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Abstract. Long non-coding RNAs (lncRNAs) play an important role in the regulation of gene expression, including 
interactions with microRNAs (miRNAs), acting as molecular “sponges”. Bioinformatics methods are generally used 
to predict such interactions. To refine computational predictions, additional evidence based on the co-expression 
of miRNAs and lncRNAs can be incorporated. In the present study, we investigated potential interactions between 
lncRNAs and miRNAs in the maize mutant line fuzzy tassel (fzt), which is characterized by reduced expression of certain 
miRNAs due to a mutation in the Dicer-like1 (DCL1) gene in shoot and tassel tissues. Transcriptome assembly was 
performed based on RNA-seq data from maize shoot and tassel tissues of control and mutant lines, with data obtained 
from the NCBI SRA archive. In the shoot, 10 lncRNAs with significantly altered expression levels between control and 
mutant groups were identified, 9 of which were upregulated in the mutant plants. In the tassel, 34 differentially 
expressed lncRNAs were identified, with 20 showing increased expression in the mutant line. For lncRNAs with 
increased expression and miRNAs with decreased expression in the mutant line, potential interactions were predicted 
using the machine learning algorithm PmliPred. The IntaRNA program was used to confirm possible complementary 
binding for the identified miRNA–lncRNA pairs, which enabled the construction of competing endogenous RNA 
(ceRNA) networks. Structural analysis of these networks revealed that certain lncRNAs are capable of binding multiple 
miRNAs simultaneously, supporting their regulatory role as “sponges” for miRNAs. The results obtained deepen our 
understanding of post-transcriptional regulation in maize and open new perspectives for breeding strategies aimed 
at improving stress tolerance and crop productivity.
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Аннотация. Длинные некодирующие РНК (днРНК) играют важную роль в регуляции экспрессии генов, 
включая взаимодействия с микроРНК (миРНК), выполняя функцию молекулярных «губок». Для предсказания 
таких взаимодействий, как правило, применяются методы биоинформатики. Для уточнения предсказаний 
компьютерных программ можно использовать дополнительные данные на основе коэкспрессии миРНК и 
днРНК. В настоящей работе исследуются потенциальные взаимодействия между днРНК и миРНК у мутантной 

© Yan J., Pronozin A.Yu., Afonnikov D.A., 2025

This work is licensed under a Creative Commons Attribution 4.0 License

BIOINFORMATICS AND SYSTEMS BIOLOGY
Original article

Vavilovskii Zhurnal Genetiki i Selektsii 
Vavilov Journal of Genetics and Breeding. 2025;29(8):1295-1303

doi 10.18699/vjgb-25-136

https://orcid.org/0000-0002-3011-6288
https://orcid.org/0000-0001-9738-1409
https://orcid.org/0000-0002-3011-6288
https://orcid.org/0000-0001-9738-1409


J. Yan, A.Yu. Pronozin 
D.A. Afonnikov

1296 Vavilovskii Zhurnal Genetiki i Selektsii / Vavilov Journal of Genetics and Breeding • 2025 • 29 • 8

Computational prediction of the interaction network 
between lncRNAs and microRNAs in maize

линии кукурузы fuzzy tassel (fzt), характеризующейся сниженной экспрессией некоторых миРНК вследствие 
мутации в гене Dicer-like1 (DCL1) в тканях побега и соцветия. Проведена сборка транскриптомов на основе 
данных RNA-seq побега и соцветия кукурузы контрольной и мутантной линий. Данные были взяты из 
архива SRA NCBI. Для побега было идентифицировано десять днРНК, достоверно изменяющих свой уровень  
экспрессии между контрольной и мутантной группами, девять из них повышают экспрессию у мутантных рас
тений. Для соцветия идентифицировано 34 дифференциально экспрессирующихся днРНК (20 с повышенным 
уровнем экспрессии у мутантных линий). Для днРНК с повышенным уровнем собственной экспрессии и миРНК 
с пониженным уровнем экспрессии в мутантных линиях были предсказаны потенциальные взаимодействия 
с помощью алгоритма машинного обучения PmliPred. С использованием программы IntaRNA подтверждена 
возможность комплементарного связывания для выявленных пар миРНК–днРНК, что позволило построить 
конкурирующие эндогенные РНК-сети. Анализ структуры этих сетей показал, что отдельные днРНК способны 
связывать несколько миРНК одновременно, подтверждая их регуляторную функцию в качестве «губок» 
для миРНК. Полученные результаты углубляют понимание посттранскрипционной регуляции у кукурузы и 
открывают перспективы для селекционных разработок, направленных на повышение стрессоустойчивости и 
продуктивности растений.
Ключевые слова: днРНК; миРНК; регуляция генов; кукуруза; мутация fzt; DCL1; биоинформатика; взаимодей
ствие РНК; конкурирующие эндогенные РНК

Introduction
In recent years, the rapid development of next-generation 
high-throughput sequencing technologies has enabled the 
identification of tens of thousands of non-protein-coding 
transcripts (Sheng et al., 2023). Initially, these sequences were 
considered transcriptional noise. However, subsequent studies 
have revealed that approximately 75 % of cellular transcripts 
lack protein-coding potential, yet they actively participate 
in the regulation of gene expression (Wang L., Wang J.W., 
2015). Non-coding RNAs (ncRNAs) are generally classified 
into housekeeping and regulatory types. Regulatory ncRNAs 
can be further divided into small and long non-coding RNAs 
based on their transcript length (Li R. et al., 2016). To date, 
the biological functions of small ncRNAs, particularly mi-
croRNAs (miRNAs), have been extensively studied; they are 
capable of repressing mRNA expression at both transcriptional 
and post-transcriptional levels. In contrast, the functions of 
long non-coding RNAs (lncRNAs) remain poorly understood, 
especially in plants.

Recent studies have revealed that lncRNAs and miRNAs 
engage in complex interactions that play crucial roles in 
numerous biological processes. Several mechanisms un-
derlying these interactions have been identified (Pronozin, 
Afonnikov, 2025). For example, lncRNAs can function as 
molecular “sponges”, binding complementarily to miRNAs 
and thereby preventing their interaction with target mRNAs. 
Such interactions contribute to the regulation of plant growth, 
development, tissue differentiation, and stress responses. 
However, due to the limited scale of experimental studies, 
bioinformatic approaches are increasingly needed to identify 
these interactions (Sheng et al., 2023).

To date, the PmliPred method has been developed to iden-
tify interactions between lncRNAs and miRNAs (Kang et al., 
2020). This method is based on deep learning for predicting 
molecular interactions. Information on potential miRNA– 
lncRNA interactions can be valuable for modeling regula-
tory networks involved in gene expression. Furthermore, the 
obtained results can serve as a basis for subsequent functional 
experiments and may have practical applications in breeding 
programs. It should also be noted that potential miRNA– 
lncRNA interactions can be inferred from co-expression 
analyses (He et al., 2020).

The present study aims to identify interactions between 
lncRNAs and miRNAs in maize using bioinformatic ap-
proaches, taking into account co-expression data of miRNAs 
and lncRNAs. The fuzzy tassel ( fzt) mutant line of maize, 
which exhibits disrupted miRNA biogenesis due to a mutation 
in the Dicer-like1 (DCL1) gene, a key player in the process-
ing of miRNA precursors, was used as a model for this study 
(Thompson et al., 2014). Impaired DCL1 function leads to re-
duced levels of several mature miRNAs, which in turn causes 
an imbalance in regulatory interactions and, consequently, in 
the expression of miRNAs and their target mRNAs (Thompson 
et al., 2014). We hypothesize that the decreased concentra-
tion of miRNAs may reduce the formation of duplexes with 
lncRNAs that act as molecular “sponges”. In this scenario, 
the degradation rate of lncRNA “sponges” would decrease, 
leading to an increase in their abundance. Thus, similar to 
mRNAs exhibiting elevated expression in the fzt maize line 
(Thompson et al., 2014), lncRNAs with increased levels in 
this line may serve as targets of these miRNAs. The results 
obtained from this study are expected to enhance our under-
standing of post-transcriptional regulation in plants and may 
inform the development of novel breeding strategies aimed 
at improving stress tolerance and crop productivity (Zhang L. 
et al., 2009; Sun Q. et al., 2013).

Materials and methods
Transcriptome data. In this study, RNA-seq data were ob-
tained from the open NCBI Sequence Read Archive (SRA) 
database (accession numbers GSM1277448–GSM1277461, 
see the Table) (Thompson et al., 2014). The samples were 
divided into two groups: control and mutant. The mutant lines 
contained a deletion in the Dicer-like1 (DCL1) gene, which 
plays a key role in the processing of miRNA precursors. Gene 
expression was assessed separately for whole seedling and 
tassel tissues, including both long RNAs and miRNAs. 

As shown previously (Thompson et al., 2014), expression 
of 22 miRNAs was significantly reduced in the seedling 
(miR398b-5p, miR408a-b-3p, miR408b-5p, miR394a-b-5p, 
miR167c-3p*, miR156a-3p*, miR167b-3p*, miR319b,d-5p*, 
miR169i-k-5p, miR167a-d-5p, miR168b-3p*, miR168a-3p*, 
miR156d-f-g-3p*, miR398a-b-3p, miR528a-b-3p, miR156e-
3p*, miR397a-b-5p, miR159a-5p, miR2118b, miR399e,i-j-3p, 
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RNA-seq libraries of maize (Zea mays) obtained from seedling and tassel tissues of control plants  
and the fuzzy tassel (fzt) mutant line

SRA identifier Library name RNA source Plant type

GSM1277448 A619_mRNA_1 Seedling Control

GSM1277449 A619_mRNA_2

GSM1277450 A619_mRNA_4

GSM1277451 A619_mRNA_5

GSM1277452 fzt_mRNA_1 Mutant

GSM1277453 fzt_mRNA_2

GSM1277454 fzt_mRNA_4

GSM1277455 fzt_mRNA_5

GSM1277456 1Tm_Nsib Tassel Control

GSM1277457 2Tm_Nsib

GSM1277458 3Tm_Nsib

GSM1277459 1Tm_fzt Mutant

GSM1277460 2Tm_fzt

GSM1277461 3Tm_fzt

NCBI  
Sequence read

archive
(SRA)

SRA toolkit

Symbols legend

External data

Data

Methods and tools
Differentially expressed 

lncRNAs

ЅРА-data Filtered reads Mapping

StringTie

Assembly quality 
assessment

Kallisto

LncRNA identification 
from assembled  
transcriptome

Transcriptome 
assembly

ICAnnoLncRNA- 
identification- 

classification-and- 
annotation-of-LncRNA

BUSCO

Trimmomatic STAR

Fig. 1. Workflow of the bioinformatics pipeline for maize transcriptome assembly. 
Green rectangles represent the description of external data sources; blue rectangles indicate library data and intermediate results, and orange rectangles denote 
software tools used in the analysis.

miR160a-e,g-5p, miR398a-5p*) and 14 miRNAs in the tassel 
(miR167d-3p*, miR167a-d-5p, miR172e, miR408a-b-3p, 
miR398b-5p*, miR394a-b-5p, miR167c-3p*, miR398a-b-3p, 
miR319a-d-3p, miR159a-b,f,j-k-3p, miR528a-b-5p, miR160a-
e,g-5p, miR166j-k,n-3p, miR159a-5p*).

The reference genome of maize (Zea mays) version 5 
(Zm-B73-REFERENCE-NAM-5.0) was used in this study, 
downloaded along with its annotation from the Ensembl Plants 
database (Bolser et al., 2016).

MiRNA sequences were obtained from miRBase ver-
sion 22.1 (https://www.mirbase.org/).

Bioinformatics analysis. This study consisted of two main 
blocks of bioinformatics analysis: transcriptome assembly 
followed by the differential expression analysis of lncRNAs; 

prediction of miRNA–lncRNA interactions using deep learn-
ing–based approaches. A detailed description of each analyti-
cal step is provided below.

Transcriptome assembly and analysis of maize. Tran-
scriptome assembly (Fig. 1) included the following steps: 
data preprocessing, transcriptome assembly, identification 
and annotation of lncRNAs, and quantification of transcript 
expression levels.

Read filtering was performed using Trimmomatic (Bolger et 
al., 2014) with the following parameters: removal of adapter 
sequences, elimination of short reads shorter than 36 nucleo-
tides, and quality-based trimming of low-quality reads. After 
preprocessing, the filtered reads were aligned to the Z. mays 
reference genome using STAR (Dobin et al., 2013). Based on 
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Input data

Tools

Output data

sequence.fasta

Training-validation dataset PmliPred

РС value 
0.93757 

0.9847693 
0.9537285

...  ...

Т = 0.5
features.fasta

lncRNA sequence

miRNA sequence

miRNA
k1, k2, MFE/L,  

number of square brackets, 
and CG content

lncRNA
kl, k2, k3, MFE/L,

number of square brackets, 
and CG content

Fig. 2. Workflow of predicting interactions between lncRNAs and miRNAs using the PmliPred model. 
Blue rectangles represent the input data, green rectangles indicate the output results, and orange rectangles denote the software tools used in the analysis. 
The threshold value of confidence probability (T = 0.5) is shown.

the alignment results, transcriptome assembly was conducted 
using StringTie (Pertea et al., 2015). The completeness and 
quality of the assembled transcriptome were evaluated with 
BUSCO (Simão et al., 2015). Identification and annotation 
of lncRNAs were performed using ICAnnoLncRNA (Pro-
nozin, Afonnikov et al., 2023). Expression levels of identified 
lncRNAs and other transcripts were quantified using Kallisto 
(Bray et al., 2016).

Differential expression analysis of lncRNAs in maize. 
Differential expression analysis of lncRNAs was performed 
separately for shoot and inflorescence tissues by comparing 
wild-type (control) and mutant ( fzt) maize lines. Statistical 
analysis was conducted using the DESeq2 and edgeR pack-
ages (Robinson et al., 2010; Love et al., 2014). Transcripts 
were considered significantly differentially expressed at a 
p-value < 0.05, adjusted for multiple testing.

For the differentially expressed lncRNAs, heatmaps of 
normalized expression values were generated to visualize 
expression patterns across biological replicates and to confirm 
the consistency of expression changes between the control 
and mutant groups.

Analysis of interactions between miRNAs and lncRNAs. 
Interactions between miRNA and lncRNA molecules were 
predicted using the PmliPred method (Kang et al., 2020), 
which involves several consecutive analytical stages (Fig. 2). 
At the first stage, input data were prepared, including nu-
cleotide sequences of miRNAs and lncRNAs that exhibited 
downregulated miRNA expression and upregulated lncRNA 
expression in mutant plants compared with the control. The 
input to the program also included quantitative sequence 
features extracted by the built-in algorithms of the model, as 
well as the training dataset provided with the software package 
(Kang et al., 2020). For miRNAs, the following features were 
used: k-mer frequencies (k = 1, k = 2), minimum free energy 
normalized by length (MFE/L), number of paired nucleotides 
in the secondary structure, and GC content ratio. For lncRNAs, 

an additional feature representing k-mer frequencies (k = 3) 
was extracted.

The processed data were analyzed using the PmliPred pro-
gram to estimate the interaction probability between miRNA–
lncRNA pairs (output parameter PC, confidence probability). 
A miRNA–lncRNA pair was considered to have a potential 
interaction when the PC value was ≥ 0.5. The results were 
presented in a table containing probability scores, which re-
flected the predicted strength of interaction between miRNA 
and lncRNA molecules.

Analysis and visualization of interactions between 
miRNAs and lncRNAs. The obtained miRNA–lncRNA 
pairs were divided into two groups based on their interac-
tion parameters: lncRNAs with increased expression levels 
in the mutant line (test group) and lncRNAs with decreased 
expression levels (control group). Both groups of lncRNAs 
were compared with all miRNAs showing reduced expression 
levels, as reported by Thompson et al. (2014) (see section 
“Transcriptomic data”). As a threshold for selecting potential 
interactions in the test group, the maximum value of the PC 
parameter calculated by the PmliPred program for the control 
group was used. If for a given miRNA–lncRNA pair from the 
test group, the PC parameter exceeded any of the PC values 
from the control group, such miRNA–lncRNA pairs were 
considered to interact.

The sequences of the selected miRNAs and lncRNAs were 
uploaded into the IntaRNA program (Mann et al., 2017) for the 
identification and visualization of base-pairing interactions. 
Among all predicted interactions, only those pairs were re-
tained, in which the number of unpaired nucleotides within the 
interaction region of the two molecules was fewer than 4, and 
the length of the interaction region exceeded 16 nucleotides.

Such interactions between lncRNAs and miRNAs have 
important biological significance. lncRNAs can function as 
competing endogenous RNAs (ceRNAs), or “sponges”, by 
binding to miRNAs and thereby preventing them from inter-
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acting with their mRNA targets. This mechanism contributes to 
the regulation of gene expression involved in plant growth, de-
velopment, and stress responses (Pronozin, Afonnikov, 2025).

Results

Transcriptome assembly
As a result of the transcriptomic analysis of Z. mays, cover-
ing both seedling and tassel stages for control and mutant 
( fzt) lines, high-quality raw data were obtained. The average 
percentage of uniquely mapped reads during alignment using 
STAR (Dobin et al., 2013) was 84.73 %, while only 3.10 % 
of reads remained unmapped. For the aligned reads, the 
average mismatch rate per nucleotide was 0.76 %, indicating 
high sequencing accuracy and the reliability of the data for 
subsequent analyses.

The transcriptome assemblies generated using StringTie 
(Pertea et al., 2015) were evaluated with the BUSCO tool 
(Simão et al., 2015). In all 14 libraries, the proportion of com-
plete BUSCO groups exceeded 95 %, reaching a maximum 
of 98.8 % (252 out of 255 expected orthologs detected in 
library SRR1041561). These metrics indicate the complete-
ness and high quality of the obtained assemblies, confirming 
their suitability for subsequent expression analysis and the 
identification of noncoding RNAs.

Differential expression of lncRNAs  
between control and mutant Z. mays samples
In seedling tissue, 10 lncRNAs were identified as significantly 
differentially expressed between the control and mutant groups 
(Table S1)1. Among these, nine lncRNAs showed increased 
1 Supplementary Tables S1 and S2 are available at: 
https://vavilovj-icg.ru/download/pict-2025-29/appx51.pdf

expression in the mutants, suggesting that they may serve as 
targets for miRNAs and participate in post-transcriptional 
regulatory mechanisms. These transcripts were subsequently 
considered as candidate miRNA targets in further analyses.

The heatmap (Fig. 3) illustrates systematic differences in the 
expression of these lncRNAs across the analyzed transcrip-
tomic libraries. For 9 out of the 10 lncRNAs, expression levels 
were higher in the mutant plants compared with the control.

In tassel tissue, the number of differentially expressed 
lncRNAs was considerably higher, with a total of 34 lncRNAs 
identified (Table S2). Among these, 20 lncRNAs exhibited 
increased expression in the mutant line. Notably, pronounced 
differences in transcription levels were observed for several 
lncRNAs that displayed strong tissue-specific expression pat-
terns unique to the tassel.

The heatmap of  lncRNA expression in tassel tissue (Fig. 4) 
also illustrates systematic differences across the analyzed tran-
scriptomic libraries. lncRNAs with decreased and increased 
expression levels in the mutant plants formed two clearly 
distinct clusters.

Overall, the identified lncRNAs represent a prioritized set 
for subsequent analysis of interactions with miRNAs and for 
further functional annotation.

Assessment of the accuracy  
of miRNA–lncRNA interaction predictions
The evaluation of the model’s ability to distinguish lncRNAs 
from the test group (with increased expression in mutants) 
from those in the control group (with decreased expression) 
is presented in Fig 5.

In seedling tissue, the interaction scores for the test 
lncRNAs (with increased expression in mutants) were shifted 
above 0.5, suggesting a potential ability of these transcripts to 

Fig. 3. Heatmap of differentially expressed lncRNAs in seedling tissue. 
Here and in Fig. 4: the color scale on the right represents normalized expression levels, with blue indicating high expression, 
and red indicating low expression. Cells corresponding to lncRNAs with increased expression in the mutant line are 
highlighted with a blue frame.

Control Mutant

https://vavilovj-icg.ru/download/pict-2025-29/appx51.pdf
https://vavilovj-icg.ru/download/pict-2025-29/appx51.pdf
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Fig. 5. Distribution of predicted miRNA–lncRNA interaction scores in seedlings and tassel tissues. 
a – seedlings: interaction scores for the test group (lncRNAs with increased expression) are shown in red, and for the control group (lncRNAs 
with decreased expression), in blue; b – tassel: similarly, red represents the test group, and blue, the control group (lncRNAs with decreased 
expression). The X-axis represents the predicted interaction confidence (PC) calculated by PmliPred, and the Y-axis indicates the number of 
miRNA–lncRNA pairs analyzed.

Fig. 4. Heatmap of differentially expressed lncRNAs in tassel tissue. 

a b
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Predicted interaction confidence Predicted interaction confidence

Test
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Control

Tassel

Fr
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Control Mutant

bind miRNAs. However, it should be noted that the control 
group contained only a single lncRNA with a high predicted 
score. Because the control in this experiment consisted of only 
one lncRNA (with decreased expression in mutants), it was 
difficult to accurately assess the precision and discriminatory 
power of the PmliPred model.

In tassel tissue, the differences between the groups were 
even more pronounced: interaction scores for the test lncRNAs 
were predominantly above 0.5, whereas the control lncRNAs 
displayed a distribution shifted below 0.5. This behavior of the 

model indicates its ability to effectively distinguish biological 
classes based on the predicted miRNA–lncRNA interaction 
parameters.

Thus, the PmliPred model demonstrated high discrimina-
tory power and can be used for the preliminary selection of 
lncRNAs potentially involved in interactions with miRNAs.

miRNA–lncRNA interaction networks in maize tissues
The results obtained using the miRNA–lncRNA interaction 
prediction tool IntaRNA are shown in Fig. 6. For example, 
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Fig. 6. Examples of miRNA–lncRNA interactions predicted using IntaRNA. 
a – seedlings: zma-miR156a-3p and lncRNA_mapped_SRR1041551_8056.1; b – tassel: zma-miR528a-b-5p and lncRNA_mapped_SRR1041559_ 
12521.1. Regions of base pairing and the interaction structures are shown, calculated based on minimum free energy (kcal/mol).

Fig. 7. miRNA–lncRNA interaction networks in maize seedling tissue. 
Here and in Fig. 8: green circular nodes represent miRNAs, blue circular nodes 
represent lncRNAs, and red circles indicate lncRNAs that are potentially func
tioning as “sponges”.

Fig. 8. miRNA–lncRNA interaction networks in maize tassel tissue. 

a bПобег СоцветиеSeedling

energy –31.11 kcal/mol energy –24.79 kcal/mol

Tassel

lncRNA:
miRNA:

lncRNA:
miRNA:

lncRNA:
miRNA:

lncRNA:
miRNA:

two RNA pairs clearly formed stable and extensive regions of 
complementary binding. In total, 13 reliable miRNA–lncRNA 
pairs were identified in seedling tissue, and 14 pairs, in tassel 
tissue. These data confirm that the selected lncRNAs not only 
exhibit increased expression in the mutants but also possess 
a high potential for specific interactions with miRNAs, the 
expression of which is reduced in the mutants. This makes 
them justified candidates as miRNA targets.

Visualization of the identified interactions using Cytoscape 
(Figs. 7 and 8) revealed that some lncRNAs are potentially 
capable of binding multiple miRNAs simultaneously. For 
example, lncrna_SRR1041561_10348.1 (in tassel) interacts 
with five different miRNAs: zma-miR160a-e-g-5p, zma-
miR167d-3p, zma-miR394a-b-5p, zma-miR408a-b-3p, and 
zma-miR172e, suggesting its potential role as a “sponge” 
within a ceRNA mechanism. Another example is lncrna_
SRR1041554_35279.1 in seedling tissue, which interacts with 
zma-miR2118b, zma-miR160a-e-g-5p, and zma-miR167b-3p.

Discussion
The analysis revealed that 9 out of 14 identified lncRNAs 
are potentially capable of interacting with multiple miRNAs 

simultaneously, suggesting their possible role as competing 
endogenous RNAs (ceRNAs), molecular “sponges” that bind 
miRNAs and prevent their interaction with target mRNAs. 
Through this mechanism, lncRNAs can indirectly regulate 
the expression of various genes involved in key biological 
processes.

Among the predicted miRNA partners are well-charac-
terized regulators of plant growth, development, and stress 
responses (Jones-Rhoades et al., 2006; Sunkar et al., 2012):
 • miR156 regulates the transition from the juvenile to the 

adult phase, flowering, leaf morphogenesis, and branching 
by suppressing SPL genes (Preston et al., 2013; Wang H., 
Wang H., 2015);

 • miR167 and miR160 regulate the auxin signaling pathway 
by suppressing ARF genes, thereby influencing root forma-
tion, leaf, flower, and seed development, as well as somatic 
embryogenesis (Caruana et al., 2020; Barrera-Rojas et al., 
2021; Wang Y. et al., 2020);

 • miR168 participates in maintaining the stable level of the 
AGO1 protein, a central component of the RNA interference 
(RNAi) machinery, thereby regulating the entire miRNA 
pathway (Martínez de Alba et al., 2011; Li W. et al., 2012);



J. Yan, A.Yu. Pronozin 
D.A. Afonnikov

1302 Vavilovskii Zhurnal Genetiki i Selektsii / Vavilov Journal of Genetics and Breeding • 2025 • 29 • 8

Computational prediction of the interaction network 
between lncRNAs and microRNAs in maize

 • miR172 regulates the onset of flowering and organogenesis 
by repressing AP2-type transcription factor genes (Ripoll 
et al., 2015; Zhang B. et al., 2015);

 • miR2118 activates the biogenesis of phased small interfer-
ing RNAs (phasiRNAs), playing a critical role in plant im-
munity and anther development (Canto-Pastor et al., 2019; 
Jiang P. et al., 2020);

 • miR398 and miR408 provide antioxidant protection by 
regulating the levels of superoxide dismutases and metal-
binding proteins, and they also respond to a wide range 
of abiotic stresses (Jiang A. et al., 2021; Zou et al., 2021; 
Gao et al., 2022);

 • miR394 influences leaf morphogenesis, fruit develop-
ment, and meristem activity (Song et al., 2015; Sun P. et  
al., 2017);

 • miR528 is involved in redox homeostasis, resistance to viral 
infections, salt stress response, and regulation of lignifica-
tion (Wu et al., 2017; Sun Q. et al., 2018).
Functional annotation of the interacting miRNAs indicates 

that most of them are involved not only in the development 
of plant morphological structures, but also in the complex 
regulatory networks controlling responses to biotic and abio
tic stresses.

Moreover, the identified ceRNA networks confirm that 
post-transcriptional regulation in plants is mediated through 
finely coordinated interactions between non-coding and 
coding RNAs. The presence of lncRNAs capable of bind-
ing multiple regulatory miRNAs suggests the existence of 
potential hubs of regulatory cross-talk within RNA networks, 
which represents a particularly promising target for functional 
validation.

The obtained results emphasize the importance of a sys-
tems-level approach to transcriptomic data analysis, as such 
strategies enable the identification of hidden layers of gene 
regulation and promising molecular targets. Furthermore, 
these findings may serve as a theoretical foundation for the 
development of new agronomically valuable maize varieties 
with enhanced stress tolerance and improved adaptive traits.

Conclusion
In this study, a comprehensive analysis of Z. mays transcrip-
tomic data was conducted to identify potential interactions 
between miRNAs and lncRNAs. Based on the results of dif-
ferential expression analysis comparing control and mutant 
samples, lncRNAs and miRNAs with potential interactions 
were identified.

The PmliPred model, based on machine learning ap
proaches, was applied to predict potential miRNA–lncRNA 
pairs. Subsequent structural analysis using IntaRNA confirmed 
the presence of stable complementary binding sites between 
the selected molecules, indicating high reliability of the pre-
dicted interactions.

Based on the selected interaction pairs, competing endo
genous RNA (ceRNA) networks were constructed, demon
strating that individual lncRNAs are capable of binding 
multiple miRNAs simultaneously. This supports the hypo
thesis that they participate in post-transcriptional regulatory 
mechanisms as miRNA “sponges”, capable of modulating the 
activity of regulatory molecules and influencing the expres-
sion of target genes.

Additionally, key interactions were visualized using Cyto
scape, allowing a clear representation of the structure and 
potential functional significance of the identified regulatory 
connections. The results confirm the role of lncRNAs as im-
portant components of plant regulatory networks and provide 
a foundation for further functional studies.
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