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Abstract. The study of molecular genetic mechanisms of plant responses to specific growth conditions and stress
factors is a central focus of scientific research aimed at developing new valuable crop varieties, particularly rice and
wheat. These factors include abiotic stresses (high or low temperatures, drought, salinity, soil metal contamination),
biotic stresses (pathogens, pests), as well as plant responses to regulatory factors (fertilizers, hormones, elicitors,
and other compounds). Modern research in plant genetics is based on the understanding that the formation of
any phenotypic characteristics (molecular genetic, biochemical, physiological, morphological, etc.) is controlled
by gene networks - groups of coordinately functioning genes interacting through their products (RNA, proteins,
and metabolites). Previously, we developed the ANDSystem intelligent technology designed to extract knowledge
from scientific publication texts for the reconstruction of gene networks in biology and biomedicine. In this work,
using an adapted version of ANDSystem for plants, we created the SmartCrop knowledge base designed to address
challenges related to studying molecular genetic mechanisms of genotype-phenotype-environment interactions
for agriculturally valuable rice and wheat crops. SmartCrop is designed to assist researchers in solving tasks such
as interpreting omics technology results (establishing connections between gene sets and biological processes,
phenotypic traits, etc.); reconstructing gene networks describing relationships between molecular genetic objects
and concepts in breeding, phenomics, seed production, phytopathology, diagnostics, protective agents, etc,;
identifying regulatory and signaling pathways of plant responses to specific growth conditions and biotic and
abiotic stresses; predicting candidate genes for genotyping; searching for markers for marker-assisted selection; and
identifying potential targets for substances (including external factors) affecting plants to ensure timely and uniform
germination, better vegetative growth, efficient nutrient uptake, and improved stress resistance.
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SmartCrop knowledge base

H. Chao, M. Chen, V.A. lvanisenko

abroTnyecKkmne CTpecchl (BbICOKME UMM HU3KME TeMMepaTypbl, 3acyxa, 3aCofleHNe, 3arpA3HeHne NoYBbl MeTaamu),

610TUYECKMe CTPeCcChl (MaToreHbl, BpefuTenn), a TakxKe peakLnm pacTeHn Ha perynaTopHble dakTopbl (ynobperus,

FOPMOHbI, SINCUTOPbI U ApYrue coeanHeHns). CoBpemMeHHbIe NccnejoBaHNA B 061acTy reHEeTUKI pacTeHUI OCHOBaHbI

Ha MOHUMaHNKN TOro, YTO GOpMMPOBaHME NOObIX GEHOTUMNYECKNX XapaKTePUCTUK (MONEKYNAPHO-TeHeTUYECKNX,

6roxMmmyecknx, Gusnonornyeckmnx, MopPonormyecknx 1 Ap.) KOHTPONMPYeTCA FeHHbIMU ceTAMK — rpynnamu

COrNacoBaHHO GYHKLIMOHMPYIOLWMX reHOB, B3aMOAENCTBYOLWMX Yepes cBoun npofykTbl (PHK, 6enkn n metabonnTbi).

PaHee c Lienblo PeKOHCTPYKLMM FeHHbIX CeTel, 3HaUUMbIX 417 61oNorn U GUoMeanLVHbI, Hamu Gbina paspaboTaHa

VHTeNNeKTyasbHasA KoMmnbloTepHasa cnctema ANDSystem, npeaHa3HayeHHasA AN1A aBTOMaTN3MPOBAaHHOIO 13BJieYeHNA

3HAHWIN U3 TEKCTOB HayuHbIX Ny6nunKauuii n 6a3 AaHHbIX. B HacToAwwen paboTe, NCNonb3ysa aAanTUpPoBaHHY BEPCUIO

ANDSystem pnna pacteHuid, Mbl co3panu 6a3y 3HaHuin SmartCrop AnA peleHna 3afay, CBA3aHHbIX C U3yyeHuem

MOJEKYNIAPHO-TeHETNYECKNX MeXaHU3MOB B3aUMOJENCTBIIN «reHOTUN-GeHOoTUN-Ccpeaa» AN1A CeNbCKOXO3ANCTBEHHO

LieHHbIX Ky/IbTyp puca 1 nweHuLbl. SmartCrop npefjHa3HauyeHa Ana NOMOLLM UCCNIefoBaTeNIAM B PELLEHNN TaKnX 3afay,

KaK VHTeprpeTaLus pe3ynbTaToB OMUKCHBIX SKCMEPUMEHTOB Ha PacTEHNAX: YCTAaHOBNEHWE CBA3EN Mexay Habopamu

reHoB 1 6ronornyeckmMy npoueccamu, GeHOTUMNYECKUMM MPU3HAKaMU 1 Ap.; PEeKOHCTPYKLMA TeHHbIX ceTel,

OMMCbIBAIOLLNX OTHOLLEHNA MeXY MONEKYNAPHO-TeHeTUYECKUMU 0ObeKTaMu1 U MOHATUAMU B ceneKunm, GeHoMuKe,

CeMeHOBOACTBE, PVUTOMATONOIUN; BbIIBNIEHVE PEryNATOPHBIX U CUrHaNbHbIX MyTel, OTBETHbIX PeaKkLMin pacTeHUin Ha

cneyuduyeckme ycnoBmua pocta U 6notnyeckne 1 abnoTnyeckre CTpecchl; NPOrHO3MpPoBaHe reHoB-KaHANAaToB

ANA TeHOTUNMPOBAHUA; NMOUCK MapKepoB AJi MapKep-OnoCpeAoBaHHOW CeneKkuuy; BbiiBIEHVE MOTeHLMaNbHbIX

MULLEHel (reHOB 1 6efKoB) ANA CybCTaHLUiA, BINAIOWMUX Ha pacTeHNsA (KOHTPONMPYIOLWMX NPoLecchl NpopacTaHns

CemsAH, BeretaTMBHOro pocta, 3G¢PeKTUBHOrO MOMMOLWEHNA NUTATeNbHbIX BELECTB U YyylleHnA YyCTONUYMBOCTY K

CTpeccoBbIM pakTopam).

Kniouesble cnoa: 6a3a 3HaHui SmartCrop; ANDSystem; n3BneyeHme 3HaHWI U3 TEKCTOB; NCKYCCTBEHHbIN MHTENNEKT;
MOJIEKYNIAPHO-TEHETNYECKNE MeXaHU3Mbl; PUC; MLIeHMLa; acCcoLMaTUBHbIE TeHHble ceTu; abuoTuuyeckme CTpecchl;
61OTUYECKMe CTPECChI; B3aMOAECTBUA reHOTUM-eHOTUN-CPefia; OMMKCHbIE TEXHONTOTVW; AJIMHHbIE HeKoAMpyoLne

PHK; mapkep-onocpefioBaHHasA cenekuns; agantaumna pacTeHnid; CTPeCcCoyCTOMUNBOCTb

Introduction

Rice (Oryza sativa L.) and wheat (Triticum aestivum L.)
are among the most important agricultural crops, ensuring
food security for a significant portion of the world’s popula-
tion. Both crops are well known for their high nutritional,
industrial, and fodder value (Shewry, Hey, 2015). Under
current conditions, the production of these crops faces seri-
ous challenges. Extreme weather events, adverse climate
change, plant diseases, and pests lead to substantial yield
losses (Lesk et al., 2016). Overcoming these difficulties
is impossible without studying the molecular genetic
mechanisms underlying plant resistance to unfavorable
biotic and abiotic factors, which requires the analysis of
complex systems that include intricate signaling, regulatory,
transport, and metabolic pathways (Mittler, 2006; Nykiel
etal., 2023).

An effective tool for studying such mechanisms is gene
networks, which control molecular genetic processes that de-
termine the formation of phenotypic traits and the function-
ing of biological processes, including plant stress responses.

The modern concept of gene networks encompasses not
only molecular components (RNAs, genes, proteins, and
metabolites) but also a wide range of heterogeneous entities,
including diseases, biological processes, and environmental
factors. This type of gene network is known as an associative
gene network (Ivanisenko V.A. et al., 2015). Structurally,
such networks represent a knowledge graph integrating
information about interactions among diverse objects in-
volved in the functioning of molecular genetic systems or
influencing them. In agrobiology and crop science, gene
network analysis is successfully used to study economically

important traits such as resistance to diseases and pests,
tolerance to abiotic stress factors, and yield (Virlouvet et
al., 2018; Chen et al., 2020).

The reconstruction of plant gene networks is a complex
task that requires processing massive amounts of data and
integrating fragmented information from scientific publica-
tions, including data on regulatory, transport, and catalytic
processes, as well as relationships between genetic features,
phenotypic manifestations, and environmental factors.
To extract such knowledge, text-mining methods are ap-
plied, based both on classical computational approaches
(dictionary-based methods, syntactic and linguistic rules and
patterns, statistically significant co-occurrence, etc.) and on
machine-learning techniques (lvanisenko T.V. et al., 2014;
Shrestha et al., 2024; Zhang et al., 2024).

Machine-learning algorithms used for constructing and
analyzing gene networks can be divided into the following
categories: supervised learning, unsupervised learning,
semi-supervised learning, and hybrid approaches. Super-
vised learning methods rely on pre-annotated data to build
predictive models, for example, to identify key regulators
or to predict functional interactions between plant genes (Ni
et al., 2016). Unsupervised learning enables the discovery
of hidden patterns in large datasets, which is important, for
instance, when clustering genes based on expression simila-
rity or identifying gene-network modules. Semi-supervised
learning combines the strengths of both approaches, using
both labeled and unlabeled data, which is particularly re-
levant when the amount of well-annotated data is limited
(Yan, Wang, 2022). Hybrid approaches integrate various
machine-learning methods as well as traditional bioinformat-
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ics techniques, allowing them to effectively compensate for
the limitations each approach may have when used alone
(Guindani et al., 2024; lvanisenko T.V. et al., 2024). For
example, combining dictionary-based named-entity re-
cognition in texts with machine-learning methods improves
the accuracy of entity identification (Do et al., 2018; Iva-
nisenko T.V. et al., 2020).

In recent years, deep machine learning has achieved sig-
nificant advances through the introduction of the transformer
architecture and attention mechanisms, which have enabled
substantial progress in natural language processing and the
analysis of biological sequences (Vaswani et al., 2017).
The analysis of gene networks has also seen considerable
development with the application of graph neural networks,
among which the GraphSAGE architecture (Hamilton et
al., 2017) enables efficient training on large heterogeneous
graphs by aggregating features from neighboring nodes.
A promising direction is the use of large language models,
such as Gemma-2-9b-it (Gemma Team, Google DeepMind,
2024), which provide high-quality semantic analysis of sci-
entific texts and validation of extracted interactions.

A number of specialized resources have been developed
for the reconstruction and analysis of plant gene networks.
These include PlantRegMap (Tian et al., 2020), designed
for analyzing transcription factor regulatory interactions;
STRING (Szklarczyk et al., 2021), which enables the ex-
ploration of protein—protein interactions; the KEGG PLANT
platform (Kanehisa, 2013), which integrates information on
metabolic pathways across various plant species; and the
Plant Reactome resource (Naithani et al., 2020), containing
detailed data on signaling and metabolic pathways in model
plant organisms. For visualization and analysis of gene net-
works, the Cytoscape software environment (Otasek et al.,
2019) is widely used, offering an extensive set of plugins for
working with biological data. The ncPlantDB database pro-
vides comprehensive information for analyzing regulatory
networks, including data on cell-type specific expression of
noncoding RNAs and their interactions (Cheng et al., 2024;
Liu et al., 2025). The integration of such omics resources
forms an effective platform for reconstructing gene networks
of agricultural crops (Chao et al., 2023).

Earlier, we developed the ANDSystem cognitive soft-
ware information platform (lvanisenko V.A. et al., 2015,
2019; Ivanisenko T.V., 2020, 2022) designed for the full
knowledge-engineering cycle in the biomedical domain.
The system’s knowledge base contains more than 50 million
interactions for various organisms.

In the field of plant biology, ANDSystem has been used
to create a knowledge base on the genetics of Solanum
tuberosum (Saik et al., 2017; Ivanisenko T.V. et al., 2018;
Demenkov et al., 2019), to reconstruct and analyze the
regulatory gene network controlling cell wall functions in
Arabidopsis thaliana leaves under water deficit (Volyan-
skaya et al., 2023), and to develop a method for prioritizing
biological processes based on the reconstruction and analysis
of associative gene networks (Demenkov et al., 2021).
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The application of the ANDSystem automated reconstruc-
tion of associative gene networks to analyze microRNA-
mediated regulation of bread wheat (Triticum aestivum L.)
adaptation to water deficit made it possible to propose new
candidate microRNAs (MIR7757, MIR9653a, MIR9670,
MIR9672b) of interest for further experimental studies of
plant adaptation mechanisms under insufficient moisture
(Kleshchev et al., 2024).

In another study (Antropova et al., 2024), ANDSystem
was used to reconstruct the molecular genetic network of
rice (Oryza sativa) responses to Rhizoctonia solani infection
under nitrogen excess, which revealed three potential mecha-
nisms explaining reduced plant resistance to the pathogen.
Key regulatory pathways were identified: an OsGSK2-me-
diated cascade, the OsMY B44-OsWRKY6-0sPR1 signal-
ing pathway, and a pathway involving SOG1, Rad51, and the
PR1/PR2 genes. In addition, markers promising for breeding
were identified: 7 genes regulating a broad range of stress
responses and 11 genes that modulate the immune system.
Additional analysis of noncoding RNAs (Antropova et al.,
2024) identified 30 microRNAs targeting genes within the
reconstructed gene network. For two of them (Osa-miR396
and Osa-miR7695), approximately 7,400 unique long non-
coding RNAs with differing co-expression indices were
found, which may indicate a complex architecture of post-
transcriptional regulation under nitrogen stress.

The aim of the present work was to adapt ANDSystem
to create the SmartCrop knowledge base, integrating data
on molecular genetic mechanisms and associative gene
networks of stress responses in rice and wheat based on
intelligent analysis of scientific publications and curated
factual databases. This work included the development
of a domain ontology and the optimization of intelligent
knowledge-extraction methods from scientific texts using
semantic-linguistic patterns and pretrained large language
models. The SmartCrop ontology is represented by a set of
interconnected dictionaries describing: molecular genetic
entities (genes, proteins, metabolites, microRNAS), bio-
logical processes, phenotypic traits and diseases, pathogens,
genetic biomarkers, markers of resistance to crop protection
products, molecular targets of chemical crop protection
agents, biotic and abiotic factors, crop protection products,
as well as cultivars with their economically valuable and
consumer traits.

As aresult of automated analysis of scientific publications,
the SmartCrop knowledge base was formed, integrating
more than 10 million interactions among the entities defined
in the ontology.

Materials and methods

Information resources used in the development of
SmartCrop. To create the SmartCrop knowledge base,
we used the ANDSystem software information platform
(Ivanisenko V.A. et al., 2015, 2019; Ivanisenko T.V.,
2020, 2022) and its information and bioinformatics tech-
nologies.
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Customization of ANDSystem methods for the subject
domain was carried out using an ontology that included
specialized dictionaries of entities and a description of the
types of their interactions. The main sources of genetic
and genomic information for constructing the dictionaries
were: the NCBI Gene database (https://www.ncbi.nlm.nih.
gov/gene), the rice-specific database Oryzabase (https://
shigen.nig.ac.jp/rice/oryzabase), the microRNA database
miRBase (https://www.mirbase.org), the long noncoding
RNA co-expression database ncPlantDB (https://bis.zju.
edu.cn/ncPlantDB/ ), the single nucleotide polymorphism
database dbSNP (https://www.ncbi.nlm.nih.gov/snp), and
the database on cereal crops GrainGenes (https://wheat.
pw.usda.gov/GG3).

To standardize terminology, we used the following on-
tologies: Gene Ontology (http://geneontology.org), Crop
Ontology for wheat and rice (https://cropontology.org),
as well as the genetic resources collection of VIR (https://
WWW.Vir.nw.ru).

Chemical compounds and metabolites were annotated
using the ChEBI database (https://www.ebi.ac.uk/chebi).
Information on herbicide resistance was obtained from
the International Herbicide-Resistant Weed Database
(http:/lwww.weedscience.org), and data on pesticides
were taken from the EU Pesticide Database (https://food.
ec.europa.eu/plants/pesticides/eu-pesticides-database_en).

For knowledge extraction from texts, we used AND-
System’s semantic-linguistic templates, as well as newly
developed templates tailored to the specifics of the subject
domain. In addition, artificial intelligence methods were
applied for knowledge extraction, including GraphSAGE
graph neural networks (Hamilton et al., 2017) and the large

Text annotation module
Dictionary-based
annotation

Semantic consistency
validation (LLM)

SmartCrop knowledge base

Semantic network
of interactions between
Interaction knowledge entities

extraction module More than10 million
interactions
Semantic-linguistic templates

(over 20,000)

Graph neural networks: User interface

SmartCrop knowledge base

language model Gemma-2-9b-it (Gemma Team, Google
DeepMind, 2024).

Evaluation of accuracy. To assess the quality of named-
entity annotation in the text, the F1-score was used, which
is the harmonic mean of precision (Precision) and recall
(Recall):

F1 = 2-(Precision x Recall)/(Precision + Recall),
Precision = TP/(TP+FP),
Recall = TP/(TP+FN),
where TP — are true positives, FP — are false positives, and
FN — are false negatives.

Results
A schematic representation of the main components of
the SmartCrop software-information system is shown in
Figure 1.

SmartCrop domain-specific ontology module

The development of a domain-specific ontology was a key
stage in building SmartCrop. The domain-oriented ontology
defines a conceptual model of the problem area and includes
dictionaries of entities and types of their interactions. Based
on these dictionaries, information about interactions between
specific entities is extracted from texts and factual databases.
The current version of the SmartCrop ontology contains
15 dictionaries of different entity types (Table 1), compiled
by extracting entity names from specialized databases and
existing ontologies.

Interaction types. In the SmartCrop system, 16 types of
relationships between ontology entities are defined. All inter-
actions in the system are directional and can be divided into
several main groups. Physical interactions include processes

Domain ontology: dictionaries and entity relationships

Molecular-genetic entities (genes, proteins, microRNAs, etc.),
environmental factors, economically important traits, etc.

Data extraction module from
factual databases

Databases: NCBI Gene,
Oryzabase, miRBase, GrainGenes,
Crop Ontology, etc.

Integration with omics data:
ncPlantDB

GraphSAGE SmartCrop: ANDVisio software —
Large language models: reconstruction and analysis of associative
Gemma-2-9b-it gene networks

Fig. 1. Schematic representation of the architecture of the SmartCrop software information system.
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Table 1. Dictionaries represented in the SmartCrop ontology

Dictionary Number
of objects

Genes/proteins of rice (O. sativa) 45,198
Genes/proteins of wheat (T. aestivum) 155,761
microRNAs of rice (O. sativa) 604
microRNAs of wheat (T. aestivum) 122
Genetic biomarkers (T. aestivum) 862
QTL polymorphisms (O. sativa) 1,987
QTL polymorphisms (T. aestivum) 1,266
Rice cultivars (O. sativa) 14,377
Wheat cultivars (T. aestivum) 25,501
Metabolites 74,838
Biological processes 122,477
Economically important traits 234
Phenotypic traits 2,386
Diseases, pathogens, and pests 1,065
Markers of resistance to crop 861
protection products

Biotic factors 710
Abiotic factors 496
Crop protection products and herbicides 1,336
Molecular targets of chemical crop protection 14
agents

Long noncoding RNAs 6,546

of forming both short-lived molecular complexes and stable
associations between proteins and metabolites.

Chemical interactions comprise catalytic reactions of the
substrate—enzyme—product type, protein proteolysis, as well
as various post-translational protein modifications such as
phosphorylation and glycosylation.

A distinct group is formed by regulatory interactions,
which encompass the regulation of gene expression by
transcription factors, modulation of protein activity and
function, control of protein and metabolite transport, as
well as regulation of protein stability and degradation. An
important feature is that regulatory interactions also define
relationships between molecular genetic entities, biological
processes, and phenotypic traits. Each regulatory event may
be characterized by an enhancing or attenuating effect on
the corresponding process.

Expression and co-expression of genes are distinguished
separately. The products of gene expression are proteins
and noncoding RNAs. Co-expression is the simultaneous
expression of genes driven by shared regulatory mechanisms
under changing cellular conditions. Additionally, the system

2025
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Table 2. Accuracy assessment of entity name annotation
for the new dictionaries

Dictionary F1-score
Cultivars (O. sativa) 0.103 (0.88)*
Cultivars (T. aestivum) 0.274 (0.919)*
Economically important traits 0.789

Abiotic factors 0.748

Biotic factors 0.927
Diseases, pathogens, and pests 0.881

* Values in parentheses indicate the accuracy after filtering the types of
recognized names using a neural network.

accounts for associative links, which include unclassified
interactions between various ontology entities.

Text-annotation module based on ontology entities
Recognition of molecular genetic entities in scientific texts
is a challenging task due to the specific nature of their no-
menclature. Our experience with ANDSystem shows that
a substantial portion of errors in automatic reconstruction
of associative gene networks is associated with inaccurate
identification of named entities (Ivanisenko T.V. et al., 2022).
The causes of such errors include the use of abbreviations by
authors, semantic ambiguity of terms, and various linguistic
features of scientific texts. In publications, standard names
of entities are often modified, punctuation and word order
are altered, grammatical forms vary, abbreviations are used,
or technical typos are introduced (Pearson, 2001; Krallinger
et al., 2015; Islamaj et al., 2021).

To improve recognition accuracy, we developed a two-
stage process: 1) initial matching of names to the ontology
dictionary and 2) subsequent verification of whether each
annotated entity name corresponds to its type, based on
contextual document analysis using neural networks.

The verification process is implemented as follows: a
language model converts the context (about 400 words)
containing the analyzed entity, which is replaced with a
special mask tag, into a vector representation. Based on this
representation, a neural network performs binary classifica-
tion, determining whether the contextual environment of the
term is consistent with its typical usage.

For entities from the ANDSystem ontology (genes, pro-
teins, metabolites, etc.), classification accuracy was reported
ina previously published paper (Ivanisenko T.V. et al., 2022).
For the new SmartCrop dictionaries, manual expert evalu-
ation of annotation quality was carried out (Table 2) based
on the analysis of 1,000 randomly selected documents from
the PubMed and PubMed Central databases.

The evaluation results demonstrated high annotation ac-
curacy for most dictionaries, with the exception of rice and
wheat cultivar names. The identification of plant cultivar
names is a well-known complex task, determined by several
factors, including substantial overlap of terms with common
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vocabulary and anthroponyms, as well as the lack of a uni-
fied standard in the nomenclature of new cultivars (Do et
al., 2018; D’Souza, 2024).

To address this problem, a specialized language model
was trained, focused on the task of contextual term classifi-
cation. The training was carried out in accordance with the
methodology previously described in our work on improving
the accuracy of identifying eight types of molecular genetic
entities, including proteins, genes, metabolites, and cellular
components (lvanisenko T.V. et al., 2022). Integration of the
developed model made it possible to substantially increase
the recognition accuracy (F1-score) of cultivar names to
0.88 for rice and 0.919 for wheat.

Knowledge extraction module

The knowledge extraction module for scientific texts imple-
ments three main stages: 1) primary knowledge extraction
using semantic-linguistic templates; 2) reconstruction of the
initial semantic network; 3) its extension using graph neural
networks and large language models. Additionally, to further
expand the semantic network, a data extraction module for
factual databases containing structured information is used,
which makes it possible to obtain additional information
about interactions between entities.

Semantic-linguistic templates are structured records
containing metadata about the types of entities and the nature
of their interactions. They include two main components:
1) syntactic relations that describe the order of entities
and keywords in a sentence using regular expressions, and
2) semantic relations that define the type of interaction be-
tween entities. Regular expressions are used to search for
patterns in the arrangement of entity names in annotated text
sentences. When a match is found, specific entity names from
the text are mapped to the template identifiers.

For each interaction type, specialized groups of templates
with unique syntactic rules were developed. The knowledge
base contains more than 18,000 ANDSystem templates for
interaction types represented in both the ANDSystem and
SmartCrop ontologies, as well as more than 3,000 templates
specifically designed for the rice and wheat ontologies.
The effectiveness of the template-based interaction extrac-
tion method was demonstrated during the development of
ANDSystem (Ivanisenko V.A. et al., 2015).

Application of graph neural networks and large lan-
guage models. At the second stage, based on the knowledge
extracted using templates, a primary knowledge graph
(semantic network) was constructed and used to train a
graph neural network. After training, the network was used
to predict missing edges in the knowledge graph. At the
third stage, large language models were applied to validate
these predictions by analyzing scientific texts in which the
annotated entities with the predicted interactions co-occur
(Ivanisenko T.V. et al., 2024).

Integration with omics data
Noncoding RNAs (ncRNAS) represent a broad and functio-
nally diverse class of RNA molecules that are not translated

SmartCrop knowledge base

into proteins but perform key regulatory functions in the cell.
Long noncoding RNAs (IncRNAS) are of particular inte-
rest, as they participate in the regulation of gene expression
at multiple levels — from modulating mRNA stability and
translation to being involved in complex signaling cascades
(Statello et al., 2021; Supriya et al., 2024).

Awell-known specialized resource on ncRNA co-expres-
sion in plants, including rice IncRNAs, is the ncPlantDB
database (https://bis.zju.edu.cn/ncPlantDB/). It provides
information on tissue-specific ncRNA expression at the
single-cell level and their putative interactions, obtained
using modern single-cell transcriptomics methods (Cheng
etal., 2024; Liu et al., 2025). Integration of SmartCrop with
ncPlantDB made it possible to use ncRNA co-expression
data, including their relationships with microRNAs, to enrich
the reconstructed gene networks.

Module for gene network analysis and visualization

As the graphical user interface of SmartCrop, intended for
the reconstruction and analysis of gene networks based
on information from the SmartCrop knowledge base, the
ANDVisio software is used (Fig. 2).

The ANDVisio program (Demenkov et al., 2012) was
originally developed as a component of the ANDSystem
platform and was later adapted for integration with Smart-
Crop. It provides researchers with a wide range of tools
for structural and functional analysis of gene networks,
including:

» multiple graph layout algorithms;

* a multi-parameter filtering system;

» mechanisms for pathways and cycles finding;

* tools for calculating node centrality measures;

* tools for assessing the enrichment of biological processes
with network genes;

* additional methods of network analysis.

SmartCrop knowledge base

The system’s knowledge base is implemented as a semantic
network (knowledge graph) that integrates data extracted
both from scientific publications and from factual databases.
In this graph structure, nodes correspond to entities of the
domain ontology, and edges represent various types of in-
teractions between them.

The knowledge base was populated through systematic
analysis of the scientific literature, including abstracts from
PubMed and full-text articles from the open-access resource
PubMed Central. The time span of the analyzed publications
covered the period from 1970 to 2024, with the main selec-
tion criterion being the presence of references to wheat or
rice. Detailed statistics on the number of recorded interac-
tions in the SmartCrop knowledge base are presented in
Table 3.

Discussion

To demonstrate the capabilities of SmartCrop, we consider
two use cases: analysis of experimental omics data and
experiment planning.
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Fig. 2. Screenshot of the ANDVisio program interface.
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Table 3. Statistics of the SmartCrop knowledge base on interactions between entities for wheat and rice

Interaction type

Rice (Oryza sativa)

Number of interactions

Wheat (Triticum aestivum)

Association 189,650 207,415
Regulation of expression 22,472 26,474
Regulation of activity 3,991 23,411
Regulation of degradation 1,442 4,415
Regulation of transport 830 1,320
ncRNA/miRNA regulation 2,125,036 5814
Regulation of processes 23,274 23,766
Catalytic reactions 2,267 5,798
Expression 86,353 311,964
Physical interaction 8,551 11,810
Marker 435 226

Analysis of experimental omics data

As an example of omics data interpretation, we performed
functional annotation of differentially expressed genes
(DEGs) in bread wheat under salt stress. For the analysis,
we used a set of 5,829 DEGs obtained from the NCBI GEO
database (GSE225565, Alyahya, Taybi, 2023) for root tis-
sues of bread wheat (Triticum aestivum L., cultivar Saudi)
in response to salinization.

The results of the overrepresentation analysis of Smart-
Crop entities (biological processes, phenotypic traits, ag-
ronomically important traits, pathogens) for this DEG set
and their protein products are presented in Supplementary

Table S11. In total, significant overrepresentation (p-va-
lue < 0.05, Bonferroni-corrected) was found for 217 terms
describing biological processes (entity type Pathway),
50 phenotypic traits (Phenotype), 9 agronomically important
traits (Agrophenotype), and 38 pathogenic species. The list
of entities belonging to the five groups of the most statisti-
cally significant characteristics is given in Table 4.
Analysis of the overrepresented biological processes
showed that the DEG set under study is associated not only
with the response to salt stress, but also with the response to

1 Supplementary Table S1 is available at:
https://vavilovj-icg.ru/download/pict-2025-29/appx46.xls
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SmartCrop knowledge base

Table 4. Bread-wheat characteristics significantly associated with the DEG set and their protein products under salt stress,

identified using the SmartCrop system

Object (term) Number p-value

of associated

genes and

proteins

Biological processes
Response to water deprivation 37 2.73E-66
Cell death 31 1.12E-54
Cold acclimation 23 4.52E-41
Hyperosmotic salinity response 23 2.67E-38
Seed germination 20 7.21E-34
Phenotypic traits

Stomatal closure rate 2 8.84E-47
Cell membrane stability 2 1.45E-31
Grain moisture content 2 5.46E-31
Seed length 2 2.32E-30
Na* uptake 2 1.98E-29

water deficit. This reflects plant adaptation mechanisms to
the state of so-called “physiological drought”, which arises
when effective water uptake becomes impossible due to high
osmotic pressure of the surrounding environment. Among
such adaptations is stomatal closure, mediated by a rapid
increase in abscisic acid levels (Verma et al., 2016; Zhao et
al., 2021). Accordingly, the significantly overrepresented
entities included both the phenotypic trait “stomatal closure
rate” (Table 4) and signaling pathways associated with
abscisic acid (Table S1), which confirms their important role
in the response to salinity.

It should be noted that an important advantage of the
SmartCrop knowledge base, compared with widely used
resources for gene functional annotation (DAVID, Gene
Ontology, ShinyGO, etc.), is the ability to analyze rela-
tionships between genes/proteins and not only biological
processes, molecular functions, cellular components, and
KEGG pathways, but also a broad spectrum of abiotic and
biotic environmental factors, phenotypic traits, agronomi-
cally important properties, and pathogens. This integration
makes it possible to assess overrepresentation for different
types of entities in the gene set under study, substantially
expanding the capabilities of functional annotation and
enabling the identification of genes with pleiotropic effects.
The latter is particularly important for marker-assisted se-
lection, since selection based on a single target phenotypic
trait or genetic marker may simultaneously affect several
other, non-target traits.

In particular, the results of functional annotation of
DEGs in bread wheat under salt stress showed their as-
sociation not only with responses to salinity and water
deficit, but also with seed germination and with agro-

Object (term) Number p-value

of associated

genes and

proteins

Agronomically important traits
Seed longevity 2 3.96E-08
Grain thickness 2 1.77E-07
Grain length 7 1.62E-20
Grain protein content 7 1.42E-17
Fiber quality 2 1.23E-06
Pathogens

Fusarium sp. 22 2.22E-59
Fusarium culmorum 10 1.23E-27
Fusarium oxysporum 10 2.39E-26
Botrytis cinerea 10 8.63E-26
Fusarium pseudograminearum 10 2.45E-25

nomically important traits reflecting grain quality (Table 4).
For example, aquaporins (encoded by genes LOC543267,
LOC100037645, LOC123093445, and others) provide selec-
tive transport of water molecules, participate in maintaining
cellular ion balance and in regulating water—salt homeostasis
under elevated salinity (Ayadi et al., 2019), and also facili-
tate the movement of water and solutes within seeds, which
plays a key role in the germination process (Hoai et al.,
2020).

The functionality of SmartCrop is not limited to over-
representation analysis. The system also makes it possible
to reconstruct associative networks of proteins and genes
significantly associated with overrepresented entities and
to search for their regulators. This provides a deeper un-
derstanding of the molecular mechanisms underlying these
relationships and helps to reveal their specificity under
experimental conditions.

As an example, a gene network regulating plant tole-
rance to hyperosmotic stress (G0O:0042538 hyperosmotic
salinity response) was reconstructed (Fig. 3). According
to SmartCrop, the wheat response to hyperosmotic stress
involves 95 genes and 119 proteins, including aquaporins
and sodium/hydrogen exchangers, which play a key role in
regulating intracellular pH, water balance, and sodium-ion
homeostasis (Gupta et al., 2021). Excess sodium ions ente-
ring from the environment are removed from the cytoplasm
into the apoplast and vacuoles in exchange for hydrogen ions
via transmembrane Na*/H* exchangers (Zhao et al., 2021).

The network also includes peroxidases and catalases
involved in antioxidant defense under abiotic stress; tran-
scription factors of the MYB and WRKY families; dehydrins
(LOC123125487,L0C100141381, and others); cold-shock
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Fig. 3. Genes, proteins, and microRNAs involved in regulating the response of bread wheat to hyperosmotic stress.

Genes differentially expressed in bread-wheat roots in response to soil salinization, as well as their protein products, are highlighted with a green frame.

proteins (LOC123080042, LOC543252, LOC542792); as
well as DELLA proteins, which, by suppressing the gib-
berellin signaling pathway and interacting with jasmonic
acid signaling, increase plant tolerance to abiotic stress,
including salinity (Colebrook et al., 2014). In addition, the
network contains calcium-dependent protein kinases — key
components of calcium signaling cascades activated under
abiotic stress.

In addition, according to SmartCrop, the regulation of the
response to hyperosmaotic stress involves the microRNA tae-
MIR159a, which regulates the expression of the transcription
factor TaMyb3 (LOC543161), as well as tae-MIR1122b
and tae-MIR9668, the targets of which are the aquaporins
LOC123054192 and LOC123093495, respectively.

Of the full set of genes involved in the regulation of
the hyperosmotic stress response, only nine showed dif-
ferential expression in bread-wheat root tissues under ex-
perimental salt stress in the study (Alyahya, Taybi, 2023).
This list includes genes encoding aquaporins, peroxidases,
catalases, and the serine/threonine protein kinase CTR1
(LOC100286402). Thus, under the experimental conditions
described by (Alyahya, Taybi, 2023), signaling pathways
associated primarily with antioxidant defense were activated.

The associative network reconstructed in SmartCrop
includes these nine DEGs and their protein products,
regulatory proteins, as well as two microRNAs: tae-
MIR159a, which regulates expression of the transcription
factor TaMyb3 (LOC543161), and tae-MIR9668, targeting
the aquaporin LOC123093495. This network is shown in
Figure 4.

It is interesting to note that the transcription factor
TaMyb3 (LOC543161), which is a target of the microRNA

tae-MIR159a, in turn acts as a negative regulator of the
expression of several genes encoding peroxidases. Suppres-
sion of the expression of these enzymes leads to increased
accumulation of hydrogen peroxide in tissues and, conse-
quently, to reduced plant tolerance to salinity (Wei et al.,
2021). Thus, in this case a “cassette-cascade” regulatory
principle involving microRNAs is implemented, in which a
microRNA controls the expression of its target transcription
factor, and the latter regulates an entire set of genes involved
in the response to abiotic stress (Kleshchev et al., 2024).

Transcription factors of the MYB family are well known
as regulators of responses to various abiotic stresses, in-
cluding salinity (Kong et al., 2021; Wang S. et al., 2021).
In particular, they participate in the regulation of flavonoid
biosynthesis — metabolites required for protecting cells from
oxidative stress (Wang X. et al., 2021).

Application of SmartCrop to experimental design

As a second example of SmartCrop use, we performed a
search for promising genes and phenotypic markers for
subsequent marker-assisted selection and genome editing
aimed at increasing rice (Oryza sativa L.) tolerance to soil
salinity.

According to SmartCrop, the following traits can serve
as markers of salinity tolerance: chlorophyll content, seed
shape, and the content of the metabolites 3’-methoxyapi-
genin and 5,7,4'-trihydroxy-3'-methoxyflavone. According
to the SmartCrop knowledge base, rice tolerance to salinity
is regulated by 30 genes and their corresponding 30 pro-
tein products (Fig. 5). In addition to genes, this regulation
involves the microRNAs osa-MIR444f and osa-MIR444e,
which target the transcription factor OsMADS23, as well
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Fig. 4. Gene network regulating the response of bread wheat to salt stress.
Genes differentially expressed in bread-wheat roots in response to soil salinization, as well as their protein products, are highlighted with a green frame.

Fig. 5. Associative gene network illustrating the involvement of genes, proteins, microRNAs, and long noncoding RNAs in the regulation
of rice (Oryza sativa L.) tolerance to salinity and their potential role as phenotypic markers.

Genes in rice and the proteins they encode that positively regulate both salt tolerance and other agronomically important traits are outlined in
green. Genes in rice and the proteins they encode that enhance salt tolerance but suppress other agronomically important traits are outlined in red.
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Fig. 6. Regulatory relationships between genes associated with rice salinity tolerance and biological pathways involved in the regulation of this trait.

as osa-MIR444e, targeting the auxin receptor OsABF4. The
transcription factor OsBBX11, a known regulator of salinity
tolerance (Lei et al., 2023), is targeted by the microRNAs
0sa-MIR319a and osa-MIR396c.

Long noncoding RNAs (IncRNAs) are molecules longer
than 200 nucleotides that regulate gene expression at the
transcriptional, post-transcriptional, and epigenetic levels,
thereby modulating plant responses to various abiotic and
biotic factors, including salinity (Sun X. et al., 2018). In-
cRNAs can interact with DNA (chromatin, promoters, and
enhancers), proteins, mMRNAs, and microRNAs. One impor-
tant mechanism of their action is binding to microRNAs,
which prevents the latter from acting on their targets and
thus turns INcRNAs into key regulators of microRNA activ-
ity (Saha et al., 2025).

According to SmartCrop, the microRNA osa-MIR396¢
interacts with 508 long noncoding RNAs, six of which
(LNC-0s02g06395, LNC-0s03g08620, LNC-0s03g25810,
LNC-0s07g13605, LNC-0s08932435, LNC-0s09g33385)
are co-expressed not only with osa-MIR396¢ but also with
42 other rice microRNAs (Fig. 5). This indicates their po-
tential role as key players in the regulation of rice tolerance
to abiotic stresses, including salinity.

Of the 30 genes that regulate salinity tolerance, six
(OsPIL13, OsNBL1, OsABF4, OsCPK10, OsCRT3,
0OsBBX11) control chlorophyll content. The remaining
24 genes have not previously been associated with known
markers of rice salinity tolerance and therefore represent
promising candidates for the discovery of new genetic
markers of this trait.

It should be particularly emphasized that prioritizing
genes for marker-assisted selection and genome editing
requires consideration of the specificity of their regulatory
effects, since selection for a single target trait may influence

other agronomically important characteristics. The analysis
showed that genes and proteins regulating salinity tolerance
are associated with 67 other phenotypic traits, including
biomass, leaf area, grain morphology, and others, which
reflects pleiotropic effects.

Three genes— OsPIL13, Ehd1, and OsGA20x3 —are posi-
tive regulators of both salinity tolerance and such agronomi-
cally important traits as grain quality, seed dormancy period,
and grain length. This makes them promising candidates for
breeding and genome editing, since their modulation may
simultaneously increase salt tolerance and improve grain
quality. At the same time, the genes OSWRKY63, OsRAM2,
and OsABF4 enhance rice tolerance to salinity but are as-
sociated with negative regulation of seed dormancy period,
grain protein content, and plant resistance to Fusarium
graminearum and F. pseudograminearum, which must be
considered in breeding programs.

According to SmartCrop, 21 genes are involved exclu-
sively in the regulation of salinity tolerance and are not
associated with the regulation of agronomically important
traits or resistance to pathogens, which makes them suit-
able candidates for targeted breeding aimed at increasing
salt tolerance.

Another important factor that must be taken into account
when selecting genes for marker-assisted selection and/
or genome editing is the potential bidirectionality of their
regulatory effects, since gene products may either stimulate
or suppress biological processes involved in the positive or
negative regulation of the target trait. To assess such bidirec-
tionality, the “Pathway Wizard” module of the ANDSystem
program was used to identify regulatory relationships bet-
ween the protein products of the 30 genes associated with
rice salinity tolerance and the biological processes that, in
turn, participate in regulating this trait (Fig. 6).
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Among the genes regulating salinity tolerance, particular
interest is drawn to OsMYB48-1, OsCPK10, OsCBL10,
OsDREB2B, OsRAM2, and NBS-LRR, which exhibit a uni-
directional effect in the form of positive regulation of key
processes that ensure tolerance to salt stress (hyperosmotic
salinity response, stomatal closure, ABA-independent path-
way, etc.). The high degree of connectivity of these genes
with the target trait, combined with the unidirectional nature
of their regulatory action, suggests that their use in marker-
assisted selection or genome editing may have a more
direct and pronounced impact on increasing salt tolerance
compared with other candidates.

Conclusion

The SmartCrop knowledge base is a specialized version of
the ANDSystem software information platform, adapted for
the tasks of rice and wheat genetics and breeding. It inte-
grates information on a wide range of entities — genes, pro-
teins, metabolites, noncoding RNAs, biological processes,
breeding-relevant and phenotypic traits, pathogens, as well
as biotic and abiotic factors — and their relationships. This
architecture provides extensive opportunities for studying
the molecular genetic mechanisms of plant stress tole-
rance, as well as for selecting genes, genetic markers, and
phenotypic traits within the framework of marker-assisted
selection of crop plants.

Examples of SmartCrop applications for the functional
annotation of differentially expressed genes in bread wheat
under salt stress and for planning experiments to increase
rice salinity tolerance using marker-assisted selection
have demonstrated the high efficiency of the system and
its potential for solving applied problems in breeding and
genome editing.
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