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Abstract. Long non-coding RNAs (IncRNAs) play an important role in the regulation of gene expression, including
interactions with microRNAs (miRNAs), acting as molecular “sponges”. Bioinformatics methods are generally used
to predict such interactions. To refine computational predictions, additional evidence based on the co-expression
of miRNAs and IncRNAs can be incorporated. In the present study, we investigated potential interactions between
IncRNAs and miRNAs in the maize mutant line fuzzy tassel (fzt), which is characterized by reduced expression of certain
miRNAs due to a mutation in the Dicer-like1 (DCLT) gene in shoot and tassel tissues. Transcriptome assembly was
performed based on RNA-seq data from maize shoot and tassel tissues of control and mutant lines, with data obtained
from the NCBI SRA archive. In the shoot, 10 IncRNAs with significantly altered expression levels between control and
mutant groups were identified, 9 of which were upregulated in the mutant plants. In the tassel, 34 differentially
expressed IncRNAs were identified, with 20 showing increased expression in the mutant line. For IncRNAs with
increased expression and miRNAs with decreased expression in the mutant line, potential interactions were predicted
using the machine learning algorithm PmliPred. The IntaRNA program was used to confirm possible complementary
binding for the identified miRNA-IncRNA pairs, which enabled the construction of competing endogenous RNA
(ceRNA) networks. Structural analysis of these networks revealed that certain INcRNAs are capable of binding multiple
miRNAs simultaneously, supporting their regulatory role as “sponges” for miRNAs. The results obtained deepen our
understanding of post-transcriptional regulation in maize and open new perspectives for breeding strategies aimed
at improving stress tolerance and crop productivity.
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AHHOTauuA. [AnuHHble Hekogupylowme PHK (gHPHK) urpatoT BakHylo ponb B perynaumMy 3KCNpPeccMn reHoB,
BKJIloYasa B3anmopeincTaua ¢ MuKpoPHK (MMPHK), BbINonHAA yHKUMIO MONEKYNAPHbIX «rybok». [ina npefckasaHua
TaKMX B3aMMOAENCTBUN, KaK MPaBuio, NPUMEHAITCA MeTofbl 6uonHGopmaTvKK. [na yToOuHeHNA npefckasaHuii
KOMMbIOTEPHbIX MPOrpaMM MOXHO WCMOMNb30BaTb [OMNOSIHUTENbHbIE JaHHble Ha OCHOBe Ko3kcnpeccun MUPHK n
AHPHK. B HacToAwweln paboTe nccnepytoTca noteHumanbHble B3aumopaencTena mexay AHPHK n muPHK y myTtaHTHOM
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NUHUK KYKYPY3bl fuzzy tassel (fzt), xapakTepusyloLenca CHUKEHHON 3Kcnpeccrein HekoTopbix MUPHK Bcnepctere
myTauuun B reHe Dicer-like1 (DCLT) B TKaHax nobera v coupeTus. MNpoBefeHa cOOpKa TPAHCKPMNTOMOB Ha OCHOBE
OaHHbix RNA-seq nobera n couBeTus KyKypy3bl KOHTPOSMIbHOW W MYyTaHTHOW NVHWIA. [aHHble Obliv B3ATbI U3
apxuBa SRA NCBI. ins nobera 6bino naeHTMdULMpPOoBaHO aecAaTb AHPHK, 4OCTOBEPHO M3MEHSAIOWMX CBOV YPOBEHD
IKCMPECCUM MEXAY KOHTPOJSIbHOM 1 MyTaHTHON rpynnamu, AeBATb 13 HUX MOBBILLAIOT SKCMPECCUI0 Y MYTaHTHbIX pac-
TeHu. inAa cougeTna naeHTMdnumpoBaHo 34 anddepeHumanbHo skcnpeccupytowmxca agHPHK (20 ¢ noBbilweHHbIM
YPOBHEM 3KCMPeccum y MyTaHTHbIX nHWiA). Ana aHPHK ¢ noBbllweHHbIM ypoBHEM cOOCTBEHHOM dKkcnpeccnn 1 MUPHK
C NMOHMXKEHHbIM YPOBHEM JKCMPECCUM B MYTaHTHbIX IMHMAX ObiNN NpefcKasaHbl NoTeHUManbHble B3aviMOAENCTBUA
C MOMOLLbBIO anroprTMa MawwmHHoro obyyeHus PmliPred. C ncnonb3osaHuem nporpammsbl IntaRNA nogreepkaeHa
BO3MOXHOCTb KOMMJIEMEHTaPHOrO CBA3bIBaHWA ANA BblABNEHHbIX nap MUPHK-gHPHK, uto nossonuno noctpontb
KOHKypupytowme sHgoreHHble PHK-ceT. AHanms CTpyKTypbl 3TUX CeTel nokasasn, uto otaenbHble AHPHK cnocobHbl
CBA3bIBaTb Heckonbko MWPHK ofHOBpemMeHHO, MOATBEPXAAA WX PErynAaTopHylo OYHKLUMIO B KayecTBe «ryboK»
ana MuPHK. MonyyeHHble pe3ynbTaTbl YryonaioT NOHMMaHE NOCTTPAHCKPUMLIMOHHOW Perynaummn y Kykypysbl u
OTKPbIBAIOT NEPCMNEKTVBbI ANIA CENEKLUMOHHbIX Pa3paboTokK, HarnpaB/ieHHbIX Ha MOBbILLEHK e CTPECCOYCTONYMBOCTA 1
NPOAYKTUBHOCTN PacTeHNIA.

KnioueBbie cnoBa: aHPHK; MUPHK; perynauus reHoBs; Kykypy3a; myTauusa fzt; DCLT; GronHpopmMaTuiKa; B3aumopneii-

ctBue PHK; KoHKypupytowme sHgoreHHble PHK

Introduction

In recent years, the rapid development of next-generation
high-throughput sequencing technologies has enabled the
identification of tens of thousands of non-protein-coding
transcripts (Sheng et al., 2023). Initially, these sequences were
considered transcriptional noise. However, subsequent studies
have revealed that approximately 75 % of cellular transcripts
lack protein-coding potential, yet they actively participate
in the regulation of gene expression (Wang L., Wang J.W.,,
2015). Non-coding RNAs (ncRNAs) are generally classified
into housekeeping and regulatory types. Regulatory ncRNAs
can be further divided into small and long non-coding RNAs
based on their transcript length (Li R. et al., 2016). To date,
the biological functions of small ncRNAs, particularly mi-
croRNAs (miRNAs), have been extensively studied; they are
capable of repressing mMRNA expression at both transcriptional
and post-transcriptional levels. In contrast, the functions of
long non-coding RNASs (IncRNAs) remain poorly understood,
especially in plants.

Recent studies have revealed that IncRNAs and miRNAs
engage in complex interactions that play crucial roles in
numerous biological processes. Several mechanisms un-
derlying these interactions have been identified (Pronozin,
Afonnikov, 2025). For example, IncRNAs can function as
molecular “sponges”, binding complementarily to miRNAs
and thereby preventing their interaction with target mMRNAS.
Such interactions contribute to the regulation of plant growth,
development, tissue differentiation, and stress responses.
However, due to the limited scale of experimental studies,
bioinformatic approaches are increasingly needed to identify
these interactions (Sheng et al., 2023).

To date, the PmliPred method has been developed to iden-
tify interactions between IncRNAs and miRNAs (Kang et al.,
2020). This method is based on deep learning for predicting
molecular interactions. Information on potential miRNA—
IncRNA interactions can be valuable for modeling regula-
tory networks involved in gene expression. Furthermore, the
obtained results can serve as a basis for subsequent functional
experiments and may have practical applications in breeding
programs. It should also be noted that potential miRNA-
INcRNA interactions can be inferred from co-expression
analyses (He et al., 2020).

The present study aims to identify interactions between
IncRNAs and miRNAs in maize using bioinformatic ap-
proaches, taking into account co-expression data of miRNAs
and IncRNAs. The fuzzy tassel (fzt) mutant line of maize,
which exhibits disrupted miRNA biogenesis due to a mutation
in the Dicer-likel (DCL1) gene, a key player in the process-
ing of miRNA precursors, was used as a model for this study
(Thompson et al., 2014). Impaired DCL1 function leads to re-
duced levels of several mature miRNAS, which in turn causes
an imbalance in regulatory interactions and, consequently, in
the expression of miRNAs and their target mMRNAs (Thompson
et al., 2014). We hypothesize that the decreased concentra-
tion of mMiRNAs may reduce the formation of duplexes with
IncRNAs that act as molecular “sponges”. In this scenario,
the degradation rate of IncRNA “sponges” would decrease,
leading to an increase in their abundance. Thus, similar to
MRNAs exhibiting elevated expression in the fzt maize line
(Thompson et al., 2014), IncRNAs with increased levels in
this line may serve as targets of these miRNAs. The results
obtained from this study are expected to enhance our under-
standing of post-transcriptional regulation in plants and may
inform the development of novel breeding strategies aimed
at improving stress tolerance and crop productivity (Zhang L.
et al., 2009; Sun Q. et al., 2013).

Materials and methods

Transcriptome data. In this study, RNA-seq data were ob-
tained from the open NCBI Sequence Read Archive (SRA)
database (accession numbers GSM1277448-GSM1277461,
see the Table) (Thompson et al., 2014). The samples were
divided into two groups: control and mutant. The mutant lines
contained a deletion in the Dicer-likel (DCL1) gene, which
plays a key role in the processing of miRNA precursors. Gene
expression was assessed separately for whole seedling and
tassel tissues, including both long RNAs and miRNAs.

As shown previously (Thompson et al., 2014), expression
of 22 miRNAs was significantly reduced in the seedling
(miR398b-5p, miR408a-bh-3p, MiR408b-5p, miR394a-b-5p,
miR167¢c-3p*, miR156a-3p*, miR167b-3p*, miR319b,d-5p*,
miR169i-k-5p, miR167a-d-5p, miR168b-3p*, miR168a-3p*,
miR156d-f-g-3p*, miR398a-b-3p, MiR528a-h-3p, miR156e-
3p*, miR397a-b-5p, miR159a-5p, miR2118b, miR399e,i-j-3p,
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RNA-seq libraries of maize (Zea mays) obtained from seedling and tassel tissues of control plants
and the fuzzy tassel (fzt) mutant line

SRA identifier Library name RNA source Plant type
GSM1277448 A619_mRNA_1 Seedling Control
GSM1277449 A619_mRNA_2
GSM1277450 A619_mRNA_4
GSM1277451 A619_mRNA_5
GSM1277452 fzt_mRNA_1 Mutant
GSM1277453 fzt_mRNA_2
GSM1277454 fzt_mRNA_4
GSM1277455 fzt_mRNA_5
GSM1277456 1Tm_Nsib Tassel Control
GSM1277457 2Tm_Nsib
GSM1277458 3Tm_Nsib
GSM1277459 1Tm_fzt Mutant
GSM1277460 2Tm_fzt
GSM1277461 3Tm_fzt
Symbols | d
| ymbo'sTegen | Kallisto
| External data |—>
Dat LncRNA identification
NCBI | a e Differentially expressed < from assembled
Sequence read Methods and tools IncRNAs transcriptome
archive
(SRA) T
ICAnnoLncRNA-
_ - _ ) _ | Transcriptome identification-
> SPA-data > Filtered reads > Mapping assembly > classification-and-
annotation-of-LncRNA
SRA toolkit Trimmomatic STAR StringTie
Assembly quality | o | BUSCO
assessment
Fig. 1. Workflow of the bioinformatics pipeline for maize transcriptome assembly.

Green rectangles represent the description of external data sources; blue rectangles indicate library data and intermediate results, and orange rectangles denote

software tools used in the analysis.

miR160a-¢,9-5p, MiR398a-5p*) and 14 miRNAs in the tassel
(miR167d-3p*, miR167a-d-5p, miR172e, miR408a-b-3p,
miR398b-5p*, miR394a-b-5p, miR167c-3p*, miR398a-b-3p,
miR319a-d-3p, miR159a-b,f,j-k-3p, miR528a-b-5p, miR160a-
e,0-5p, miR166j-k,n-3p, miR159a-5p*).

The reference genome of maize (Zea mays) version 5
(Zm-B73-REFERENCE-NAM-5.0) was used in this study,
downloaded along with its annotation from the Ensembl Plants
database (Bolser et al., 2016).

MiRNA sequences were obtained from miRBase ver-
sion 22.1 (https://www.mirbase.org/).

Bioinformatics analysis. This study consisted of two main
blocks of bioinformatics analysis: transcriptome assembly
followed by the differential expression analysis of IncRNAs;

BUOUHOOPMATUKA U CUCTE

prediction of miRNA-IncRNA interactions using deep learn-
ing—based approaches. A detailed description of each analyti-
cal step is provided below.

Transcriptome assembly and analysis of maize. Tran-
scriptome assembly (Fig. 1) included the following steps:
data preprocessing, transcriptome assembly, identification
and annotation of IncRNAs, and quantification of transcript
expression levels.

Read filtering was performed using Trimmomatic (Bolger et
al., 2014) with the following parameters: removal of adapter
sequences, elimination of short reads shorter than 36 nucleo-
tides, and quality-based trimming of low-quality reads. After
preprocessing, the filtered reads were aligned to the Z. mays
reference genome using STAR (Dobin et al., 2013). Based on
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Fig. 2. Workflow of predicting interactions between IncRNAs and miRNAs using the PmliPred model.

Blue rectangles represent the input data, green rectangles indicate the output results, and orange rectangles denote the software tools used in the analysis.

The threshold value of confidence probability (T = 0.5) is shown.

the alignment results, transcriptome assembly was conducted
using StringTie (Pertea et al., 2015). The completeness and
quality of the assembled transcriptome were evaluated with
BUSCO (Siméo et al., 2015). Identification and annotation
of IncRNAs were performed using ICAnnoLncRNA (Pro-
nozin, Afonnikov et al., 2023). Expression levels of identified
IncRNAs and other transcripts were quantified using Kallisto
(Bray et al., 2016).

Differential expression analysis of IncRNAs in maize.
Differential expression analysis of IncRNAs was performed
separately for shoot and inflorescence tissues by comparing
wild-type (control) and mutant (fzt) maize lines. Statistical
analysis was conducted using the DESeq2 and edgeR pack-
ages (Robinson et al., 2010; Love et al., 2014). Transcripts
were considered significantly differentially expressed at a
p-value < 0.05, adjusted for multiple testing.

For the differentially expressed IncRNAs, heatmaps of
normalized expression values were generated to visualize
expression patterns across biological replicates and to confirm
the consistency of expression changes between the control
and mutant groups.

Analysis of interactions between miRNAs and IncRNAs.
Interactions between miRNA and IncRNA molecules were
predicted using the PmliPred method (Kang et al., 2020),
which involves several consecutive analytical stages (Fig. 2).
At the first stage, input data were prepared, including nu-
cleotide sequences of miRNAs and IncRNAs that exhibited
downregulated miRNA expression and upregulated INCRNA
expression in mutant plants compared with the control. The
input to the program also included quantitative sequence
features extracted by the built-in algorithms of the model, as
well as the training dataset provided with the software package
(Kang et al., 2020). For miRNAs, the following features were
used: k-mer frequencies (k = 1, k = 2), minimum free energy
normalized by length (MFE/L), number of paired nucleotides
in the secondary structure, and GC content ratio. For IncRNASs,

an additional feature representing k-mer frequencies (k = 3)
was extracted.

The processed data were analyzed using the PmliPred pro-
gram to estimate the interaction probability between miRNA-
IncRNA pairs (output parameter PC, confidence probability).
A miRNA-IncRNA pair was considered to have a potential
interaction when the PC value was > 0.5. The results were
presented in a table containing probability scores, which re-
flected the predicted strength of interaction between miRNA
and IncRNA molecules.

Analysis and visualization of interactions between
miRNAs and IncRNAs. The obtained miRNA-IncRNA
pairs were divided into two groups based on their interac-
tion parameters: IncRNAs with increased expression levels
in the mutant line (test group) and IncRNAs with decreased
expression levels (control group). Both groups of INCRNAS
were compared with all miRNAs showing reduced expression
levels, as reported by Thompson et al. (2014) (see section
“Transcriptomic data”). As a threshold for selecting potential
interactions in the test group, the maximum value of the PC
parameter calculated by the PmliPred program for the control
group was used. If for a given miRNA-IncRNA pair from the
test group, the PC parameter exceeded any of the PC values
from the control group, such miRNA-IncRNA pairs were
considered to interact.

The sequences of the selected miRNAs and IncRNAs were
uploaded into the IntaRNA program (Mann et al., 2017) for the
identification and visualization of base-pairing interactions.
Among all predicted interactions, only those pairs were re-
tained, in which the number of unpaired nucleotides within the
interaction region of the two molecules was fewer than 4, and
the length of the interaction region exceeded 16 nucleotides.

Such interactions between INncRNAs and miRNAs have
important biological significance. IncRNAs can function as
competing endogenous RNAs (ceRNAS), or “sponges”, by
binding to miRNAs and thereby preventing them from inter-
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Fig. 3. Heatmap of differentially expressed IncRNAs in seedling tissue.

Here and in Fig. 4: the color scale on the right represents normalized expression levels, with blue indicating high expression,
and red indicating low expression. Cells corresponding to IncRNAs with increased expression in the mutant line are

highlighted with a blue frame.

acting with theirmRNA targets. This mechanism contributes to
the regulation of gene expression involved in plant growth, de-
velopment, and stress responses (Pronozin, Afonnikov, 2025).

Results

Transcriptome assembly

As a result of the transcriptomic analysis of Z. mays, cover-
ing both seedling and tassel stages for control and mutant
(fzt) lines, high-quality raw data were obtained. The average
percentage of uniquely mapped reads during alignment using
STAR (Dobin et al., 2013) was 84.73 %, while only 3.10 %
of reads remained unmapped. For the aligned reads, the
average mismatch rate per nucleotide was 0.76 %, indicating
high sequencing accuracy and the reliability of the data for
subsequent analyses.

The transcriptome assemblies generated using StringTie
(Pertea et al., 2015) were evaluated with the BUSCO tool
(Siméo etal., 2015). Inall 14 libraries, the proportion of com-
plete BUSCO groups exceeded 95 %, reaching a maximum
of 98.8 % (252 out of 255 expected orthologs detected in
library SRR1041561). These metrics indicate the complete-
ness and high quality of the obtained assemblies, confirming
their suitability for subsequent expression analysis and the
identification of noncoding RNAs.

Differential expression of IncRNAs

between control and mutant Z. mays samples

In seedling tissue, 10 IncRNAs were identified as significantly
differentially expressed between the control and mutant groups
(Table S1)t. Among these, nine IncRNAs showed increased

1 Supplementary Tables ST and S2 are available at:
https://vavilovj-icg.ru/download/pict-2025-29/appx51.pdf

expression in the mutants, suggesting that they may serve as
targets for miRNAs and participate in post-transcriptional
regulatory mechanisms. These transcripts were subsequently
considered as candidate miRNA targets in further analyses.

The heatmap (Fig. 3) illustrates systematic differences in the
expression of these IncRNAs across the analyzed transcrip-
tomic libraries. For 9 out of the 10 InNcRNAsS, expression levels
were higher in the mutant plants compared with the control.

In tassel tissue, the number of differentially expressed
IncRNAs was considerably higher, with a total of 34 IncRNAs
identified (Table S2). Among these, 20 IncRNAs exhibited
increased expression in the mutant line. Notably, pronounced
differences in transcription levels were observed for several
IncRNAs that displayed strong tissue-specific expression pat-
terns unique to the tassel.

The heatmap of IncRNA expression in tassel tissue (Fig. 4)
also illustrates systematic differences across the analyzed tran-
scriptomic libraries. IncRNAs with decreased and increased
expression levels in the mutant plants formed two clearly
distinct clusters.

Overall, the identified IncRNAs represent a prioritized set
for subsequent analysis of interactions with miRNAs and for
further functional annotation.

Assessment of the accuracy
of miRNA-IncRNA interaction predictions
The evaluation of the model’s ability to distinguish INcRNAs
from the test group (with increased expression in mutants)
from those in the control group (with decreased expression)
is presented in Fig 5.

In seedling tissue, the interaction scores for the test
IncRNAs (with increased expression in mutants) were shifted
above 0.5, suggesting a potential ability of these transcripts to
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Fig. 4. Heatmap of differentially expressed IncRNAs in tassel tissue.
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Fig. 5. Distribution of predicted miRNA-IncRNA interaction scores in seedlings and tassel tissues.

a - seedlings: interaction scores for the test group (IncRNAs with increased expression) are shown in red, and for the control group (IncRNAs
with decreased expression), in blue; b — tassel: similarly, red represents the test group, and blue, the control group (IncRNAs with decreased
expression). The X-axis represents the predicted interaction confidence (PC) calculated by PmliPred, and the Y-axis indicates the number of

mMiRNA-INcRNA pairs analyzed.

bind miRNAs. However, it should be noted that the control
group contained only a single INcRNA with a high predicted
score. Because the control in this experiment consisted of only
one IncRNA (with decreased expression in mutants), it was
difficult to accurately assess the precision and discriminatory
power of the PmliPred model.

In tassel tissue, the differences between the groups were
even more pronounced: interaction scores for the test INCRNAs
were predominantly above 0.5, whereas the control INcRNAs
displayed a distribution shifted below 0.5. This behavior of the

model indicates its ability to effectively distinguish biological
classes based on the predicted miRNA-IncRNA interaction
parameters.

Thus, the PmliPred model demonstrated high discrimina-
tory power and can be used for the preliminary selection of
IncRNAs potentially involved in interactions with miRNAs.

miRNA-IncRNA interaction networks in maize tissues
The results obtained using the miRNA-IncRNA interaction
prediction tool IntaRNA are shown in Fig. 6. For example,

1300 Vavilovskii Zhurnal Genetiki i Selektsii / Vavilov Journal of Genetics and Breeding - 2025 - 29 - 8



L. AHb, A.IO. MpoHOo3uH
[0.A. AboHHMKOB

Seedling

IncRNA: Incrna_SRR1041551_8056.1
miRNA: zma-miR156a-3p

IncRNA:
miRNA:

energy -31.11 kcal/mol
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Tassel

IncRNA: Incrna_SRR1041559_12521.1
miRNA: zma-miR528a-b-5p

IncRNA:
miRNA:

energy -24.79 kcal/mol

Fig. 6. Examples of miRNA-IncRNA interactions predicted using IntaRNA.

a - seedlings: zma-miR156a-3p and IncRNA_mapped_SRR1041551_8056.1; b — tassel: zma-miR528a-b-5p and IncRNA_mapped_SRR1041559_
12521.1. Regions of base pairing and the interaction structures are shown, calculated based on minimum free energy (kcal/mol).

Fig. 7. miRNA-IncRNA interaction networks in maize seedling tissue.

Here and in Fig. 8: green circular nodes represent miRNAs, blue circular nodes
represent IncRNAs, and red circles indicate IncRNAs that are potentially func-
tioning as “sponges”.

two RNA pairs clearly formed stable and extensive regions of
complementary binding. In total, 13 reliable miRNA-IncRNA
pairs were identified in seedling tissue, and 14 pairs, in tassel
tissue. These data confirm that the selected IncRNAs not only
exhibit increased expression in the mutants but also possess
a high potential for specific interactions with miRNAs, the
expression of which is reduced in the mutants. This makes
them justified candidates as miRNA targets.

Visualization of the identified interactions using Cytoscape
(Figs. 7 and 8) revealed that some IncRNAs are potentially
capable of binding multiple miRNAs simultaneously. For
example, Incrna_SRR1041561 10348.1 (in tassel) interacts
with five different miRNAs: zma-miR160a-e-g-5p, zma-
miR167d-3p, zma-miR394a-b-5p, zma-miR408a-b-3p, and
zma-miR172e, suggesting its potential role as a “sponge”
within a ceRNA mechanism. Another example is Incrna_
SRR1041554_35279.1 in seedling tissue, which interacts with
zma-miR2118b, zma-miR160a-e-g-5p, and zma-miR 167b-3p.

Discussion
The analysis revealed that 9 out of 14 identified IncRNAs
are potentially capable of interacting with multiple miRNAs

Fig. 8. miRNA-IncRNA interaction networks in maize tassel tissue.

simultaneously, suggesting their possible role as competing
endogenous RNAs (ceRNAs), molecular “sponges” that bind
miRNAs and prevent their interaction with target mMRNAs.
Through this mechanism, IncRNAs can indirectly regulate
the expression of various genes involved in key biological
processes.

Among the predicted miRNA partners are well-charac-
terized regulators of plant growth, development, and stress
responses (Jones-Rhoades et al., 2006; Sunkar et al., 2012):
* miR156 regulates the transition from the juvenile to the

adult phase, flowering, leaf morphogenesis, and branching

by suppressing SPL genes (Preston et al., 2013; Wang H.,

Wang H., 2015);

* miR167 and miR160 regulate the auxin signaling pathway
by suppressing ARF genes, thereby influencing root forma-
tion, leaf, flower, and seed development, as well as somatic
embryogenesis (Caruana et al., 2020; Barrera-Rojas et al.,
2021; Wang Y. et al., 2020);

» miR168 participates in maintaining the stable level of the
AGO1 protein, a central component of the RNA interference
(RNAI) machinery, thereby regulating the entire miRNA
pathway (Martinez de Alba et al., 2011; Li W. et al., 2012);
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* miR172 regulates the onset of flowering and organogenesis
by repressing AP2-type transcription factor genes (Ripoll
et al., 2015; Zhang B. et al., 2015);

» miR2118 activates the biogenesis of phased small interfer-

ing RNAs (phasiRNASs), playing a critical role in plant im-

munity and anther development (Canto-Pastor et al., 2019;

Jiang P. et al., 2020);

miR398 and miR408 provide antioxidant protection by

regulating the levels of superoxide dismutases and metal-

binding proteins, and they also respond to a wide range

of abiotic stresses (Jiang A. et al., 2021; Zou et al., 2021,

Gao et al., 2022);

* miR394 influences leaf morphogenesis, fruit develop-
ment, and meristem activity (Song et al., 2015; Sun P. et
al., 2017);

» miR528 is involved in redox homeostasis, resistance to viral
infections, salt stress response, and regulation of lignifica-
tion (Wu et al., 2017; Sun Q. et al., 2018).

Functional annotation of the interacting miRNAs indicates
that most of them are involved not only in the development
of plant morphological structures, but also in the complex
regulatory networks controlling responses to biotic and abio-
tic stresses.

Moreover, the identified ceRNA networks confirm that
post-transcriptional regulation in plants is mediated through
finely coordinated interactions between non-coding and
coding RNAs. The presence of IncRNAs capable of bind-
ing multiple regulatory miRNAs suggests the existence of
potential hubs of regulatory cross-talk within RNA networks,
which represents a particularly promising target for functional
validation.

The obtained results emphasize the importance of a sys-
tems-level approach to transcriptomic data analysis, as such
strategies enable the identification of hidden layers of gene
regulation and promising molecular targets. Furthermore,
these findings may serve as a theoretical foundation for the
development of new agronomically valuable maize varieties
with enhanced stress tolerance and improved adaptive traits.

Conclusion

In this study, a comprehensive analysis of Z. mays transcrip-
tomic data was conducted to identify potential interactions
between miRNAs and IncRNAs. Based on the results of dif-
ferential expression analysis comparing control and mutant
samples, IncRNAs and miRNAs with potential interactions
were identified.

The PmliPred model, based on machine learning ap-
proaches, was applied to predict potential miRNA-IncRNA
pairs. Subsequent structural analysis using IntaRNA confirmed
the presence of stable complementary binding sites between
the selected molecules, indicating high reliability of the pre-
dicted interactions.

Based on the selected interaction pairs, competing endo-
genous RNA (ceRNA) networks were constructed, demon-
strating that individual IncRNAs are capable of binding
multiple miRNAs simultaneously. This supports the hypo-
thesis that they participate in post-transcriptional regulatory
mechanisms as mMiRNA “sponges”, capable of modulating the
activity of regulatory molecules and influencing the expres-
sion of target genes.

Computational prediction of the interaction network
between IncRNAs and microRNAs in maize

Additionally, key interactions were visualized using Cyto-
scape, allowing a clear representation of the structure and
potential functional significance of the identified regulatory
connections. The results confirm the role of IncRNAs as im-
portant components of plant regulatory networks and provide
a foundation for further functional studies.
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