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Abstract. This paper reviews existing approaches for reconstructing frame-based mathematical models of molecular
genetic systems from the level of genetic synthesis to models of metabolic networks. A frame-based mathematical
model is a model in which the following terms are specified: formal structure, type of mathematical model for a
particular biochemical process, reactants and their roles. Typically, such models are generated automatically on the
basis of description of biological processes in terms of domain-specific languages. For molecular genetic systems,
these languages use constructions familiar to a wide range of biologists in the form of a list of biochemical reactions.
They rely on the concepts of elementary subsystems, where complex models are assembled from small block units
(“frames”). In this paper, we have shown an example with the generation of a classical repressilator model consisting
of three genes that mutually inhibit each other’s synthesis. We have given it in three different versions of the graphic
standard, its characteristic mathematical interpretation and variants of its numerical calculation. We have shown
that even at the level of frame models it is possible to identify qualitatively new behaviour of the model through the
introduction of just one gene into the model structure. This change provides a way to control the modes of behaviour
of the model through changing the concentrations of reactants. The frame-based approach opens the way to
generate models of cells, tissues, organs, organisms and communities through frame-based model generation tools
that specify structure, roles of modelled reactants using domain-specific languages and graphical methods of model
specification.
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AnHoTauus. MpefcTaBneH 0630p NOAXOA0B PEKOHCTPYKLUM GPEIMOBBIX MaTEMATUUYECKMX MOAESEN MONEKYNAPHO-
reHeTNYEeCKrX CUCTEM OT YPOBHSA reHeTNYeCKoro cMHTe3a Ao MeTabonunyeckux ceteit. peimoBble MaTeMaTUyYeCcKme
MOAENN — 3TO MOAENU, B KOTOPbIX 3aAaHbl: pOpManbHas CTPYKTYpa, MaTeMaTUyeckmin Gopmaninam nop KOHKPETHbIN
6UOXMMINYECKUIA NPOLIECC, peareHTbl 3TOro npoLecca U nx posb B HeM. O6bIYHO Takue MoAenn co3haHbl B aBTOMa-
TUYECKOM pexrme Ha 6a3e onuvcaHusa 61ONOrMYecKoro NpoLuecca B TEpMMHAX A3bIKOB NMpeaMeTHon obnactu. Ans
MOEKYNAPHO-TEHETUYECKUX CUCTEM TaKue A3bIKM MCMOMb3YT KOHCTPYKLMM, NMPUBbIYHBIE ANA LUMPOKOrO Kpyra
nccnepoBaTenein-6Monoros, HanpuUMep CNMCoK BUOXMMMYECKX peakLyit. OHM OCHOBbIBAKOTCA Ha KOHLENLUMKW 3ne-
MeHTapHbIX MOACMCTEM, TAe KOMIIeKCHas Mofenb cobpaHa 13 Hebonblunx 6110KoB — «dpeliMoB». B HacTosLwel pa-
60Te Mbl MOKa3anu NpUMep € reHepauyren KNnaccuyeckon MoAenn penpeccunaTopa, CoCToALLEN 13 TPeX reHoB, NPo-
JYKTbl CMHTE3a KOTOPbIX NOCNEA0BATENIbHO NHIMOMPYIOT 6GUOCKHTE3 Apyr Apyra. [Ins 3Toro nprvmepa mbl NprBenv
Tpy Bepcun rpadryeckoit HoTaLuUy ONMCaHUA CTPYKTYPbl MOAENU, UX TUMUYHYIO0 MaTeMATUUECKYI0 MHTeprpeTaLuumio
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(DpeimMoBble MaTeMaTNYeCK/IE MOAENN — UHCTPYMEHT
nccnefjoBaHNA MONEKYAPHO-TEHETUYECKNX CUCTEM

1 BapVaHTbl BbIYMCIIUTENbHBIX SKCNepMMeHTOB. MoKa3anu, YTo Aaxe Ha ypoBHe GpPeiiMOoBbIX MOAENEN BO3MOXKHO
naeHTMOMLMPOBaTh KaueCcTBEHHO HOBOe MoBefeHne bnarofapa [06aBNEHNIO B CTPYKTYPY MOAENN BCEro OAHOrO
reHa. Takasa MogudrKaLma NpefaoCcTaBaseT nyTh KOHTPOA pexrMamyt GYHKLVOHUPOBaHNA MOAENN Yepes N3MeHe-
HVie KOHLeHTpaLuuin ee peareHToB. [loaxod, OCHOBaHHbIN Ha dperimax, OTKpbIBAaeT MyTW reHepaLuum mogenei Kie-
TOK, TKaHeli, OpraHoOB, OPraHN3MOB 1 COOBLLECTB C MOMOLLbIO MPOrPaMMHbIX MHCTPYMEHTOB, KOTOpble popManun3yiot
CTPYKTYpPY MOAEN 1 POJib €€ peareHToB, UCMOb3ys Kak NpefMeTHO-OPVEHTVPOBAHHbIE A3bIKM, TaK 1 rpaduyeckue

MeTofbl CrieuduKaLmm mogenen.

KnioueBble cnoBa: GyHKLMM Xuina; MaTeMaTUYeCckoe MOLENMPOBAHNE; reHHble ceTu; GperiMoBble Moaeny; npea-
METHO-OPVEHTNPOBAHHbIE A3bIKM CrieyuduKkalyuy Moaenu

Introduction

In the era of accumulation of large genetic data, the question of
high-throughput analysis of these data using methods of math-
ematical and computer modelling has arisen. The last 30 years
of scientific experience have prepared the theoretical basis for
computational analysis tasks. The mechanisms of biochemical
catalysis were studied, the rates of biochemical processes were
estimated, and the scenarios of transcriptional synthesis and
the influence of external factors were examined (Alon, 2007;
Wittig et al., 2018; Kolmykov et al., 2021; Vorontsov et al.,
2024; Rigden, Fernandez, 2025). A mathematical foundation
has been prepared, which, together with the development of
experimental and computational technologies, has set the trend
for the transition from small models of enzymatic kinetics to
full-genome models of bacterial (Karr et al., 2014) and ani-
mal cells (Norsigian et al., 2019). Existing approaches rely
on the concepts of elementary subsystems, where complex
models are assembled from small block units. The rejection
of “monolithic” models in a single mathematical formalism
(e.g. the ODE system) in favour of representing and storing
models as a set of model units has set the direction for the
integration of multiple tools through standards. These model
units carry structural information about the role of each re-
actant and the mathematical interpretation of the biological
process (Malik-Sheriff et al., 2019). This tremendous amount
of knowledge allows to pass through ordering of information
to the formalization of models, that is, the ability to propose a
formal structure and type of mathematical model for a specific
biochemical process with known reactants — a frame model.
If we can offer a formal algorithm for translating knowledge
into a model, then the way of setting the initial configuration
can be left as usual for scientists — through a domain-specific
language to describe the model.

What are frame models?

Frame-based mathematical models in the field of molecular
genetic systems (MGS) modelling are most often understood
as models that have been made using domain-specific model
description languages (DSL) and tools for model generation
on their basis. For MGS, such languages use constructions
familiar to a wide range of biologists in the form of a list of
biochemical reactions, for example (Shapiro et al., 2003,2013;
Hoops et al., 2006). This way allows one to set the reactants
of biochemical processes and their roles. It is the information
about the role of reactants that is the necessary element for
algorithms of frame models construction, crucial parameters
for formal generation rules. Moreover, the mathematical for-
malism may differ depending on the problem to be solved.
These can be likened to models in the form of ODE system,

discrete models or based on Boolean logic (Beal et al., 2011;
Galdzicki et al., 2014).

In this paper, we review approaches for describing models
that consider only the levels of transcription, translation, enzy-
matic synthesis, signaling networks and metabolic pathways.
This limitation reveals the structure and hierarchical arrange-
ment of such models, from the basic processes of synthesis
to the arrangement of everything into a system of interacting
metabolic pathways. Within the framework of building such
MGS models, the bottom-up approach is natural — when one
moves from models of simple processes to their combina-
tion, obtaining a synergistic/emergent effect (Kolodkin et al.,
2012, 2013). This process of increasing the model complexity
resembles a design based on the principle of staking “domino
tiles” by the rule of reactants overlapping.

In addition to domain specific languages, the process of
designing frame models can be started from a structural model/
schema/graph of interacting entities with specified roles of
participants. Such a graphical way of specifying the reactants
and their roles for modelling is more illustrative and allows
the use of additional analysis tools in case of working with
a big amount of data. These graphs are the input markup for
the frame model generation stage. In general, it is possible to
unambiguously switch from representing the role of reactants
from a list of biochemical reactions to a graph representation
and vice versa. There are several standards for the presentation
of structural information: SBML (Hucka et al., 2015), SBGN
(Moodie et al., 2015), SBOL (Galdzicki et al., 2014).

Basic theorems underlying the approaches

Some theoretical issues concerning the integration of frame
models are worth clarifying first. The simple frame models
of MGS are built on the basis of chemical kinetics equa-
tions representing various ways of the kinetic mass action
law. The construction is carried out within the paradigm of
local independence of functional properties of elementary
subsystems from their compartmental localization within the
original system. If a particular structural model or reactions
scheme is available, the instantaneous concentration rate of
any substance is equal to the sum of the local concentration
rates of that substance for each reaction in which that substance
participates as a substrate or product. The theoretical basis for
this is Korzukhin’s theorem, which is crucial for modelling
chemical kinetics and states: “For any set of non-negative
curves given on a finite time interval and any given accuracy,
there exists such (there may be more than one) biochemical
scheme composed only of bimolecular and monomolecular
reactions that the mathematical model constructed from this
biochemical scheme approximates the given set of curves
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Fig. 1. Graphical representation of the repressilator model in different standards: A, SBOL notation describes in detail the arrange-
ment/structure of a DNA molecule and the functional relationship between the elements. B, SBGN notation carries more informa-
tion about the processes that compose the model. C, Notation of protein-protein regulatory interactions, specific for describing

Hypothetical Gene Networks (omits many details of the mechanisms).
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Fig. 2. Generalized view of the frame mathematical model and characteristic plots of concentration variation with time obtained

for the structure from Figure 1.

A, Model representation as combination of elementary subsystems. V; - as synthesis processes, V;; - as dissipation processes. B, The model
ODE system description. C, The dynamics is obtained with parametersy > 2, a =1, k= 0.5, k4= 0.1 and initial point xq = y5 =0, zy = 1.0.

with a given accuracy” (Zhabotinsky, Zaikin, 1973). The ex-
tension of these ideas is formulated in the framework of the
generalised chemical kinetic modelling method (GCKMM),
proposed by Vitaly Likhoshvay (Likhoshvai et al., 2001).
Some examples of this approach are presented below.

Frame model examples

Processes of genetic synthesis -

transcription, translation

When designing frame models at the level of genetic syn-
thesis, it is necessary to set the process structure and roles
of the reactants in the process. These reactants are genes and
transcription factors. An interesting approach to describe the
genetic level is the SBOL approach (Galdzicki et al., 2014)
(The Synthetic Biology Open Language, sbolstandard.org).
It allows describing the structure of a DNA molecule with
the location of genes, binding sites of transcription factors,
regulatory relations of synthesis products from genes and
some other properties. It is possible to describe them both
in text form using a domain-specific modelling language or

in a graph form using a special graphical editor (Der et al.,
2017; Cox et al., 2018). There is a set of tools for working
with this standard and tools for graphical interpretation of
such models (Fig. 1A).

For further presentation a demonstration of a well-known
three genes model is given, each of them inhibits synthesis
from a neighboring gene — a repressilator (Elowitz, Leibler,
2000). Figure 1 shows a possible graphical interpretation of
such a model under various types of representation.

Once the structure of relations between molecules is given,
itis possible to build a “frame mathematical model” describing
the dynamics of the process. The role of the element allows
one to understand at a glance the contribution of the selected
subsystem and its negative/positive effect in the overall system
of equations (Fig. 2A). For this purpose, we can use approaches
that are described in such tools as SBMLSqeezer (Dréager et
al., 2015), MGSgenerator (Kazantsev et al., 2009), Micro-
TranscriptMod (Lakhova et al., 2022). These tools, given the
role of each of the reactants in the process, generate equations
for the rate of product synthesis (Fig. 2B). The more details
on the role of the reactants are described, the more precisely
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Fig. 3. A four-node model of hypothetical gene network (HGS) and its characteristic behavior. A, Structural model,
where arcs define the conditions of biosynthesis inhibition. B, An extended description of the processes behind each
of the HGS nodes in SBGN standard. C, Model equations that correspond to the structure. D, Characteristic plots of
concentration vs time obtained for the presented structure from Figure A.

The dynamics are obtained at parametersy =3, a.=1,kb = 0.5, k;= 0.2 and starting points [Py, P, P3, P,4]: (1) [1.0, 2.0, 3.0, 0.0];

(2)[1.0,2.0,3.0,4.0; 3) [1.0, 2.8, 3.0, 4.0].

their behavior can be specified in the model. At the stage of
computational experiments, all such tools combine elementary
subsystems (separate processes) into one unifying structure,
the one common model. The typical view of the mathematical
model and its dynamics for each of the structures presented
in Figure 1 will look as it is shown in Figure 2.

Hypothetical gene networks
A model does not often require excessive detail. There is a
class of models where the relationship of genes and their syn-
thesis products with other genes is modelled. The structural
model is represented by a unipartite graph, where each node
represents both the process of transcription of the coding part
of a gene and translation of its mRNA (or synthesis of its pro-
tein) (Fig. 1C, Fig. 3). A graph node is considered as a unified
transcription-translation process. Directed arcs (arrows) in
such a graph define an inhibiting or activating effect on another
node (on itself'is also allowed). This class of models is named
Hypothetical Gene Network (HGN) (Likhoshvai et al., 2003).
Hypothetical gene networks with cyclic inhibitory effects
of reactants (which are specified with the relationships: “pro-
tein P; inhibits the synthesis of product P; from gene g;”, see
Figure 3) are exhaustively described in (Fadeev, Likhoshvai,
2003). Each edge in a graph representation of such models
affects the generalized transcription/translation process of the
node to which it is directed. Moreover, when generating ODE

models for these graphs, a third process — decay of the synthe-
sis product — is added to the mentioned processes. A node in
such graphs is understood as follows: “An RNA molecule r; is
synthesised from the gene g;, from which a P; protein is syn-
thesised and this protein is degraded/dissociated over time”.
Figure 3A shows an example of an HGS model of four nodes
and nine edges specifying the conditions of biosynthesis in-
hibition. The structure is obtained by inserting one additional
node into the model shown in Figure 1. The additional node
inhibits the others, and they in turn inhibit it. The resulting
mathematical model is presented in Figure 3C. While the
model presented in Figure 1 has one unstable steady-state
condition and stable oscillatory behaviour under parameters
presented in Figure 2, the introduction of an additional node
allows the behaviour of the model to change depending on
the concentration of reactants (Figure 3D): at low initial
concentrations of P, the system oscillates stably as the initial
model, and at sufficiently high concentrations of P, it enters
the stationary regime. Moreover, regime switching can be
controlled by small changes in concentrations. Changing the
regulation mechanism to non-competitive does not change the
regimes of the model behavior. The model found in Supple-
mentary Materials! as a Copasi file is a model version with
the non-competitive regulation mechanism in it.

T Supplementary Materials are available at:
https://vavilovj-icg.ru/download/pict-2025-29/appx50.zip
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Studying such a class of models and forming a knowledge
base of their dynamics allows us to identify possible behavior
at the level of structural models of target biological systems
without performing calculations.

Enzymatic reaction
For enzymatic synthesis processes, the key aspect is the
presence of an enzyme, which catalyzes the process but is
not consumed in the course of the reaction. To reconstruct a
model of enzymatic reactions, the reaction mechanisms, the
order of interaction of molecular players of the reaction with
the enzyme, the steps of transformation and release of the
product should be taken into account. Once one has an as-
sumption about the mechanisms of the enzyme’s relationships
with substrates and products, a suitable form of representing
these interactions as a graph may be suggested. There are a
number of works in this area. One can use ready-made solu-
tions for building frame models of enzymatic reactions on
graphs (King, Altman, 1956; Cornish-Bowden, 1977) (www.
biokin.com/tools/king-altman/). In addition, the Copasi tool
has a set of predefined frame-based mathematical models
for enzymatic systems (Hoops et al., 2006). These models
may not only be used as examples in a case study, but also
be valuable in developing and analyzing a model within the
Copasi toolkit: design a set of elementary subsystems (model
structure); give them a mathematical law of velocity based
on frame models; get a ready system of equations; perform
computational experiments in both continuous and discrete
stochastic formalisms; perform computational analyses of the
model to fit the parameters to the experimental data and test
the robustness of the model to variation of the parameters.
SBMLsqeezer can serve as an independent source of
frame models (Driger et al., 2015). It is both a database of
ready-made model variants and a tool that can match a
well-annotated structure in the form of an SBML model to a
suitable model variant. This tool can be embedded into the
CellDesigner application (Funahashi et al., 2008). There is a
ready set of equations adapted to experimental data for both
enzymatic reactions and transcription-translation processes
in the bacterium E. coli (Kazantsev et al., 2018). These mo-
dels may serve as a training sample because they contain
accompanying information about the data items on which the
models were built.

Metabolic pathways

Frame models of metabolic pathways can also be derived from
structural information in the form of graphs. It is possible to
build a model through descriptions of reactions in tabular
form with COBRApy (Ebrahim et al., 2013) and BIOUML
(Kolpakov et al., 2022). These tools allow the construction
of a whole-genome model in terms of flux balance modelling
(Orth et al., 2010). But if one needs to work within continuous
models, the Path2Models project (Biichel et al., 2013) may be
used, in which 140,000 frame models were generated based
on structural models from the KEGG database (Kanehisa,
2000). These models are available at the biomodels.net re-
source (Malik-Sheriff et al., 2019). This kind of automation
in model building is also available as part of the Cellerator
package for the Mathematica modelling environment (Shapiro
et al., 2003, 2013).

Frame-based mathematical models —
a tool for the study of molecular genetic systems

Signalling pathways

Signalling pathways require different approaches. Within
such pathways, it is necessary to take into account the change
of states of one molecule and/or the formation of molecular
complexes, the change of conformational states, the considera-
tion of active centres of molecules, etc. For automating the
generation of these types models, the BioNetGen resource
is being developed (bionetgen.org) (Harris et al., 2016). The
key feature is that a series of allowed states of molecules is
described, their active centres, and the rules of interaction
through the active centres. These data are specified within a
domain specific language. The visualization of this kind of
relationship is specified within the “SBGN:entity relations”
standard (sbgn.github.io). In order to try these models, one
can use the VScode development environment module (code.
visualstudio.com). BioNetGen algorithms build reaction
chains themselves (structural models) and propose frame
models for them in the widely used SBML standard. Then
one can run a series of computational experiments using both
discrete methods and continuous methods in several spe-
cialized computational tools that support SBML models as
input data.

Designing and depositing of the model

When designing models using automation and autogeneration,
one faces the problem of identifying the right entity in the lists
of variables and parameters. If the model is formatted as a
monolithic system of differential equations within the particu-
lar syntax in one of the engineering modelling environments,
one has to map each of the x; of the model to the proper biology
entity through reading the accompanying publications. At best,
authors will name variables as short acronyms for proteins or
metabolites. On the other hand, it is more difficult to come up
with some general rule for naming parameters correctly. It was
the transition to the representation of MGS models as a set of
elementary subsystems corresponding to an independent bio-
chemical process that allowed to solve most of the mentioned
issues (Miller et al., 2010; Hucka et al., 2015). In this concept,
amodel is not a set of equations, but an instruction on how to
assemble a target model in the target mathematical formalism
from tens, hundreds and thousands of pieces of elementary
subsystems distributed over compartments and perform a
series of computational experiments with it. In order to end
up with a development-friendly model, it is better to follow a
series of recommendations for the design of such elementary
blocks using the systems biology ontology (SBO) (Courtot et
al., 2011). This ontology allows to associate the rate equations
of processes and the parameters of these equations with the
meanings that were given in classical studies.

The problem of model annotation is well highlighted in a
publication on the model reproducibility crisis (Tiwari et al.,
2021), where the authors showed that 51 % of mathematical
models published on the largest online resource (biomodels.
net) are not reproducible, for various reasons. It is the frame
models that partially solve the issue of both repeatability of
computational experiments and reproducibility of model-
ling results, as the relevant toolkits contain references to the
formalism, to the methods used and correctly describe the
parameters with the use of ontologies. All of those questions
are studied in depth due to community efforts. One of such
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communities is “co.mbine.org”, an initiative to coordinate the
development of various standards and formats for computa-
tional models in systems biology.

Discussion

Advancement of technology has given impulse to the pro-
cesses of development of artificial languages for describing
models within scientific fields. We have reviewed existing
solutions for designing frame-based mathematical models of
molecular genetic systems. For each of them there are specific
tools for representing models and performing computational
experiments. The publication (Tiwari et al., 2021) proposed
metrics for evaluating the resulting models in terms of readi-
ness for reuse in new research. If one follows the proposed
guidelines for incorporating annotations into a model that can
be made available to modelling tools, it will enhance the pos-
sibilities of automating model processing. Model automation
is an interesting route with the goal of being able to integrate
off-the-shelf subsystems into comprehensive cellular, intercel-
lular and organ level models. More and more software libraries
for engineering simulation environments are becoming avail-
able where molecular genetic systems modelling approaches
can already be used. Even in questions of designing industrial
samples of bacterial synthesis, one comes to embrace stan-
dardization for the subsequent automation of processes. This
applies to the issues of model development, their integration
into the production biotechnological cycle and monitoring
with updating of knowledge bases (Herold et al., 2017).

Whereas in the 2000s there were trends towards developing
proprietary solutions that included a “friendly user interface”,
now the trends tend towards the use of highly specialized core
software for each of the stages and/or the use of specialized
libraries via API calls: VScode as an editor for BioNetGen
DSL; yEd or Cytoscape as tools for displaying model struc-
ture; Copasi as a general-purpose tool for computational
experiments, etc.

Data analysis is also performed by general-purpose statis-
tical processing libraries or off-the-shelf tools (dashboard)
that only need to load data. Now a necessary skill for work
in systems biology is proficiency in Python/R/Bash scripting
languages for building pipelines and linking data between
function calls of specific libraries.
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