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Abstract. Rhesus macaques (Macaca mulatta) are the most common non-human primates living in captivity. The use 
of rhesus macaques as model objects is determined, first of all, by their phylogenetic and physiological closeness to 
humans, and, as a consequence, the possibility of extrapolating the obtained results to humans. Currently, it is known 
that a number of biochemical changes occur under various physiological conditions, including at the transcriptomic 
level. The real-time polymerase chain reaction is a widely used universal method for gene expression analysis. 
Carrying out such studies always requires a preliminary selection of “housekeeping genes” (HKGs) – genes necessary 
for the implementation of basic functions in the cell and stably expressed in different cell types and under different 
conditions. At present, there are only two systematic studies on the search for HKGs in the rhesus macaque brain, and 
therefore in this work a search and systematization of HKGs for this species were carried out. As a result, two panels of 
promising HKGs for M. mulatta were formed: an extended panel, consisting of 56 genes, and a small panel, consisting 
of 8 genes: ARHGDIA, CYB5R1, NDUFA7, RRAGA, TTC1, UBA6, VPS72, and YWHAH. Both panels of potential HKGs do 
not have pseudogenes in macaques or humans, are characterized by stable and sufficient expression in the brain of 
rhesus macaques and can be used to analyze expression not only in the brain but also in peripheral blood. However, it 
should be noted that the data have not been experimentally verified and require verification in laboratory conditions.
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Аннотация. Макаки резус (Macaca mulatta) являются наиболее распространенными нечеловекообразными 
приматами, их используют в качестве модельных объектов, в первую очередь, из-за филогенетической и 
физиологической близости к человеку. В настоящее время модельные организмы широко используются для 
целого ряда исследований, в том числе на уровне транскриптома. При этом для анализа экспрессии отдельных 
генов применяется универсальный метод – полимеразная цепная реакция в реальном времени. Проведение 
такого рода исследований всегда требует предварительного подбора «генов домашнего хозяйства» 
(ГДХ)  – генов, необходимых для реализации основных функций в клетке и стабильно экспрессирующихся в 
различных типах клеток и при разных условиях. На сегодняшний день для макак резус существуют лишь две 
систематизированные работы по поиску ГДХ, однако эти исследования проводились лишь для тканей мозга 
и не учитывают такой важный критерий, как связь ГДХ с заболеваниями. В связи с этим в нашей работе были 
сформулированы ключевые критерии, учитываемые при подборе ГДХ. Проведены поиск и систематизация 
кандидатных ГДХ. В результате сформированы две панели перспективных ГДХ для M. mulatta: расширенная 
панель на 56 генов и малая панель, состоящая из восьми генов: ARHGDIA, CYB5R1, NDUFA7, RRAGA, TTC1, UBA6, 
VPS72 и YWHAH. Обе панели соответствуют всем критериям подбора ГДХ (не имеют псевдогенов ни у макаки, 
ни у человека, характеризуются стабильной и достаточной экспрессией в мозге макак резус и могут быть 
использованы для анализа экспрессии не только в мозге, но и в периферической крови). Однако необходимо 
отметить, что данные экспериментально не верифицированы и требуют проверки в лабораторных условиях.
Ключевые слова: Macaca mulatta; экспрессионный анализ; «ген домашнего хозяйства»; ПЦР в реальном 
времени; экспрессия
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Introduction
Rhesus macaques (Macaca mulatta) have served as a model 
for studying various human diseases for decades. Their use 
as a model is primarily explained by the phylogenetic and 
physiological similarity to humans, and, consequently, the 
potential for transferring the results obtained. To date, genetic 
models of cancer (Brammer et al., 2018; Deycmar et al., 2023), 
cardiovascular diseases (Patterson et al., 2002; Ueda et al., 
2019), ophthalmologic diseases (Singh et al., 2009; Liu et al., 
2015; Moshiri et al., 2019; Peterson et al., 2019, 2023), skeletal 
diseases (Colman, 2018; Paschalis et al., 2019), diseases of 
the reproductive system (Lomniczi et al., 2012; Nair et al., 
2016; Abbott et al., 2019), as well as a wide range of neuro-
logical diseases (McBride et al., 2018; Sherman et al., 2021) 
are known in rhesus macaques. In addition, rhesus macaques 
are used for research as model objects of toxicity (Kaya et 
al., 2023), radiation (Li et al., 2021; Majewski et al., 2021), 
hormones (Noriega et al., 2010; Eghlidi, Urbanski, 2015), etc. 
In addition to studying diseases, this model can be used to test 
various pharmacological drugs, which is especially important 
for applied research.

It is now known that a wide range of biochemical changes 
occur under various physiological conditions, including at the 
transcriptome level. Relative transcript levels of individual 
genes can be accurately and reproducibly measured using 
real-time polymerase chain reaction (RT-PCR). This method 
is a widely used and versatile tool for analyzing the expres-
sion of a small number of genes. RT-PCR is also frequently 
used to confirm results obtained using whole-transcriptome 
expression analysis (Ramsköld et al., 2009). However, this 
type of study is always complicated by variations in the copy 
number of the target mRNA due to differences in the amount 
of total RNA between samples, therefore requiring the prelimi-
nary selection of control (reference) genes, or “housekeeping 
genes” (HKGs).

The term HKG most often refers to genes stably expressed 
in various cell types and under various conditions and required 
for basic cellular functions. They are often used as reference 
genes in gene expression studies to normalize mRNA levels 
between different samples.

In rhesus macaques, there is currently very little systematic 
data on the use of HKGs (Ahn et al., 2008; Noriega et al., 
2010). Noriega et al. (2010) conducted a study only on the 
brain, while Ahn et al. (2008) worked with both brain tissue 
and some other tissues (intestine, liver, kidney, lung, and 
stomach). However, neither of these studies examined the 
animals’ peripheral blood, which is widely used for various ex-
pression studies. In this regard, this review conducted a search 
and systematization of data on HKGs in rhesus macaques for 
their further use in studying gene expression changes under 
various conditions.

Modern principles of selection of HKGs
Currently, the selection of HKGs is based on the following 
main principles. First, the absence of pseudogenes, copies of 
genes that contain certain defects in the coding region (loss of 
introns and exons, frameshifts, or premature stop codons, as 
well as pseudogenes formed as a result of retrotransposition), 

is an important criterion for selecting HKGs (Tutar, 2012). 
Pseudogenes are not involved in protein processing but can 
be expressed at the RNA level. Furthermore, the number of 
pseudogenes is known to be unstable in the genomes of dif
ferent individuals. From a practical standpoint, the presence of 
pseudogenes may require additional treatment of the analyzed 
RNA samples with DNases, which is critical for samples with 
low RNA amounts. Therefore, the presence of pseudogenes 
is highly undesirable when selecting HKGs.

Second, expression stability is considered to be another 
important criterion for selecting HKGs, i. e., they should have 
relatively constant expression levels across different cell types, 
tissues, and experimental conditions (Tu et al., 2006). How-
ever, it is known that HKGs can be expressed differentially 
in different tissues. For example, well-known HKGs such as 
beta-actin and GAPDH  have been shown to vary significantly 
in expression levels across tissues (Cai J. et al., 2014). There-
fore, a high level of HKGs’ expression in the specific tissue 
under study is an important criterion.

Third, there is increasing support for the idea that HKGs 
should be tailored to specific experimental conditions (Silver 
et al., 2008). For example, the human HSPA8 gene is a HKG, 
but it cannot be used as such in the study of age-related or 
neurodegenerative diseases, as there is evidence of a decrease 
in HSPA8 gene expression with age, as well as an association 
between this gene and the development of neurodegenerative 
diseases (Loeffler et al., 2016; Tanaka et al., 2024). Expres-
sion profile variability has also been demonstrated for HKGs 
used in the study of cancer (de Kok et al., 2005; Dheda et al., 
2005). To date, no studies have identified all-purpose HKGs, 
meaning that HKGs’ selection for the specific pathology being 
studied is necessary.

Thus, an ideal HKG should have no pseudogenes, no as-
sociation with the disease or condition being studied, and 
it should be stably expressed under specific experimental 
conditions and tissues (Fig. 1). The optimal HKG should be 

Fig. 1. Main HKG criteria.
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Table 1. Names of search queries in the PubMed database (https://pubmed.ncbi.nlm.nih.gov/)

Search query Result (publications, pcs.)

(gene expression) AND (rhesus macaque) 3,017

(gene expression) AND (Macaca mulatta) 2,743

(housekeeping genes) AND (rhesus macaque)    126

(housekeeping genes) AND (Macaca mulatta)    112

(reference genes) AND (rhesus macaque)      97

(reference genes) AND (Macaca mulatta)      86

((housekeeping genes) AND (rt-pcr)) AND (rhesus macaque)      16

((housekeeping genes) AND (rt-pcr)) AND (Macaca mulatta)      16

((reference genes) AND (rt-pcr)) AND (rhesus macaque)        7

((reference genes) AND (rt-pcr)) AND (Macaca mulatta)        7

Notе. Accessed on April 28, 2025.

carefully selected for each specific experiment. Using multiple 
HKGs also improves the reliability of the expression data 
obtained (Vandesompele et al., 2002; Dheda et al., 2005).

Analysis of the published data on HKGs  
in rhesus macaques
We screened scientific publications in the PubMed database 
to find papers focused on the analysis of HKGs in rhesus ma-
caques. An initial search using the keywords (gene expression) 
AND (rhesus macaque) identified 3,017 publications. Since 
“rhesus macaque” and “Macaca mulatta” are synonymous, 
both terms were used in the analysis of search queries. Due 
to the relatively large number of publications returned, the 
search query was specified using the synonymous terms 
“housekeeping genes” and “reference genes”, which yielded 
126 and 97 search results, respectively. Further narrowing the 
search by refining it using the keyword “rt-pcr” revealed 16 
and 7 publications (Table 1).

A detailed analysis of these seven studies identified two 
most relevant systematic studies to date on the selection of 
HKGs in rhesus macaques (Ahn et al., 2008; Noriega et al., 
2010). Five of the seven remaining publications analyzed 
did not mention HKGs and were therefore not included in 
the analysis.

Next, a block of 126 open-access publications found in 
PubMed using the keywords (housekeeping genes) AND 
(rhesus macaque) was manually analyzed. It was found that 
107 publications, for one reason or another, did not mention 
any HKGs, while 16 publications used genes recommended by 
the authors of the two main studies on the selection of  HKGs 
in rhesus macaques (Ahn et al., 2008; Noriega et al., 2010). 
These two types of publications were excluded from further 
analysis. Our search yielded only one additional publication 
(Robinson et al., 2018). Supplementary Table  S11 sum-
marizes the data from these three key studies and describes 
1 Supplementary Tables S1 and S2 are available at: 
https://vavilov.elpub.ru/jour/manager/files/Suppl_Shulskaya_Engl_29_8.pdf

115 genes expressed in the rhesus macaque brain that could 
be considered as HKGs. These genes were selected for further  
analysis.

Due to periodic database updates, some gene names were 
updated and given with names different from those used in 
(Ahn et al., 2008; Noriega et al., 2010) when compiling this 
list. Four sequences that were homologous to human sequenc-
es but were absent in the Ensembl database for rhesus ma-
caques (Genome assembly: Mmul_10 (GCA_003339765.3)) 
(Table S1) and five M. mulatta genes currently identified as 
having pseudogenes (LDHB, RPL37, RPS27A, SNRPA, and 
SUI1) were also excluded.

Due to the underannotation of modern rhesus macaque 
genome assemblies (for example, we found that the nucleotide 
sequence of the M.  mulatta YWHAH gene in the Ensembl 
database corresponds to the sequence of the unannotated 
DEPCD5 gene in the NCBI database), we assessed the pres-
ence of pseudogenes not only in rhesus macaques but also in 
humans using the Ensembl database (www.ensembl.org). As 
a result, we excluded 58 genes with human orthologs having 
pseudogenes.

This procedure allows us to identify all-purpose HKGs for 
both humans and macaques, while also avoiding problems 
associated with the low level of annotation of the rhesus 
macaque genome assembly. For example, the RPL19 gene, 
currently the most widely used HKG in rhesus macaques, is 
not recommended for use as an all-purpose HKG because it 
has pseudogenes in human genome.

The genes selected after the previous screening steps can 
be used for studies on brain tissue. However, peripheral 
blood, widely used in human studies, is of particular interest. 
Peripheral blood is promising for expression studies due to its 
availability and low invasiveness. Therefore, we considered 
it necessary to select candidate HKGs for peripheral blood, 
for the purpose of which the selected genes were further 
analyzed for acceptable expression levels in peripheral blood  
(Table S2).

https://vavilov.elpub.ru/jour/manager/files/Suppl_Shulskaya_Engl_29_8.pdf
https://vavilov.elpub.ru/jour/manager/files/Suppl_Shulskaya_Engl_29_8.pdf
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Fig. 2. Expression of candidate HKGs in selected human and mouse 
tissues.
Genes expressed predominantly in humans are shown in pink, and genes 
expressed predominantly in mice are shown in purple. The overlapping area 
indicates genes expressed in specific tissues of both species.

Since peripheral blood expression data are currently com
pletely lacking for M.  mulatta, and due to the similarity 
between the macaque and human transcriptomes, publicly 
available mRNA expression data were analyzed in human 
whole blood and lymphoblasts. We also included expression 
data in mice, as these animals are a well-studied model object 
(due to the lack of peripheral blood data, tissues with similar 
expression patterns, such as bone marrow, lymph nodes, and 
spleen, were used). Expression data in the brain and spleen 
of rhesus macaques were added from the Ensembl database 
(Table S2).

This analysis was conducted using the BioGPS database 
(http://biogps.org/), where we selected genes with expression 
above the median in the tissues of interest. “Median expres-
sion” represents the 50th percentile of the expression data, 
meaning that half of the tissues have expression levels below 
the median, and the other half have expression levels above 
the median. BioGPS uses this metric to provide a summary 
of how a gene is expressed in different tissues, conditions, 
or data sets.

As a result of the analysis, the list of genes was divided into 
three groups: genes with expression levels above the median in 
both humans and mice, genes with expression levels above the 
median in only one of the two species, and genes with expres-
sion levels below the median in both humans and mice (Fig. 2, 
Table S2). Genes from all three groups can be considered as 
candidate HKGs. However, their use will limit the number of 
model objects compared based on their expression profiles. 
Genes from the first group are the most promising. It should 
also be noted that the expression data presented in BioGPS 
require experimental verification in the laboratory.

However, it is important to note that the median value is not 
always a good indicator for selecting candidate genes, since 
the mRNA abundance in the tissue under study may be higher 
than the median, but the absolute expression levels are quite 
low. Therefore, all analyzed genes were ranked according to 
their relative expression levels in the analyzed tissues. The 
results of this analysis are presented as a heat map (Fig. 3). 
Ultimately, we formed a group of 25 most promising candi-
date HKGs (genes with high or moderate expression levels 
in humans, mice, and rhesus macaques).

Since HKGs can be used to study changes in the expression 
of various genes in various diseases, potential HKGs should 
not be implicated in the development of the disease under 

study. A selected group of 25 genes was analyzed using the 
MalaCards database (www.malacards.org). MalaCards is a 
searchable, integrated knowledge base containing comprehen-
sive information on human diseases, medical conditions, and 
disorders. We searched for associations between the gene and 
currently known disease models in rhesus macaques (Table 2). 
Six genes associated with oncological diseases (AHSA1, 
B4GALT3, HPCAL1, TBP, TMED9, and SSR2), six genes 
associated with neurological diseases (CSNK2B, DIAPH1, 
MAPKAPK2, NDUFA1, RAD23A, and UBB), as well as genes 
associated with eye diseases (ARL2 and PRPF8) and some 
other diseases (GPX4 and LDHA) were excluded.

As a result, at this final stage of the selection of candi-
date HKGs, we selected eight genes (ARHGDIA, CYB5R1, 
NDUFA7, RRAGA, TTC1, UBA6, VPS72, and YWHAH  – 
highlighted bold in Table  2), characterized by the absence 
of pseudogenes, the absence of data on the involvement of 
these genes in the development of diseases modeled in rhesus 
macaques, as well as stable and high expression in the ana-
lyzed tissues (brain, peripheral blood, spleen, lymph nodes, 
bone marrow).

Fig. 3. Heatmap of relative expression levels of candidate HKGs. 
Median-normalized values for each gene in the BioGPS resource (http://biogps.org) were used as the basis. 
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Table 2. Association of the selected highly expressed potential HKGs with disease groups modeled in rhesus macaques

Gene Disease* Reference

AHSA1 Osteosarcoma and hepatocellular carcinoma Wei et al., 2024

ARL2 Rod-cone dystrophy, cataracts, and posterior staphyloma Cai X.B. et al., 2019

ARHGDIA – –

B4GALT3 Cancers Sun et al., 2016

CSNK2B Myoclonic epilepsy Poirier et al., 2017

CYB5R1 – –

DIAPH1 Microcephaly Esmaeilzadeh et al., 2024

GPX4 Spondylometaphyseal dysplasia of the Sedaghatian type Smith et al., 2014

H6PD Glioblastoma Zhang Y.B. et al., 2022

HPCAL1 Glioblastoma Zhang D. et al., 2019

LDHA Fanconi–Bickel syndrome Serrano-Lorenzo et al., 2022

MAPKAPK2 Pheochromocytoma, ataxia, telangiectasia Liang et al., 2015

NDUFA1 Mitochondrial encephalomyopathy Fernandez-Moreira et al., 2007

NDUFA7 – –

PRPF8 Retinitis pigmentosa, retinal dystrophy Tanackovic et al., 2011; Georgiou et al., 2021

RAD23A Machado–Joseph disease Doss-Pepe et al., 2003

RRAGA – –

SSR2 Hepatocellular carcinoma Chen et al., 2022

TBP Ataxia, phenotype associated with Huntington’s disease Zühlke et al., 2001; Stevanin et al., 2003

TMED9 Cancers Mishra et al., 2019; Wang et al., 2024

TTC1 – –

UBA6 – –

UBB Alzheimer’s disease Maniv et al., 2023

VPS72 – –

YWHAH – –

* Pubmed (https://pubmed.ncbi.nlm.nih.gov/) has no published data for 2000–2025.

Conclusion
Thus, two panels of promising HKGs for M. mulatta were 
formed: an extended panel consisting of 56 genes (Table S2) 
and a small panel consisting of 8 genes (Table 2). Both panels 
of potential HKGs have no pseudogenes either in macaques or 
in humans, and they are characterized by stable and sufficient 
expression in the rhesus macaque brain. However, the spe
cialized panel is more all-purpose, as it is suitable for selecting 
HKGs for parallel studies on several model organisms (mouse, 
macaque, and human) or for studying several different diseases 
simultaneously by a single research group. The small panel is 
of interest for further development of a working HKGs panel 
to study changes in the expression of various genes in various 
diseases in M. mulatta. At the same time, the extended panel 
of potential HKGs is also quite promising.
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