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Abstract. In the last few decades, yeasts have been successfully engineered to be an excellent microbial cell factory for
producing recombinant proteins with desired properties. This was due to their cost-effective characteristics and the
successful application of genomic modification technologies. In addition, yeasts have a conserved post-translational
modification pathway among eukaryotic organisms, which ensures the correct folding of recombinant proteins. However,
the folding machinery cannot always cope with the load caused by the overexpression of recombinant genes, leading to
the accumulation of misfolded proteins, the formation of aggregates and low production. Therefore, the protein-folding
capacity of the endoplasmic reticulum (ER) remains one of the main limitations for heterologous protein production in
yeast host organisms. However, thanks to many years of effective research of the fundamental mechanisms of protein
folding, these limitations have been largely overcome. The study of folding in both model organisms and bioproducers
has allowed to identify the molecular factors and cellular mechanisms that determine how a nascent polypeptide chain
acquires its three-dimensional functional structure. This knowledge has become the basis for developing new effective
techniques for engineering highly productive yeast strains. In this review, we examined the main cellular mechanisms
associated with protein folding, such as ER transition, chaperone binding, oxidative folding, glycosylation, protein quality
control. We discuss the effectiveness of applying this knowledge to the development of various engineering techniques
aimed at overcoming bottlenecks in the protein folding system. In particular, selection of optimal signal peptides, co-
expression with chaperones and foldases, modification of protein quality control, inhibition of proteolysis, and other
techniques have allowed to enhance the ability of yeast bioproducers to effectively secrete heterologous proteins.
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AHHOTaumA. 3a nocnefHne HeCKONbKO AeCATUNETUI JPOXXKM CTann Hambonee 3¢pdekTnBHbBIMU BGronpoayLeHTamm
PEKOMOUHAHTHBIX GENKOB C Pas3fvyHbIMK NOTPEOUTENBCKUMY CBOMCTBaMK. DTO CTaslo BO3MOXHbIM 6narogapsa ux
SKOHOMMYECKM BbIFOAHBIM XapakTepuUCTUKam U YCMEWHOMY NPUMEHEHNIO FeHHO-MHXKEHePHbIX TexHonorni. Kpome
TOro, APOXKN O6NafaloT KOHCEPBATVBHBIM AJ1A SYKapUOTUYECKMX OPraHM3MOB MEXaHW3MOM MOCTTPAHCIALNOHHOM
MoanduKaumm 6enkos, KOTOPbI 06eCneunBaeT NX KOPPEKTHbIN GONAMHT, HEOOXOAUMBI ANA fanbHENLEeN cekpeummn
1 PyHKUMOHaNbHOM akTMBHOCTM. OpHako annapaTt GonfuHra He BCerga CrnpaBfAeTCA C Harpyskow, Bbl3BaHHOM
CBepxaKcnpeccmen PekoMOVHAHTHbIX FeHOB, YTO MPUBOAWUT K HAKOMIEHWI0 HempaBUSIbHO CBEPHYTbIX 6enkos,
06pa30BaHNIIO arperaToB 1 HU3KOW NPOAYKTUBHOCTY [POXMKEBbIX LUTAMMOB. Taknm 06pa3om, CMOCOOHOCTb K GONANHTY
6e/1KoB B SHAOMIA3MaTNUYECKOM PETUKYNTyMe MO-NPeXHeMy OCTaeTCA OLHUM U3 OCHOBHbIX OFPaHUYEHNIA NPU CUHTE3e
peKOM6VIHaTHbIX 6EI'IKOB B OPOXMXeBbIX KNeTKaxX. o orpaHnyeHunA 6bIﬂVI B 3HAUYUTEJIbHOW CTeneHun npeofosieHbl
6narogapsa MHoronetHUM 3GeKTMBHbIM MccnefoBaHUAM GyHAAMEHTaNbHbIX MexaHM3MoB 6enkoBoro donavHra.
I/I3yqume cbonnvmra KaK 'y MOJeJIbHbIX OPraHM3moOB, Tak Ny 6I/I0np0,£l,yU,eHTOB NO3BOJSINNO BbIABUTb MONEKYNApPHble
daKkTopbl M KeTouHble MeXaHW3Mbl, onpeaenswwyme GopMUpPOoBaHME TPeXMePHON OYHKLUOHANbHOW CTPYKTYpPbl
pactywen nentugHoi uenu. MonyyeHHble 3HaHWA NErM B OCHOBY pPa3paboTKU HOBbIX 3OPEKTUBHbIX METOLoB
KOHCTPYMPOBAHUA BbICOKONPOAYKTUBHbIX LWTaMMOB ApPOX>kel. B paHHOM o0630pe Mbl paccMOTpPeny OCHOBHble
KNeTOYHblE MEXaHW3Mbl, CBfi3aHHble C GONAMHIOM 6enkoB, TakKMe KakK TPaHCMOPT 4Yepe3 >SHAOMIa3MaTUYeCKUin
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PeweHuna npobnem donanHra 6enKkos ANA NOBbILLEHNSA
30 GEKTVBHOCTY APOXKKEBBIX BONPOAYLIEHTOB

PeTUKynym, B3aUMOZENCTBME C LIANepoHaMU, OKUCIUTENbHbIA GONAUHT, FMKO3UNMPOBAaHUE I KOHTPOJb KauyecTsa
6enKoB. Mbl 06cyamnu 3¢deKTMBHOCTb MPUMEHEHUA 3TVX 3HAHWI NPU Pa3paboTKe PasNUYHbBIX UHXKEeHEPHbIX METOAO0B,
HanpaBeHHbIX Ha NPeofosieHNe Y3KUX MeCT B cucTeme 6enkoBoro donguHra. B uactHocTy, nof6op onTrManbHbIX
CUTHaNbHbIX NeNTUAOB, KO3KCNPEeCcHs C lWanepoHamm 1 dongasamu, MoguduKaLma KNeTouHbIX MeXaHU3MOB KOHTPOIS
KauecTBa 6GeNikoB, MHIMOMPOBaHKE NPOTEONM3a U HEKOTOPbIE Apyrue npremMbl NO3BOMWIN MOBLICUTb BO3MOXHOCTM
MCMNONb30BaHNA APOXKEN-NPOoAYLEHTOB B KauecTBe 3GpdEKTMBHON Npor3BoanTeNibHON Nnatdhopmbl Afis SKCnpeccum

n cekpeyunmn peKOMGVIHaHTHbIX 6enKkoB.

KnioueBble cnoBa: OPOXXN-NPOoAYUEHTDI; (I)OJ'I,D,I/IHI' 6enKoB; SHAOMNAa3MaTUYeCKUin PeTuKynym; MoneKkynapHbie

LIaNepPOoHbI; PEKOMOVHaHTHbIe 6enKn

Introduction

Yeast expression systems are excellent for the production of
valuable recombinant proteins and peptides widely used as
biopharmaceuticals and industrial enzymes. They are com-
mercially viable bioproducers due to their high growth rate,
resistance to harmful microbiota, ability to assimilate many
food sources, and fairly easy to cultivate in industrial condi-
tions (Thak et al., 2020; Madhavan et al., 2021; De Brabander
et al., 2023). The development of genetic and metabolic en-
gineering has increased the efficiency of yeast strains, mainly
due to the use of genomic technologies: strong promoters,
new vector elements with improved inducers and enhancers,
targeted mutagenesis, signaling molecules, high-performance
devices for cloning, screening and fermentation (De Brabander
etal., 2023; Tsuda, Nonaka, 2024). However, expression at the
transcriptional and translational levels often does not correlate
with the level of secretion of heterologous proteins, which is
due to the insufficient efficiency of the folding mechanism
(Ishiwata-Kimata, Kimata, 2023; Zahrl et al., 2023). There-
fore, the search for new technological methods for optimizing
the synthesis and increasing the yield of heterologous proteins
in yeast cells remains an urgent task. A significant direction
for its solution is overcoming the problem of folding target
proteins into the correct three-dimensional structure.

Proper folding is necessary for the functional activity of
synthesized proteins, their intracellular transport and fur-
ther secretion. Recombinant proteins are secretory and go
through a secretory pathway, beginning with folding in the
ER and ending with release into the extracellular environment
(culture media) (Raschmanova et al., 2021). Proteins are
translocated to the ER in an unfolded state and then undergo
modification and folding involving ER-resident chaperones,
folding enzymes, and glycosylation (Hartl et al., 2011; Saibil,
2013). Disruptions in this machinery result in the accumula-
tion of misfolded proteins in the cytoplasm, where they are
recognized by the Protein Quality Control (PQC) system that
regulates cellular homeostasis (Korennykh, Walter, 2012).
This system includes the Unfolded Protein Response (UPR)
signaling pathway, which can trigger refolding of misfolded
proteins or initiate their proteolysis.

In some cases, misfolded proteins clump together to form
aggregates or Inclusion Bodies (IBs), which can cause cell
damage (Yamaguchi, Miyazaki, 2014). Such I1Bs often contain
potentially active proteins with a normal secondary structure,
which can be recovered from these aggregates under appropri-
ate conditions (Burgess, 2009; Yamaguchi, Miyazaki, 2014;
Singhvi et al., 2021). However, their isolation and refolding
procedures are complex, expensive, and inefficient (Singhvi
et al., 2021). It is therefore clear that the solution to the fold-
ing problem of heterologous proteins must be directly linked

to their production process: protein folding engineering and
quality control in yeast host strains. In this article, we review
various cellular mechanisms and signaling pathways that
influence heterologous protein folding and discuss the latest
updates to biotechnological strategy allowing to address this
issue in order to maximize the yield of recombinant proteins.

Post-translational modifications and folding

Preparation for folding

In yeast, as in other eukaryotes, a newly synthesized peptide
must undergo post-translational modification and folding in
the endoplasmic reticulum to form the correct spatial con-
formation. A stable 3D structure determines the functional
activity of the protein and its subsequent traffic through the
secretory pathway (Schwarz, Blower, 2016).

Translation of secretory proteins occurs on cytosolic ribo-
somes and they are then co-translationally or post-transla-
tionally directed to the ER by a specific protein-RNA com-
plex — Signal Recognition Particle (SRP). SRP binds to the
N-terminal sequence of a precursor protein, which is called the
signal peptide (SP). Transfer across the ER membrane occurs
in an unfolded state of the nascent protein and is dependent
on the Sec water channel, a multiprotein complex that spans
the membrane (Berner et al., 2018; O’Keefe et al., 2022) (see
the Figure).

When the unfolded nascent chain appears in the ER lu-
men, its hydrophobic sequence elements are recognized by
ER-resident HSP chaperones: Kar2 (yeast Hsp70) and Ydj1
(yeast Hsp40) (Braakman, Hebert, 2013; Hendershot et al.,
2024). They bind to the hydrophobic amino acid side chains
exposed by the unfolded proteins. There is evidence that Kar2
assists in the folding of nascent proteins as they enter the
ER and remains bound until folding is complete. The Ydj1
chaperone forms transient complexes with Kar2, facilitating
its binding to non-native polypeptides (see the Figure). Thus,
chaperones prevent premature misfolding of the immature
polypeptide chain and protect it from aggregation (Omkar et
al., 2024; Ruger-Herreros et al., 2024).

According to some data, the chaperone function of Kar2 in
these events also depends on members of the DnaJ-like protein
family, such as Jem1 and Scj1, and the nucleotide exchange
factor Lhs1 (see the Figure). These co-chaperones promote the
ATPase cycle and thus maintain Kar2 activity (Schlenstedt et
al., 1995; Steel et al., 2004; de Keyzer et al., 2009).

Oxidative protein folding

3D structure formation begins with the process called Oxida-
tive Protein Folding (OPF), which results in the formation of
disulfide bonds due to the oxidation of thiol groups of cysteine
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Nascent secretory protein is transferred co-translationally into the ER lumen through the Sec multiprotein complex
that spans the ER membrane. At the ER membrane, the protein undergoes N-glycosylation involving the OST com-
plex. The N-glycan-modified peptide chain binds to calnexin (Cnx). When the unfolded nascent chain appears in
the ER lumen, it interacts with Kar2 and Ydj1.Jem1, Scj1 and Lhs1 assist in this process. In the ER lumen, the nascent
peptide undergoes an OPF process involving Pdi and Ero, which results in disulfide bonds. Accumulation of mis-
folded proteins in the cytoplasm induces the UPR response which can trigger refolding of misfolded proteins or
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initiate ERAD.

(Hatahet, Ruddock, 2009; Palma et al., 2023). OPF is carried
out by Protein disulfide isomerase (Pdi) (see the Figure). Pdi
not only is responsible for the formation of the disulfide bonds
in unfolded eukaryotic proteins, but also catalyzes the rear-
rangement of incorrect disulfide bonds (isomerase activity)
(Gross et al., 2006). The OPF pathway, like Pdi, is conserved
across eukaryotic organisms. Yeast Pdil protein is encoded by
the pdil gene, and pdil-deleted yeast strains have low viability
and accumulate secretory proteins within the ER lamellae
(Mizunaga et al., 1990; Frand, Kaiser, 1998).

The transition of Pdi to the active form is catalyzed by ER
sulfhydryl oxidase 1 (Erol). Erol is an oxidoreductase that
oxidizes Pdil via direct thiol-disulfide exchange (conversion
of cystine to cysteine) (Gross et al., 2006; Sevier, Kaiser,
2006). Yeast contains a single erol gene that encodes the Erol
protein. The loss of erol is lethal for yeast (Niu et al., 2016).
Thus, Pdi and Ero act synergistically; for the correct catalysis
of disulfide bonds in proteins, a balance of these two factors is
necessary (Niu et al., 2016; Wang L., Wang C.C., 2023). The
need to maintain such a balance is also due to the fact that the
activation of Pdi and Ero occurs via the oxidation—reduction
type and the high rate of disulfide bond formation in cells
and tissues should create dangerous levels of oxidative stress
(Gasser et al., 2008).

Role of glycosylation in promoting protein folding

Proper folding of most proteins requires post-translational
modification known as glycosylation. In yeast, secretory pro-
teins are glycoproteins and they contain covalently linked
oligosaccharides, which are mainly mannose residues (see
the Figure). Predominantly, yeast polypeptides are N-glyco-
sylated, i. e. mannose is N-glycosidically linked to the f-amido
group of asparagine. This reaction is catalyzed by the Oligo-
saccharyltransferase Enzyme Complex (OST) (Kelleher, Gil-
more, 2006) and occurs on ER membranes. OST transfers
Glc3Man9GIcNAc2-oligosaccharide (where Glc is glucose,
Man is mannose, and GIcNAc is N-acetylglucosamine) from
the lipid-pyrophosphate donor, dolichol diphosphate, to as-
paragine residues of nascent polypeptide chains. The protein-
linked oligosaccharide is called N-glycan. This glycan has
maintained a well-conserved structure throughout evolution
and is characteristic of all eukaryotes (Qi et al., 2020). Gly-
cans undergo further processing in the ER by glycosidases. In
Saccharomyces cerevisiae, the following glycosidases have
been described: alpha-glucosidase | encoded by CWHA41,
alpha-glucosidase Il encoded by ROT2, alphal,2-manno-
sidase encoded by MNS1. Glycosidases partially deglycosyl-
ate and shorten the N-glycan (Herscovics, 1999; Lehle et al.,
2006).
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Glycosylation promotes folding by enhancing the solubility
and stability of the proteins in the ER and the Golgi. Oligo-
saccharide residues are a marker for interactions with certain
chaperones, also assisting in the folding of glycoproteins
(Parodi, 2000; Xu C., Ng, 2015).

The N-glycan-modified polypeptide chain is recognized
by lectin chaperones (Ware et al., 1995; Caramelo, Parodi,
2015). In mammalian cells, two related ER lectin chaperones,
calnexin (Cnx) and calreticulin (Crt), are important for the
proper folding of newly synthesized glycoproteins. Calnexin
is an integral membrane protein, and calreticulin is a soluble
protein found in the ER lumen (see the Figure). They retain
glycoproteins in the ER during translation by inhibiting their
aggregation and formation of non-canonical disulfide bridges,
and also promote their association with other chaperones. In
yeast (S. cerevisiae), only the calnexin homologue Cnel has
been identified. Cnel is structurally similar to mammalian cal-
nexin except that it lacks a cytoplasmic tail and does not bind
calcium (Parlati et al., 1995). Yeast calnexin has been shown
to function as a molecular chaperone similar to mammalian
calnexin (Xu X. et al., 2004). A calnexin-like transmembrane
protein has also been identified in S. pombe (NUfiez et al.,
2015). However, genes encoding a calreticulin homologue
have not yet been identified in the yeast genome.

Protein Quality Control

All eukaryotes have conserved mechanisms that control cel-
lular proteostasis and protect the cell from stress. These are the
three main pathways that comprise the quality control system:
UPR, ERAD (ER-associated degradation), and autophagy.
There are essentially two alternative cellular responses to the
accumulation of abnormal proteins. UPR promotes their re-
folding repair through additional activation of ER chaperones
and folding enzymes, while ERAD and autophagy target them
for degradation (see the Figure).

Unfolded protein response

In eukaryotes, UPR includes ER-localized molecular chape-
rones that participate in sensing misfolded proteins, activating
downstream signaling cascades, and mitigating proteotoxic
ER stress: Inositol-requiring enzyme 1 (Irel), Activating tran-
scription factor 6 (Atf6), and Protein kinase R-like ER kinase
(PERK). However, only Irel is highly conserved and has been
found in unicellular eukaryotes, including yeast (Schroder et
al., 2003; Mori K., 2022). Presumably, through its luminal do-
main, Irel enables direct interaction with exposed hydrophobic
groups of misfolded proteins in the ER. This reaction results
in the activation of Irel, and as a result, its C-terminal RNase
domain mediates splicing of the Hacl gene mRNA removing
a 252-nucleotide intron near the 3" end. Then Rlgl, a tRNA
ligase, ligates the hacl transcript cleaved by Irelp. Its spliced
and unspliced forms are termed Hacli and Haclu, respectively
(“i”and “u” for induced and uninduced) (Schroder et al., 2003;
Xia, 2019). Hacli mRNA is translated into the transcription
factor Hacl. It is then transported into the nucleus where it
induces transcription of a large number of genes involved in
the UPR mechanism (Hernandez-Elvira et al., 2018) includ-
ing those encoding ER-located molecular chaperones and
protein modification enzymes such as kar2, pdil, erol, ecj1,
Ihs1, jem1. Additionally, the Irel/Hacl pathway is essential
for activating genes that carry out ERAD functions promoting

2025
298

PeweHuna npobnem donanHra 6enKkos ANA NOBbILLEHNSA
30 GEKTVBHOCTY APOXKKEBBIX BONPOAYLIEHTOB

selective removal of terminally damaged proteins (Friedlander
et al., 2000; Travers et al., 2000).

Hacl orthologs have been identified in various yeast
species, such as Pichia pastoris, Hansenula polymorpha,
Kluyveromyces lactis, Yarrowia lipolytica, Candida albicans,
and Candida parapsilosis. All of these species share the Irel-
dependent mechanism of splicing the Hacl transcripts in
response to ER stress (Hernandez-Elvira et al., 2018; Fauzee
et al., 2020; Ishiwata-Kimata, Kimata, 2023).

However, it has been reported that S. pombe probably
does not contain a Hacl ortholog. Its Irel triggers a process
called Regulated Ire-dependent decay (Kimmig et al., 2012).
In S. pombe, stress-activated IRE1 cleaves mMRNAs located
in the ER, leading to their exonuclease-mediated degradation
(Hernandez-Elvira et al., 2018).

ER-associated degradation

Proteins that have not achieved their native conformation after
repeated folding remain in the ER, bound to ER chaperones
that prevent their aggregation. If a protein remains unfolded
in the ER for too long, it is identified as potentially harmful
and eliminated via ER-associated degradation. The process
involves several steps: the recognition of substrates in the
lumen and membrane of the ER, their translocation into the
cytosol, ubiquitination and degradation in the 26S protea-
some. Thus, ERAD is associated with the highly conserved
ubiquitin proteasome system (UPS) (Ruggiano et al., 2014;
Krshnan et al., 2022). In all eukaryotes, it includes the fol-
lowing main components: ubiquitin-activating enzyme (E1),
ubiquitin-conjugating enzyme (E2), ubiquitin ligase (E3), and
26S proteasome (Pickart, 2001). If a misfolded glycoprotein
stays in the ER for a critically long time, its N-linked glycans
are trimmed by yeast 1,2-mannosidasel — Htm1. This trimmed
N-glycan is recognized by a lectin chaperone known as Y0s9.
At the same time, the Hrd3 protein (HMG-CoA reductase de-
gradation protein 3) associates with hydrophobic amino acid
residues exposed on the surface of misfolded glycoproteins
(Thibault, Ng, 2012; Berner et al., 2018). After recognition and
binding to Hrd3 and Yos9, the substrate protein is transferred
to the E3 ubiquitin ligases complex responsible for ubiquiti-
nation — Hrd1 (HMG-CoA reductase degradation protein 1).
Hrd1 is embedded in the ER membrane and is in conjunction
with Derl (Degradation in the endoplasmic reticulum pro-
tein 1) and Usa 1 (U1 SNP1-associating protein 1), which
mediates retrotranslocation of misfolded proteins through the
ER membrane from the lumen side of the cytosolic membrane.
The Hrd1 E3 ubiquitin ligase contains a RING domain that
accepts ubiquitin from the membrane-associated protein Ubc7
(E2 ubiquitin-conjugating ligase). Finally, Hrdl transfers
ubiquitin to the substrate protein. Proteins covalently linked
to one or more ubiquitin molecules are recognized by protea-
some (Preston, Brodsky, 2017; Berner et al., 2018; Krshnan
etal., 2022).

Ways to solve the protein folding problem
in yeast synthetic biology

Selection of ER-targeting signal peptides

ER-targeting signal peptides (SPs) are critical components
for the secretion of heterologous proteins because they are
required for their correct transport and localization to the ER,
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where modification and folding occur (Zha et al., 2023). SPs
are short sequences, 15 to 30 amino acids in length, mostly lo-
cated at the N-terminus of the secreted proteins. SPs typically
consist of a series of hydrophobic amino acids (core region)
that embed into membranes, positively charged residues at the
N-terminus (necessary for proper topology of the polypeptide),
and a cleavage site at the C-terminus. When an SP is cleaved
by a signal peptidase, it releases the secreted protein into the
ER lumen (Zha et al., 2023).

Recent research has revealed that the secretion efficiency of
heterologous proteins is strongly dependent on their successful
combination with SPs. Therefore, various bioinformatic and
experimental studies have been carried out to elucidate the
optimal SP sequence, allowing to maximize the efficiency of
protein secretion.

A wide range of signal sequences, both from native genes
(including those from different organisms) and synthetic
molecules, are used to improve heterologous expression in
yeast. For example, in Komagataella phaffii (P. pastoris), a
widespread host microorganism, the most commonly used
secretion signal is the mating pheromone of the a-factor
(MFal) from S. cerevisiae (Eskandari et al., 2023). Although
this SP has proven its effectiveness in increasing the yield of
heterologous proteins, work continues on its modification
and the search for more productive variants. In particular, it
was shown that some single amino acid substitutions of the
MFa signal sequences provided a significant increase in the
production of secreted proteins (Ito et al., 2022). An improved
secretion signal was also obtained by creating a chimeric con-
struct combining the MFal leader region and the Ost1 signal
sequence. This hybrid variant turned out to be more effective
compared to the original MFal SP (Barrero et al., 2018). The
emergence of new improved modifications of MFal SPs was
facilitated by the analysis of mutations accumulated in MFa
signal sequences during yeast evolution. This allowed to iden-
tify specific motifs as well as their combinations (mutation
synergism) that are important for enhancing yeast enzyme se-
cretion (Azaetal., 2021). Promising results were obtained by
combining bioinformatic prediction of the efficiency of certain
signal sequences and subsequent experimental validation. For
example, Duan and colleagues (2019) discovered four new
endogenous signal peptides, including Dan4, Gasl, Msb2,
and Fre2, according to the reported secretome and genome of
P. pastoris. Their properties were investigated experimentally
using three reporter proteins, and these SPs were shown to be
superior to a-MFs in the production of heterologous proteins
(Duan et al., 2019).

The SignalP databases (www.signalpeptide.de) can be used
as a resource for selecting suitable SPs. Mori and colleagues
(2015) created a library of 60 S. cerevisiae SPs that were
identified in SignalP 3.0 using SOSUI software. The authors
experimentally showed that six those SPs can maximize secre-
tion of heterologous proteins (Mori A. et al., 2015).

While some progress has been made in bioinformatically
predicting the efficiency of particular signal peptides for
recombinant proteins, their potential has only been explored
in laboratory settings. There is no reliable information yet
on their successful application in biotech platforms, and it is
unclear how they will function in specific yeast strains and in
combination with specific target proteins.

Overcoming the problem of heterologous proteins folding
to improve the efficiency of yeast bioproducers

Increased activity of the ER folding network

Positive effects of chaperone addition

Traditionally (since the 90s), yeast strain engineering has
used the method of simultaneous expression (co-expression)
of genes encoding heterologous proteins and genes encod-
ing chaperones and folding enzymes. It has been shown for
a variety of heterologous proteins that the introduction of
extra copies of these genes into yeast host cells increases the
secretion and decreases the aggregation of recombinant pro-
teins. For example, Robinson et al. (1994) demonstrated that
overexpression of Pdi in S. cerevisiae led to a four- to tenfold
increase in secretion yields of human protein. Shusta and co-
authors (1998) reported 2—6-fold increased secretion titers for
single-chain antibody fragments upon co-overexpression of
the Kar2 chaperone or Pdi. Simultaneous overexpression of
Pdi and Kar2 resulted in a synergistic up to eightfold increase
(Shusta et al., 1998).

The addition of Pdi and Kar2, both together and separately,
increased the yield of recombinant proteins used for medical
purposes: antithrombotic factor, hirudin (Kim et al., 2003);
mammalian peptide recognition proteins (Yang et., 2016);
Necator americanus secretory protein (Inan et al., 2007);
fragment of single-chain antibody A33 (Damasceno et al.,
2007); hydrophobins (Sallada et al., 2019), virus glycoprotein,
RABV-G (Ben Azoun et al., 2016).

In some cases, chaperone activity is enhanced by their
co-expression with molecular partners and cofactors. For
example, Kar2 functionality depends on the ATPase cycle,
which is promoted by the Jem1 co-chaperone and the Lhs1p
nucleotide exchange factor (Steel et al., 2004). Joint expres-
sion of genes encoding these factors has been shown to stimu-
late Kar2 activity and increase production of recombinant
human proteins (Payne et al., 2008).

As we wrote above, yeast strains overexpressing Pdi are the
most frequently used in the production of correctly folded and
functionally secreted recombinant proteins. However, in the
oxidative protein folding pathway, Pdi acts in partnership with
Erol-oxidase. Therefore, co-overexpression of these genes
can improve the efficiency of protein folding and secretion.
Beal and colleagues (2019) developed a new methodology
enabling the quantitative assessment of the interaction of Pdil
and Erol, and based on it provided a platform for the design
of more efficient heterologous protein expression systems
in yeast. The high efficiency of co-expression of Pdi and its
molecular partner Erol was also shown by other authors (Ben
Azoun et al., 2016; Sallada et al., 2019).

Thus, addition of known ER network folding factors to en-
hance heterologous expression has become a basic approach.
However, this is not a universal solution; there is no guarantee
that chaperones are always able to improve the secretion of
recombinant proteins. In particular, a combination of different
chaperones does not always lead to a synergistic effect.

Limitations of the approach

Recent investigations suggest that the efficiency of chaperones
depends on the dose of the gene encoding the recombinant
protein. For example, overexpression of Pdil or Erol caused
a statistically significant increase in recombinant hydropho-
bin in P. pastoris, but only in the 3-copy gene strain, and
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not in the 1- and 2-copy strains (Sallada et al., 2019). In the
same experiment, it was shown that hydrophobin production
increased with co-expression of Kar2 14-fold for the 1-copy
strain, 9.8-fold for the 2-copy and 22-fold for the 3-copy ones
(Sallada et al., 2019).

A correlation between chaperone activity and the copy
number of the recombinant gene has been found in other
experiments as well. In lipase-producing P. pastoris, over-
expression of Pdil led to enhanced productivity in the strain
carrying four copies of the lipase gene, whereas in the two-
copy strain, it remained unchanged (Huang J. et al., 2020).
Efficient expression of mammalian peptidoglycan recognition
proteins in P. pastoris also depended on the combination of
recombinant gene copy number and folding enzymes (Yang
et al., 2016). Thus, these experiments support the need for
empirical selection of optimal combinations of recombinant
protein-encoding genes and folding factor-encoding genes.

Recently, an increasing number of published data have
demonstrated that the activity of the folding factors described
above is selective for certain substrates and does not improve
the expression of some important recombinant proteins. In
particular, it was shown that Pdil, Erol, Kar2 did not have
a beneficial effect on the secretion of antibodies in S. cerevi-
siae (de Ruijter et al., 2016). Similar conclusions were also
drawn from other experiments (Smith et al., 2004; Payne et
al., 2008). These findings demonstrate that there is no single
suitable strategy that provides optimal conditions for the se-
cretion of all recombinant proteins, and very often a separate
productivity enhancement program must be set up for each
protein.

Forced activation of the UPR system

An effective way to solve the folding problem is the activation
of the ER chaperone network by overexpression of the Hacl
transcription factor, which is the main regulating UPR path-
way. Theoretically, an artificial increase in the level of Hacl

can be achieved in two ways. The first is the intensification of
Hacl mRNA splicing by overexpression of Irel. The second
way is overexpression of genetic sequences encoding Hacl.

The first approach is associated with additional expres-
sion of Irel, which should lead to an increase in the number
of events associated with Hacl mRNA splicing and, as a
consequence, promote transcription of genes encoding ER
chaperones and folding catalysts (see above “Unfolded protein
response”). However, at present, the effectiveness of this ap-
proach is confirmed by only one experiment. Only one study
convincingly showed that overexpression of Irel improved
the capabilities of the yeast expression system, which in par-
ticular led to an increase in hepatitis B small antigen (HBsAQ)
production in S. cerevisiae (Sheng et al., 2017). The lack of
positive results may be due to the complex mechanism of Hacl
activation, which involves many molecular factors.

The second approach aimed at using Hacl overexpression is
the most preferable in yeast biotechnology. As we wrote above,
adding Hacl to yeast host strains leads to up-regulation of a
large number of its target genes that mainly function for the
protein secretory machinery, and in particular, almost all these
genes are required for protein folding (see above “Unfolded
protein response”). For heterologous protein secretion, both
the active (spliced) form and the inactive (unspliced) form of
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Hac1 can be used. However, activation of the unspliced form
of Hacl mRNA requires additional cellular resources, in par-
ticular, molecular factors involved in its processing. The genes
encoding these factors must be added to the yeast strains. The
engineered strains with such a modification increased protein
secretion significantly and showed better performance than
strains with only overexpression of Hacl (Lin et al., 2023).

Most strains used in biotechnological practice contain an
insertion of the Hacl gene with a previously removed 3’ end
intron, i.e. encoding the active form of the transcript. For
such strains, a high level of transcriptional activity of Hacl
target genes involved in the UPR pathway and responsible
for correct protein folding was shown. In P. pastoris strains
overexpressing Hacl, electron microscopy revealed an expan-
sion of the intracellular membranes (Guerfal et al., 2010),
which probably indicates an increase in the folding capacity
of the ER and may contribute to the alleviation of ER stress
(Schuck et al., 2009).

To date, a large number of research groups have reported
an increase in the productivity of secretory proteins due
to artificial and high-level expression of the Hacl protein
(Raschmanova et al., 2021; Lin et al., 2023; Khlebodarova
etal., 2024). Hacl overexpression successfully increased the
yield of recombinant proteins: phytase (a product of the Phy
gene from C. amalonaticus) in P. pastoris (Li C. et al., 2015);
a-amylase (Valkonen et al., 2003; Lin et al., 2023); chitosanase
(from Bacillus subtilis) (Han et al., 2021); kringle fragment of
human apolipoprotein (which inhibits endothelial cell migra-
tion) in S. cerevisiae (Lee et al., 2012); xylanase (a microbial
hydrolase used to hydrolyze xylan) in S. cerevisiae (Li C. et
al., 2015; Bao et al., 2020).

However, to achieve efficient heterologous expression
in Hac-modified cells, it is important to select the optimal
combination of the copy number of Hac-encoding genes and
genes encoding recombinant proteins (Valkonen et al., 2003;
Guerfal et al., 2010; Huang M. et al., 2017; Huang J. et al.,
2020). Some studies have found that increasing Hacl doses
also leads to increased ER stress (Gasser et al., 2006; Guerfal
etal., 2010; Li C. etal., 2015). It is also necessary to take into
account that Hacl is a positive regulator of the ERAD pathway
(see above “ER-associated degradation”) and its overactiva-
tion can promote protein degradation.

Thus, the addition of Hac allows the yeast strain to be
adapted to large-scale protein expression caused by an exces-
sive dose of transgenic constructs. However, many researchers
note that the effectiveness of this approach must be assessed in
each specific case when designing a specific producer strain.

An additional advantage in strain engineering may be
gained by using Hac orthologs from other yeasts, and even
phylogenetically more distant eukaryotes. In particular, Val-
konen et al. (2003) reported that the secretion of a-amylase
was increased by overexpressing Trichoderma reesei-derived
Haclin S. cerevisiae. Bankefa and colleagues (2018) showed
that for P. pastoris, Hacl orthologs of other species and even
mammalian ones may be more effective than the native one.
They investigate the effects of overexpressing Hacl orthologs
from S. cerevisiae (ScHac1p), Trichoderma reesei (TrHac1p)
and Homo sapiens (HsXbp1l) on the secretory expression le-
vels of three reporter proteins, b-galactosidase, b-mannanase
and glucose oxidase. The authors reported diverse effects of
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these orthologs on heterologous expression levels, but HsXbpl
remarkably improved the enzyme production levels, both in
shake flask and fermenter culture, both in single- and four-
copy strains, which demonstrated its great application potential
(Bankefa et al., 2018).

Thus, artificial activation of the UPR pathway by overex-
pression of the Hacl transcription factor has demonstrated
an obvious positive effect on improving the secretory protein
productivity. It allowed to remove bottlenecks in the engi-
neered yeast strain, arising due to abnormal accumulation of
unfolded/misfolded proteins in the endoplasmic reticulum.
However, this positive experience cannot be extrapolated to
all recombinant proteins. Therefore, the real effect for each
product must be assessed in experiments, often based on trial
and error.

Prevention of ERAD pathway activation

As we wrote above, the UPR system is in crosstalk with the
ERAD pathway. ERAD is activated when ER chaperones and
folding enzymes are unable to form tertiary or quaternary
structures of proteins. Sometimes ERAD is excessively acti-
vated during heterologous expression, so depletion of some
components of this system can contribute to an increase in
the yield of recombinant proteins.

De Ruijter and Frey (2015) analyzed the effect of deletions
of genes involved in ERAD on the production of human IgG
in S. cerevisiae. It was shown that deletion of only one gene,
HTM1, contributed to a slight improvement in heterologous
secretion, whereas deletions of the yos9, hrd1, hrd3, and ubc7
genes either did not affect or negatively affected the recombi-
nant protein yield (de Ruijter, Frey , 2015).

In P. pastoris, excessive activation of ERAD enhanced
intracellular degradation of recombinant antibody fragment
Fab. In the work of Pfeffer et al., it was shown that most of the
newly synthesized Fab is not secreted but undergoes intracel-
lular degradation via the ubiquitin-proteasome system (Pfeffer
etal., 2012; Zahrl et al., 2019). The yield of the recombinant
protein was increased by inhibiting proteasome components
(Pfeffer et al., 2012). However, subsequent work aimed at
reducing proteolysis through ERAD gene disruptions did not
yield significant increases in Fab secretion (Zahrl etal., 2019).

Thus, the reduction of ERAD activity can be considered as
a potential strategy for improving the secretion of recombinant
proteins. However, the current level of research in this area
does not yet allow for the transition to engineering producer
strains protected from the proteolysis system.

Search for new solutions

The potential of the ER folding network can be enhanced by
factors that are not directly involved in it, but create favorable
conditions for its active functioning.

Zahrl et al. (2023) proposed to combine the transcriptional
programs induced by Hacl and Msn4 in one strain. Msn4 is
a transcriptional factor involved in the response to various
forms of stress (heat, oxidative, osmotic, etc.). Co-expression
of Hacl and Msn4 (both native and synthetic) revealed syn-
ergistic effects resulting in increased titers of recombinant
proteins. This strategy was tested for scFv and VHH antibody
fragments expressed in P. pastoris (Zahrl et al., 2023).

Overcoming the problem of heterologous proteins folding
to improve the efficiency of yeast bioproducers

In another work, the same research group identified the most
relevant chaperones of the Hsp70 network, both cytosolic and
ER-localized, and investigated the impact of their combined
overexpression on recombinant protein secretion (Zahrl etal.,
2022). In their work , they implemented a principle they called
the push-and-pull strategy. The addition of cytosolic chape-
rones allowed to increase the translocation competency of the
recombinant protein and its targeting to the ER membrane
(= push). At the same time resident ER chaperones improved
the folding process (= pull). This allowed to successfully
engineer strains and improve protein secretion up to 5-fold
for the antibody Fab fragment and scFv (Zahrl et al., 2022).

The screening of new molecules involved in the folding
system may improve yeast expression systems and expand the
range of heterologous proteins. In particular, analysis of the
reported P. pastoris secretome and genome predicted novel
folding factors: Mpd1 and Pdi2 (members of the Pdi family),
as well as Sill (nucleotide exchange factor for Kar2) (Duan
et al., 2019). Subsequent experimental studies showed that
all of the novel folding factors enhanced total production of
reporter proteins, with Sill showing the highest efficiency
(Duan et al., 2019). This work is an example of a successful
combination of the achievements of yeast omics technologies
and metabolic engineering, but this experience has not yet
been widely applied.

Conclusion

One of the main limitations of heterologous protein produc-
tion in yeast hosts is the ability of proteins to fold in the endo-
plasmic reticulum. The folding system is subject to unbalanced
stress due to overexpression of recombinant genes, leading to
the accumulation of misfolded proteins, aggregate formation,
and low productivity. However, thanks to years of effective
research into the fundamental mechanisms of protein folding,
these limitations have been largely overcome. Studying fold-
ing in both model organisms and bioproducers has enabled the
identification of molecular factors and cellular mechanisms
that determine how a nascent polypeptide chain acquires its
three-dimensional functional structure. This knowledge has
formed the basis for the development of new, efficient me-
thods for constructing highly productive yeast strains. Many
problems arising from insufficient folding systems have been
overcome by selecting optimal signal peptides, coexpressing
with chaperones and foldases, modifying the ubiquitin-pro-
teasome system (UPS), and preventing the ERAD pathway.
Modern engineering solutions utilize combinations of these
factors, but for each protein of interest, the expression strain
is typically developed individually. In practice, optimized
folding conditions for one protein often do not work for
another. Therefore, no general strategy for overcoming pro-
tein folding bottlenecks that would be applicable to a wide
range of proteins has yet been proposed.

In the future, some problems can be minimized by analyz-
ing data obtained using omics technologies and modeling the
secretion pathway in silico. An example of such a development
is the pcSecYeast model designed for S. cerevisiae (Li F. etal.,
2022). Such models allow choosing a combination of factors,
both known and unknown, to generate new engineering strate-
gies in designing strains with high protein yields.
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