ранее с целью реконструкции генных сетей, значимых для биологии и биомедицины, нами была разработана 
интеллектуальная компьютерная система ANDSystem, предназначенная для автоматизированного извлечения 
знаний из текстов научных публикаций и баз данных. В настоящей работе, используя адаптированную версию 
ANDSystem для растений, мы создали базу знаний SmartCrop для решения задач, связанных с изучением 
молекулярно-генетических механизмов взаимодействий «генотип–фенотип–среда» для сельскохозяйственно 
ценных культур риса и пшеницы. SmartCrop предназначена для помощи исследователям в решении таких задач, 
как интерпретация результатов омиксных экспериментов на растениях: установление связей между наборами 
генов и биологическими процессами, фенотипическими признаками и др.; реконструкция генных сетей, 
описывающих отношения между молекулярно-генетическими объектами и понятиями в селекции, феномике, 
семеноводстве, фитопатологии; выявление регуляторных и сигнальных путей, ответных реакций растений на 
специфические условия роста и биотические и абиотические стрессы; прогнозирование генов-кандидатов 
для генотипирования; поиск маркеров для маркер-опосредованной селекции; выявление потенциальных 
мишеней (генов и белков) для субстанций, влияющих на растения (контролирующих процессы прорастания 
семян, вегетативного роста, эффективного поглощения питательных веществ и улучшения устойчивости к 
стрессовым факторам).
Ключевые слова: база знаний SmartCrop; ANDSystem; извлечение знаний из текстов; искусственный интеллект; 
молекулярно-генетические механизмы; рис; пшеница; ассоциативные генные сети; абиотические стрессы; 
биотические стрессы; взаимодействия генотип–фенотип–среда; омиксные технологии; длинные некодирующие 
РНК; маркер-опосредованная селекция; адаптация растений; стрессоустойчивость

Introduction
Rice (Oryza sativa L.) and wheat (Triticum aestivum L.) 
are among the most important agricultural crops, ensuring 
food security for a significant portion of the world’s popula-
tion. Both crops are well known for their high nutritional, 
industrial, and fodder value (Shewry, Hey, 2015). Under 
current conditions, the production of these crops faces seri-
ous challenges. Extreme weather events, adverse climate 
change, plant diseases, and pests lead to substantial yield 
losses (Lesk et al., 2016). Overcoming these difficulties 
is impossible without studying the molecular genetic 
mechanisms underlying plant resistance to unfavorable 
biotic and abiotic factors, which requires the analysis of 
complex systems that include intricate signaling, regulatory, 
transport, and metabolic pathways (Mittler, 2006; Nykiel  
et al., 2023).

An effective tool for studying such mechanisms is gene 
networks, which control molecular genetic processes that de-
termine the formation of phenotypic traits and the function-
ing of biological processes, including plant stress responses.

The modern concept of gene networks encompasses not 
only molecular components (RNAs, genes, proteins, and 
metabolites) but also a wide range of heterogeneous entities, 
including diseases, biological processes, and environmental 
factors. This type of gene network is known as an associative 
gene network (Ivanisenko V.A. et al., 2015). Structurally, 
such networks represent a knowledge graph integrating 
information about interactions among diverse objects in-
volved in the functioning of molecular genetic systems or 
influencing them. In agrobiology and crop science, gene 
network analysis is successfully used to study economically 

important traits such as resistance to diseases and pests, 
tolerance to abiotic stress factors, and yield (Virlouvet et 
al., 2018; Chen et al., 2020).

The reconstruction of plant gene networks is a complex 
task that requires processing massive amounts of data and 
integrating fragmented information from scientific publica-
tions, including data on regulatory, transport, and catalytic 
processes, as well as relationships between genetic features, 
phenotypic manifestations, and environmental factors. 
To extract such knowledge, text-mining methods are ap-
plied, based both on classical computational approaches 
(dictionary-based methods, syntactic and linguistic rules and 
patterns, statistically significant co-occurrence, etc.) and on 
machine-learning techniques (Ivanisenko T.V. et al., 2014; 
Shrestha et al., 2024; Zhang et al., 2024).

Machine-learning algorithms used for constructing and 
analyzing gene networks can be divided into the following 
categories: supervised learning, unsupervised learning, 
semi-supervised learning, and hybrid approaches. Super-
vised learning methods rely on pre-annotated data to build 
predictive models, for example, to identify key regulators 
or to predict functional interactions between plant genes (Ni 
et al., 2016). Unsupervised learning enables the discovery 
of hidden patterns in large datasets, which is important, for 
instance, when clustering genes based on expression simila
rity or identifying gene-network modules. Semi-supervised 
learning combines the strengths of both approaches, using 
both labeled and unlabeled data, which is particularly re
levant when the amount of well-annotated data is limited 
(Yan, Wang, 2022). Hybrid approaches integrate various 
machine-learning methods as well as traditional bioinformat-
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ics techniques, allowing them to effectively compensate for 
the limitations each approach may have when used alone 
(Guindani et al., 2024; Ivanisenko T.V. et al., 2024). For 
example, combining dictionary-based named-entity re
cognition in texts with machine-learning methods improves 
the accuracy of entity identification (Do et al., 2018; Iva
nisenko T.V. et al., 2020).

In recent years, deep machine learning has achieved sig-
nificant advances through the introduction of the transformer 
architecture and attention mechanisms, which have enabled 
substantial progress in natural language processing and the 
analysis of biological sequences (Vaswani et al., 2017). 
The analysis of gene networks has also seen considerable 
development with the application of graph neural networks, 
among which the GraphSAGE architecture (Hamilton et 
al., 2017) enables efficient training on large heterogeneous 
graphs by aggregating features from neighboring nodes. 
A promising direction is the use of large language models, 
such as Gemma-2-9b-it (Gemma Team, Google DeepMind, 
2024), which provide high-quality semantic analysis of sci-
entific texts and validation of extracted interactions.

A number of specialized resources have been developed 
for the reconstruction and analysis of plant gene networks. 
These include PlantRegMap (Tian et al., 2020), designed 
for analyzing transcription factor regulatory interactions; 
STRING (Szklarczyk et al., 2021), which enables the ex-
ploration of protein–protein interactions; the KEGG PLANT 
platform (Kanehisa, 2013), which integrates information on 
metabolic pathways across various plant species; and the 
Plant Reactome resource (Naithani et al., 2020), containing 
detailed data on signaling and metabolic pathways in model 
plant organisms. For visualization and analysis of gene net-
works, the Cytoscape software environment (Otasek et al., 
2019) is widely used, offering an extensive set of plugins for 
working with biological data. The ncPlantDB database pro-
vides comprehensive information for analyzing regulatory 
networks, including data on cell-type specific expression of 
noncoding RNAs and their interactions (Cheng et al., 2024; 
Liu et al., 2025). The integration of such omics resources 
forms an effective platform for reconstructing gene networks 
of agricultural crops (Chao et al., 2023).

Earlier, we developed the ANDSystem cognitive soft-
ware information platform (Ivanisenko V.A. et al., 2015, 
2019; Ivanisenko T.V., 2020, 2022) designed for the full 
knowledge-engineering cycle in the biomedical domain. 
The system’s knowledge base contains more than 50 million 
interactions for various organisms.

In the field of plant biology, ANDSystem has been used 
to create a knowledge base on the genetics of Solanum 
tuberosum (Saik et al., 2017; Ivanisenko T.V. et al., 2018; 
Demenkov et al., 2019), to reconstruct and analyze the 
regulatory gene network controlling cell wall functions in 
Arabidopsis thaliana leaves under water deficit (Volyan
skaya et al., 2023), and to develop a method for prioritizing 
biological processes based on the reconstruction and analysis 
of associative gene networks (Demenkov et al., 2021).

The application of the ANDSystem automated reconstruc-
tion of associative gene networks to analyze microRNA-
mediated regulation of bread wheat (Triticum aestivum L.) 
adaptation to water deficit made it possible to propose new 
candidate microRNAs (MIR7757, MIR9653a, MIR9670, 
MIR9672b) of interest for further experimental studies of 
plant adaptation mechanisms under insufficient moisture 
(Kleshchev et al., 2024).

In another study (Antropova et al., 2024), ANDSystem 
was used to reconstruct the molecular genetic network of 
rice (Oryza sativa) responses to Rhizoctonia solani infection 
under nitrogen excess, which revealed three potential mecha-
nisms explaining reduced plant resistance to the pathogen. 
Key regulatory pathways were identified: an OsGSK2-me
diated cascade, the OsMYB44–OsWRKY6–OsPR1 signal-
ing pathway, and a pathway involving SOG1, Rad51, and the 
PR1/PR2 genes. In addition, markers promising for breeding 
were identified: 7 genes regulating a broad range of stress 
responses and 11 genes that modulate the immune system. 
Additional analysis of noncoding RNAs (Antropova et al., 
2024) identified 30 microRNAs targeting genes within the 
reconstructed gene network. For two of them (Osa-miR396 
and Osa-miR7695), approximately 7,400 unique long non-
coding RNAs with differing co-expression indices were 
found, which may indicate a complex architecture of post-
transcriptional regulation under nitrogen stress.

The aim of the present work was to adapt ANDSystem 
to create the SmartCrop knowledge base, integrating data 
on molecular genetic mechanisms and associative gene 
networks of stress responses in rice and wheat based on 
intelligent analysis of scientific publications and curated 
factual databases. This work included the development 
of a domain ontology and the optimization of intelligent 
knowledge-extraction methods from scientific texts using 
semantic–linguistic patterns and pretrained large language 
models. The SmartCrop ontology is represented by a set of 
interconnected dictionaries describing: molecular genetic 
entities (genes, proteins, metabolites, microRNAs), bio-
logical processes, phenotypic traits and diseases, pathogens, 
genetic biomarkers, markers of resistance to crop protection 
products, molecular targets of chemical crop protection 
agents, biotic and abiotic factors, crop protection products, 
as well as cultivars with their economically valuable and 
consumer traits.

As a result of automated analysis of scientific publications, 
the SmartCrop knowledge base was formed, integrating 
more than 10 million interactions among the entities defined 
in the ontology.

Materials and methods
Information resources used in the development of 
SmartCrop. To create the SmartCrop knowledge base, 
we used the ANDSystem software information platform 
(Ivanisenko  V.A. et al., 2015, 2019; Ivanisenko  T.V., 
2020, 2022) and its information and bioinformatics tech- 
nologies.
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Customization of ANDSystem methods for the subject 
domain was carried out using an ontology that included 
specialized dictionaries of entities and a description of the 
types of their interactions. The main sources of genetic 
and genomic information for constructing the dictionaries 
were: the NCBI Gene database (https://www.ncbi.nlm.nih.
gov/gene), the rice-specific database Oryzabase (https://
shigen.nig.ac.jp/rice/oryzabase), the microRNA database 
miRBase (https://www.mirbase.org), the long noncoding 
RNA co-expression database ncPlantDB (https://bis.zju.
edu.cn/ncPlantDB/ ), the single nucleotide polymorphism 
database dbSNP (https://www.ncbi.nlm.nih.gov/snp), and 
the database on cereal crops GrainGenes (https://wheat.
pw.usda.gov/GG3).

To standardize terminology, we used the following on-
tologies: Gene Ontology (http://geneontology.org), Crop 
Ontology for wheat and rice (https://cropontology.org), 
as well as the genetic resources collection of VIR (https://
www.vir.nw.ru).

Chemical compounds and metabolites were annotated 
using the ChEBI database (https://www.ebi.ac.uk/chebi). 
Information on herbicide resistance was obtained from 
the International Herbicide-Resistant Weed Database  
(http://www.weedscience.org), and data on pesticides 
were taken from the EU Pesticide Database (https://food.
ec.europa.eu/plants/pesticides/eu-pesticides-database_en).

For knowledge extraction from texts, we used AND-
System’s semantic-linguistic templates, as well as newly 
developed templates tailored to the specifics of the subject 
domain. In addition, artificial intelligence methods were 
applied for knowledge extraction, including GraphSAGE 
graph neural networks (Hamilton et al., 2017) and the large 

language model Gemma-2-9b-it (Gemma Team, Google 
DeepMind, 2024).

Evaluation of accuracy. To assess the quality of named-
entity annotation in the text, the F1-score was used, which 
is the harmonic mean of precision (Precision) and recall 
(Recall):

F1 = 2·(Precision × Recall)/(Precision + Recall),
Precision = TP/(TP + FP),

Recall = TP/(TP + FN),
where TP – are true positives, FP – are false positives, and 
FN – are false negatives.

Results
A schematic representation of the main components of 
the SmartCrop software-information system is shown in 
Figure 1.

SmartCrop domain-specific ontology module
The development of a domain-specific ontology was a key 
stage in building SmartCrop. The domain-oriented ontology 
defines a conceptual model of the problem area and includes 
dictionaries of entities and types of their interactions. Based 
on these dictionaries, information about interactions between 
specific entities is extracted from texts and factual databases. 
The current version of the SmartCrop ontology contains 
15 dictionaries of different entity types (Table 1), compiled 
by extracting entity names from specialized databases and 
existing ontologies.

Interaction types. In the SmartCrop system, 16 types of 
relationships between ontology entities are defined. All inter-
actions in the system are directional and can be divided into 
several main groups. Physical interactions include processes 

Text annotation module

Interaction knowledge 
extraction module

SmartCrop knowledge base

User interface  
SmartCrop: ANDVisio software –  

reconstruction and analysis of associative 
gene networks

Data extraction module from 
factual databases

Domain ontology: dictionaries and entity relationships

Dictionary-based 
annotation

Semantic consistency 
validation (LLM)

Semantic-linguistic templates 
(over 20,000)

Graph neural networks: 
GraphSAGE

Large language models: 
Gemma-2-9b-it

Semantic network  
of interactions between 

entities
Databases: NCBI Gene, 

Oryzabase, miRBase, GrainGenes, 
Crop Ontology, etc.

Integration with omics data: 
ncPlantDB

More than10 million  
interactions

Molecular-genetic entities (genes, proteins, microRNAs, etc.), 
environmental factors, economically important traits, etc.

Fig. 1. Schematic representation of the architecture of the SmartCrop software information system.

https://www.mirbase.org
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of forming both short-lived molecular complexes and stable 
associations between proteins and metabolites.

Chemical interactions comprise catalytic reactions of the 
substrate–enzyme–product type, protein proteolysis, as well 
as various post-translational protein modifications such as 
phosphorylation and glycosylation.

A distinct group is formed by regulatory interactions, 
which encompass the regulation of gene expression by 
transcription factors, modulation of protein activity and 
function, control of protein and metabolite transport, as 
well as regulation of protein stability and degradation. An 
important feature is that regulatory interactions also define 
relationships between molecular genetic entities, biological 
processes, and phenotypic traits. Each regulatory event may 
be characterized by an enhancing or attenuating effect on 
the corresponding process.

Expression and co-expression of genes are distinguished 
separately. The products of gene expression are proteins 
and noncoding RNAs. Co-expression is the simultaneous 
expression of genes driven by shared regulatory mechanisms 
under changing cellular conditions. Additionally, the system 

accounts for associative links, which include unclassified 
interactions between various ontology entities.

Text-annotation module based on ontology entities 
Recognition of molecular genetic entities in scientific texts 
is a challenging task due to the specific nature of their no-
menclature. Our experience with ANDSystem shows that 
a substantial portion of errors in automatic reconstruction 
of associative gene networks is associated with inaccurate 
identification of named entities (Ivanisenko T.V. et al., 2022). 
The causes of such errors include the use of abbreviations by 
authors, semantic ambiguity of terms, and various linguistic 
features of scientific texts. In publications, standard names 
of entities are often modified, punctuation and word order 
are altered, grammatical forms vary, abbreviations are used, 
or technical typos are introduced (Pearson, 2001; Krallinger 
et al., 2015; Islamaj et al., 2021).

To improve recognition accuracy, we developed a two-
stage process: 1) initial matching of names to the ontology 
dictionary and 2) subsequent verification of whether each 
annotated entity name corresponds to its type, based on 
contextual document analysis using neural networks.

The verification process is implemented as follows: a 
language model converts the context (about 400  words) 
containing the analyzed entity, which is replaced with a 
special mask tag, into a vector representation. Based on this 
representation, a neural network performs binary classifica-
tion, determining whether the contextual environment of the 
term is consistent with its typical usage.

For entities from the ANDSystem ontology (genes, pro-
teins, metabolites, etc.), classification accuracy was reported 
in a previously published paper (Ivanisenko T.V. et al., 2022). 
For the new SmartCrop dictionaries, manual expert evalu-
ation of annotation quality was carried out (Table 2) based 
on the analysis of 1,000 randomly selected documents from 
the PubMed and PubMed Central databases.

The evaluation results demonstrated high annotation ac-
curacy for most dictionaries, with the exception of rice and 
wheat cultivar names. The identification of plant cultivar 
names is a well-known complex task, determined by several 
factors, including substantial overlap of terms with common 

Table 1. Dictionaries represented in the SmartCrop ontology

Dictionary Number  
of objects

Genes/proteins of rice (O. sativa) 45,198

Genes/proteins of wheat (T. aestivum) 155,761

microRNAs of rice (O. sativa) 604

microRNAs of wheat (T. aestivum) 122

Genetic biomarkers (T. aestivum) 862

QTL polymorphisms (O. sativa) 1,987

QTL polymorphisms (T. aestivum) 1,266

Rice cultivars (O. sativa) 14,377

Wheat cultivars (T. aestivum) 25,501

Metabolites 74,838

Biological processes 122,477

Economically important traits 234

Phenotypic traits 2,386

Diseases, pathogens, and pests 1,065

Markers of resistance to crop  
protection products

861

Biotic factors 710

Abiotic factors 496

Crop protection products and herbicides 1,336

Molecular targets of chemical crop protection 
agents

14

Long noncoding RNAs 6,546

Table 2. Accuracy assessment of entity name annotation  
for the new dictionaries

Dictionary F1-score

Cultivars (O. sativa) 0.103 (0.88)*

Cultivars (T. aestivum) 0.274 (0.919)*

Economically important traits 0.789

Abiotic factors 0.748

Biotic factors 0.927

Diseases, pathogens, and pests 0.881

*  Values in parentheses indicate the accuracy after filtering the types of 
recognized names using a neural network.
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vocabulary and anthroponyms, as well as the lack of a uni-
fied standard in the nomenclature of new cultivars (Do et 
al., 2018; D’Souza, 2024).

To address this problem, a specialized language model 
was trained, focused on the task of contextual term classifi-
cation. The training was carried out in accordance with the 
methodology previously described in our work on improving 
the accuracy of identifying eight types of molecular genetic 
entities, including proteins, genes, metabolites, and cellular 
components (Ivanisenko T.V. et al., 2022). Integration of the 
developed model made it possible to substantially increase 
the recognition accuracy (F1-score) of cultivar names to 
0.88 for rice and 0.919 for wheat.

Knowledge extraction module
The knowledge extraction module for scientific texts imple-
ments three main stages: 1) primary knowledge extraction 
using semantic-linguistic templates; 2) reconstruction of the 
initial semantic network; 3) its extension using graph neural 
networks and large language models. Additionally, to further 
expand the semantic network, a data extraction module for 
factual databases containing structured information is used, 
which makes it possible to obtain additional information 
about interactions between entities.

Semantic-linguistic templates are structured records 
containing metadata about the types of entities and the nature 
of their interactions. They include two main components: 
1)  syntactic relations that describe the order of entities 
and keywords in a sentence using regular expressions, and  
2) semantic relations that define the type of interaction be-
tween entities. Regular expressions are used to search for 
patterns in the arrangement of entity names in annotated text 
sentences. When a match is found, specific entity names from 
the text are mapped to the template identifiers.

For each interaction type, specialized groups of templates 
with unique syntactic rules were developed. The knowledge 
base contains more than 18,000 ANDSystem templates for 
interaction types represented in both the ANDSystem and 
SmartCrop ontologies, as well as more than 3,000 templates 
specifically designed for the rice and wheat ontologies. 
The effectiveness of the template-based interaction extrac-
tion method was demonstrated during the development of 
ANDSystem (Ivanisenko V.A. et al., 2015).

Application of graph neural networks and large lan-
guage models. At the second stage, based on the knowledge 
extracted using templates, a primary knowledge graph 
(semantic network) was constructed and used to train a 
graph neural network. After training, the network was used 
to predict missing edges in the knowledge graph. At the 
third stage, large language models were applied to validate 
these predictions by analyzing scientific texts in which the 
annotated entities with the predicted interactions co-occur 
(Ivanisenko T.V. et al., 2024).

Integration with omics data
Noncoding RNAs (ncRNAs) represent a broad and functio
nally diverse class of RNA molecules that are not translated 

into proteins but perform key regulatory functions in the cell. 
Long noncoding RNAs (lncRNAs) are of particular inte- 
rest, as they participate in the regulation of gene expression 
at multiple levels – from modulating mRNA stability and 
translation to being involved in complex signaling cascades 
(Statello et al., 2021; Supriya et al., 2024).

A well-known specialized resource on ncRNA co-expres-
sion in plants, including rice lncRNAs, is the ncPlantDB 
database (https://bis.zju.edu.cn/ncPlantDB/). It provides 
information on tissue-specific ncRNA expression at the 
single-cell level and their putative interactions, obtained 
using modern single-cell transcriptomics methods (Cheng 
et al., 2024; Liu et al., 2025). Integration of SmartCrop with 
ncPlantDB made it possible to use ncRNA co-expression 
data, including their relationships with microRNAs, to enrich 
the reconstructed gene networks.

Module for gene network analysis and visualization
As the graphical user interface of SmartCrop, intended for 
the reconstruction and analysis of gene networks based 
on information from the SmartCrop knowledge base, the 
ANDVisio software is used (Fig. 2).

The ANDVisio program (Demenkov et al., 2012) was 
originally developed as a component of the ANDSystem 
platform and was later adapted for integration with Smart-
Crop. It provides researchers with a wide range of tools 
for structural and functional analysis of gene networks, 
including:
• multiple graph layout algorithms;
• a multi-parameter filtering system;
• mechanisms for pathways and cycles finding;
• tools for calculating node centrality measures;
• tools for assessing the enrichment of biological processes 

with network genes;
• additional methods of network analysis.

SmartCrop knowledge base
The system’s knowledge base is implemented as a semantic 
network (knowledge graph) that integrates data extracted 
both from scientific publications and from factual databases. 
In this graph structure, nodes correspond to entities of the 
domain ontology, and edges represent various types of in-
teractions between them.

The knowledge base was populated through systematic 
analysis of the scientific literature, including abstracts from 
PubMed and full-text articles from the open-access resource 
PubMed Central. The time span of the analyzed publications 
covered the period from 1970 to 2024, with the main selec-
tion criterion being the presence of references to wheat or 
rice. Detailed statistics on the number of recorded interac-
tions in the SmartCrop knowledge base are presented in 
Table 3.

Discussion
To demonstrate the capabilities of SmartCrop, we consider 
two use cases: analysis of experimental omics data and 
experiment planning.
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Analysis of experimental omics data
As an example of omics data interpretation, we performed 
functional annotation of differentially expressed genes 
(DEGs) in bread wheat under salt stress. For the analysis, 
we used a set of 5,829 DEGs obtained from the NCBI GEO 
database (GSE225565, Alyahya, Taybi, 2023) for root tis-
sues of bread wheat (Triticum aestivum L., cultivar Saudi) 
in response to salinization.

The results of the overrepresentation analysis of Smart-
Crop entities (biological processes, phenotypic traits, ag-
ronomically important traits, pathogens) for this DEG set 
and their protein products are presented in Supplementary 

Table  S11. In total, significant overrepresentation (p-va
lue < 0.05, Bonferroni-corrected) was found for 217 terms 
describing biological processes (entity type Pathway), 
50 phenotypic traits (Phenotype), 9 agronomically important 
traits (Agrophenotype), and 38 pathogenic species. The list 
of entities belonging to the five groups of the most statisti-
cally significant characteristics is given in Table 4.

Analysis of the overrepresented biological processes 
showed that the DEG set under study is associated not only 
with the response to salt stress, but also with the response to 
1 Supplementary Table S1 is available at: 
https://vavilovj-icg.ru/download/pict-2025-29/appx46.xls

Fig. 2. Screenshot of the ANDVisio program interface.

Table 3. Statistics of the SmartCrop knowledge base on interactions between entities for wheat and rice 

Interaction type Number of interactions

Rice (Oryza sativa) Wheat (Triticum aestivum)

Association 189,650 207,415

Regulation of expression 22,472 26,474

Regulation of activity 3,991 23,411

Regulation of degradation 1,442 4,415

Regulation of transport 830 1,320

ncRNA/miRNA regulation 2,125,036 5,814

Regulation of processes 23,274 23,766

Catalytic reactions 2,267 5,798

Expression 86,353 311,964

Physical interaction 8,551 11,810

Marker 435 226

https://vavilovj-icg.ru/download/pict-2025-29/appx46.xls
https://vavilovj-icg.ru/download/pict-2025-29/appx46.xls
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water deficit. This reflects plant adaptation mechanisms to 
the state of so-called “physiological drought”, which arises 
when effective water uptake becomes impossible due to high 
osmotic pressure of the surrounding environment. Among 
such adaptations is stomatal closure, mediated by a rapid 
increase in abscisic acid levels (Verma et al., 2016; Zhao et 
al., 2021). Accordingly, the significantly overrepresented 
entities included both the phenotypic trait “stomatal closure 
rate” (Table  4) and signaling pathways associated with  
abscisic acid (Table S1), which confirms their important role 
in the response to salinity.

It should be noted that an important advantage of the 
SmartCrop knowledge base, compared with widely used 
resources for gene functional annotation (DAVID, Gene 
Ontology, ShinyGO, etc.), is the ability to analyze rela-
tionships between genes/proteins and not only biological 
processes, molecular functions, cellular components, and 
KEGG pathways, but also a broad spectrum of abiotic and 
biotic environmental factors, phenotypic traits, agronomi-
cally important properties, and pathogens. This integration 
makes it possible to assess overrepresentation for different 
types of entities in the gene set under study, substantially 
expanding the capabilities of functional annotation and 
enabling the identification of genes with pleiotropic effects. 
The latter is particularly important for marker-assisted se-
lection, since selection based on a single target phenotypic 
trait or genetic marker may simultaneously affect several 
other, non-target traits.

In particular, the results of functional annotation of  
DEGs in bread wheat under salt stress showed their as-
sociation not only with responses to salinity and water 
deficit, but also with seed germination and with agro-

nomically important traits reflecting grain quality (Table 4). 
For example, aquaporins (encoded by genes LOC543267, 
LOC100037645, LOC123093445, and others) provide selec-
tive transport of water molecules, participate in maintaining 
cellular ion balance and in regulating water–salt homeostasis 
under elevated salinity (Ayadi et al., 2019), and also facili- 
tate the movement of water and solutes within seeds, which 
plays a key role in the germination process (Hoai et al., 
2020).

The functionality of SmartCrop is not limited to over-
representation analysis. The system also makes it possible 
to reconstruct associative networks of proteins and genes 
significantly associated with overrepresented entities and 
to search for their regulators. This provides a deeper un-
derstanding of the molecular mechanisms underlying these 
relationships and helps to reveal their specificity under 
experimental conditions.

As an example, a gene network regulating plant tole
rance to hyperosmotic stress (GO:0042538 hyperosmotic 
salinity response) was reconstructed (Fig.  3). According 
to SmartCrop, the wheat response to hyperosmotic stress 
involves 95 genes and 119 proteins, including aquaporins 
and sodium/hydrogen exchangers, which play a key role in 
regulating intracellular pH, water balance, and sodium-ion 
homeostasis (Gupta et al., 2021). Excess sodium ions ente
ring from the environment are removed from the cytoplasm 
into the apoplast and vacuoles in exchange for hydrogen ions 
via transmembrane Na+/H+ exchangers (Zhao et al., 2021). 

The network also includes peroxidases and catalases 
involved in antioxidant defense under abiotic stress; tran-
scription factors of the MYB and WRKY families; dehydrins 
(LOC123125487, LOC100141381, and others); cold-shock 

Table 4. Bread-wheat characteristics significantly associated with the DEG set and their protein products under salt stress,  
identified using the SmartCrop system 

Object (term) Number  
of associated 
genes and 
proteins

p-value Object (term) Number  
of associated 
genes and 
proteins

p-value

Biological processes Agronomically important traits

Response to water deprivation 37 2.73E–66 Seed longevity    2 3.96E–08

Cell death 31 1.12E–54 Grain thickness    2 1.77E–07

Cold acclimation 23 4.52E–41 Grain length    7 1.62E–20

Hyperosmotic salinity response 23 2.67E–38 Grain protein content    7 1.42E–17

Seed germination 20 7.21E–34 Fiber quality    2 1.23E–06

Phenotypic traits Pathogens

Stomatal closure rate    2 8.84E–47 Fusarium sp. 22 2.22E–59

Cell membrane stability    2 1.45E–31 Fusarium culmorum 10 1.23E–27

Grain moisture content    2 5.46E–31 Fusarium oxysporum 10 2.39E–26

Seed length    2 2.32E–30 Botrytis cinerea 10 8.63E–26

Na+ uptake    2 1.98E–29 Fusarium pseudograminearum 10 2.45E–25
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proteins (LOC123080042, LOC543252, LOC542792); as 
well as DELLA proteins, which, by suppressing the gib-
berellin signaling pathway and interacting with jasmonic 
acid signaling, increase plant tolerance to abiotic stress, 
including salinity (Colebrook et al., 2014). In addition, the 
network contains calcium-dependent protein kinases – key 
components of calcium signaling cascades activated under 
abiotic stress.

In addition, according to SmartCrop, the regulation of the 
response to hyperosmotic stress involves the microRNA tae-
MIR159a, which regulates the expression of the transcription 
factor TaMyb3 (LOC543161), as well as tae-MIR1122b 
and tae-MIR9668, the targets of which are the aquaporins 
LOC123054192 and LOC123093495, respectively.

Of the full set of genes involved in the regulation of 
the hyperosmotic stress response, only nine showed dif-
ferential expression in bread-wheat root tissues under ex-
perimental salt stress in the study (Alyahya, Taybi, 2023). 
This list includes genes encoding aquaporins, peroxidases, 
catalases, and the serine/threonine protein kinase CTR1 
(LOC100286402). Thus, under the experimental conditions 
described by (Alyahya, Taybi, 2023), signaling pathways 
associated primarily with antioxidant defense were activated.

The associative network reconstructed in SmartCrop 
includes these nine DEGs and their protein products, 
regulatory proteins, as well as two microRNAs: tae-
MIR159a, which regulates expression of the transcription 
factor TaMyb3 (LOC543161), and tae-MIR9668, targeting 
the aquaporin LOC123093495. This network is shown in 
Figure 4.

It is interesting to note that the transcription factor 
TaMyb3 (LOC543161), which is a target of the microRNA 

tae-MIR159a, in turn acts as a negative regulator of the 
expression of several genes encoding peroxidases. Suppres-
sion of the expression of these enzymes leads to increased 
accumulation of hydrogen peroxide in tissues and, conse-
quently, to reduced plant tolerance to salinity (Wei et al., 
2021). Thus, in this case a “cassette-cascade” regulatory 
principle involving microRNAs is implemented, in which a 
microRNA controls the expression of its target transcription 
factor, and the latter regulates an entire set of genes involved 
in the response to abiotic stress (Kleshchev et al., 2024).

Transcription factors of the MYB family are well known 
as regulators of responses to various abiotic stresses, in-
cluding salinity (Kong et al., 2021; Wang S. et al., 2021). 
In particular, they participate in the regulation of flavonoid 
biosynthesis – metabolites required for protecting cells from 
oxidative stress (Wang X. et al., 2021).

Application of SmartCrop to experimental design
As a second example of SmartCrop use, we performed a 
search for promising genes and phenotypic markers for  
subsequent marker-assisted selection and genome editing 
aimed at increasing rice (Oryza sativa L.) tolerance to soil 
salinity.

According to SmartCrop, the following traits can serve 
as markers of salinity tolerance: chlorophyll content, seed 
shape, and the content of the metabolites 3′-methoxyapi-
genin and 5,7,4′-trihydroxy-3′-methoxyflavone. According 
to the SmartCrop knowledge base, rice tolerance to salinity 
is regulated by 30 genes and their corresponding 30 pro-
tein products (Fig. 5). In addition to genes, this regulation 
involves the microRNAs osa-MIR444f and osa-MIR444e, 
which target the transcription factor OsMADS23, as well 

Fig. 3. Genes, proteins, and microRNAs involved in regulating the response of bread wheat to hyperosmotic stress. 
Genes differentially expressed in bread-wheat roots in response to soil salinization, as well as their protein products, are highlighted with a green frame.
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Fig. 4. Gene network regulating the response of bread wheat to salt stress. 
Genes differentially expressed in bread-wheat roots in response to soil salinization, as well as their protein products, are highlighted with a green frame.

Fig. 5. Associative gene network illustrating the involvement of genes, proteins, microRNAs, and long noncoding RNAs in the regulation 
of rice (Oryza sativa L.) tolerance to salinity and their potential role as phenotypic markers.
Genes in rice and the proteins they encode that positively regulate both salt tolerance and other agronomically important traits are outlined in 
green. Genes in rice and the proteins they encode that enhance salt tolerance but suppress other agronomically important traits are outlined in red.
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as osa-MIR444e, targeting the auxin receptor OsABF4. The 
transcription factor OsBBX11, a known regulator of salinity 
tolerance (Lei et al., 2023), is targeted by the microRNAs 
osa-MIR319a and osa-MIR396c.

Long noncoding RNAs (lncRNAs) are molecules longer 
than 200 nucleotides that regulate gene expression at the 
transcriptional, post-transcriptional, and epigenetic levels, 
thereby modulating plant responses to various abiotic and 
biotic factors, including salinity (Sun X. et al., 2018). ln-
cRNAs can interact with DNA (chromatin, promoters, and 
enhancers), proteins, mRNAs, and microRNAs. One impor-
tant mechanism of their action is binding to microRNAs, 
which prevents the latter from acting on their targets and 
thus turns lncRNAs into key regulators of microRNA activ-
ity (Saha et al., 2025).

According to SmartCrop, the microRNA osa-MIR396c 
interacts with 508  long noncoding RNAs, six of which 
(LNC-Os02g06395, LNC-Os03g08620, LNC-Os03g25810, 
LNC-Os07g13605, LNC-Os08g32435, LNC-Os09g33385) 
are co-expressed not only with osa-MIR396c but also with 
42 other rice microRNAs (Fig. 5). This indicates their po-
tential role as key players in the regulation of rice tolerance 
to abiotic stresses, including salinity.

Of the 30  genes that regulate salinity tolerance, six 
(OsPIL13, OsNBL1, OsABF4, OsCPK10, OsCRT3, 
OsBBX11) control chlorophyll content. The remaining 
24 genes have not previously been associated with known 
markers of rice salinity tolerance and therefore represent 
promising candidates for the discovery of new genetic 
markers of this trait.

It should be particularly emphasized that prioritizing 
genes for marker-assisted selection and genome editing 
requires consideration of the specificity of their regulatory 
effects, since selection for a single target trait may influence 

other agronomically important characteristics. The analysis 
showed that genes and proteins regulating salinity tolerance 
are associated with 67  other phenotypic traits, including 
biomass, leaf area, grain morphology, and others, which 
reflects pleiotropic effects.

Three genes – OsPIL13, Ehd1, and OsGA2Ox3 – are posi-
tive regulators of both salinity tolerance and such agronomi-
cally important traits as grain quality, seed dormancy period, 
and grain length. This makes them promising candidates for 
breeding and genome editing, since their modulation may 
simultaneously increase salt tolerance and improve grain 
quality. At the same time, the genes OsWRKY63, OsRAM2, 
and OsABF4 enhance rice tolerance to salinity but are as-
sociated with negative regulation of seed dormancy period, 
grain protein content, and plant resistance to Fusarium 
graminearum and F. pseudograminearum, which must be 
considered in breeding programs.

According to SmartCrop, 21 genes are involved exclu-
sively in the regulation of salinity tolerance and are not 
associated with the regulation of agronomically important 
traits or resistance to pathogens, which makes them suit-
able candidates for targeted breeding aimed at increasing 
salt tolerance.

Another important factor that must be taken into account 
when selecting genes for marker-assisted selection and/
or genome editing is the potential bidirectionality of their 
regulatory effects, since gene products may either stimulate 
or suppress biological processes involved in the positive or 
negative regulation of the target trait. To assess such bidirec-
tionality, the “Pathway Wizard” module of the ANDSystem 
program was used to identify regulatory relationships bet
ween the protein products of the 30 genes associated with 
rice salinity tolerance and the biological processes that, in 
turn, participate in regulating this trait (Fig. 6).

Fig. 6. Regulatory relationships between genes associated with rice salinity tolerance and biological pathways involved in the regulation of this trait.



P.S. Demenkov, T.V. Ivanisenko, M.A. Kleshchev … 
H. Chao, M. Chen, V.A. Ivanisenko

1232 Vavilovskii Zhurnal Genetiki i Selektsii / Vavilov Journal of Genetics and Breeding • 2025 • 29 • 8

SmartCrop knowledge base

Among the genes regulating salinity tolerance, particular 
interest is drawn to OsMYB48-1, OsCPK10, OsCBL10, 
OsDREB2B, OsRAM2, and NBS-LRR, which exhibit a uni-
directional effect in the form of positive regulation of key 
processes that ensure tolerance to salt stress (hyperosmotic 
salinity response, stomatal closure, ABA-independent path-
way, etc.). The high degree of connectivity of these genes 
with the target trait, combined with the unidirectional nature 
of their regulatory action, suggests that their use in marker-
assisted selection or genome editing may have a more 
direct and pronounced impact on increasing salt tolerance 
compared with other candidates.

Conclusion
The SmartCrop knowledge base is a specialized version of 
the ANDSystem software information platform, adapted for 
the tasks of rice and wheat genetics and breeding. It inte-
grates information on a wide range of entities – genes, pro-
teins, metabolites, noncoding RNAs, biological processes, 
breeding-relevant and phenotypic traits, pathogens, as well 
as biotic and abiotic factors – and their relationships. This 
architecture provides extensive opportunities for studying 
the molecular genetic mechanisms of plant stress tole
rance, as well as for selecting genes, genetic markers, and 
phenotypic traits within the framework of marker-assisted 
selection of crop plants.

Examples of SmartCrop applications for the functional 
annotation of differentially expressed genes in bread wheat 
under salt stress and for planning experiments to increase 
rice salinity tolerance using marker-assisted selection 
have demonstrated the high efficiency of the system and 
its potential for solving applied problems in breeding and 
genome editing.
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