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ear colleagues,
We introduce the current is-
sue of the Vavilov Journal of

Genetics and Breeding, dedicated to
computational biology.

Methods for genome sequencing
have been rapidly developed over
the past two decades. Sequencing
has become cheaper by almost five
orders of magnitude: for instance,
from $100,000 to $500 for a personal
human genome. Great progress has
been made in transcriptomics, pro-
teomics, metabolomics, and other
omics technologies. We witness a
new generation of techniques for
biological object visualization on
the genome, cellular, tissue, and
organismal levels of living system
organization. This informational
explosion makes genetics the main
source of huge bodies of data. Ge-
netics outruns not only other fields of
knowledge but global social media
in the rate of information accumula-
tion. Indeed, up to 40 exabytes of
data are produced in life sciences
annually, whereas the largest social
platform YouTube produces only
2 exabytes, 20 times less.

Analysis of big genetic data has
given rise to a new paradigm of mo-
dern genetics. It is focused on gene

Vavilovskii Zhurnal Genetiki i Selektsii. 2025;29(7):911-912
doi 10.18699/vjgb-25-97

T.A. Bukharina

networks: groups of orchestrated genes that interact via their
products: RNA, proteins, and metabolites. Gene networks are
responsible for the formation of molecular, biochemical, cellu-
lar, physiological, morphological, behavioral, and other traits
of the body on the base of information encoded in the genome.
The regulation of gene networks is enormously complicated.
The complexity is evident from the fact that the operation of a
particular gene network element can be controlled by tens and
hundreds of elementary regulatory processes. This is true for
gene transcription regulation, mediated by tens of transcription
factors, which interact with binding sites in gene promoters,
and for proteins, whose activity is modulated by interaction
with numerous ligands, acting as allosteric regulators. The
same is true for metabolic pathways, where the number of el-
ementary regulatory processes sometimes exceeds the number
of biochemical reactions by an order of magnitude. Another
fundamental property of living systems found in big data
analysis is the extremely high level of genetic variability in
populations of humans, animals, plants, and microorganisms.

Analysis of big genetic data requires the development of
a new generation of methods to process very large bodies of
information. This generation includes bioinformatics methods
for the reconstruction, analysis, and modeling of structural
organization and molecular mechanisms of the functioning
of genomes, genes, and genetic macromolecules encoded by
them: RNA and proteins. It also includes novel methods of
computational systems biology for the reconstruction, analy-
sis, and modeling of genetics systems operating on the levels
of cells, tissues, organs, and entire organisms.

The new epoch of big genetic data, including life sciences,
demands transformation of key approaches in bioinformatics
and computational systems biology. What are fundamental
trends in this field? First, it is the integration of conventional



methods in bioinformatics and computational systems biology
with artificial intelligence and deep machine learning. Second,
employment of the results as grounds for the development of
anew generation of software and data support for interpreting
big genetic data, and, most importantly, for planning experi-
ments to verify the results of computer-aided predictions from

912

big data analysis. Progress in this direction would mark a
fundamental transformation of the basic paradigm in modern
research: Science directed by hypotheses is complemented by
new science directed by big data analysis.

This progress occurs in all sciences, but just bioinformatics
and computational systems biology are at the forefront.
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Abstract. DNA oxidation is one of the main types of damage to the genetic material of living organisms. Of the many
dozens of oxidative lesions, the most abundant is 8-oxoguanine (8-0x0G), a premutagenic base that leads to G—T trans-
versions during replication. Double-stranded DNA can conduct holes through the m system of stacked nucleobases.
Such electron vacancies are ultimately localized at the 5-terminal nucleotides of polyguanine runs (G-runs), making
these positions characteristic sites of 8-oxoG formation. While such properties of G-runs have been studied in vitro at
the level of chemical reactivity, the extent to which they can influence mutagenesis spectra in vivo remains unclear.
Here, we have analyzed the nucleotide context of G-runs in a representative set of 62 high-quality prokaryotic genomes
and in the human telomere-to-telomere genome. G-runs were, on average, shorter than polyadenine runs (A-runs), and
the probability of a G-run being elongated by one nucleotide is lower than in the case of A-runs. The representation of
T in the position 5'-flanking G-runs is increased, especially in organisms with aerobic metabolism, which is consistent
with the model of preferential G—T substitutions at the 5-position with 8-oxoG as a precursor. Conversely, the fre-
quency of Gand Cis increased and the frequency of T is decreased in the position 5'-flanking A-runs. A biphasic pattern
of G-run expansion is observed in the human genome: the probability of sequences longer than 8-9 nucleotides being
elongated by one nucleotide increases significantly. An increased representation of Cin the 5'-flanking position to long
G-runs was found, together with an elevated frequency of 5-G—A substitutions in telomere repeats. This may indicate
the existence of mutagenic processes whose mechanism has not yet been characterized but may be associated with
DNA polymerase errors during replication of the products of further oxidation of 8-oxoG.
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OTpaxkeHue 1poiieccoB rnoppexaeHmsda JJHK
B 9BOJIIOIVY G-TPaKTOB B reHOMaxX

WP, Tpun (D1, A.O. >Kapxos (D1 2@

" MHcTuTyT XuMmrueckoii 6uonorn 1 dyHAaMEHTaNbHO MeuLMHBI CUBUPCKOTo oTaeNeHNA Poccuiickoii akageMun Hayk, HoBocn6upck, Poccus
2 HoBocnbrpcKmii HaLoHanbHbI NCCefoBaTeNbCKUIA FOCYAAPCTBEHHbIN YHUBepcuTeT, HoBOCM6MpCK, Poccna

@ dzharkov@niboch.nsc.ru

AHHoTauusA. OkncneHune [HK npegcTtaBnaet coboi ofviH 13 rMaBHbIX BUAOB NMOBPEXAEHWSA reHETUYECKOro MaTepurana
KVBbIX OPraHn3MoB. /I3 MHOMMX AecATKOB NPOAYKTOB OKMcaUTeNnbHoro nospexaeHna JHK B Hanbonbliem konuue-
CTBe BCTpeyvaeTcs 8-0KCoryaHuH (8-oxoG) — npegmyTareHHoe OCHOBaHYe, NpUBoAALLee NPU peninKaumuy K TpaHcBep-
cnam G—T. [IByuenodeyHas [HK obnagaeT cnoco6HOCTbIO K MPOBOAVMOCTY MONTOXKUTENbHBIX 3aPSA0B, CBA3AHHbIX
C AedVLTOM SIEKTPOHOB B TT-CUCTEME a30TUCTbIX OCHOBaHWN. Takne 3apsAabl B KOHEUHOM UTOre JIOKANIM3YIOTCA Ha
5'-KOHLIeBOM HyKleoTu e NONNryaHHOBbIX TPaKTOB (G-TpaKToB). B cBA3M € 3TMM 5'-KOHLieBble HyKneoTuabl G-TpakToB
C/ly»aT XapaKTepHbIMU MecTamy 06pa3oBaHnaA 8-0xoG. 3TN cBONCTBa G-TPaKTOB XOPOLLO U3yYeHbl in Vitro Ha ypoBHe
peaKkLMOHHOM CMOCOOHOCTI, HO OCTAETCA HEACHBIM, HACKOJIbKO OHM MOTYT OTpaxaTbCA B CNeKTpax MyTareHesa in vivo.
B paboTe npoaHann3npoBaH HyKNeOoTUAHbIN KOHTEKCT G-TPaKTOB B penpe3eHTaTUBHOM Habope 13 62 MOJHbIX reHo-
MOB NPOKapMOT 1 B reHOMe YenoBeKa C MOKPbITUEM «OT TefIoMepbl A0 TefloMepbly. [TokazaHo, 4To G-TpaKTbl B CpegHeM
Kopoue NnonnageHNHOBbIX TPAKTOB (A-TPAKTOB) 1 BEPOATHOCTb YANNHEHNA G-TPAKTOB Ha OfVIH HYKNeoTHA HUXKE, YeM
B cJlyyae A-TpaKToB. YCTaHOBNEHO, UTO MPEACTaBEHHOCTb T B NONOXKEHUN, MPUMbIKaOLWeM K G-TpakTaM C 5'-CTOPOHbI,
MOBbILLIEHA, B 0CO6EHHOCTU Yy OPraHn3mMoB C a3PO6HbIM MeTaboNIM3MOM, UTO COrflacyeTcA C MOAESbIo NMPenMyLLeCTBEH-
HbIX MyTaumn G—T B 5'-nonoxeHnn ¢ 8-oxoG Kak npefLecTBEHHNKOM. B To »ke Bpems B MONOXeHNN, MPMMbIKatoLem
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DNA damage reflected in the evolution
of G-runs in genomes

K A-TpaKTam, NoBblleHa YacToTa BcTpeyaemocT G u C 1 CHUXKeHa YacToTa BCTpeyaemocTu T. B reHome uyenoBeka
HabntofaeTca aByxdasHbI XapaKTep paspacTaHna G-TPaKTOB: HauVHas C ANViHbl 8-9 HYKNEeOTNAO0B BEPOATHOCTb 1X
YAJIVHEHWA Ha OQUH HYKNeoTuz 3aMeTHO yBennymBaeTca. BbiaBneHa nosblleHHasA npefcTaBieHHOCTb C ¢ 5'-CTOpOHbI
OT [/IMHHbIX G-TPAKTOB 1 A NPy 3aMeHax B TeTOMEPHbIX MOBTOPaX, YTO MOXET CBUAETENbCTBOBATL O CYLLECTBOBAHUM
MyTareHHbIX NMPOLeCCcoB, MeXaHV3M KOTOPbIX MOKa He oxapakTepn3oBaH, HO MOXeT ObiTb CBA3aH ¢ owmnbkamm OHK-
nonumMepas nNpuv penmkauum NpoayKToB AanbHeNLWero okucaeHms 8-oxoG.

KntoueBblie cnosa: nospexaeHune [IHK; myTtareHes; 8-okcoryaHuH; G-TpaKTbl; Tenomepbl

Introduction

Oxidative DNA damage is an inevitable consequence of res-
piration, which relies on the oxidation of organic compounds
with molecular oxygen and has been the basis of energy
metabolism in the vast majority of living organisms for over
two billion years (Prorok et al., 2021). Damaged nucleotides
are generally quickly repaired; however, some of them may
remain in DNA until replication, which is one of the main
sources of mutations (Liu et al., 2016; Chatterjee, Walker,
2017; Tubbs, Nussenzweig, 2017). Based on our understan-
ding of the molecular mechanisms of DNA polymerase errors,
it has now become possible to identify characteristic patterns
of mutations caused by various types of genotoxic stress or
even by specific damaged bases (Alexandrov et al., 2013;
Koh et al., 2021).

Of all DNA structural elements, the guanine base has the
lowest redox potential (Cadet et al., 2008, 2017; Fleming,
Burrows, 2022). The most common product of its oxida-
tion, 7,8-dihydro-8-oxoguanine (8-oxoG), occurs in DNA
at the background level of ~1/10% guanines, and this level
increases significantly under oxidative stress of various origins
(ESCODD et al., 2005; Dizdaroglu et al., 2015; Chiorcea-
Paquim, 2022; Fig. 1a, b). The presence of an oxygen atom at
C8in 8-0x0G sterically hinders the regular anti conformation
of its nucleoside, 8-ox0-2'-deoxyguanosine (8-0xodG), and
the syn conformation becomes energetically favorable (Cho
etal., 1990; Fig. 1c, d). Consequently, in the absence of Wat-
son—Crick bonds with cytosine, which additionally stabilize
the anti conformation, 8-oxodG preferentially adopts the syn
conformation, in which it can form a Hoogsteen-type pair
with adenine (Kouchakdjian et al., 1991; McAuley-Hecht

dG

8-oxodG(anti):dC

8-oxodG

et al., 1994; Lipscomb et al., 1995). Because of this, DNA
polymerases incorporate dAMP opposite 8-0xoG in the DNA
template with high frequency (Shibutani et al., 1991; Miller,
Grollman, 1997; Maga et al., 2007; Yudkina et al., 2019).

In the living cell, the outcome of primary DNA oxidation
events can be influenced by numerous additional factors and
DNA repair systems that remove damaged bases from the ge-
nome. Even so, 8-0xoG exhibits relatively high mutagenicity
in vivo, characterized by a spectrum dominated by G—T trans-
versions mostly independent of the surrounding nucleotide
context (Wood et al., 1992; Moriya, 1993). Such mutations are
frequently found in human tumors and form the basis of the
SBS18 and SBS36 mutational signatures (Alexandrov et al.,
2013; Pilati etal., 2017; Viel et al., 2017; Kucab et al., 2019).
Guanidinohydantoin and spiroiminodihydantoin, the products
of further oxidation of 8-0x0G, also significantly contribute
to mutagenesis, predominantly causing G—C transversions
(Fleming, Burrows, 2017; Kino et al., 2020).

The stacked n system of DNA has considerable hole con-
ductivity (Giese, 2002; Genereux, Barton, 2010). Numerous
experiments and quantum mechanical calculations show that a
positive charge resulting from one-electron oxidation of DNA
can migrate along the 7 system over significant distances, and
its final acceptors are the G bases, which are mainly oxidized
to 8-0x0G. In this case, the G bases located in the first 5’-posi-
tion in runs of several Gs are especially sensitive to oxidation
(Sugiyama, Saito, 1996; Saito et al., 1998; Kurbanyan et al.,
2003; Adhikary et al., 2009).

Although the mechanism of positive charge migration and
preferential oxidation of guanines at the 5’-end of G-runs is
generally accepted today, all experimental data supporting it

8-oxodG(syn):dA

Fig. 1. Structures of 2’-deoxyguanosine (a), 8-oxo-2"-deoxyguanosine (b), Watson-Crick 8-oxodG(anti):dC pair (c)

and Hoogsteen 8-oxodG(syn):dA pair (d).
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were obtained in relatively simple in vitro systems. The mu-
tagenesis spectra caused by the appearance of 8-0xoG in this
context have not yet been studied. If preferential conversion
of G to 8-0x0G does indeed occur at the 5'-end of G-runs, it
can be expected that the mutagenic properties of 8-oxoG at
these positions will result in an increased frequency of G—T
mutations, which should be reflected in an increased frequency
of T before G-runs. In this study, to test this hypothesis, we
analyzed the occurrence of nucleotides flanking G-runs from
the 5'-side in prokaryotic and human genomes.

Materials and methods

The T2T-CHM13v2.0 human genome assembly, which in-
cludes full-length telomeres and highly repetitive regions
(Nurk et al., 2022), and the prokaryotic genomes listed in
Table 1 were used for the analysis.

UGENE v37.0 software package (Okonechnikov et al.,
2012) and custom-written bash scripts were used to extract
nucleotide frequencies at given positions. The expected fre-
quency of nucleotides in the flanking positions before and
after G, (or A,) runs in prokaryotic genomes was calculated
based on the total number of A, C,and T (or C, G, and T) in
a given genome as pa = Na/(Na+Nc+N7), where pa is the
expected representation (in this case, for A), and Na, Nc,
and Ny are the numbers of A, C, and T in both strands of
the genome, respectively. For the human genome, due to the
well-known underrepresentation of the CG dinucleotide, the
expected frequency was calculated in a similar way but based
on the number of AG, CG, and TG dinucleotides. Statistical
analysis was performed using SigmaPlot v11.0 (Grafiti, USA),
DATAPLOT (National Institute of Standards and Technology,
USA), and RStudio v1.2 (Posit PBC, USA). Dunn’s correction
was used for all multiple comparisons and test series to adjust
the significance level.

Results and discussion

To analyze the nucleotide distribution in prokaryotic genomes,
asample of 54 bacterial and 8 archaeal genomes was compiled,
maximally reflecting the taxonomic diversity in these domains
of life (Table 1). Only high-quality genomes classified in the
RefSeq database (O’Leary et al., 2016) as reference genomes
were included. The sample taxonomic representation was one
genome per phylum, with the exception of Methanobacteriota
and Thermoproteota for Archaea, and Actinomycetota, Bac-
teroidota, and Thermodesulfobacteriota for Bacteria with a
representation of 2 genomes from different orders per phylum,
as well as Bacillota and Pseudomonadota (3 genomes from
different orders per phylum). The G+C content in the studied
genomes ranged from 23.5 to 69 % (Table 1). The parameters
of archaeal genomes did not differ significantly from those of
bacterial ones, so the representatives of both domains were
considered as a single group of prokaryotes.

Since the prokaryotic genomes mostly consist of protein-
coding sequences, mutations in which can be subject to natural
selection, we have first assessed the possible impact of all
16 potential amino acid substitutions resulting from G—A,
G—C and G—T nucleotide substitutions in the first posi-
tion of G-runs (codon changes HHG—HHH, HGG—HHG,
GGG—HGQG, where H is A, C or T). Two independent met-
rics were used for this purpose: the conservation index C,,

2025
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calculated on the basis of partition distances in a set of
physicochemical properties of amino acid residues (Taylor,
1986; Livingstone, Barton, 1993), and the weights of amino
acid substitutions in the BLOSUMG62 matrix, compiled from
several hundred groups of homologous proteins (Henikoff S.,
Henikoff J.G., 1992). Although G— A substitutions generally
caused smaller changes in the properties and occurrence of
amino acid residues, as expected for class-conserving point
mutations, the difference from G—C and G—T substitutions
was not statistically significant (Kruskal-Wallis test with
Dunn’s correction for multiple comparisons, p > 0.05).

All genomic sequences were searched for the HG,H and
BA,B runs and the corresponding complementary-strand
DC,Dand VT, Vruns (H=A,CorT;B=C,GorT; D =A,
GorT; V=A, C or G) with the length n > 2. The frequency
of polypurine runs in the genomes was higher than that ex-
pected from a random nucleotide distribution with the same
G+C composition (one-sample Wilcoxon test, p < 0.001),
indicating the functional importance of such sequences. An
increased frequency of substitutions at the first position of
G-runs should gradually lead to their shortening. Indeed, when
comparing the lengths of G-runs and A-runs in prokaryotic
genomes, adjusted for the content of the respective purine
nucleotides, it turned out that G-runs are, on average, shorter
(Fig. 2a). Inthis case, HGG trinucleotides were more common
than BAA, but in longer repeats, the frequency of A-runs was
higher (Fig. 2b).

For a more detailed analysis of the run length distribution,
we have studied the variability of their lengths in each genome.
The number of G-runs and A-runs in each genome decreased
almost strictly exponentially in the length range from 2 to 5-6.
At n > 5-6, deviations in either direction were observed in
some cases due to the small number of such runs, especially
in small genomes (Fig. 3a, b). Using the linear portion of the
relationship between the log of the number of repeats and run
length, one can determine the increment coefficientk;,, which
indicates how easily a run can be extended by one nucleotide in
a genome with a given nucleotide composition: the higher the
Kinc: the greater the proportion of longer runs in the genome.
When comparing the dependence of k;,. for G-runs and A-
runs in genomes of different composition, we have found that
G-runs grow more slowly with increasing G+C content than
A-runs grow with increasing A+T content (Fig. 3¢). Thus, in
prokaryotic genomes, the balance of G-run elongation and
shortening, determined by many factors, is shifted towards
shortening compared to A-runs.

The lengths of polypurine runs can change in either direc-
tion due to DNA polymerase slippage during DNA synthesis
(Kunkel, Bebenek, 2000) or selection based on the physi-
cochemical properties of polypurine regions (Bansal et al.,
2022), but these processes are independent of the nucleotides
surrounding the run. In contrast, shortening of G-runs due
to damage to the 5'-terminal base should be accompanied
by a characteristic mutational spectrum determined by the
properties of replicative DNA polymerases. Therefore, it was
of interest to determine the extent to which the frequencies
of 5'-flanking nucleotides differ from each other and from
their overall abundance in the genome. To quantitatively
characterize these differences, we have introduced the Arep
parameter representing the difference between the observed
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Table 1. Prokaryotic genomes used for the analysis

DNA damage reflected in the evolution

of G-runs in genomes

Species

Methanobacterium formicicum
Methanosarcina barkeri
Nanobdella aerobiophila
Nitrososphaera viennensis
Promethearchaeum syntrophicum
Sulfolobus acidocaldarius
Thermoproteus tenax

Cand. Nanohalobium constans

Acidobacterium capsulatum
Bifidobacterium longum
Mycobacterium tuberculosis
Aquifex aeolicus
Fimbriimonas ginsengisoli
Atribacter laminatus
Bacillus subtilis
Clostridioides difficile
Lactococcus lactis
Bacteroides fragilis
Saprospira grandis
Cyclonatronum proteinivorum
Bdellovibrio bacteriovorus
Caldisericum exile
Caldithrix abyssi
Campylobacter jejuni
Chlamydia trachomatis
Chlorobium limicola
Chloroflexus aurantiacus
Desulfurispirillum indicum
Coprothermobacter proteolyticus
Synechococcus elongatus
Deferribacter thermophilus
Deinococcus radiodurans
Dictyoglomus thermophilum
Elusimicrobium minutum
Fibrobacter succinogenes
Fidelibacter multiformis
Fusobacterium nucleatum
Gemmatimonas aurantiaca
Ignavibacterium album
Kiritimatiella glycovorans
Lentisphaera profundi
Mycoplasma mycoides
Myxococcus xanthus
Nitrospina watsonii
Nitrospira moscoviensis

Planctopirus limnophila

Phylum

Genome assembly

Archaea domain

Methanobacteriota

Nanobdellota
Nitrososphaerota
Promethearchaeota

Thermoproteota

Cand. Nanohalarchaeota

GCF_001458655.1
GCF_000970025.1
GCF_023169545.1
GCF_000698785.1
GCF_008000775.2
GCF_000012285.1
GCF_000253055.1
GCF_009617975.1

Bacteria domain

Acidobacteriota

Actinomycetota

Aquificota
Armatimonadota
Atribacterota

Bacillota

Bacteroidota

Balneolota
Bdellovibrionota
Caldisericota
Calditrichota
Campylobacterota
Chlamydiota
Chlorobiota
Chloroflexota
Chrysiogenota
Coprothermobacterota
Cyanobacteriota
Deferribacterota
Deinococcota
Dictyoglomota
Elusimicrobiota
Fibrobacterota
Fidelibacterota
Fusobacteriota
Gemmatimonadota
Ignavibacteriota
Kiritimatiellota
Lentisphaerota
Mycoplasmatota
Myxococcota
Nitrospinota
Nitrospirota

Planctomycetota

GCF_000022565.1
GCF_000196555.1
GCF_000195955.2
GCF_000008625.1
GCF_000724625.1
GCF_015775515.1
GCF_000009045.1
GCF_018885085.1
GCF_003176835.1
GCF_000025985.1
GCF_000250635.1
GCF_003353065.1
GCF_000196175.1
GCF_000284335.1
GCF_001886815.1
GCF_000009085.1
GCF_000008725.1
GCF_000020465.1
GCF_000018865.1
GCF_000177635.2
GCF_000020945.1
GCF_022984195.1
GCF_049472675.1
GCF_020546685.1
GCF_000020965.1
GCF_000020145.1
GCF_000146505.1
GCF_041154365.1
GCF_003019295.1
GCF_000010305.1
GCF_000258405.1
GCF_001017655.1
GCF_028728065.1
GCF_018389705.1
GCF_000012685.1
GCF_946900835.1
GCF_001273775.1
GCF_000092105.1
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G+C, %

41.0
39.0
245
525
31.0
36.5
55.0
43.0

60.5
60.5
65.5
43.5
61.0
385
43.5
28.5
35.0
43.0
46.5
515
50.5
355
45.0
30.5
41.5
515
56.5
56.0
45.0
55.5
30.5
66.5
335
40.0
48.0
45.5
27.0
64.5
34.0
63.5
40.5
235
69.0
57.0
62.0
535

AN

AN

AN

AN

AN

AN

AN

AN
AN

AN
AN

AN
AN

AN

AN
AN
AN
AN
AN

>

> > > > > >
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Table 1 (end)

OTparkeHre npoueccoB nospexaeHna JHK
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Species

Escherichia coli

Pseudomonas aeruginosa
Sphingomonas paucimobilis
Rhodothermus marinus

Spirochaeta thermophila
Thermanaerovibrio acidaminovorans

Desulfovibrio desulfuricans

Thermodesulfobacterium commune
Thermodesulfobium narugense
Thermomicrobium roseum
Thermosulfidibacter takaii
Thermotoga maritima
Verrucomicrobium spinosum
Vulcanimicrobium alpinum

Cand. Cloacimonas acidaminovorans

Cand. Velamenicoccus archaeovorus

Phylum Genome assembly G+C, % 0,
Pseudomonadota GCF_000005845.2 51.0 A
GCF_000006765.1 66.5 A
GCF_016027095.1 65.5 A
Rhodothermota GCF_000024845.1 64.5
Spirochaetota GCF_000184345.1 61.0 AN
Synergistota GCF_000024905.1 64.0 AN
Thermodesulfobacteriota GCF_017815575.1 57.0 AN
GCF_000734015.1 37.0 AN
Thermodesulfobiota GCF_000212395.1 34.0 AN
Thermomicrobiota GCF_000021685.1 64.5 A
Thermosulfidibacterota GCF_001547735.1 43.0 AN
Thermotogota GCF_000230655.2 46.0 AN
Verrucomicrobiota GCF_000172155.1 60.5 A
Vulcanimicrobiota GCF_027923555.1 68.5 A
Cand. Cloacimonadota GCF_000146065.2 38.0 AN
Cand. Omnitrophota GCF_004102945.1 53.0 AN

Note. Assembly ID in the RefSeq database (O’Leary et al., 2016). A, aerobes and facultative anaerobes; AN, anaerobes.

a . b
06 -1
-2
s 4 2 3
= k=l
4
02
-5
-6
0
G A G,

Run

A, Gy Ay Gy Ay Gs As Gy Ay G A, Gy Ag
Run

Fig. 2. Length of polypurine runs in prokaryotic genomes. g, the total fraction of G or A in runs of any length in the
respective purine nucleotide content in the genome (f,,,). * p < 0.05 (Mann-Whitney test). b, the fraction of G or A in
the runs 2 to 8 nucleotides long in the respective purine nucleotide content in the genome. In all cases, the difference
between G-runs and A-runs is significant at p < 0.001 (Mann-Whitney test).

Here and below, the line in the box marks the median, the boundaries of the box correspond to the first and third quartiles,
the whiskers, to the 10th and 90th percentiles, and the dots are outliers.

and expected frequency of each nucleotide. The frequency
of T in the first position before G-runs was statistically sig-
nificantly higher than expected and than the frequency of A
and C (Fig. 4a). The frequency of Aand C nucleotides in this
position was slightly lower than expected, but this difference
did not reach significance; their representation also did not
differ from each other. T was more frequent than either A or
C nucleotide at any G-run length, and its representation was
higher than expected before G,, G,, G, and Gg runs (Fig. 4b).
Awas underrepresented in this position only before G, runs,
and C was underrepresented before G, and longer G-runs.
In contrast, T was underrepresented both at the 3’-side of G-
runs and at the second position from their 5'-side (Fig. 4a).

Overall, these data support a model of preferential oxidation
of the first G in the runs to 8-0xoG followed by G—T trans-
versions.

Quite unexpectedly, the nucleotide distribution before
A-runs was even more uneven than before G-runs. At this
position, T was underrepresented, while C and G were over-
represented (Fig. 4c). For C, this deviation was explained pri-
marily by overrepresentation of CAA trinucleotides, while for
G, anincreased frequency of occurrence was observed up to a
run length of 6 nucleotides (Fig. 4d). A decrease in the frac-
tion of T also occurred in runs of any length (Fig. 4d). After
A-runs, the occurrence of C and T was lower than expected,
while G was higher than expected (Fig. 4c). Itis possible that
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Fig. 3. Dependence of the number of polypurine runs in prokaryotic genomes on the run length and the nucleotide composition of the genome.
a, b, examples of the dependence of the number of G-runs N(G,) on their length for the genomes of E. coli (a; genome size 4.64 % 1 06 bp, G+C content
51.0 %) and Ch. trachomatis (b; genome size 1.04 x 1 06 bp, G+C content 41.5 %). ¢, dependence of k;,. on the nucleotide composition of the genome
(G+C content for G-runs, A+T content for A-runs). Black dots, G-runs, white dots, A-runs; dashed lines show linear regressions with the regression
coefficients indicated on the plot.
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Fig. 4. Representation of different 5’- and 3’-flanking nucleotides in polypurine runs. g, ¢, deviation from the frequency of 5- and
3'-flanking nucleotides for G-runs (a) and A-runs (c) of any length expected on the basis of the content of the respective nucleotide
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in the genome. b, d, deviation from the frequency of 5'-flanking nucleotides in G-runs (b) and A-runs (d) 2-8 nucleotides long.

Difference from expected: # p < 0.05, # p < 0.01, ### p < 0.005, #*## p < 0.001 (one-sample Wilcoxon test with Dunn’s correction for multiple
comparisons); ns, no significant difference. Differences between groups: * p < 0.05, ** p < 0.01, *** p < 0.005, **** p < 0.001 (Kruskal-Wallis
test with Dunn’s correction for multiple comparisons).
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these deviations can also be explained by DNA damage and
subsequent DNA polymerases errors; however, the mechani-
stic reasons underlying such events remain unclear at present.

The amount of 8-0xoG generated in the genome directly
depends on the presence of reactive oxygen species in the
intracellular environment (Halliwell, Gutteridge, 2015). Pro-
karyotes are exceptionally diverse in their energy metabolism
pathways: some follow a strictly anaerobic lifestyle, while
others are obligate aerobes or facultative anaerobes and are
subject to more intense oxidative stress. We have compared
the statistics of the occurrence of 5'-flanking nucleotides of
G-runs in the genomes of these two groups (Table 1). In aero-
bic prokaryotes, T was found at this position with an increased
frequency compared to the expected, and A, with a decreased
frequency (Fig. 5). For anaerobic microorganisms, no signi-
ficant difference in the occurrence of 5'-flanking nucleotides
was found (Fig. 5). However, when comparing the abundance
of A, C and T directly between the aerobic and anaerobic
groups, the differences did not reach statistical significance,
which is most likely due to insufficient sample size. For
A-runs, the difference in the occurrence of 5'-flanking nucleo-
tides in the genomes of aerobes and anaerobes was the same
as in the combined group (compare Fig. 4c and Fig. 5). Thus,
the reduced level of oxidative stress in anaerobic microorga-
nisms may be associated with a less pronounced predominance
of T at the position flanking the 5’-side of G-runs; however,
further research is required to answer this question more
definitively.

Unlike those of prokaryotes, eukaryotic genomes are
characterized by a large number of repetitive elements such
as transposons, satellite and telomeric DNA, the precise
sequences of which are inaccessible to traditional high-
throughput sequencing methods (Richard et al., 2008; Liao
et al., 2023). The advent of ultra-long sequencing (Oxford
Nanopore, PacBio HiFi) has made it possible to fill these gaps.
The recently published human genome read using a combina-
tion of methods with telomere-to-telomere (T2T) coverage
and high quality (estimated telomeric error rate of ~4x1078)
(Nurk et al., 2022), provides the opportunity to analyze the
context of G-runs without the distortions caused by a higher
representation of unique sequences.

The significantly larger size of the human genome com-
pared to prokaryotic ones allowed us to identify interesting
patterns in the distribution of G, runs size. For n = 2-8,
their number decreased exponentially and was described by
an increment coefficient k;,. = —0.674, which is very close
to the center of the distribution of k;,. values for G-runs in
prokaryotes (compare Fig. 6a and Fig. 3c; z = 0.141). For
n = 9-16, the exponential dependence was preserved, but the
rate of decrease in the number of runs decelerated: the k..
value increased to —0.198, which lies far outside the range
of ki, values for prokaryotic genomes (compare Fig. 6a and
Fig. 3¢; z=5.97). Runs of this size were absent in prokaryotic
genomes or were present in a handful of cases, so it was impos-
sible to detect this transition. Further increase in the length of
G-runs was accompanied by an even greater deceleration
of the rate of decrease in their number (Fig. 6a). Obviously,
around n = 8-9 (the breakpoint value determined by the piece-
wise regression method: n = 8.72 +0.04), the balance of G-run

2025
29.7

OTparkeHre npoueccoB nospexaeHna JHK
B 3BONOLMN G-TPAKTOB B reHOMax

0.6
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Fig. 5. Representation of 5'-flanking nucleotides in polypurine runs in the
genomes of aerobic (white) and anaerobic (gray) microorganisms.

Deviation from the expected representation is shown for G-runs and A-runs of
any length. Difference from expected: # p < 0.05, ### p < 0.005, #### p < 0.001
(one-sample Wilcoxon test with Dunn’s correction for multiple comparisons).
Differences between groups: ** p < 0.01, *** p < 0.005, **** p < 0.001 (Kruskal-
Wallis test with Dunn’s correction for multiple comparisons); ns, no significant
difference.
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Fig. 6. Dependence of the number of G-runs and the representation of
the 5'-flanking nucleotides in the human genome on the run length.
a, dependence of the number of G-runs N(G,,) on their length. The dashed
lines correspond to the linear regression; the k;,. values for n = 2-8 and
n=9-16 are shown on the plot. b, The dependence of Arep of the 5'-flank-
ing nucleotide (black, A, white, C, gray, T) on the run length.

shortening and elongation is shifted in favor of the latter; run
growth due to DNA polymerase slippage during replication
or repair becomes self-sustaining, as in the well-studied case
of trinucleotide repeat runs (Mirkin, 2007; McMurray, 2010).

An even more unexpected pattern emerged from the analysis
of the frequency of 5'-flanking nucleotides. Since it is well
known that the number of CG dinucleotides in the human
genome is reduced due to their role in epigenetic regulation
(Fazzari, Greally, 2004), the expected frequency was calcu-
lated based on the dinucleotide rather than the total nucleotide
frequency. At n = 2, the nucleotide frequency closely matched
the expected value, but then the Arep values for A steadily
decreased, while the representation of C and T, in contrast,
increased at virtually the same rate (Fig. 6b). However, starting
from n=8-11 (the breakpoint value for Arep(C)—Arep(T), de-
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termined by the piecewise regression method: n =9.28+1.10),
the dependencies for C and T diverged sharply: the representa-
tion of T decreased, while the representation of C increased.
One possible explanation for this phenomenon may be that
longer G-runs serve as more effective traps for holes migra-
ting along the DNA duplex leading to hyperoxidation of the
5'-terminal 8-0x0G to guanidinohydantoin and spiroimino-
dihydantoin with a corresponding switch in the preferential
nucleotide substitutions from G—T to G—C.

Telomeric DNAis a distinct class of highly repetitive DNA
in eukaryotic genomes, represented in humans by multiple
copies of the TTAGGG hexanucleotide. Telomeric repeats are
known to serve as hotspots for DNA oxidation to form 8-0xoG
(Billard, Poncet, 2019; Opresko et al., 2025). Telomere ends
in germline cells are elongated by telomerase, a specialized
DNA polymerase that uses telomerase RNA as a template, so
changes in these regions are not associated with damage to
genomic DNA. However, even in the presence of active telo-
merase, the bulk of telomere length is replicated by the usual
semiconservative mechanism (Pfeiffer, Lingner, 2013; Higa
et al., 2017; Bonnell et al., 2021), which can lead to the ac-
cumulation of mutations in them. Thus, the telomere sequence
in human somatic cells (in the case of the T2T genome, the
immortalized telomerase-expressing CHM 13hTERT chorionic
cell line) reflects both their recent elongation by telomerase
in germline cells and mutagenesis events in past generations
and in individual development.

The distribution of TTAGGG repeats in chromosomes
(calculated for both DNA strands) had a fairly expected pat-
tern, with frequency peaks at the ends of the chromosomes
and a dip in the pericentromeric region (Fig. 7a). The only
exception was chromosome 8, for which, on the contrary, a
slight increase in the number of these repeats was observed
in the centromere region. On chromosome 2, a peak in the
frequency of telomeric repeats was clearly visible in the
region of the fusion of two ancestral hominid chromosomes
that formed the evolutionarily young human chromosome 2
(ljdoetal., 1991; Fig. 7a). However, a more detailed analysis
of'this region shows that it has already significantly degraded,
keeping far fewer TTAGGG repeats than in true telomeres
(Fig. 7b). Interestingly, similar peaks were found on chromo-
somes 15 and 22 in the introns of the active protein-coding
genes ATP10A and MICALS; they may represent remnants of
translocated telomere fragments.

TTAAGG, TTACGG, and TTATGG repeats were dis-
tributed across chromosomes without telomeric peaks. The
overall frequency of TTACGG repeats was significantly lower
than that of TTAAGG and TTATGG, consistent with the re-
duced abundance of CG dinucleotides in the human genome
(Fig. 7a). Separate peaks in repeat frequency were observed
on chromosome 2 for TTAAGG, chromosomes 8, 12, 17,
andY for TTACGG, and chromosomes 4 and 22 for TTATGG
(Fig. 7a). A characteristic pattern of repeat distribution in the
pericentromeric region with gaps in all TTANGG variants was
observed for chromosomes 1-5, 7, 10-12, 16, 19, and 21. In
other cases, one repeat type predominated in the centromere
region, while others were depleted, with their combined defi-
ciency compensating for the excess of the predominant type, as
shown in Fig. 7a for chromosome 6. In chromosomes 6, 13—15,
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22, and X, TTATGG was the predominant repeat; in chromo-
some 8, it was TTAGGG, and in chromosome 17, TTACGG.
Chromosome 18 was distinguished by coinciding peaks in the
distribution of two repeats, TTACGG and TTATGG (Fig. 7a).
In the long arm of chromosome 9, in the region of constitu-
tive heterochromatin adjacent to the pericentromeric region
with an excess of TTATGG, there was a long stretch with a
predominance of TTACGG.

Obviously, the cases of co-localization or oppositely phased
localization of TTANGG repeats in non-telomeric regions are
not due to point mutations in the TTAGGG repeat but reflect
the presence of repeating elements containing one or two of
these hexanucleotides in these loci. In contrast, point mutations
in the first position of the G,-run of the telomeric repeat should
be most obvious in the regions consisting mainly of TTAGGG,
that is, in the telomeres proper and intrachromosomal blocks
of telomere-like repeats. To analyze the frequency of sub-
stitutions in such regions, we have singled out the telomeric
regions and intrachromosomal blocks where at least 100 co-
pies of the TTAGGG repeat were found in 100-kb bins. They
were divided into shorter 100-bp bins. A bin filled with only
TTAGGG repeats corresponds to 16 or 17 copies (depending
on the position of the first complete hexanucleotide in the bin).
The bins containing at least 9 TTAGGG copies, accounting
for more than half the bin length, were selected for analysis.

Counting the occurrence of TTAAGG, TTACGG, and
TTATGG in the studied regions revealed clear significant
enrichment of G— A substitutions at the first position of the
G;-run compared to G—C and G—T substitutions (Table 2).
In comparison with G—A, the total number of G—C and
G—T changes was fivefold lower, and their frequencies did
not differ significantly from each other. Thus, although telo-
meric repeats serve as preferential sites of guanine oxidation,
this is not reflected in the increased frequency of G—T point
mutations. The difference between the representation of A and
C+T at the 5'-flanking position of GG dinucleotides between
telomeric repeats and the rest of the genome may indicate the
existence of a mutational process in telomeres that is distinct
from G oxidation at the 5'-position of GGG.

Conclusion

In conclusion, the analysis of the nucleotide context of G-
runs in a set of 62 complete prokaryotic genomes and in the
human T2T genome revealed that the representation of T at
the position adjacent to G-runs is generally increased, which
is consistent with the model of G oxidation at the 5'-position
of the runs followed by G—T mutations. Other patterns in
the distribution of 5’-flanking nucleotides were also identi-
fied: uneven nucleotide frequency at the position adjacent
to A-runs, increased representation of C at the 5'-side of
long G-runs in the human genome, and the predominance of
G— A substitutions at the 5'-position in telomeric repeats. The
hypothesis that G-run elongation may lead to a shift in the
specificity of single-nucleotide mutations from G—T to G—C
due to a change in the nature of the precursor lesion can be
tested experimentally. The characteristic mutation spectrum
in telomeric repeats may be caused by their tendency to fold
into G-quadruplex structures, which hinder the movement of
DNA polymerases (Pfeiffer, Lingner, 2013; Higa et al., 2017,
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Table 2. Representation of TTANGG in telomeres and intrachromosomal blocks of telomere-like repeats

Number of TTAGGG in 100-nt bins  TTAGGG TTAAGG TTACGG TTATGG Yoazc=1)" Yoa-n™
Telomeres

17 7361 0 0 0 - -

16 6512 3 0 0 0.0498 0.0833

15 1935 9 1 1 0.00297 0.0114

14 980 26 0 3 8.12x 10710 1.95x107°

13 715 23 1 2 1.85x 1078 2.67x107°

12 468 14 2 2 3.35x107* 0.00270

11 341 6 0 0 0.00248 0.0143

10 490 16 1 0 6.97x1077 6.33x107°
9 327 8 0 0 335x107* 0.00468

Intrachromosomal blocks

16-17 16 0 0 0 - -

15 45 0 1 0 0.368 -

11-14 221 0 0 0 - -

10 90 2 1 2 0.818 1.000
9 99 10 0 4 0.00439 0.109

Combined

17 7361 0 0 0 - -

16 6528 3 0 0 0.0498 0.0833

15 1980 9 2 1 0.00865 0.0114

14 1022 26 0 3 8.12x1071° 1.95x107°

13 767 23 1 2 1.85x 1078 2.67x107°

12 540 14 2 2 3.35x107* 0.00270

11 396 6 0 0 0.00248 0.0143

10 580 18 2 2 8.84x1076 335%x107*
9 423 18 0 4 5.12x1078 0.00284

* %2 values for the null hypothesis of equal representation of A, Cand T.
**y2 values for the null hypothesis of equal representation of Aand T.

Bonnell et al., 2021), but this proposal requires a detailed
study of the fidelity of human replicative DNA polymer-
ases on intact and damaged templates of this structure. For
A-runs, the existence of preferential sites of DNA damage is
not known; given that A-runs are longer than G-runs (Fig. 2),
the difference in the relative representation of C, G, and T in
the 5’-flanking position may not be associated with the muta-
tional process. The explanation of all these identified patterns
requires further research.
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by the structure of their DNA-binding domains
to the variability of their binding site motifs
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Abstract. De novo motif search is the main approach for determining the nucleotide specificity of binding of the key
regulators of gene transcription, transcription factors (TFs), based on data from massive genome-wide sequencing
of their binding site regions in vivo, such as ChlP-seq. The number of motifs of known TF binding sites (TFBSs) has
increased several times in recent years. Due to the similarity in the structure of the DNA-binding domains of TFs, many
structurally cognate TFs have similar and sometimes almost indistinguishable binding site motifs. The classification
of TFs by the structure of the DNA-binding domains from the TFClass database defines the top levels of the hierar-
chy (superclasses and classes of TFs) by the structure of these domains, and the next levels (families and subfamilies
of TFs) by the alignments of amino acid sequences of domains. However, this classification does not take into ac-
count the similarity of TFBS motifs, whereas identification of valid TFs from massive sequencing data of TFBSs, such
as ChIP-seq, requires working with TFBS motifs rather than TFs themselves. Therefore, in this study we extracted from
the Hocomoco and Jaspar databases the TFBS motifs for human and fruit fly Drosophila melanogaster, and considered
the pairwise similarity of binding site motifs of cognate TFs according to their classification from the TFClass database.
We have shown that the common tree of the TF hierarchy by the structure of DNA-binding domains can be split into
separate branches representing non-overlapping sets of TFs. Within each branch, the majority of TF pairs have signifi-
cantly similar binding site motifs. Each branch can include one or more sister elementary units of the hierarchy and
all its/their lower levels: one or more TFs of the same subfamily, or the whole subfamily, one or several subfamilies of
the same family, an entire family, etc., up to the entire class. Analysis of the seven largest human and two largest Dro-
sophila TF classes showed that the similarity of TFs in terms of TFBS motifs for different corresponding levels (classes,
families) is noticeably different. Supplementing the hierarchical classification of TFs with branches combining signifi-
cantly similar motifs of TFBSs can increase the efficiency of identifying involved TFs through enriched motifs detected
by de novo motif search for massive sequencing data of TFBSs from the ChIP-seq technology.

Key words: de novo motif search; motifs of transcription factor binding sites; structural variants of motifs of transcrip-
tion factor binding sites; similarity of motifs of transcription factor binding sites; cooperative action of transcription
factors; massive whole-genome sequencing of transcription factor binding sites

For citation: Levitsky V.G., Vatolina T.Yu., Raditsa V.V. Linking hierarchical classification of transcription factors by the
structure of their DNA-binding domains to the variability of their binding site motifs. Vavilovskii Zhurnal Genetiki
i Selektsii = Vavilov J Genet Breed. 2025;29(7):925-939. doi 10.18699/vjgb-25-99

Funding. The work was supported by the Russian Science Foundation, grant No. 24-14-00133.

Acknowledgements. The software package development and data analysis was performed in part on the equipment
of the Bioinformatics Shared Access Center within the framework of State Assignment Kurchatov Genomic Center
of ICG SB RAS and supported by the budget project No. FWNR-2022-0020.

CBSI3b MepapXm4yecKoi Kilaccu@mMKaIUuy TPAaHCKPUTIITMIOHHBIX
dakTopoB 110 cTpyKType JJHK-CcBs3bIBaIoIero roMeHa

11 BapnabeIbHOCTYI MOTUBOB CaliTOB CBSI3bIBAHMS 3TUX (PAKTOPOB
B.I. Aeunxuit (D% 2@, T.10. Baroanna?, B.B. Paauial

1 DepiepanbHblii NCCNeROBATENbCKUI LeHTP UHCTUTYT ymutonorum n reHetrnkn Cnbrpckoro otaeneHns Poccuinckol akagemmnm Hayk, HoBocnbupck, Poccus

2 VNHCTUTYT MoneKynapHoW 1 KnetouHon 6uonorun Cnbupckoro otaeneHns Poccuiickon akagemmm Hayk, HoBocmbupck, Poccus
@ levitsky@bionet.nsc.ru

© Levitsky V.G., Vatolina T.Yu., Raditsa V.V,, 2025
This work is licensed under a Creative Commons Attribution 4.0 License


https://orcid.org/0000-0002-4905-3088
https://orcid.org/0000-0002-4905-3088

V.G. Levitsky, T.Yu. Vatolina
V.V. Raditsa

DNA-binding domain structure of transcription
factors and similarity of their binding site motifs

AHHoTauuA. Monck MoTMBOB de novo — 6a30BbI NOAXOA OnpefeneHns HyKNeoTUAHOW CneynprUHOCTA CBA3bIBaHWSA
BaXKHENLWMX PerynaTopoB TPaHCKPUMLMKN FreHOB, TPAHCKPUNUMOHHbIX dakTopoB (TM), Ha OCHOBE AaHHbIX MAacCOBO-
ro NMOSIHOFreHOMHOTO CEKBEHUPOBaAHUA PAaioOHOB UX CAaTOB CBA3bIBaHUA in vivo, Taknx Kak ChIP-seq. KonnuecTtso u3-
BEeCTHbIX MOTUBOB canToB cBA3biBaHUA TO (CCTD) BO3pOC/io B HECKONbKO pa3 B nocsedHue rofbl. /3-3a cxopctea
cTpykTypbl [JHK-cBA3bIBaOWMX AoMeHoB TO MHOrMe CTPYKTYPHO poAacTBeHHble TO MMEIOT CXOAHbIe NN Jaxe He-
pasnunyMmMble MOTVBbI CaliTOB CBA3bIBaHUA. Knaccudurkaums TO no ctpykType JHK-cBA3bIBaOWMX JOMEHOB U3 6a3bl
naHHbix TFClass onpepenseT BepxHue YPOBHU nepapxuu (cynepknacchl 1 knaccbl T®) nNo CTPyKType 3TUX JOMEHOB, @
cnepytolme YpoBHM (cemelncTBa 1 nogcemerictea TO) No BblpaBHMBAHMAM aMUHOKUCIOTHBIX MOCeoBaTeNIbHOCTEN
nomeHoB. OfiHaKo 3Ta Knaccndukauma He yumTbiBaeT cxoacTso motusos CCTO, a ana ngeHtudurKkauny 4eNCTBYOLNX
T® no paHHbIM MaccoBoro cekBeHrpoBaHua CCTO ChiP-seq nprxoautca umetsb aeno ¢ motreamu CCTO, a He ¢ camu-
mun TO. Mo3TomMy B AaHHOW paboTe Mbl B3AAM 13 6a3 AaHHbIX Hocomoco/Jaspar moTtuebl CCTO yenoBeka/nnogosom
mywKmn Drosophila melanogaster n paccMoTpenu CXOACTBO MOTVBOB CAalTOB CBfA3bIBaHWA B Mapax POACTBEHHbIX TO
COrnacHo ux Knaccuorkaumm B 6ase aaHHbix TFClass. MokasaHo, uto obLiee fepeso nepapxumn TO no ctpyktype AHK-
CBA3bIBAOLLMX JOMEHOB MOXHO Pa3fennTb Ha OTAeNbHble HenepekpbiBatoLwmecs MHoxecTBa TO — BeTBU. B npepenax
Kaxgol BeTBM 605bWMHCTBO Nap TO nMeeT 3HauMMO NOXOXKMe MOTVBbI CANTOB CBA3bIBaHWA. KaXkaan BETBb BKIOUaeT
OfIHY UMW HECKONbKO CECTPUHCKMX SNEMeHTapHbIX eAVHUL, nepapxmmn 1 Bce 6onee H13KMe ee/Vx YPOBHW: OLWH U
Heckonbko T® ogHOro noacemencTsa Uav Lesnoe NoacemMencTBo, O4HO UAN HECKOMbKO MOACEMENCTB OQHOTO ceMelt-
CTBa, Liefioe CeMeliCcTBO 1 T.A4. JO LieNIoro Knacca. AHanm3 cemu KpynHenwmnx knaccos T® yenoseka v ABYX NIOA0BOWA
MYLLUKIM Noka3sarn, 4yto cxoacTso TM no motream CCTO ans pa3HblX COOTBETCTBYIOLWMX YPOBHEN (KNacCoB, CEMeNCTB) 3a-
METHO oTnnyaetca. [lononHeHne nepapxundeckon knaccndurkaumm TO BeTBAMU, 06bEANHAIOLLMMUN 3HAYMMO CXOLHblE
moTuBbl CCTD, MOXeT NoBbICUTb IPHEKTUBHOCTL naeHTUMKaumm T®, BOBNEUEHHbIX B PErynAaLMI0 TPaHCKPUNUMK,
no pesynbraTam de NOovo Noucka 060ralleHHbIX MOTUBOB ANA AaHHbIX MacCcoBOro cekBeHupoBaHua CCTO ¢ nomoLbo
TexHonorun ChiP-seq.

KnioueBble cnoBa: de novo NOUCK MOTBOB; MOTUBbI CaliTOB CBA3bIBaHWA TPAHCKPUMLUMOHHBIX GaKTOPOB; CTPYKTYp-
Hble BapraHTbl MOTUBOB CaiTOB CBA3bIBAHWA TPAHCKPUMNUMUOHHbBIX GpaKTOPOB; CXOACTBO MOTVBOB CalTOB CBA3bIBAHUA
TPAHCKPUMLMOHHBIX GaKTOPOB; KOONepaTnBHOE AENCTBME TPAHCKPUMLMOHHBIX $akTOpPOB; MacCOBOE MOSIHOrEHOM-

HO€ CeKBeHMpPOBaHMe CaNTOB CBA3bIBaHMNA TPAHCKPUNLUNOHHbIX ¢aKTOpOB

Introduction

The study of the regulation mechanisms of eukaryotic genes
transcription is necessary for understanding molecular genetic
processes in the cell. Gene transcription is carried out under the
control of special proteins, transcription factors (TFs), which
regulate it specifically by the nucleotide context by binding to
genomic DNA (Lambert et al., 2018). This specificity is due to
nucleotide sequences of binding sites being recognized by in-
dividual TFs (TFBSs). The variability of binding sites reflects
the ability of each TF to bind to different DNA sequences;
therefore, the set of similar binding site sequences interacting
with a TF is called the motif of its binding sites (D’haeseleer,
2006). The length of the region of genomic DNA directly
interacting with an individual TF, as well as the length of the
TFBS motif, usually vary from 6 to 20 base pairs (bp) (Spitz,
Furlong, 2012; Zambelli et al., 2013; Vorontsov et al., 2024).
One TF may have several distinct motifs of binding sites.
The most popular model of the TFBS motif is the positional
weight matrix (PWM). To build a model of the PWM motif,
it is necessary to calculate the nucleotide frequencies at all
positions using this alignment of the TFBSs representing this
motif, and calculate the contributions (or weights) to the total
estimate of affinity using these frequencies for each of the four
nucleotides at each position. The total estimate of affinity for
a potential site in a DNA sequence is equal to the sum of the
weights corresponding to the nucleotides encountered, for all
its positions (Wasserman, Sandelin, 2004).

Experimental ChIP-seq technology is based on chromatin
immunoprecipitation (ChIP), i.e. application of antibodies
to the target protein under study, for example, a TF. This
technology is used to identify interactions of target proteins
with genomic DNA in vivo. The essence of this technology is
to perform chromatin immunoprecipitation and subsequently

926

to map the genomic loci of the interaction between a target
protein and genomic DNA. TFs in vivo, as a rule, act as part of
multiprotein complexes formed by protein-protein interactions
of several TFs, which allows them to regulate gene transcrip-
tion together, even without direct connections of each of the
TFs with genomic DNA. Therefore, in vivo TFs can bind to
DNA in a variety of ways:
« directly, there is a binding site of the target TF in DNA;
 with another “partner” TF, binding sites for both target and
partner TFs co-occur in DNA, they are found with a spacer
or an overlap (Levitsky et al., 2019);
* indirectly, there is a binding site for a partner TF in DNA,
and that for the target TF is absent (Slattery et al., 2014).
The individual genomic loci mapped in a ChIP-seq ex-
periment are called peaks and range in length from several
hundreds to thousands of bp (Johnson et al., 2007, Nakato,
Shirahige, 2017; Lloyd, Bao, 2019). Each of the peaks does
not necessarily contain the binding site of the target TF,
direct binding can be performed by one of the possible part-
ner TFs. Massive application of other in vivo experimental
sequencing technologies besides ChIP-seq, e.g. CUT&RUN
(Sken, Henikoff, 2017), as well as in vitro technologies
(PBM, HT-SELEX) (Stormo, Zhao, 2010; Jolma et al., 2013;
Franco-Zorrilla et al., 2014) allowed to accumulate data on the
nucleotide specificity of binding sites of hundreds of TFs for
the main model eukaryotic species. Several databases (DBs)
performed uniform primary processing of massive genome-
wide TFBS sequencing data, including ChIP-seq data (GTRD,
Kolmykov etal., 2021; ReMap, Hammal et al., 2022; Cistrome
DB, Taing et al., 2024).

Enrichment analysis of TFBS motifs, in particular the
de novo motif search (Zambelli et al., 2013; Liu et al., 2018;
Bailey, 2021), was initially used only to confirm the vali-
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dity of the results of ChIP-seq experiments (sets of DNA
sequences or peaks). Then, the de novo motif search became
the standard approach for analysis of peak sets, allowing to
determine enriched motifs, presumably corresponding to the
motifs of the binding sites of the target TF and several partner
TFs, cooperatively acting in the regulation of gene transcrip-
tion (Spitz, Furlong, 2012; Slattery et al., 2014; Morgunova,
Taipale, 2017).

To date, for several hundred TFs of the main eukaryotic
taxa, such as mammals, insects and higher plants, TFBS
motifs of the PWM model (nucleotide frequency matrices)
are compiled in a number of DBs, JASPAR (Rauluseviciute
et al., 2024), Hocomoco (Vorontsov et al., 2024) and Cis-BP
(Weirauch et al., 2014). For example, the Hocomoco DB (ver-
sion 12, Vorontsov et al., 2024) amounts to 1,443 binding site
motifs for 949 human TFs. The analysis pipeline used by the
Hocomoco DB for human and mouse TFBS motifs allowed
identifying more than one structural type of motif for several
hundred annotated TFs.

For a single TF, both the number of different binding site
motifs and the structure and variability of each of the motifs
are determined by the structure of the DNA binding domain
(DBD) of this TF (Wingender, 1997, 2013). Based on the
analysis of the similarity of the structure of DBDs of TFs
and the alignment of the amino acid sequences of DBDs of
TFs, a hierarchical classification of TFClass was developed,
first for human TFs, and then for their orthologs in rodents
and mammals (Wingender et al., 2013, 2015, 2018). This
classification has six hierarchy levels. The upper levels of the
hierarchy, superclass and class are defined according to the
general topology and structural features of the DBDs of TFs.
The next levels of the family and subfamily are deduced by
the similarity of amino acid sequences of DBDs of TFs based
on their alignments. The lower levels are the TF gene and the
structural variant of its protein. In total, mammals have nine
superclasses. Analysis of the structure of DBDs of TFs in
plants did not reveal additional superclasses, however, about
half of the TF classes turned out to be plant-specific (Plant-
TFClass DB, Blanc-Mathieu et al., 2024).

The most important function of TFs in vivo is their ability
to bind DNA specifically. However, the TFClass classifica-
tion does not take into account the similarity of TFBS motifs
at certain hierarchy levels, in specific classes, families, etc.
The similarity of TFBS motifs can vary greatly in different
classes of TFs. For example, the largest class of mammalian
TFs, C2H2 zinc finger factors {2.3}, has the most noticeable
variability in TFBS motifs (Najafabadi et al., 2015; Lambert
et al., 2018). Hereinafter, numbers in curly brackets denote
the TF classification nomenclature from the TFClass (Win-
gender, 1997, 2013; Wingender et al., 2013, 2015, 2018). For
example, TF JUN belongs to the superclass Basic domains
{1}, the class Basic leucine zipper factors (bZIP) {1.1}, the
Jun-related family {1.1.1}, and the Jun subfamily {1.1.1.1}.
To determine a functioning TF by a given enriched motif of
its binding sites as a result of a de novo motif search, we can
apply not only the classification of TFs by the structure of
their DBDs but also the classification of TFs by the similarity
of TFBS motifs.
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An important step in the analysis of the results of de novo
enriched motif search applied for ChIP-seq data is the most
precise determination of the motifs of binding sites of tar-
get and partner TFs based on the enriched motifs obtained.
A common way to limit the list of putative TFs for each
enriched motif is to assess the significance of its similarity
to the TFBS motifs of known TFs from the DBs (Weirauch
et al., 2014; Rauluseviciute et al., 2024; Vorontsov et al.,
2024). Standard tools such as TomTom (Gupta et al., 2007)
can be used to assess similarity in the pairs of motifs of the
PWM model.

The estimate of the total number of human TFs is 1,659
(Shen et al., 2023); however, both the number of structurally
different DBDs of TFs and the number of TFs with distinct
binding site motifs are much smaller, since the TFs with simi-
lar DBDs usually have similar binding site motifs (Ambrosini
et al., 2020). The most obvious exception to this general
rule is the TF class C2H2 zinc finger {2.3} (Lambert et al.,
2018).

The presence of two or more structurally distinct binding
site motifs for a single TF is widespread across various TF
classes (Vorontsov et al., 2024). This is explained by the abi-
lity of certain TFs to bind only as dimers of related TFs (for
example, TF pairs from the classes Basic helix-loop-helix
factors (bHLH) {1.2}, or Basic leucine zipper factors (bZIP)
{1.1}), or as a dimer or monomer (for example, TFs from the
class Nuclear receptors with C4 zinc fingers {2.1}) (Amoutzias
et al., 2008). Commonly, TFBS motifs of related TFs from
the same class or family exhibit a high to moderate degree of
similarity depending on the position of the class, family, or
subfamily in the TFClass/Plant-TFClass hierarchy. However,
even among the TFBS motifs of the same TF, a certain variety
of structural variants can be observed. For example, for TF
CDX2 (Homeo domain factors {3.1} class) and THB (Nuclear
receptors with C4 zinc fingers {2.1} class), there are two
and four motifs in Hocomoco (version 12), respectively. The
two TFBS motifs of CDX2 TF are not significantly similar
(p-value > 0.001, Gupta et al., 2007) (Fig. 1a), significant
similarity is also absent in three of the six possible pairs of
the four THB binding site motifs (Fig. 1b, ). It can be as-
sumed that more often families or subfamilies, rather than
TF classes, represent significantly similar motifs (Nagy G.,
Nagy L., 2020; de Martin et al., 2021; Zenker et al., 2025).
We study this issue in more detail in this work.

The most important step in the analysis of ChIP-seq data,
de novo motif search, reveals a list of enriched motifs for
ChIP-seq peaks. For the PWM motif model, each motif is
a matrix of nucleotide frequencies, and it is necessary to
determine a list of known TFs from DBs, such as Jaspar
(Rauluseviciute et al., 2024), Hocomoco (Vorontsov et al.,
2024) or Cis-BP (Weirauch et al., 2014), having significantly
similar motifs of binding sites of known TFs. However, in ad-
dition to the dependence of the number of binding site motifs
on the DBD structure of a TF, TFs are extremely unevenly
distributed in superclasses, classes, and even families. In the
most complete human/mouse DB of TFBS motifs (Hocomoco,
version 12, Vorontsov et al., 2024), the five largest TF classes
represent about 75 % of all motifs (1,082 of 1,443): C2H2
zinc finger factors {2.3}, Homeo domain factors {3.1}, Basic
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Fig. 1. Similarity of different binding site motifs representing individual TFs.

DNA-binding domain structure of transcription
factors and similarity of their binding site motifs

a, b - two/four binding site motifs of CDX2 / THB TFs from the Homeo domain factors {3.1} / Nuclear receptors with C4 zinc fingers {2.1}
classes. For each motif, the Hocomoco DB identifier is indicated (Vorontsov et al., 2024). The PWM motif model logo represents nucleotide
frequencies at positions as letter heights (Schneider, Stephens, 1990); ¢ — motif similarity estimates calculated by the TomTom tool (Gupta
et al., 2007) for four TFBS motifs of THB TF, the color reflects the significance of the similarity, —Log[p-value].

helix-loop-helix factors (bHLH) {1.2}, Nuclear receptors
with C4 zinc fingers {2.1}, and Basic leucine zipper factors
(bZIP) {1.1}. The ten largest classes comprise about 90 % of
all motifs (1,303 out of 1,443). The eight largest TF families
from a total of four classes represent more than 51 % (742
out of 1,443) of all TFBS motifs: More than 3 adjacent zinc
fingers {2.3.3}, HOX-related {3.1.1}, Multiple dispersed
zinc fingers {2.3.4}, Paired-related HD {3.1.3}, NK-related
{3.1.2}, Three-zinc finger Kruppel-related {2.3.1}, Tal-
related {1.2.3}, and Ets-related {3.5.2}. A recent analysis of
1,725 TFs of the model plant Arabidopsis thaliana revealed
about 40 % of them (686) with available TFBS motifs; the
inclusion of TFBS motifs for 92 TFs from other plants showed
an extremely limited vocabulary of only 74 distinct plant TFBS
motifs (Zenker et al., 2025).

Very often, an enriched motif from the results of a de novo
motif search has a high similarity to the TFBS motifs of
known TFs from one or more families of the same class, or
even an entire class falls into the list of TF candidates. The
result is a list of several dozen TFs, and choosing a specific
TF among them is not an easy task. Such long lists of TF can-
didates may complicate the identification of TFs most likely
associated with enriched motifs. However, this complexity
can be reduced by the systematic analysis of the similarity
of the binding site motifs of TFs classified by the hierarchy
levels from the TFClass DB. To date, for cognate TFs of a
given structure of a DBD (class, family and subfamily), it
has not been determined which of these levels is sufficient
to identify a set of TFs with significantly similar binding site
motifs. To solve this issue, one needs to find a set of certain
arrays (or branches) of several consecutive levels of the
TFClass hierarchical classification, for which the TFBS mo-
tifs are significantly similar. This approach is able to further
systematize the hierarchical classification of TFs, adapt it to
apply to the results of a de novo motif search. The resulting
refined TF hierarchy will reflect the similarity of DBDs of
TFs and the similarity of TFBS motifs.

We propose to include the annotation of the branches of
similar binding site motifs of known TFs in a standard protocol
of de novo motif search applied to the results of genome-wide
mapping of TFBS in vivo, for example, using ChIP-seq tech-
nology. The application of branches can notably simplify the
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analysis of enriched TFBS motifs. The TF branches connect
the generally accepted units of the hierarchical classification
of TFs by DBDs, namely superclasses, classes, families,
subfamilies (Wingender, 1997, 2013; Wingender et al.,
2013, 2015, 2018) to the similarity of TFBS motifs (Gupta
et al., 2007).

Materials and methods

Input data and parameters. The input data are sets of TFBS
motifs; each motif is represented by a nucleotide frequency
matrix, an identifier and a TF name; for each TF, its superclass,
class, family and subfamily (if any) are indicated, according to
the TFClass DB (Wingender et al., 2013, 2015, 2018). TFBS
motifs for human Homo sapiens and fruit fly Drosophila
melanogaster were extracted from Hocomoco (version 12,
https://hocomoco.autosome.org/) (Vorontsov et al., 2024)
and Jaspar https://jaspar.elixir.no/ (Rauluseviciute et al.,
2024). Both DBs construct TFBS motifs based on in vivo
massive sequencing data (e. g. ChIP-seq), and in vitro ones
(e.g. HT-SELEX). TFBS motifs are nucleotide frequency
matrices consistent with the traditional PWM model. In both
DBs, TF classification is applied according the DBD structure
by hierarchy levels of superclass, class, family, subfamily and
TF (TFClass DB, Wingender, 2013; Wingender et al., 2013,
2015, 2018). We selected for analysis the classes amounting
to at least 50 TFBS motifs: seven / two classes for human /
Drosophila TFs, see theTable.

Similarity metric of two TFs. We applied the TomTom tool
(Gupta et al., 2007) to assess the significance of similarity
(p-value) in pairs of TFBS motifs, the parameter of the motif
comparison function was the Pearson correlation coefficient.
Two TFBS motifs were considered similar if the significance
level reached the threshold, —Log;,[ p-value] > Thr = 3.

We define the similarity metric for a pair of TFs based
on their binding site motifs according to the distribution of
similarity in all possible pairs of binding site motifs of one
and another TF, since TFs can have one or more binding site
motifs. Let two TFs X/Y have Nx/Ny motifs, {M;}, 1 <i<Ny
and {M;}, I <j < Ny, correspondingly. The distribution of
similarity estimates in a pair of these TFs based on their
binding site motifs includes Nx x Ny pairs of motifs. Let
the similarity Score(M;, M;) of motifs M; and M; be given
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TFBS motif sets from the Hocomoco and Jaspar DBs used in analysis

Taxon: species TF class Number of motifs Number of TFs
Mammals: Basic leucine zipper factors (bZIP) {1.1} 86 47
H. sapiens Basic helix-loop-helix factors (bHLH) {1.2} 115 76
Nuclear receptors with C4 zinc fingers {2.1} 93 44
C2H2 zinc finger factors {2.3} 479 373
Homeo domain factors {3.1} 309 184
Fork head/winged helix factors {3.3} 65 43
Tryptophan cluster factors {3.5} 67 38
Total 1,214 805
Insects: C2H2 zinc finger factors {2.3} 79 57
D. melanogaster Homeo domain factors {3.1} 106 90
Total 185 147

by TomTom (Gupta et al., 2007) as the logarithm of the
significance p-value:

Score(M;, M;) = -Log; o[ p-value(M;, M;)]. )

Then for two TFs X and Y, the similarity metrics Scorey y
will be defined as follows:
Scorex y = Max

I1<i<Ny, 1<j<Ny

{Score(M;, M))}. 2)
If this metrics Scorey y (2) exceeds the pre-defined threshold
Thr, then TFs X and Y can be considered significantly similar
in their binding site motifs. For one TF, the heterogeneity of
binding site motifs is estimated as the median (the second
quartile, Q2) of the distribution over all possible pairs of
binding site motifs of that TF:
Scorex =  Median 3)
1<i<Ny, i<j<Ny
Similarity metric of two sets of TFs. Let a class have a
family A with N5 TFs. The distribution of all possible TF
pairs in this family includes Na X (Na—1)/2 variants. Let a
family B from the same class have Ng TFs. The distribution
of all possible TF pairs of families A and B includes N x Ng
variants. For both the intra-family and inter-family cases, for
all TF pairs, the similarity estimates are calculated by the
formula (2). Likewise, pairs of subfamilies in the same family
and pairs of classes in the same superclass are considered.
For the obtained distribution of similarity estimates, it is
possible to calculate five similarity metrics for two sets of
TFs: minimum (Min), quartiles Q1, Q2 (median) and Q3, and
maximum (Max). Min/Max metrics indicate the choice of the
minimum/maximum values, and quartile metrics indicate the
value of the corresponding fraction of the entire distribution.
For example, the Q2 (median) metric for two sets of TFs
reflects a level of similarity of 50 % of all possible TF pairs
from these sets. Let the first {X} and second {Y} sets have K
and T TFs, 1<k<K, 1<t<T, then based on the distributions
of the similarity values in TF pairs calculated by the formula
(2) {Scorex) vy}, the similarity metric Scorex, (v, of the
two TF sets is calculated as follows:

Score (X1{Y} = Median {Scorex(k),Y(t)} :
1<k<K, 1<t<T

{Score(M;, M)} .

4)

Definition of the branch in the TF hierarchical clas-
sification. If the similarity score of two sets of TFs based on
their binding site motifs exceeds the predetermined threshold
Thr, then these TFs can be referred to the same branch. Next,
consider the median metric (4). For example, an entire class
can belong to the same branch if more than half of all its
possible TF pairs are similar in terms of binding site motifs.
Although it is possible that certain families of a class do not
show significant similarity, with a probability of more than
50 %, an arbitrary pair of TFs from this class shows the sig-
nificant similarity of binding site motifs.

To perform cluster analysis and construct trees reflec-
ting the similarity of TFs based on the TFBS of the sister
classes of the same superclass, the sister families of the
same class, etc., we used the UPGMA algorithm scheme
(unweighted pair group method with arithmetic mean) (Sokal,
Michener, 1958). During the classification, we applied the
median metric (Q2, formula (4)) described above to evaluate
any pair of objects.

To search for branches, the analysis starts at the superclass
level, and continues at lower levels of the hierarchy: the
class, family, subfamily, or TF. First, the TF similarity metric
is calculated within a given hierarchy level, for example, a
class, as well as for all families of this class. This gives a list
of families with similarities exceeding the threshold Thr. All
such families initially refer to different branches; to analyze
the remaining families, we need to go to a lower level. Then
the TF similarity metrics are calculated for all possible pairs
of the sister families of this class. This gives the similarity
matrix for families of the class. The diagonal values of the
matrix show the similarities within each family and those
above the diagonal provide the similarities for all pairs of
different families. Next, we select a pair of families with the
highest similarity. If this similarity exceeds the threshold, then
a pair of such families (branches) are joined into one branch.
After that, the similarities in all pairs of updated branches are
recalculated. Calculations continue as long as there are pairs
of branches that allow joining based on their similarity. In
such a way we can gradually descend to the lower levels and
reach the level of TF.
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DNA-binding domain structure of transcription
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a separate branch

AnalyzingTFs of
the family X2
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Fig. 2. Scheme of analysis to determine branches of similar motifs of TFBS. The scheme shows in detail the stage of analysis of one class
X consisting of two families X1 and X2. The blue color shows the input data, dark green — analysis stages, light green - similarity metric
calculations, gray - verification of similarity conditions for motifs, light yellow — intermediate results, dark yellow - final results. The
scheme discloses the analysis of two families X1 and X2 of class X. The analysis of subfamilies of these families and the analysis of TFs in
each of the subfamilies are performed similarly to the analysis of families X1 and X2, as described in the text.

The similarity of the binding site motifs of single TFs is
analyzed separately (see formula (3)), although, obviously,
this analysis takes place inside one branch, since according to
formulas (2) and (4), each branch for any TF contains all its
binding site motifs, and we can only note TFs (Fig. 1) having
significantly different binding site motifs.

The purpose of the whole analysis is to sequentially find
such sets of TFs (for example, for a class, this is a list of family
clusters), for which the metric (4) exceeds the given threshold
Thr, and the list for each of the branches includes as many
elementary classification units as possible.

TF superclasses are heterogeneous enough in the similarity
of binding site motifs since each superclass splits into multiple
branches. A branch in the TFClass hierarchy is defined as the
maximum possible set of TFs from the highest class level to
the lowest level (in practice, this is a class, family, subfamily,
TF), such that in this set for the majority of TF pairs there is a
significant similarity of TFs based on their binding site motifs,
according to the similarity metric (4).

Abranch may include one or more sister classification units:

¢ a whole class,

« one or more families of the same class,

* one or more subfamilies of the same family,
 one or more TFs of the same subfamily.

The final result of the analysis is the determination of the
set of all branches, within each of the branches, the metric (4)
indicates significant similarity of TFs based on TFBS motifs.
Figure 2 is a scheme of the analysis used in the work.

Results

Similarity of TFs in sister subfamilies of the same families

In order to start a massive analysis of different degrees of
similarity of binding site motifs to cognate TFs according to
the TFClass hierarchical classification, we test the TFBS motif

930

similarity for subfamilies of individual families belonging to
various TF classes. Figure 3 shows the fraction of similar TFs
based on the binding site motifs within subfamilies of different
families, using the five metrics Min, Q1, Q2, Q3, and Max. The
Q2 metric (median) is calculated according to the formula (4),
others metrics are computed likewise. By construction, among
these metrics from Min to Max, the fraction of the similar
TFBS motifs is growing. However, regardless of the metric
choice, some subfamilies show a lower similarity or even a
complete lack of similar TFBS motifs, compared to other
subfamilies. For example, for the three subfamilies of the Fox
{3.3.1} family, the values of the Q2 metric are close to 100 %
(Fig. 3f), and for the subfamilies TWIST {1.2.3.2}/MEIS
{3.1.4.2} of the families Tal-related {1.2.3}/TALE-type
HD {3.1.4}, respectively, these values are less than 50 %
(Fig. 3b, d).

Thus, the similarity of TFs based on binding site motifs can
vary significantly across the subfamilies of the same families.
Obviously, the same conclusion can be drawn for the families
of the same classes. Further, in the analysis, the median metric
(Q2) (4) was used to assess the similarity of the two sets of TFs,
since the meaning of its application is the most transparent
compared to the Min, Q1, Q3, and Max metrics. Hereinafter,
the value of the Q2 metric is called “similarity”.

Similarity analysis of human TFs

Figure 4 shows the human TF similarity trees based on
binding site motifs for the main classes of the three largest
superclasses: Basic domain {1}, Zinc-coordinating DNA-
binding domains {2} and Helix-turn-helix domains {3}. Of
all the classes, only one class Tryptophan cluster factors {3.5}
shows the significant similarity of TFs based on their binding
sites motifs (similarity 3.68). The classes Basic leucine zipper
factors (bZIP) {1.1} and Nuclear receptors with C4 zinc
fingers {2.1} reach the similarity values of 2.51 and 2.68,
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Fraction of similar Tfs by TFBS motifs, %

Similarity metrics of Tfs by TFBS motifs, %

Fig. 3. Fraction of significantly similar TFs based on the binding site motifs for subfamilies of different families using the five similarity metrics: Min, Q1,

Q2, Q3, and Max.

a-e, and f - Jun-related {1.1.1}, Tal-related {1.2.3}, bHLH-ZIP {1.2.6}, TALE-type HD {3.1.4}, HD-LIM {3.1.5}, and FOX {3.3.1} families, respectively. Color marks
subfamilies. The X axis lists TF similarity metrics; the Y axis shows the fraction of significantly similar TFs based on the binding site motifs in the subfamily.
Significant similarity requires the criterion —Log, [p-value] > 3 (Tomtom tool, Gupta et al., 2007).

respectively, indicating a trend towards significant similarity.
The classes Fork head/winged helix factors {3.3}, Homeo
domain factors {3.1} and Basic helix-loop-helix factors
(bHLH) {1.2} show lower similarity values of 1.14, 1.42 and
1.47. The lowest similarity of TFs based on the binding site
motifs is found for the class C2H2 class zinc finger factors
{2.3} (0.44); this class is the largest in human, allowing the
greatest variability in the structure of TFs (Najafabadi et al.,
2015; Lambert et al., 2018, 2019).

Therefore, to identify branches within all classes except
the class Tryptophan cluster factors {3.5}, it is necessary
to proceed to the analysis of their families. Next, we will
separately consider each of the three superclasses in more
detail.

The first superclass has two large classes, Basic leucine
zipper factors (bZIP) {1.1} and Basic helix-loop-helix factors
(bHLH) {1.2}; the similarity of TFs based on binding site
motifs between these classes is very low (0.523, Fig. 5a). The
similarity of TFs within each class is noticeably higher, but the
Basic leucine zipper factors (bZIP) {1.1} class has distinctly
more similar TFs (2.51) than the Basic helix-loop-helix factors
(bHLH) {1.2} class (1.47).

There are eight families in the Basic leucine zipper factors
(bZIP) {1.1} class (Fig. 5b, e): from Jun-related {1.1.1} to
C/EBP-related {1.1.8}. Each family of the class has one or
more other families with significantly similar TFs based on
binding site motifs. As a result, all families fall into four
branches (Fig. 5e); there are two branches of two families
(XBPI1-related {1.1.5} and CREB-related {1.1.7}, ATF4-
related {1.1.6} and C/EBP-related {1.1.8}), and the branches

a Basicdomain {1}
Threshold  Basic helix-loop-helix factors
(bHLH) {1.2}

Basic leucine zipper factors
(bzIP) {1.1}

b Zinc-coordinating DNA-binding domains {2}
Threshold  C2H2 zinc finger factors {2.3}

Nuclear receptors
with C4 zinc fingers {2.1}

C Helix-turn-helix domains {3}

Tryptophan cluster factors {3.5}
Homeo domain factors {3.1}

Fork head/winged
helix factors {3.3}

Threshold

TF similarity by TFBS motifs, —Logo[p-value] Classes

Fig. 4. Similarity of TFs based on binding site motifs in the largest classes
of the three largest human superclasses.

a, b, and ¢ - class TF trees for the superclasses Basic domain {1}, Zinc-
coordinating DNA-binding domains {2}, and Helix-turn-helix domains {3}. The
X axis reflects the value of the Q2 metric, the dash line shows its threshold
value 3.The green color shows the class Tryptophan cluster factors {3.5}, which
forms a separate branch, and the gray color indicates paths, the Q2 metric
values of which are less than the threshold. Horizontal line break marks the
value of the Q2 metric.

of one (Maf-related {1.1.3}) and three families (Jun-related
{1.1.1}, Fos-related {1.1.2}, B-ATF-related {1.1.4}).

In the Basic helix-loop-helix factors (bHLH) {1.2} class,
within each of the families, with the exception of one (PAS
{1.2.5}), TFs have significant similarities based on the binding
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site motifs (Fig. 5b, values on the diagonal), but there are
no significant similarities between TF families based on the
binding site motifs. Therefore, each of the families, with
the exception of the PAS {1.2.5} family, forms a separate
branch (Fig. 5f). The PAS family {1.2.5} is divided into four
branches {1.2.5.1}, {1.2.5.2}, {1.2.5.3} and {1.2.5.4} by four
subfamilies (Fig. 5d).

The second superclass has two large classes Nuclear
receptors with C4 zinc fingers {2.1} and C2H2 zinc finger
factors {2.3}, the similarity of TFs based on binding site
motifs between these classes is very low (0.554, Fig. 6a). In
the Nuclear receptors with C4 zinc fingers {2.1} class, TFs

b Basic leucine zipper
factors (bZIP) {1.1}

a Basic domain {1}

C  Basic helix-loop-helix
factors (bHLH) {1.2}

DNA-binding domain structure of transcription
factors and similarity of their binding site motifs

have the similarity only slightly below the threshold (2.68),
and the TF similarity in the class C2H2 zinc finger factors
{2.3} is very low (0.443).

In the class Nuclear receptors with C4 zinc fingers {2.1}
(Fig. 6b), only one family, Steroid hormone receptors {2.1.1},
has a similarity of TFs 2.39 below the threshold. This family
is divided into two branches according to the two subfamilies:
GR-like (NR3C) {2.1.1.1} and ER-like (NR3A) {2.1.1.2}
(Fig. 6¢). The similarity of TFs between these subfamilies is
low (0.822), and within each subfamily, it is high (6.41 and
3.59). TFBS motifs from these related subfamilies have a
similar structure: TFs of both subfamilies can bind DNA as

d PAS{1.25}

€@ Basic leucine zipper factors (bZIP) {1.1} f

Families
TF similarity by TFBS motifs, —Logq(p-value)

Basic helix-loop-helix factors (bHLH) {1.2}

Families

TF similarity by TFBS motifs, -Log;(p-value)

Fig. 5. TF similarity based on binding site motifs for the Basic domain {1} superclass.

a-d - heatmaps for classes of the superclass, for families of the Basic leucine zipper factors (bZIP) {1.1}/Basic helix-loop-helix factors
(bHLH) {1.2} classes and for subfamilies of the PAS {1.2.5} family of the Basic helix-loop-helix factors (bHLH) {1.2} class. A brown circle on
the heatmap diagonal means that the subfamily has only one TF with one TFBS motif. The color reflects the value of the Q2 similarity
metric. Here and further to the right of each heatmap are the names of classes/families/subfamilies along with their numerals, and
above are only numerals; e and f- family trees for the classes Basic leucine zipper factors (bZIP) {1.1} and Basic helix-loop-helix factors
(bHLH) {1.2}. The Y axis reflects the value of the Q2 metric, the dash line shows its threshold value 3. All colors except gray reflect
individual branches, and gray highlights paths, the Q2 metric value of which is less than the threshold. A horizontal line break marks
the value of the Q2 metric for the family. The Jun-related {1.1.1} family (e) has a lower similarity of 3.99 (b) than the similarity of the
union of Jun-related {1.1.1} and Fos-related {1.1.2} families, so the direction of the path of the Jun-related {1.1.1} family from the

junction point of these two families changes to the opposite.
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d  Zinc-coordinating
DNA-binding domains {2}

C  Steroid hormone
receptors {2.1.1}

d GR-like (NR3C) {2.1.1.1}

f  ER-like (NR3A) {2.1.1.2}

Crpyktypa [JHK-cBA3bIBaOLWNX JOMEHOB TPAHCKPUMLMOHHbIX 2025
$aKTOPOB 1 CXOACTBO MOTVBOB VX CaliTOB CBA3bIBAHUA 29.7

b Nuclear receptors
with C4 zinc fingers {2.1}

€ (C2H2 zinc finger
factors {2.3}

g Nuclear receptors with C4 zinc fingers {2.1}

Families

TF similarity by TFBS motifs —Log;q(p-value)

Fig. 6. Similarity of TFs based on binding site motifs for the superclass Zinc-coordinating DNA-binding domains {2}.

a, b, cand f— heatmaps for classes of the superclass, for families of the class Nuclear receptors with C4 zinc fingers {2.1}, for subfamilies
of the family Steroid hormone receptors {2.1.1} of the class Nuclear receptors with C4 zinc fingers {2.1} and for families of the class
C2H2 zinc finger factors {2.3}; d, e - examples of TF binding site motifs from the GR-like (NR3C) {2.1.1.1}/ER-like (NR3A) {2.1.1.2}
subfamilies of the family Steroid hormone receptors {2.1.1}; g — family tree for the Nuclear receptors with C4 zinc fingers {2.1} class.
The Y axis implies the value of the Q2 metric, the dash line means the threshold value 3. Red and green colors reflect separate
branches, and paths are highlighted in gray, if the respective value of the Q2 metric is less than the branch threshold. Horizontal line

break marks the value of the Q2 metric.

monomers or as dimers formed by an inverted repeat (Nagy G.,
Nagy L., 2020), but regardless of this, the monomeric subunits
in TFBS motifs of the GR-like (NR3C) {2.1.1.1} (Fig. 6d) and
ER-like (NR3A) {2.1.1.2} subfamilies (Fig. 6€) are clearly
distinct. The Thyroid hormone receptor-related {2.1.2} family
forms a separate branch, since the similarity of its TFs with the
TFs of four of the five other families is below the threshold 3
(Fig. 6b, g). Four families from the RXR-related receptors
{2.1.3} to GCNF (NR6) {2.1.6} form one branch: Figure 6f
shows the tree dividing the Nuclear receptors with the C4 zinc
fingers {2.1} class into branches by families.

In the C2H2 zinc finger factors {2.3} class (Fig. 6f), only
one family, Three-zinc finger Kruppel-related {2.3.1}, forms
a separate branch. To determine the branches of the other
four families of the class, we need to go down to the levels

of subfamilies or TFs, see the list of all branches of the C2H2
zinc finger factors {2.3} class in Table S1'.

The third superclass includes three large classes Homeo
domain factors {3.1}, Fork head/winged helix factors {3.3},
and Tryptophan cluster factors {3.5}. The similarity between
TFs of different classes based on binding site motifs is very
low in all three possible pairs of classes (Fig. 7a, cells above
the diagonal). Similarity of TFs within each of the classes
Homeo domain factors {3.1}, Fork head/winged helix factors
{3.3} is medium, 1.42 and 1.12. The class Tryptophan cluster
factors {3.5} forms one branch (Fig. 4).

In the class Fork head/winged helix factors {3.3}, two
families E2F {3.3.2} and RFX {3.3.3} represent two separate

T Supplementary Table S1 and Figures S1 and S2 are available at:
https://vavilov.elpub.ru/jour/manager/files/Suppl_Levitsky_Engl_29_7.pdf

KOMMbIOTEPHAA TEHOMUKA / COMPUTATIONAL GENOMICS 933



V.G. Levitsky, T.Yu. Vatolina
V.V. Raditsa

a  Helix-turn-helix
domains {3}

C Homeo domain
factors {3.1}

e FOX{3.3.1}

DNA-binding domain structure of transcription
factors and similarity of their binding site motifs

b Fork head/winged
helix factors {3.3}

d POU1{3.1.10.1}

f Homeo domain factors {3.1}

Families
TF similarity by TFBS motifs —~Log (p-value)

Families

TF similarity by TFBS motifs ~Log;q(p-value)

Fig. 7. Similarity of TFs based on binding site motifs for the superclass Helix-turn-helix domains {3}.

a-c - heatmaps for classes of the superclass, for families of the classes Fork head/winged helix factors {3.3} and Homeo domain factors
{3.1}. The brown circle on the heatmap diagonal means that the family has only one TF with one binding site motif. The color reflects
the value of the Q2 similarity metric; d — logo of two binding site motifs of TF PIT1 from the subfamily POU1 {3.1.10.1}; eand f - trees
for subfamilies of the FOX {3.3.1} family and for families of the Homeo domain factors {3.1} class. The Y axis reflects the value of the
Q2 metric, the dash line shows its threshold value 3. Dotted lines mean a single TF with one binding site motif in the current family
or subfamily. All colors except gray reflect individual branches, and gray indicates paths, the Q2 metric value of which is less than the
branch threshold. Horizontal line break marks the value of the Q2 metric. The subfamily FOXA {3.3.1.1} (e) has a lower similarity of
6.22 (Fig. S1) than the similarity of the union of the subfamilies FOXA {3.3.1.1} and FOXB {3.3.1.2}, so the direction of the path of the

subfamily FOXA {3.3.1.1} from the junction point of these two subfamilies changes to the opposite.

branches, and the similarity of TFs of the FOX family {3.3.1}
almost reaches the threshold (similarity value 2.89, Fig. 7b).
A vivid illustration of the correctness of the division of the
Fork head/winged helix factors {3.3} class into three families
(Fig. 7b) is a noticeable excess of the similarity of TFs within
families (three values on the diagonal) in relation to the
similarity of TFs between families (three values above the
diagonal).

Among the 16 subfamilies of the FOX family {3.3.1}
(Fig. 7e), only three subfamilies FOXD {3.3.1.4}, FOXH

{3.3.1.5} and FOXL {3.3.1.12} achieved TF similarity below
the threshold 3: 2.19, 2.48 and 2.17, respectively. Four, five
and two subfamilies form separate branches (Fig. 7e). There
are two subfamilies, FOXH {3.3.1.8} and FOXR {3.3.1.18},
with low similarity of TFs based on binding site motifs with
other subfamilies and between themselves (Fig. S1).

Two families (NK-related {3.1.2} and HD-LIM {3.1.5}) of
the Homeo domain factors {3.1} class merge into one branch;
each of five HOX-related {3.1.1}, TALE-type HD {3.1.4},
HD-SINE {3.1.6}, HD-PROS {3.1.7} and HD-CUT {3.1.9}
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b Helix-turn-helix domains {3}

Fig. 8. Similarity of Drosophila TFs from the two large classes based on binding site motifs.

aand b - heatmaps for families of the classes C2H2 zinc finger factors {2.3} and Homeo domain factors {3.1}. The color reflects the value of the Q2 similarity metric.

families represents a separate branch (Fig. 7c, ). To find
branches for the remaining families Paired-related HD {3.1.3},
HD-ZF {3.1.8} and POU {3.1.10}, it is necessary to proceed
to the subfamily level (Fig. S2, Table S1). The Paired-related
HD {3.1.3} family is divided into two separate branches,
combining 12 and 6 subfamilies (Fig. S2a, Table S1). The HD-
ZF {3.1.8} family is divided into two branches according to
two subfamilies, ZEB {3.1.8.3} and ZHX {3.1.8.5} (Fig. S2b).
Three subfamilies POU2 {3.1.10.2}, POU3 {3.1.10.3} and
POUS {3.1.10.5} merge into one branch. The subfamily
POUI1 {3.1.10.1} is represented by one TF PIT1 with two sig-
nificantly dissimilar TFBS motifs PIT1.HI2CORE.0.SM.B
and PIT1.HI2CORE.1.S.B (Fig. 7d). The remaining three
subfamilies POU4 {3.1.10.4}, POU6 {3.1.10.6} and HNF1-
like {3.1.10.7} of the family POU {3.1.10} form separate
branches (Fig. S2¢).

The full list of branches for the seven largest TF classes
Basic leucine zipper factors (bZIP) {1.1}, Basic helix-loop-
helix factors (bHLH) {1.2}, Nuclear receptors with C4 zinc
fingers {2.1}, Homeo domain factors {3.1}, Fork head /
winged helix factors {3.3} and Tryptophan cluster factors
{3.5} is given in Table S1.

In general, based on the results presented in Figures 5—7
and in Figures S1, S2 and Table S1, we can conclude that
often TFs of the same family already have dissimilar binding
site motifs. However, this general trend is broken for some
classes and families. It is most clearly violated for the largest
class of human TFs C2H2 zinc finger factors {2.3} (Fig. 6f),
for which it is necessary to descend to the level of subfamilies
or even to the level of TFs to determine branches.

Similarity analysis of Drosophila TFs

To determine how the discovered patterns of similarity in
different classes of TFs depend on the choice of taxon, we
conducted an analysis analogous to that carried out above

for the insect taxon sufficiently distant from the mammalian
taxon. According to the Jaspar DB, there are only two classes
of insect TFs with more than 50 binding site motifs (see the
Table). All these TFs belong to the species D. melanogaster.
The results obtained for insect TFs from these two classes,
C2H2 zinc finger factors {2.3} and Homeo domain factors
{3.1}, are in good agreement with the results obtained above
for human TFs from seven classes (Fig. 4-7).

In the Drosophila C2H2 zinc finger factors {2.3} class
(Fig. 8a), as well as in the same class in human (Fig. 6f),
only one family, Three-zinc finger Kruppel-related {2.3.1},
has significantly similar TFs based on binding site motifs.
Only TFs of one other family, BED zinc finger {2.3.5}, have
very different similarity of binding site motifs (human 0.001,
Drosophila 6.32). However, this family is very small: in
Drosophila, it contains two almost indistinguishable binding
site motifs of one TF Dref; and in human, two TFs ZBEDI1
and ZBEDS have clearly dissimilar to each other motifs
of binding sites. The other three common families in both
taxa, Other factors with up to three adjacent zinc fingers
{2.3.2}, More than 3 adjacent zinc fingers {2.3.3}, Multiple
dispersed zinc fingers {2.3.4}, as well as all remaining
Drosophila TFs with unspecified families, assigned to the
family Unclassified {2.3.0}, show extremely low similarity
of TFs based on binding site motifs. In general, for both
human and Drosophila TFs, the class C2H2 zinc finger factors
{2.3} has TFs with very low similarity of binding site motifs
(Fig. 6f, 8a).

Drosophila TFs from the Homeo domain factors {3.1}
class (Fig. 8b) show slightly less similarity in terms of binding
site motifs than TFs from the same human class (Fig. 7c).
However, in each of these two taxa, among the eight common
families, families with greater and lesser similarity of TFs
based on binding site motifs are distinguished. Namely, in
both taxa, TFs from four families — HOX-related {3.1.1},
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NK-related {3.1.2}, Paired-related HD {3.1.3} and HD-LIM
{3.1.5} —have the greatest similarity, both within and between
families (Fig. 7¢, f ); however, the similarity itself exceeds the
value 2 for Drosophila TFs, but does not reach the threshold 3
(Fig. 8b). The remaining families have TFs that are not similar
both to each other and to TFs of the above families of the
class. In general, much smaller similarity in the binding site
motifs of Drosophila TFs of the Homeo domain factors class
{3.1} (Fig. 8b) compared with the human TFs of the same
class (Fig. 8c) can be explained by the noticeably smaller
number of available massive sequencing data for Drosophila
TFBSs (see the Table). Another explanation is the difference
in the methods for obtaining TFBS motifs in the Hocomoco
and Jaspar DBs.

Discussion

We propose a new systematic approach to refine the hierarchi-
cal classification of TFs according to the structure of DBDs by
a set of branches combining TFs with similar motifs of bind-
ing sites. The similarity of the binding site motifs of known
TFs can now be evaluated with various experimental massive
sequencing technologies, including in vitro HT-SELEX and
in vivo ChIP-seq data, for example, experimental results for
different tissue conditions and developmental stages.

Estimates of the total numbers of human/Drosophila TFs
are 1,659/651 (AnimalTFDB, Shen et al., 2023). The Hoco-
moco DB (version 12) for human and the Jaspar DB for
Drosophila annotated 1,443 TFBS motifs for 949 TFs and
334 TFBS motifs for 273 TFs. Hence, although the ratios of the
number of TFs with known binding site motifs to the estimates
of the total numbers of TFs for human and Drosophila are close
(57 and 51 %), on average, one TF accounts for 1.52/1.22 an-
notated binding site motifs for human (Hocomoco)/Drosophila
(Jaspar). In accordance with this, the GTRD (Kolmykov et
al., 2021) provides data on 21988/3027 ChIP-seq experiments
for 1,531/595 human/Drosophila TFs. Therefore, the diversity
of structural types of TFBS motifs has already been studied
markedly better in human than in Drosophila.

The possible correspondence of the enriched motifs from
the results of a de novo motif search to binding sites of target or
partner TFs complicates the task of analyzing TF binding data
in vivo. In vitro massive sequencing data, such as HT-SELEX
or DAP-seq, reflect only the direct binding of target TFs, and
completely exclude the cooperative binding of target TFs to
any partner TFs and indirect binding of target TFs. Therefore,
the nucleotide binding specificity of target TFs in vitro can
determine only a fraction of their binding loci in vivo. In vivo
TFBS sequencing data reflect the main cooperative mechanism
of target TF binding to genomic DNA, including its interac-
tions with various partner TFs (Morgunova, Taipale, 2017).
This complicates the connection of enriched de novo motifs
to specific partner TFs.

The variability of TFBS motifs derived from the system-
atization of their modern massive sequencing data reflects
the diversity of the structure of TF DBDs. DBDs of TFs
are important for the function of the direct binding of target
and partner TFs. For example, only TFs from certain classes
have the ability to function as dimers of closely related TFs

936
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(Amoutzias et al., 2008). Among the ones studied here (see
the Table), those are TF classes Basic leucine zipper factors
(bZIP) {1.1}, Basic helix-loop-helix factors (bHLH) {1.2}
and Nuclear receptors with C4 zinc fingers {2.1}. The main
function of a TF, its ability to interact with genomic DNA,
depends on the place of this TF in the general hierarchy of the
structure of the DBDs of all TFs, that is, on a superclass, class,
family and subfamily of this TF. Previously, these levels of
hierarchical classification of TFs were defined by the structure
of their DBDs and the alignments of amino acid sequences of
DBDs of TFs (TFClass DB, Wingender, 1997, 2013; Wingen-
deretal., 2013,2015, 2018); notably, the similarity of TFBS
motifs was not taken into account to define the hierarchy.
A systematic analysis of the similarity of TFBS motifs can
make the classification of TFs more efficient for the practical
application at the stage of interpreting enriched motifs, the
results of a de novo motif search based on massive mapping
of TFBS in vivo, such as ChIP-seq.

Deducing the general topology of the branches of signifi-
cantly similar TFBS motifs consists in selecting for each TF
such a level of hierarchy among options of one class, one
or more sister families (or subfamilies), or individual TF,
so that for the TFs of the entire branch, most TF pairs have
significantly similar binding site motifs. To determine the list
of branches, we need the following: the hierarchical classifica-
tion of TFs according to the structure of their DBDs from the
TFClass/Plant-TFclass DBs; TFBS motif sets from DBs; the
formula for calculating similarity in a pair of TF sets based
on their binding site motifs (4). Identifying all branches along
the TFClass/Plant-TFclass hierarchy will help avoid exces-
sive detail in the output data of a de novo motif search. These
misleading data and excessive information arise since for any
of the individual classification units, such as a specific class,
or family/subfamily, there is the variability of the TFBS motifs
similarity not restricted. Initially, there were no such restric-
tions for DBD TFs, too (Wingender, 1997, 2013; Wingender
etal., 2013, 2015, 2018).

We include TF classes with more than 50 TFBS motifs
in the analysis (see the Table). Of the seven largest human
classes (Fig. 4), only one, the Tryptophan cluster factors {3.5}
class, shows significant similarity of TFBS motifs. For the
classes Basic leucine zipper factors (bZIP) {1.1} and Nuclear
receptors with C4 zinc fingers {2.1}, similarity is below the
significance threshold (value 3), but is still noticeable (values
between 2 and 3). Even the classes Basic helix-loop-helix fac-
tors classes (bHLH) {1.2}, Homeo domain factors {3.1} and
Fork head/winged helix factors {3.3} have lower similarity
(values ranging from 1 to 2). However, for the C2H2 zinc
finger factors {2.3} class, the similarity value is less than 1.
This low value reflects the presence of a majority of TF pairs
with completely different binding site motifs in this class; ap-
proximately the same similarity values are observed between
binding site motifs in any pair of TFs from different classes of
the same superclass (see values in cells above the diagonal in
Fig. 5a, 6a, 7a). Similar discrepancies are observed at a lower
level of TF families.

For each of the classes Basic leucine zipper factors (bZIP)
{1.1} and Nuclear receptors with C4 zinc fingers {2.1}, in
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most cases, several sister families are joined into one branch
(Fig. 5e, 69). For the classes Basic helix-loop-helix factors
classes (bHLH) {1.2}, Homeo domain factors {3.1} and Fork
head/winged helix factors {3.3} (Fig. 5f, 7b, f), partitioning
into branches is closer to the level of families. The level of
families is clearly not enough to distinguish branches in
the C2H2 zinc finger factors {2.3} class (Fig. 6f). So, our
analysis confirms clear differences in the variability of bind-
ing site motifs for the largest classes of human TFs (Fig. 4-7)
(Lambert et al., 2018; Ambrosini et al., 2020). A concordant
trend is also observed for the motifs of binding sites from the
two largest classes of insect TFs (Fig. 8). This conclusion is
in good agreement with the results of a massive comparison
of the nucleotide specificity of orthologous human and Dro-
sophila TFs, where it was found that, in general, human and
Drosophila TFBS motifs showed a high level of conservation
(Nitta et al., 2015). Later, a detailed analysis refined this find-
ing. The analysis of similarity of binding site motifs of TFs
from various classes in different eukaryotic taxa in lines of
multicellular animals and higher plants showed that conserva-
tion in both animal and plant lineages is highly dependent on
the TF class (Lambert et al., 2019). For example, almost half
of the dissimilar binding site motifs of orthologous human
and Drosophila TFs belonged to the C2H2 zinc finger factors
{2.3} class, which is consistent with the results of our analysis
(Fig. 6f, 8a). The analysis (Lambert et al., 2019) also showed
that for some orthologous TFs of Drosophila and human, the
similarity extended even to the level of subtle dinucleotide
frequency preferences in the TFBS motifs.

We have also concluded that among the large classes of
TFs, the class C2H2 zinc finger factors {2.3} has TFs with the
most variable binding site motifs in human and Drosophila
(Fig. 6f, 8a). Compared to the class C2H2 zinc finger factors
{2.3}, both taxa have less variable TFBS motifs in the class
Homeo domain factors {3.1}. However, for TFs of the class
Homeo domain factors {3.1}, a greater variability of bind-
ing site motifs is found in Drosophila compared to human
(Fig. 7c, 8b). This result may reflect differences in the TFBS
motifs processing pipelines in the Hocomoco and Jaspar DBs.

In the Hocomoco DB, binding site motifs for each indi-
vidual TF reflect data from several massive sequencing experi-
ments for this TF (Kolmykov et al., 2021; Vorontsov et al.,
2024), such as ChIP-seq and HT-SELEX; for example, often
even available data of human and mouse species are combined.
The goal of the analysis in the Hocomoco DB is to integrate
all available data on the binding sites of individual TFs. This
allows identifying as much as possible different structural
types of motifs of the binding sites of each TF. The Jaspar
DB has a simpler way of presenting each of the motifs with a
separate experiment, which can be considered justified since
there is still only a small amount of data on individual TFs.
For insect TFBS motifs, an analysis similar to that carried
out to obtain Hocomoco DB TFBS motifs has not yet been
carried out, which is partly due to the significantly smaller
pool of massive sequencing data available (Kolmykov et al.,
2021; Rauluseviciute et al., 2024). It can be assumed that the
approach of the Hocomoco DB compared to that of the Jaspar
DB most likely reflects a greater number of minor motifs of
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binding sites for each of the TFs, which may contribute to a
greater similarity of motifs deduced in our study, according to
the formulas (2) and (4). Nevertheless, regular updates and
an increase in the amount of data on known TFBS motifs in
both Hocomoco and Jaspar DBs in recent years (Vorontsov et
al., 2024; Rauluseviciute et al., 2024) indicate that the clas-
sification of TFBS motifs may be refined in the near future.

In general, based on our results, we can conclude that for
both taxa, mammals and insects, marked differences in the
similarity of binding site motifs of TFs from large classes and
their families make it difficult to use the standard TFClass DB
terminology, which includes TF classes, families and subfami-
lies, to describe the variability of TFBS motifs. Therefore, a
more efficient detection of functionally involved TFs by mas-
sive sequencing of TFBS in vivo requires a systematic analysis
of'the similarity of binding site motifs of known TFs in order
to define the variability of TFBS motifs within different ele-
mentary classification units from classes to individual TFs.

In the future, a more extensive analysis of the similarity of
binding site motifs within all classes, families, subfamilies of
TFsand individual TFs in model species of mammals, insects
and higher plants can be a solid basis for more efficient defini-
tion of TFBS motifs from ChIP-seq massive sequencing data.
Based on the performed massive analysis, we suggest that the
results of a de novo motif search, for the detected enriched
motifs, should indicate not only the names of TFs with the
names of the class/family/subfamily attached to them, but also
the branches of the hierarchical classification of TFs defined
in our study. These branches are composite classification
units that integrate several consecutive hierarchy levels. Each
branch represents, within the framework of united multi-level
classification of TFs by similarity and DBD alignment, a set
of TFs with significantly similar binding site motifs.

Conclusion

In this work, we present the approach for a systematic analy-
sis of the similarity of the motifs of binding sites of known
TFs based on a multi-level hierarchy of TFs according to the
structure of DBDs from the TFClass DB, which includes
the levels of superclasses, classes, families, subfamilies and
individual TFs. In the general hierarchy, we determined for
the large classes of mammalian (human) and insect (fruit fly)
TFs the common trees of branches with TFs significantly
similar in motifs of binding sites. Our analysis included seven
mammalian TF classes, Basic leucine zipper factors (bZIP)
{1.1}, Basic helix-loop-helix factors (b HLH) {1.2}, Nuclear
receptors with C4 zinc fingers {2.1}, C2H2 zinc finger fac-
tors {2.3}, Homeo domain factors {3.1}, Fork head/winged
helix factors {3.3} and Tryptophan cluster factors {3.5}, and
two classes of insect TFs, C2H2 zinc finger factors {2.3} and
Homeo domain factors {3.1}. We have shown that both for the
taxon of mammals and for the taxon of insects, the similarity
of the binding site motifs is noticeably different among TFs
from distinct classes. A systematic analysis of the similarity of
the binding site motifs of structurally related TFs, determined
according to the hierarchical classification, allowed to deter-
mine the levels of the hierarchy (classes, families, subfamilies,
TFs), starting from which and lower in the hierarchy the bind-
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ing site motifs of known TFs become significantly similar. In
addition to improving the identification of involved TFs from
the results of a de novo motif search, leading to more efficient
identification of gene regulation mechanisms, our results may
refine the hierarchical classification of TFs by their DBDs. We
do not redefine the classification of TFs by elementary units
from the class, family and lower in the hierarchy; we provide
additional information about the similarity of the TFBS motifs,
which reflects the main function of TFs, the function of specific
binding to the DNA sequence, which, of course, should more
accurately distinguish different TFs.
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Abstract. The development of high-throughput sequencing has expanded the possibilities for studying the regula-
tion of gene expression, including the reconstruction of gene regulatory networks and transcription factor regulatory
networks (TFRNs). Identifying the molecular aspects for regulation of biological processes via these networks remains a
challenge. Solving this problem for plants will significantly advance the understanding of the mechanisms shaping ag-
ronomically important traits. Previously, we developed the PlantReg program to reconstruct the transcriptional regula-
tion of biological processes in the model species Arabidopsis thaliana L. The links established by this program between
TFRNs and the genes regulating biological processes specify the type of regulation (activation/suppression). However,
the program does not determine whether activation/suppression of the target gene is due to the cooperative or com-
petitive interaction of transcription factors (TFs). We assumed that using information on the mutual arrangement of TF
binding sites (BSs) in the target gene promoter as well as data on the activity type of TF effector domains would help to
identify the cooperative/competitive action of TFs. We improved the program and created PlantReg 1.1, which enables
precise localization of TF BSs in extended TF binding regions identified from genome-wide DAP-seq profiles (https://
plamorph.sysbio.ru/fannotf/). To demonstrate the capabilities of the program, we used it to investigate the regulation
of target genes in previously reconstructed TFRNs for auxin response and early reaction to salt stress in A. thaliana. The
study focused on genes encoding proteins involved in chlorophyll and lignin biosynthesis, ribosome biogenesis, and
abscisic acid (ABA) signaling. We revealed that the frequency of competitive regulation under the influence of auxin
or salt stress could be quite high (approximately 30 %). We demonstrated that competition between bZIP family TFs
for common BS is a significant mechanism of transcriptional repression in response to auxin, and that auxin and salt
stress can engage common competitive regulatory mechanisms to modulate the expression of some genes in the ABA
signaling pathway.
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PlantReg 1.1: MoneKynapHble MeXaHu3Mbl aKTVBHOCTY
TPaHCKPUNLUOHHbIX GaKTOPOB B PEryNATOPHbIX CETAX

AHHOTauuA. Pa3BuTrie BbICOKONPOW3BOANTENBHOIO CEKBEHVPOBaHNA PacLUMPUSIO BO3MOXHOCTY U3YYeHUA peryns-
L1V SKCNPECCUn reHoB, B TOM UKCIe AN PEKOHCTPYKLMMN FreHHbIX PEryNsTOPHBIX CETEN U PEryNATOPHbIX CETEN TPaHC-
KpUNUUOHHbIX dakTopos (PCTD). AKTyanbHOI 3afjayeli OCTAeTCA BbiSB/IEHWE MOJSIEKYNAPHBIX aCMEKTOB Perynauum
[aHHbIMU CeTAMU BUONOrMYecKnx npoueccos. PelleHne 3Tol 3agaun AnsA PacTeHU MNO3BOMUT CYLLECTBEHHO MPO-
LBVHYTbCA B MOHMMAHUN MeXaHN3MOB GOPMUPOBaHNA XO3ANCTBEHHO BaXKHbIX MPM3HaKoB. PaHee Mbl pa3paboTanu
nporpammy PlantReg ana peKoHCTPYyKLMM TPaHCKPUMLMOHHON perynaumm 6Monornyeckmx npoLeccoB y MOAESIbHOrO
Buaa Arabidopsis thaliana L. Bocnpoussogumble 3Toi nporpammoit ceasu mexkgy PCTO 1 reHamn, obecneumsaowymmm
npoTeKaHne GoNOrMYeCcKNX NPOLECCOB, OXapaKTePU30BaHbl MO TUMY perynaunmn (akTmeauus/nogasnerve). OgHako
nporpamma He No3BosAa ONPeAenaTb, B KaKMX CJlyyanx akT1BaLmMa/NofaBneHne SKCNpeccum reHa-mMmweHn obycnos-
NeHbl KOOMEPATVBHbBIM USIN KOHKYPEHTHBIM B3aUMOAENCTBNEM TPAHCKPUMLMOHHbIX dakTopos (TD). Mbl npeanoxunm
MCMonb30BaTh MHPOPMALIMIO O B3aUMHOM PacnofioxXeHnmn canTo cBasbiBaHuA (CC) TO B npoMoTope reHa-mMuLLeHN, a
Tak)Ke flaHHble O TUMe akTUBHOCTUN TPaHCaKTMBALMOHHbIX AoMeHOB TO Ana BbIABNEHNA KOOMNePaTVBHOIO/KOHKYPEHT-
Horo aencTeuA TO. Mbl ycoBepLUeHCTBOBaNM Nporpammy, co3aas Bepcuto PlantReg 1.1, rae obecneynny BO3MOXKHOCTb
TouHon nokanusaumm CC TO B NPOTSKEHHBIX palioHax cBA3biBaHWA TQ, ycTaHaBNBaeMbIX Ha OCHOBAHUW MOSHOTe-
HOMHbIX npoduneinn DAP-seq (https://plamorph.sysbio.ru/fannotf/). Ana pemoHcTpaunm BO3MOXHOCTEM Nporpammbl
6blna nccnefoBaHa perynaumsa reHoB-MULLEHEN paHee PeKOHCTPYMPOBaHHbIX Hamy PCTD oTBeTa Ha ayKCUH 11 CONEBOWA
cTpeccy A. thaliana. B dokyce nsyueHus 6b1n1 reHbl, Kogupytowme 6enku, yyactsytoLme B npoLeccax buocmHTesa xno-
podunna v nurHrHa, buoreHesa pnbocom 1 B nepefaye curHana abcLymsoBoi KMcoTbl. B aaHHo paboTe ycTaHOBNEHO,
YTO YaCTOTa CJTyYaeB KOHKYPEHTHOW PEerynsaummn Nof BAUAHNEM ayKCVHa 1 CONIEBOTO CTPecca MOXeT 6biTb OCTaTOYHO
BbICOKa (0K0mo 30 %). MokasaHo, uto koHKypeHLua TO cemeinctea bZIP 3a 06wme CC ABNSETCA 3HAUMMbIM MEXaHU3MOM
NOAABNEHNA TPAHCKPUILMM B OTBET Ha ayKCUH, 1 YTO ayKCKH 1 CONEBOI CTPECC MOTYT 3aeCcTBOBaTb O6LL/e MeXaHN3-
Mbl KOHKYPEHTHOW perynauum 4na Mogynaumm SKCNpecci HeKOTOPbIX FEHOB CUMHaNbHOro My Ty abCcL30BOI KMCNOTHI.
KnioueBble croBa: reHHasa OHTONOMMA; BMONOrMYecKkre NPOLIECChl; TeHHble PErynAaTopHble CeTW; CaT CBA3bIBaHUS;
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Introduction

Development of genome-wide analysis techniques (such as
RNA-seq (Deshpande et al., 2023), ChlP-seq (Park, 2009),
and DAP-seq (O’Malley et al., 2016)) has opened up wide op-
portunities for systems biological research on mechanisms that
ensure transcriptional regulation of biological processes and
the formation of phenotypes (Marshall-Colon, Kliebenstein,
2019; Zemlyanskaya et al., 2021). Based on the analysis of
genomic and transcriptomic data, the community is actively
developing approaches to infer gene regulatory networks and
TFRNs (Ko, Brandizzi, 2020; Rybakov et al., 2024). ATFRN
is a set of regulatory interactions (links) between TF-coding
genes, represented as a graph. The graph nodes correspond
to the genes, and the directed edges reflect the regulatory
interactions of a TF, encoded by one gene, with another gene.
TFRN inference and identification of relationships between
these networks and biological processes (or phenotypes)
are essential to understanding the core regulatory circuits
that drive biological processes, and to developing predictive
models for these regulations (Huang et al., 2025; Leong et al.,
2025; Sun'Y. et al., 2025).

Several software tools for TFRN inference in various spe-
cies are currently available to researchers. For example, the
NetAct R package (Su et al., 2022) allows reconstructing
mammalian TFRNSs based on transcriptomic data and a da-
tabase of TF target genes curated by the authors. Previously,
we developed the CisCross-FindTFnet program for TFRN
inference in the model plant species Arabidopsis thaliana
(Omelyanchuk et al., 2024) and the PlantReg program for
establishing regulatory links between TFRNs and genes that
mediate the biological processes under the TFRN control
(Lavrekha et al., 2024). Both programs integrate data from
transcriptomic experiments and a representative collection of
genome-wide DAP-seq TF binding profiles, with PlantReg
employing the results of CisCross-FindTFnet as input data.

An important step in TFRN inference is to determine
the mode of regulation exerted by a TF within the network
(activators or repressors), since this characteristic shapes the
network topology and dynamics (Dhatterwal et al., 2024).
Large-scale determination of the activity of transcriptional
effector domains in more than 400 A. thaliana TFs (Hummel
etal., 2023) contributed to solving this problem. However, this
is not sufficient for the correct classification of links within
the network, since many TFs can function both as activators
and suppressors, depending on the cell type, conditions,
TF isoforms, specific promoters, and other factors (Boyle,
Després, 2010; Martinez et al., 2018; Nagahage et al., 2018;
Wang etal., 2020). This is why, when reconstructing the TFRN
from transcriptomic data, the modes of regulation exerted
by TFs are usually inferred from the profiles of their targets
among differentially expressed genes (DEGs) (Su et al., 2022;
Omelyanchuk et al., 2024).

Previously, we reconstructed two TFRNs in A. thaliana:
the first, TFRN-A, controls the transcriptional response to
auxin, the second, TFRN-S, controls the early response to
salt stress (Lavrekha et al., 2024; Omelyanchuk et al., 2024).
Using the PlantReg algorithm, we demonstrated how TFRN-A
is involved in regulation of four different biological processes
by auxin (activation of ribosome biogenesis and suppression
of response to ABA, as well as chlorophyll and lignin bio-
synthesis), and how TFRN-S enhances ABA response during
early salt stress. In these networks, TFs were divided into four
classes: upregulated activator (UA), upregulated suppressor
(US), downregulated activator (DA), and downregulated sup-
pressor (DS). DAs and DSs form an R subnetwork (normally
active before stimulus application, repressed due to stimulus
action), UAs and USs set up an A subnetwork (activated by
the stimulus).

An important role of transcriptional repression has been
identified in transcriptional responses to both auxin and salt
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Fig. 1. Principles of regulation of biological processes by TFs from TFRN-A (a) and TFRN-S (b).

Yellow and green rectangles represent the repressed and activated subnetworks of TFRNs. Arrow thickness reflects the number of
corresponding links in TFRNs. UA — upregulated activator; US — upregulated suppressor; DA — downregulated activator; DS — down-

regulated suppressor.

stress. The auxin response is characterized by extensive re-
programming of the large R subnetwork, which was active
before hormone treatment, through its suppression by US-type
TFs from the A subnetwork (Fig. 1a) (Omelyanchuk et al.,
2024). In contrast, the salt stress response activates the wide
A subnetwork, partly through the inhibition of its DS-type
suppressors from the R subnetwork (Fig. 1b) (Lavrekha et
al., 2024).

The majority of the suppressors from both TFRNs are also
involved in the regulation of the above-mentioned biological
processes, affected by auxin and salt stress (Lavrekha et al.,
2024; Omelyanchuk et al., 2024). However, according to the
literature, most of the predicted suppressors in both TFRNs
possess an activator-type transcriptional effector domain
(Hummel et al., 2023; Omelyanchuk et al., 2024). Suppression
of targets by these TFs may occur due to their cooperative or
competitive interactions with other TFs. The PlantReg pro-
gram enables establishing regulatory links between TFs and
genes that mediate biological processes, but it does not detect
cooperation or competition among TFs. At the same time, it
is crucial to understand the mechanisms of TF interactions in
transcriptional regulation to effectively use TFRNs and their
relations to biological processes in plant bioengineering.

Information on the mutual arrangement of the TF binding
sites (BSs) in the target promoter, coupled with data on the
activity of the TF effector domains (Hummel et al., 2023),

can be used to identify and characterize the cooperative or
competitive action of TFs. For example, if the BSs of two
predicted suppressors, operating within the same subnetwork,
are close to each other, and only one has a transcriptional ef-
fector domain exhibiting suppressor activity, while the other
TF is a transcriptional activator, it is plausible to assume that
a cooperative interaction between TFs converts an activator
TF into a repressor (Fig. 2a). Such examples are widespread
and described in detail in the literature (Hanna-Rose, Hansen,
1996; Ahn et al., 2006; Veerabagu et al., 2014; Martinez et
al., 2018; Wang et al., 2020).

Similarly, if the BSs of a predicted activator from one sub-
network and a predicted repressor from another subnetwork
overlap in the promoter of a target gene, and the predicted
activity of one of the TFs does not match the established activi-
ty of its transcriptional effector domain, we can assume that
TFs may compete for the common BS, and the replacement
of a strong activator with a weaker one manifests itself as sup-
pression of the target gene, while the replacement of a strong
repressor with a weaker one manifests itself as activation of
the target gene (Fig. 2b). A decrease in promoter activity with
an increase in the concentration of a weak activator compared
to a strong one, as well as the reverse transition, have been
shown in a number of experiments (Tamura et al., 2004; Zhang
et al., 2006; Chupreta et al., 2007; Selvaraj et al., 2015; Ren
et al., 2015; Brackmann et al., 2018).

a b
us A A
A us A
us us
dDEG uDEG

S us S
A A UA
us UA

dDEG uDEG

Fig. 2. Cooperative (a) and competitive (b) regulation of a target gene by a pair of TFs from a TFRN.

Yellow and green rectangles represent the repressed and activated TFRN subnetworks. Predicted TF modes of regulation are shown at the bottom, while possible
alternative modes are shown at the top (in the cloud). The connected dots between TFs in (a) denote protein interactions; in (b) arrows represent the substitution
of one TF with another after stimulus application and gray funnels designate the ratio of TF activities (larger bases correspond to higher activity); uDEG -
upregulated DEGs; dDEG - downregulated DEGs; UA - upregulated activator; US - upregulated suppressor; DA — downregulated activator; DS - downregulated

suppressor.
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Fig. 3. PlantReg 1.1 workflow (a) and output structure (block 1) (b).

Updates in PlantReg 1.1 compared to the original version are highlighted in pink.

To identify TF targets, the PlantReg program recruits DAP-
seq peaks. However, this does not enable precise localization
of TF BSs, since the peak size (over 150 bp) significantly
exceeds the length of the sequences recognized by TFs (below
20 bp). In this study, we improved the program by creating
PlantReg version 1.1, which enables precise localization of
TF BSs in extended TF binding regions from genome-wide
DAP-seq profiles (https://plamorph.sysbio.ru/fannotf/). We
used PlantReg 1.1 to identify genes involved in chlorophyll
and lignin biosynthesis, ribosome biogenesis, and ABA signal-
ing, the expression of which can be suppressed under TFRN-A
or TFRN-S control due to competition between TF activators
for common BSs.

The analysis revealed that the frequency of competitive
regulation under auxin and salt stress exposure can be quite
high. Furthermore, we demonstrated that competition between
bZIP family TFs for common BSs is an essential mechanism
for transcription repression in A. thaliana auxin response,
and that auxin and salt stress can utilize common competi-
tive regulation to modulate the expression of some genes in
ABA signaling.

Materials and methods

Integration of data on TF BSs in 5-regulatory regions
into PlantReg 1.1. The original PlantReg version (Lavrekha
et al., 2024) was designed to reconstruct the mechanisms
underlying transcriptional regulation of biological processes
in A. thaliana based on the analysis of a DEG list and a list
of TFs—known or putative transcriptional regulators of these
DEGs. PlantReg performs gene ontology (GO) enrichment
analysis of the input DEG list, and identifies potential TF
targets among DEGs associated with enriched biological
processes, recruiting genome-wide TF binding profiles avail-
able in the web version of the program (Fig. 3a). The output
of PlantReg is presented in five blocks, which reflect the

relationships between biological processes, DEGs, and TFs
that regulate the expression of these DEGs.

The basic workflow of the updated PlantReg 1.1 version
is shown in Figure 3. In addition to the original functionality,
it includes data on recognized TF BSs in the 5'-regulatory
regions (Fig. 3a), which are added to output blocks 1 and 4
to enable investigation on the mutual arrangement of BSs in
promoters. The output block 1 in the original PlantReg version
presents a sublist of DEGs associated with enriched biological
processes (Fig. 3b). Each gene in the sublist is characterized
by a set of associated GO terms (biological processes) with
evidence codes, the number of GO terms, a list of potential
transcriptional regulators with an indication of their TF fami-
lies, and the number of TFs.

In output block 4, the same information is presented in
an alternative format with the GO terms and transcriptional
regulators for each gene listed line by line. In PlantReg 1.1,
the nucleotide sequence of the TF BS recognized in the cor-
responding TF binding region, the genomic coordinates of
the TF BS (block 4) or the coordinates of the TF BS relative
to the transcription start site (block 1), and the DNA strand
harboring the TF BS were added to the description of each
gene (Fig. 3b). Information on the TF BS localization is avail-
able only when the CisCross-MACS2 genome-wide profile
collection is selected as a parameter.

Recognition of TF BSs in the 5'-regulatory regions of
A. thaliana genes. Position frequency matrices describing
the BSs of A. thaliana TFs were generated by de novo motif
search in DAP-seq peaks from the CisCross-MACS2 collec-
tion available in the web version of the PlantReg program
(Lavrekha et al., 2024). The CisCross-MACS2 peak set col-
lection was compiled previously (Lavrekha et al., 2022) by
processing raw data from genome-wide DAP-seq profiling of
BSs for 403 A. thaliana TFs (O’Malley et al., 2016). In each
peak set, the top 2,000 peaks were selected by height and used
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Fig. 4. The number of genes encoding TFs in TFRN-A and TFRN-S, as well
as TF target genes, which mediate biological processes affected by auxin
(Processes-A) or salt stress (Processes-S).

The “Processes-A" set includes genes for chlorophyll biosynthesis, lignin bio-
synthesis, ribosome biogenesis and ABA transport, conjugation, and the sig-
naling pathways. The “Processes-S” set includes only genes for ABA transport,
conjugation, and the signaling pathway.

for de novo motif search employing the STREME program
(Bailey et al., 2021).

Abackground set was generated by the AntiNoise program
(Raditsa et al., 2024). The motif with the highest enrichment
significance (with a p-value below 0.05) was assumed to
describe the BS for TF of interest. To test this assumption,
the identified motifs were juxtaposed to known TF BSs by
comparing with motifs from the JASPAR2024 CORE (Rau-
luseviciute et al., 2024), CisBP (Weirauch et al., 2014), and
ArabidopsisDAPv1 (O’Malley et al., 2016) databases using
the Tomtom program (Gupta et al., 2007).

The search for potential TF BSs in the 5'-regulatory regions
of A. thaliana genes ([-2500; +1) relative to the transcription
start site) was performed using the position weight matrix
method with the scan_sequence function of the universalmotif
R-package (Tremblay, 2024). To extract the nucleotide se-
quences of the 5'-regulatory regions, the A. thaliana TAIR10
genome version (Lamesch et al., 2012) and the Araport1l
genomic annotation (Cheng et al., 2017) were used.

Search for genes, the transcription of which is regulated
by competitive suppression or activation. Regulatory links
between components of the TFRN-A/S (Lavrekha et al., 2024;
Omelyanchuk et al., 2024) and genes involved in biological
processes affected by auxin and salt stress, as well as com-
petitive gene suppression or activation under auxin and salt
stress exposure were identified using PlantReg 1.1. As input,
we used the lists of TFs that constituted TFRN-A (39 ele-
ments) and TFRN-S (19 elements) (the lists are designated
as “TFRN-A” and “TFRN-S” in Fig. 4) (Table S1)1, as well
as the lists of DEGs upregulated (uDEGs) and downregulated
(dDEGs) by auxin (5,201 uDEGs and 6,704 dDEGs) or salt
stress (1,476 uDEGs and 944 dDEGs), which were used pre-
viously to reconstruct the TFRNs (De Rybel et al., 2012; Wu
et al., 2021; Omelyanchuk et al., 2024).

1 Supplementary Tables S1-S7 are available at:
https://vavilov.elpub.ru/jour/manager/files/Suppl_Lavrekha_Engl_29_7.xlsx
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The lists of uDEGs and dDEGs from the two transcriptomic
experiments were separately fed into the PlantReg 1.1 program
along with the corresponding list of TFs from the TFRN-A
or TFRN-S. The threshold for GO terms enrichment was set
at 0.001. To localize the TF binding regions, the CisCross-
MACS2 collection of genome-wide TF binding profiles and
a 5'-regulatory region length of 1,000 bp were selected. This
analysis resulted in “TF-regulator—target gene” pairs, where
the TFs from the TFRN-A or TFRN-S were TF-regulators, and
the uDEGs and dDEGs from the corresponding transcriptomic
experiment were the target genes.

The DAP-seq data, recruited by PlantReg 1.1 to map TF
binding regions in the A. thaliana genome, contain two types
of peak sets: in the first case (“col” peak sets), native genomic
DNA from leaves was used to prepare libraries; in the second
case (“colamp” peak sets), genomic DNAwith methylcytosine
epigenetic marks removed by PCR amplification was used.
TF-regulator—target gene pairs reconstructed using “col”
peak sets were selected from the PlantReg 1.1 output. Next,
among the target genes regulated by TFRN-A, we chose the
genes annotated with GO terms related to chlorophyll bio-
synthesis (16 genes), lignin biosynthesis (14 genes), ABA
signaling (34 genes), and ribosome biogenesis (28 genes);
these processes were previously considered in (Omelyanchuk
etal., 2024).

Among the target genes regulated by TFRN-S, we selected
genes annotated with GO terms related to ABA signaling
(24 genes), which was previously discussed in (Lavrekha et
al., 2024). As a result, 110 genes were chosen (designated as
“Processes-A” and “Processes-S” in Fig. 4) (Tables S1-S3).

To identify among these genes the ones potentially regu-
lated by competitive suppression or activation, we selected
the genes that met the following requirements: a) more than
one TF was involved in the regulation of the gene, b) the BSs
of these TFs considerably overlapped (over 80 %), and c) the
genes encoding these TFs changed their expression in opposite
directions in the transcriptomic experiment.

Results

A collection of the predicted TF BSs in 5’-regulatory
regions of A. thaliana genes, integrated into PlantReg 1.1
To enable prediction of cooperative and competitive interac-
tions of TFs in the transcriptional regulation of biological
processes, automatic localization of TF BSs in 5'-regulatory
regions was implemented in PlantReg 1.1. For this purpose,
the results of TF BS recognition in promoters using the posi-
tion weight matrices (see the “Materials and methods” sec-
tion) were systematized and integrated into PlantReg 1.1. For
300 TFs (74 %), the motif identified de novo in at least one
peak set (“col” or “colamp”) was similar to a known BS for
this TF available in the JASPAR, CisBP, or ArabidopsisDAPvV1
databases (Fig. 5a). The proportion of TFs with BSs recog-
nized in more than 90 % of peaks mapped to 5'-regulatory
regions was quite high and varied from 42 (for 500 bp-long
5'-regulatory regions) to 74 % (for 2,000 bp-long 5'-regula-
tory regions) (Fig. 5b).

In the following sections, we illustrate the potential of
using the new functionality of PlantReg 1.1 to solve specific
biological challenges.
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Fig. 5. Characteristics of the collection of predicted TF BSs in the 5'-regulatory regions of A. thaliana genes integrated into

PlantReg 1.1.

a - comparison of motifs recognized de novo in DAP-seq peaks with known TF BSs in the JASPAR, CisBP, and ArabidopsisDAPv1 databases;
b - proportions of DAP-seq peak sets mapped to the 5'-regulatory regions (col - shades of green/colamp - shades of blue) with the motifs
recognized in more than 90 % of peaks (light shade), in 50-90 % of peaks, and in less than 50 % of peaks (dark shade).

Competitive regulation of gene expression

in response to auxin and salt stress in A. thaliana

We assumed above that the suppression of target gene tran-
scription with an increase in the level of US-type TFs or
activation due to a decrease in the level of DS-type TFs in
response to auxin and under salt stress may occur through
competitive regulation of their expression by a pair of activa-
tor TFs. To test this hypothesis, we identified regulatory links
between TFRN-A/S and genes involved in chlorophyll and
lignin biosynthesis, ribosome biogenesis, and ABA signaling
using PlantReg 1.1. Fourteen genes were picked as potential
targets for competitive regulation by TFs from TFRN-A and
TFRN-S (Tables S1, S6 and S7).

Additionally, 11 genes encoding TFs from TFRN-A
and TFRN-S were also found as potential targets for com-
petitive regulation (Tables S4 and S5). All 25 selected genes
(12 dDEGs, 10 uDEGs, and three genes, ABCG25 (ATP-
binding cassette family G25), GBF3 (G-box binding factor 3),
and PYL7/RCAR2 (PYR1-like 7/Regulatory components of
ABA receptor 2), the expression of which changed in opposite
directions under auxin and salt stress) made up as much as
32 % of the total number of genes regulated by suppressors
(79 genes) (Tables S1, S6 and S7). Thus, the competitive
regulation of the target genes by TFRNs may be a frequent
event.

TFs are grouped into families, classes, and superclasses
based on the similarity of their DNA-binding domains
(Blanc-Mathieu et al., 2024). TFs from the same family
often recognize similar DNA sequences and, therefore, can
compete for the binding sites. In the 5'-regulatory regions of
25 selected genes, TFs can compete within the following six
families: AP2/ERF (APETALA2/ETHYLENE RESPONSIVE
FACTOR), bZIP (BASIC LEUCINE-ZIPPER), BZR1/BES1
(BRASSINAZOLE RESISTANT 1/BRI1 EMS SUPPRES-
SOR 1), HD-ZIP (HOMEODOMAIN LEUCINE ZIPPER),

MYB (V-MYB AVIAN MYELOBLASTOSIS VIRAL
ONCOGENE HOMOLOG), WRKY (Table S6). In addition,
we identified possible competition between TFs from different
families of the same superclass, namely: “basic domains” and
“Helix-Turn-Helix domains” (Table S6).

Moreover, in the promoters of uDEGs MAPKKK18 (Mi-
togen-activated protein kinase kinase kinase 18) and RRP47
(Sas10/Utp3/C1D family), the same BS can be occupied by
TFs from the families belonging to two different superclasses:
AP2/ERF (“Beta-hairpin exposed by an alpha/beta-scaffold”
superclass) and bZIP (“basic domains” superclass) in the
first case, and AP2/ERF and LBD (“Zinc-coordinating DNA
binding domains” superclass) in the second case (Table S6).
In the distal promoter of dDEG GBF3, TFs from the families
of two other superclasses, bZIP (“basic domains”) and MYB
(“Helix-Turn-Helix domains™), can compete for the common
BS. We also detected a possible competition for the common
BS among TFs from different families belonging to two (in
the promoters of AFP1 (ABI five binding protein), MYB73
and PYL7) and even three different superclasses (in the distal
promoter of GBF3) (Table S6).

Competition of bZIP family TFs

in promoters of genes regulated by TFRN-A

To identify combinations of activator TFs systematically re-
cruited by TFRN-A or TFRN-S to suppress target gene ex-
pression, we conducted a comparative analysis of TF-regu-
lator—target gene pairs determined with PlantReg 1.1. Three
DA-type TFs (bZIP3, bZIP68, and GBF3) and a US-type TF
(bZ1P53) share common BSs in the promoters of several genes
regulated by TFRN-A. These include CHLG (Chlorophyll G)
(Fig. 6a, b), HEME2 (AT5G14220), and CH1 (Chlorina 1),
which encode chlorophyll biosynthetic enzymes, as well as
ABCG25, encoding ABA exporter that transports ABA across
the plasma membrane (Tables S6 and S7).
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Fig. 6. Overlapping TF BSs in target gene promoters revealed with PlantReg 1.1.

a - distal CHLG promoter with overlapping BSs for bZIP family TFs (bZIP3, bZIP53, bZIP68, and GBF3); ¢ - distal and core GBF3 promoters
with overlapping BSs for bZIP family TFs (bZIP3, bZIP53, bZIP68, TGA4/5/9, and GBF3), TF color coding in (c) is the same as in (a);
e, g — proximal UGT72B1 and BEH2 promoters, respectively, with overlapping BSs for BEH2 (red fill color) and BMY2 (blue fill color).
b, d, f, h - transcriptional regulation of the CHLG, GBF3, UGT72B1, and BEH2 genes, respectively. Underlined BSs lie on the antisense strand
with regard to the gene body strand. Coordinates are given relative to the transcription start site. US — upregulated suppressor; DA -

downregulated activator.

Since bZIP53 was described in the literature as a tran-
scriptional activator (Alonso et al., 2009; Weltmeier et al.,
2009), it is logical to assume that the suppression of the
above-mentioned genes may be a consequence of competi-
tion among bZIP family TFs for common BSs in promoters,
resulting in replacement of a strong activator by a weaker
one. Indeed, the activity of the transactivation domains of
these TFs was previously investigated and it was shown that
bZIP53 is a transcriptional activator, but a much weaker one
than representatives of the same family bZIP3, bZIP68, and
GBF3 (Hummel et al., 2023).

Itis noteworthy that a similar combination of transcriptional
regulators competing for a common BS (bZIP3, bZIP68, and
GBF3 as DA, bZIP53 as US) was identified in the promoters of
dDEGs ERF15, GBF3 (Fig. 6¢, d), and AT1G19000 encoding
TFs from the TFRN-A (Tables S6 and S7). Thus, competition
between the bZIP family TFs for a common BS is likely to
be an essential mechanism of transcriptional repression in
auxin response.

We also found a potential replacement of the bZIP3,
bZIP68, and GBF3 activators with a weaker one, bZIP53, in
the promoter of GBF3, which itself encodes a TF involved
in its competitive regulation (Fig. 6c, d). A similar situation
was observed for BEH2 (BES1/BZR1 HOMOLOG2) (DA)
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and BMY2 (BETA-AMYLASE 2, also known as BETA-
AMYLASE 8/BAMS) (US), both belonging to the BZR1/
BESI family. These TFs regulate not only the expression of
DFB and UGT72B1, the genes that control lignin levels, but
also BEH2 (Fig. 6e-h).

Theoretically, such feedback could act as a “trigger” for
more intensive competitive suppression of common targets
by a pair of activator TFs: an increase in the abundance of a
weaker transcriptional activator leads to competitive suppres-
sion of the gene encoding a stronger transcriptional activator
(which is a common target for both TFs including that stron-
ger one), and thereby the inhibitory effect on other common
targets will increase. Some DA-type TFs can compete with
each other for a common BS prior to auxin treatment, when
R subnetwork is active (Fig. 6a—d), providing additional re-
gulatory flexibility to TFRN-A.

Competitive regulation of ABA signaling genes

by TFRN-A and TFRN-S

Both auxin and salt stress modulate response to ABA: in the
first case, it is attenuated, and in the second case, it is enhanced
(Lavrekha et al., 2024; Omelyanchuk et al., 2024). Compari-
son of the regulatory links inferred based on data from different
experiments enables a deeper understanding of transcription
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Fig. 7. Overlap of TF BSs in target promoters under auxin treatment and early salt stress, revealed using PlantReg 1.1.

a - proximal PYL7 promoter; ¢ — distal AFPT promoter; e — proximal ABCG25 promoter. b, d, f - transcriptional regulation of the PYL7, ATF1,
and ABCG25 genes, respectively. For each panel, the details of regulation in response to auxin (A) and early salt stress (S) are located at the
top and bottom, respectively. TF BSs are represented by rectangles according to the color coding of the regulation type: UA — upregulated
activator; US - upregulated suppressor; DA — downregulated activator; DS — downregulated suppressor.

regulation. Using PlantReg 1.1, we found that three genes
involved in ABA signaling (PYL7, AFP1, and ABCG25) are
under the control of both TFRNS.

Downregulation of PYL7 by auxin and its upregulation by
salt stress is carried out by TF sets specific for each stimulus.
These TF sets bind to different sites in the PYL7 promoter
(Fig. 7a, b). Apparently, auxin and salt stress utilize distinct
molecular mechanisms for competitive modulation of PYL7
expression. In contrast, both stimuli can engage the same set of
competing activator TFs to regulate AFP1 and ABCG25, but in
different ways. AFP1 gene expression is mediated by bZI1P68
under normal conditions. After auxin treatment, bZIP68 is
replaced by BMY2 (which is likely a weaker activator); un-
der salt stress, on the contrary, bZIP68 is replaced by BIM2
(BEST-interacting Myc-like protein 2), which is a stronger
activator according to (Hummel et al., 2023) (Fig. 7c, d). In
the ABCG25 promoter, auxin induces replacement of activator
TFs from the bZIP family with a weak activator bZIP53 that
results in a decrease in ABCG25 transcripts (Fig. 7e, f). Salt
stress modulates the relocation of a similar set of activators
within the same set of BSs, but in this case, downregulation
of bZIP3 expression is accompanied by accumulation of
GBF3 transcripts.

Interestingly, a similar pattern was observed in the promoter
of GBF3 encoding a TF involved in both TFRNs. Under salt
stress, which activates GBF3, GBF3 TF replaces bZIP3 at three
BSs in the proximal GBF3 promoter (-116; +1) (Fig. 8a, b),
and at seven BSs in the distal promoter (-1,312; —701)
(Fig. 8¢c—f), thereby apparently enhancing its self-activation.
After auxin treatment, another redistribution of bZIP family

TFs occurs at the same sites (Fig. 8). These results are con-
sistent with an important role of competition for BSs between
bZIP family TFs in modulation of gene expression (Schindler
et al., 1992; Foster et al., 1994; Ko, Brandizzi, 2022). At the
same time, auxin response recruits some specific mechanisms
for GBF3 regulation that are not involved in the response to
salt stress. Thus, MYB3R1 can replace MYB70 and MYB73
at the common site after auxin treatment.

Discussion

In this work, we collected and systematized information
on potential TF BSs in A. thaliana promoters to integrate it
into the PlantReg 1.1 program. Along with the data on TF
effector domain activity (Hummel et al., 2023), this allows
to predict the cooperative and competitive interaction of TFs
within the TFRNs in the transcriptional regulation of biologi-
cal processes. Previously, we reconstructed two TFRNs that
control the responses to salt stress and auxin in A. thaliana
and showed that transcriptional repression plays an important
role in both cases (Lavrekha et al., 2024; Omelyanchuk et al.,
2024). However, according to the literature, the overwhelming
majority of predicted suppressors in the TFRNs have activator-
type effector domains (Hummel et al., 2023; Omelyanchuk
et al., 2024). We used PlantReg 1.1 to identify the molecular
mechanisms underlying the possible transformation of activa-
tor TFs into transcriptional repressors.

We found that more than one-third of the targets of TFs
that were predicted as suppressors could be competitively
regulated by a pair of TFs, one of which is a strong transcrip-
tional activator and the other is a weak one. Thus, competitive
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Fig. 8. Overlapping BS TFs in the GBF3 promoter under auxin treatment and early salt stress, revealed using PlantReg 1.1.

a, ¢, e - proximal (-116; +1) and distal (-1,312; -=701) GBF3 promoters with overlapping BS TFs; b, d, f — diagrams of GBF3 transcriptional
regulation in the proximal and distal promoters. For each panel, the regulations in response to auxin (A) and early salt stress (S) are located
at the top and bottom, respectively. TF BSs are represented by rectangles according to the color coding of the regulator type: UA —
upregulated activator, US — upregulated suppressor, DA - downregulated activator, DS - downregulated suppressor.

regulation of gene expression is likely a universal mechanism
allowing modulation of gene expression during responses to
salt stress and auxin in A. thaliana.

Auxin is a key regulator of most plant processes involved in
switching between developmental programs (Vanneste et al.,
2025). The most standard concept of switching is replacement
of a repressor with an activator, such as the substitution of the
E2F TF repressor complex with E2F activators before the onset
of the cell cycle in the promoters of many plant and animal
genes (van den Heuvel, Dyson, 2008; Sanchez-Camargo et
al., 2021), or, conversely, replacement of a transcriptional
activator with a repressor (Berlow et al., 2017). However, the
results obtained with PlantReg 1.1 indicate that in the auxin
response, instead of the canonical activator—repressor switch,
substitution of a strong activator with a weaker one can be
actively used to suppress transcription.

At least some of the cases when a strong activator is
substituted with a weaker one, predicted by PlantReg 1.1,
are supported by previously published data. These include,
for example, the replacement of three activators, bZIP3,
bZIP68, and GBF3, by a weaker activator bZIP53 during
auxin-induced suppression of chlorophyll biosynthesis genes
CHLG, HEME2, and CH1 (Hummel et al., 2023). Competi-
tion between bZIP family TFs for a common binding site and
its influence on target gene expression has been previously
described for many TFs from this family (Schindler et al.,
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1992; Foster et al., 1994; Ko, Brandizzi, 2022). It is also
known that a number of bZIP family TFs redundantly regulate
chlorophyll biosynthesis in a complex manner. In particular,
chlorophyll biosynthesis is impaired in the gbfl gbf2 gbf3
triple mutant, demonstrating the important role of GBFs in
this process (Sun T. et al., 2025). Overexpression of another
family member, bZIP1, results in decreased chlorophyll levels,
while the bzipl bzip53 double mutant demonstrates a less
pronounced decrease in chlorophyll levels and attenuated
CHLG expression compared to the wild type (p,q; = 0.03)
(Wildenhain et al., 2025).

The plant-specific BZR1/BES1 TF family mediates tran-
scriptional response to brassinosteroids (plant steroid hor-
mones). In addition to BZR1 and BESI, this family also
includes four other TFs, called BES1 homologues: BEHI,
BEH2, BEH3, and BEH4 (Shi et al., 2022). Recently, the
BZR1/BES] family has been supplemented with two unusual
TFs, BAM7 and BMY2, which are similar to f-amylases but
also exhibit very weak homology to BES1 (Reinhold et al.,
2011). These TFs lack amylase catalytic activity but possess
BZR1-like domains that bind to the sequences recognized by
TFs from this family. BMY?2 is a transcriptional activator,
while BAMY7 regulates its activity.

It has been previously suggested that BMY2 controls the
transcription of target genes by competing with the other
BZR1/BES]1 TFs for BSs (Reinhold et al., 2011). According
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to the results obtained with PlantReg 1.1, this may take place
in the promoters of some genes downregulated by auxin,
including UGT72B1 (UDP-glucose-dependent glucosyltrans-
ferase 72 B1), which encodes a monolignol-conjugating
enzyme. Inthe UGT72B1 promoter, BMY2 (whichis likely a
weaker activator) competes with BEH2 (Fig. 6¢, f; Tables S6
and S7).

A more detailed analysis of the BEH2 and BMY?2 targets
predicted using PlantReg 1.1 provides several important
details to auxin regulation of lignin biosynthesis. Auxin, by
activating BMY2, inhibits BEH2 self-activation replacing
BEH2 with the less active BMY2 TF at their common BSs
(Fig. 59, h). This leads to a decrease in BEH2 levels in the
nucleus, which in turn facilitates the replacement of this TF
at its sites in the UGT72B1 promoter with a weaker activator
BMY?2 (Fig. 5e, f) and, consequently, causes a decrease in the
UGT72B1 transcript level. Activation of UGT72B1 by BMY2
is supported by an increase in UGT72B1 transcript level upon
BMY2 overexpression and downregulation of this gene in the
bmy2 bam7 double mutant (Reinhold et al., 2011).

Notably, auxin suppresses the transcription of most genes
encoding lignin biosynthetic enzymes (Omelyanchuk et al.,
2024), thereby reducing monolignol levels. At the same
time, auxin downregulates UGT72B1 expression and as a
consequence inhibits monolignol conjugation, partially com-
pensating for the decrease in monolignol levels. Interestingly,
brassinosteroids also modulate lignin levels through BEH2.
Brassinosteroids enhance lignin biosynthesis by activating
most of the enzymes involved in this process (Percio et al.,
2025). They simultaneously suppress BEH2 via both GSK3
(GLYCOGEN SYNTHASE KINASE 3)-like kinases and
BES1 (Otani et al., 2022). Since BEH2 activates UGT72B1,
which conjugates monolignols, brassinosteroids restrict the
withdrawal of monolignols from lignin biosynthesis, thereby
further increasing the lignin level.

The data obtained using PlantReg 1.1 allow formulating
specific hypotheses for planning further experimental stud-
ies. It is worth emphasizing, however, that these predictions
may contain false-positive results. For example, in the pair of
TFs HB21 (DA) and HB40 (US) from TFRN-A, which bind
the same sites in the promoter of the auxin-repressed gene
bZIP50, HB40 is a more potent activator. This means that
competition for BS with HB21 cannot explain the suppression
of target gene expression with HB40 increase. It is possible
that HB21 and HB40 are expressed in different tissues or at
different developmental stages. To explain why HB40, which
is an activator by nature, can function as a repressor, we need
to explore how this TF recruits corepressors.

Conclusion
PlantReg 1.1 is designed to reveal regulatory relationships
between TFRNs and genes that mediate the biological pro-
cesses controlled by these networks. The updated version of
the program includes functionality for precise localization of
TF BSs in target promoters. Due to this, it becomes possible
to analyze the mutual arrangement of TF BSs and, using data
on the effector TF domains, to identify potential cooperative
or competitive TF action in the promoter of a particular gene.
PlantReg 1.1 was successfully applied to reconstruct the
transcriptional mechanisms regulating chlorophyll and lignin

2025
29.7

PlantReg 1.1: MoneKynspHble MEXaHN3Mbl AKTUBHOCTY
TPAHCKPUNUMOHHbIX GaKTOPOB B PEryiATOPHbIX CETAX

biosynthesis, ribosome biogenesis, and ABA response under
auxin and salt stress. Analysis of the mutual arrangement
of TF BSs revealed that the activity of a number of genes
regulating these processes can be suppressed as a result of
competition between a pair of activator TFs for acommon BS,
with a weaker activator replacing a stronger one. Some of the
obtained results were supported by literature data.

Thus, the results obtained using PlantReg 1.1 allow formu-
lating specific hypotheses for planning further experimental
studies. It is worth emphasizing, however, that the predictions
may contain false-positive results. Reducing their incidence is
one possible direction for further development of the program.
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Abstract. Since the work of Nobel Prize winner Thomas Morgan in 1909, the fruit fly Drosophila melanogaster has been
one of the most popular model animals in genetics. Research using this fly was honored with the Nobel Prize many
times: in 1946 (Muller, X-ray mutagenesis), in 1995 (Lewis, Niisslein-Volhard, Wieschaus, genetic control of embryogene-
sis), in 2004 (Axel and Buck, the olfactory system), in 2011 (Steinman, dendritic cells in adaptive immunity; Beutler and
Hoffman, activation of innate immunity), and in 2017 (Hall, Rosbash and Young, the molecular mechanism of the circa-
dian rhythm). The prominent role of Drosophila in genetics is due to its key features: short life cycle, frequent genera-
tional turnover, ease of maintenance, high fertility, small size, transparent embryos, simple larval structure, the possibil-
ity to observe visually chromosomal rearrangements due to the presence of polytene chromosomes, and accessibility
to molecular genetic manipulation. Furthermore, the highly conserved nature of several signaling pathways and gene
networks in Drosophila and their similarity to those of mammals and humans, taken together with the development of
high-throughput genomic sequencing, motivated the use of D. melanogaster as a model organism in biomedical fields
of inquiry: pharmacology, toxicology, cardiology, oncology, immunology, gerontology, and radiobiology. These stud-
ies add to the understanding of the genetic and epigenetic basis of the pathogenesis of human diseases. This paper
describes our curated knowledge base, FlyDEGdb (https://www.sysbio.ru/FlyDEGdb), which stores information on dif-
ferentially expressed genes (DEGs) in Drosophila. This information was extracted from 50 scientific articles containing
experimental data on changes in the expression of 20,058 genes (80 %) out of the 25,079 Drosophila genes stored in
the NCBI Gene database. The changes were induced by 52 stress factors, including heat and cold exposure, dehydra-
tion, heavy metals, radiation, starvation, household chemicals, drugs, fertilizers, insecticides, pesticides, herbicides, and
other toxicants. The FlyDEGdb knowledge base is illustrated using the example of the dysf (dysfusion) Drosophila gene,
which had been identified as a DEG under cold shock and in toxicity tests of the herbicide paraquat, the solvent to-
luene, the drug menadione, and the food additive E923. FlyDEGdb stores information on changes in the expression of
the dysf gene and its homologues: (a) the Clk, cyc, and per genes in Drosophila, and (b) the NPAS4, CLOCK, BMALT, PER1,
and PER2 genes in humans. These data are supplemented with information on the biological processes in which these
genes are involved: oocyte maturation (oogenesis), regulation of stress response and circadian rhythm, carcinogenesis,
aging, etc. Therefore, FlyDEGdb, containing information on the widely used model organism, Drosophila, can be helpful
for researchers working in the molecular biology and genetics of humans and animals, physiology, translational medi-
cine, pharmacology, dietetics, agricultural chemistry, radiobiology, toxicology, and bioinformatics.

Key words: human; disease; biomedicine; model animal; fruit fly Drosophila melanogaster; differentially expressed
genes (DEGs); RNA-Seq; gPCR; microarray; knowledge base
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FlyDEGdb: guddepeHumanbHo akcnpeccrpyowmnecs
reHbl Drosophila melanogaster

ba3sa 3HaHui1 FlyDEGdb o nuddepeHiinaaibHO
SKCIIpeccupyooliumcs reHam Drosophila melanogaster —
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AHHoTauusA. C 1909 r. bnarofaps nccnefoBaHMsaM HoGeneBcKoro naypeata Mopraxa gpo3soduna Drosophila mela-
nogaster ctana OAHVM M3 CaMblX MOMNYAPHbIX MOAENbHbIX KUBOTHBIX B reHeTuKe. OyHAaMeHTanbHble Uccneno-
BaHUA C ApP0o30dUIION B KauecTBe MOAENbHOrO 06beKTa HEOAHOKPATHO Oblnn oTMeueHbl HobeneBcKoi npemueii:
B 1946 r. (Ménnep, MyTareHe3 npv peHTreHOBCKOM M3nyyeHun), B 1995 (Jibtouc, Hioccnanu-Qonbxapad, Buwayc,
reHeTUYeCKnn KOHTPONb aMbpuoreHesa), B 2004 (9kcen n bak, oboHATenbHas cuctema), B 2011 (CraHmaH, geH-
LPUTHbIE KNETKN B afanTyBHOM UMMyHUTETe; BETnep n OdpmaH, akTBaLMA BPOXKAEHHOTO MMMYyHUTETa) 1 B 2017 T.
(Xonn, Pocbalu u fIHF, MoneKynsapHbIi MexaHW3M LpKagHoro prtmMa). CTonb sipKas ponb Apo30dunbl B reHeTrKe
06ycrioBieHa pALOM ee KIIIoUeBbIX MPU3HAKOB: KPATKUM XMU3HEHHbIM LIMKNOM, YaCTOW CMEHOW MOKONEHUIA, Nerko-
CTblO B COAEPKaHMNN, BbICOKOW NMIOLOBUTOCTbIO, MasblM Pa3MepoM, MPO3PpayHOCTbio SMOPUOHA, MPOCTbIM CTPOEHU-
€M JINYNHKI, BO3MOXKHOCTbIO BM3YasibHbIX HabMoAeH U XPOMOCOMHbIX NepecTpoek 3a CYeT HaNMumnA NOSNTEHHbIX
XPOMOCOM, AOCTYMHOCTbIO AJ1f MONEKYNIAPHO-TEHETUYECKNX MaHUMYNALMIA. Kpome Toro, 6aroaaps BbICOKON KOH-
CepBaTMBHOCTY PsAA CUTHAMbHBIX NMYTeN 1 reHHbIX ceTe APO30GUITbI U MX CXOLACTBY C TAKOBLIMU Y MIIEKOMUTAOLLMX
1 Yenoseka B COBOKYMHOCTU C TEXHUUYECKUM Pa3BUTUEM FeHOMHOIO CEKBEHVPOBaHNA CTaslo BO3MOXHO UCMOSb30-
BaHue D. melanogaster kak MOAeNIbHOro 06beKTa B GrIoMeANLNHCKUX NCCnefoBaHUAX B obnacty dapmakonoruu,
TOKCUKOMOT K, KapAVONOTrW, OHKOMOTMIU, UMMYHOJIOTUW, FePOHTONION U Paanobronorny ana noucka reHetnye-
CKOW 1 3NUreHeT!YeCKo OCHOB naToreHesa 6onesHen yenoBeka. B HacToALlen cTaTbe onmcaHa co3aaHHaa HaMu
Kypupyemas 6a3a 3HaHuin FlyDEGdb (https://www.sysbio.ru/FlyDEGdb), B KoTopoli npeactaBneHa nHpopmaums
0 anddepeHumnanbHO sKcnpeccupyowmxca reHax (430) apo3odunsl, SKCTparmpoBaHHas 13 50 HayuHbIX cTaTen
C 3KCNEePUMEHTASNbHBIMU AaHHbIMU 06 n3MeHeHun sKkcnpeccun 20058 reHoB (80 %) 13 uncna Bcex 25079 reHoB
apo3odunbl cornacHo 6ase gaHHbix NCBI Gene nog genctauem 52 cTpeccoBbix GpakTOpOB, BKKOYas BbICOKYO 1
HM3KYI0 TeMnepaTypbl, 06e3BOXKMBaHWE, TAXKENbIE MeTaslbl, paguaLuio, ronog, Aabl, ObITOBY XMMUIO, NEKAPCTBa,
yROOPeHNA, MHCEKTULMAbI, NecTUUmnabl U repbuumabl. CoaepxaHue 6a3bl 3HaHui FlyDEGdb npovnntoctpuposaHo
Ha npumepe reHa dysf (dysfusion) ppo3odunbl, KOTOpbIA ObIN MAEHTUOULKPOBaH B KayecTse 3 npu MHOXecCTBe
CTPECCOBbIX BO3LENCTBMI: XONOAOBOM LLOKE 1 B UCMIbITAHMAX Ha TOKCUMYHOCTb repburunia napakeata, pacTBopuTe-
N5 TONyosa, NeKapCTBEHHOIO NpenapaTa MeHaguoHa, nuwesoi fobaskm E923. B FlyDEGdb npeactasneHa uHoop-
Mauma 06 n3meHeHUAX sKkcnpeccun reHa dysf n ero romonoros Clk, cyc, per y ppo3odunbl u reHoB NPAS4, CLOCK,
BMALT, PERT n PER2 vyenoBeka, a Takxe MHPpopMaLmsa 0 GONOrnMYecknx npoLeccax, B KOTopble BOBJIeYEHbl 3TU
reHbl: CO3peBaHne OoLUTOB (OOreHes), perynauma cTpecc-oTBeTa U LMPKaAHOTO PUTMA, KaHLeporeHes, cTapeHve
n ap. NMostomy FlyDEGdb, copepialiana nHGopmaLmio 0 TakoM MOAENbHOM OpraHv3me, Kak Apo30odua, MOXeT
6bITb NMonesHa AnA uccnefoBaTenel, paboTatowwmx B 061acTi MONEKYNAPHON BMONOMM 1N FEHETUKU YenoBeKa 1
XKMBOTHBbIX, GM3MONOrNNY, TPAHCAALNOHHON MeaNLUNHbI, GapMaKonorny, ANeTONorMu, arpoxnuMmn, paguobuonoruu,
TOKCUKOMNOrv 1 BMONHGOPMATHKN.

KnioueBble cnoBa: yenosek; 3aboneBaHuve; 6MoMeanLIMHa; MOAENbHOE XNBOTHOE; Apo3oduna; Drosophila melano-
gaster; anddepeHLmanbHO akcnpeccupytowwmecs renbl (430); RNA-seq; qPCR; Mukpouun; 6a3a 3HaHWI

Introduction

Animal models are broadly employed in biomedical studies of
the physiological, genetic, and epigenetic mechanisms regu-
lating evolutionarily fixed phenotypic human traits in health
and disease, as well as in response to external and internal
stress factors (Mukherjee et al., 2022). Their use is based on
strict criteria of the correspondence between the human phe-
notypic features under study and their counterparts in model
animals (Gryksa et al., 2023). Over a century ago, Thomas
Hunt Morgan (1910), Professor of Experimental Zoology in

the Columbia University, laid the foundation of a series of
discoveries in heredity in a then new biological object, Droso-
phila melanogaster. His results were honored with the Nobel
Prize “For his discoveries concerning the role played by the
chromosome in heredity” in 1933. Later genetic studies using
Drosophila were honored with the Nobel Prize five times
more. In 1946, it was awarded to Hermann Muller “For the
discovery of the production of mutations by means of X-ray
irradiation”; in 1995, to Edward Lewis, Christiane Nusslein-
\Volhard, and Eric Wieschaus “For their discoveries concern-
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ing the genetic control of early embryonic development”; in
2004, to Richard Axel and Linda Buck “For their discoveries
of odorant receptors and the organization of the olfactory
system”; in 2011, to Ralph Steinman “For his discovery of
the dendritic cell and its role in adaptive immunity” together
with Jules Hoffman and Bruce Beutler “For their discoveries
concerning the activation of innate immunity”; and in 2017,
to Jeffrey Hall, Michael Rosbash, and Michael Young “For
their discoveries of molecular mechanisms controlling the
circadian rhythm” (Lakhotia, 2025).

This great significance of Drosophila for research is de-
termined by the low cost of their maintenance, high fertility,
frequent generation turnover, small size, optical transparency
of embryos, simple larva structure, short life cycle, availability
of numerous natural strains adapted to various ecoclimatic
conditions (Telonis-Scott et al., 2013; Chen et al., 2015; von
Heckel et al., 2016; Mikucki et al., 2024), relatively small
genome, and ease of molecular genetic manipulations. It is
of special importance that many signaling pathways and gene
networks of Drosophila are similar to those of the human
(Yu et al., 2022). Owing to this fact, many results in trans-
lational medicine, pharmacology, toxicology, immunology,
gerontology, etc. obtained with Drosophila can be transferred
to humans (De Gregorio et al., 2001; Chatterjee, Perrimon,
2021; Wu K. et al., 2021; Ali et al., 2022; Rand et al., 2023).

Within this line of inquiry, scientists of the Institute of
Cytology and Genetics (ICG) of the Siberian Branch of the
Russian Academy of Sciences, Novosibirsk, have investigated
features of stress response in rats (Markel, 1985; Oshchepkov
et al., 2024) and mice (Chadaeva et al., 2019; Avgustinovich
et al., 2025) for over 40 years. The results, reported in many
publications, present valuable data on changes in gene ex-
pression induced by various experimental procedures. Huge
volumes of genome-wide data (Big Data) on DEGs in rats and
mice have been obtained and documented in our knowledge
bases RatDEGdb (Chadaeva et al., 2023) and MiceDEGdb
(Podkolodnaya et al., 2024), respectively.

D. melanogaster is another model species, in which ex-
periments on stress in animals have been conducted at ICG
for over 25 years (Gruntenko et al., 1999; 2023). The effort
on developing the FlyDEGdb knowledge base, which stores
information on Drosophila DEGs, is the continuation of
our works in biomedical knowledge bases RatDEGdb and
MiceDEGdb. The pilot version of FlyDEGdb v.0.1 is freely
available at https://www.sysbio.ru/FlyDEGdb. It stores ex-
perimental data on the expression of 80 % of Drosophila
genes: 20,058 of the 25,079 annotated in NCBI Gene (Brown
et al., 2015). The information presented in FlyDEGd was
extracted from 50 papers reporting experimental data on the
action of 52 stress factors on 31 D. melanogaster strains. The
factors included heat and cold, dehydration, heavy metals,
radiation, starvation, household chemicals, drugs, fertilizers,
insecticides, pesticides, herbicides, and other toxicants. The
informational content of FlyDEGdb v0.01 is illustrated by
the Drosophila dysf (dysfusion) gene, which was identified as
a DEG in cold shock and in tests of the herbicide paraquat,
solvent toluene, drug menadione, and food additive E923.
FlyDEGdb presents data on changes in the expression of dysf
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itself and its homologs: CIk, cyc, and per in Drosophila and
NPAS4, CLOCK, BMAL1, PER1, and PER2 in the human. In
addition, FlyDEGdb provides information on the biologic pro-
cesses involving these genes: oogenesis, regulation of stress
response and circadian rhythms, carcinogenesis, aging, etc.

We also compare data on stress-induced Drosophila DEGs
presented in FlyDEGdb with data on changes in the expres-
sion of DEGs of the hypothalamus of rat strains WAG and
ISIAH in response to restriction stress, reported by D.Y. Os-
hchepkov et al. (2024) and presented in RatDEGdb. The
responses of rats and Drosophila to stresses reveal a common
molecular event: reduction in the expression of large gene
groups involved in the formation of the plasma membrane.
The FlyDEGdb knowledge base, storing information on the
model species Drosophila, can be a useful tool for students of
the molecular biology and genetics of the human and animals,
physiology, translational medicine, pharmacology, nutrition
science, agricultural chemistry, radiobiology, toxicology, and
bioinformatics.

Materials and methods

Stress-inducible Drosophila DEGs. Experimentally detected
Drosophila DEGs were sought in the PubMed database (Lu,
2011) with queries composed from various combinations
of key words “Drosophila melanogaster”, “differentially
expressed gene”, “stress response”, “drying”, “heat shock”,
“radiation”, “cold shock”, “oxidative stress”, “continuous
lighting”, “toxin”, “diet”, “heavy metal”, “drug”, “herbicide”,
“pesticide”, “insecticide”, “RNA-seq”, “microarray”, and
“gPCR".

Only DEGs with reported log,(DEG) = log,([DEG expres-
sion in Drosophila under a particular stress factor] / [normal
DEG expression]) values and Ppp; estimates of statistical
significance with correction for multiple comparisons for
the stress-induced expression of the DEG were added to
FIyDEGdb. In addition, we eliminated those in which the
log,(DEG) values ranged from -0.46 to 0.46. This range cor-
responds to statistically insignificant (p>0.05, Fisher’s Z-test)
differences in DEG expression before and after the exposure
to stress with £5 % accuracy of expression measurements.

FIyDEGdb knowledge base. Figure 1 illustrates the
informational structure of the FlyDEGdb knowledge base.
It includes five relational tables. The first of them, named
“FlyDEGs” (Fig. 1A), stores experimental data on a particular
Drosophila DEG, which is assigned a unique number (field
“FIyDEGid”). Field “FlyStrain” of the table indicates the
Drosophila strain in which the DEG has been found in ex-
periments. Field “FlyBioSample” indicates the tissue sample
studied in the experiment. Field “PhenomenonFlyModel”
indicates the corresponding stress factor. Fields “FlyModel
Subject” and “FlyNormalSubject” indicate the model and
control individuals, respectively, used in the experiment. The
experiment type, “RNA-seq”, “Microarray”, or “RT-qPCR”,
is shown in field “ExperimentType”. Field “FlyGeneSymbol”
contains the identifier of the Drosophila DEG according
to the NCBI Gene database (Brown et al., 2015). Fields
“Log2(Model/Norm)” and “Padj” contain the quantity of the
stress-induced change in DEG expression as compared to the
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(E)

Fig. 1. The informational structure of the FlyDEGdb knowledge base on differentially expressed genes (DEGs) of Drosophila melanogaster. Relational
tables: (A) FlyDEGs - experimental data on DEGs in Drosophila tissue samples in response to a stress factor relative to the norm according to the paper
cited; (B) FlyHomologs - lists of Drosophila genes homologous to particular Drosophila genes according to the FlyBase database (Ozturk-Colak et al.,
2024); (C) FlyPhenomenon - phenotypic traits associated with deviations in the expression of Drosophila genes relative to the norm according to the
paper cited; (D) FlyHumanHomologs — human genes homologous to a particular Drosophila gene according to FlyBase (Ozturk-Colak et al., 2024);
(E) HumanDisorder - human diseases associated with deviations in particular human genes relative to the norm according to the paper cited.

Names of relational tables and their fields were chosen following the guideline on the construction of friendly interfaces (Wade, 1984). Data types: int — integer
number; float - real number; enum - binary indicator; text — character string; PMID - identifier of the referred paper in PubMed (Lu, 2011). Arrows (—) - relational
links pointing to the annotation of experimental data on Drosophila DEGs (relational table FlyDEGs) on the one side and, on the other side, data on ipsidirectional
changes in the expression of homologous Drosophila (solid lines) or human (dotted lines) DEGs indicated in the FlyjHomologs and FlyHumanHomologs tables,

obtained in independent experiments referred to in relational tables FlyPhenomenon and HumanDisorder.

norm and its significance level with correction for multiple
comparisons, respectively, as they are reported. The source is
indicated in field “FlyDegPMID” as its identifier in PubMed
(Lu, 2011).

Finally, field “ReferenceSpecies” indicates the reference
biologic species (“Fly” for Drosophila or “Human” for the
human in the pilot version FlyDEGdb v0.1), the experimental
data on which are used in the annotation of a particular DEG.
Absence of such annotation is indicated as “ND”.

Here we apply the term “annotation” to the supplementation
of experimental data on stress-induced changes in the expres-
sion of a particular Drosophila DEG reported in a particular
paper with experimental data from independent sources on
phenotypic manifestations of ipsidirectional changes in the
expression of homologous human and Drosophila genes.
Supplementary Table S11 provides details of the annotation
procedure.

To conclude the description of the informational structure
of FlyDEGdb (Fig. 1), we indicate the data types used: int,
integer number; float, real number; enum, binary indicator;
text, character string.

' Supplementary Tables $1-53 and Figure S1 are available at:
https://vavilov.elpub.ru/jour/manager/files/Suppl_Podkol_Engl_29_7.pdf

The relational tables FlyDEGs, FlyHomologs, FlyPhe-
nomenon, FlyHumanHomologs, and HumanDisorder were
integrated to the FlyDEGdb knowledge base (https://www.
syshio.ru/FlyDEGdb) by using the MySQL-compatible da-
tabase management studio MariaDB 10.2.12 (MariaDB Corp
AB, Finland).

Statistical methods. The statistical analysis of Drosophila
DEGs was conducted with Past v.4.04 application (Hammer et
al., 2001) and the STATISTICA package (Statsoft™, United
States).

Results and discussion

FlyDEGdb knowledge base

We sought papers on Drosophila DEGs in PubMed (Lu, 2011)
with keywords listed in section “Materials and methods” to
populate FlyDEGdb. We found 51 articles describing 287 ex-
periments on 31 Drosophila strains originating from various
geographical areas and their transgenic modifications. The
articles described over 190,000 stress-inducible Drosophila
DEGs. The results of the search are shown in Tables S1-S3.
The articles cover a wide range of Drosophila studies concern-
ing age-related human diseases, Drosophila tests of drugs,
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Fig. 2. The interface of the FlyDEGdb knowledge base on D. melanogaster DEGs supports the real-time dialogue for

user access to the informational content.

Interface commands: DOWNLOAD DB - download the entire body of information of the current version FlyDEGdb v0.1 as a
text file in an Excel-compatible format; START (HOMOLOG) - access to Drosophila DEGs annotated with the use of indepen-
dent experimental data on the phenotypic manifestation of ipsidirectional expression changes relative to normal values in
homologous genes in reference biologic species: Drosophila and the human; START (USUAL) - access to Drosophila DEGs
omitting annotation. Left half of the table with information on Drosophila DEG (green background): experimental data on
the Drosophila DEG considered; right half (lilac background): annotation of the DEG on the grounds of independent data
on the phenotypic manifestation of ipsidirectional expression changes in homologous genes in reference biologic species:

Drosophila and the human.

and tests for toxicity of household chemicals, fertilizers,
insecticides, pesticides, herbicides, etc.

Figure 2 illustrates user access to the information stored in
the pilot FlyDEGdb version.

Three buttons at the top of the FlyDEGdDb interface provide
access to the information:

* “DOWNLOAD DB” allows downloading all information
from the current version FlyDEGdb v0.1 as a text file in an
Excel-compatible format.

* “START (USUAL)” provides access to experimental data
on stress-inducible Drosophila DEGs described in the main
relational Table “FIyDEGs” (Fig. 1A).

* “START (HOMOLOG)” provides access to the annotations
of Drosophila DEGs as described in section “Materials
and methods”.

Below there are interface fields for choosing the needed
type of information: experimental data on Drosophila DEGs
and/or annotation of Drosophila DEGs. The “Page Number”
field allows alphabetical navigation over all DEGs stored in
the knowledge base.

The bottom part of the interface outputs tabulated informa-
tion on DEGs obtained by the user according to the specified
query. Its description is provided in section “Materials and
methods”. Their storage in FlyDEGdb is shown in Figure 1.

Table 1 provides a detailed description of the Drosophila
dysf DEG in response to various stress factors, as well as
information on homologous DEGs in Drosophila and the
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human. Seven columns on the left contain experimental data
on Drosophila dysf in response to the toxic effect of the her-
bicide paraquat, which increases the expression, and toluene,
which decreases it. The expression changes are characterized
by log,(DEG) values and significance levels Pap;. Column
PMID indicates information sources.

Six columns on the right in Table 1 contain the results
of annotation of the Drosophila dysf gene compared to the
homologous Clk gene of the same species and to homolo-
gous human genes NPAS4 and CLOCK on the base of four
independent PMID papers. It is apparent that (a) the dysf
upregulation (excess) is associated with Drosophila oogenesis
impairments; (b) the downregulation (deficit) of the CIk gene,
homologous to Drosophila dysf, disrupts the circadian rhythm;
(c) the upregulation of the human NPAS4 gene, homologous
to Drosophila dysf, improves the efficiency of the stress re-
sponse; (d) the downregulation of the human CLOCK gene,
homologous to Drosophila dysf, disrupts the circadian rhythm.
Similar examples are shown in rows 5—11.

Comparison of stress-induced homologous

rat and Drosophila genes on the grounds of information
from FlyDEGdb and RatDEGdb

Table 2 presents information on DEGs detected in a restriction
stress experiment in the hypothalamus or WAG and ISTAH rats
(Oshchepkov et al., 2024) in comparison with homologous
Drosophila DEGs described in FlyDEGdb.
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Table 2. Using the FlyDEGdb knowledge base to the analysis of DEG expression in the hypothalamus of WAG and ISIAH rats
in response to restriction stress (Oshchepkov et al., 2024)

(Oshchepkov et al., 2024) FlyDEGdDb (this paper) PC1,65 % PC2,33%
No.  rat DEG log,(stress/norm) Drosophila DEG log,(stress/norm) Nrypeg overall stress  interspecies
WAG ISIAH response difference
| I I v Vv VI VI Vil
1 Acr -0.75 -0.76 Jon74E -6.28 28 -1.17 -3.56
2 Alox12* -0.72 -0.78 0
3 Atp2b4 -1.00 -0.61 PMCA -0.48 7 -1.04 -0.26
4 Cd180 -1.19 -1.61 Toll-7 -3.60 43 -2.07 -1.96
5 Cdknla 0.93 135 dap -0.79 12 2.01 -0.64
6 Chrna7 -0.95 -0.68 nAChRa6 -2.23 21 -1.12 -1.25
7 Creb5 -0.63 -0.66 Atf-2 0.28 3 -0.74 0.16
8 Cryab 0.67 0.82 1(2)efl -1.96 22 1.35 -1.26
9 Cyp26b1 -0.76 -0.80 Cyp313a2 -5.80 714 -1.19 -3.29
10 Ddit4 0.61 0.65 scyl -0.81 31 1.22 -0.59
1 Dhrs9 -1.60 -1.40 CG8888 -1.84 13 -2.18 -0.96
12 Evi2b* -0.62 -0.68 0
13 Fkbp5 0.79 1.38 Fkbp59 -1.99 28 1.87 -1.32
14 Flvcr2* -0.70 -0.59 0
15 Fmo2 0.69 0.96 Fmo-2 -2.30 56 1.46 -1.47
16 Fosb 1.75 1.23 kay -1.12 29 2.58 -0.85
17 Fosl1 1.23 1.70 kay -1.12 22 2.51 -0.86
18 Fosl2 0.68 0.74 kay -1.12 22 133 -0.78
19 Gpd1 1.02 1.68 Gpdh1 -1.08 9 2.32 -0.83
20 Hpd 0.69 0.62 Hpd -2.97 21 1.18 -1.82
21 Hspalb 2.88 1.01 Hsc70-4 -0.56 14 3.37 -0.56
22 11 7rd* -0.76 -0.65 0
23 n21r* -0.60 -0.66 0
24 Lims2 0.59 1.02 stck -1.15 20 1.47 -0.81
25 Lmod2 1.07 1.00 tmod -3.56 26 1.75 -2.20
26 Maff 0.59 0.82 maf-S -1.72 20 1.29 -1.12
27 Map3ké 1.21 1.18 Ask1 -0.51 9 2.12 -0.48
28 Mt2A 0.65 0.59 MtnA -8.97 156 0.89 -5.24
29 Npas4 1.09 -0.67 dysf -1.22 6 0.61 -0.76
30 P2ry4 -1.14 -0.76 PK2-R1 -4.04 51 -2.07 -2.27
31 Pcdh11x*  -0.61 -0.69 0
32 Pik3ap1 -0.63 -0.95 stumps -2.81 27 -1.08 -1.58
33 Pla2g3 0.78 1.86 Gllispla2 -2.41 24 2.21 -1.59
34 Plek -0.61 -0.90 kmr -2.83 27 -1.03 -1.59
35 Ptch1 -0.64 -0.82 ptc -1.75 17 -0.95 -0.98
36 Rasgrp3 -0.66 -0.62 Sos -1.04 18 -0.79 -0.59
37 Rin3 0.59 1.07 spri -1.13 14 1.51 -0.80
38 Scrt2 0.65 0.64 scrt -1.65 24 1.21 -1.07
39 Tmc7 -0.87 -0.72 Tmc -2.16 4 -1.08 -1.22
40 Tnfrsf11a*  0.82 1.18
41 Ttll10 -0.68 -0.86 TTLL1B -9.99 27 -1.33 -5.67
42 Zbtb16 1.23 2.05 CG43120 1.44 36 2.87 0.57
Overall number of Drosophila DEGs homologous to rat DEGs 1,601

Note. NHyDEG - number of Drosophila DEGs homologous to the rat DEG according to FlyBase (Ozturk-Colak et al., 2024). * Rat genes (Flvcr2, Alox12, Evi2b, Il17rd,
l121r, Pedh11x, Tnfrsf11a), for which no homologous Drosophila genes are found in FlyDEGdb v0.1 (Ngyypgg = 0)-
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Consider the representation of this information by the
example of the first row of the table. It describes the rat Acr
DEG. Column I indicates the gene name; columns Il and 1II,
stress-induces changes in its expression in rats of the WAG
and ISIAH strains, respectively. Column 1V indicates the name
of the homologous Drosophila Jon74E gene; column V, the
magnitude of its expression change; and column VI shows the
total number of such Drosophila DEGs homologous to Acr.

Columns VII and VIII show the values of the first (PC1) and
second (PC2) principal components revealed in the analysis
of the above-described experimental data on the magnitude
of stress-induced change in Drosophila DEG expression
from FlyDEGdb and homologous rat genes from RatDEGdb
(Oshchepkov et al., 2024). The analysis was conducted with
Past v.4.04 software (Hammer et al., 2001).

The first principal component (PC1) is the weighted-mean
estimate of the overall stress-induced change in the expression
of homologous Drosophila (DEGy; y) and rat (DEGg sy and
DEGg) genes:

PC1 = 0.110g,(DEGyy) +

+ [10g,(DEGsian) + 10g2(DEGwac)]- 1)

Principal component PC1 explains 65 % of the variance in
the entire set of the considered experimental data on homolo-
gous rat and Drosophila DEGs.

Principal component PC2 is the weighted-mean estimate
of the interspecies difference between Drosophila and rat in
stress-induces changes in the expression of DEGs and their
homologs:

PC2 = logy(DEGsy) —

- 0.1[log,(DEGsjan) + 1092(DEGwac)]:  (2)

Principal component PC2 explains 33 % of the variance in
the considered experimental data.

Thus, we were first to find that two-thirds (65 %) of the
variance in gene expression change in the rat and Drosophila
exposed to stress were determined by common mechanisms
of response to stress (PC1), and one-third (33 %) reflects
interspecies difference between the rat and Drosophila (PC2).

The statistical significance (p < 0.05) of principal com-
ponents PC1 and PC2 found in our study was deduced from
1,000 bhootstrap samples with a special module of Past v.4.04
software (Hammer et al., 2001) (Fig. S1).

The numerical values of PC1 and PC2 are shown in col-
umns VII and VIII of Table 2 and in Figure 3. For example, the
PC1 and PC2 values for the rat Acr gene and the homologous
Drosophila Jon74E gene, described in the first row of Table 2,
are —1.17 and -3.56, respectively.

Figure 3 presents the results of the correlation analysis be-
tween principal components PC1 and PC2 on the grounds of
experimental data on pairs of homologous rat and Drosophila
DEGs (Table 1). Each point in the figure corresponds to the PC
values calculated for a pair of DEGs: Drosophila gene from
FIyDEGdb and the homologous rat gene from RatDEGdb.
The PC1 and PC2 values are plotted along the Y and X axes,
respectively. We see that the red dash-dotted line PC1 = 0
divides all DEGs into two disjoint groups: (1) group of DEGs
with PC1 < 0, indicating stress-induced downregulation in
both rats and Drosophila, and (2) group with PC1 > 0, indi-
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Fig. 3. Results of the correlation analysis between principal compo-
nents PC1 and PC2 for experimental data on pairs of DEGs homologous
between the rat and Drosophila (Table 1).

Principal components: PC1, Y axis; PC2, X axis. Each point corresponds to the
values calculated for a certain pair of DEGs: Drosophila gene from FlyDEGdb
and its homolog from RatDEGdb. The red dash-dotted line is the boundary be-
tween figure areas for stress-induced downregulation (blue) and upregulation
(green) according to the PC1 estimate by Equation (1); the solid line reflects
the linear correlation between PC1 and PC2 at PC1 < 0; the dotted lines border
the 95 % confidence range for the correlation; alphabetical designationsr, y, R,
T, and PADJ are correlation coefficients, respectively: linear correlation, Good-
man-Kruskal generalization; Spearman-Kendal rank correlation, and their sta-
tistical significance levels with Bonferroni correction for multiple comparisons,
as calculated with Statistica software (Statsoft™, United States).

cating stress-induced upregulation in both species, according
to Equation (1).

We can see a qualitative difference between the two DEG
groups (above and below the red line) found in our comparison
of stress-induced changes in the expression of homologous
Drosophila and rat genes. The DEG group with stress-induced
downregulation (blue) demonstrates a highly significant
(p < 10712) positive correlation between PC1 and PC2. By
contrast, no correlation between PC1 and PC2 is observed
in the second DEG group with stress-induced upregulation
(green).

Unexpectedly, our results on the rat and Drosophila coin-
cided with independent observations by D.Yu. Oshchepkov
et al. (2025). They analyzed changes in the expression of
homologous genes of the rat and human induced by stFress
and hypertension, respectively. In both cases, a significant
correlation between the first and second principal components
was noted only in the stress-induced downregulation of ho-
mologous genes.

The correlation between PC1 and PC2 in the PC1 < 0 area,
which corresponds to stress-induced downregulation in the
human, rat, and Drosophila, implies that the species may
share common molecular mechanisms for gene inhibition
under stress conditions of different sorts.
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Table 3. Assessments of gene ontology term enrichment in the group of Drosophila genes with stress-induced downregulation

Gene Ontology (GO)

No. Gene Ontology Gene Ontology term
identifier, GO:ID

1 GO:0005887 integral component of plasma membrane

2 G0:0005892 acetylcholine-gated channel complex

3 GO:0005886 plasma membrane

4 GO0:0120025 plasma membrane-bounded cell projection
5  GO:0005929 cilium

The commonly known molecular mechanisms for gene
expression downregulation under stress include the arrest
of pre-mRNA splicing in eukaryotes (Yost, Lindquist, 1986;
Cuesta et al., 2000) and translation inhibition (Bresson et al.,
2020).

We used the STRING software (Szklarczyk et al., 2021) to
assess the Gene Ontology (GO) term enrichment in the group
of Drosophila genes with stress-induced downregulation (blue
dots in Figure 3). The results are shown in Table 3.

The analysis revealed five GO terms in which the list of
Drosophila genes with stress-induced downregulation is sig-
nificantly (p <0.05) enriched. Four of the five (GO:0005887,
G0:0005892, GO:0005886, GO:0120025, and GO:0005929)
are directly related to components of the plasma membrane.
The fifth term (GO:0005929, cilium), also belongs to this
group, as cilia are specific organelles on the outer surface of
eukaryotic cell membranes. This fact implies that the plasma
membrane of Drosophila cells is one of the universal targets of
stress factors described in FlyDEGdb. In this regard, note that
stress-induced downregulation of Drosophila genes encoding
components of plasma membranes in cells can slower their
growth under stress. Our assumption agrees with the results
presented in (Kassahn et al., 2009), where mechanisms of
animal response to stress factors are reviewed. It should also
be mentioned that M.F. Haque et al. (2025) detected an inhibi-
tion of Escherichia coli cell growth under stress.

To conclude, we note that the year 2023 marked the 80th
anniversary of the famous maxim by Hans Selye “Stress is
the spice of life” (Rochette et al., 2023). Our work once more
illustrates the fundamental significance of the stress issue in
life sciences.

Conclusion

We developed the FlyDEGdb knowledge base, which is a
body of experimental data on differentially expressed genes
(DEGS) of Drosophila and their response to a broad range
of stressing factors: cold, heat, dehydration, heavy metals,
ionizing radiation, starvation, household chemicals, drugs,
agricultural fertilizers, insecticides, pesticides, herbicides,
and other toxicants. The knowledge base, storing information
on the commonly used model species, D. melanogaster, can
be employed by students of translational molecular biology
and genetics of the human and animals, physiology, transla-
tional medicine, pharmacology, nutrition science, agricultural
chemistry, radiation biology, toxicology, and bioinformatics.

960

Enrichment Paps
Share of Drosophila DEGs ~ Share of

with stress-induced GO:D
downregulation

12 of 56 120f520  0.0025
30of 56 30f7 0.005
18 of 56 18 of 1485 0.005
11 of 56 110f717  0.05

6 of 56 6 of 188 0.05
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Abstract. Hepatocellular Carcinoma (HCC) is the most common primary liver cancer characterized by rapid progres-
sion, high mortality rate and therapy resistance. One of the key areas in studying the molecular mechanisms of HCC
development is the analysis of disturbances in apoptosis processes in hepatocytes. Throughout life apoptosis en-
sures the elimination of old and defective cells while the attenuation of this process serves as one of the leading fac-
tors in carcinogenesis. In this study we reconstructed and analyzed the gene network regulating hepatocyte apo-
ptosis in humans based on single-cell transcriptome sequencing (scRNA-seq) data and the ANDSystem knowledge
base which employs artificial intelligence and computational systems biology methods. Comparative analysis of
gene expression revealed weakened transcription of genes involved in the regulation of inflammatory processes
and apoptosis in tumor hepatocytes compared to hepatocytes of normal liver tissue. The reconstructed network
included 116 differentially expressed genes annotated in Gene Ontology as genes involved in the apoptotic pro-
cess (apoptotic process GO:0006915), along with their 116 corresponding protein products. It also included 16 ad-
ditional proteins that, while lacking GO apoptosis annotation, were differentially expressed in HCC and interacting
with genes and proteins participating in the apoptosis process. Computational analysis of the gene network identi-
fied several key protein products encoded by the genes NFKB1, MMP9, BCL2, A4, CDKN1A, CDK1, ERBB2, G3P, MCL1,
FOXO1.These proteins exhibited both a high degree of connectivity with other network objects and differential ex-
pression in HCC. Of particular interest are proteins CDKN1A, ERBB2, IL8, and EGR1, which are not annotated in Gene
Ontology as apoptosis participants but have a statistically significant number of interactions with genes involved in
apoptosis. This indicates their role in regulating programmed cell death. The obtained results can guide the design
of new experiments studying the role of apoptosis in carcinogenesis and aid in the search for novel therapeutic
targets and approaches for HCC therapy using apoptosis modulation in malignant hepatocytes. Furthermore, the
proposed approach to reconstructing and analyzing the apoptosis regulation gene network in hepatocellular car-
cinoma can be applied to analyze other tumor forms providing a systemic understanding of disturbances in key
regulatory processes in oncogenesis and potential therapy targets.
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Reconstruction and analysis of the gene network
regulating apoptosis in hepatocellular carcinoma

13 KNIOYEBbIX HAMPaB/IEHVNIN B N3YyYEHUN MONEKYNIAPHbIX MEXaHN3MOB Pa3BUTUA renaToLeIioNAPHON KapLuHO-
Mbl SABMSETCSA aHaNM3 HapyLLEeHWI NPOLIECCOB anonTo3a B renatounTax. Ha npoTsikeHunn Bcell Xn3Hu Gnaropaps
anonTo3y NPONCXOAUT AMMMUHaLNA CTapbIX 1 AedeKTHbIX KNeTOK, Toraa Kak ocnabneHve anontoTmyecko rubenm
CNYXWT OOHUM 13 Beylmnx GakTopoB KaHLeporeHesa. B HacToALlem UccnefoBaHyv BbIMOIHEHbI PEKOHCTPYKLMA
1 aHann3 reHHOW CeTn perynAaumm anonTo3a renaToLyToB Y YesloBeka Ha OCHOBE laHHbIX CEKBEHPOBaHNA TPaHC-
KpmrnToma ofiMHOUHbIX KneToK (sSCRNA-seq) 1 6a3bl 3HaHMin ANDSystem, ncnonb3ytoLiein MeToabl NCKYCCTBEHHOTO
VNHTeNNIeKTa U KOMMbIOTEPHOW cucTeMHON 6ronornn. CpaBHUTENbHBINA aHaIM3 SKCNPeCcCUn reHOB NMoKasan ocna-
6/1EHNE TPAHCKPUMLMN FEHOB, BOBJIEYEHHbIX B PErY/ALNI0 BOCNANUTENbHBIX MPOLIECCOB 1 anonTo3a, B OMyXoneBbiX
renaToyuTax No CPaBHEHMIO C renaToLTamy HOPManbHOW TKaHM NeyeHn. PeKOHCTPYyMpoOBaHHaA ceTb BKoYana
116 anddepeHLManbHO SKCMPECCUMPYIOLNXCA FEHOB, aHHOTUPOBaHHbIX B Gene Ontology Kak reHbl, BOBNEYEHHble
B npovecc anonTo3a (apoptotic process GO:0006915), 116 cooTBeTCTBYIOLWMX 6ENKOB, @ TakKe 16 AOMONHUTENbHbIX
6enkoB, He umeloLnx GO-aHHoTaumK, Ho auddepeHUranbHO SKCNPeccMpyemblX NPY renaToLeTIONAPHON KapLn-
HOMe 1 BOBNIeYEHHbIX BO B3aVIMOAENCTBUA C reHaMm 1 6efikamu, y4acTByoWMMN B NpoLiecce anonTosa. Komnbio-
TEPHbI aHany3 reHHoW CeTy BbIABWA PAA KitoueBbix 6enkos — npoaykTos reHoB NFKB1, MMP9, BCL2, A4, CDNTA,
CDK1, ERBB2, G3P, MCL1, FOXO1, BeMOHCTPUPYHIOLLMX KaK BbICOKOE UMCI0 CBA3EN C APYrMU OObeKTaMU CETH, TaK U
anddepeHUmnanbHyo SKCNpeccunto Npu renaTouennonapHon KapurHomMe. Ocobblil nHTepec NpeacTaBnaoT 6enku
CDKN1A, ERBB2, IL8 1 EGR1, He aHHOTMpOBaHHble B Gene Ontology Kak y4acTHUKM anonTo3a, Ho obnapatoLyme cTa-
TUCTNYECKM 3HAUYMMbIM YNCSTOM B3aUMOAENCTBUI C reHaMu, BOBJIEYEHHbIMU B anomnTo3, YTO YKa3biBaeT Ha UX Posb
B PErynAumm nporpaMmMmnpyemMoin KnetouHom rubenu. NMonyuyeHHble pesynbTaTbl MOTYT HAUTV NPUMEHEHWE ANA NNa-
HUPOBaAHUA HOBbIX SKCMEPVMEHTOB MO N3YYEHUIO POJI anonTo3a B KaHLieporeHese 1 Noucka HOBbIX MULLEHEN 1
noaxofoB ANA Tepanuy renatoLenoNApHON KapLHOMbI, OCHOBaHHbIX Ha MOAYNALMM anonTo3a B 3/10Ka4eCTBEeH-
HbIX renatouuTax. [peanoxeHHbIN NOAX0A K PEKOHCTPYKLMN U aHaNM3y reHHOW CeTW perynauum anonTosa npw re-
naToLenoNAPHON KapLMHOME MOXKET ObITb MCMOMb30BaH AA aHanm3a apyrux Gopm onyxoneii u Aaet cUcTeMHoe
npeAcTaBneHne O HapyLeHNAX KNoUYeBbIX PEryNATOPHbIX NPOLLECCOB B OHKOreHese 1 NOTeHUNaNbHbIX MULLEHAX
Ana Tepanuun.

KnioueBble cnoBa: renatouenonAapHas KapLUUHOMA; TPAHCKPUNTOMMKA OAMHOYHbBIX KNETOK; afnonTo3; reHHble

ceTu; KOrHUTMBHaA cuctema ANDSystem

Introduction

Hepatocellular carcinoma (HCC) is the most common pri-
mary liver cancer arising from the malignant transformation
of hepatocytes. Approximately 750,000 people die from
this disease worldwide each year (Ganesan, Kulik, 2023).
This malignancy is characterized by marked resistance to
anticancer drugs and a high rate of recurrence (Zou et al.,
2025), underscoring the relevance of investigating both the
molecular mechanisms of tumorigenesis and the development
of tumor resistance —and, on this basis, identifying targets for
anticancer therapy. The principal risk factors for HCC include
chronic infection with hepatitis B and C viruses, alcoholic
cirrhosis, and non-alcoholic steatohepatitis; other established
risk factors comprise obesity, type 2 diabetes mellitus, and
tobacco smoking (Ogunwobi et al., 2019).

Viral infections and/or adverse environmental factors
(exposure to hepatotoxic agents) induce alterations in the
functioning of a number of signaling pathways in hepa-
tocytes, leading to their malignant transformation and the
development of HCC. It has been established that the hepa-
titis B virus X protein (HBX) suppresses the activity of the
pro-apoptotic protein p53, impairs DNA repair, and activates
several signaling cascades (STAT, NF-xB, AP-1, etc.) in-
volved in cell proliferation and survival, thereby promoting
HCC progression (Jiang Y. et al., 2019). The pathogenesis
of HCC involves changes in: (a) growth factor signaling
pathways such as insulin-like growth factor (IGF), epidermal
growth factor (EGF), platelet-derived growth factor (PDGF),
fibroblast growth factor (FGF), and hepatocyte growth factor
(HGF/MET); (b) signaling pathways related to cell differen-
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tiation, including WNT, Hedgehog, and Notch; and (c) an-
giogenesis-related pathways driven by vascular endothelial
growth factor (VEGF) and FGF (Dhanasekaran et al., 2016).
In addition, disruption of apoptosis — programmed cell death —
makes a crucial contribution to HCC progression (Fabregat,
2009). Chronic liver inflammation resulting from hepatitis
B or C virus infection or exposure to adverse environmental
factors leads to hepatocyte apoptosis accompanied by a com-
pensatory increase in their proliferation, which, under condi-
tions of high oxidative stress caused by inflammation, results
in the accumulation of DNA mutations and an increased
likelihood of malignant transformation of hepatocytes (Yang
et al., 2019). Moreover, apoptosis plays a key role in elimi-
nating malignant cells; therefore, activation of apoptosis is
one of the mechanisms of action of anticancer drugs in HCC
(Hajizadeh et al., 2023). It has been shown that suppression
of the extrinsic and intrinsic apoptosis pathways — particu-
larly by regulatory microRNAs — may be associated with
the development of HCC and poor clinical outcomes (Khle-
bodarova et al., 2023). It has also been established that the
hepatitis B virus HBx protein suppresses the activity of the
pro-apoptotic protein p53, contributing to the initiation and
progression of HCC (Jiang Y. et al., 2019). Available data
indicate that disruption of the balance between pro-apoptotic
and anti-apoptotic proteins in hepatocytes is one of the factors
underlying HCC development and the emergence of drug re-
sistance (Ladd et al., 2024; Wu et al., 2024). This necessitates
investigating the mechanisms by which apoptotic pathways
in hepatocytes are perturbed during HCC development and
identifying key regulatory nodes of apoptosis, the expres-
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sion of which differs between healthy and tumor hepato-
cytes.

It is well known that disturbances in the interactions among
tumor cells, the stroma, and immune cells play an important
role in disease progression, fostering HCC development,
the emergence of drug resistance, and recurrence (Xue et
al., 2022). Notably, HCC exhibits a high degree of cellular
heterogeneity, which highlights the importance of methods
that probe the molecular processes of HCC development at
the single-cell level (Li X. et al., 2022).

One such method — single-cell transcriptome sequenc-
ing — provides valuable information on gene expression
features across different cell types within tumor tissue. This
is particularly relevant when comparing malignantly trans-
formed hepatocytes within the tumor to normal hepatocytes
from histologically unaltered liver tissue (Zhang et al., 2022).
However, differential expression analysis alone is insufficient
to elucidate the mechanisms of tumor transformation. Based
on such experimental data, it is necessary to reconstruct
gene networks — ensembles of coordinately functioning
genes — which provide valuable insights into dysregulated
molecular mechanisms of gene—gene interactions responsible
for the development of pathological processes (Saik et al.,
2019; Ivanisenko V.A. et al., 2022; Antropova et al., 2023;
Butikova et al., 2025).

The aim of our study was to reconstruct and analyze the
gene network regulating apoptosis in hepatocytes in human
hepatocellular carcinoma using an integrated approach
that combines single-cell transcriptomic data with the
ANDSystem software-information platform designed for
gene network reconstruction based on automated analysis
of scientific publications and biomedical factual databases
(Demenkov etal., 2011; Ivanisenko V.A. etal., 2015, 2019).
The system employs artificial intelligence methods and an
ontological description of the domain, ensuring high cov-
erage and accuracy in knowledge extraction from diverse
sources of experimental information (lvanisenko T.V. et al.,
2020, 2022, 2024).

By comparing sScRNA-seq transcriptomic data for normal
hepatocytes and hepatocytes malignantly transformed in
HCC, we identified 1,853 differentially expressed genes
(DEGS). Using ANDSystem, we reconstructed an interaction
network between the DEGs and genes annotated in Gene
Ontology as involved in apoptosis (GO:0006915). Analysis
of the resulting gene network highlighted several DEGs,
the products of which (including BCL2, NFKB1, FOXO1,
MCLI1, CDKNIA, ERBB2, IL8, and EGR1) exhibit signifi-
cant connectivity with components of the apoptosis network.
Notably, some of these proteins (CDKN1A, ERBB2, IL8,
EGR1) were not annotated in Gene Ontology as apoptosis
participants, underscoring their potential novelty and impor-
tance for understanding the mechanisms of programmed cell
death in HCC. In addition, based on scRNA-seq data, we
observed decreased expression of key inhibitors of apopto-
sis in hepatocellular carcinoma cells. This finding suggests
that evasion of apoptosis in HCC may be driven not by
the enhancement of anti-apoptotic mechanisms but, on the
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contrary, by disruption of pro-apoptotic signaling pathways.
The results obtained may be useful for planning further ex-
perimental studies aimed at elucidating the mechanisms of
apoptosis regulation in hepatocytes in HCC and are also of
interest for developing targeted therapeutic strategies aimed
at modulating apoptotic processes in tumor cells of the liver.

Material and methods

GEO database. For the analysis, we used single-cell tran-
scriptome sequencing data from primary hepatocellular car-
cinoma (HCC) specimens and paired histologically normal
liver tissues, available in the NCBI Gene Expression Om-
nibus (GEO) under accession GSE149614. Data from eight
patients were analyzed (patients 3,4, 5, 6, 7, 8, 9, and 10).

Transcriptome data analysis. Single-cell RNA-sequenc-
ing (scRNA-seq) data processing and downstream analyses
were performed in Python using the Scanpy package (v1.9.3)
(Wolf et al., 2018). Initial filtering included: (1) removing
cells with detected expression for fewer than 100 genes, and
(2) removing genes detected in fewer than 3 cells. Normal-
ization was carried out with scanpy.pp.normalize_total(),
followed by a loglp transformation. Cell clustering was
performed using the Leiden algorithm (Traag et al., 2019).
Differentially expressed (marker) genes for each identified
cluster were determined with scanpy.tl.rank_genes_groups(),
employing the Wilcoxon rank-sum test.

Based on the expression of known hepatocyte marker
genes (ALB, HNF4A, SERPINA1, CYP3A4, TAT, TF) (Si-
Tayeb et al., 2010) and the clustering results, cells classified
as hepatocytes were selected. For subsequent comparative
analyses between tumor and normal hepatocytes, pseudobulk
samples (Squair et al., 2021) were generated for each patient
by aggregating expression values across all cells separately
for tumor and normal tissue.

Statistically significant differences in gene expression
between the pseudobulk tumor group and the pseudo-
bulk normal hepatocyte group were identified in R using
DESeq2 (v1.42.0) (Love et al., 2014). Differentially expressed
genes were defined by thresholds of p-value < 0.05 and
[logFC| > 0.5.

Reconstruction of gene networks. Reconstruction and
analysis of the gene network regulating hepatocyte apoptosis
in human hepatocellular carcinoma were performed using the
ANDSystem software-information platform (Demenkov et
al., 2011; Ivanisenko V.A. etal., 2015, 2019). The effective-
ness of ANDSystem has been demonstrated in a number of
studies, including reconstruction of the endothelial apoptosis
regulatory network in lymphedema (Saik et al., 2019) and
investigations of molecular mechanisms associated with
hepatocellular carcinoma (Demenkov et al., 2023; Khlebo-
darova et al., 2023). The system has also been applied to the
interpretation of omics data — metabolomics (lvanisenko V.A.
etal., 2022, 2024) and proteomics (Momynaliev et al., 2010;
Larina et al., 2015) — demonstrating its versatility and ap-
plicability to diverse data types and diseases.

The network reconstruction comprised several stages.
First, using the Query Wizard of the ANDVisio software
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module (Demenkov et al., 2011), a graphical user interface
within ANDSystem, we reconstructed an associative gene
network that included genes and their protein products
involved in apoptosis. The list of human protein-coding
genes participating in apoptosis was obtained from The Gene
Ontology Resource (https://geneontology.org/) for the term
G0:0006915 “apoptotic process”.

At the second stage, we searched for novel proteins in-
volved in the regulation of apoptosis in hepatocytes during
HCC development. We considered as candidates those pro-
teins that are not annotated in The Gene Ontology Resource
as apoptosis participants but regulate the expression of the
initial genes involved in apoptosis.

To identify such proteins, using the Pathway Wizard in
ANDVisio, we retrieved all direct relationships of the types
Expression regulation, Expression upregulation, Expression
downregulation, and Interaction from the protein products of
all DEGs identified in the experiment to the DEGs involved
in apoptosis according to Gene Ontology.

We then assessed the statistical significance of the speci-
ficity of the linkage between the identified proteins and the
baseline apoptosis gene network constructed in stage 1. The
specificity metric was defined as the proportion of a protein’s
interactions that connect to genes in the network relative to
the total number of that protein’s genome-wide interactions.
The statistical significance of the deviation between the ob-
served number of a given protein’s interactions with network
genes and the number expected by chance was evaluated
using the hypergeometric distribution:

Poxzn)= S N=x

k=x M '
N
where M is the total number of protein-coding genes in the
database, n is the number of genes in the analyzed gene
network, N is the total number of human genes that interact
with the protein under study, and x is the number of network
genes that interact with the protein under study.

P-values were calculated using the Python library (scipy.
stats.hypergeom). To correct for multiple testing, the Bon-
ferroni adjustment (Narkevich et al., 2020) was applied,
under which DEGs were considered statistically significant
if their Bonferroni-adjusted p-value satisfied p < 0.05. All
computations were performed using statsmodels and other
standard Python tools.

Thus, the final gene network regulating apoptosis during
HCC development included both the DEGs and their products
annotated in Gene Ontology as participating in the apoptotic
process, and the protein products of DEGs that were statisti-
cally significantly linked to this apoptosis network but not
annotated as apoptosis participants in Gene Ontology.

Gene network analysis. For each network component
(gene or protein), ANDSystem computed the Network Con-
nectivity metric, defined as the number of other network
objects (nodes) to which the component is connected (i. €., its
degree). Network hubs were defined as proteins and genes,
Network Connectivity of which exceeded the critical value
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(quantile) corresponding to a p-value of 0.05. The quantile
was calculated from the empirical distribution of Network
Connectivity across all nodes of the gene network. Thus,
the number of connections for hub nodes was statistically
significant at p < 0.05.

Phylostratigraphic analysis of gene networks. The
evolutionary age of genes was determined using the
GenOrigin database (http://chenzxlab.hzau.edu.cn/) (Tong
et al., 2021), which provides gene age annotations across
species inferred by phylostratigraphic analysis. To assess
the statistical significance of differences in the distribution
of gene ages between the full set of human protein-coding
genes and the genes in the reconstructed apoptosis network
of hepatocytes in HCC, we applied a hypergeometric test.
The probability of observing m or more genes from a given
age interval among M network genes was calculated using
the hypergeom.pmf function from SciPy. The analysis was
performed for the 20 age intervals represented in GenOrigin.
The following parameters were used in the calculations:
N — the total number of human protein-coding genes; n —the
number of human protein-coding genes in a given age inter-
val; M — the number of genes in the reconstructed network;
m — the number of network genes within the interval under
analysis. Differences were considered statistically significant
atp <0.05.

Functional annotation of gene sets. Functional annotation
of the genes represented in the network was performed using
the web-based Database for Annotation, Visualization and
Integrated Discovery (DAVID 2021) (https://david.
ncifcrf.gov/; Sherman et al., 2022) with default settings.
Over-representation analysis of Gene Ontology terms
describing biological processes, molecular functions, and
cellular components, as well as KEGG pathways (i.e.,
enrichment analysis of gene sets to identify key biologi-
cal processes associated with the genes under study), was
carried out for (i) the complete set of DEGs identified
from the hepatocyte transcriptome analysis and (ii) the
subset of DEGs included in the hepatocyte apoptosis regu-
latory gene network. In DAVID, over-representation of GO
terms and KEGG pathways was evaluated using Fisher’s
exact test (Sherman et al., 2022). Statistical significance
of enrichment was defined as a Bonferroni—Sidak-adjusted
p-value < 0.05 (Sidak, 1967).

Results

Analysis of differential gene expression in HCC

As a result of comparing single-cell transcriptomes (ma-
lignantly transformed tumor hepatocytes vs. hepatocytes
from histologically normal liver tissue), 1,853 differentially
expressed genes (DEGs) were identified. The data for these
DEGs are provided in Table S11. Among them, 964 genes
showed increased expression and 889 genes showed de-
creased expression in tumor hepatocytes compared with
normal liver cells. The results of the functional annotation

1 Tables $1-57 and Figs S1 and S2 are available at:
https://vavilov.elpub.ru/jour/manager/files/Suppl_Adam_Engl_29_7.xIsx

Vavilovskii Zhurnal Genetiki i Selektsii / Vavilov Journal of Genetics and Breeding - 2025 <29 - 7


https://vavilov.elpub.ru/jour/manager/files/Suppl_Adam_Engl_29_7.xlsx
https://vavilov.elpub.ru/jour/manager/files/Suppl_Adam_Engl_29_7.xlsx

A.B. ApamoBckas, .B. Aubik, M.A. Knewes PeKOHCTPYKLMA 1 aHann3 reHHon ceTn perynaumm anontosa 2025
MN.C. emeHkos, T.B. ViBaHuceHKo, B.A. MiBaHnceHko npw renatoLenIloNApPHON KapLHome 29.7
Table 1. Overrepresented Gene Ontology terms for genes with increased and decreased expression
in tumor hepatocytes compared with hepatocytes from histologically normal liver tissue in HCC
Genes Genes
with increased expression with reduced expression
# Gene Ontology term %*  p-value** # Gene Ontology term %*  p-value**
1 GO:0051301~cell division 7.7 0.000 1 GO:0007165~signal 12.4 0.000
transduction
2 GO:0007059~chromosome 3.6 0.000 2 GO0:0035556~intracellular 5.5 0.000
segregation signal transduction
3 GO0:0006325~chromatin 3.1 0.020 3 GO:0045944~positive regulation 10.9 0.000
organization of transcription by RNA polymerase Il
4 GO0:0006281~DNA repair 3.7 0.005 4 GO0:0000122~negative regulation 9.4 0.000
of transcription by RNA polymerase Il
5 GO:0006260~DNA replication 2.8 0.000 5 GO:0045893~positive regulation 6.6 0.021
of DNA-templated transcription
6 G0:0000398~mRNA splicing, 2.8 0.004 6 GO0:0006915~apoptotic 7.0 0.000
via spliceosome process
7 GO:0006364~rRNA 2.7  0.000 7  GO:0043065~positive regulation 39 0.012
processing of apoptotic process
8 GO0:0006412~translation 34 0.000 8 GO0:0043066~negative regulation 53 0.017
of apoptotic process
9 GO0:0032543~mitochondrial 24 0.000 9  GO0:0006954~inflammatory response 4.7 0.019
translation
10 GO:0006457~protein folding 3.3 0.000 10 GO:0016477~cell migration 4.0 0.000

* Proportion of genes associated with the given term relative to the total number of up- or downregulated genes; ** p-value for the statistical significance of Gene
Ontology term over-representation with the Bonferroni-Sidak correction. The table reports the ten most significant terms (those with the highest proportion
of DEGs associated with the term relative to the total number of DEGs) describing biological processes for the upregulated and downregulated gene sets.

of DEGs using the DAVID web resource — namely, the lists
of significantly overrepresented Gene Ontology terms and
KEGG pathways — are presented in Tables S2 and S3. The
ten most significant biological process terms (those with the
highest proportion of DEGs associated with the term rela-
tive to the total number of DEGSs) for the upregulated and
downregulated gene sets are shown in Table 1.

For the genes with increased expression in malignantly
transformed cells, significantly overrepresented terms were
related to cell division (#1, #2 in Table 1), chromatin organi-
zation (#3 in Table 1), DNA repair and replication (#4, #5 in
Table 1), mRNA splicing (#6 in Table 1), rRNA processing
(#7 in Table 1), protein translation (#8, #9 in Table 1), and
protein folding (#10 in Table 1). For the upregulated genes,
KEGG pathways related to oxidative phosphorylation
(hsa00190: Oxidative phosphorylation) and DNA replication
(hsa03030: DNA replication) were significantly overrepre-
sented (Table S2).

For the genes with decreased expression, significantly
overrepresented terms described intracellular signal trans-
duction (#1, #2 in Table 1), transcriptional regulation (#3-5

CUCTEMHAA KOMIMbIOTEPHAA BUOJTIOTUA / SYSTEMS COMPUTATIONAL BIOLOGY

in Table 1), positive and negative regulation of apoptosis
(#6-8 in Table 1), inflammation (#9 in Table 1), cell migra-
tion (#10 in Table 1), T-cell receptor signaling pathways
(#10 in Table S3), and receptor tyrosine kinases (#11 in
Table S3).

For the genes with increased expression, significantly
overrepresented KEGG pathways included the MAPK sig-
naling pathway (hsa04010), NF-kB signaling (hsa04064),
chemokine signaling (hsa04062), and T-cell receptor signa-
ling (hsa04660) (Table S3).

Gene network of DEGs involved in the apoptosis

process according to Gene Ontology data

As described in the “Materials and methods™ section, re-
construction of the gene network regulating apoptosis in
hepatocytes during HCC development was carried out in two
stages. Given the well-established importance of apoptosis
in HCC (Hajizadeh et al., 2023; Ladd et al., 2024; Wu et al.,
2024), as well as the over-representation of apoptosis-related
processes among downregulated genes identified in our study
(Table 1) in malignantly transformed hepatocytes, the first
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stage incorporated into the gene network those genes and
their protein products that, according to Gene Ontology, are
involved in apoptosis and the expression of which in tumor
hepatocytes differs from that in hepatocytes from histologi-
cally normal liver tissue. Of the 746 protein-coding genes
(Table S4) annotated in The Gene Ontology Resource under
the term “apoptotic process” (GO:0006915), 116 (16 % of all
genes annotated to this term) were differentially expressed
in malignantly transformed hepatocytes. Of these, 49 genes
were upregulated and 67 genes were downregulated in tumor
hepatocytes compared with healthy liver cells, accounting for
42.2 and 57.8 %, respectively, of the 116 apoptosis-related
DEGs. The associative gene network reconstructed using
ANDSystem (Fig. S1) comprised the 116 DEGs involved
in apoptosis and their 116 protein products. Characteristics
of this network are presented in Table 2 (column “Gene
network, stage 1”); its visualization is shown in Fig. S1, and
the full list of components (proteins and genes) is provided
in Table S5.

At the second stage, to identify novel protein regula-
tors of apoptosis during the malignant transformation of
hepatocytes, the network reconstructed in stage one was
expanded by adding the protein products of all DEGs re-
vealed by the comparative analysis of transcriptomes from
malignantly transformed hepatocytes and hepatocytes of
histologically normal liver tissue. In expanding the net-
work, we selected relationship types pertaining to gene
expression regulation — expression regulation, expression
upregulation, expression downregulation, and interaction.
We found that, of the 116 apoptosis-related DEGs, the
expression of 68 genes (59 %) is regulated by 223 proteins
encoded by genes that are differentially expressed in tumor
hepatocytes relative to normal liver tissue, but are not an-
notated in Gene Ontology as participating in apoptosis.
The list of these genes is provided in Table S6. Of them,
102 genes were upregulated and 121 genes were downre-
gulated.

According to functional annotation, the downregulated
genes were significantly overrepresented (Bonferroni-ad-
justed p-value < 0.05) for biological processes including
leukocyte cell—cell adhesion (GO:0007159), neutrophil
chemotaxis (G0:0030593), cell division (GO:0051301),
and positive regulation of the PI3K/Akt signaling pathway
(GO:0051897).

Next, for the 223 candidate proteins potentially involved
in regulating hepatocyte apoptosis during HCC development,
we assessed the statistical significance of their specificity of
association with the apoptosis regulatory gene network. For
each protein, we calculated the probability that the observed
fraction of its interactions with network genes relative to its
total interactions with human protein-coding genes could
arise by chance. As a result, 16 DEGs (11 downregulated
and 5 upregulated) were identified as significantly associated
(Bonferroni-adjusted p-value < 0.05) with 43 apoptosis genes
(Table 3). As seen in Table 3, the products of 1L8, ERBB2,
EGR1, TGFB2, and CDKN1A have the highest numbers
of links to DEGs already annotated in Gene Ontology as
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apoptosis participants. Proteins encoded by CDN1A, ETS2,
EGR1, BACH2, KLF5, and FENL1 are transcription factors
according to The Human Transcription Factors database
(Lambert et al., 2018; https://humantfs.ccbr.utoronto.ca/).

The final gene network of hepatocyte apoptosis in HCC
is shown in Fig. S2, and its characteristics are presented in
Table 2 (column “Gene network, stage 2”). The complete list
of proteins and genes in the network is provided in Table S7.
As seen in Table 2, upon expanding the initial apoptosis
gene network with proteins that regulate the expression of
apoptosis genes, the number of links of all types increased,
with the exception of downregulation. Network hubs — that
is, the nodes (genes or proteins), Network Connectivity (the
number of other nodes connected to a given node) of which
exceeded the critical (quantile) threshold corresponding to
a p-value of 0.05 (see “Materials and methods™) — are listed
in Table 4.

Actotal of 11 network hubs were identified (Table 4), 10 of
which are proteins, and one is the gene MMP9, the product
of which also appears among the network hubs. According to
ScCRNA-seq data (Table S1), the expression of genes encod-
ing three proteins (CDK1, MMP9, G3P) was increased in
malignantly transformed hepatocytes compared with hepa-
tocytes from histologically normal liver tissue, whereas the
expression of genes encoding the remaining seven proteins
(NFKB1, BCL2, A4, CDKN1A, ERBB2, MCL1, FOXO1)
was decreased. The genes encoding two network hubs —
CDKN1A and ERBB2 - had not previously been annotated
in Gene Ontology as participants in the apoptotic process.

Network of gene expression regulation involved

in hepatocyte apoptosis during the development

of hepatocellular carcinoma

Taking into account the scRNA-seq-identified changes in the
expression of genes, the products of which are involved in
hepatocyte apoptosis during HCC development, we analyzed
gene expression regulation within the final apoptosis net-
work. To this end, we filtered the edges of the reconstructed
network, retaining only those proteins that either enhance
(edge type “expression upregulation,” Fig. 1) or suppress
(edge type “expression downregulation,” Fig. 2) the ex-
pression of genes comprising the final apoptosis regulatory
network.

The expression-activation network (Fig. 1) comprised
38 proteins that activate the expression of 40 gene compo-
nents of the apoptosis network. According to ANDSystem,
NFKB1 activates the expression of 15 genes (including
BCL2, MCL1, CFLAR, etc.), IL-8 activates 5 genes, ERBB2
activates 4 genes, and EGR1, SDF1, and TGFB2 each
activate 3 genes; the remaining proteins in the expression-
activation network regulate fewer than three apoptotic
genes. In our scRNA-seq analysis (Table S1), both these
regulators and their target genes exhibited decreased ex-
pression in malignantly transformed hepatocytes compared
with hepatocytes from histologically normal liver tissue. By
contrast, the matrix metalloproteinase gene MMP9, which
was upregulated, is activated, according to ANDSystem, by
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Table 2. Characteristics of associative networks of genes and proteins involved in apoptosis

of hepatocytes in HCC

Parameter

Gene network

Stage 1 Stage 2

Number of network components 238 248

genes 116 116

proteins 116 132
Number of interactions 1,512 1,933

Of these, the following types of interactions:
Gene expression
Expression 116 116
Differential expression 2 2
Coexpression 7 7
Protein interactions
Interaction 259 385
Catalyze 21 29
Cleavage 2 5
Modification 34 50
Regulatory interactions

Regulation 85 95
Upregulation 69 79
Downregulation 24 24
Expression downregulation 122 134
Expression regulation 309 385
Expression upregulation 165 213
Activity downregulation 35 47
Activity regulation 60 79
Activity upregulation 25 35
Modification downregulation 15 17
Modification regulation 54 64
Modification upregulation 51 60
Degradation downregulation 9 12
Degradation regulation 17 34
Degradation upregulation 7 21
Transport regulation 24 40

five proteins (MEIN1, PPIA, TRIB3, CHK1, FENI1), the
expression of which was also increased in tumor hepatocytes.
In addition, CDC20, FEN1, KLF5, and their target genes
showed increased expression.

The expression-repression network (Fig. 2) of genes
involved in apoptosis in HCC comprised 15 proteins con-
nected by “expression downregulation” type of interactions
to 9 genes. According to ANDSystem, the expression of
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MMP9 can be suppressed by five proteins (NFKB1, GELS,
NR4A1l, FOXO1, EGRL1), the expression of which is re-
duced in malignantly transformed hepatocytes according
to scRNA-seq, which may account for the elevated MMP9
expression observed in the sScRNA-seq analysis. The expres-
sion of BCL2, which is decreased in tumor hepatocytes, can
be suppressed by four proteins (CDK1, VDACI1, MMP9,
CYC), the expression of which is increased in malignant
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Table 3. List of proteins encoded by DEGs of malignantly transformed hepatocytes that are involved
in the regulation of apoptosis in HCC but are not annotated in Gene Ontology as participants in apoptosis
(GO:0006915, apoptotic process)

No. Protein Name of the protein Number Expression  p-value
of interactions

DEG Total
1 IL8 C-X-C motif chemokine ligand 8 10 25 Decreased  0.00000
2 ERBB2 Erb-b2 receptor tyrosine kinase 2 9 32 0.00025
3  EGR1 Early growth response 1 7 23 0.01576
4 CDKN1A Cyclin dependent kinase inhibitor 1A 6 35 0.00004
5 TGFB2 Transforming growth factor beta 2 6 14 0.00861
6 ETS2 ETS proto-oncogene 2 transcription factor 5 8 0.00018
7  KLF5 KLF transcription factor 5 5 13 Increased 0.00196
8 SDF1 C-X-C motif chemokine ligand 12 5 15 Decreased  0.04080
9 GELS Gelsolin 4 14 0.0012
10 K2C7 Keratin 7 3 3 0.00071
11 IMA1 Karyopherin subunit alpha 2 3 12 Increased 0.00198
12 FEN1 Flap structure-specific endonuclease 1 3 8 0.00576
13 NEP Neprilysin 3 9 Decreased  0.00765
14 CDC20 Cell division cycle 20 3 19 Increased  0.01919
15  NEUT Neurotensin 3 4 0.02776
16 BACH2 BTB domain and CNC homolog 2 3 7 Decreased  0.03851

Note. Number of interactions to apoptosis DEGs — the number of expression-regulatory links from the protein to genes involved in apoptosis according to Gene
Ontology; Total number of links - the number of links from the protein to all components of the final gene network (genes and proteins); Expression - direction
of the gene’s expression change in tumor hepatocytes relative to normal cells (increased; decreased); p-value - statistical significance of the protein’s association
with apoptosis genes, computed using the hypergeometric test with the Bonferroni correction. Proteins are sorted in descending order of the significance of their
association with the apoptosis network. Transcription factors are shown in bold, according to The Human Transcription Factors database (Lambert et al., 2018;
https://humantfs.ccbr.utoronto.ca/).

Table 4. Hubs of the apoptosis gene network in hepatocytes in human hepatocellular carcinoma

No. Object type Name of the Protein/gene name Number of linked  p-value Expression
in the network object in the network objects
network
1 Protein NFKB1 Nuclear factor kappa B subunit 1 87 0.004 Decreased
2  Gene MMP9 Matrix metallopeptidase 9 48 0.008 Increased
3 Protein BCL2 BCL2 apoptosis regulator 46 0.012 Decreased
4 Protein A4 Amyloid beta precursor protein 43 0.016
5 Protein CDN1A Cyclin dependent kinase inhibitor 1A 35 0.020
6 Protein CDK1 Cyclin dependent kinase 1 33 0.024 Increased
7  Protein ERBB2 Erb-b2 receptor tyrosine kinase 2 31 0.028 Decreased
8 Protein MMP9 Matrix metallopeptidase 9 29 0.036 Increased
9 Protein G3P Glyceraldehyde-3-phosphate dehydrogenase 29 0.036
10  Protein MCL1 MCL1 apoptosis regulator, BCL2 family member 27 0.044 Decreased
11 Protein FOXO1 Forkhead box O1 27 0.044

Note. p-value - the critical threshold (quantile) calculated from the observed distribution of Network Connectivity across all nodes of the gene network. Proteins
not previously annotated in Gene Ontology as participants in the apoptotic process are shown in bold.
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Gene

Protein
Expression upregulation

Fig. 1. Gene network of expression activation for gene components of the apoptosis regulatory network during HCC development.

Proteins and genes with increased expression are outlined in green; those with decreased expression are not outlined. Proteins that had not
previously been annotated in Gene Ontology as participants in apoptosis are shown as larger circles. Shown are only the protein components of
the hepatocyte apoptosis regulatory network in HCC (see Fig. S2) that activate (type of interaction - expression upregulation) the expression of
gene components of the same network.

Gene

Protein
Expression downregulation

Fig. 2. Gene network of expression repression for gene components of the apoptosis regulatory network during HCC development.

Proteins and genes with increased expression are outlined in green; those with decreased expression are not outlined. Proteins not previously
annotated in Gene Ontology as participants in apoptosis are shown as larger circles. Shown are only the protein components of the hepatocyte
apoptosis regulatory network in HCC (see Fig. S2) that suppress (type of interaction — expression downregulation) the expression of gene
components of the same network.

hepatocytes compared with hepatocytes from healthy liver  Phylostratigraphic analysis

tissue. Among the proteins involved in apoptosis regulation  of the gene network

in HCC but not annotated in Gene Ontology as participants ~ The analysis of the evolutionary age distribution of genes
in this process, the expression-repression network included  in the reconstructed apoptosis network in HCC is presented
EGRL1, CDN1A, GELS, and CDC20. in Figure 3. The proportion of genes in the reconstructed
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Age of genes, min years

Fig. 3. Distribution of the evolutionary age of genes in the reconstructed hepatocyte apoptosis network during HCC development.

The X-axis shows gene age intervals (million years) according to the GenOrigin database; the Y-axis shows the proportion of genes in each interval. Blue bars
indicate the distribution for the full set of human protein-coding genes; red bars indicate the distribution for genes in the reconstructed hepatocyte apoptosis
network in HCC. * — denotes statistical significance of the difference in gene representation for a given age interval between the full set of human protein-coding

genes and the reconstructed network.

apoptosis network was significantly higher (p < 0.05, hy-
pergeometric test) than that among all human protein-coding
genes in the following age intervals: (1) 1,480-1,496 mil-
lion years, 13 genes; (2) 952-1,023 million years, 17 genes;
(3) 797824 million years, 5 genes; (4) 676—684 million
years, 14 genes.

Discussion
Apoptosis is a tightly regulated and evolutionarily conserved
program of cell death that performs key functions in normal
physiological processes such as embryogenesis and tissue
homeostasis in the adult organism. Resistance to apoptosis
is a well-known hallmark of cancer cells that supports their
survival and tumor growth (Kashyap et al., 2021). However,
the literature also reports that apoptotic processes can be
activated in tumor cells, especially at late stages of neoplasm
development. Thus, although evasion of apoptosis is a well-
established oncogenic mechanism (Moyer et al., 2025), tumor
cell populations cannot continuously suppress the apoptotic
program across all cells within a tumor (reviewed in Morana
et al., 2022). This indicates specific features of apoptosis
regulation during malignant progression that depend on
tumor stage, tissue of origin, and cell type, given the well-
known cellular heterogeneity of tumors (Li C. et al., 2020).
Therefore, detailed investigation of the molecular genetic
mechanisms of apoptosis in different types of malignan-
cies —particularly HCC — at the single-cell level is required.
In the present study, using publicly available sScRNA-seq
data, we performed a comparative analysis of the tran-
scriptomes of malignantly transformed hepatocytes and
hepatocytes from histologically normal liver tissue, and we
reconstructed the gene network regulating apoptosis in hepa-
tocytes during human hepatocellular carcinoma. Analysis of
the sScRNA-seq data and gene expression regulation within
the reconstructed network showed that expression of genes
NFKBL1, BCL2, and MCL1 — network hubs (Table 4) —is re-
duced in malignant hepatocytes compared with healthy cells.
The BCL2 and MCL1 proteins are known key inhibitors of
apoptosis, as they prevent activation of BAX/BAK, which is

required to increase mitochondrial membrane permeability
and subsequently activate effector caspases (Newton et al.,
2024). Upregulation of BCL2 expression is considered one
of the major mechanisms by which cells acquire resistance
to apoptosis during malignant transformation (Moyer et al.,
2025). However, in our study we observed decreased expres-
sion of BCL2 and MCL1 in HCC hepatocytes, which — ac-
cording to analysis of the apoptosis regulatory network — may
be due both to reduced expression of proteins that activate
BCL2 and MCL1 expression (such as NF-xB, SDF1, ERBB,
IL-8; Fig. 1) and to increased expression of proteins that
suppress BCL2 expression (Fig. 2).

It is noteworthy that NFKB1 is the principal hub of the
hepatocyte apoptosis network in HCC (Table 4) and a key
protein in the network that activates expression of genes
involved in hepatocyte apoptosis (Fig. 2), which, accord-
ing to ANDSystem, can activate a number of anti-apoptotic
genes, including BCL2 and MCL1. In tumors, activation of
the NF-«xB signaling pathway promotes survival by inhibit-
ing apoptosis (Gupta et al., 2023); therefore, the decreased
NFKB1 expression found in our study (Tables S1 and 4) may
plausibly increase hepatocyte susceptibility to apoptosis.
On the other hand, activation of NFKBL1 is reported to be
necessary for apoptosis via the extrinsic pathway induced
by chemokines — particularly IL1b (Wang P. et al., 2023) —
and mediated by the TNFR1 receptor (Moyer et al., 2025).
Thus, reduced NFKB1 expression in malignantly transformed
hepatocytes could, on the one hand, facilitate apoptosis of
malignant hepatocytes by weakening expression of apoptosis
inhibitors, but on the other hand hinder induction of extrinsic
apoptosis, which requires NF-«xB activation. In addition, our
ScRNA-seq analysis (Table S1) showed increased expression
of genes encoding pro-apoptotic proteins in tumor hepato-
cytes, such as BID —a BAX/BAK activator (Moyer et al.,
2025) —and FADD (FAS-associated death domain protein),
a key component of the extrinsic apoptotic pathway (Nagata
et al., 2017; Kashyap et al., 2021). One of the apoptosis
network hubs, cyclin-dependent kinase 1 (CDK1), also
shows increased gene expression in malignant hepatocytes
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(Table S1). G. Massacci et al. (2023) demonstrated that
CDK1 phosphorylates BCL2L1, BCL2, and MCL1, thereby
suppressing their anti-apoptotic functions. However, that
study also emphasized that the role of CDK1 in apoptosis
regulation may depend on experimental context and cell-
specific features.

Overall, the sScRNA-seq data indicate decreased expres-
sion of key anti-apoptotic genes and increased expression
of important pro-apoptotic genes in malignant hepatocytes
compared with healthy hepatocytes. Our results suggest that,
in the context of HCC, a reduction in anti-apoptotic protein
levels is insufficient to trigger apoptosis. This, in turn, sug-
gests that evasion of apoptosis by upregulating inhibitors of
apoptosis is not the predominant mechanism of HCC pro-
gression, which may instead be driven by other causes likely
related to the hepatocyte microenvironment — particularly
dysregulation of inflammatory processes — as supported by
SCRNA-seq studies (Lu et al., 2022; Jiang S. et al., 2024).
We also believe that activating pro-apoptotic effectors, such
as caspases, should be a key therapeutic objective.

It is well known that NF-«B proteins are major regulators
of inflammation, and increased expression stimulates the
inflammatory response (Wang P. et al., 2023). Therefore,
the reduced expression of the NFKB1 gene, which encodes
one member of this family, NFKBL, is consistent with the
attenuated expression of genes involved in the inflamma-
tory response in malignant hepatocytes, as indicated by the
functional annotation of DEGs (Table 1).

Asearch for regulatory links between the DEGs controlling
hepatocyte apoptosis in HCC and proteins — the products of
other DEGs identified by scRNA-seq — allowed us to iden-
tify more than 200 proteins (Table S6) that could potentially
modulate the expression of genes governing hepatocyte apop-
tosis during HCC, even though they are not annotated in Gene
Ontology as regulators of this process. Notably, functional
annotation of the genes encoding these proteins revealed in
tumor cells a reduced expression of genes, the products of
which support leukocyte migration and adhesion — chemo-
kines (CCL5, CXCL2, CXCL8, CXCL1), transforming growth
factor-p2 (TGFB2), the tyrosine kinase SYK, and integrin
ITGA4. However, according to ANDSystem, these same
proteins can regulate key nodes of the hepatocyte apoptosis
regulatory network. In particular, CCL5 induces expression
of matrix metalloproteinase 9 (MMP9) (Sevenich, Joyce,
2014), which is one of the principal hubs of the reconstructed
apoptosis regulatory network in HCC hepatocytes. MMP9 is
a member of the multifunctional family of zinc-dependent
endopeptidases and is activated during inflammation and in
certain cancers. Matrix metalloproteinases cleave extracellu-
lar matrix proteins and play crucial roles in cellular apoptosis,
angiogenesis, tumor growth, and metastasis (Verma et al.,
2015). MMP?9 is known to be capable of inducing apoptosis
(Liang et al., 2019). These findings indicate that reduced ex-
pression of genes encoding key immune defense components
may promote tumor progression not only by weakening the
immune response to transformed cells but also by influencing
apoptotic processes within them.
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At the same time, the previously proposed statistical ap-
proach (Yatsyk et al., 2025) for assessing the significance
of a given protein’s or gene’s association with a network of
interest (in this case, apoptosis), together with analysis of
the reconstructed network, enabled us to prioritize several
proteins — potential participants in the regulation of the
apoptotic process in hepatocytes — the altered expression of
which is likely to disrupt apoptosis regulation in hepatocytes
and thereby contribute to the onset and progression of HCC.
These proteins (ERBB2, CDNI1A, IL8, EGR1) are signifi-
cantly associated with the hepatocyte apoptosis regulatory
network in HCC and act as central regulators (hubs) influen-
cing a large number (>20) of its nodes.

The ERBB family of erythroblastic leukemia viral on-
cogene homologs, which includes the epidermal growth
factor receptor (EGFR) and ERBB2, ERBB3, and ERBB4,
regulates a broad range of essential cellular functions, such
as survival, growth, and migration of tumor cells, and has
therefore attracted attention as a therapeutic target in cancer
(Chen et al., 2024). ERBB2, a member of this family, the
expression of which was reduced in malignant hepatocytes
according to scRNA-seq, has not previously been annotated
as involved in apoptosis regulation, yet it emerged as a
statistically significant hub of the reconstructed apoptosis
regulatory network (Table 4). Elevated ERBB2 expression
is associated with breast tumor growth, and suppression of
ERBB2 and ERBB3 induces apoptosis in breast cancer cells
(Xiang etal., 2010). Although there are no data on the role of
ERBB?2 in apoptosis induction in HCC, our network analysis
indicates that this protein regulates several apoptosis-related
proteins and genes in HCC, including NFKB1, AKT2, CDK1,
MCL1, and FOXOL1. In particular, ERBB2 has been shown to
phosphorylate cyclin-dependent kinase CDKZ1, increasing the
resistance of cancer cells to apoptosis induced by the cyto-
static anticancer drug paclitaxel (\Vahedi et al., 2015). ERBB2
also appears to activate expression of the anti-apoptotic genes
NFKB1, AKT2, and MCLL1 (Fig. 1), which are downregulated
in malignant hepatocytes according to our sScRNA-seq data.
Thus, ERBB2 is an important potential node in the regulation
of apoptosis in hepatocytes, and changes in its expression
may contribute to HCC development.

IL-8, also known as CXCLS, is a pro-inflammatory chemo-
kine of the CXC family. Elevated IL-8 levels are associated
with poor prognosis across various cancers, including hepato-
cellular carcinoma. In HCC, increased IL-8 expression is also
linked to enhanced metastatic potential of tumor cells (Han
et al., 2023). Choi et al. (2016) showed that IL-8 knockdown
promoted apoptosis in HCC cells.

CDN1A (also known as CDKN1A), cyclin-dependent
kinase inhibitor 1A encoded by the CDKNZ1A gene, has not
previously been annotated in Gene Ontology as a protein in-
volved in apoptosis; however, its role in apoptosis during HCC
development has been discussed in the literature (Thanga-
velu et al., 2024). Reports emphasize that the role of CDN1A
in regulating apoptosis during tumorigenesis is context-
dependent, as CDKNZ1A can both suppress and promote
apoptosis (Manu et al., 2019). Experimental data indicate
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that CDKN1A is a p53 target and can stimulate apoptosis
in tumor cells by activating the TNF receptor or the pro-
apoptotic protein BAX, or by modulating the intrinsic
apoptotic pathway via changes in mitochondrial membrane
permeability (Abbas, Dutta, 2009). The natural compound
N-trans-feruloyloctopamine can enhance apoptosis of HCC
cells through its interaction with CDKN1A (Ma et al., 2021).

ANDSystem data indicate that this protein is one of
the central nodes of the apoptosis regulatory network in
hepatocytes during HCC development. It interacts with
other network hubs, in particular with well-known apoptosis
regulators such as NFKB1, BCL2, and CDK1. However,
scRNA-seq analysis showed that CDKN1A expression was
reduced in tumor hepatocytes compared with normal liver
cells (Table 4). These findings suggest that attenuation
of CDKNL1A expression in hepatocytes may represent an
important link in HCC pathogenesis, facilitating tumor-cell
evasion of apoptosis; nevertheless, its role in hepatocyte
apoptosis regulation in HCC requires further experimental
investigation.

Early growth response protein 1 (EGR1) suppresses proli-
feration and enhances apoptosis of malignantly transformed
cells in many tissues and organs, including the liver (reviewed
in Wang B. et al., 2021). It has also been shown that EGR1
can inhibit HCC growth by repressing transcription of
PFKL (phosphofructokinase-1, liver type) and by inhibiting
aerobic glycolysis in tumor cells (Pan et al., 2024). In our
study, EGR1, the expression of which is reduced, acts as an
activator of genes (LCN2, NR3C1, NR4A1; Fig. 1) involved
in apoptosis control, the expression of which is likewise
reduced in malignant hepatocytes. Our results suggest that
decreased EGR1 expression may be one of the mechanisms
underlying weakened apoptosis during malignant trans-
formation.

The use of phylostratigraphic analysis to assess gene evo-
lutionary age is important for studying the evolution of gene
networks and identifying their key components (Mustafin et
al., 2021). Notably, most genes in the hepatocyte apoptosis
network and those in the overrepresented age intervals are
older than 600 million years (Fig. 3), whereas relatively
young genes are scarce, indicating evolutionary conserva-
tion of the network genes and their importance for cellular
viability. In particular, the overrepresented group of genes
aged 1,480-1,496 million years corresponds to the period of
mitochondrial—-eukaryotic cell symbiosis (Raval et al., 2023).
During these stages of symbiosis, many genes responsible for
mitochondrial programmed cell death evolved, including key
factors regulating cytochrome c release and oxidative stress
control —early adaptations that maintained symbiotic balance
(Zmasek, Godzik, 2013). Moreover, we found a statistically
significant excess of genes in the hepatocyte apoptosis net-
work, relative to the human genome as a whole, within the
952-1,023-million-year interval. This interval includes, in
particular, proteins such as BCL2 — a network hub - and
BCL2L1. These proteins are well-known key inhibitors of
apoptosis (Moyer et al., 2025). Orthologs of BCL2 family
genes are found in sponges (Porifera), placozoans (Placo-

974

Reconstruction and analysis of the gene network
regulating apoptosis in hepatocellular carcinoma

zoa), and hydras (Hydra) (Banjara et al., 2020), i.e., at a
relatively early stage of metazoan evolution. The critical role
of apoptosis in innate and adaptive immunity suggests that
this function arose early in the evolution of multicellular-
ity and likely preceded the adaptation of apoptosis to other
processes — such as development, homeostasis, and removal
of damaged cells in Metazoa — laying the groundwork for
complex multicellular life (Suraweera et al., 2022). Thus,
changes in hepatocyte gene expression during HCC involve
highly conserved genes — including the network hub BCL2 —
that, beyond apoptosis, may regulate other cellular processes,
underscoring the complexity of regulatory interactions during
malignant transformation.

Accordingly, our study — using an integrated approach that
included hepatocyte transcriptome analysis and reconstruc-
tion/analysis of a DEG network involved in apoptosis — pro-
vides new insights into the regulation of hepatocyte apoptosis
during human HCC development. Our findings, which show
decreased expression of key apoptosis inhibitor genes, sup-
port the view that evasion of apoptosis is not invariably
characteristic of cancer cells and that the role of apoptosis in
tumor development depends on the cell type, tissue context,
and tumor microenvironment (Morana et al., 2022). In addi-
tion, reduced expression in malignant hepatocytes of genes
involved in inflammatory control, together with decreased
NFKBI1 —a central regulator of inflammation (Wang P. et al.,
2023) — points to an important role for interactions between
hepatocytes and the immune system in HCC development,
warranting further experimental and theoretical investigation.
The identified network hubs (NFKB1, MMP9, BCL2, A4,
CDN1A, CDK1, ERBB2, G3P, MCL1, FOXO1) may serve
as useful targets for modulating apoptosis in hepatocytes in
HCC therapy, an increasingly promising direction (Ladd et
al., 2024; Wu et al., 2024).

Conclusion

Analysis of sScRNA-seq data from normal and malignantly
transformed hepatocytes revealed changes in the expression
of genes involved in the control of hepatocyte apoptosis
in HCC. In malignant hepatocytes, expression of the key
apoptosis inhibitors BCL2 and MCL1 was decreased, as
was the expression of genes involved in the inflammatory
response. These findings indicate that evasion of apoptosis
by upregulating key apoptosis inhibitors does not appear
to be a characteristic feature of hepatocytes during HCC
development. Reconstruction and analysis of the hepatocyte
apoptosis — regulatory network in HCC showed that reduced
expression of NFKB1 may be an important factor under-
lying the decreased expression of a range of apoptosis-related
genes, including BCL2 and MCLL. In addition, network
reconstruction and analysis identified several key genes
(NFKB1, MMP9, BCL2, A4, CDN1A, CDK1, ERBB2, G3P,
MCL1, FOXO1) that both display differential expression in
malignant versus healthy hepatocytes and function as hubs
of the hepatocyte apoptosis network in HCC. Dysregulated
expression of these genes may lead to apoptosis dysregula-
tion in tumor cells.
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Among the DEGs, we also identified genes (CDKN1A,
ERBB2, IL8, EGR1) that, although not annotated in Gene
Ontology as apoptosis participants, exhibited numbers of
regulatory interactions of their products with apoptosis genes
that significantly exceeded chance expectations according to
a hypergeometric test. This suggests that the proteins encoded
by these genes play specific roles in regulating hepatocyte
apoptosis in HCC and represent promising candidates for
further investigation.

The results obtained can be used to guide future experi-
mental studies on the regulation of hepatocyte apoptosis in
HCC. The hypotheses proposed may facilitate the develop-
ment of targeted therapeutic strategies aimed at modulating
programmed cell death in malignant liver cells.
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the HH_Signal pathway db knowledge base
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Abstract. The rapid advancement of omics technologies (genomics, transcriptomics, proteomics, metabolomics) and
other high-throughput methods for experimental studies of molecular genetic systems and processes has led to the
generation of an unprecedentedly vast amount of heterogeneous and complex biological data. Effective use of this
information resource requires systematic approaches to its analysis. One such approach involves the creation of do-
main-specific knowledge/data repositories that integrate information from multiple sources. This not only enables the
storage and structuring of heterogeneous data distributed across various resources but also facilitates the acquisition
of new insights into biological systems and processes. A systematic approach is also critical to solving the fundamental
problem of biology - clarifying the regularities of morphogenesis. Morphogenesis is regulated through evolutionarily
conserved signaling pathways (Hedgehog, Wnt, Notch, etc.). The Hedgehog (HH) pathway plays a key role in this pro-
cess, as it begins functioning earlier than others in ontogenesis and determines the progression of every stage of an or-
ganism’s life cycle: from structuring embryonic primordia, histo- and organogenesis, to maintaining tissue homeostasis
and regeneration in adults. Our work presents HH_Signal_pathway_db, a knowledge base that integrates curated data
on the molecular components and functional roles of the human Hedgehog (HH) signaling pathway. The first release
of the database (available upon request at bukharina@bionet.nsc.ru) contains information on 56 genes, their protein
products, the regulatory interaction network, and established associations with pathological conditions in humans.
HH_Signal_pathway_db provides researchers with a tool for gaining new knowledge about the role of the Hedgehog
pathway in health and disease, and its potential applications in developmental biology and translational medicine.
Key words: knowledge base; Hedgehog signaling pathway; morphogenesis; evolution; gene networks; regulatory
circuits
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CurnanbHbIN IyTh Hedgehog v yenoBeka:
omnmcaHue B 6ase 3HaHuiit HH Signal pathway db

T.A. Byxapuna (D 2@, A.M. Boupapenko?, A.IT. ®ypman’ 2@

1 DepepanbHblii NCCNEROBATENbCKUI LeHTP VHCTUTYT ymtonorum u reHetrnkn Cnbrpckoro otaeneHnsa Poccuinckoln akagemmnm Hayk, HoBocnbupck, Poccus
2 HoBOCUBMPCKMI HALMOHaNbHbI NCCNE[OBATENbCKMI roCyAapCTBEHHbIV YHUBepcuTeT, HoBocnbmpck, Poccus

@ bukharina@bionet.nsc.ru; furman@bionet.nsc.ru

AHHoTauus. CTpemuTeNibHOE Pa3BUTVIE OMUKCHBIX TEXHONOTUI (FEHOMUKM, TPAHCKPUMTOMUKHM, NPOTEOMUKM, MeTabo-
NIOMUKM) 1 APYTUX BbICOKOMPOU3BOAUTENbHBIX METOAOB SKCMEPUMEHTASIbHOMO UCCNEeL0BaHNA MOSIEKYNAPHO-TeHET-
UECKMX CMCTEM 1 NPOLIECCOB MPUBENO K reHepaumm 6ecnpeLelEHTHO OrPOMHbIX 06BEMOB Pa3HOPOAHDBIX U CIIOKHbIX
6r10M10rMYECKNX JaHHbIX. dPdEKTVBHOE NCMOMb30BaHKE 3TOr0 MHPOPMALMOHHOTO pecypca TPebyeT CUCTEMHbIX MOA-
XOA0B K X aHanu3y. OfuH 13 NOAXOA0B COCTOUT B CO3LaHNU NMPeAMETHO-OPUEHTNPOBAHHBIX 633 3HaHWI/AaHHbIX — pe-
NO3VTOPVEB, UHTEMPUPYIOLWMX MHGOPMALINIO N3 MHOXKECTBA MCTOUHMKOB, UTO MO3BOJIAIET HE TOJIbKO XPaHUTb U CTPYK-
TyprpoBaTb pacrnpefeneHHble Mo PasNYHbIM NCTOYHUKAM reTeporeHHble JaHHble, HO U MOoJlyYaTb HOBble CBEefeHNs
0 6MONOrMYecKknx cMcTeMax U npoueccax. Kputnyeckn BaxkeH CUCTEMHbIM MOAXOA Y K pelueHunio dyHAaMeHTaIbHOM
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CurHanbHbi NyTb Hedgehog y uenoseka:
onvcaHue B 6a3e 3HaHmin HH_Signal_pathway_db

3afiaun 6UONOrMn — BbIICHEHMIO 3aKOHOMepPHOCTel MopdoreHesa. Perynauysa MmopdoreHesa ocyLlecTBAAeTcs Yepe3
3BONIOLIMOHHO KOHCEepBaTMBHble cUrHanbHble Nyt (Hedgehog, Wnt, Notch u ap.). KnioueBas ponb B 3Tom npouecce
npuHapnexut nytn Hedgehog (HH), nockonbKy B oHTOreHe3e OH HauMHaeT GyHKLMOHMPOBATb paHee ApYyruxX v aeTep-
MUHUPYET peann3aLuio Kaxaoro 3tana MHAWBMAYaNbHOIO Pa3BUTUS OpraHn3mMa: OT CTPYKTYpMPOBaHNA SMOPUOHab-
HbIX 3a4aTKOB, MMCTO- N OpraHoreHesa A0 NoAAepPXaHUA TKaHEBOrO roMeocTasa U npoLecca pereHepaLumn y B3poc-
nbix ocobein. Hamm co3paHa 6a3a 3HaHuin HH_Signal_pathway_db, B KoTopyto cBefieHa nHpopmaLma 0 KOMMOHEHTaxX
1 ¢oyHKumMax HH curHanbHoro nyTn y uenoseka. MNepBbiit penns 6a3bl ([ocTtyneH no 3anpocy bukharina@bionet.nsc.ru)
COAEPXKUT UHPOPMALIMIO O BXOAALLMX B HEFO 56 reHax, Nx 6esIKoBbIX MPOLyKTax, CETW perynsaTopHbIX B3aMMOLENCTBUN,
a TakKe 06 YCTaHOB/NEHHbIX CBA3SX C HEKOTOPbIMM MATONOrMYeCKMMM COCTOsAHMAMY YenoBeka. HH_Signal_pathway_db
npepocTaBnseT UCCefoBaTeNIM UHCTPYMEHT /s NoyYeHUs HOBbIX 3HaHWI o ponu nyTn Hedgehog B Hopme 1 npu
NaTonorin 1 BO3MOXXHOCTAX NMPUMEHEHNA UX B 0651aCTV 6UOIOrM Pa3BUTUA 1 TPAHCIALMOHHON MEANLIMHDI.

KnioueBble cnioBa: 6a3a 3HaHUIA; cUrHanbHbI NyTb Hedgehog; mopdoreHes; sBontouns; reHHble CeTu; perynaTopHble

KOHTYpblI

Introduction

Modern molecular-genetic and biomedical studies using ad-
vanced techniques generate vast amounts of heterogeneous
information (Regev etal., 2017; Schermelleh etal., 2019, Ken-
neth, 2022). This includes data obtained during investigations
of various aspects of morphogenesis — a fundamental process
leading to the formation of intricate organism architecture.
Understanding the mechanisms underlying morphogenesis
is essential not only for answering one of biology’s most
profound questions — how a single cell gives rise to a highly
complex, spatially organized multicellular organism — but
also for explaining the mechanisms of tissue regeneration, the
causes of congenital anomalies, and pathological conditions
of various etiologies, including oncological diseases.

Numerous genes, proteins, miRNAs, and signaling mo-
lecules are involved in regulating morphogenesis (ENCODE
Project Consortium, 2012; Briscoe, Thérond, 2013; Bartel,
2018; Ghafouri-Fard et al., 2022; Mclntyre et al., 2024). Some
of these components belong to specific signaling pathways.

Signaling pathways (signal transduction) act as transmit-
ter of signals received at the external cell membrane into the
nucleus. Cascades of intermolecular interactions involving
ligands, receptors recognizing those ligands, intracellular
signal transducers of both protein and non-protein nature,
transcription factors and co-regulators, etc., mediate pathways.
The outcome of pathways’ activity is alteration of target gene
expression and corresponding protein levels, which ultimately
leads to changes in the functional state of the cell.

Signaling pathways in animals and humans are evolution-
arily conserved, and their roles are similar across different
taxonomic groups. The pathways constitute complex networks
characterized by crosstalk, and the development of a fully-
functional organism requires the precise coordination of their
activities. Signaling pathways are critically important for
normal ontogenesis, mutations or alterations in gene expres-
sion within these pathways can lead to severe developmental
disorders (Artavanis-Tsakonas et al., 1999; Ingham, McMa-
hon, 2001; Logan, Nusse, 2004; Rubin, 2007; Perrimon et al.,
2012; Briscoe, Thérond, 2013; Huttlin et al., 2017).

The Hedgehog (HH) signaling pathway, which owes its
name to the discovery of the hedgehog (hh) gene in Drosophila
melanogaster in the early 1980s, plays a substantial role in
controlling morphogenesis. The larvae of flies mutant for this
gene are covered with spines, giving them a hedgehog-like
appearance (Nusslein-Volhard, Wieschaus, 1980).
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The Hedgehog signaling pathway is not merely one of the
pathways orchestrating organismal development, but a central
regulator of morphogenesis. It determines the anterior-poste-
rior and dorso-ventral body axes and segmentation of embryo-
nic primordia in animals, histo- and organogenesis, and the
maintenance of stem cell pools in adult tissues, among other
processes. Dysfunction of this signaling pathway is associated
with numerous congenital anomalies and human diseases,
including cancer of various organs (Ingham, McMahon, 2001;
Spinella-Jaegle et al., 2001; Varjosalo, Taipale, 2007; Briscoe,
Thérond, 2013; Wu et al., 2017; Skoda et al., 2018; Jamieson
et al., 2020; Fitzsimons et al., 2022; Ingham, 2022; Dutta et
al., 2023; Jing et al., 2023). It is exactly the reason, that there
continues to be unrelenting interest in comprehensive investi-
gation of the molecular-genetic organization and functioning
mechanisms of the HH pathway. The general scheme of the
Hedgehog signaling pathway is shown in Figure 1.

For the transmission of the HH signal, the recipient cell must
contain a specific set of core proteins involved in the process,
which must be in certain functional states. These proteins
include: the transmembrane receptors Patched1 and Patched2
(PTCHL/2), the inactive form of the transmembrane protein
Smoothened (SMO), complexes formed by transcription fac-
tors GLI1/3 and scaffold protein Suppressor of fused homolog
(SUFU), active protein kinase A (PKA), which is responsible
for generating the repressive form of the transcription factor
GLI3 (GLI3R).

When the signaling pathway is inactive due to absence of
HH ligands (Fig. 1a), PTCH1/2 receptors are localized on the
primary cilium — a specialized external organelle of the cell
that acts as a sensor for outside signals (Ingham, McMahon,
2001; Eggenschwiler, Anderson, 2007; Oro, 2007; Carballo
et al., 2018).

PTCH1/2 block the migration of the SMO protein, which
is located in the intracellular space, to the ciliary membrane,
and SMO cannot interact with protein kinase A (PKA) to in-
hibit its activity. As a result, PKA phosphorylates the GLI13/
SUFU complex, the complex dissociates, and GLI3 undergoes
proteolytic cleavage to form the repressor GLI3R, which
then enters the nucleus and suppresses the transcription of its
target genes, including some genes of the HH pathway itself
(Gorojankina, 2016; Dilower et al, 2023).

Signal transduction activation occurs when extracellular
ligands — proteins belonging to the Hedgehog family (three
types exist in humans: Sonic Hedgehog (SHH), Indian Hedge-
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Fig. 1. General scheme of the human Hedgehog signaling pathway.

a - the mechanism of action when no HH ligand is present; b — the mechanism when PTCH1/2 receptors bind to HH ligands (details

explained in text).

hog (IHH), and Desert Hedgehog (DHH)) — bind to PTCH1/2.
The ligand/receptor complex is then removed from the ciliary
membrane and transported to the intracellular space, where it
is degraded in the lysosome. The position of PTCH1/2 is taken
by SMO, which suppresses the activity of protein kinase A,
thereby preventing the phosphorylation of the SUFU/GLI3
complex and the formation of GLI3R. Subsequently, within
the cilium, the SUFU/GLI11/3 complexes are degraded, and the
active forms of GLI11/3 are generated. These enter the nucleus
and activate the transcription of target genes, ensuring signal
transmission (Ingham, McMahon, 2001; Varjosalo, Taipale,
2007; Briscoe, Therond, 2013; Gorojankina, 2016) (Fig. 1b).

There are two variants of the HH pathway — the canonical
one, shown in Figure 1, and the non-canonical one, in which
the activation of the GLI1/3 transcription factors occurs
without the involvement of SMO, thereby altering the signal
transduction route (Brennan et al., 2012; Briscoe, Thérond,
2013; Carballo et al., 2018).

Currently, information concerning the HH pathway in
humans is scattered across a vast number of sources (at the
time of writing, on request “Hedgehog signaling” in PubMed
alone returns 15,247 publications: https://pubmed.ncbi.nim.
nih.gov/?term=hedgehog+signaling), and this body of litera-
ture is continually expanding. Despite the extensive growth
in the number of studies in this field, a complete and thorough
understanding of the evolution, structure, and mechanisms
of the HH pathway has not yet been achieved (Ingham et al.,
2011; Briscoe; Thérond, 2013; Breeze, 2022).
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To integrate, structure, and analyze existing data, the authors
are creating a specialized knowledge base HH_Signal_path-
ways_db. The database is curated with diverse information
related to all aspects of the organization and functioning of
the Hedgehog pathway, which enables a systematic approach
to its study.

Bioinformatic analysis of the structural and functional
organization of the HH pathway opens up opportunities for
deeper insight into the molecular-genetic basis of morphoge-
nesis, mechanisms of organ and tissue regeneration, the aging
process, the emergence of pathologies of various etiologies,
as well as for developing methods for their diagnosis and
pharmacotherapy.

As part of this work, new results have been obtained, inclu-
ding reconstruction of the associative gene network of the HH
signaling pathway, identification of regulatory circuits, and
acquisition of data regarding the evolution of genes involved
in the pathway.

Materials and methods

Structure and content of the HH_Signal_pathway db
knowledge base. Figure 2 shows a block diagram of the
database format developed by the authors.

The list of genes included in the human HH pathway
(Table 1) was extracted from the KEGG database (https://
www.genome.jp/kegg/) by querying (Environmental Informa-
tion Processing— Signal Transduction—Hedgehog Signaling
Pathway).
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To fill the “gene information” and “gene product informa-
tion” blocks, data were retrieved from the NCBI Gene (https://
www.ncbi.nlm.nih.gov/gene), UniProt (https://www.uniprot.
org), TRRUST (https://www.grnpedia.org/trrust/) data-
bases.

Data for the “TPB affinity to the promoter” block (TBP,
the TATA-binding protein, is a key regulator of transcription
initiation in eukaryotic genes) was taken from the Human_
SNP_TATAdb database (Filonev et al., 2023).

The “evolutionary characteristics” block was filled using
Orthoweb, a specialized software package developed to cal-
culate two evolutionary indices: the phylostratigraphic age
index (PAI) and the divergence index (DI) (Mustafin et al.,
2021; Ivanov et al., 2024).

The PAI index reflects the distance of a taxon from the root
of the phylogenetic tree and is calculated as the distance from
the root to the node where the divergence of the species under
study from the most distant related taxon occurred: the higher
the PAL, the “younger” the gene in question. For human genes,
PAI values range from 0 (Cellular Organisms, the root of the
tree) to 15 (Homo sapiens).

The gene evolutionary variability index (DI — Divergence
Index) estimates the ratio between non-synonymous sub-
stitutions (which alter the encoded amino acid) in the sequen-
ces of the analyzed gene and its ortholog (dN), and synony-
mous substitutions (which do not change the encoded amino
acid) (dS) in the nucleotide sequences of genes and their
orthologs:

> dnds;
DI = ==—,
where dnds; is the dN/dS value for the gene and its i-th ortho-
log, and n is the number of orthologous genes.

The DI allows for determining the type of selection pressure
acting on a given gene. DI values <1 and >1 are interpreted
as evidence of stabilizing and positive selection, respectively,
while DI = 1 indicates neutral evolution (Jeffares et al., 2015;
Spielman, Wilke, 2015).

To construct the associative gene network and identify
regulatory circuits (lower-dimensionality gene networks), the
cognitive software and information system ANDSystem was
used. This platform employs artificial intelligence methods to
automatically extract knowledge from scientific publications
and factual databases and, via the ANDVisio module, visua-
lizes the results as a graph (Demenkov et al., 2011; lvanisenko
etal.,, 2015, 2019, 2022).

The gene network was reconstructed for 56 genes of the
Hedgehog signaling pathway. It reflects associations with pro-
teins encoded by these genes (“expression”), with transcription
factors regulating gene expression (“expression regulation”),
with proteins regulating protein transport (“transport regula-
tion”), and with miRNAs involved in post-transcriptional
regulation of protein expression (“miRNA regulation”).

Functional annotation of genes was performed using
the DAVID web resource (https://davidbioinformatics.nih.
gov/) (Sherman et al., 2022). This tool identifies biological
processes that are statistically overrepresented in the analyzed
gene set. The false discovery rate (FDR), calculated using the
Benjamini-Hochberg correction, was used as the significance
criterion. Only processes with an FDR < 0.05 were considered.
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Fig. 2. Block diagram of the HH_Signal pathway_db knowledge base.

Results and discussion

The HH_Signal_pathway_db knowledge base
The current version of the HH_Signal_pathway_db contains
structured information on 56 human genes related to the HH
pathway (Table 1). The first release of the database contains
the following blocks: 1) a list of HH signaling pathway genes
with links to literary sources from the PubMed database;
2) lists of proteins encoded by HH signaling pathway genes
and their functions; 3) Gene Ontology terms; 4) values of gene
evolutionary age indices (PAI); 5) values of gene evolutionary
variability indices (DI); 6) values of TBP binding affinity to
gene promoters, a key determinant of transcription intensity;
7) lists of pathologies associated with each gene; 8) a recon-
structed associative gene network and the regulatory circuits
identified within it. A sample of filled database blocks for
a specific gene, using the SMURF2 gene as an example, is
shown in Figure 3.

Below are some results of bioinformatic analysis of the
information presented in the HH_Signal_pathway_db.

Functional annotation of HH signaling pathway genes
Analysis of biological process terms in Gene Ontology
(GO) for the 56 genes performed using the DAVID resource,
revealed 221 biological processes statistically significantly
associated with the signaling pathway. Generally, these
processes can be conditionally grouped into three main
categories: morphogenesis (94), intracellular processes
(60), and intercellular communication (67). Table 2. For all
processes listed FDR < 0.05.

Morphogenesis
* GO:0042733~embryonic digit morphogenesis
* GO:0042475~o0dontogenesis of dentin-containing tooth
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Table 1. Genes of the Hedgehog signaling pathway (according to the KEGG database

No. Gene symbol Gene ID Gene full name

1 ARRB1 408 arrestin beta 1

2 ARRB2 409 arrestin beta 2

3 BCL2 596 BCL2 apoptosis regulator

4 BOC 91653 BOC cell adhesion associated, oncogene regulated
5 BTRC 8945 beta-transducin repeat containing E3 ubiquitin protein ligase
6 CCND1 595 cyclin D1

7 CCND2 894 cyclin D2

8 CDON 50937 cell adhesion associated, oncogene regulated

9 CSNK1AT 1452 casein kinase 1 alpha 1

10 CSNK1ATL 122011 casein kinase 1 alpha 1 like

1 CSNK1D 1453 casein kinase 1 delta

12 CSNKT1E 1454 casein kinase 1 epsilon

13 CSNK1G1 53944 casein kinase 1 gamma 1

14 CSNK1G2 1455 casein kinase 1 gamma 2

15 CSNK1G3 1456 casein kinase 1 gamma 3

16 CcuL1 8454 cullin 1

17 CUL3 8452 cullin 3

18 DHH 50846 desert hedgehog signaling molecule

19 DISP1 84976 dispatched RND transporter family member 1

20 EFCAB7 84455 EF-hand calcium binding domain 7

21 EVC 2121 EvC ciliary complex subunit 1

22 EVC2 132884 EvC ciliary complex subunit 2

23 FBXW11 23291 F-box and WD repeat domain containing 11

24 GAST 2619 growth arrest specific 1

25 GLI1 2735 GLI family zinc finger 1

26 GLI2 2736 GLI family zinc finger 2

27 GLI3 2737 GLI family zinc finger 3

28 GPR161 23432 G protein-coupled receptor 161

29 GRK2 156 G protein-coupled receptor kinase 2

30 GRK3 157 G protein-coupled receptor kinase 3

31 GSK3B 2932 glycogen synthase kinase 3 beta

32 HHAT 55733 hedgehog acyltransferase

33 HHATL 57467 hedgehog acyltransferase like

34 HHIP 64399 hedgehog interacting protein

35 IHH 3549 Indian hedgehog signaling molecule

36 IQCE 23288 1Q motif containing E

37 KIF3A 11127 kinesin family member 3A

38 KIF7 374654 kinesin family member 7

39 LRP2 4036 LDL receptor related protein 2

40 MEGF8 1954 multiple EGF like domains 8

41 MGRN1 23295 mahogunin ring finger 1

42 MOSMO 730094 modulator of smoothened

43 PRKACA 5566 protein kinase cCAMP-activated catalytic subunit alpha
44 PRKACB 5567 protein kinase cAMP-activated catalytic subunit beta
45 PRKACG 5568 protein kinase cCAMP-activated catalytic subunit gamma
46 PTCH1 5727 patched 1

47 PTCH2 8643 patched 2

48 SCUBE2 57758 signal peptide, CUB domain and EGF like domain containing 2
49 SHH 6469 sonic hedgehog signaling molecule

50 SMO 6608 smoothened, frizzled class receptor

51 SMURF1 57154 SMAD specific E3 ubiquitin protein ligase 1

52 SMURF2 64750 SMAD specific E3 ubiquitin protein ligase 2

53 SPOP 8405 speckle type BTB/POZ protein

54 SPOPL 339745 speckle type BTB/POZ protein like

55 SUFU 51684 SUFU negative regulator of hedgehog signaling
56 TPTEP2-CSNKTE 102800317 TPTEP2-CSNK1E readthrough
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List of genes involved
in HH signalling patway

(56 genes)
Gene information block
gene ID: SMURF2
Gene official symbol
Gene official full name List of pathologies
Block (ANDSystem)

Evolutionary
characteristics

Block
Infinity of the TBP to gene promotor
49.9
Block
3.96 association with
pathologies
Gene product information block
23
Product type: Protein
Product ID:

Product official symbol

Block
gene ontology terms

Fig. 3. An example of filling out the HH_Signal_pathway_db knowledge base block for the SMURF2 gene.

* GO:0007507~heart development * GO:0001942~hair follicle development

* GO:0001658~branching involved in ureteric bud * GO:0021983~pituitary gland development
morphogenesis * GO:0001822~kidney development

* GO:0003151~outflow tract morphogenesis * GO:0001525~angiogenesis

* GO:0030324~lung development * GO:0042060~wound healing

* GO:0003180~aortic valve morphogenesis * GO:0001889~liver development

* GO:0045766~positive regulation of angiogenesis * GO:0072091~regulation of stem cell proliferation

* GO:0001501~skeletal system development etc.
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Intracellular processes
Regulation of transcription
* GO:1902895~positive regulation of miRNA transcription
* GO:1902894~negative regulation of miRNA transcription
* GO:0006357~regulation of transcription by RNA
polymerase Il
* GO:0006338~chromatin remodeling
* GO:0006355~regulation of DNA-templated transcription
* GO:0010468~regulation of gene expression
Response to stress
* GO:0071456~cellular response to hypoxia
* GO:0034599~cellular response to oxidative stress
* GO:0071466~cellular response to xenobiotic stimulus
* GO:0034644~cellular response to UV
* GO:0006974~DNA damage response
Regulation of cyclic processes
* GO:0048511~rhythmic process
* GO:0051726~regulation of cell cycle
Apoptosis
* GO:0043066~negative regulation of apoptotic process
* GO:0043065~positive regulation of apoptotic process
Intercellular communication
* GO:0042127~regulation of cell population proliferation
* GO:0050673~epithelial cell proliferation
* GO:0010595~positive regulation of endothelial cell
migration
* GO:0001938~positive regulation of endothelial cell
proliferation
* GO:0042127~regulation of cell population proliferation
* GO:0072089~stem cell proliferation
etc.
Involvement in signaling pathways
* GO:0038084~vascular endothelial growth factor signaling
pathway
* GO:0007173~epidermal growth factor receptor signaling
pathway

* GO:0008543~fibroblast growth factor receptor signaling
pathway

* GO:0007224~smoothened signaling pathway

* GO:0060070~canonical Wnt signaling pathway

* GO:0030509~BMP signaling pathway

* GO:0000165~MAPK cascade

* GO:0007219~Notch signaling pathway

* GO:0070371~ERK1 and ERK?2 cascade

etc.

A significant role of the Hedgehog signaling pathway
is its participation in the morphogenetic processes of em-
bryogenesis, histogenesis, and organogenesis. The pathway
genes are involved in the formation of the nervous system,
the development of cartilage and skeletal tissue, angiogen-
esis, and the development of kidneys, liver, lungs, heart, the
endocrine pancreas, and genitals (Ingham, McMahon, 2001;
Roy, Ingham, 2002; Fitzsimons et al., 2022; Ingham, 2022;
Dilower et al., 2023).

Among the fundamental intracellular processes regulated
by HH pathway genes are transcription (Gao Y. et al., 2023),
response to stress stimuli (Chung et al., 2022), and main-
tenance of genomic stability (Ingham, McMahon, 2001).
Furthermore, the signaling pathway modulates the cellular
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response to hypoxia, oxidative stress, and other adverse fac-
tors, which can be critical for cell survival (Kim, Lee, 2023;
van der Weele et al., 2024). The involvement of Hedgehog
signaling pathway elements in DNA repair (Gao Q. et al.,
2019), apoptosis (Harris et al., 2011; Rimkus et al., 2016),
and cell cycle regulation confirms its role in controlling cell
proliferation and differentiation (Roy, Ingham, 2002).

According to available data, the HH pathway acts as a
mediator of intercellular communication not only by itself;
its components, in particular beta-arrestins (ARRB1/2), ki-
nases (CCND1, CSNK1A1, CSNK1E, CSNK1AlL, GSK3B,
PRKACA, PRKACB, PRKACG, TPTEP2-CSNKI1E), ubi-
quitination proteins (BTRC, CUL1, FBXW11), and others, are
involved in other signaling cascades, including MAPK/ERK,
Whnt, Notch, and VEGF. The participation of HH pathway pro-
teins in other signaling pathways has also been demonstrated
by other authors (Rubin, 2007; Bulti et al., 2014; Edeling et
al, 2016; Luo, 2017; Fang et al., 2023).

Associative gene network

of the Hedgehog signaling pathway

The network reconstructed with ANDSystem contains infor-
mation on 56 genes, 504 proteins, 126 miRNAs, and 1,412 in-
teractions of various types between its elements. A general
view of the network is presented in Figure 4.

Analysis of the gene network revealed certain patterns
pertaining to intra-network interactions. Specifically, it was
shown that there are at least seven regulatory circuits within
the network (Fig. 5, 6). These can be tentatively divided into
two groups.

The circuits of the first group mediate the auto-regulation
of the signaling pathway as a whole. The second group regu-
lates the interaction of some components within the signaling
pathway itself. The first group comprises four circuits — three
with positive feedback loops, implementing pathway auto-
activation (Fig. 5a—c), and one with a negative feedback
loop, mediating autorepression of the pathway (Fig. 5d).
The auto-activation circuits include the membrane proteins
GAS1, BOC, CDON, which participate in the interaction of
the PTCHZ1/2 receptor with its HH ligand, thereby facilitating
signal transduction. The expression of the genes encoding
these membrane proteins is controlled by the GLI11/3 transcrip-
tion factors (Allen et al., 2007; Song et al., 2015; Echevarria-
Andino et al., 2023).

The main component of the fourth circuit is the HHIP pro-
tein, which prevents the binding of PTCH1/2 to HH, thereby
prohibiting signal propagation. The HHIP gene is a target
of GLI1/3 transcription factors (Chuang, McMahon, 1999;
Falkenstein, Vokes, 2014).

The second group, defining the character of certain interac-
tions within the HH pathway, is formed by three circuits. The
first controls the interaction between PTCH1 and SMO via a
positive feedback loop (Fig. 6a). The second is a mutual regu-
lation circuit of the genes encoding the GL11/3 transcription
factors (Fig. 6b). It can exist in two states depending on the
functional status of the pathway. In the presence of the HH
signal, the circuit operates in a mode of mutual gene activa-
tion via positive feedback loops. In the absence of the signal,
the repressor form GLI3R suppresses the transcription of the
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Expression
Gene X
Transport regulation
protein Expression regulation
mMiRNA miRNA regulation

Fig. 4. A reconstruction of the associative gene network for the human Hedgehog signaling pathway, generated by the

ANDSystem tool.

Fig. 5. Auto-regulation of the HH signaling pathway.
a-c - regulatory circuits with positive feedback; d - regulatory circuit with negative feedback; SP - signaling pathway.

Protein

Gene

Expression
Activation

Repression

Expressio

Translation
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Indirect activation

The type of impact is not clear
Repression

Phosphorilation
Gene

mRNA

miRNA

Protein

Fig. 6. Schemes of mutual regulation of components in three regulatory circuits of the HH signaling pathway.

a - regulation of PTCH1 and SMO; b — auto-regulation of GLI1/3; ¢ - regulation of GLI2/3 and SUFU.
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GLI1/2 genes and turns off the auto-activation. Thus, the bal-
ance between the activator and repressor forms of GLI is main-
tained (Wang et al., 2000; Vokes et al., 2007; Briscoe, Thérond,
2013). The third circuit of the group functions with the par-
ticipation of two miRNAs — hsa-mir-93 and hsa-mir-378A,
regulating the levels of GL12/3 and SUFU via negative feed-
back loops (Fig. 6¢). The involvement of miRNAs, including
hsa-mir-93 and hsa-mir-378A, in regulating the expression
of HH pathway proteins was established by A. Helwak et al.
(2013). Analysis of the reconstructed HH signaling pathway
gene network revealed that the genes encoding these miRNAs
are targets for the GL12/3 transcription factors.

Evolutionary characteristics of human Hedgehog

signaling pathway genes:

The distribution of genes by values of their phylostratigraphic
indecies PALI is presented in Table 2 and Figure 7.

The vast majority of pathway genes are characterized by
indices of PAIl = 01 (35 genes) and PAl = 02 (18 genes), indi-
cating their emergence at the level of the first unicellular eu-
karyotes and the first multicellular animals. Two genes —BCL2
and SUFU - originated significantly earlier — at the cellular
level of biological organization (their PAI = 00). Both of these
genes control the cell pool — BCL2 as an apoptosis regulator,
and SUFU as an inhibitor of tumor growth, i. e., uncontrolled
cell proliferation (Willis et al., 2003; Cheng, Yue, 2008).

Only one gene, HHIP, originated during the formation of
chordates, has a PAI value of 03. The eponymous protein
inhibits the signaling cascade already at its initial stage by
binding to the PTCH1 receptor and preventing the ligand—
receptor interaction.

Previously, independent data on the emergence time of
certain components of the human Hedgehog (HH) signaling
pathway prior to vertebrate divergence had been obtained
for all HH ligands (Kumar et al., 1996) and for the GLI tran-
scription factors (Shimeld et al., 2007), and these findings are
consistent with the results presented.

A comparison of the PAI value distribution between HH
cascade genes and all human protein-coding genes (Fig. 7)
showed a statistically significant bias towards more ancient
values in HH pathway genes (p < 0.05, Mann-Whitney test).
This aligns with the fact that this pathway is activated earlier
than others in ontogeny, suggesting that its core components
therefore had to emerged at early stages of multicellular or-
ganisms evolution. Indeed, all forms of HH, GLI, PTCH, and

Hedgehog signaling in humans:
the HH_Signal_pathway_db knowledge base

SMO proteins, which play the main role in signal transduc-
tion, are characterized by PAI = 01-02, and their functional
analogs are present even in invertebrate animals (Ingham,
McMahon, 2001; Wilson, Chuang, 2010). Notably, all genes
of the regulatory circuits except HHIP, have ancient origin, at
that HHIP is the only gene included in the regulatory circuit
with negative feedback.

Figure 8 shows the distribution of DI index values for
HH pathway genes. Given that this pathway orchestrates the
implementation of fundamental cellular processes involved
in morphogenesis, including division, differentiation, and
apoptosis, it is unsurprising that 89 % of its genes (50) have
a DI index <0.5, with 12 of them (=21 %) having an index
below 0.1. This fact confirms that the signaling pathway, and
the genes of the regulatory circuits governing its function, are
under stabilizing selection which limits the accumulation of
genomic changes.

In the analyzed set of 56 genes, only two have DI > 1 —
these are CSNK1A1L (1.213) and EFCAB7 (1.051). This
finding, within the framework of the applied method, sug-
gests that these genes may be under positive selection. The
kinase CSNK1ALL phosphorylates GLI1/3 proteins. Ac-
cording to KEGG database data (hsa04340), in the human
HH signaling pathway, several other kinases (CSNK1A1,
CSNK1D, CSNK1E, CSNK1G1, CSNK1G2, CSNK1G3,
TPTEP2-CSNKI1E), encoded by genes of the same name, also
participate in this process. All of them fall into the group with
PAI = 02_Eukaryota, however, the DI values for them range
from 0.0361 for CSNK1A1 to 0.264 for CSNK1D, indicating
the action of stabilizing selection on them. It can be assumed
that CSNK1ALL might have “incorporated” into the signal-
ing pathway later in evolution than the other kinase genes,
and therefore may currently be experiencing the influence of
positive, rather than stabilizing, selection.

The EFCABY protein, together with EVC, EVC2, and IQCE
proteins, is involved in anchoring SMO to the primary cilium
of mammalian cells, which distinguishes the signal transduc-
tion mechanism from the analogous process in Drosophila,
whose cells do not possess primary cilia (Chen et al., 2009;
Gorojankina, 2017). Probably, the weak pressure of posi-
tive selection on the EFCABY gene, reflected in its DI value
close to one, is related precisely to the later emergence of the
mechanism involving primary cilia in the signal transduction
process compared to other pathway components performing
the same function — the EVC, EVC2, and IQCE genes (Chen

Table 2. Distribution of 56 human Hedgehog signaling pathway genes

according to phylostratigraphic index (PAl) values

PAIl Index_Taxon Genes

00_Cellular Organisms SUFU, BCL2

01_Eucaryota

ARRB1,ARRB2, BTRC, CCND1, CCND2, CSNK1A1, CSNKTATL, CSNK1D, CSNK1E, CSNK1G1, CSNK1G2, CSNK1G3,

CUL1,CUL3, DHH, DISP1, EFCAB7, FBXW11, GRK2, GRK3, GSK3B, IHH, KIF3A, KIF7, MOSMO, PRKACA, PRKACB,
PRKACG, PTCH1, PTCH2, SMURF1, SMURF2, SPOP, SPOPL, TPTEP2-CSNK1E

02_Metazoa
SHH, SMO

03_Chordata HHIP

BOC, CDON, EVC, EVC2, GAS1, GLI1, GLI2, GLI3, GPR161, HHAT, HHATL, IQCE, LRP2, MEGF8, MGRN1, SCUBE2,

Note. Gene names belonging to regulatory circuits with feedback are highlighted in bold.
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Fig. 7. Distribution of PAl values among genes of the Hedgehog signaling pathway (56 genes) and all human protein-coding

genes (19,491 genes).

The differences in values are statistically significant at p < 0.05 according to the Mann-Whitney test.

etal., 2009; Wilson, Chuang 2010), which are evidently under
stabilizing selection, as indicated by their DI values of 0.298,
0.421, and 0.679, respectively.

Thus, the overwhelming majority of Hedgehog signaling
pathway genes can be characterized as ancient, subject to
stabilizing selection, preventing the accumulation of genetic
variability and promoting functional stability of the genes.
Their conservatism confirms the critical role of the HH path-
way in regulating fundamental ontogenetic processes.

Conclusion

A prototype of the HH_Signal_pathway_db knowledge
base has been developed. It accumulates information on the
structural and functional organization of the evolutionarily
conserved Hedgehog (HH) signaling pathway in humans,
integrating data from KEGG, NCBI Gene, UniProt, and other
sources. The database systematizes fragmented data on the
HH signaling pathway in humans and can serve as a tool for
systematic analysis of its role in ontogenesis, maintaining
homeostasis, and pathology development.

The bioinformatic analysis of some data from the base, in
particular, showed that: 1) according to functional annotation,
the pathway’s genes are associated with three categories
of processes: intracellular, organ morphogenesis, and
intercellular communication, including interaction with other
signaling cascades; 2) the vast majority of the pathway’s genes
are of ancient origin and subject to stabilizing selection; 3) the
reconstructed associative gene network of the HH pathway
contains 56 genes, 504 proteins, 126 miRNAs, and establishes
1,412 interactions among them; 4) the network’s functioning
is regulated by seven regulatory circuits — five with positive
and two with negative feedback. One of the negative feedback
circuits involve two miRNAs.
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of M2 macrophages: a bioinformatic analysis

E.A. Antropova () @, LV. Yatsyk (), P.S. Demenkov (%), T.V. Ivanisenko (%), V.A. Ivanisenko

Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
@ nzhenia@bionet.nsc.ru

Abstract. Macrophages are immune system cells that perform various, often opposing, functions in the organism
depending on the incoming microenvironment signals. This is possible due to the plasticity of macrophages, which
allows them to radically alter their phenotypic characteristics and gene expression profiles, as well as return to their
original, non-activated state. Depending on the inductors acting on the cell, macrophages are activated into various
functional states. There are five main phenotypes of activated macrophages: M1, M2a, M2b, M2¢, and M2d. Although
the amount of genome-wide transcriptomic and proteomic data showing differences between major macrophage
phenotypes and non-activated macrophages (MO0) is rapidly growing, questions regarding the mechanisms regulat-
ing gene and protein expression profiles in macrophages of different phenotypes still remain. We compiled lists of
proteins associated with the macrophage phenotypes M1, M2a, M2b, M2c, and M2d (phenotype-associated proteins)
and analyzed the data on potential mediators of macrophage polarization. Furthermore, using the computational
system ANDSystem, we conducted a search and analysis of the relationships between potential regulatory proteins
and the genes encoding the proteins associated with the M2 group phenotypes, obtaining estimates of the statistical
significance of these relationships. The results indicate that the differences in the M2a, M2b, M2c, and M2d macro-
phage phenotypes may be attributed to the regulatory effects of the proteins JUN, IL8, NFAC2, CCND1, and YAP1.The
expression levels of these proteins vary among the M2 group phenotypes, which in turn leads to different levels of
gene expression associated with specific phenotypes.
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AHHoTaumA. Makpodaru — KNeTkn MMMYHHOW CUCTEMbI, BbIMOSHAOLWME B OPraH13me passimyHble, 4acTo NPOTMBONO-
NoXHble GYHKLMN B 3aBUCMMOCTM OT MNOCTYNAIOLWMX CUFHAIOB MUKPOOKPYKeHMA. DTO BO3MOXHO Gnarofapa nnactny-
HOCTN MaKpodaroB, NO3BONAOLWEN KAPANHANTBHO MEHATb GEHOTMNNYECKME NPU3HAKKU U NPOdUAN SKCMPECCUMU FreHOB,
a Tak)Ke BO3BPaLLATbCA B NCXOAHOE, HEAKTUBMPOBAHHOE COCTOAHME. B 3aBUCMOCTYM OT JeCTBYIOWMX Ha KNETKY MH-
LYKTOPOB Makpodary NonspusyioTcs B pasfinyHble GyHKLMOHaNbHble COCTOAHNA. MPUHATO BbIAENATb NATb OCHOBHbIX
$EHOTMNOB aKTUBUPOBaHHbIX Makpodaros: M1, M2a, M2b, M2c n M2d. XoTa KonmyecTBo NOSIHOF@HOMHbIX TPAHCKPUM-
TOMHbIX 1 MPOTEOMHbIX AaHHbIX, MOKa3bIBAOLWMX Pa3NMYMA Mexay OCHOBHbIMU deHoTNamy MakpodaroB 1 HeakTu-
BMPOBaHHbIMY Makpodaramu (M0), pacTeT CTpeMUTENIbHO, BCE eLle OCTaloTCA BOMPOChI, KacaloLmeca MexaHM3MoB pe-
rynAaummn npodunein SKCNPeccrn reHos 1 6eNKoB Y Makpodaros pasHbix GeHoTUNoB. Hamu 6binn cocTaBieHbl CNUCKM
6eKOoB, aCCOLMNPOBaHHbIX C peHoTMamu Mmakpodaros M1, M2a, M2b, M2¢, M2d (deHoTrn-accoummpoBaHHble 6en-
K1), NpoaHann3npoBaHbl JaHHble O BO3MOXKHbIX MOCPefHMKax nonaprsaumm makpodaros. lanee ¢ MCNonb30BaHUEM
KomnbtoTepHol cuctembl ANDSystem npoBefieH NOVCK U aHanm3 CBA3e MeXAy NOoTeHUMaNbHbIMU PerynaTOpPHbIMA
6enkaMmn 1 reHamu, KoampyLwmnmmn 6enkn, accouMmpoBaHHble ¢ deHoTMNamm rpynnbl M2, nonyyeHbl OLEeHKN CTaTu-
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BbiiBneHne 6enkoB, perynupytowmx ¢eHoT1n-accounmpoBaHHblie 2025
reHbl Makpodaros rpynmnbl M2: 6ronHpopmaTyeckmnin aHanms 29.7

CTUYECKO 3HAUYMMOCTH TUX CBA3eN. Pe3ynbTaThl yKa3blBaloT Ha TO, YTO pa3nuuva B GeHoTunax Mmakpodaros M2a,
M2b, M2¢, M2d moryT 6bITb 06ycnioBieHbl perynatopHbiMmu genctauamu 6enkos JUN, IL8, NFAC2, CCND1 n YAP1. Ypo-
BEHb VX IKCMPeCCun BapbMpyeTCa B 3aBUCUMOCTM OT GpeHOTUMNOB rpynmbl M2, 4To B CBOIO oUYepeAb NPUBOAUT K pas-
JIYHBIM YPOBHAM SKCMPECCUI FEHOB, CBA3AHHbIX C KOHKPETHbIMU heHOTMMaMM.

Kntouesbie cnosa: GeHOTVMNbI Makpodparos; perynauusa skcnpeccumn; npoteombl; cuctema ANDSystem; aBTomaTnye-

CKWI aHanun3 TeKCTOB

Introduction

Macrophages are immune system cells that play a key role in
processes such as: maintaining body homeostasis (Mosser et
al., 2021), defense against infections (Zhang M., Wang, 2014),
proinflammatory and anti-inflammatory responses (Xu et al.,
2013), tissue regeneration with concomitant stimulation of
proliferation (Wynn, Vannella, 2016), and many others. The
ability of macrophages to exhibit different functions through
polarization (changing their functional state depending on
signals from the microenvironment) is associated with their
unique plasticity (Mills, 2012; Gurvich et al., 2020). Pola-
rization leads to macrophages acquiring various phenotypes —
functional states characterized by unique morphological, mo-
lecular and functional features, depending on the polarization
inducers: proteins, peptides, polysaccharides, etc.

Each macrophage phenotype is characterized by a group
of proteins (Martinez et al., 2008). These groups overlap, but
different macrophage phenotypes can have radically diffe-
rent functions. For example, the M1 phenotype corresponds
to proinflammatory macrophages, essential for the body’s
response to infections. M2a macrophages promote wound
healing and clear the body of apoptotic cells (Murray et al.,
2014). M2b macrophages are called regulatory for their abi-
lity to regulate T-helper cells, which leads to a switch in the
immune response from proinflammatory to anti-inflammatory.
M2c macrophages are necessary for tissue remodeling and the
phagocytosis of apoptotic cells. M2d macrophages are called
tumor-associated macrophages because they accompany tu-
mor tissues (Zhang Q., Sioud, 2023).

In several studies, a link has been demonstrated between
specific macrophage phenotypes and certain pathologies, as
well as an association of disease outcomes with particular
macrophage phenotypes. For example, patients with ovar-
ian cancer exhibited a pronounced predominance of M1
phenotype macrophages over M2, which was associated
with improved survival (Zhang M. et al., 2014). Additiona-
Ily, the shift of macrophages from the M2 phenotype to M1
suppressed tumor metastasis (Yuan et al., 2017). Research
on juvenile idiopathic arthritis in remission showed that the
M2 macrophage group predominantly consisted of M2b and
M2c, while the number of M2a macrophages was significantly
reduced (Feng et al., 2021). In contrast, children with active
juvenile idiopathic arthritis had a predominance of M2a and
M2b macrophages, while the presence of M2c was decreased.
The study of differences between macrophage phenotypes
holds significant fundamental importance and also represents
substantial practical interest for early disease diagnosis, prog-
nosis, and management of disease progression (Zhang M. et
al., 2014; Lampiasi, 2023).
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It should be noted that there is conflicting information in
the literature regarding the proteins and genes characterizing
different macrophage phenotypes. For example, the fractalkine
receptor (CX3CR1) is designated as a marker of the M2a
phenotype in one publication (Joerink et al., 2011), while in an-
other publication (Chhor et al., 2013), this protein is identified
as a marker of the M1 phenotype. Metalloproteinase MMP12
is highlighted as a marker of the M1 phenotype (Hirani et al.
2021), but the article (Lee et al. 2014) shows that this protein
is characteristic of the proteomes of the M2 phenotype and
dendritic cells. The chemokine CXCL13 is described as an
M1 marker in the study (Martinez et al. 2006), while in the
work (van der Lans et al. 2015) it is noted as a marker of M2.

How do proteomes intersect in macrophages of different
phenotypes to achieve significant functional differences?
What molecular and genetic regulatory mechanisms underlie
macrophage polarization? Despite the rapid accumulation of
genome-wide transcriptomic and proteomic data characteri-
zing the differences between the major macrophage pheno-
types and their differences from non-activated macrophages
(MO) (Gurvich et al., 2020; Oates et al., 2023), questions
about how gene and protein expression profiles are regulated
in macrophages of different phenotypes remain open.

The aim of this study was to identify mediator proteins that
control the activity of phenotype-associated genes in different
phenotypes of M2 macrophages. For this purpose, we used the
ANDSystem information system, which is based on machine
learning and artificial intelligence methods, including graph
neural networks (Ivanisenko V.A. et al., 2015; Ivanisenko T.V.
et al., 2024). ANDSystem provides automated analysis of
scientific publication texts and factographic databases in the
medical and biological domains. Currently, the ANDSystem
knowledge base contains knowledge and facts extracted from
more than 40 million scientific publications and patents, as
well as factual databases, including information on molecular
and genetic objects and processes that are important for the
functioning of gene networks and their basic components: met-
abolic networks, signal transduction pathways, DNA-protein
and protein-protein interaction networks. The effectiveness of
ANDSystem has been demonstrated in a wide range of studies:
reconstruction of molecular genetic mechanisms of asthma and
hypertension comorbidity (Zolotareva et al., 2019), analysis
of the plasma metabolome of patients with postoperative
delirium (lvanisenko V.A. et al., 2023), reconstruction of the
hypermethylation regulatory network affecting the develop-
ment of hepatocellular carcinoma in hepatitis C virus disease
(Antropova et al., 2023).

In this work, the following tasks were addressed: 1) forma-
tion of phenotype-associated protein lists in macrophages of
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Identification of proteins regulating phenotype-associated genes
of M2 macrophages: a bioinformatic analysis
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Fig. 1. Schematic diagram of a frame model for searching for regulatory links between differentially

expressed proteins and phenotype-associated genes.

the main phenotypes (M1, M2a, M2b, M2c, M2d); 2) analysis
of differential protein expression data in the M2 phenotype
group as potential mediators of macrophage polarization;
3) analysis of regulatory relationships from mediator pro-
teins to genes encoding phenotype-associated proteins using
ANDSystem.

Materials and methods

Proteomic data on macrophages of different phenotypes.

Two types of information about proteins in different macro-

phage phenotypes were used in the work:

1) Our curated database MACRO_GENES, containing lists of
genes and proteins associated with macrophage phenotypes
(Table S1)L. It was formed through manual analysis of sci-
entific publications describing characteristic proteins that
allow differentiation of macrophage phenotypes M1, M2a,
M2b, M2c, M2d. Only those proteins, the presence of which
in macrophages of certain phenotypes was confirmed by
experimental data, were included in the MACRO_GENES
database.

2) Proteomic data on differentially expressed proteins in
M2a, M2b, M2c, and M2d macrophage phenotypes were
obtained from the work by P. Li and colleagues (2022):
approximately 200 proteins for each phenotype under
consideration. Hereafter, such proteins will be referred to
as regulatory proteins or differentially expressed proteins.
Search for potential regulators influencing the activity

of phenotype-associated genes. The search for potential

regulatory proteins influencing the activity of phenotype-asso-
ciated genes was carried out using the knowledge base of the

ANDSystem software and the ANDVisio software module in-

cluded in this system (Demenkov et al., 2012; Ivanisenko V.A.

et al., 2015; Ivanisenko T.V. et al., 2024). The ANDSystem

knowledge base includes information on interactions between
molecular biological objects (genes, proteins, metabolites, bio-
logical processes, etc.), obtained through automated analysis
of over 40 million scientific publications and patents, as well
as a large number of biomedical factual databases. The current
version of this knowledge base contains information on over

36 million proteins from various organisms and approximately

the same number of genes, 76 thousand metabolites, 100 mil-

lion interactions, 21 thousand diseases, and more.

T Supplementary Tables $1-53 and Figures S1-56 are available at:
https://vavilov.elpub.ru/jour/manager/files/Suppl_Antropova_Engl_29_7.pdf
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To search for connections between regulatory proteins
and phenotype-associated genes, the frame model software
of the ANDSystem was used (Fig. 1). Step 1: The first
slot of the frame was filled based on proteomic analysis
data (Li et al., 2022) with a list of differentially expressed
proteins for each phenotype (M2a, M2b, M2c, and M2d).
Step 2: The second slot of the frame was filled with a list of
phenotype-associated genes for the same phenotype from
our curated MACRO_GENES database (Table S1). Step 3:
Using the ANDVisio software module with the filled frame,
regulatory connections described in the ANDSystem knowl-
edge base were searched for the studied macrophage pheno-
type.

The analysis resulted in graphs of regulatory processes, in
which nodes corresponded to differentially expressed proteins
from the paper (Li et al., 2022) and phenotype-associated
macrophage genes from the MACRO_GENES database.
Edges connecting graph nodes corresponded to regulatory
relationships between them.

Search for functionally significant regulatory proteins
of phenotype-associated macrophage genes in regulatory
process graphs. Akey step in analyzing regulatory processes,
associated with macrophage phenotype-associated genes and
identified using frame models, is the search for functionally
significant regulatory proteins (also called central nodes).
Central nodes play a key role in signaling and coordinating
regulatory processes. A wide range of methods have been
developed to assess centrality (Ghasemi et al., 2014; Jalili
et al., 2016; Ivanisenko V.A. et al., 2019). In our study, node
centrality was assessed based on the number of interactions
of the protein in question with phenotype-associated genes of
the corresponding phenotype.

A high degree of centrality can be observed as a result of
functional innovations between genes and proteins, as well as
due to random factors. To distinguish between these situations,
the statistical significance of the observed degree of centrality
was assessed using the hypergeometric test. In this context,
the hypergeometric test is used to measure the number of con-
nections between a given protein and randomly determined
phenotype-associated genes.

Here: M is the total number of genes represented in the
ANDSystem knowledge base; N is the total number of genes
with which a specific protein interacts in the ANDSystem
knowledge base; n is the number of phenotype-associated
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genes for a specific phenotype in the MACRO_GENES
database; x is the observed number of interactions of the
protein in question with phenotype-associated genes for a
specific phenotype. Then, under the null hypothesis of a
random distribution of interactions, the value of X obeys the
hypergeometric distribution law:

X ~ Hypergeom(M, N, n),
and the p-value for the right-tailed (enrichment) test was
calculated using the formula:

min(N,n) (N) (M - N)

p=PX=x)= Z %

k=x n
p-values were calculated using the SciPy Python library
(scipy.stats.hypergeom). A Bonferroni correction was used
to correct for multiple testing. At p < 0.05, the observed de-
gree of centrality was considered statistically significant, and
the corresponding protein was considered as a functionally
significant regulatory protein controlling the expression of
phenotype-associated genes.

Results and discussion

Our work aimed to identify regulatory proteins that influence
genes, the expression of which differs between the M2a, M2b,
M2c, and M2d macrophage phenotypes. Understanding the
regulatory mechanisms that determine differences between
macrophage phenotypes is not only of fundamental impor-
tance but also holds promise for applications in medicine
and pharmacology, as the prevalence of a certain macrophage
phenotype has been shown to be associated with the develop-
ment and outcome of a number of pathologies (Zhang M. et
al., 2014; Yuan et al., 2017; Feng et al., 2021).

BbiiBneHne 6enkoB, perynupytowmx ¢eHoT1n-accounmpoBaHHblie 2025
reHbl Makpodaros rpynmnbl M2: 6ronHpopmaTyeckmnin aHanms 29.7

General characteristics of phenotype-associated genes
and proteins of macrophages M1, M2a, M2b, M2c, M2d
Table 1 presents a summary of our curated database, MACRO _
GENES, of phenotype-associated genes encoding phenotype-
associated proteins, i. e., proteins specific to macrophages of
each of the phenotypes under consideration: M1, M2a, M2b,
M2c, and M2d. The presence of proteins in specific phenotypes
was confirmed by experimental data presented in the relevant
publications. A detailed description of the gene information
in MACRO_GENES is given in Table S1.

Some phenotype-associated proteins are used in experimen-
tal studies as specific markers for distinguishing macrophage
phenotypes. In Table 1, the genes encoding such proteins are
highlighted in green. If a protein is characteristic of a specific
phenotype but is also considered a specific marker for another
phenotype, the gene encoding it is highlighted in orange
(Table 1). For example, the CCL2 protein is considered a
marker for the M1 phenotype, but some publications indicate
that it is also characteristic of the M2a and M2d phenotypes.
Table 1 illustrates the complex pattern of marker intersections
between different macrophage phenotypes.

Figure 2 shows a Venn diagram demonstrating the distribu-
tion of genes encoding phenotype-associated proteins across
five macrophage types (M1, M2a, M2b, M2c, M2d). The
diagram is constructed based on the information provided in
Table 1. Note that the M1 and M2d phenotypes have the most
matching proteins (17). The M2a/M2c and M1/M2c phenotype
pairs have 15 and 13 common proteins, respectively. The M2b
and M1 phenotypes have 11 matching proteins. A relatively
small number of matching proteins (8) can be noted for the
M2c and M2d phenotype pair. M2b has the fewest overlaps
(6 proteins) with M2a.

Table 1. Lists of genes encoding phenotype-associated proteins of macrophages M1, M2a, M2b, M2c

and M2d presented in the MACRO_GENES database

Macrophage Genes encoding phenotype-associated proteins*
phenotype

M1 ARGI2, CAHM®6, CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CCL15, CCL19, CCL20, CCR2, CCR7, CD38, CD80, CD86, CSF2, CXCL2, CXCLS,
CXCL9, CXCL10, CXL11, FCG2B, FCG3A, FCGR1, GBP2, GBP5, GROA, HLA-DRA, HMGB1, IDOT, IFNAT, IFNB, IFNG, IL1A, IL1B, ILTR1,
IL2RA, IL3, IL6, IL7RA, IL8, IL12B, IL15, ILT5RA, IL17,1L18, IL23A, IRF1, IRF4, IRF7, 1SG20, ITGAX, KCNN2, LAG3, MARCO, MET, MIF,
MMP13, NAMPT, NFKB1, NOS2, PGH2, SOCS3, STAT1, TIMP1, TLR2, TLR4, TNFA, TNR5, TSP1, UBD, VEGFA

M2a ALOX15, ARG1, CCL1, CCL2, CCL7, CCL8, CCL13, CCL14, CCL15, CCL17, CCL18, CCL22, CCL23, CCL24, CCL26, CCR2, CD200R1, CD209,
CD274, CDH1, CDK11B, CLEC4A, CLEC7A, CLECTOA, CSF1R, CXCR1, CXCR2, EDN1, EGR2, FCER2, FGF2, FLT1, FNT, HAVCR2, HLA-DPAT,
HLA-DPB1, HLA-DRA, HLA-DRB1, HLA-DRB3, HRH1, IGF1, IL1R1, IL1R2, IL4, 110, IL27, IRF4, ITGAX, KLF2, LGALS3, MMP9, MMP14,
MRC1, MRC2, MYC, PDCD1LG2, PGF, PPARG, PTGS1, RAMP1, SCN3A, SOCST1, TGFB1, TGM2, TREM2, VEGFA

M2b CCL1, CCL4, CCL20, CD86, CD163, COX2, CXCL3, HLA-DRA, IFNA1, IL18, ILTR1, IL6, IL10, MRC1, NOS2, PTPRC, SIGLECT0, SPHKT, TNFA,

TNFSF14, VEGFA

M2c ARG1,BCL3, C1QA, CCL8, CCL16, CCLT8, CCL23, CCR2, CCR3, CCR10, CD14, CD163, CD300E, CDK11A, CDKT11B, CSF1R, CX3CR1,

M2d

CXCL12, CXCL13, CXCR4, EPAST, F5, FCRLA, FPR1, GAS6, GXYLT2, HIF1A, IL15, ILTR1, IL4R, 110, IL21R, IRF3, IRF5, IRF8, ITGAX, JAK3,
LIN7A, MAF, MARCO, MCTP2, MERTK, MMP2, MMP8, MMP14, MRCT, MRC2, MSR1, NOS2, PCOLCE2, PGF, PLOD2, SELENOF, SERPINAT,
SH3PXD2B, SLAMF1, SOCS3, SPP1, SRPX2, STAT1, STAT3, STAT6, TGFB1, THBS1, TIMP1, TLR1, TLR2, TLR4, TLR5, TLR8, VCAN, VTCN1

ADORA2A, AlIF1, C1QA, C1QC, CCL2, CCL3, CCL4, CCL5, CCL7, CD81, CD274, COX2, CSF3R, IL8, CXCL9, CXCL10, CXCL16, EGF, FCRL2,
FGF2, FGFR1, GDF15, HLA-DMA, ID3, IDO1, IDO2, IL1A, IL 1B, IL6, IL10, IRF7, LILRB4, MIF, MMP2, MMP9, MIRC1, MSR1, NCAM1, NOS2,
PDCD1LG2, PDGFB, TBX6, TGFBI, TNFA, VEGFA

* Genes encoding proteins that are markers of various macrophages phenotypes are highlighted in green. Genes that are expressed in macrophages of a particular
phenotype, according to some sources, but are markers of macrophages of a different phenotype, according to other sources, are highlighted in orange.
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Fig. 2. Venn diagram for comparison of macrophage phenotypes
M1, M2a, M2b, M2c, M2d according to the gene lists presented in the
MACRO_GENES database.

General characteristics of differentially expressed proteins

of the M2 macrophage group

To search for mediator proteins that transmit signals from
macrophage polarization inducers to phenotype-associated
genes, we used lists of differentially expressed proteins (com-
pared to non-activated macrophages) from P. Li et al. (2022).
The published data, summarized in Tables S2 and S3, indi-
cate that the distribution of differentially expressed proteins
across the four macrophage phenotypes (M2a, M2b, M2c,
M2d) is characterized by significant overlap, i. e., there is no
one-to-one correspondence between differentially expressed
proteins and macrophage phenotypes. Therefore, to identify
regulatory pathways that mediate macrophage polarization
into different phenotypes, we required bioinformatic analysis
of large volumes of molecular genetic data, conducted using
the ANDSystem computer system.

Search for regulatory links from differentially expressed
proteins to phenotype-associated genes of macrophages
based on frame models

To analyze large volumes of published data on various macro-
phage phenotypes, we used the methods and information
resources of computer-aided knowledge engineering imple-
mented in the ANDSystem. Using the framework-based
approach realized in this system, we searched for regulatory
links between differentially expressed proteins and phenotype-
associated genes in macrophages.

Regulatory process graphs were reconstructed, with nodes
corresponding to differentially expressed proteins from the
paper (Li et al., 2022) and phenotype-associated macrophage
genes from the MACRO_GENES database. Edges connecting
graph nodes corresponded to regulatory relationships between
them. Figure 3 shows an example of a graph of potential
regulatory relationships between differentially expressed
proteins and phenotype-associated macrophage genes in the
M2b phenotype.
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Figure 3 shows that most phenotype-associated genes are
regulated by more than one protein. Furthermore, most of the
proteins shown in the figure are involved in the regulation
of multiple genes. Similar regulatory relationship diagrams
for M2a, M2c, and M2d macrophages are presented in the
Supplementary Materials (Fig. S1-S3).

Identification of statistically significant regulators

of phenotype-associated genes

Quantitative characteristics of regulatory links between
differentially expressed proteins and phenotype-associated
genes identified using frame models are shown in Section A
of Table 2.

In the second stage of the analysis, centrality metrics
characterizing the functional significance of differentially
expressed proteins for the regulation of phenotype-associated
genes were assessed. Centrality assessments allowed us to
identify proteins regulating phenotype-associated genes with
a Bonferroni-corrected statistical significance threshold of
p < 0.05 (Table 2B). Accounting for the statistical signifi-
cance of differentially expressed proteins based on centrality
metrics led to a significant reduction in the number of nodes
corresponding to phenotype-associated genes and the number
of edges corresponding to regulatory events. For example, for
the M2a phenotype, of the 40 differentially expressed proteins
associated with phenotype-associated genes, 16 were statisti-
cally significantly associated with these genes (Table 2B). For
the M2b phenotype, it was 6 out of 12 proteins. Accordingly,
the number of regulatory events and phenotype-associated
genes in the reconstructed graphs decreased.

Figure 4 shows the lists of differentially expressed proteins
statistically significantly associated with the phenotype-
associated genes of macrophages M2a, M2b, M2¢ and M2d.
Proteins, the levels of which are elevated in specific mac-
rophage phenotypes according to the study (Li et al., 2022),
are highlighted in red. Proteins, the levels of which are de-
creased compared to non-activated macrophages are high-
lighted in blue. Green lines connect proteins with oppositely
changing expression levels in macrophages of different phe-
notypes.

Figure 5 shows examples of schemes of statistically
significant regulatory interactions between differentially
expressed proteins of M2a macrophages and phenotype-
associated genes reconstructed using the ANDSystem. The
corresponding schemes for macrophages of the M2b, MZ2c,
and M2d phenotypes are presented in Figures S4-S6. Figure 5
demonstrates regulatory connections using two alternative op-
tions for controlling molecular genetic processes in the same
Mz2a macrophage phenotype: through an increase (Fig. 5A)
and a decrease (Fig. 5B) in the levels of regulatory proteins.
Adescription of the reconstructed connections obtained using
frame models is given in Table 3.

As an example, let us consider the binding of the regula-
tory protein TGM2 (the lower protein in Figure 5A, marked
with a blue asterisk). Proteomic data (Li et al., 2022) show
that the level of this protein is elevated in the M2a pheno-
type compared to non-activated macrophages. According to
information from the ANDSystem knowledge base obtained
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Gene

Protein
Expression regulation

Interaction regulation

Fig. 3. A graph of potential regulatory links between differentially expressed proteins (left) and phenotype-associated genes
(right) in M2b macrophages, presented in the ANDSystem interface. Green balls on the arrows in the interactive ANDSystem

interface allow users to obtain additional information about specific regulatory links.

Table 2. Quantitative characteristics of potential regulatory links identified based on frame models

Components of frame models M2a M2b M2c M2d

A. Results of the first stage of analysis

of the regulatory interactions reconstructed graph
Differentially expressed proteins 40 12 41 43
Regulatory events 127 51 216 252
Phenotype-associated genes 26 12 41 31
B. Results of the second stage of the analysis (taking into account statistical estimates
of the centrality of regulatory proteins,
p < 0.05)

Differentially expressed proteins 16 6 10 15
Regulatory events 85 19 89 133
Phenotype-associated genes 23 8 28 29

through its interface, in M2a macrophages, the TGM2 pro-
tein has an activating effect on the expression of the M2a
phenotype-associated genes CD274 and FN1 (Liuetal., 2021;
Sun et al., 2021), which is consistent with the data presented
in Table 1 (the mentioned genes are marked with black as-
terisks in Figure 5A). TGM2 also has a suppressive effect on
the PPARG gene (Maiuri et al., 2008), which is inconsistent
with the data in Table 1 and indicates that the expression

of this gene is also activated by some other factors, such as
AHR, CDK4, CCLS5, the level of which is increased in this
phenotype (Fig. 5A).

Among the proteins with reduced levels (compared to
non-activated macrophages) in M2a macrophages, as an ex-
ample we consider the CBP protein, which regulates the phe-
notype-associated genes CCL2, CD274, and CDHL1 (Fig. 5B,
marked with asterisks). According to information from the
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Fig. 4. Differentially expressed proteins statistically significantly (p < 0.05)
associated with the phenotype-associated genes of macrophages M2a,
M2b, M2c, and M2d. Proteins, the levels of which, according to (Li et al.
2022), are elevated in a particular phenotype are highlighted in red, while
those, the levels of which are decreased compared to non-activated
macrophages, are highlighted in blue. Green lines connect proteins with
oppositely expressed changes in macrophages of different phenotypes.

ANDSystem knowledgebase, when CBP is suppressed in the
M2a phenotype, CCL2 expression increases (Huang et al.,
2021), which is consistent with the data presented in Table 1
(MACRO_GENES database). At the same time, the CBP
protein positively influences the expression of the phenotype-

Identification of proteins regulating phenotype-associated genes
of M2 macrophages: a bioinformatic analysis

associated genes CD274 and CDHL1 (Liu et al., 2020; Heng et
al., 2021). It can be hypothesized that other regulators have
a greater influence on the activity of these genes. Figure 5A
shows that such regulators for the CD274 gene may include
the proteins AHR, CCL5, TGM2, and CDK4, the levels of
which are elevated in the M2a phenotype (Fig. 5A, double
green asterisks).

All statistically significant regulatory interactions identified
in M2 macrophages between differentially expressed proteins
and phenotype-associated genes are presented in Table 3. For
M2a macrophages, these were interactions of nine regulatory
proteins with increased levels (compared to non-activated
macrophages), marked with arrows (1), and four proteins
with decreased levels (|), regulating 23 phenotype-associated
genes. For M2b, these were four upregulated and two down-
regulated proteins regulating eight phenotype-associated
genes (see also Figure S4). For M2c, two upregulated and
eight downregulated proteins regulating 28 genes were identi-
fied (see also Figure S5). For M2d, 13 upregulated and two
downregulated proteins regulating 29 genes were found (see
also Figure S6).

Thus, based on a computer analysis of differences in the
proteomes of different macrophage phenotypes, as well as
the use of large volumes of information accumulated in the
ANDSystem knowledge base, some regulatory proteins were
identified that mediate the action of macrophage polarization
inducers on phenotype-associated macrophage genes. Future
research is planned using frame models containing more slots
reflecting the intermediate stages of action of macrophage
polarization inducers on phenotype-associated macrophage
genes. This will enable the identification of more subtle fea-
tures of the regulatory pathways running from macrophage
polarization inducers to phenotype-associated genes through
the action of intermediary proteins.

Fig. 5. Graph of the regulation of phenotype-associated gene expression (from the MACRO_GENES database) in M2a macrophages by differentially
expressed regulatory proteins from the article (Li et al., 2022), statistically significantly associated with these genes: (A) through an increase and
(B) through a decrease in the level of regulatory proteins in this phenotype. The blue asterisk in (A) indicates the TGM2 protein discussed in the text,
black asterisks indicate its target genes; green triangles indicate the discussed proteins AHR, CDK4, CCL2, TGM2. Blue asterisks in (B) indicate the CBP

protein discussed in the text and its target genes.
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Table 3. Relationships between functionally significant differentially expressed regulatory proteins*
and the phenotype-associated genes they regulate in M2 group macrophages, identified using frame models
M2a M2b M2c M2d
Protein Target genes Protein Target genes Protein Target genes Protein Target genes
AHR (1)** ARG1, MMP9, MYC, | AHR (1) IL1B, CCL20,IL10 AHR (1) ARG1, CXCL12, STAT3, AHR(1) IDO1,IDO2, IL1B,
PPARG, CCL22, SOCS3, CCR2, HIF1A, IL8, MMP9, NCAM1,
CCR2, CDH1, TLR2,IL1B,IL10 CD274,IL1A,IL10
CD274,1L10
TGM2 (1) PPARG, CD274, FN1, 1GF2 (1) NOS2 MBD2 (1) CXCL12,NOS2, SOCS3 | IL1B (1) FGF2, FGFR1, CXCL10,
MMP14 IL8, MMP9, VEGFA,
TGFB1,CCL2, CCL3,
CCL5 (1) VEGFA, CD274, NINJT (1) IL1B CCL4, CCL5, NOS2,
COX2,IL10,IL1A, TNF,
MMP9
PDCD1LG2, MIF
NFAC2 (1) EGR2, IL4, FLTT, IL8 (1) CCL1, VEGFA TGFR1(]) MMP14, TGFBI, MBD2 (1)  CXCL9, CXCL10, CD274,
MMP9 HIF1A, PGF CCL5, MMP2, NOS2
HMGA2 (1) FLT1, MMP9, VEGFA, TGFR1(]) VEGFA ZEB2 () MAF, MMP14, TGFB1, ' IL8 (1) IL1B, FGF2, CXCL10,
ccL2 MMP9, CCL2, CD274,
MMP2, VEGFA
ITAM (1) ARG1,CDK11B JUN(]) CD86, COX2, NOS2, A CCND1(|) TGFBI1,STAT3, HIFTA  YAP1 (1) IRF7, FGFR1, PDGFB,
IL1B, IL10, CCL20, CD274
VEGFA
CDK4 (1) PPARG, LGALS3, IL8 (]) MMP14, MMP2, NAMPT (1) IL1B, FGF2, IL8, MMP9,
CD274 MMPS8, TLR5, CXCL12, CCL2,CD274, MMP2
ARGT, CCR2, HIF1A,
CXL10 (1) MMP9, CCL2 IL1B, CDK11B
CCND1(|) VEGFA, TGFBI1, IGF2 (]) CDK11B, MMP2, ILTA (1) IL6, IL1B, VEGFA, CD274
CD274 HIF1A, NOS2
CCL20 (1) MMP9, CD274
FLT3 (]) ***  MMP9 PLMN ({) TGFB1, CXCL12, CXL10 (1)  IL1B, MMP9, CCL2,
CXCR4 MMP2
CCL3 ({) CCR2, VEGFA, TRFL(]) HIFTA, TLR4 TIGAR (1)  MMP9, MMP2
PPARG
PLMN ({) MMP9, TGFB1 JUN(]) TGFB1, CXCL12, HMGA2 MMP9, CCL2, MMP2,
MMP14, MMP2, ) VEFGA
ARGT,IL1B, NOS2,
CD38(]) VEGFA HIF1A, TLR2, TLR4, SRC (1) CXCL10, MMP2, VEFGA,
IL10, CX3CRI, THBST, NOs2
TGFR1(])  TGFB1,CD274, SERPINAT, BCL3, ITB3 (1)  MMP2
MMP14, PGF CCL18, ITGAX
CBP () CD274, CCL2, CDH1 TGFR1(]) VEGFA, TGFBI1,CD274
FOSL2 (]) CD274, IRF4, ITGAX GDF15(]) MMP9, CCL2, GDF15,

CD274, MMP2

* — Proteins selected based on the centrality criterion (p < 0.05); ** 1 - proteins with increased expression levels; *** | — proteins with decreased expression levels.

Conclusion

A study of published data on phenotype-associated genes and
proteomes of M2 macrophages, and a subsequent search for
regulatory links between them using a frame-based approach
implemented in the ANDSystem computer system, made it
possible to identify potential regulatory proteins that mediate
differences in gene expression in M2 macrophage phenotypes.

CUCTEMHAA KOMIMbIOTEPHAA BUOJTIOTUA / SYSTEMS COMPUTATIONAL BIOLOGY

The obtained results suggest that the differences between the
M2a, M2b, M2c and M2d phenotypes may be associated, in
particular, with the regulatory functions of the proteins JUN,
IL8, NFAC2, CCNDI and YAPI, the level of which varies
between phenotypes, leading to differences in the expression
of phenotype-associated genes.
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Abstract. Accumulated evidence links dysregulated cytokine signaling to the pathogenesis of autism spectrum
disorder (ASD), implicating genes, proteins, and their intermolecular networks. This paper systematizes these find-
ings using bioinformatics analysis and machine learning methods. The primary tool employed in the study was the
ANDSystem cognitive platform, developed at the Institute of Cytology and Genetics, which utilizes artificial intel-
ligence techniques for automated knowledge extraction from biomedical databases and scientific publications.
Using ANDSystem, we reconstructed a gene network of cytokine-mediated regulation of autism spectrum disorder
(ASD)-associated genes and proteins. The analysis identified 110 cytokines that regulate the activity, degradation,
and transport of 58 proteins involved in ASD pathogenesis, as well as the expression of 91 ASD-associated genes.
Gene Ontology (GO) enrichment analysis revealed statistically significant associations of these genes with biological
processes related to the development and function of the central nervous system. Furthermore, topological network
analysis and functional significance assessment based on association with ASD-related GO biological processes al-
lowed us to identify 21 cytokines exerting the strongest influence on the regulatory network. Among these, eight
cytokines (IL-4, TGF-31, BMP4, VEGFA, BMP2, IL-10, IFN-y, TNF-a) had the highest priority, ranking at the top across
all employed metrics. Notably, eight of the 21 prioritized cytokines (TNF-q, IL-6, IL-4, VEGFA, IL-2, IL-1(, IFN-y, IL-17)
are known targets of drugs currently used as immunosuppressants and antitumor agents. The pivotal role of these
cytokines in ASD pathogenesis provides a rationale for potentially repurposing such inhibitory drugs for the treat-
ment of autism spectrum disorders.

Key words: autism spectrum disorder (ASD); neurodevelopmental disorders; cytokines; automatic text analysis of
scientific publications; ASD pathogenesis; ASD treatment; computer reconstruction of gene networks
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KoMIiploTepHast peKOHCTPYKIINS TeHHOM CeTU LIUTOKMHOBO
peryisiiiy reHoB 1 6eJIKOB, aCCOIMUPOBAaHHBIX ¢ PAC
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AHHoOTauuA. MHOrouncneHHble NCcefoBaHMA NOATBEPKAAIOT CBA3b HapyLWeHWU LUTOKMHOBOWM perynauumn ¢ pas-
BUTMEM PACcCTPOMNCTB ayTcTMYeckoro crektpa (PAC) Ha ypoBHe reHOB, 6e/IKOB U X MEXMOJEKYNAPHBIX B3auMOgen-
CcTBUIA. B paboTe 3T JaHHble OblNn CUCTEMATU3MPOBAHBI C MPUMEHEHWEM BMOMHPOPMATUYECKOTO aHanm3a u MeTo-
[,0B MalMHHOro obyyeHus. MaBHbIM MHCTPYMEHTOM B UCCeOBaHNM ABAANACk KOrHUTUBHaA cnctema ANDSystem,
pa3paboTaHHan B IHcTutyTe umntonorun u redetnkn CO PAH 11 3apencTByioLlan MeTofibl UICKYCCTBEHHOMO MHTeNeKTa
LA aBTOMATNYECKOTO M3BNeYeHns MHGOPMALMN 13 BUOMENLMHCKIX 633 AaHHbIX 1 TEKCTOB HayUHbIX My6AnKaLmia.
C ucnonb3oBaHnem ANDSystem 6bina peKOHCTPYMpOBaHa acCoUMaTBHAA reHHaA CeTb LIMTOKMHOBOW perynsauum
reHoB 1 6enKoB, accouunpoBaHHbIx ¢ PAC. B pesynbTtaTte aHanu3a yaanocb ngeHtnounumposats 110 LMTOKAHOB, KOTO-
pble, COrnacHoO BOCCO3AaHHOW CETH, PErynmpyoT akTMBHOCTD, AierpafaLnio 1 TPaHCNopT 58 6e/1KOB, BOBIEYEHHbIX B
pa3suTre PAC, a TakxKe akcnpeccnto 91 reHa, acCoLuMMPOBAHHOTO C STMMUN PACcCTPONCTBaMU. AHanM3 nepenpeacTas-
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KomnbloTepHasa peKOHCTPYKLUWA FeHHOW CeTU LIUTOKNHOBOM
perynauuy reHoB 1 6enKoB, accoLmmpoBaHHbIx ¢ PAC

NeHHOCTN 6uonoruyeckux npoueccos Gene Ontology BbIABU CTaTUCTUYECKM 3HAUMMble acCOLMaLMM STUX FeHOB C
npoLeccamu, CBA3aHHLIMU C Pa3BUTUEM 1 PabOTOW LIEHTPaSIbHON HEPBHOW CMCTEMbI. AHaNN3 TOMONIOTUYECKNX Xa-
PaKTEPUCTUK CETU U OLleHKa QYHKLIMOHAIbHOM 3HAYMMOCTU 3/IEMEHTOB CETY Yepes X acCcoLmaLmio ¢ BUonornyecku-
Mu npoueccamu Gene Ontology, cBAsaHHbIMY ¢ PAC, no3Bonunnu BbigennTb 21 LUTOKMH, OKa3blBalowWwuii HanbonbLuee
BUAHUE HA dneMeHTbl ceTu. Cpean HUX HanboNbLWINA NPUOPUTET UMENN BOCEMb LUTOKMHOB (IL-4, TGF-31, BMP4,
VEGFA, BMP2, IL-10, IFN-y, TNF-a), KoTopble 3aH1Manu BbICOKOE MOSIOKEHME MO pe3yibTaTaM BCeX NCMNONb30BaHHbIX
MeToAMK npuoputusauun. Kpome Toro, n3 21 NpropuTETHOrO LUTOKMHA BbIAENAOTCA BoceMb LuTokMHOB (TNF-q,
IL-6, IL-4, VEGFA, IL-2, IL-1(3, IFN-y, IL-17), KOTOpble ABNATCA MULLEHAMY MPENapaToB, NPUMEHSEMbIX B KQUeCTBe M-
MYHOCYNPeCCaHTOB 1 MPOTUBOOMYXONEBbIX CPeACTB. YCTAaHOBNEHHAA POJb STUX LMTOKUHOB B NatoreHese PAC co3fa-
eT NPefnoCbIIKM AS1A NOTEHUMaNbHOTO nepenpodunmpoBaHna NpenapaTos, HanpaBieHHbIX Ha UX MHIMOMPOBaHMe,
ANA Tepanun PacCTPOWCTB ayTUCTUYECKOro CnekTpa.

KnioueBble cnoBa: paccTpoiicTBa aytrcTnyeckoro cnektpa (PAC); HapylweHWA HeNpopasBUTUA; LIUTOKMHbI; aBTO-
MaTUYeCKUN aHann3 TeKCTOB HayuHbIX Ny6nukaumi; natoreHes PAC; Tepanua PAC; KoMNbloTepHasa PeKOHCTPYKLKMA
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Introduction

DSM-5 (Diagnostic and Statistical Manual of Mental Disor-
ders, Fifth edition) classifies autism spectrum disorder (ASD)
as a category of neurodevelopmental conditions exhibiting
a substantial genetic component, with diagnosis predicated
solely on behavioral criteria (American Psychiatric Associa-
tion, 2013). The core diagnostic profile of ASD comprises
persistent deficits in social communication and reciprocal
social interaction, co-occurring with restricted, repetitive
patterns of behavior, interests, or activities. Contemporary
diagnostic frameworks mandate the manifestation of these
symptoms during the early developmental period. While their
severity can vary, certain individuals may develop compen-
satory strategies through learned behaviors, which can mask
underlying deficits. A substantial heterogeneity is observed in
the behavioral phenotypes associated with ASD (Van der Zee,
Derksen, 2021). Furthermore, the neurophysiological features
associated with autism were identified not only in diagnosed
individuals but also in the general population (Harms et al.,
2010; Tsai et al., 2013; Tseng et al., 2015).

ASD classification delineates idiopathic forms, lacking
clear genetic correlates, from syndromic forms, which are
defined by monogenic mutations and associated comorbid
features (Ziats et al., 2021). A considerable subset of syn-
dromic ASD cases is driven by mutations disrupting the
mTOR signaling pathway, leading to its persistent hyperacti-
vation (Ganesan et al., 2019). A prior bioinformatic analysis
utilizing the SFARI Gene database (Abrahams et al., 2013)
demonstrated that approximately 58 % of genes harboring
ASD-associated mutations are directly linked to the mTOR
signaling pathway (Trifonova et al., 2019). The mTOR pro-
tein (mechanistic target of rapamycin) is a serine/threonine
kinase that serves as the central component of two protein
complexes: mMTORC1 and mTORC?2. Rapamycin-sensitive
mTORCI responds to nutrient availability and growth factors,
regulating cell growth and metabolism. mMTORC?2, in contrast,
is largely rapamycin-insensitive and is activated in response
to stress and growth factor signaling, regulating cell survival
and proliferation processes (Ragupathi et al., 2024).

mTOR signaling pathway plays a critical regulatory role
in diverse physiological processes, including cellular and
tumor growth (Onore et al., 2017), immune function (Liu et
al., 2015), as well as memory formation and neural circuit
plasticity (Hoeffer, Klann, 2010). Furthermore, constitutive

hyperactivation of this pathway has been shown to suppress
autophagy (McMahon et al., 2012) and impair normal synaptic
pruning mechanisms (Tang et al., 2014).

Synaptic pruning is a fundamental neurodevelopmental
process involving the microglia-mediated elimination of
superfluous synaptic connections persisting from develop-
ment through adulthood. This refinement mechanism en-
hances the efficiency of neural transmission and facilitates
the reallocation of metabolic and computational resources to
behaviorally relevant circuits, thereby underlying effective
learning and long-term memory formation (Navlakha et al.,
2015). Impairments in this pruning cascade are implicated
in the neuropathology of ASD, manifesting as an increase in
dendritic spine and synaptic density across both supra- and
infragranular layers of the frontal, temporal, and parietal
cortices (Hutsler, Zhang, 2010).

Microglia, central to the process of synaptic pruning,
are integral to the CNS immune environment, where their
activity is modulated by cytokine signalling. Moreover, as
a major source of pro-inflammatory cytokines in the brain,
microglia function as critical orchestrators of neuroinflamma-
tory processes and possess the capacity to induce or modulate
diverse cellular responses (Smith et al., 2012). Postmortem
analyses of individuals with ASD have revealed hallmarks of
neuroinflammation associated with classical (M 1) microglial
activation, with documented elevations in interferon IFN-y
and cytokines IL-1B, IL-6, IL-12p40, TNF-a, and CCL2 in
both brain tissue and cerebrospinal fluid (Vargas et al., 2005;
Liet al., 2009; Morgan et al., 2010).

Cytokines provide regulatory signaling essential for normal
early brain development, synaptic plasticity, and the preser-
vation of brain homeostasis. Pronounced alterations in the
cytokine milieu disrupt fundamental neurodevelopmental
mechanisms such as neuronal migration and differentiation,
ultimately leading to the emergence of behavioral deficits
(Ashwood et al., 2011). Moreover, comparative analyses of
plasma and serum cytokine levels further reveal statistically
significant alterations in the immunological profile of individu-
als with ASD relative to neurotypical controls (Onore et al.,
2017). Therefore, a systemic immune regulatory imbalance
perpetuates a state of chronic neuroinflammation in ASD.

In this study, we employed artificial intelligence (Al)-based
software tools to reconstruct associative gene networks,
aiming to identify and systematize regulatory interactions
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between cytokines and ASD-associated genes and proteins.
The analysis was performed using the ANDSystem cognitive
platform (Ivanisenko V.A. et al., 2015), a tool specifically de-
signed for automated extraction and integration of data from
scientific literature and biological databases.

The objective of this research was to reconstruct and
analyze the gene network of cytokine-mediated regulation
of ASD-associated genes and proteins, with the specific goal
of identifying promising cytokine targets for ASD immuno-
modulation therapy.

Network analysis identified 110 cytokines regulating activ-
ity, degradation, and transport of 58 ASD-associated proteins,
alongside influencing the expression of 91 ASD-related genes.
Gene Ontology enrichment analysis revealed significant in-
volvement of these genes in CNS development and function.
Among the 21 cytokines exerting the greatest influence on
the network, eight (TNF-a, IL-6, IL-4, VEGFA, IL-2, IL-1f,
IFN-y, IL-17) are targeted by existing immunosuppressive
and antitumor drugs. The identified role of these cytokines in
ASD pathogenesis provides a strong foundation for exploring
drug repurposing strategies targeting them.

Materials and methods

The study’s first phase involved in silico reconstruction of a
network mapping cytokine interactions with ASD-associated
proteins and genes (consolidated gene network). To achieve
the most comprehensive coverage of these regulatory interac-
tions, five specialized gene subnetworks reflecting different
pathways of cytokine influence were first reconstructed (Sup-
plementary Table S1)!. These subnetworks were subsequently
integrated into a consolidated gene network.

The second phase comprised a structural bioinformatic
analysis of the integrated network and functional annotation of
its components using Gene Ontology to identify ASD-relevant
biological processes. This was followed by prioritization of
cytokines according to their predicted regulatory impact on
ASD-associated genes and proteins.

The final stage focused on identifying promising targets
for immunomodulatory ASD therapy among the cytokines
demonstrating the highest significance in the conducted ana-
lysis.

Stage 1. A set of ASD-associated genes (234 genes) was ob-
tained from the SFARI Gene database (Abrahams et al., 2013)
(https://gene.sfari.org). The sample included genes annotated
in this database as having a high confidence of association
with ASD (Category 1 according to the database’s internal
scoring system). Lists of cytokine genes (186 genes) and cy-
tokine receptor genes (114 genes) were compiled using data
extracted from the Human Protein Atlas (HPA) (https:/www.
proteinatlas.org/), a comprehensive knowledge base focused
on the spatial localization and expression profiles of human
proteins in tissues, cells, and organs (Uhlén et al., 2015).

Gene networks were reconstructed using the ANDVisio
software (Demenkov et al., 2012), which utilizes data from
the ANDSystem’s knowledge base for network reconstruction
and structural analysis. ANDSystem is designed for automated
analysis of scientific publications and databases and employs
ontological modeling, graph analysis, and natural language

1 Supplementary Table S1 is available at:
https://vavilov.elpub.ru/jour/manager/files/Suppl_Levanova_Engl_29_7.pdf

In silico reconstruction of the gene network for cytokine
regulation of ASD-associated genes and proteins

processing mechanisms (Ivanisenko V.A. et al., 2019; Ivani-
senko T.V. et al., 2020, 2022, 2024).

A consolidated network was assembled from subnetworks
reconstructed using ANDVisio’s ‘Pathway Wizard’. This
tool enables the retrieval and visualization of gene networks
from the ANDSystem knowledge base that match specified
query templates. Five individual subnetworks were initially
constructed using five distinct query templates (Table S1) and
subsequently merged into a unified graph.

Stage 2. Gene Ontology (GO) term enrichment analysis
for biological processes (GO BP) (Ashburner et al., 2000)
was performed on the consolidated gene network utilizing
the DAVID bioinformatics platform (Huang et al., 2009;
Sherman et al., 2022) (https://davidbioinformatics.nih.gov/).
DAVID provides functional gene annotation and evaluates the
statistical significance of GO term enrichment within gene sets
against user-defined confidence thresholds.

Network topology analysis and cytokine ranking were per-
formed using the statistical tools implemented in ANDVisio.
Cytokines were evaluated based on two centrality metrics:
betweenness centrality, defined as the fraction of the shortest
paths traversing a node, and degree centrality, representing
the number of its direct connections. Both parameters serve
as measures of nodal influence within the network, where
higher values correspond to greater functional significance.
Furthermore, pathway-based prioritization of cytokines was
conducted using a custom Python 3.10 script to assess their
representation in ASD-associated biological pathways.

Stage 3. Cytokines identified through prior analysis were
subsequently evaluated as potential targets for pharmacologi-
cal intervention. This assessment incorporated data from the
DrugBank (Knox et al., 2024) (https://go.drugbank.com/)
and GETdb (Zhang et al., 2024) (https://togodb.org/db/getdb)
databases.

Results of gene network reconstruction
and analysis

Reconstruction of cytokine interactions

with ASD-associated proteins and genes

During the initial research phase, five sub-networks were
reconstructed using the Pathway Wizard software (Fig. 1).
The subnetwork reconstruction utilized two datasets: ASD-
associated gene set from the SFARI database (https://gene.
sfari.org) and a list of cytokines and their receptors obtained
from the Human Protein Atlas database (https://www.pro-
teinatlas.org/).

Following automated reconstruction, all retrieved connec-
tions and network elements were manually reviewed against
source publication texts to eliminate errors arising from inac-
curate information extraction.

Integration of the reconstructed subnetworks produced a
consolidated network representing cytokine interactions with
ASD-associated proteins and genes (Fig. 2). This integrated
network contained 1,112 nodes classified into two distinct
types and 3,675 specific interactions between them, as detailed
in Table 1.

Network analysis identified 110 regulatory cytokines
(Fig. 2, 1) targeting 58 ASD-associated proteins (Fig. 2, II)
and 91 ASD-related genes (Fig. 2, I1I).
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Fig. 1. Example of subnetwork reconstruction: modeling cytokine interactions with ASD-associated proteins via Pathway Wizard software using

Template 1 from Supplementary Table S1.

Roman numerals indicate: |, cytokines regulating ASD-associated proteins and genes, Il, mediator genes, I, mediator proteins, IV, ASD-associated proteins
regulated by cytokines through signaling pathways. Letters denote: A, gene expression regulation, B, gene expression, C, regulation of protein activity, transport,

and degradation.

Fig. 2. Reconstructed consolidated network of cytokine interactions with ASD-related proteins and genes.

Gene
Protein

Gene expression

Gene expression
regulation
Protein activity
regulation

Protein degradation
regulation

Protein transport
regulation

Roman numerals indicate: |, cytokines regulating ASD-associated proteins and genes, Il, ASD-associated proteins regulated by cytokines, Ill, ASD-associated

genes regulated by cytokines.

Table 1. Types and quantities of nodes and interactions in the consolidated gene network
of cytokine interactions with ASD-associated proteins and genes

Interaction type Count Node type Count
Activity regulation 369 Protein 621
Degradation regulation 64 Gene 491
Expression regulation 2,772

Transport regulation 65

Gene expression 409
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In silico reconstruction of the gene network for cytokine
regulation of ASD-associated genes and proteins

Table 2. Enrichment analysis of ASD-associated genes from the integrated network that are regulated by cytokines

No. Biological process

1 Excitatory postsynaptic potential

2 Regulation of dendritic spine development

3 Hippocampal development

4 Positive regulation of glutamatergic synaptic transmission
5 Neuron migration

6 Neurodevelopment

7 Negative regulation of neuronal apoptosis

8 Transmembrane calcium ion import

Note. FDR, false discovery rate.

Functional enrichment analysis

of the cytokine-regulated gene set

Gene Ontology enrichment analysis was performed using
the DAVID platform on the subset of ASD-associated genes
identified as being under cytokine regulatory control in the
reconstructed consolidated network. This analysis revealed
significant enrichment (FDR < 0.05, false discovery rate) for
56 biological processes related to nervous system development
and function. Specifically, these cytokine-regulated genes
were overrepresented in processes including dendritic spine
morphogenesis, hippocampal development, and neuronal
migration (Table 2). Only the most statistically significant and
biologically specific processes are presented in Table 2, while
general cellular processes such as transcriptional regulation
were excluded from the final selection.

Cytokine prioritization

To identify cytokines with the greatest impact on the regula-
tory network, we conducted multi-criteria prioritization based
on three network topological and functional parameters: node
degree, betweenness centrality, and enrichment in ASD-
associated biological processes.

To evaluate the involvement of cytokines in ASD-associated
biological processes, we developed a custom script that pro-
cesses two primary inputs: cytokines identified through net-
work reconstruction, and ASD-associated biological processes
derived from Gene Ontology enrichment analysis of SFARI
gene sets. The algorithm assessed each cytokine’s involve-
ment in the listed ASD-associated biological processes. This
analysis identified 13 cytokines that participate in biological
processes implicated in ASD (FDR < 0.05, Table 3).

To rank the cytokines by their influence within the network,
two centrality metrics were employed: betweenness centra-
lity and degree centrality. Betweenness centrality reflects the
number of the shortest paths in a network that pass through a
given node, while degree centrality is defined by the number
of its direct connections to other nodes. These metrics quantify
a node’s influence on the network, as higher values indicate
a more significant impact of the node. 15 most influential
cytokines based on each metric are presented in Table 4.

Gene count FDR
6 9.7-10™
4 9.7-107*
6 9.7-107*
5 8.5-107
7 85-10*
12 7.6-107
8 46-107
4 46-107

Cytokines as potential targets

for pharmacological intervention

Based on the data presented in Tables 3 and 4, a list of 21 po-
tentially key regulators was compiled: BMP2, BMP4, BMP7,
GDF2, GPI, IFN-y, IFNL1, IL-10, IL-33, IL-15, IL-17, IL-1,
IL-2, 1L-22, IL-4, IL-6, IL-8, OSTP, TGFBI1, TNF-a, and
VEGFA. Validation of this list against the GETdb database
confirmed the status of these cytokines as promising pharma-
cological targets.

According to the DrugBank database records, 8 out of the
21 cytokines (TNF-a, IL-6, IL-4, VEGFA, IL-2, IL-1p, IFN-y,
IL-17) are established targets for approved pharmaceuticals.
Notably, four of these (IL-4, VEGFA, TNF-0, and IFN-y) were
also identified among the eight highest-priority candidates in
our analysis, which were ranked based on a consensus across
multiple prioritization metrics (IL-4, TGF-B1, BMP4, VEGFA,
BMP2, IL-10, IFN-y, and TNF-a,).

In clinical practice, drugs targeting cytokines TNF-a, IL-6,
IL-4, VEGFA, IL-2, IL-1P, IFN-y, and IL-17 are primari-
ly used as immunosuppressants and antitumor agents. The
therapeutic mechanisms of these agents principally involve
either receptor blockade, utilizing cytokine antagonists, or
direct cytokine neutralization through monoclonal antibodies.

Discussion

Analysis of Tables 3 and 4 identified 21 cytokines (BMP2,
BMP4, BMP7, GDF2, GPI, IFN-y, IFNLI, IL-10, IL-33,
IL-15, IL-17, IL-1B, IL-2, IL-22, IL-4, IL-6, IL-8, OSTP,
TGFBI, TNF-0, and VEGFA) as potential pharmacological
targets, based on the GETdb database. Cross-referencing with
the DrugBank database revealed that eight of them (TNF-a,
IL-6, IL-4, VEGFA, IL-2, IL-1B, IFN-y, and IL-17) are
already targeted by approved therapeutics. A review of the
existing literature confirms the critical role of specific pro-
inflammatory cytokines (TNF-a, IL-6, IL-2, IL-10, IFN-y,
VEGFA, IL-17A) in CNS development and function. These
factors, secreted by classically activated microglia, are key
drivers of neuroinflammation. Furthermore, dysregulation
of specific cytokines, such as IL-6, IFN-y, and IL-17A, dur-
ing gestation, induced by maternal immune activation, may
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Table 3. Prioritization of cytokines based on their representation in ASD-associated biological processes

Number of ASD-associated
biological processes

No. Cytokine

—_

BMP2 6
IL-4
TGFB1
BMP4
IFN-y
VEGFA
BMP7
TNF-a
IL-33

OV 0 N O .U~ WwN

_

IL-10

—_
—_

IFNL1

NN W W U U100 W,

12 GPI
13 GDF2 2

PadjValue FDR

1.0-107° 3.8-107°
5.0-1077 2.7-107°
1.9-107 2.1-107°
8.7-10°° 2.0-10
7.2:107° 1.5-1073
8.8-107 1.6-1073
1.0-107 1.8-1073
3.0-10% 43.1073
4.0-10 6.0-1073
1.9-1073 2.1-1072
24-1073 251072
5.7-1073 4.9-1072
5.7-1073 4.9-1072

Note. FDR, false discovery rate, PadjValue, PValue with the Bonferroni correction.

Table 4. Prioritization of cytokines based on betweenness centrality and degree centrality

No. Cytokine Betweenness centrality
1 TNF-a 19.3-10*
2 IL-6 10.4-10*
3 IL-4 10.2-10*
4 TGFB1 9.8-10*
5 BMP4 9.0-10*
6 VEGFA 8.5-10*
7 IL-2 7.7-10*
8 IL-1B 6.5-10%
9 BMP2 5.7-10*

10 OSTP 5.5-10%

11 IL-10 5.4-10*

12 IL-8 40-10*

13 IFN-y 3.9-10*

14 IL-17 3.1-10*

15 IL-15 2.9-10*

No. Cytokine Degree centrality
1 TNF-a 100
2 IL-6 69
3 IL-4 65
4 BMP4 52
5 TGFB1 51
6 VEGFA 51
7 IL-2 47
8 IL-1B 46
IL-10 46
10 BMP2 37
11 IFN-y 34
12 IL-22 32
13 IL-17 32
14 OSTP 30
15 IL-8 29

Note. Betweenness centrality is defined as the number of the shortest paths in a network that pass through a particular node, while degree centrality represents
the number of direct connections a node has with other elements in the network.

alter embryonic brain development and predispose to autism
spectrum disorder (ASD) (Fuyjitani et al., 2022; Majerczyk
et al., 2022).

Studies using maternal immune activation (MIA) mouse
models demonstrate that CD4+ T-lymphocytes from affected
offspring exhibit elevated IL-17A production (Morgan et
al., 2010; Parkhurst et al., 2013). Furthermore, it was estab-
lished that the activity of maternal RORyt-expressing pro-
inflammatory T-cells (Th17), the primary source of IL-17A,

is a prerequisite for the induction of ASD-like phenotypes
in the offspring. It was further demonstrated that ASD-like
phenotypes in the offspring require the activity of maternal
RORyt-expressing Th17 cells, which are the primary source of
IL-17A. Choi G.B. et al. (2016) demonstrated that both IL-17A
neutralization and direct targeting of Th17 cells in pregnant
mice prevent the development of MIA-induced behavioral
abnormalities in their offspring. Conversely, the administration
of IL-17A into the fetal brain was shown to cause disruptions
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in cerebral hemisphere development and the manifestation of
ASD-associated symptoms. These behavioral manifestations
are linked to altered right-hemispheric activity, a region critical
for adaptation mechanisms (Nikolaeva, Vergunov, 2020). This
lateralized dysfunction is further supported by the significantly
higher prevalence of left-handedness in children with ASD
(Nikolaeva, Gaidamakina, 2018).

Paradoxically, despite the documented role of IL-17A in
impairing CNS development, emerging evidence indicates
its therapeutic potential for normalizing behavioral deficits
in adult offspring of mothers with MIA. A study by M. Reed
et al. (2020) demonstrated that lipopolysaccharide (LPS)
therapy normalized behavior in adult offspring from mothers
with immune activation (MIA); however, it was ineffective
in monogenic models of autism spectrum disorder. This
divergent outcome was attributed to variations in cytokine
secretion, specifically a significantly lower production of
IL-17A in response to LPS in monogenic models compared
to MIA-induced counterparts.

In addition to pro-inflammatory cytokines, anti-inflam-
matory cytokine IL-4 is involved in ASD pathogenesis. This
cytokine is critical for inducing the alternative activation
pathway of microglia (M2 phenotype). Microglia in the M2
state exhibit anti-inflammatory and reparative functions,
which include the secretion of numerous growth factors
such as IGF-I, FGF, CSF1 and neurotrophic factors (Sica,
Mantovani, 2012). Subsequently, these factors activate Trk
receptors, a family of receptor tyrosine kinases involved in
the regulation of synaptic plasticity.

Studies have identified a significant elevation of IL-4 levels
in the amniotic fluid and maternal serum during pregnancy
in women whose children were later diagnosed with ASD
(Goines, Ashwood, 2013). The role of increased IL-4 con-
centration in ASD pathogenesis, however, remains unclear:
it could either contribute to the development of pathology or
represent a compensatory mechanism in response to inflam-
matory processes.

We hypothesize that repurposing established clinical cy-
tokines offers a viable path for ASD therapy. To test this, we
propose to initiate studies analogous to those by M. Reed et
al. (2020), utilizing agents targeting the cytokines TNF-a,
IL-6, IL-4, VEGFA, IL-2, IL-1B, IFN-y, and IL-17, with ex-
isting clinical applications. Planning of future research must
account for the variable efficacy of cytokine interventions,
which is influenced by disease etiology and developmental
stage. A comprehensive approach should involve the use of
rodent models that represent distinct methods of inducing ASD
and its various forms, followed by a comparative analysis of
the resulting data. This methodology will facilitate a more
profound understanding of the effects of cytokines on the
development and symptoms of ASD of diverse origins, as
well as an assessment of the potential for repurposing the cor-
responding pharmaceutical agents for treating and alleviating
ASD symptoms.

Conclusion

* Using the ANDSystem knowledge base and its components,
we performed a computer-based reconstruction of five
specialized gene subnetworks. These subnetworks represent
distinct pathways through which cytokines influence proteins

In silico reconstruction of the gene network for cytokine
regulation of ASD-associated genes and proteins

and genes associated with autism spectrum disorder (ASD),
thereby providing a comprehensive mapping of cytokine
interactions with ASD-associated biomolecules. Through
the integration of these subnetworks into a unified model,
a network for cytokine regulation of ASD-associated
genes and proteins was reconstructed for the first time. The
consolidated network comprises 1,112 nodes of two types
(491 genes and 621 proteins) interconnected by 3,675 edges
representing five distinct types of interactions.

* Analysis of the final gene network enabled the identification
of 110 cytokines that regulate the activity, transport, and
stability of network components implicated in ASD.
Furthermore, 58 proteins and 91 genes involved in ASD
pathogenesis, all of which are under cytokine regulation,
were identified. Key characteristics of the network were
defined, providing evidence for the significant role of cyto-
kine-mediated regulation in ASD pathogenesis, and revea-
ling specific cohorts of ASD-linked genes under cytokine
control.

Subsequent Gene Ontology (GO) enrichment analysis for
biological processes was performed on the subset of ASD-
associated genes identified as being under cytokine regulatory
control in the reconstructed interaction network. This analysis
revealed 56 statistically significant biological processes related
to neurodevelopment. Notable among these were dendritic
spine morphogenesis, hippocampal development, neuronal
migration, and the regulation of synaptic transmission.

» Cytokine prioritization was conducted to pinpoint
key regulators, employing an analysis of network metrics
(betweenness centrality and node degree) alongside an
evaluation of functional relevance via linkage to ASD-
associated GO biological processes. This approach yielded a
set of 21 cytokines, with 8 (IL-4, TGF-B1, BMP4, VEGFA,
BMP2, IL-10, IFN-y, TNF-a) ranking highest across all
evaluated parameters.

Notably, 8 out of the 21 key cytokines (TNF-a, IL-6, IL-4,
VEGFA, IL-2, IL-1B, IFN-y, IL-17) are targeted by existing,
clinically approved drugs, highlighting an opportunity for
repurposing immunomodulatory agents for ASD. The other
13 cytokines are potential targets for compounds in clinical
development. Further in vitro and in vivo studies are required
to delineate the precise mechanisms through which these
cytokines influence neurodevelopment and to assess the
therapeutic efficacy of their modulation.
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Abstract. Reconstruction and analysis of gene networks regulating biological processes are among the modern methodo-
logical approaches for studying complex biological systems that ensure the vital activity of organisms. Thermoregulation
is an important evolutionary acquisition of warm-blooded animals. Multiple physiological systems (nervous, cardiovas-
cular, endocrine, respiratory, muscular, etc.) are involved in this process, maintaining stable body temperature despite
changes in ambient temperature. This study aims to perform a computer reconstruction of the human thermoregulation
gene network and present the results in the Termo_Reg_Human 1.0 knowledge base. The gene network was reconstructed
using the ANDSystem software and information system, designed for the automated extraction of knowledge and facts
from scientific publications and biomedical databases based on machine learning and artificial intelligence methods. The
Termo_Reg_Human 1.0 knowledge base (https://www.sysbio.ru/ThermoReg_Human/) contains information about the hu-
man thermoregulation gene network, including a description of 469 genes, 473 proteins, and 265 microRNAs important for
its functioning, interactions between these objects, and the evolutionary characteristics of the genes. Using the ANDVisio
software tool (a module of ANDSystem), each gene, protein, and microRNA involved in the thermoregulation of the hu-
man body was prioritized according to its functional significance, i.e., the number of interactions with other objects in the
reconstructed gene network. It was found that the key objects with the largest number of functional interactions in the
human thermoregulation gene network included the UCP1, VEGFA, PPARG and DDIT3 genes; STAT3, JUN, VEGFA, TLR4 and
TNFA proteins; and the microRNAs hsa-mir-335 and hsa-mir-26b. We revealed that the set of 469 human genes from the
network was enriched with genes whose ancestral forms originated at an early evolutionary stage (Unicellular organisms,
the root of the phylostratigraphic tree) and at the stage of Vertebrata divergence.
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AHHOTaLMA. PEKOHCTPYKLMA 1 aHaNN3 reHHbIX CeTel, perynmpyoLmnx bruonornyeckme npoLecchl, — OanH 13 3GPeKTUBHbIX
NMOAXOAOB K UCCNefOBaHMIO CITIOXKHbIX CUCTeM obecrneyeHUs Kr3HeAeATeNbHOCTY OPraHM3MOoB. TepMOoperynauma — Bax-
HOe 3BOJIIOLOHHOE NPUOBPETEHNE YeNTOBEKA U APYTUX TEMNOKPOBHbIX XUBOTHbIX. TepMOPErynaLms oCyLecTBAAETCA Npu
yyacTUy MHOTUX GU3NONOrMUECKUX CUCTEM OpraHu3ma (HEpPBHOW, CepAeUYHO-COCYANCTON, SHAOKPVHHON, AblXaTeNbHON,
MbILIEYHOM U T.A.), UTO CNOCOBCTBYET NOAAEPMHAHMIO OTHOCUTENIBHO MOCTOAHHONM TeMMepaTypbl Tena B yCIoBMAX Koneba-
HMA TemnepaTypbl OKpyatoLel cpefbl. Llenb paboTbl — KOMMblOTEPHAA PEKOHCTPYKLMA FEHHOW CeTU TepMOoperynaymm ye-
noBeKa V1 nNpefCcTaBeHe NoslyYeHHbIX Pe3y/bTaToB B COOTBETCTBYOLL el 6a3e 3HaHun Termo_Reg_Human 1.0. leHHas ceTb
PEKOHCTPYMpPOBaHa C MCMOMb30BaHNEM MPOrpPaMMHO-MHPopMaLMoHHol cuctembl ANDSystem, npefgHasHayeHHoW ana
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The gene network and knowledge base
on human thermoregulation

aBTOMATU3MPOBAHHOTO N3BJIEUEHNA 3HAHMI 1 GpaKTOB 13 TEKCTOB HayYHbIX Nybnnkaumn n 6a3s gaHHbIX 6MOMeANLIMHCKON
HanpaBfeHHOCTW, OCHOBaHHOM Ha METOAAX MALIVMHHOIO OOYyUYeHWs N UCKYCCTBEHHOTO MHTenneKTa. basa 3HaHuin Termo_
Reg_Human 1.0 (https://www.sysbio.ru/ThermoReg_Human/) cogepXnT nHbopmMaLmio 0 reHHON CeT! TepMoperynaummn
yenoseka, BK/Yasa onvcaHve 469 reHoB, 473 6enkoB 1 265 MUKPOPHK, 3HaumMmbIx Ans ee pyHKLMOHNPOBaHNA; B3aUMO-
LEeNCTBMAX MeXAY STUMU 06 bEeKTaMK, @ TaKXKe SBOMIOLMOHHbBIE XapaKTepuUCTUKN reHoB. C MCMosib30BaHMEM NPOrPamMMHOro
nHctpymeHTa ANDVisio (Mogyns cnctembl ANDSystem) npoBefeHa NpropuTM3auma Kaxaoro reHa, 6enka n mmkpoPHK,
y4YacTBYIOLUX B TEPMOPErynALnyi opraHmsmMa YyenoBeka no nx GyHKLMOHANIbHOW HarpyKeHHOCTY — KONMYeCTBY CBA3el C
LpYruMmn o6bEKTaMM PEKOHCTPYMPOBAHHOW FreHHO CeTU. YCTAHOBIEHO, UTO K UMCITY KITIOUYEBbIX OOBbEKTOB, MEIOLLMX Hau-
6onbluee KONMYecTBO GYHKLMOHAMNbHBIX CBA3EN B FEHHOW CETV TePMOPErynALmMmN Yenoseka, oTHocATcA reHbl UCPT, VEGFA,
PPARG, DDIT3, 6enku STAT3, JUN, VEGFA, TLR4, TNFA n MmukpoPHK hsa-mir-335 1 hsa-mir-26b. O6Hapy»eHo oboralyeHue
reHHOWN CceTV TEPMOpPErynALMM reHamm, NpefKoBble BapmaHTbl KOTOPbIX CGOPMUPOBANNCL Ha SBOMIOLMOHHbBIX 3Tanax ro-
ABMIEHNA OJHOKNETOYHbIX OPraHN3MOB Y AVIBEPreHLNN MO3BOHOUHbIX.

KnioueBble cnoBa: TENO; XONog; reHHas ceTb; 6a3a AaHHbIX; MUKPOPHK; aBontoums; unoctpaturpadus; Bo3pacT reHa

Introduction

Humans and most other mammals are homoiothermic, capable
of maintaining a relatively constant body temperature when
the ambient temperature varies (Osvath et al., 2024). Human
thermoregulation is carried out with the participation of:
1) thermoreceptors located on the body’s surface and in the
internal organs; 2) afferent neural signal transmission path-
ways; 3) thermoregulatory centers in the hypothalamus and
other parts of the brain; 4) efferent neural pathways that control
adaptive reactions (Nakamura, 2024). Such adaptive reactions
include: a) shivering and nonshivering thermogenesis (chemi-
cal mechanisms of thermoregulation) (Ikeda, Yamada, 2020;
Dumont et al., 2025); b) physical thermoregulation, including
the regulation of heat transfer through evaporation and convec-
tion, as well as thermal insulation (Nakamura, 2011; Tattersall
etal., 2012); c) behavioral reactions: avoidance of open areas
of the Earth’s surface characterized by extreme temperatures;
crowding of individuals, etc. (Tattersall et al., 2012; Tansey,
Johnson, 2015; McCafferty et al., 2017).

Chemical thermoregulation is carried out through heat
production during skeletal muscle contractions (Blondin et
al., 2019; Dumont et al., 2025), and nonshivering thermoge-
nesis in brown adipose tissue (Tansey, Johnson, 2015; Ikeda,
Yamada, 2020) and muscles (Blondin et al., 2019). Physical
thermoregulation is carried out by changing the heat transfer
from the body: conduction, radiation, perspiration, evapora-
tion of water from the respiratory passages, thermal insulation
due to the subcutaneous fat layer, piloerection (Nakamura,
2011; Tattersall et al., 2012). Both chemical and physical
thermoregulatory processes are actively controlled by the
neuroendocrine system (Charkoudian et al., 2017; Nakamura,
2024; Mittag, Kolms, 2025).

In addition, the thermoregulatory reactions are associated
with changes in the cardiovascular system (Tansey, Johnson,
2015). Thus, thermoregulation is provided by a variety of
biological processes occurring in the nervous, endocrine,
cardiovascular, respiratory, muscular and other body systems.
The genetic regulatory mechanisms controlling the above
processes also play a significant role in thermoregulation
(Festuccia et al., 2009; Rehman et al., 2013; Li et al., 2015;
Horii et al., 2019; Xiao et al., 2019; Kudsi et al., 2022; Song
et al., 2022; Valdivia et al., 2023).

Reconstruction and analysis of gene networks regulating
biological processes are among the effective approaches to

study complex biological systems that ensure vital activity of
organisms (Ignatieva et al., 2017; Saik et al., 2018; Mustafin
et al., 2019, 2021; Mikhailova et al., 2024). A large amount
of experimental genetic data has been accumulated on the
problem of thermoregulation, presented in tens of thousands
of scientific publications and many specialized databases (e. g.
KEGG Pathway, WikiPathways, MetaCyc, REACTOME,
etc.). In this regard, in our work, we reconstructed the hu-
man thermoregulation gene network using the ANDSystem
software and information system, designed for the automated
extraction of knowledge and facts from the texts of scientific
publications and biomedical databases using machine learn-
ing and artificial intelligence methods (Ivanisenko V.A. et al.,
2019; Ivanisenko T.V. et al., 2024). The results obtained from
the analysis of 30 million publications are accumulated in the
specialized knowledge base of the ANDSystem in the form of
a global knowledge graph (lvanisenko T.V., 2024).

Information on the reconstructed human thermoregulato-
ry gene network is presented in the Termo_Reg_Human 1.0.
knowledge base (https://www.syshio.ru/ThermoReg
Human/), including descriptions of 469 genes, 473 proteins
and 265 microRNAs important for gene network functioning,
as well as interactions between them.

Each gene, protein, and microRNA involved in human body
thermoregulation was prioritized according to their functional
load, i. e., the number of interactions with other objects of the
reconstructed gene network, using the ANDVisio software tool
(amodule of the ANDSystem). The key objects with the largest
number of functional interactions in the human thermoregula-
tion gene network were found: the UCP1, VEGFA, PPARG
and DDIT3 genes, the STAT3, JUN, VEGFA, TLR4 and TNFA
proteins, and microRNASs hsa-mir-335 and hsa-mir-26b.

The Termo_Reg_Human 1.0 knowledge base also presents
the results of an evolutionary analysis of genes functioning
in the thermoregulation gene network: this gene network was
enriched with genes, the ancestral forms of which emerged
at two important evolutionary stages corresponding to a) the
appearance of unicellular organisms and b) the divergence
of vertebrates.

Materials and methods

Lists of genes used for building a gene network. The list
of human genes involved in thermoregulation was compiled
based on the Gene Ontology, EntrezGene, and ANDSystem
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databases (Ivanisenko V.A. et al., 2019) using the keywords
shown in Supplementary Material S11.

Building of the gene network. The gene network of
thermoregulation was built using the ANDSystem software
and information system (lvanisenko V.A. et al., 2019; Ivani-
senko T.V. et al., 2024). ANDSystem, based on machine
learning and artificial intelligence methods, is designed for
the automated extraction of knowledge and facts about the
structural and functional organization of gene networks from
scientific publications and biomedical factographical data-
bases. The information obtained in this way is accumulated
in the specialized knowledge base of ANDSystem in the form
of a global knowledge graph (lvanisenko T.V. et al., 2024).
Based on this information, a reconstruction of the graphs of
target gene networks is carried out, the nodes of which cor-
respond to molecular genetic objects (genes, RNA, proteins
and metabolites), functioning as part of gene networks, and the
edges connecting these nodes indicate the functional interac-
tions between objects. Supplementary Material S2 provides a
detailed description of the reconstruction process of the human
thermoregulatory gene network.

Prioritization of genes, proteins, and microRNAs ac-
cording to their functional significance in the human
thermoregulation gene network. Prioritization of gene
network nodes (genes, microRNAs and proteins) was per-
formed using the ANDVisio software tool (a module of
the ANDSystem). The number of interactions with other
objects was calculated for a specific object in the human
thermoregulation gene network graph. Next, the probability
of obtaining the observed number of interactions for random
reasons was estimated for each gene network object. Next,
the probability of observing this number of interactions in-
volving this specific object of the gene network by chance
was estimated. The probability was calculated using a hyper-

geometric test:
)]

L

n

where: k — the number of interactions of this specific object
(node) in the gene network; n —the number of objects (hodes)
involved in the gene network under consideration; K — the
number of interactions of this specific object (node) in the
ANDSystem knowledge base global network graph; N — the
total number of objects (nodes) in the ANDSystem knowledge
base global graph (Ivanisenko V.A. et al., 2019).

When calculating the p-value, only objects of the same
type (genes, proteins, microRNA) as the considered object
of the human thermoregulation gene network were taken
into account. Next, correction for multiple hypothesis test-
ing was applied (Benjamini, Yekutieli, 2001), resulting in a
P-adjusted value.

Analysis of the evolutionary characteristics of the
genes. The analysis of the evolutionary characteristics of
genes involved in the reconstructed gene network was carried
out using the Orthoweb system (lvanov et al., 2024), which
calculates the phylostratigraphic index (PAI) of each gene,

k
p-value = 2.;_,

T Supplementary Materials S1-S7 are available at:
https://vavilov.elpub.ru/jour/manager/files/Suppl_Ignatieva_Engl_29_7.pdf
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characterizing the evolutionary age of the gene. Details of
the calculation procedure for the PAI index are described in
Supplementary Material S2.

Functional annotation of genes. The identification of
Gene Ontology terms associated with genes of a certain phy-
lostratigraphic age was carried out using the DAVID web
server and its GOTERM_BP_DIRECT dictionary (Sherman
etal., 2022).

Implementation of the knowledge base on human ther-
moregulation. Data for the knowledge base information tables
were extracted from text outputs of the ANDVisio program
(a module of the ANDSystem) using original Python scripts.
The online implementation of the knowledge base was per-
formed using MySQL 5.1.73 and PHP 5.3.3. Apache HTTP
Server 2.2.15 and Nginx 1.4.1 were used.

Results and discussion

Genes associated with thermoregulatory processes

The search through the Gene Ontology, EntrezGene, and
ANDCEell (the information component of ANDSystem) da-
tabases identified 467 protein-coding genes associated with
thermoregulation, as well as two genes encoding microRNAS.

The gene network of human thermoregulation

Based on the list of human genes involved in thermoregu-
lation mentioned above, the gene network of human ther-
moregulation was reconstructed using ANDSystem. The
view of the entire reconstructed gene network is shown in
Figure 1. The gene network includes 469 genes, 473 proteins,
265 microRNAs and 7,018 interactions between them. The
number of proteins exceeds the number of genes because the
gene network contains six genes that encode more than one
protein due to alternative splicing or proteolytic cleavage of
the precursor protein.

It should be noted that ANDSystem identifies two types
of relationships between gene networks objects, based on
the analysis of scientific literature and biomedical databases:
direct molecular genetic interactions between gene network
objects and indirect actions, i.e. relationships in which the
effect of one gene network object on another is shown, but the
molecular genetic mechanism of such effect remains unknown
and/or may involve intermediate objects.

Figure 2 shows two fragments of the thermoregulatory gene
network. Figure 2a illustrates molecular genetic interactions
of the gene encoding the thermoreceptor TRPV1, which
is activated when temperature increases. According to the
ANDSystem knowledge base, TRPV1 expression is regulated
by interleukin 13 (IL13) and toll-like receptor 4 (TLR4). These
regulatory relations are described in the articles (Rehman et
al., 2015; Lietal., 2015) and can be categorized as “indirect”,
since we are talking about the action of the cytokine IL13
(an extracellular signaling molecule) and the TLR4 receptor
located on the cell membrane, which affect TRPV1 expression
through signal transduction pathways. In addition, TRPV1 is
coexpressed with other genes from the thermoregulation gene
network, including thermoreceptor-encoding genes (TRPMS,
TRPAL, TRPV3, TRPV4), as well as NTRK1 encoding neu-
rotrophic receptor tyrosine kinase 1. The experiments that
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Fig. 1. The view of the entire gene network of human thermoregulation reconstructed using the

ANDSystem tool.

The gene network includes 469 genes, 473 proteins, 265 microRNAs, and 7,018 interactions between
these objects. Genes, proteins, and microRNAs with the highest number of interactions in the network
are shown separately. Numbers in parentheses indicate the number of interactions in the network.
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Fig. 2. The fragments of the thermoregulation gene network shown in Figure 1.

a - regulatory interactions involving the gene encoding the TRPV1 heat sensing
transcription factor PPARG.

revealed the coexpression of these genes are described in the
research papers (Zhu, Oxford, 2007; Cao et al., 2009; Cheng
et al., 2011; Gouin et al., 2012; Nguyen et al., 2017).

Figure 2b shows the regulatory relationships involving the
PPARG gene and its encoded protein. PPARG expression is
regulated by transcription factors ZN423, EGR1, CEBPB,
which affect the level of transcription by interacting with
DNA in the PPARG regulatory regions. PPARG expression is
also regulated by transcription cofactors MECP2 and PRGC1/
PGC-1-alpha and the WN10B protein, which activates the
Whnt signaling cascade. In addition, cytokines TNF, IL4, IL1B,
and LEP are involved in the regulation of PPARG expression.

receptor; b - regulatory interactions involving the PPARG gene and the encoded

The transcription factor PPARG, encoded by the gene under
consideration, controls the transcription of a) genes regulat-
ing metabolic processes in adipocytes: LCN2, UCP1, FABP4,
PNPLA2, SLC27A1, LIPE, and DDIT3; b) genes encoding
transcription factors STAT3 and ARNTL; and c) the SIRT6
gene encoding the NAD-dependent protein deacetylase. The
references to scientific publications supporting these interac-
tions are provided in Supplementary Material S3.

The Termo_Reg_Human knowledge base
At the next stage of the study, the Termo_Reg_Human 1.0.
knowledge base (https://www.sysbio.ru/ThermoReg_Human/)
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was developed. This knowledge base contains data on 469 ge-
nes, 473 proteins, and 265 microRNAs involved in human
thermoregulation.

Termo_Reg_Human 1.0. contains four main tables: Genes_
evol, Proteins, MicroRNA u Genes_all (the knowledge base
scheme is shown in Figure 3).

The Genes_evol table contains a description of each of the
469 genes functioning as part of the human thermoregulation
gene network, including: the EntrezGene GenelD, the number
of interactions of the gene with other genes and proteins of
the gene network, and the evidence type supporting the as-
sociation of the gene with thermoregulation (Gene Ontology,
ANDSystem, Entrez Gene). This table also presents such
evolutionary characteristics for each protein-coding gene as
the phylostratigraphic age index (PAI) and the divergence
index (DI), calculated using the OrthoWeb software package
(lvanov et al., 2024).

The Proteins table contains data on proteins encoded by
genes from the Genes_evol table. The description of each pro-
tein includes the UniProtKb Entry Name, the NCBI GenelD
of the gene encoding the protein, the number of interactions
the protein has in the gene network, and the names of the
microRNAs that regulate protein expression.

The MicroRNA table contains information about mi-
croRNAs that regulate the expression of proteins involved
in the network. These are two microRNAs encoded by genes
from the list of 469 genes mentioned above, as well as addi-
tional microRNAs found using the ANDVisio program during
the reconstruction of the network. The MicroRNA table shows
for each microRNA: 1) microRNA name within the network;
2) official symbol of the gene encoding this microRNA; 3) the
number of interactions involving this microRNA; 4) the names
of proteins for which this microRNA acts as an expression
regulator.

The fourth table, Genes_all, contains additional data on
all 469 genes characterized in the Genes_evol table, as well
as data on the genes encoding microRNAs included in the
network using the ANDVisio program.

The web interface allows to view data on genes and pro-
teins associated with thermoregulation, as well as to search
for genes/proteins by identifiers or their names. In addition,
a search for objects (genes, proteins, microRNAS) by the
number of functional interactions in the network is available.
The interface displays objects with a number of interactions
exceeding the value specified by the user.

Using data from the Termo_Reg_Human 1.0 knowledge
base in bioinformatics research

Prioritization of genes by the number of interactions in
the gene network. Figure 4a shows the distribution of genes
by the number of interactions with other objects of the hu-
man thermoregulation gene network (genes, proteins, and
microRNAs). Most genes (373 out 0f 467) have a low number
of interactions with other objects in the network (five or less).
One fifth of all genes, that is, 90 genes, have from 6 to 25
interactions. Only four genes had more than 25 interactions:
UCP1 (41 interactions), VEGFA (36), PPARG (30), and DDIT3
(26). A statistical analysis using the hypergeometric distribu-
tion confirmed that these four genes have significantly more
interactions than would be expected by chance: the P-adjusted
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Fig. 3. Structure of the Termo_Reg_Human 1.0. knowledge base.

value varies from 2.44-10-%for the DDIT3 gene to 1.20-10-28
for the UCP1 gene. Functional characteristics of these genes
with the largest number of interactions are shown in Table 1.

The UCP1 gene encodes the uncoupling protein 1 (called
thermogenin), which is involved in one of the key processes
of heat generation — nonshivering thermogenesis in brown
adipose tissue (Wollenberg Valero et al., 2014). This protein,
localized in the mitochondrial inner membrane, increases
its permeability, dissipating the proton gradient generated
in oxidative phosphorylation. As a result, the processes of
oxidative phosphorylation and ATP synthesis are uncoupled,
and heat is released (lkeda, Yamada, 2020).

The VEGFA gene encodes vascular endothelial growth fac-
tor A (Naik et al., 2012). The resulting activation of the blood
supply to tissues is important for thermoregulatory processes:
heat exchange between the internal parts of the body and its
surface, heat dissipation through evaporation and convection,
etc. (Tansey, Johnson, 2015).

The PPARG gene encodes the transcription factor PPARG,
which belongs to the nuclear receptor superfamily. PPARG
controls the activity of genes governing the metabolism of
fatty acids and glucose (Festuccia et al., 2009), and also
activates the production of the UCP1 (uncoupling protein 1,
thermogenin) in brown and beige adipocytes (Valdivia et al.,
2023).

The DDIT3 gene encodes CHOP (C/EBP homologous pro-
tein), a transcription factor from the C/EBP family regulating
differentiation of adipocyte precursor cells into mature adipo-
cytes, which play a crucial role in nonshivering thermogenesis
(Okla et al., 2015).

Prioritization of proteins by the number of interactions
in the gene network of thermoregulation. Analysis of the
thermoregulation gene network revealed that proteins gene-
rally have more interactions than genes (Fig. 4b): the propor-
tion of proteins that had no more than five interactions was
less than half of their total number (144 out of 473). 55 % of
the proteins (261 proteins) had from 6 to 30 interactions, 13 %
of the proteins (63 proteins) had from 31 to 100 interactions.
Five proteins (STAT3, JUN, VEGFA, TLR4, TNFA) had more
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Fig. 4. Distribution of genes, proteins, and microRNAs involved in the
thermoregulatory gene network according to the number of interactions
in this network (based on information from the Termo_Reg_Human 1.0
knowledge base).

a - distribution of genes according to the number of interactions; b - distribu-
tion of proteins according to the number of interactions; ¢ — distribution of
microRNAs according to the number of interactions. The rectangular panels
show the names of the genes, proteins, and microRNAs with the highest num-
ber of interactions.

than 100 interactions with other network objects. A statisti-
cal analysis using the hypergeometric distribution confirmed
that these five proteins have a significantly greater number of
interactions with the rest of the network objects than would be
expected by chance: P-adjusted value ranged from 2.04-10-18
for the TLR4 protein to 3.79-10~43 for the STAT3 protein.
The characteristics of these five proteins are given in Table 2.

STAT3 (143 interactions in the network) is a transcription
factor acting at the final step of the JAK/STAT3 signal trans-
duction pathway. STAT3 regulates adipocyte differentiation
during the induction phase, and subsequent inactivation of
the JAK/STAT3 pathway in these cells provides UCP1 gene
expression activation and the conversion of preadipocytes
into mature brown fat cells (Song et al., 2022). In addition,

The gene network and knowledge base
on human thermoregulation

STAT3 is involved in the signaling pathway activated by the
heat sensing receptor TRPV1 in brain regions that control
body temperature (Yoshida et al., 2016).

The JUN protein (124 interactions in the network) is a
subunit of the transcription factor AP1 (the JUN/FOS hete-
rodimer). JUN is involved in the regulation of cytokine ex-
pression, thereby controlling the inflammatory processes that
are associated with elevated body temperature (Schonthaler
et al., 2011; Johnson Rowsey, 2013). It has been shown that
when the expression of the JUN gene in the liver is inactivated
in liver-specific ¢c-Jun knock-out mice, an increase in body
temperature occurs due to the activation of the sympathetic
nervous system and subsequent stimulation of UCP1 expres-
sion in brown fat (Xiao et al., 2019).

As mentioned above, the VEGFA protein, which has
112 interactions in the network, controls vascular endothe-
lium growth (Naik et al., 2012), which is important for heat
exchange between tissues and the external environment
(Tansey, Johnson, 2015).

TLR4 (109 interactions in the network) is a transmembrane
protein, toll-like receptor 4. It can be activated by lipopoly-
saccharides (LPS) found in bacterial cell walls, leading to an
increase in body temperature in response to infection (Roth,
Blatteis, 2014). Additionally, activation of the TLR4 receptor
by lipopolysaccharides leads to oxidative stress, mitochondrial
dysfunction, and inhibition of the brown adipocyte differentia-
tion (Okla et al., 2018).

The TNFA protein, tumor necrosis factor, belongs to the
cytokine family (107 interactions in the network). It activates,
in particular, prostaglandin synthesis in endothelial cells.
These prostaglandins act on neurons in the preoptic area of
the hypothalamus, the brain’s thermoregulatory center, leading
to increased body temperature (Leon et al., 1998; Netea et al.,
2000; Gil et al., 2007; Nakamura, 2024). TNFA has also been
shown to have a direct effect on adipocytes in vitro, reducing
the expression of thermogenin (UCP-1) (Valladares et al.,
2001) and the enzyme triglyceride lipase ATGL/PNPLA2
(Kimetal., 2006). Thus, the cytokine TNFA plays an important
role in thermoregulation, but its effect on body temperature
depends on the type of cells affected by this cytokine.

Prioritization of microRNAs by the number of interac-
tions in the gene network of thermoregulation. MicroRNAs
regulate gene expression at the translational level. These
RNAs bind to the mRNA targets within miRISC complex,
inhibiting protein synthesis with or without transcript degra-
dation (O’Brien et al., 2018). According to the Termo Reg
Human 1.0 knowledge base, the thermoregulation gene net-
work includes 265 microRNAs that are involved in regulating
the expression of 297 genes. Data on these regulatory rela-
tionships was obtained from the miRTarBase, which contains
experimentally confirmed information about interactions
between microRNAs and their mRNA targets (Cui et al.,
2025). The proportion of microRNAs having not more than
five regulatory interactions in the network was 64 % (170 out
of 265) (Fig. 4c). 35 % of the total set of microRNAs (93 out
of 265) had from 6 to 30 interactions. Two microRNAs had
the highest number of interactions (more than 35). These are
hsa-mir-335 (64 interactions) and hsa-mir-26b (39 interac-
tions). An assessment of the statistical significance of the
number of interactions between these microRNAs and other
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Table 1. Functional characteristics of genes with the highest number of interactions in the thermoregulatory network

Gene Number of interactions Role in thermoregulation P-adjusted PAI

symbol in the network

Uce1 41 Encodes uncoupling protein 1, which is expressed in brown adipose tissue 1.2:10728 1
and enables heat generation through nonshivering thermogenesis
(Wollenberg Valero et al., 2014; Ikeda, Yamada, 2020)

VEGFA 36 Encodes vascular endothelial growth factor A, which regulates tissue 18:106 6
vascularization, facilitating heat exchange and heat transfer (Naik et al., 2012)

PPARG 30 Encodes a nuclear receptor that regulates adipocyte differentiation, 266-107 6
fatty acid metabolism, and glucose uptake in fat cells (Festuccia et al., 2009)

DDIT3 26 Encodes the transcription factor CHOP, which plays a key role in adipogenesis ~ 2.44-107% 7

(Okla et al., 2015)

Note. Genes are listed in descending order based on the number of interactions in the gene network.
Here and in Tables 2 and 3: P-adjusted indicates the probability of observing a given number of interactions in a network by chance, calculated using hypergeo-

metric distribution with correction for multiple comparisons.

Table 2. Functional characteristics of proteins with the highest number of interactions in the network of thermoregulation

Protein Number of interactions Role in thermoregulation P-adjusted
in the network

STAT3 143 The transcription factor STAT3 regulates gene expression in brain regions that control ~ 3.79-10743
thermoregulation (Yoshida et al., 2016), regulates the differentiation of adipocytes
into brown fat cells, as well as UCP1 gene expression (Song et al., 2022)

JUN 124 The transcription factor JUN regulates cytokine expression (Schonthaler et al.,, 2011; 3.78-10733
Johnson Rowsey, 2013) as well as UCPT gene expression in brown adipocytes
(Xiao et al., 2019)

VEGFA 112 VEGFA (vascular endothelial growth factor A) was previously characterized inTable 1 6.72-10728

TLR4 109 TLR4 is a cell surface receptor activated by lipopolysaccharides, which contributes 2.04-10718
to fever (Roth, Blatteis, 2014) and affects brown fat cell differentiation (Okla et al., 2018)

TNFA* 107 TNFA (tumor necrosis factor A) is a cytokine that can induce fever (Leon et al., 1998; 1.78-10730

Netea et al., 2000; Gil et al., 2007), and also affects gene expression in adipocytes
(Valladares et al., 2001; Kim et al., 2006)

Note. Proteins are listed in descending order of the number of interactions in the gene network.

*TNFA is encoded by the TNF gene.

objects of the network using the ANDVisio program showed
that microRNAs hsa-mir-335 and hsa-mir-26b regulate the
expression of a significantly larger number of genes from the
thermoregulatory network than would be expected by chance
(P-adjusted < 0.01).

The two microRNAs mentioned above are important for
thermoregulatory processes (Table 3). So, hsa-mir-335 regu-
lates the expression of thermoreceptors TRPMS8 and TRPV4,
as well as the VEGFA protein, one of the key proteins for
thermoregulation, which is involved in 112 interactions in the
network. The hsa-mir-26b microRNA regulates the expres-
sion of JUN (Jun proto-oncogene, AP-1 transcription factor
subunit), which is involved in 124 interactions in the network.
As noted above, JUN affects the expression of thermogenin
(uncoupling protein 1, UCP1) in brown fat cells (Xiao et al.,
2019). This microRNA also regulates the expression of the
EDN2 (endothelin-2) protein, which controls vasoconstriction,
a process that mediates physical thermoregulation (Inoue et
al., 1989).

The list of genes associated with thermoregulation we have
created contains the MIR21 and MIRLET7c genes. The mi-
croRNAs encoded by these genes, hsa-mir-21 and hsa-let-7c,
regulate cellular processes in response to elevated temperature
(Jiang et al., 2016; Permenter et al., 2019). The effect of the
hsa-mir-21 and hsa-let-7c microRNAs on the expression of 15
and 5 proteins, respectively, was revealed in the reconstructed
gene network (Table 3).

Among the proteins, the expression of which is regulated
by hsa-mir-21, VEGFA (vascular endothelial growth factor A)
was found to have 112 interactions in the network (Table 3).
Multiple mentions of this protein in this report are an evidence
of its important role in thermoregulation. Among the proteins,
the expression of which is controlled by hsa-let-7c, the fol-
lowing were identified: a) COX2, a subunit of cytochrome ¢
oxidase, involved in mitochondrial electron transport, encoded
by the MT-CO2 gene (Aich et al., 2018); b) DICERI, ribo-
nuclease type Il1, involved in microRNA biogenesis (Wingo
etal., 2015); c) CNOT3/NOT, CCR4-NOT transcription com-
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Table 3. Characteristics of microRNAs with the highest functional significance within the network of human thermoregulation

TRPMS, TRPV4, VEGFA, ANO1, ANO3,

Examples of functionally significant
proteins encoded by mRNA targets
of microRNA

Thermoreceptors TRPM8 and TRPV4,

NPR3, AQP5, ARRDC3, ACVR2B, BAAT,
CASQ1, CD14, CD36, CDKN1TA, CRNN,

and growth factor VEGFA, involved
in 112 interactions in the network

DDIT3, DNAJC3, DBH, EIF2AK3, ELOVLS,
FABP4, FOS, FOXO1, ABAT, GRB10,
HDAC6, HMOX1, HSPA1A, HSPA1B,

ILTA, IL4, JAK2, KCNK4, KDM6B, LEPR,
MOCOS, AVP, NOS3, NPY, NR1D1, NR2F6,
NTSR1, PLA2G7, PTGS2, PPARGC1A,
PTGES, RB1, SLC27A1, SCARA5, SCNYA,
SQSTMT1, STAT6, TCIM, TFE3, PTH2, TAC4,
TMEM135, NGFR, TSHR, WNT10B

JUN, EDN2, ACADM, ADRA2A, AGTR1,
AKT1, BAG3, CASP8, CASQ1, CAV1,
CD36, STUBT, CHORDC1, CRYAA, CXCR4,
DNAJA2, DNAJA3, DNAJB4, EIF2AK3,

Transcription factor JUN, involved
in 124 interactions in the network,
EDN2 (endothelin-2), controlling
vasoconstriction

EIF2B1, GRIK2, HADH, HMOX1, HSF1,
IER5, NOX3, NRDC, NTSR1, PARK?7, PDCL3,
PTGS2, RBM3, RRAGC, SLC25A44, SMS,

microRNAs encoded by genes from the list of 469 genes associated with thermoregulation

VEGFA, PRKAB2, ALMS1, APC, CPEB3,
DAXX, DOCK?, EIF251, IL1B, PARP1, RB1,
RDH11, RRAGC, SMARCA4, STAT3

VEGFA (vascular endothelial growth
factor A), involved in 112 regulatory
interactions in the network

MicroRNA  Gene Number P-adjusted Regulated mRNAs*
encoding of interactions
microRNA in the network
MicroRNAs with the highest number of interactions in the network
hsa-mir-335 MIR3 64 < 0.001
HSPB3, IGF2BP2, IGF1R, NFKBIA,
hsa-mir-26b  MIR26b 39 <0.01
STAT6, VCP, TNFRSF11A, ZNF423
hsa-mir-21  MIR21 15 <0.05
hsa-let-7c  MIRLET7c 5 >0.05

MT-CO2/COX2, DICER1, CNOT3,

COX2, involved in mitochondrial

IP6K1, QKI

electron transport (Aich et al., 2018),
DICERT1, involved in microRNA
biogenesis (Wingo et al., 2015),
CNOT3/NOQT, participating

in microRNA-mediated mRNA
degradation (Wakiyama et al.,, 2022)

* mRNAs the translation of which is regulated by this microRNA (mRNAs encoding proteins described in the right column are underlined).

plex subunit 3, participating in microRNA-mediated mMRNA
degradation (Wakiyama, Takimoto, 2022).
Phylostratigraphic age of genes involved in the gene
network of human thermoregulation (PAl-based analysis).
The analysis of the evolutionary age of genes was carried
out using the PAI (phylostratigraphic age index), the data on
which were obtained from the Genes_evol information table
from the Termo_Reg_Human 1.0 knowledge base. The phy-
lostratigraphic age index was calculated using the Orthoweb
system (Ivanov et al., 2024) as proposed in our previous
studies (Mustafin et al., 2017). We constructed a distribution
of PAI values for 467 protein-coding genes functioning in the
thermoregulation gene network described in the Termo_Reg_
Human 1.0 knowledge base (the Thermoregulation_467 gene
set, in Figure 5 this distribution is marked with orange bars).
It turned out that this distribution has two maxima. The first
of them is observed at PAI =1 (176 genes, 38 % of their total

list). The phylostratigraphic index PAI = 1 corresponds to the
evolutionary stage of the emergence of unicellular organisms.
The second peak is observed at PAI = 6 (100 genes associated
with thermoregulation, 22 % of their total list). The phylo-
stratigraphic index PAI = 6 corresponds to the evolutionary
stage of the Vertebrata divergence.

To evaluate the statistical significance of the two peaks, a
reference PAI index distribution was constructed for all hu-
man protein-coding genes (19,504 genes, the all_CDS_19504
gene set, marked in blue in Figure 5), as it was done in our
previous study (Mikhailova et al., 2024). This distribution
also has two, but less noticeable, peaks. Using the chi-square
method, the number of genes from the Thermoregulation_467
gene set falling into peaks 1 and 6 was compared with the
number of genes expected for random reasons in these peaks.
In both cases, a difference was found between the observed
and expected number with the level of significance p < 0.05
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Fig. 5. Distribution of PAI values for protein-coding genes associated with thermoregulation (Thermoregulation_467 set) and for

all human protein-coding genes (all_CDS_19504 set).

One asterisk (*) indicates a significant (p < 0.05) excess of the observed number of genes associated with thermoregulation corresponding
to PAl =1 (unicellular organisms, the root of the phylostratigraphic tree) over the expected number of genes with PAI = 1 calculated based
on the distribution of PAI values for the complete set of protein-coding genes (all_CDS_19504 set). Two asterisks (**) show a significant
(p < 0.01) excess of the observed number of genes associated with thermoregulation corresponding to PAIl = 6 (the stage of Vertebrata

divergence) over their expected number.

and p < 0.01 (Supplementary Materials S4 and S5). Thus, it
was shown that the gene network of thermoregulation was
enriched with genes, the ancestral forms of which originated
at the early evolutionary stage (emergence of unicellular
organisms, the root of the phylostratigraphic tree) and at the
stage of Vertebrata divergence.

Functional analysis of the genes from the Thermoregula-
tion_467 set performed using the DAVID tool showed that a
group of genes with PAI = 1 is enriched with associations with
the Gene Ontology terms related to transcription regulation
(Supplementary Material S6), the most important mechanism
for regulating gene expression in unicellular organisms. As
for the group of genes with an index value of PAI = 6, it is
enriched with genes involved in signal transduction (Supple-
mentary Material S7), a vital process that ensures intercellu-
lar communications in a multicellular organism. This result
is consistent with the idea that the interactions of a great
number of physiological systems of the body (respiratory,
circulatory, muscular, nervous, etc.) play a crucial role in the
thermoregulation of the human body (Tansey, Johnson, 2015;
Nakamura, 2024). In this case, the process of transcription
provides genetic control over cell differentiation and formation
of tissues involved in thermoregulation, and the coordination
of the activity of physiological systems that ensure thermo-
regulation is carried out at the cellular level through signal
transduction pathways.

Conclusion

In this study, a gene network comprising human genes,
microRNAs, and proteins associated with thermoregulation
was built. Additionally, the Termo_Reg_Human 1.0 knowl-
edge base was developed to systematize current data on the
molecular and genetic mechanisms underlying thermore-
gulatory processes. Based on data contained in the knowledge
base, the prioritization of genes, proteins and microRNAs by
the number of interactions in the network of thermoregulation

was carried out, and the evolutionary characteristics of the
genes were identified.

Enrichment of the thermoregulation gene network with
genes, the ancestors of which were formed at the evolutionary
stages of unicellular organisms and Vertebrata divergence,
was revealed. The patterns in the evolution of the genes we
discovered should be taken into account when developing new
concepts for the emergence of endothermy across different
animal taxa (Osvath et al., 2024).
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Abstract. Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized primarily by joint involvement with
progressive destruction of cartilage and bone tissue. To date, RA remains an incurable disease that leads to a significant
deterioration in quality of life and patient disability. Despite a wide arsenal of disease-modifying antirheumatic drugs,
approximately 40 % of patients show an insufficient response to standard treatment, highlighting the urgent need to
identify new pharmacological targets. The aim of this study was to search for novel biological processes that could serve as
promising targets for the targeted therapy of RA. To achieve this goal, we employed an approach based on the automated
extraction of knowledge from scientific publications and biomedical databases using the ANDSystem software. This
approach involved the reconstruction and subsequent analysis of two types of associative gene networks: a) gene networks
describing genes and proteins associated with the development of RA, and b) gene networks describing genes and proteins
involved in the functional responses to drugs used for the disease’s therapy. The analysis of the reconstructed networks
identified 11 biological processes that play a significant role in the pathogenesis of RA but are not yet direct targets of
existing disease-modifying antirheumatic drugs. The most promising of these, described by Gene Ontology terms, include:
a) the Toll-like receptor signaling pathway; b) neutrophil activation; c) regulation of osteoblast differentiation; d) regulation
of osteoclast differentiation; e) the prostaglandin biosynthetic process, and f) the canonical Wnt signaling pathway. The
identified biological processes and their key regulators represent promising targets for the development of new drugs
capable of improving the efficacy of RA therapy, particularly in patients resistant to existing treatments. The developed
approach can also be successfully applied to the search for new targeted therapy targets for other diseases.
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Mownck 61uonornyecknx NPoLEeCcoB — MULLEHeN Tepann
peBmaTouaHoro apTputa ¢ nomoubio ANDSystem

OCTPYl0 HEOOXOAMMOCTb MOMCKa HOBbIX GpapMaKkonornyeckmx muileHei. Llenbio HacToAwen paboTbl 6blT MOUCK HOBbIX
61ONOrMYECKUX MPOLECCOB, KOTOPblE MOTYT CNYXWUTb NMEPCMEKTUBHLIMA MULLEHAMW OAs TapreTHon Tepanuu PA. OnAa
LOCTUXKEHMWA MOCTaBNIEHHOW Uenu Obi NPUMEHEH MOAXOA, OCHOBAHHbIM Ha aBTOMATMYECKOM W3BAEUEHUW 3HaHWUI ©3
TEKCTOB Hay4HbIX NybnvKauuin n 6romennumHCKNX 6a3 faHHbIX C MOMOLLbIO NPOrpaMMHO-UHGOPMALMOHHON CUCTEMDI
ANDSystem. [laHHbI nogxof BKOYaa PEKOHCTPYKLUMIO 1 MOCNefylowWwnii aHam3 acCcoUMaTBHbIX TeHHbIX ceTer ABYX
TUMOB: @) reHHble CeTM, ONKMCbIBaloLLMe reHbl 1 6enKn, accouMmpoBaHHble € pa3suTeM PA, 1 6) reHHble ceTu, onucbiBatoLne
reHbl 1 6enKku, BoBieYeHHble B PYHKLIMIOHaNbHbIe OTBETbI Ha AieNCTBUE NIeKapCTB, MPUMeHAEMbIX 1A Tepanun 3aboneBaHus.
B pe3ynbTaTe aHanm3a PeKOHCTPYMPOBAHHBIX CETEN BbIABMEHO 11 BMONOrMYeCcKMX MPOLIECCOB, UIPaloLUX 3HAYMMYO
ponb B natoreHe3e pPeBMATOMAHOrO apTpuTa, HO JO CUMX MOP He ABMAIOWMUXCA MPAMbIMA MULIEHAMW CYLLECTBYIOLMX
6a3nCcHbIX MPOTMBOBOCMANMTENbHBIX MNpenapaToB. K uuciy Hanbonee nepCrnekTBHbBIX OTHOCATCA Clepyowume
npoLecchl, ONMCbIBaeMble TEPMUHAMU OHTONOFW FEHOB: @) CUrHanbHbIN NyTb Toll-nogo6HbIX peuenTopos; 6) akTnBaLMA
Hentpodunos; B) perynauna AnddepeHUMpPOBKN 0CTeobnacToB; r) perynauma AudpdepeHUUpPOBKM OCTEOKNACTOB;
1) 6MoCUHTe3 NpoCTarnaHAVHOB; €) KAHOHNYECKUIA CUrHanbHbIN MyTb Wnt. BbiBNeHHble 6uonornyeckne npoLeccs v ux
K/OUEBbIE PETrYNATOPbI MPEACTABAAIT COO0M NepCnekTBHbIE MULLEH A1A Pa3PaboTK/ HOBbIX eKapCTBEHHbIX CPEACTB,
CMOCOBHBIX NOBbLICUTL 3HEKTUBHOCTb Tepanun PA, B TOM uncie y NaunMeHTOB, PE3NCTEHTHBIX K CYLLECTBYIOLUM METOAaM
neyeHus. PazpaboTaHHbIi NOAXOA MOXET OblTb YCMELHO UCMONb30BaH A NOVCKa HOBbIX MULLEHE TapreTHOWN Tepanim 1

npu gpyrmx 3ab60neBaHuAX.

KnioueBbie crnoBa: peBMaTOUAHbIN apTPUT; reHHble ceTu; TapreTHada Tepanusa; ANDSystem

Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disease
characterized by systemic inflammation that primarily affects
the joints and leads to progressive destruction of cartilage
and bone tissue (Guo et al., 2018). According to the World
Health Organization, RA affects approximately 0.5-0.6 % of
the global population, occurring 2—3 times more frequently
in women than in men, and is one of the leading causes of
disability among working-age adults (Kvien et al., 2006;
GBD 2023).

The pathogenesis of RA involves complex interactions
between genetic factors, immune dysregulation, and environ-
mental triggers, resulting in the activation of proinflamma-
tory cytokines, infiltration of immune cells into the synovial
membrane of the joints, and chronic inflammation (Firestein,
Mclnnes, 2017). Despite significant progress in understanding
the molecular mechanisms of RA, complete remission of the
disease remains unattainable, and current therapeutic strate-
gies are primarily aimed at preventing disease progression
(Smolen et al., 2016).

Modern treatment strategies for rheumatoid arthritis are
based on the use of several classes of drugs with anti-inflam-
matory effects (Ding et al., 2023; Smolen et al., 2023), includ-
ing: a) conventional synthetic (cs) disease-modifying antirheu-
matic drugs (csDMARDs) such as methotrexate, leflunomide,
sulfasalazine, and hydroxychloroquine; b) targeted synthetic
(ts) DMARDs (tsDMARDS) such as tofacitinib and baricitinib;
¢) biologic DMARDs (bDMARD:s), including inhibitors of
tumor necrosis factor (infliximab, adalimumab), interleukin-6
(tocilizumab, sarilumab), interleukin-1 (anakinra), and anti-
CD20 monoclonal antibodies (rituximab); d) nonsteroidal
anti-inflammatory drugs (NSAIDs) for symptomatic treat-
ment; and ¢) glucocorticoids (GCs) for rapid suppression of
inflammation.

Particular attention in clinical practice is given to first-line
drugs such as csDMARDs and tsDMARDs, which are capable
of modulating immune responses at the level of intracellular
signaling pathways and metabolism (van der Kooij et al.,
2007). The action of tsDMARDs, in particular, targets specific

genes encoding key components of the JAK/STAT signaling
pathway. For instance, tofacitinib suppresses inflammation by
specifically inhibiting Janus kinase 3 (JAK3), which plays a
crucial role in cytokine signaling that regulates lymphocyte
survival, proliferation, differentiation, and apoptosis (Adis
Editorial, 2010). Although csDMARDs and tsDMARDs
are effective in achieving remission in a substantial propor-
tion of patients, their use is limited by side effects such as
hepatotoxicity, immunosuppression, and the development of
resistance (Olivera et al., 2020). Moreover, approximately
40 % of RA patients exhibit a poor response to therapy, and
5-20 % show no improvement at all with standard treatment
(Smolen et al., 2016), highlighting the need to identify new
molecular targets for the development of more effective
therapeutic agents.

The development of theumatoid arthritis involves a number
of signaling pathways — including JAK/STAT, Notch, MAPK,
Wht, PI3K, SYK, and others — which regulate many biological
processes implicated in the pathogenesis of the disease, such
as the inflammatory response and remodeling of bone and
cartilage tissue (Ding et al., 2023). These and other biological
processes and signaling pathways can serve as potential targets
for RA drug therapy. For example, experiments in laboratory
mice have shown that treatment with CEP-33779 — a highly
selective inhibitor of JAK2, a key component of the JAK/STAT
signaling pathway — can reduce inflammatory manifestations
in arthritis by suppressing cytokine production and the activa-
tion of T and B lymphocytes (Stump et al., 2011).

The aim of our study was to identify biological proces-
ses — new promising pharmacological targets for rheumatoid
arthritis therapy — based on the reconstruction and analysis
of a specific type of gene network known as an associative
gene network (AGN).

A gene network is a group of coordinately functioning genes
that control the phenotypic traits of an organism (Kolchanov et
al., 2013). Interactions between genes within a gene network
occur through their primary and secondary products — RNAs,
proteins, and metabolites. An associative gene network repre-
sents an extension of the traditional gene network, integrating
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genomic, molecular, phenotypic, and environmental entities
and describing diverse types of interactions and associations
among them (Demenkov et al., 2021).

To reconstruct AGNs, we used the ANDSystem software
platform, which enables the automatic extraction of knowledge
and facts from scientific publications and biomedical factual
databases (Ivanisenko V.A. et al., 2019). To achieve this goal,
the following tasks were addressed: a) reconstruction of an
associative gene network for RA, including genes and proteins
involved in the development of the disease; b) reconstruction
of associative gene networks describing the mechanisms of
action of drugs used in RA therapy, including genes and pro-
teins participating in the functional response to these drugs;
and c) identification, based on the reconstructed associative
gene networks, of biological processes representing promising
targets for RA therapy.

Based on the approach described above, 11 biological
processes were identified that play a significant role in the
development of theumatoid arthritis but have not yet been re-
cognized as direct targets of currently used disease-modifying
antirheumatic drugs (DMARDs). These processes, described
by Gene Ontology terms, include: a) the Toll-like receptor
signaling pathway, b) neutrophil activation, c) regulation
of osteoblast differentiation, d) regulation of osteoclast dif-
ferentiation, e) prostaglandin biosynthetic process, and f) the
canonical Wnt signaling pathway. The identified biological
processes and their key regulators represent promising targets
for the development of new therapeutic agents for rheumatoid
arthritis. The approach implemented in this study can also
be applied to the identification of novel targets for targeted
therapy in other diseases.

Materials and methods

List of disease-modifying antirheumatic drugs (DMARDsS).
To compile a list of conventional synthetic DMARDs and
targeted synthetic DMARDs used in the treatment of rheuma-
toid arthritis, we referred to the official document of the All-
Russian Public Organization “Association of Rheumatologists
of Russia” — “Clinical Guidelines: Rheumatoid Arthritis
(ICD-10: M05, M06)” (Nasonov et al., 2024). This document
provides a classification of drugs used for RA therapy, their
pharmacotherapeutic characteristics, and Anatomical Thera-
peutic Chemical (ATC) classification codes. Based on these
recommendations, the following list of drugs was compiled
for further analysis: csDMARDSs (methotrexate, leflunomide,
sulfasalazine, hydroxychloroquine) and tsDMARDs (tofaci-
tinib, baricitinib).

Reconstruction and analysis of associative gene net-
works. The reconstruction of associative gene networks was
performed using the ANDSystem software and information
platform (Ivanisenko V.A. et al., 2019, 2024; Ivanisenko T.V.
et al., 2024). This system is based on methods of machine
reading and artificial intelligence designed for the automatic
extraction of knowledge and facts from large-scale genetic
and biomedical data sources, such as scientific publications,
patents, and factual databases.

Through the analysis of more than 40 million scientific
articles and patents, as well as 150 factual databases, the
ANDSystem knowledge base has accumulated biomedically
significant information represented as semantic knowledge

Identification of biological processes as targets
for rheumatoid arthritis therapy using ANDSystem

graphs, describing 12 types of biological entities (including
genes, proteins, diseases, biological processes, drugs, etc.) and
over 40 types of functional relationships among them. These
relationships include gene expression regulation, protein
degradation, modification, and transport, as well as physi-
cal interactions such as protein—protein and protein—ligand
interactions.

In addition, the ANDSystem knowledge base contains de-
scriptions of associative relationships linking genes, proteins,
and metabolites with entities such as diseases, biological pro-
cesses, and pharmaceutical compounds (Ivanisenko V.A. etal.,
2019, 2024; Ivanisenko T.V. et al., 2024). The knowledge base
also includes “marker” relationships, indicating that certain
genes, proteins, biological processes, or phenotypic traits can
serve as markers of specific diseases.

Identification of biological processes based on informa-
tion from reconstructed associative gene networks. The
analysis of overrepresented biological processes in the recon-
structed associative gene networks was carried out using the
DAVID web server, version 2021 (https://david.ncifcrf.gov/;
Sherman et al., 2022), with default settings. DAVID evaluates
the degree of overlap between the list of genes functioning
within each reconstructed gene network and the lists of genes
corresponding to biological processes described in the Gene
Ontology (GO). Based on this comparison, the hypergeometric
test was applied to calculate the probability that the observed
overlap between gene lists could occur by chance. In our
study, biological processes significantly associated with the
reconstructed gene networks were identified using a p-value
threshold of <0.05, corrected by the Bonferroni method. The
biological processes that met this criterion were classified
into two categories: a) biological processes significant for the
rheumatoid arthritis gene network, and b) biological processes
significant for the gene networks representing responses to
csDMARD and tsDMARD therapies used in RA treatment.

Results

Reconstruction of the associative gene network
of rheumatoid arthritis
Using the ANDSystem platform, we reconstructed the associa-
tive gene network of theumatoid arthritis based on information
contained in the ANDSystem knowledge base.

The graph of the reconstructed associative gene network had
a star-shaped topology: the central node corresponding to the
term “Rheumatoid arthritis” was connected by edges to other
nodes of the network graph that represented proteins and genes
associated with RA according to the ANDSystem knowledge
base (Supplementary Fig. S1)!. In total, the graph contained
4,685 nodes, corresponding to 2,178 genes and 2,507 proteins
(Table S1 in the Appendix), as well as 9,877 edges between
the central node (rheumatoid arthritis) and the other nodes.
Note that the number of edges exceeded the number of nodes.
This is because the same node representing a gene or protein
could be linked to the central node by multiple edges, each
of which, according to the ANDSystem knowledge base,
described a specific type of interaction between RA and a
given gene or protein.

" Supplementary Figures S1 and S2 and Tables S1-56 are available at:
https://vavilovj-icg.ru/download/pict-2025-29/appx37.xIsx
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Table 1. Characteristics of relationships between the central and peripheral nodes

in the rheumatoid arthritis gene network

No. Interaction type

Regulatory interactions

—_

Expression downregulation
Expression regulation
Expression upregulation
Activity downregulation
Activity regulation

Activity upregulation
Regulation

Upregulation

O 00 N O bW N

Downregulation
Other Interactions
1 Association
Involvement

2

3 Marker
4 Risk factor
5

Treatment

Number of interactions  Proportion, %

4,381 444
93 0.9
472 4.8
365 3.7
15 0.2
26 0.3

10 0.1
1,812 18.3
802 8.1
786 8.0
5,496 55.6
4,449 45.0
172 1.7
338 34
274 2.8
263 27

*The percentage (%) indicates the proportion of a specific relationship type relative to the total number of relationships in the associative

gene network of rheumatoid arthritis.

Table S1 lists the genes and proteins included in the re-
constructed associative gene network of rheumatoid arthritis,
which comprises, in particular, genes and proteins involved in
the inflammatory process: interleukins (IL1, IL6, IL13, and
others), members of the tumor necrosis factor (TNF) family,
the key inflammatory regulator NF-xB, and genes and proteins
functioning in the Wnt, JAK/STAT, Notch, MAPK, PI3K, and
SYK signaling pathways, all of which are known to play a
defining role in RA pathogenesis (Ding et al., 2024).

Table 1 presents a classification of 14 types of relationships
between the central and peripheral nodes in the RA gene
network. These relationships fall into two categories. The
first category (regulatory relationships) comprises nine types,
such as expression downregulation, expression upregulation,
activity regulation, and others. For example, expression of
interleukin-1 beta (IL1B) is increased in rheumatoid arthritis
(Mohd et al., 2019), which is reflected in the ANDSystem
knowledge base as an “expression upregulation” relation-
ship between RA and the IL1B protein. Interleukin-6 (IL6)
stimulates fibroblasts in the synovial membrane of the joints
(Singh et al., 2021) and contributes to one of the symptoms
of RA (bone loss), which is represented in ANDSystem as a
“positive regulation” relationship between the disease “Rheu-
matoid arthritis” and the IL6 protein.

The second category (other relationships) includes five ad-
ditional relationship types identified during the reconstruction
of the RA gene network, describing situations in which a gene
or protein is associated with RA in some way. For example,
these may include structural or functional features of a gene
if a mutation in that gene constitutes a risk factor for RA.

Based on the information contained in the associative gene
network of rheumatoid arthritis and the ANDSystem knowl-
edge base, it is possible to reconstruct the detailed mechanisms
underlying the involvement of specific genes and proteins in
the development of RA. Figure 1 illustrates, as an example, the
regulatory interactions between genes and proteins function-
ing within the Wnt signaling pathway, which is regulated by
proinflammatory cytokines such as interleukin-1 beta, tumor
necrosis factor alpha (TNFA), and interleukin-6.

As shown in Figure 1, regulation of the Wnt signaling
pathway in rheumatoid arthritis involves interleukin-1 beta,
tumor necrosis factor alpha, and interleukin-6, which activate
the expression of the WNT5A gene encoding the WNT5A
protein — a ligand of FZD receptors participating in the non-
canonical Wnt pathway (Miao et al., 2013). According to the
ANDSystem data, WNT5A, in turn, activates the expression
of the IL1B gene encoding interleukin-1 beta. Thus, IL1B and
WNT5A mutually activate each other’s expression, forming a
positive feedback loop, indicated in Figure 1 by bold arrows.

Reconstruction of associative gene networks

involved in functional responses to RA therapies

Figure 2 shows the AGN for responses to tsSDMARDs (see
also Table S2). It contains two nodes corresponding to the drug
names (tofacitinib, baricitinib) and 157 edges linking these
nodes to other nodes representing 22 proteins and 51 genes.
As seen in Figure 2, according to the ANDSystem knowledge
base, tofacitinib is characterized by a substantially larger num-
ber of interactions with proteins and genes (60) compared to
baricitinib (26). In response to both drugs, genes involved in
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Fig. 1. Mechanism of regulation of key components of the Wnt signaling pathway by proinflammatory cytokines, reconstructed from the rheumatoid

arthritis gene network in the ANDSystem knowledge base.

Proinflammatory cytokines are highlighted with green frames; components of the positive feedback regulatory loop are indicated with bold arrows;
and the DKKT gene and its encoded protein Dickkopf-1 (DKK1) - an inhibitor of the canonical Wnt pathway - are shown in blue frames.

Tofacitinib

Baricitinib

Fig. 2. Reconstructed associative gene network of the response to two targeted synthetic disease-modifying antirheumatic drugs —

tofacitinib and baricitinib.

the inflammatory response — MMP3, IL2RA, CXCL10 — and
proteins (STAT3, STATSA, JAK1, JAK2), members of the
JAK/STAT pathway, were implicated.

Figure S2 presents the AGN for responses to csDMARDs
(methotrexate, leflunomide, sulfasalazine, hydroxychloro-
quine). The graph contains 261 nodes, four of which corre-

spond to the drug names (see also Table S2). The remaining
nodes are connected to these four drug nodes by 485 edges
and represent 106 proteins and 151 genes. The largest number
of interactions in the csDMARD response AGN was observed
for methotrexate (160). Proteins and genes associated with this
drug include, in particular, ILIR1, TNFA, the inflammatory
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Table 2. Distribution of interaction types in the reconstructed associative gene networks
of the response to synthetic and targeted synthetic disease-modifying antirheumatic drugs

Interaction number

No. Interaction type csDMARD
Regulatory interactions 529
1 Expression downregulation 73
2 Expression regulation 158
3 Expression upregulation 64
4 Activity downregulation 18
5 Activity regulation 34
6 Activity upregulation 16
7 Modification downregulation 10
8 Modification regulation 8
9 Modification upregulation 4
10 Transport regulation 28
1 Degradation downregulation 5
12 Degradation regulation 6
13 Degradation upregulation 1
Other interaction type 60
14 Catalyze 14
15 Physical interaction 46

transcription factor NFKB1, and caspases (CASP1, CASP3,
CASP9). Hydroxychloroquine ranked second by number of
interactions (73), being linked to proinflammatory cytokines
such as IL1B and TNFA, as well as to catalase (CAT) and
cytochromes involved in xenobiotic metabolism (CP2B6,
CYP1BI1). Sulfasalazine and leflunomide ranked third and
fourth (26 and 17 interactions, respectively). Notably, some
proteins in the csDMARD response AGN (e. g., IL1B, CCL2,
TNFA, CASP3) are targets of multiple drugs.

The distribution of interaction types in the AGN of the
response to csDMARDs and tsDMARDs is provided in
Table 2. As can be seen from Table 2, regulatory interactions,
particularly the regulation of gene expression, predominated
among those in the AGN of the response to csDMARD and
tsDMARD.

Identification of biological processes based on information
from reconstructed associative gene networks
Using the DAVID web resource based on Gene Ontology,
an overrepresentation analysis of biological processes in the
reconstructed gene networks was performed for: a) the rheu-
matoid arthritis gene network and b) the gene networks of the
response to two types of anti-inflammatory drugs (csDMARD
and tsDMARD).

For the reconstructed associative gene networks of rheuma-
toid arthritis and the response to csDMARD and tsDMARD,

tsDMARD

Interaction rate, % Interaction number Interaction rate, %

87.6 143 91.1
15.1 35 223
326 57 36.3
13.2 12 7.6
37 6 338
7.0 7 45
33 1 0.6
2.1 8 5.1
1.6 9 5.7
0.8 3 1.9
5.8 5 3.2
1.0 No No
1.2 No No
0.2 No No
124 14 7.8
24 2 1.1
7.8 12 6.7

381, 64, and 44 overrepresented biological processes were
identified, respectively. Most significant processes are cha-
racterized in Table 3 (for details, see Tables S4—-S6). As
seen in Table 3, the inflammatory response (GO identifier:
GO:0006954) was statistically significantly overrepresented
in both the RA gene network and the gene networks of the
response to csDMARD and tsDMARD. It is interesting to note
that the list of most significantly overrepresented processes
for csDMARD response gene network included xenobiotic
metabolic processes, which were not overrepresented in the
tsDMARD gene network. For the tsDMARD response gene
network, the JAK/STAT (GO identifier: GO:0007259, Table 3)
and cytokine (GO identifier: GO:0019221, Table 3) signaling
pathways were most significantly overrepresented.

For further analysis, from the 381 identified biological
processes overrepresented in the RA AGN (Table 3), 71 pro-
cesses were selected using the ANDSystem knowledge base,
characterized by the interaction types “Regulation”, “Down-
regulation”, and “Upregulation” with the disease “Rheumatoid
arthritis”. An intersection was performed between the list of
71 biological processes involved in the pathogenesis of RA
and the lists of overrepresented biological processes for the
AGN of the response to the csDMARD (64 processes) and
tsDMARD (44 processes) drug groups. As a result, 59 biologi-
cal processes were found that are involved in the pathogenesis
of RA but are not included in the list of overrepresented pro-
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Table 3. Results of the overrepresentation analysis of Gene Ontology (GO) biological processes for the associative gene networks
of rheumatoid arthritis, as well as the gene networks of the response to synthetic disease-modifying antirheumatic drugs (csDMARD)
and targeted synthetic disease-modifying antirheumatic drugs (tsDMARD)

Gene network Overrepresented

process number

The most statistically significant overrepresented biological processes

Identifier Name p-value*
Rheumatoid arthritis 381 GO:0006954 Inflammatory response 3.7-1071%3
gene network

G0:0006955 Immune response 8.2:107'03

G0:0007165 Signal transduction 2.9-107%°
c¢sDMARD response 64 G0:0006805 Xenobiotic metabolic process 561072
gene network

GO0:0009410 Response to xenobiotic stimulus 1.9:-107"°

GO:0006954 Inflammatory response 14-107
tsDMARD response 44 GO:0006954 Inflammatory response 4.2-107'°
gene network ) ) )

GO0:0007259 Cell surface receptor signaling pathway via JAK/STAT 2.2-10M1

G0:0019221 Cytokine-mediated signaling pathway 3.0-1071°

*p < 0.05.

Table 4. Biological processes for which no regulating drugs from the csDMARD and tsDMARD groups

used in the therapy of rheumatoid arthritis have been identified

No. The Gene Ontology
identifier (GO)

1 G0:0034612
2 G0:0031295 T cell costimulation
3 G0:0002224
4 G0:0014823 Response to activity
5 G0:0034097 Response to cytokine
6 GO0:0010468 Regulation of gene expression
7 G0:0045668
8 G0:0042119 Neutrophil activation

9 GO0:0045671
10 G0:0001516

11 GO0:0060070 Canonical Wnt signaling pathway

The Gene Ontology biological process

Response to tumor necrosis factor

Toll-like receptor signaling pathway

Negative regulation of osteoblast differentiation 27

Negative regulation of osteoclast differentiation 15

Prostaglandin biosynthetic process

The number p-value*
of rheumatoid arthritis genes
involved in the process
58 9.8-1073
29 33-107"3
19 83-108
26 1.3-107
24 8.64-1077
53 2.0-1073
8.5-107
12 1.53-1073
3.27-1072
12 1.5-1072
30 2.2:1072

* p-value - significance level of the overrepresentation of Gene Ontology terms for the set of genes associated with rheumatoid arthritis, with the Bonferroni

correction.

cesses for the AGN of the response to the considered drugs.
From these 59 processes, 48 were removed that, according
to the ANDSystem knowledge base, are linked to the consid-
ered csDMARD (methotrexate, leflunomide, sulfasalazine,
hydroxychloroquine) and tsDMARD (tofacitinib, baricitinib)
drugs by interactions of the types “Regulation”, “Downregula-
tion”, and “Upregulation”.

This resulted in a list of 11 biological processes (Table 4).
The identified processes are characterized by the following:
firstly, these processes are involved in the pathogenesis of

rheumatoid arthritis. Furthermore, no regulating csDMARDs
and tsDMARDs have been identified for them. It is these
processes that are of particular interest as targets for the de-
velopment of drugs for rheumatoid arthritis therapy.

As seen from Table 4, the biological processes involved in
the pathogenesis of rheumatoid arthritis but not regulated by
disease-modifying antirheumatic drugs included: a) inflam-
matory responses (GO identifiers GO:0034097, GO:0034612,
G0:0031295, GO:0002224); b) bone tissue morphogenesis
(GO:0045668, GO:0045671); c) the canonical Wnt signal-
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Query for
"rheumatoid
arthritis" (RA) Associative Biological
gene network processes (BP)
(AGN) RA for AGN RA
Specific
biological processes
for RA and drugs
ANDSystem (csDMARDs and
tsDMARDs)
Associative Biological
twork processes
genene for csDMARDs
csDMARDs
and tsDMARDs
and tsDMARDs AGN
Query s
for csDMARDs
and
tsDMARDs Removal of BP,
names Biological processes specific to RA - regulated by

potential targets ¢sDMARDs and
for pharmacological therapy of RA tsDMARDs according
to ANDSystem

Fig. 3. Main stages for searching for biological processes promising as targets for the development of new antirheumatic drugs.

RA - rheumatoid arthritis; AGN - associative gene network; BP - biological process; csDMARD - conventional synthetic disease-modifying
antirheumatic drugs (methotrexate, leflunomide, sulfasalazine, hydroxychloroquine); tsDMARD - targeted synthetic disease-modifying

antirheumatic drugs (tofacitinib, baricitinib).

ing pathway (G0O:0060070); d) prostaglandin biosynthesis
(GO:0001516); e) response to activity (GO:0014823) and
regulation of gene expression (GO:0010468).

Thus, we have conducted a search for biological processes —
new promising pharmacological targets for RA therapy —
based on the reconstruction and analysis of associative gene
networks.

Figure 3 shows the schematic diagram, implemented in
our work, for searching for biological processes that are new
promising targets for the development of antirheumatic drugs.

Discussion

The search for new drug targets for the treatment of rheuma-
toid arthritis is important for modern medicine, given that up
to 40 % of patients do not achieve a full response to existing
therapy (Ding et al., 2023). In this regard, we have proposed a
method for identifying biological processes as targets for new
antirheumatic drugs, based on the reconstruction of associative
gene networks and a comparative analysis of biological pro-
cesses associated with theumatoid arthritis and those regulated
by the disease-modifying antirheumatic drugs currently used
in clinical practice (Nasonov et al., 2024).

The ANDSystem knowledge base, which we used for re-
constructing the gene networks, integrates accumulated infor-
mation from scientific literature on the molecular mechanisms
of drug action and disease pathogenesis, allowing for the
discovery of new therapeutic targets at a systemic level, in-
cluding biological processes, thereby increasing the efficacy
of therapy and diagnostics. In our work, we reconstructed
associative gene networks (AGNs) for rheumatoid arthritis,
as well as AGNs describing the interactions of synthetic and
targeted anti-inflammatory drugs with human genes and pro-
teins. The analysis showed that the rheumatoid arthritis gene

network is enriched with genes involved in the regulation of
the inflammatory response, which corresponds to the well-
known data on the leading role of systemic inflammation in
the pathogenesis of this disease (Firestein, Mclnnes, 2017;
Figus et al., 2021). It is therefore no coincidence that the
reconstructed gene networks of proteins and genes targeted
by csDMARDs (Fig. S2) and tsDMARDs (Fig. 2) primarily
include genes and proteins involved in the functioning of the
immune system.

According to the results of the functional annotation of
genes, for conventional synthetic disease-modifying antirheu-
matic drugs, the list of statistically significantly overrepresent-
ed biological processes included processes related not only to
inflammation but also to xenobiotic metabolism. This suggests
that csDMARDs impose a significant load on the biochemical
systems responsible for xenobiotic removal, potentially lead-
ing to serious adverse effects (Olivera et al., 2020).

On the other hand, for genes involved in the response to
targeted synthetic disease-modifying antirheumatic drugs,
xenobiotic metabolism processes were not significantly over-
represented. However, the list of overrepresented processes
for tsDMARDSs response gene network, along with inflamma-
tion, included processes related to the functioning of the JAK/
STAT signaling pathway, which is crucial for pathogenesis of
RA (Ding et al., 2023). This suggests a more targeted action
of tsDMARD on the pathogenesis of RA and emphasizes the
importance of developing targeted therapies to increase treat-
ment efficacy and reduce side effects. However, the diversity
and complexity of the interactions of biological processes
leading to the development of RA, and the insufficient efficacy
of therapy with existing disease-modifying antirheumatic
drugs, necessitate the search for new targets for RA treatment
(Smolen et al., 2016).
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Our approach, based on the reconstruction of gene networks
involved in the development of the disease and in the response
to known drugs, as well as on a comparative analysis of the
biological processes regulated by these gene networks, al-
lowed us to identify 11 biological processes (Table 4). These
processes are key to the pathogenesis of RA but are not targets
of the anti-inflammatory drugs currently in use. It should be
noted that the regulation of expression (GO:0010468) and the
response to activity (GO:0014823) belong to a group of rather
broad processes, covering many molecular mechanisms in the
cell, which complicates the development of targeted drugs.

Literature analysis revealed that for processes such as the re-
sponse to cytokines (GO:0034097), the response to tumor ne-
crosis factor TNFA (GO:0034612), and T-cell co-stimulation
(GO:0031295), there is evidence of their partial regulation by
the currently used csDMARDs and tsDMARDs. For example,
tsDMARDs like tofacitinib and baricitinib effectively block
the JAK/STAT signaling pathways, which are downstream of
cytokine and TNFA receptors, providing powerful suppression
of inflammatory responses (Palmroth et al., 2021).

However, biological processes such as the Toll-like receptor
signaling pathway, neutrophil activation, negative regulation
of osteoblast differentiation, negative regulation of osteoclast
differentiation, the canonical Wnt signaling pathway, and
prostaglandin biosynthesis are not directly regulated by the
disease-modifying antirheumatic drugs that are currently
actively used by rheumatologists in accordance with clinical
guidelines (Nasonov et al., 2024). Nevertheless, the biological
processes and pathways listed above may be important for the
pathogenesis of RA. For example, neutrophil activation plays
an important role in inflammation in RA patients, and CXCR2
inhibitors, being investigated for other inflammatory condi-
tions, could be adapted for RA (Alam et al., 2020).

It is known that the Wnt signaling pathway plays a signifi-
cant role in fibroblast activation and synovial inflammation, as
well as in bone resorption and joint destruction in the develop-
ment of rheumatoid arthritis (Miao et al., 2013). The expres-
sion of genes encoding Wnt family proteins, which activate
the Wnt signaling pathway, was increased in the synovium in
rheumatoid arthritis, partly due to proinflammatory cytokines
(Prajapati, Doshi et al., 2023). At the same time, the activation
of the non-canonical Wnt signaling pathway, in turn, leads to
an increased expression of inflammatory mediators, includ-
ing the transcription factor NF-kB and cytokines (Miao et al.,
2013), increasing inflammation.

According to the ANDSystem knowledge base (Fig. 1),
interleukin-1 beta and the WNTS5A protein mutually activate
each other’s expression, which may create a vicious cycle in
the pathogenesis of rheumatoid arthritis. Therefore, modulat-
ing the Wnt signaling pathway may be a promising approach
to reduce joint inflammation in RA. In particular, it has been
shown that the NAV2 protein promotes the inflammatory
response of fibrocyte-like synoviocytes by activating the Wnt
signaling pathway in rheumatoid arthritis, and its inhibition
can reduce joint inflammation in this disease (Wang R. et al.,
2021).

On the other hand, proinflammatory cytokines — tumor
necrosis factor-alpha and IL1B — according to ANDSystem
(Fig. 2), can activate the expression of the DKK1 gene, which
encodes the Dickkopf-1 (DKK1) protein, an important inhibi-

Identification of biological processes as targets
for rheumatoid arthritis therapy using ANDSystem

tor of the canonical Wnt signaling pathway (Rabelo et al.,
2010). It has been shown that the serum level of DKKI is
elevated in patients with RA and correlates with the level of
inflammation and the degree of bone destruction in the joints
(Wang S.Y. et al., 2011). The activation of DKK1 expression
by proinflammatory cytokines in rheumatoid arthritis may
lead to the suppression of the Wnt signaling pathway and,
consequently, the activation of the RANK/RANKL signaling
pathway in osteoclasts, increasing their activity and causing
the bone loss characteristic of RA (Miao et al., 2013).

Thus, dysregulation of the Wnt signaling pathway may be
the cause of changes in the biological processes of regulat-
ing osteoblast and osteoclast differentiation in RA, which,
according to our study (Table 4), are potential targets for
new antirheumatic drugs. Furthermore, DKK1 stimulates
angiogenesis in the synovium and the formation of pannus —
a pathologically altered synovial tissue that plays a crucial
role in joint destruction in RA (Cici et al., 2019).

Thus, the Wnt signaling pathway is a promising target for
the development of new antirheumatic drugs; however, its
regulation in RA is very complex and depends on the type of
tissues and cells, so further research is needed to reconstruct
the gene network of this pathway in RA and analyze its
structural and functional features in various cells and tissues.

Prostaglandins, particularly prostaglandin E2, are known
to play an important role in the development of both acute
inflammatory reactions and chronic inflammation (Kawahara
et al., 2015), enhancing inflammatory processes by activat-
ing the expression of cytokine receptors and NFKB family
proteins, which are key triggers of inflammation (Yao, Na-
rumiya, 2019). Prostaglandin E2, an important mediator of
inflammation in RA, is a target for a number of non-steroidal
anti-inflammatory drugs (NSAIDs) for this disease (Park et
al., 2006). The biosynthesis of prostaglandins (GO biologi-
cal process identifier GO:0001516) is partially modulated by
NSAIDs, such as celecoxib, but the development of more
specific inhibitors could improve therapeutic outcomes (Gong
etal., 2012).

It is known that toll-like receptors (TLRs) make an impor-
tant contribution to the induction of inflammation, as their
activation leads to increased activity of signaling pathways
and a number of transcription factors such as nuclear factor kB
(NF-xB), activator protein-1 (AP-1), and interferon regulatory
factors (IRF), which induce the expression of proinflammatory
cytokines — TNF, IL1p, IL6, and others (Kawasaki, Kawai,
2024). It has been shown that the expression of toll-like re-
ceptor genes is increased in the synovium of RA patients, and
TLRs contribute significantly to the development of inflam-
mation in RA, but therapeutic interventions targeting TLR
signaling pathways have not yet been successfully introduced
into clinical practice (Unterberger et al., 2021).

Thus, all the biological processes listed above play a major
role in the development of RA, yet they are not regulated by
the disease-modifying antirheumatic drugs currently used in
clinical practice. Therefore, these biological processes and
their key regulators can serve as targets for the development
of new drugs for the treatment of rheumatoid arthritis.

It should be noted that rheumatoid arthritis is characterized
by significant comorbidity with other diseases, including
cardiovascular and respiratory diseases (Figus et al., 2021),
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anxiety-depressive disorders (Hill et al., 2022), and osteo-
porosis (Llorente et al., 2020). In this regard, further work
is planned to analyze the identified biological processes as a
basis for the comorbidity of RA with other diseases.
Furthermore, this work did not identify targets at the gene
level, which could be the subject of further research based on
the analysis of the structural organization of gene networks.

Conclusion

In our work, we performed a computational reconstruction
of associative gene networks for rheumatoid arthritis, as well
as AGNss describing the interactions of synthetic and targeted
anti-inflammatory drugs with human genes and proteins.
Based on the analysis of these gene networks, a search for
biological processes as new promising pharmacological tar-
gets for RA therapy was conducted. The proposed approach
can also be used to search for new targets for therapy of other
diseases where standard treatment methods show insufficient
therapeutic effect.
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Abstract. Mathematical models represent a powerful theoretical tool for studying complex biological systems. They
provide an opportunity to track non-obvious interactions and conduct in silico experiments to address practical prob-
lems. Iron plays a key role in oxygen transport in the mammals. However, a high concentration of this microelement
can damage cellular structures through the production of reactive oxygen species and can also lead to ferroptosis
(programmed cell death associated with iron-dependent lipid peroxidation). The immune system contributes greatly to
the regulation of iron metabolism - hypoferritinemia (decreased ferritin concentration in the blood) during infection -
which is a result of the innate immune response. In the study of iron metabolism, many aspects of regulation remain
insufficiently studied and require a deeper understanding of the structural-functional organization and dynamics of all
components of this complex process in both normal and pathological conditions. Consequently, mathematical model-
ing becomes an important tool to identify key regulatory interactions and predict the behavior of the iron metabolism
regulatory system in the human body under various conditions. This article presents a review of iron metabolism mod-
els applicable to humans presented in chronological order of their development to illustrate the evolution and priori-
ties in modeling iron metabolism. We focused on the formulation of numerical problems in the analyzed models, their
structure and reproducibility, thereby highlighting their advantages and drawbacks. Advanced models can numerically
simulate various experimental scenarios: blood transfusion, signaling pathway disruption, mutation in the ferroportin
gene, and chronic inflammation. However, existing mathematical models of iron metabolism are difficult to scale and
do not account for the functioning of other organs and systems, which severely limits their applicability. Therefore, to
enhance the utility of computational models in solving practical problems related to iron metabolism in the human
body, it is necessary to develop a scalable and verifiable mathematical model of iron metabolism that considers interac-
tions with other functional human systems (e.g., the immune system) and state-of-the-art standards for representing
mathematical models of biological systems.
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AHHOTaumA. MaTemaTnyeckne MOAeNN NpPenCcTaBaAloT OO0 MOLLHbIA TEOPETUYECKUA NHCTPYMEHT ASIA M3yYeHnA
CNOXHbIX Bronornyeckmx crctem. OHY MO3BONAIT MPOCNEXNBaTb HEOUEBVAHbIE B3aMOLENCTBIA 1 MPOBOAUTL BUP-
TyasibHble SKCNePUMEHTbI ANA PeLLeHNA NpakTUYecKnx 3agad. Keneso nrpaeT KoyeByto posb B TpaHCMOPTe KNCI0PO-
[la B OpraH13mMe MieKonuTaoLux. B To xe Bpema BbICOKaa KOHLEHTPaLMA 3TOFO MUKPO3IEMEHTa MOXET NOBPeXAaTbh
KNeTOUHbIe CTPYKTYPbl 32 CYET MPOAYKLMUM aKTUBHBIX GOPM KNCIOPOAa, a TakKe NPrBeCTU K depponTosy (nporpammu-
pyemas KneTouHas rmbenb B CBA3N C Kee30-3aBUCUMbIM NMePEKNCHbIM OKMCIeHeM NnaoB). Bonbluoi Bknag B pery-
nAumio MeTabonmnama xenesa BHOCUT MMMYHHas cMcTeMa: rmnodpeppuTrHeMmns (CHUXKEHUe KOHLEHTpauuy dbeppuTHa
B KPOBW) Ha doHe MHEKLUN ABNAETCA pe3yNibTaTOM BPOXAEHHOrO OTBETa MMMYHHOW cmcTembl. B nccneposanum me-
Tabonm3ma »enesa MHOrMe acneKTbl PerynaLyM OCTaloTCA HeOCTAaTOYHO U3YYeHHbIMK; TpebyeTca 6onee rnybokoe no-
HYMaHMe CTPYKTYPHO-GYHKLMOHaNbHO OpraHM3aLum 1 JUHAMUKIN BCEX KOMMNOHEHTOB 3TOr0 KOMMJIEKCHOTO npoLecca
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Mathematical models of iron metabolism:
structure and functions

B HOPMe V1 NPV NaTonormm. BaKHbIM MHCTPYMEHTOM, MO3BONAIOLLMM BbIABATb Hanbonee CyLleCTBEHHbIE PETyIATOPHble
B3aVIMOJENCTBUA U NpefCcKa3aTb NoBefeHe MEeTaboIMYEeCKO CUCTEMbI PEryNALUY Xemne3a B OpraHn3Me yenoBeka B
pa3HbIX YCNIOBHUsAX, CTAHOBUTCA MaTeMaTyeckoe MmofenvpoBaHue. [laHHaa paboTa npeacTtaBnseT 063op mogenein me-
Tabonn3ma >Kenesa, NPYMEHNMbIX K YeioBeKy, B MOPAAKE VX CO3[4aHUsA, UTO NO3BOMAET OLEHNTb NCTOPUIO Pa3BUTKA
1 MPUOPUTETHI B MOAENNPOBaHUY MeTabonmn3ma »enesa. Mbl akLeHTMPOBav BHUMAHME Ha MOCTAHOBKE YMCIIEHHBIX
3a4ay B aHaNU3MpPYeMbIX MOLENAX, UX CTPYKTYPE 1 BOCMPOMN3BOLMMOCTH, Ha OCHOBE YEro BbIAENVAN UX HEJOCTATKN 1
npenmyliyectsa. CoBpeMeHHble MO CMOCOOHbI YUNCIIEHHO BOCMPOU3BECTY MHOXKECTBO SKCMEPUMEHTOB: FeMOTPaHC-
dy3uto, HapyLleHne CUrHanbHOroO NMyTU; MyTaLuio B reHe $pepponopTrHa; XpoHMYeckoe BocnaneHue. OfHako cylie-
CTBylOLLME MaTeMaTMUECK/e MOAENN MeTabonr3Ma efle3a C/IOKHO MacluTabupoBaTb, I OHW HE YUWTbIBalOT paboTy
[pYrx OpraHoB 1 CUCTEM, B CBA3U C YeM VX NMPUMEHEHVE OCTAeTCs KpaiHe orpaHnyeHHbIM. [Ina pacluvpeHus nprme-
HYMOCTU KOMMbIOTEPHBIX MOZESEN B PeLIeHN NPAKTUYECKNX 3afay, CBA3aHHbIX C MEeTaboNn3MOM »efe3a B opraHums-
Me YyenoBeka, HEOOXOAVMO CO3[aTb MaclUTabrpyemyio 1 BepudrLMpyeMYI0 MaTEMATUYECKYI0 MofeNb MeTabonv3ma
Xernesa C y4yeToM B3aUMOAENCTBIA € ApYrMy GYHKLIMOHANbHBIMI CUCTEMaMK YenioBeka (Hanprimep, IMMYHHOIA) 1 Co-
BpPEMEeHHbIX CTaHAAPTOB NPeACTaBIEHNA MaTEMATNUECKMX Mogieneli GYONOrMYecKX CUCTEM.

KntoueBble cjloBa: MaTeMaTyeckoe MOAENUPOBaHWE; MeTabonn3m xenesa; GeppuTrH; rencruanH; 06bIKHOBEHHbIE

anddepeHuUmnanbHble ypaBHeHWsA

Introduction

Iron plays a key role in oxygen transport in vertebrate organ-
isms (Pantopoulos et al., 2012). In the human body, iron exists
in multiple forms (Vogt et al., 2021). In blood plasma, iron
is transported both in a free, transferrin-unbound form and
in a transferrin-bound form, as part of hemoglobin. Iron is
predominantly found in tissues either in a free form or bound
to the iron storage protein ferritin. However, the majority of
iron in the body is present in erythrocytes as hemoglobin.

Both iron excess and deficiency lead to adverse conse-
quences. Iron deficiency results in iron-deficiency anemia,
while iron overload causes toxic effects of free iron and trig-
gers programmed cell death mediated by iron — ferroptosis
(Xie et al., 2016). Therefore, vertebrates have a molecular
genetic system orchestrating iron homeostasis. The main
protein regulating iron metabolism is hepcidin. It binds to
ferroportin (FPN), a protein that functions as the sole iron
exporter in vertebrates. Hepcidin binding leads to ubiquitina-
tion, internalization, and degradation of FPN, thereby inhibit-
ing iron export. Since FPN is highly expressed in duodenal
enterocytes, iron-recycling macrophages, and hepatocytes,
hepcidin-mediated inactivation and degradation of FPN reduce
dietary iron absorption and limit the release of stored iron, thus
lowering circulating iron levels (Xu et al., 2021). Hepcidin
expression, in turn, is controlled by negative feedback from
iron concentrations both in plasma and hepatocytes, as well
as by the inflammatory response, predominantly mediated by
IL-6 activity (Nemeth, Ganz, 2023).

Currently, many aspects of iron metabolism remain incom-
pletely understood — for example, non-heme iron transport into
enterocytes, allosteric regulation of hemoglobin, and hepci-
din regulation (Ahmed et al., 2020; Nemeth, Ganz, 2023).
Since experimental approaches cannot thoroughly uncover
the complexity and hierarchical organization of the system
of interacting components regulating iron metabolism in the
human body, the reconstruction of a comprehensive model
of iron metabolism that accounts for molecular interactions
between various organs and systems will not only integrate
these organizational levels of the molecular genetic iron me-
tabolism system within a unified conceptual framework but
also serve as a theoretical basis for in silico studies aimed
at investigating the structural-functional organization and
dynamics of interactions among system components. This,

in turn, will provide a foundation for the development and
evaluation of drug efficacy targeting various therapeutic sites
within the iron metabolism system, considering functional
interactions with the immune system.

Herein, we review existing models, assessing their advan-
tages and disadvantages as well as their applicability in ad-
dressing fundamental and applied aspects of iron metabolism
research.

Initial models of iron metabolism
in the human body

Mathematical model of iron metabolism

(Franzone et al., 1982)

The model developed by P.C. Franzone and colleagues was
designed to numerically estimate the concentration of iron
in various compartments of the body, as well as to study
the effects of different treatment methods on patients with
anemia of various origins. The metabolic processes in the
model are distributed across the following compartments:
intestinal mucosa, blood plasma, liver, reticuloendothelial
cells, bone marrow, and erythrocytes. The model describes
the intake of iron from food, its transport into plasma, storage
in the liver, and participation in erythropoiesis. It takes into
account the impact of erythropoietin on the proliferation and
maturation of erythroid cells. The model also allows for the
consideration of iron replenishment through donor blood and
iron loss due to bleeding. To account for the process of iron
return from erythrocytes to blood plasma, the model includes
a component describing the destruction of erythrocytes by
reticuloendothelial cells. Additionally, the model considers
ineffective hematopoiesis, whereby some erythroid cells fail
to complete differentiation (Fig. 1).

The model simulations were conducted on conditions such
as blood donation in a healthy patient, blood transfusion af-
ter splenectomy in a patient with hemolytic anemia, as well
as treatment of hypoplastic anemia using transfusions and
androgens.

In the numerical experiment describing blood donation in
healthy patients, the model shows complete recovery of hemo-
globin levels in approximately 25-30 days. In turn, complete
restoration of iron levels in the bone marrow takes 60 days,
while recovery of iron levels in the storage pool requires more
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Fig. 1. Schematic representation (adapted from Franzone et al., 1982).

In the figure, the blocks represent the amount of iron in a specific organ or system, where 1 - blood plasma, 2 - maturing erythroid
blood cells, 3 — mature erythroid blood cells, 4 - erythrocytes, 5 - macrophages, 6 - iron storage in macrophages, 7 — extravascular fluid,
8 —iron storage in hepatocytes, 9 — intestinal epithelial cells, 10 — iron storage in intestinal epithelial cells. The arrows indicate iron transport
between organs and systems, where k;, k, k... kg are the rates of iron transport between the blocks, i; - iron influx due to blood
donation, i, - iron influx from food, Dy — iron loss due to bleeding, Dy - transfer of iron to reticuloendothelial system cells as a result of
phagocytosis, F(y,, E) - function describing the transfer of iron from plasma to erythroid cells, where y is the amount of iron in the blood
plasma, and E is the amount of erythropoietin, p - function of erythropoietin synthesis.

than two months, which corresponded to the literature data
at the time of publication (Wadsworth, 1955; Liedén et al.,
1975) and also aligns with data from recent studies (Kiss et
al., 2015; Ziegler et al., 2015).

The model was also used to numerically investigate blood
transfusion after splenectomy (removal of the spleen). The
resulting model more accurately describes iron dynamics
for patients after splenectomy. However, data from only one
patient were used to validate this condition.

The proposed model was also used to study the effect of
treating hypoplastic anemia with transfusions and androgens.
However, these results have lost their relevance since such
therapy is no longer used today (Killick et al., 2016). The
authors of the developed model note that the system’s equa-
tions can exhibit stiff behavior due to the large differences
between the numerical values of transport rates when modeling
anemic conditions. Considering the stiffness of the system, to
achieve a compromise between accuracy and computational
resources, the authors used the implicit trapezoidal method
for the numerical solution of the system (Tavernini, 1973).

Given that Franzone and co-authors’ model is one of the first
models describing iron metabolism, it is significantly inferior
to modern models. This model lacks descriptions of key par-
ticipants in iron metabolism: hepcidin, ferritin, transferrin, and
proteins regulating the expression of genes involved in iron
metabolism (Iron Regulatory Proteins, IRP). The iron storage
process is greatly simplified and represented by a linear coef-
ficient. Despite this, the authors managed to simulate complex
conditions such as blood transfusion after splenectomy in a
patient with hemolytic anemia and treatment of hypoplastic
anemia using transfusions and androgens. However, consider-
ing that data from only one patient was used to validate the

numerical calculations of the model for each of these condi-
tions, it is difficult to assess how applicable the numerical
modeling results are to population data and how parameters
might change when reproducing data on other patients.

Computational model of iron metabolism
in the liver (Mitchell, Mendes, 2013)
The mathematical model proposed by S. Mitchell and
P. Mendes in 2013 allows the numerical evaluation of pro-
cesses related to iron transport into hepatocytes. The model
enables quantitative prediction of the concentration of pro-
teins synthesized in the liver that regulate iron metabolism.
The model consists of 21 ordinary differential equations and
includes two compartments: hepatocyte and plasma (Fig. 2).
Using the model built, the authors numerically analyzed the
following physiological conditions: hereditary hemochroma-
tosis types 1 and 3. To reproduce the state of type 1 hemochro-
matosis, a virtual knockdown of the human iron homeostasis
regulator protein (HFE) was performed by reducing the syn-
thesis constant 100-fold. The model could not quantitatively
reproduce the result that mice with this pathology have liver
iron levels three times higher than normal. This was due to the
fixed concentration of intercellular transferrin-bound iron in
the model, unlike that in mice, which show increased transfer-
rin saturation as a result of increased intestinal iron absorption.
Despite fixed extracellular conditions, the model predicts in-
tracellular iron overload in hepatocytes. The hemochromatosis
model also reproduced the dynamics observed in experiments
with changes in dietary iron content. Increased dietary iron
doubled ferroportin expression in the liver in both healthy mice
and those with hemochromatosis. To reproduce the state of
type 3 hemochromatosis, a virtual knockdown of TfR2 was
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Fig. 2. Graphical representation of the model in the SBGN standard (Le Novére et al., 2009).

Arrows designate substance transport. Yellow compartment - hepatocyte, red compartment - plasma, LIP - labile iron pool, FT - ferritin,
Fe - iron, HAMP - hepcidin, Heme — heme, HO-1 - heme oxygenase 1, IRP - iron regulatory proteins, FPN1 — ferroportin, TfR1 — transferrin
receptor 1, TfR2 - transferrin receptor 2, Tf-Fe_intercell - plasma transferrin-bound iron (Mitchell, Mendes, 2013).

performed, also by reducing the synthesis constant 100-fold.
Numerical analysis revealed an increase in hepcidin concen-
tration and a decrease in ferroportin concentration, which
was consistent with experimental data (Chua et al., 2010).

The model describes the iron transport into hepatocytes
well, considering iron storage, export, and utilization for heme
synthesis. We also comprehensively reproduced the authors’
results both in the COPASI software (Hoops et al., 2006) and
in the BioUML platform (Kolpakov et al., 2022). However,
the model has some limitations: (1) the model lacks an im-
portant regulatory link in iron metabolism, namely the effect
of hepcidin on iron absorption from the intestine; (2) fixed
concentrations of heme and intercellular transferrin-bound
iron are used; (3) due to limited availability of quantitative
clinical data on human iron metabolism, various other data
sources were integrated for parameterization, such as in vitro
experiments and animal models; (4) the parameters reported
in the study do not correspond to the model parameters in the
supplementary material.

Modeling of the system iron regulation in various
pathologies considering hepcidin-independent
mechanisms (Enculescu et al., 2017)

The model by M. Enculescu and colleagues (2017) describes
iron metabolism throughout the human body, taking into ac-
count intra- and extracellular regulatory mechanisms of iron
metabolism. The authors focused primarily on the system

regulation of iron metabolism via the hepcidin-ferroportin
regulatory axis. The model describes iron content in seven
compartments: serum, liver, spleen, bone marrow, eryth-
rocytes, duodenum, and “other organs,” representing iron
distribution in the mouse body. Iron absorption and loss in
the duodenum, as well as iron loss in the “other organs”
compartment, are considered. The model explains inhibition
of ferroportin transcription during inflammation and regulation
of its translation by intracellular iron, as well as hepcidin-
mediated post-translational destabilization of ferroportin.
Iron export from peripheral organs is controlled by the iron
exporter ferroportin (Fpn), which is predominantly local-
ized on the plasma membrane of three cell types: duodenal
enterocytes, macrophages, and hepatocytes. Fpn expression
is described separately for each organ and regulated by three
mechanisms: (1) inflammatory signals decrease Fpn mRNA
transcription; (2) intracellular iron enhances Fpn mRNA
translation; (3) Fpn protein turnover is increased by the soluble
polypeptide hepcidin.

Hepcidin expression is activated by the iron-sensitive
BMP6/SMAD pathway and an inflammatory signaling
cascade involving cytokine production (primarily IL-6) and
subsequent phosphorylation of the transcription factor STAT3
in hepatocytes (Fig. 3).

The authors’ own data and previously published data were
used for the model calibration. A total of 344 experimental
measurements were obtained. The following assumptions were
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Fig. 3. Graphical representation of the model (Enculescu et al., 2017) in the SBGN standard (Le Novére et al.,, 2009).

LPS - lipopolysaccharides, Fpn - ferroportin, BMP6 — bone morphogenetic protein (regulatory protein), pPSMAD, pSTAT -
transcription factors. Black arrows indicate substance transport, green arrows designate substance input from outside the

organism.

made for model parameterization: in some cases, homologous
reactions in different compartments proceed with identical
kinetic rate constants. Additionally, kinetic parameters of the
hepcidin gene promoter model were fixed at values previously
determined by the authors in the HuH7 cell culture system.

The following conditions were numerically investigated
using the constructed model: administration of lipopoly-
saccharides (LPS) under iron overload; disruption of the
BMP6 signaling pathway; mutation in the ferroportin gene
leading to loss of ferroportin’s ability to bind hepcidin; chronic
inflammation.

The authors also used data from their own experiment to val-
idate the model in the numerical analysis of LPS administra-
tion under iron overload. According to the experiment, male
C57BL/6 mice were fed an iron-rich diet containing 100 times
more iron than a normal diet for four weeks, followed by asingle
dose of LPS at 1 ug/kg. The experimental data corresponded
to the model’s predictions for most variables: iron in serum,
liver, and duodenum; hepcidin content in the liver; BMP6
mRNA concentration; levels of pSTAT and pSMAD in the
liver; mRNA and protein content of ferroportin in the liver.
Deviations of the model approximation from experimental
data were observed in the following indicators: iron content
in the spleen and erythrocytes, ferroportin concentration in
the spleen.

This study also provides a numerical analysis of the dy-
namic behavior of the iron regulation system when hepcidin

feedback is blocked. Two situations were reproduced for this:
(1) disruption of the BMP6 signaling pathway; (2) mutation in
the ferroportin gene leading to the loss of ferroportin’s ability
to bind hepcidin.

To reproduce the first condition, SMAD expression was
set to zero, whereas to reproduce the second condition, the
parameter values describing hepcidin’s effect on ferroportin
degradation were also set to zero. Numerical simulations of the
model in both cases showed an increase in iron concentration
in the serum and liver and a decrease in iron concentration
in the spleen, which was confirmed by experimental data.
Moreover, as in the experiments, ferroportin resistance to
hepcidin led to increased hepcidin expression, whereas the loss
of SMAD signal transduction caused a significant decrease in
hepcidin expression.

Then the authors hypothesized that hepcidin affects ferro-
portin in a tissue-specific manner. To model this situation, the
authors sequentially set to zero the parameter values describ-
ing hepcidin’s effect on ferroportin degradation in different
tissues. The results of the numerical analysis demonstrated
that only the elimination of hepcidin-mediated regulation of
ferroportin in the duodenum has a system effect, leading to
an increase in iron concentration in other organs. Meanwhile,
modeling ferroportin resistant to hepcidin in the liver or spleen
leads only to a local effect with a decrease in iron stores in the
corresponding organ and minimal changes in other organs.
Mouse models with tissue-specific resistance to hepcidin have
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not yet been described. However, tissue-specific deletion of
FPN in intestinal cells has been studied in mice. This study
showed that deletion of FPN in intestinal cells leads to severe
iron deficiency in blood, liver, and spleen.

The research team of the proposed model also applied it
to conduct an in silico experiment studying chronic inflam-
mation. Equations describing the Kinetics of LPS and their
effect on hepcidin were added to model the scenario. Numeri-
cal analysis of the model describing persistent inflammation
showed an 85 % decrease in serum iron concentration; iron
concentration in erythrocytes decreased over a longer period,
stabilizing after two months at a value equal to 10 % of the
normal level.

This investigation considers two mechanisms of ferroportin
regulation: at the transcript level and regulation by hepcidin.
To assess the contribution of each regulatory path, the authors
modeled LPS responses when either the transcriptional or
post-translational effect of LPS on ferroportin protein levels
was eliminated. Numerical analysis indicated that the ab-
sence of hepcidin influence during inflammation resulted in
a normal decrease in serum iron level (75 % of the original
model version). In contrast, removal of transcriptional control
of ferroportin during inflammation reduced hypoferriemia to
50 %. The authors concluded that removal of transcriptional
control of ferroportin causes greater deviations in serum iron
values from normal than removal of hepcidin control. This
concludes that hypoferriemia arises as a result of a combina-
tion of hepcidin-dependent and independent mechanisms.

Among the limitations of the proposed model, the authors
note varying degrees of parameter accuracy and the absence
of description of iron binding to ferritin and its storage.

Erythropoiesis and iron metabolism model in humans
(Schirm, Scholz, 2020)

Agroup of authors from the University of Leipzig developed a
mathematical model (Schirm, Scholz, 2020) aimed at predic-
ting the effects of treatments involving unproven therapeutic
options, such as cytotoxic chemotherapy supported by iron and
erythropoietin (EPO). The model is an extension of the authors’
previous study on erythropoiesis modeling (Schirm et al.,
2013), which was expanded by adding an extra module for iron
metabolism. The original erythropoiesis module describes the
dynamics of erythropoietic cell development, reflecting all the
main stages of differentiation: stem cells, burst-forming units,
colony-forming units, proliferating erythroblasts, maturing
erythroblasts, and reticulocytes. This module also accounts
for the effects of chemotherapy on erythropoiesis. The module
describing iron metabolism includes the following compart-
ments: hepcidin, non-transferrin-bound iron (NTBI) in plasma,
the hemoglobin catabolic system, iron stores, transferrin bound
to iron, and free transferrin (Fig. 4).

Within the framework of computational modeling, some
simplifications of the complex physiological system were em-
ployed to reduce the number of unknown model parameters or
due to the lack of quantitative data for humans. The model does
not consider separate pools of Fe?* and Fe3* concentrations
due to the absence of data, nor does it specify concentrations
of transferrin saturated with one or two iron ions.

The following conditions were studied via the numerical
analysis of the proposed model: (1) oral iron administration

Mathematical models of iron metabolism:
structure and functions

in healthy individuals; (2) intravenous injection of EPO with
oral iron administration in healthy individuals; (3) iron de-
ficiency; (4) intravenous iron administration in healthy indi-
viduals; (5) bleeding/phlebotomy; (6) chronic inflammation;
(7) hemochromatosis.

To validated the model’s numerical calculations, the authors
harnessed the data from several clinical studies with differ-
ent treatment modes (Rutherford et al., 1994; Souillard et al.,
1996; Kiss et al., 2015). The authors numerically investigate
the experimental scenario of Souillard and colleagues (1996),
in which healthy athletes received 200 IU/kg of EPO on days
0,2,4,7,and 10 without iron supplementation. The obtained
in silico results for the quantity or concentration of reticu-
locytes, hemoglobin, erythrocytes, hematocrit, and ferritin
generally differ from the clinical study data by no more than
one standard deviation.

To validate the numerical results describing EPO adminis-
tration with iron supplements, the authors used the data from
by Rutherford and coauthors’ study (1994). In this clinical
trial, patients received EPO at a dose of 1,200 IU/kg per week
with different dosing regimens and iron at a dose of 300 mg
orally daily for 10 days. The modeling results for hematocrit,
reticulocyte, ferritin concentrations, and transferrin saturation
reflect the dynamics of these parameters in the clinical study
very well. However, the numerical results for hemoglobin
are underestimated.

S. Schirm and M. Scholz also conducted a numerical
experiment on the donation of 500 mL of blood, both with
and without iron supplementation. To validate the numeri-
cal results, the authors employed the clinical study by Kiss
et al. (2015), which provided quantitative measurements of
ferritin and hemoglobin dynamics. The numerical results for
ferritin concentration calculated by the model differ from
the clinical data by no more than one standard deviation in
both scenarios, while the numerical results for hemoglobin
dynamics in the iron supplementation scenario differ from the
clinical data by more than one standard deviation over a large
interval.

This study also included a virtual experiment aimed at a
theoretical prediction for unused therapy. The Scholz group
modeled the effect of CHOP-14 therapy supported by iron
supplements and EPO on erythropoiesis and iron metabolism.
CHOP-14 is a commonly accepted therapy for treating ag-
gressive non-Hodgkin lymphomas, including drugs such as
doxorubicin, cyclophosphamide, vincristine, and predniso-
lone. Currently, the therapy has been extended to R-CHOP,
which also includes rituximab (Phan et al., 2010). This therapy
is hematotoxic, so the authors considered the possibility of
supplementing it with iron and EPO. To validate the numerical
results in the in silico experiment of chemotherapy without
iron and EPO supplementation, the data from a German re-
search group on high-grade non-Hodgkin lymphoma (Pfreund-
schuh et al., 2004) were used. According to the numerical
results of the in silico experiment, adding iron supplements
together with EPO in patients undergoing CHOP-14 therapy
slowed the decline in hemoglobin concentration. When iron
supplements and EPO are administered on days 3, 7, and 21,
the hemoglobin concentration on day 80 is approximately
11.2 g/dL, whereas without supportive therapy it is about
10.7 g/dL. With weekly administration of iron supplements
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Fig. 4. Graphical representation of the model (Schirm, Scholz, 2020) in the SBGN standard (Le Novere et al., 2009).

S - stem cells, BE - burst-forming unit, CE - colony-forming unit, PEB - proliferating erythroblasts, MEB - maturing
erythroblasts, RET - reticulocytes, ERY — erythrocytes, HB — hemoglobin, NTBI - non-transferrin-bound iron. Blue arrows
indicate iron flow, green arrows represent transferrin flow, red arrows show the differentiation progression of erythroid
lineage cells, and black arrows denote regulatory influences.

together with EPO starting from day 45, hemoglobin concen-
tration recovers to 12.5 g/dL by day 80, while without sup-
portive therapy hemoglobin concentration falls to 10.7 g/dL.
It is important to note that EPO plays a significant role in
hemoglobin recovery, as numerical results for supportive
therapy with iron supplements alone practically did not differ
from those without it.

The authors adhered to a modular approach and built the
model upon their previous study by adding new components.
A major advantage of this study is the validation using a large
amount of data from various studies. The model demonstrated
good agreement with clinical trials, as in most cases the differ-
ences between the model’s numerical data and clinical results
did not exceed one standard deviation. One drawback is the
lower hemoglobin level predicted by the model compared to
experimental measurements.

Model of iron sequestration by ferritin

(Masison, Mendes, 2023)

P. Mendes and J. Masison developed a model describing the
binding of iron ions by the protein ferritin. Ferritin consists of
24 subunits and is capable of binding about 4,300 iron atoms
per ferritin molecule. Ferritin is an important participant in
iron metabolism, so iron exchange models must include it.
Such a model enables integrating the interaction of ferritin
with iron ions into more complex models.

The model considered: (1) how iron bound to ferritin affects
the dynamics of iron sequestration; (2) how the iron sequestra-
tion model with rate constants obtained experimentally in vitro
can numerically reproduce experimental results obtained in
cell lines; (3) the influence of ferritin subunit composition

on the rate of iron sequestration; (4) the dependence of iron
release dynamics from ferritin on the concentration of free
iron and ferritin in the cell.

The model accounted for four chemical species: LIP — la-
bile iron pool, soluble or readily soluble divalent iron in the
cytoplasm; DFP — peroxo complex containing two iron atoms;
core —iron incorporated into the mineralized ferrihydrite core;
FT — 24 subunits of ferritin. The model included four reactions,
three of which describe the process of iron sequestration by
ferritin: oxidation converts two LIP into one DFP; nucleation
converts two DFP into a new crystal core; mineralization adds
one DFP to an existing core; and one reaction describes deg-
radation of the intermediate product: reduction converts one
DFP back into two LIP. The sequestration process is shown
schematically in Fig. 5. The authors simplify and combine
several of its components to construct a system of differential
equations that reflects this biochemical process with sufficient
accuracy. At the same time, they avoid excessive details and
do not overload the model with variables.

The first reaction describes the oxidation of LIP to DFP and
is represented by a Hill function:

H+r0 n
kcat x 24110 x FT x LIP
Km" + LIP" ’

kcat — catalytic turnover number, Km — Michaelis constant,
n — Hill coefficient. The ferritin molecule consists of 24 sub-
units of two different types, H and L, and only the H subunits
contain the active ferroxidase center. Therefore, molecules
with different subunit compositions have different oxidation
rates. To account for this, two additional parameters were
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Ferroxidase

Ferritin

Mineral iron (core)

Fig. 5. Adapted graphical representation of the iron sequestration model
(Masison, Mendes, 2023) in the SBGN standard (Le Novére et al., 2009).

The following reactions are shown: 1 - transport of Fe2+ into ferritin,
2 - binding of Fe2+ with ferroxidase, formation of DFP, 3, 4 - oxidation of Fe2*,
5 - nucleation, 6 - mineralization.

used: H —the number of the H subunits (a value from 0 to 24);
rO — a scaling factor representing the oxidation efficiency of
the L homopolymer.

The parameter rO was included by the model authors
because, despite the L subunits lacking a known ferroxidase,
the L homopolymers still catalyze the formation of ferric iron
(Fe3*) within ferritin according to experimental data, although
at a rate reduced by more than a quarter (Carmona et al.,
2014). Since data on how oxidation occurs in the absence of
the H subunit and the corresponding value of rO are limited,
the value of rO was empirically set to two.

The second reaction, degradation of DFP, follows the law
of mass action:

Kgeg * DFP.
The third reaction is nucleation:

L+rN Kin
2
keat x DFP® x FT x 222N * Kiv + core™

It describes the process of forming a new crystal from two
DFP molecules inside the ferritin molecule. New nuclei can
also form within a ferritin molecule that already contains an
existing core. The equation was empirically derived based
on the law of mass action. The coefficients L and rN reflect
how the ferritin subunit composition influences nucleation;
due to limited information on this process, the coefficient rN
was chosen to contribute significantly less to the nucleation
rate range than the coefficient rO does to the oxidation rate
range. The last factor included an inhibition constant and a
Hill coefficient, allowing for the decrease in the probability of
new crystal formation as the size of the existing core increases.
The fourth reaction is mineralization:

kcat x DFP x core Kin 4300™ — apc™

Km + DFP Kin + coren 4300m
The published data (Harrison et al., 1974) demonstrated
that the rate of this reaction reaches a maximum at 1,500—
2,000 iron atoms per core and decreases with further core
growth. The second factor is needed to account for this
process, while the third factor drives the rate to zero as the
number of iron atoms per core (apc) approaches the maximum

allowable value of 4,300.

Mathematical models of iron metabolism:
structure and functions

To validate the model simulations, experimental data from
different laboratories under various conditions were used. The
model exhibited some differences compared to experimental
data within the first 20 seconds: a stronger cooperative ef-
fect in the DFP mineralization rate and a faster attainment of
steady-state concentration. Since the model’s target context
is cellular models, where the relevant time scale is minutes
or longer, such differences from experimental data are not
considered significant.

The authors conducted a virtual experiment investigating
the influence of iron atoms in the core on the mineralization
rate. The simulation revealed that the mineralization rate
over time depends on the initial number of iron atoms per
core (apc). Typically, the curves showing mineralization rate
fall into three groups based on the initial apc. In the first group
(<1,000 apc), the mineralization rate starts low, then increases
as iron accumulates inside ferritin, and later decreases as
the iron concentration in the solution drops. In the second
group (1,000-3,000 apc), the mineralization rate starts high
but rapidly declines due to decreasing iron concentration in
the solution. Eventually, in the third group (>3,000 apc), the
mineralization rate decreases throughout the simulation, as
iron accumulation in the ferritin core slows down further
mineralization.

Then the authors investigated the model behavior at ferritin
and iron concentrations corresponding to those found in mam-
malian cells. The research team led by Mendes incorporated
this model as a modular component into their previously de-
veloped model of iron metabolism in hepatocytes. The authors
reported that the system’s qualitative behavior remains similar
to the original model before extension. However, the expanded
model provided a deeper understanding and better assessment
of iron storage mechanisms. Due to the increased detail of the
new model, it becomes clear that the peak in ferritin-bound
iron is driven by an increase in the concentration of DFP
rather than the mineralized core — an important distinction
since DFP is more readily released back into the cytoplasm.
The numerical results of the models differed both over the
time course and at equilibrium. The greatest differences ap-
pear after 1,000 seconds of simulation. In the original model,
ferritin-bound iron content gradually increased, whereas in
the new model, its concentration decreased. The authors of
the original study hypothesized that this discrepancy may be
related to new iron storage kinetics, which promotes a reduc-
tion in available iron through ferritin buffering, whereas in
the original model, other mechanisms primarily influenced
the Kinetics of available iron.

Conclusion

The analysis of the presented mathematical models of iron
metabolism reveals a tendency toward a progressive increase
in their structural complexity over time (Supplementary
Table S1)%. With the advancement of research, both the num-
ber of equations and the number of parameters in the models
grow, indicating a pursuit of a more accurate and detailed
description of biological processes. More recent models pro-
vide the simulation of a broader range of physiological and
pathological states, expanding the possibilities for conduc-

1 Supplementary Table S1 is available at:
https://vavilovj-icg.ru/download/pict-2025-29/appx38.pdf
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ting in silico experiments. An exception is the latest model
of iron sequestration by ferritin (Masison, Mendes, 2023),
which is implemented according to a modular principle and
was developed with the aim of integration into more complex
systems. This approach ensures the flexibility and scalability
of the model, which is important for further development and
incorporation into multifactorial models of iron metabolism.

To deeper understand the iron metabolism, it is necessary to
consider its interaction with the immune system, as it plays a
key role in regulating iron homeostasis (Mogt et al., 2021). At
the same time, the reduction of iron availability to pathogens
and the production of reactive oxygen species can significantly
affect the dynamics of infectious diseases (Weinberg, 2009).
Inclusion of these factors in mathematical models will enable
virtual experiments analyzing the impact of various infections
on iron metabolism and assessing the long-term consequences
of such interactions. This knowledge may be critically impor-
tant for developing new approaches to treat diseases associated
with iron metabolism disorders, as well as for understanding
the pathogenesis of conditions such as anemia under chronic
diseases, hemochromatosis, or post-viral syndromes, such as
post-COVID syndrome.

Thus, integrating data on the interactions between the im-
mune system and iron metabolism will not only deepen our
understanding of these processes but may also pave the way for
new opportunities for clinical research and therapeutic strate-
gies. In this regard, the construction of a detailed model of iron
metabolism that takes into account its interactions with the
immune system represents a timely task, the solution of which
will enable better understanding of the interplay between these
two complex systems and allow the identification of key links
in the pathology of iron metabolism in various diseases.
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Abstract. Identification of the connections between the various functional components of the immune system is
a crucial task in modern immunology. It is key to implementing the systems biology approach to understand the
mechanisms of dynamic changes and outcomes of infectious and oncological diseases. The data characterizing an
individual’'s immune status typically have a high-dimensional state space and a small sample size. To study the net-
work topology of the immune system, we utilized previously published original data from Toptygina et al. (2023),
which included measurements of the immune status in 19 healthy individuals (children, 9 boys and 10 girls, aged 1 to
2 years), i.e., the immune cells (42 subpopulations) obtained by flow cytometry; cytokine levels (13 types) obtained
by multiplex analysis; and antibody levels (4 types) determined by using enzyme immunoassay. To correctly identify
statistically significant correlations between the measured variables and construct the respective network graph, it
is necessary to use an approach that takes into account the small size of the dataset. In this study, we implemented
and analyzed an approach based on the regularized debiased sparse partial correlation (DSPC) algorithm to evalu-
ate sparse partial correlations and identify the network structure of relationships in the immune system of healthy
individuals (children) based on immune status data, which includes a set of indicators for subpopulations of immune
cells, cytokine levels, and antibodies. For different levels of statistical significance, heatmaps of the partial correla-
tions were constructed. The graph visualization of the DSPC networks was performed, and their topological charac-
teristics were analyzed. It is found that with a limited measurements sample, the choice of a statistical significance
threshold critically affects the structure of the partial correlations matrix. The final verification of the immunologically
correct structure of the correlation-based network requires both an increase in the sample size and consideration
of a priori mechanistic views and models of the functioning of the immune system components. The results of this
analysis can be used to select the therapy targets and design combination therapies.

Key words: immune system; immune status; correlation analysis; partial correlations; network topology; graphs;
DSPC algorithm
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cnctemHo-6ronornyeckoro noaxopa. MapameTpsbl, xapakTepusyoLme NMMYHHbIA CTaTyC YenoBeKa, OTIMYaloTCA
60/1bLLON Pa3MEPHOCTbIO NPOCTPAHCTBA COCTOAHMI NPV Manon MOLWHOCTN BbIGOPKU. 1A U3yyeHns ceTeBon To-
NonorMn MMMYHHOW CUCTEMbBI HAaMK MCMOJIb30BaHbl paHee onybnKoBaHHbIe opurMHanbHble faHHble (Toptygina
et al, 2023) n3mepeHunin NokKasaTenen MMMyHHOro cTaTyca y 19 340pOBbIX UHANBUAYYMOB — AeTEl, 9 ManbYyMKOB 1
10 peBoYek, B BO3pacTe OT OAHOro A0 ABYX NET: NOMyAALNA UMMYHHBIX KNeTOK (42 cybrionynaumm), nonyyeHHbIX
C MOMOLLbIO MPOTOYHOW LIUTOMETPUN; YPOBHEN LUTOKMHOB (13 TMMOB), MOMTyUYEHHbIX METOAaMMN MybTUMIEKCHOrO
aHann3a; ypoBHsA aHTUTeN (4 Tvna), onpeAeNieHHbIX C MOMOLLbI UMMYHOPEPMEHTHOrO aHanu3a. [Ana KoppeKTHo-
ro (CTaTUCTMYECKM 3HAUMMOro) onpeaeneHna KOPPENALMOHHbIX CBA3EN MEXAY M3MepAeMbIMU NepemMeHHbIMA 1
NnocTpoeHna rpada ceTeBOW TOMONOrN MOXKeT OblTb UCMOMb30BaH MOAXOA, KOTOPbIN YUUTbIBAET Masblil pasmep
MHOXeCTBa AaHHbIX. B Hawew paboTe 6bin peann3oBaH 1 UCCNEAOBaH MOLXOA, B OCHOBE KOTOPOrO NIEXUT pery-
NAPU3MPOBAHHbIN aNrOPUTM CKOPPEKTVPOBaHHbIX Pa3peKeHHbIX YacTHbIX koppenaunii (DSPC) oueHnBaHuAa pas-
PEXEHHbIX YaCTHbIX KOPPENALNA N naeHTUdUKaLMM CETEBOW CTPYKTYPbl B3aMMOCBA3EN B UMMYHHOW cucTeme no
[aHHbIM IMMYHHOTO CTaTyca 3[J0POBbIX I€TEN, BKIOUaloLero Habop nokasatesniel Cyononynauuin KNeTok MMMyH-
HOW CUCTEMbI, YPOBHA LIUTOKMHOB U aHTUTEN. [111A pasHbIX YPOBHEN CTaTUCTNYECKOW 3HAUMMOCTM OblIN MOCTPOEHbI
TennoBble KapTbl YaCTHbIX KOPPENALMIA, BbINONHEHa BM3yanv3auma ceTeil YacTHbIX Koppenauun B Buae rpados 1
NpPoBeAEH aHanM3 X TOMOJIOTMYECKNX XapaKTepUCTUK. MonyyeHo, YTo NpU orpaHUYeHHON BbIOOPKE U3MepPeHUii
BbI6GOP Mopora AnsA YPOBHA CTAaTUCTUYECKOWN 3HAUMMOCTM NMEET NPUHLUMMMaNbHOE 3HaueHre Ansa GopmrpoBaHua
MaTpuLbl YacTHbIX Koppenaunii. OKoHuaTenbHaa BepuduKaLma MMMYHOSTOTNYECK KOPPEKTHOW CTPYKTYpbl CBA-
3el TpebyeT KaK yBeNimyeHna pasmepa BbIOOPKH, Tak U COMPAXKEHUA C anprOPHbIMU MeEXaHN3MEHHbIMUN NPeACTaB-
NEeHNAMN N MOAENAMUN GYHKLMOHNPOBAHNA KOMMOHEHT UMMYHHOW cUCTeMbI. Pe3ynbTaTbl MOTyT ObiTb MCMONb30Ba-
Hbl A5 BbI6Opa MULLeHel Tepanun 1 GopmMrpoBaHna KOMOVMHNPOBAHHbIX BO3LENCTBUIN.

KnioueBble cnoBa: UMMyHHasA CMCTEMA; UMMYHHBbI CTaTyC; KOPPENALMOHHbIN aHanu3; YacTHble Koppenaumu; cete-

Ban Tonosnorus; rpadsbl; anroputv DSPC

Introduction

The human immune system functions to maintain the antigenic
homeostasis of the body’s internal environment. It is a system
with distributed parameters reflecting the spatial organization,
phenotypic and clonal structure of its constituent cell popula-
tions. The cells of the immune system continuously interact
with each other, and the balance of processes increasing or
decreasing their activity underlies the development of pro-
ductive or abortive reactions (Ng et al., 2013). Implemen-
tation of a systems biology approach to the investigation of
the mechanisms determining the dynamics and outcome of
infectious and oncological diseases requires identification
of the structure of cellular interconnection networks in the
immune system. An example of studying the connections
network (network topology) between populations of cellular
components of the immune system is provided in (Rieckmann
et al., 2017), where the quantitative proteomics data were
used for identification of the social architecture of immune
cell interactions. The description of the network topology is
associated with construction of a graph, with the vertices cor-
responding to specific cell populations of the immune system,
and the edges representing connections of a diverse nature
between the corresponding vertices.

To date, a large number (about 100 documented) of methods
have been developed for analyzing the structural organization
of intercellular interactions based on data of a diverse nature,
including spatial and cellular transcriptomics, expression of
ligand receptors, as well as intracellular signalling components
(Armingol et al., 2024). They are used for the assessment of
the connectivity indices or communication structures between
cells, which provide the basis for building the graphs of con-
nectivity networks. Both the biophysical and biochemical
principles, and statistical data analysis methods in combination
with machine learning, can be used to assess the strength of
the intercellular connections.

The construction of a quantitative interactome of immune
cells based on receptor proteins expressed on their surface is
presented in (Shilts et al., 2022). It implements a number of
graphs based on a set of physical connections between cells
of the immune system in major human organs identified using
multiplex immune and transcriptomic analysis technologies,
genetic databases and biochemical methods for screening
interactions between cells. Visualization of the transcriptome
analysis data as a graph reflecting the genes co-expression is
an integrative part of modern systemic vaccinology studies
(Cortese et al., 2025).

The aim of our study was to implement a new approach
to identifying the network structure of relationships in the
immune system of a healthy individual based on the results
of a correlation analysis of previously published data on the
immune status of children aged one to two years. The data set
includes the measurements of the immune status parameters,
i. e. the subpopulations of immune cells, cytokine concentra-
tions and antibody levels (Toptygina et al., 2023). The research
objectives include the correlation analysis of children’s im-
mune status data to build heatmaps of partial correlations,
visualization of the partial correlations networks as graphs, and
analysis of the topological characteristics of the graph models.

The present work consists of four sections. The “Materials
and methods” section describes the specific features of the
source data, methods of correlation analysis, the correlation-
based approach to identifying a network structure of relation-
ships between the immune status parameters, and examines
the topological properties of the corresponding graphs.
Principal components analysis is performed. The “Results”
section presents the results of network construction for various
threshold levels of statistical significance of the correlations,
an immunological interpretation of the corresponding network
topologies, and a robustness analysis. The results of the work
are discussed in the “Discussion” section.
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Fig. 1. Data on immune status in healthy individuals - children aged one to two years (adapted from Toptygina et al., 2023).

Individual measurements, median sample values, and 25-75 % quartiles are presented. The abscissa shows the names of the immune status indicators.
The ordinate shows the percentage of cells (%), the levels of cytokines (pg/ml) and immunoglobulins A, M, G (g/1), IgE (IU/ml).

Materials and methods

Immune status data. To study the network topology of the
immune system, we used previously published original data
(Toptygina et al., 2023). The data are a set of measurements
of immune status indicators in 19 healthy individuals, i. e.,
children aged one to two years: populations of immune cells
(42 subpopulations) obtained by flow cytometry; cytokine
levels (13 types) obtained by multiplex analysis; antibody
levels (4 types) determined by enzyme immunoassay. The
data samples are summarized in Figure 1 as individual mea-
surements, median values, and 25 and 75 % quartiles. The
distribution of the indicators does not follow either the normal
or the log-normal behavior.

The data on the immune status of children are characterized
by a large dimensionality of the state space (59) and a small
sample size (19 patients), which is typical for systems biology
studies (Basu et al., 2017). If the sample size is large enough,
one can use the approach based on partial correlations in order
to determine the relationships between the immune status pa-
rameters. Otherwise, an approach that takes into account the
small size of the data set has to be implemented to correctly
determine statistically significantly correlations between the
measured variables and construct a network topology graph.
It should be noted that all the children belonged to the same
age group from one to two years old, which in medical practice
is not customary to subdivide further. Due to the small size of
the group (19 people), additional division by gender (10 girls
and 9 boys) would have reduced the statistical power below
the critical level required for the method used in our study.

Principal component analyses. The principal component
analysis (PCA) was performed using the prcomp function
in the R language, the factoextra R package (version 1.0.7)
was used for visualization. To perform the PCA, the data
were standardized, and the variables TGF-f, IL-17, and
CD3*CD45R0"CD4*CD161" were excluded from the analysis

due to missing data. The analysis of the principal components
(PCs) did not reveal the possibility of explaining the variance
of the data by a small number of the components (Fig. 2a),
and no correlation-based clusters of immune status variables
exist in the first two PCs (Fig. 2b).

Methods of partial correlation analyses and recon-
struction of the connection network. An alternative to the
standard method of estimating partial correlations is an ap-
proach using regularization methods to estimate the matrix of
partial correlations (Epskamp, Fried, 2018). The principle of
regularization is based on the assumption that the number of
connections in the constructed model network is significantly
less than the number of observed variables, i.e. the real net-
work is sparse. Accordingly, the LASSO method (Epskamp,
Fried, 2018) is used as a regularizing correction that allows
zeroing out insignificant correlations between variables (the
number of edges in the graph). To analyze our data, we used
this approach for the estimation of debiased sparse partial
correlations matrix implemented in algorithm DSPC (Basu et
al., 2017), which provides additional correction of estimates
of the elements of the inverse covariance matrix, i. e. the ele-
ments of the partial correlations matrix. The estimates of the
correlation matrix elements were represented as heatmaps
and visualized as weighted networks, where the vertices
(nodes) represent the immune status variables and the edges
show correlations between them. The results of estimating
the correlation-based relationships depend significantly on
the algorithm parameters: 1) the value of the parameter A for
the regularization term in the form of ¢; norm of the inverse
covariance matrix; 2) the choice of the statistical significance
level p for the predicted correlation relationship. Below, we
study the effect of the p-value on the network topology of
connections in the immune system.

To calculate the sparse partial correlations using the DSPC
method, we used the Java application CorrelationCalculator
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(version 1.0.1) developed in (Basu et al., 2017). The origi-
nal data were normalized, i.e. logarithmically transformed
and standardized. A graphical representation of statistically
significant correlations (for p < 0.01; 0.05; 0.1; 0.15) in the
form of heatmaps and graphs of correlation networks was
performed using the R packages igraph (version 1.6.0) and
ggplot2 (version 3.5.2). The topological characteristics of the
correlation networks graphs were calculated using the igraph
package in R (version 1.6.0).

Results

In what follows, we study the effect of the p-value on the
network topology of connections in the immune system. The
conventionally considered statistical significance levels 0.01,
0.05, 0.1, 0.15 are analyzed.

Heatmap and connection graph for p = 0.01

The heatmap of partial correlations between immune status
parameters for healthy children at a statistical significance
threshold p = 0.01 is presented in Figure 3a. The correspond-
ing graph of the network is shown in Figure 3b. This graph
has 23 nodes and 12 edges (connections). In fact, connectivity
in the network is missing. Figure 3¢ shows the distribution
of immune response indicators with respect to the number of
identified links between them. The node with the maximum
number (2 in total) of correlations represents the CD4 T cell
population (CD3*CD4%).

Heatmap and connection graph for p = 0.05

The heatmap of correlations between immune status pa-
rameters for healthy children at a statistical significance
threshold p = 0.05 is presented in Figure 4a. The corre-

sponding network graph is shown in Figure 4b. This graph
has 53 nodes and 44 edges (connections). The cohesion of
individual network components is strengthened, but overall,
it is absent. Figure 4c shows the distribution of immune
response indicators with respect to the number of identified
links between them. The nodes with the maximum number
of correlations (called hubs) represent the proinflamma-
tory cytokines IL-8, IL-12, and central memory T cells
(CD4*CD45RACD62L*, CD8"CD45R0*CD62L"), Th17
(CD3*CD45R0*CD4*CD161%) and activated NK cells
(CD37CD8*CD122"). The maximum number of connections
increases to three.

Heatmap and connection graph for p = 0.1

The heatmap of correlations between immune status param-
eters for healthy children at a statistical significance threshold
p = 0.1 is presented in Figure 5a. The corresponding network
graph is shown in Figure 5b. This graph has 59 nodes and
69 edges (connections). Figure 5¢ shows the distribution
of immune response indicators with respect to the number
of identified links between them. The nodes with the maxi-
mum number of correlations (four in this case) represent the
cytokines IL-4, IL-12 inducing the cellular and humoral im-
munity, the terminally differentiated effector memory T cells
(CD4*CD45RA*CD62L", CD8*CD45RA*CD62L"), and
Th17 cells (CD3*CD45R0"CD4*CD1617).

Heatmap and connection graph for p =0.15

The heatmap of correlations between immune status param-
eters for healthy children at a statistical significance threshold
p =0.15 is presented in Figure 6a. The corresponding network
graph is shown in Figure 6b. This graph has 59 nodes and
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Fig. 3. Heatmap and network graph of immunological parameters in healthy children at a statistical significance level of p =0.01:
a - heatmap of correlations between immune status indicators; b — graph of connections network at p = 0.01; ¢ - characteristics of the complexity of

the network of connections.

Here and in Figures 4-6: the node numbers correspond to the immune status parameters shown in c. The ordinate names the immune status indicators.
The abscissa shows the degrees of the graph nodes. Positive correlations (red lines), negative correlations (blue lines), the thickness of the edges is proportional
to the absolute values of the DSPC coefficients. The color of the nodes corresponds to the node index, i. e. the number of significant correlations.

106 edges (connections). Figure 6¢ shows the distribution of
immune response indicators with respect to the number of
identified links between them. The nodes with the maximum
number of correlations (hubs) represent the immunoglobulins
IgM, plasma cells (CD3"CD8 CD38*HLADRY), activated
T cells (CD3*CD8CD38*, CD8*CD122%), and the double-
positive activated cells (CD45RA*CD45R0") reflecting the
transition from naive to memory cells. The maximum number
of connections increases to six.

Analysis of the robustness of correlation estimates

To assess the stability of the obtained DSPC correlation
coefficients in relation to the sample size, a procedure was
performed for generating ten different subsamples accor-

ding to the vfold10 scheme. In most cases, it corresponds to
the selection of 17 out of 19 measurements. The coefficient
of variation (the ratio of the standard deviation to the mean
value) of the DSPC coefficients estimated from the generated
subsamples was chosen as a measure of stability (robust-
ness). The estimated coefficients of variation are shown
in Figure 7 for four levels of statistical significance in the
form of heatmaps. Importantly, their absolute values do not
exceed 0.1.

Comparative analysis of topological properties of graphs
of correlations between indicators of immune status

The Table shows the results of calculating the topological cha-
racteristics of the constructed graphs of correlation networks
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Fig. 4. Heatmap and network graph of immunological parameters in healthy children at a statistical significance level of p = 0.05:

a - heatmap of correlations between immune status indicators; b — graph of connections network at p = 0.05; ¢ — characteristics of the complexity of the network

of connections.

between immune status indicators for various thresholds of
statistical significance. The following basic characteristics
were considered: graph diameter, graph radius, girth of graph
(the length of the smallest cycle contained in the graph),
average path length, graph energy, spectral radius, edge
density, clustering coefficient, average graph diversity (deter-
mined through entropy calculated by the weights of incident
edges — the absolute values of the correlation coefficients
DSPC), the number of separators, and the number of uncon-
nected subgraphs.

The number of nodes, edges, and maximum node degrees
grows with increasing statistical significance threshold. Ho-
wever, the graph diameter, radius, girth and average path
length exhibit a non-monotonic dependence, initially increa-
sing and then decreasing, which indicates a transformation
of properties towards the “small world network” family. The
graph energy and spectral radius increase monotonically
with increasing threshold p. The clustering coefficient also
increases, indicating that the graph nodes tend to cluster to-
gether. Interestingly, the number of cutting nodes and edges
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Fig. 5. Heatmap and network graph of immunological parameters in healthy children at a statistical significance level of p =0.1:

a - heatmap of correlations between immune status indicators; b — graph of connections network at p = 0.1; ¢ - characteristics of the complexity of the network
of connections. Solid lines of the edges correspond to correlations with a significance level of p < 0.05, dashed lines, to p < 0.1.

decreases at p = 0.15, which may indicate an increase in the
robustness of the connections graph. As expected, the number
of disconnected subgraphs decreases.

Discussion

Identification of the connection structures between the
various functional components of the immune system is an
extremely urgent task of modern immunology. This is due to
an extremely high number of measured characteristics, with

a relatively small sample size, reflecting the situation in big
data biomathematics, called the “curse of dimensionality”.
To analyze the relationships between immune status param-
eters, we implemented and analyzed an approach based on a
regularized method for estimating sparse partial correlations
implemented in the DSPC algorithm (Basu et al., 2017), which
minimizes the number of false correlations. It is noted that the
results of applying the algorithm may depend on the sample
size, imputation of missing data, the nature of the true network
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Fig. 6. Heatmap and network graph of immunological parameters in healthy children at a statistical significance level of p =0.15:

a - heatmap of correlations between immune status indicators; b — graph of connections network at p = 0.15; ¢ — characteristics of the complexity of the network
of connections. Solid lines of the edges correspond to correlations with a significance level of p < 0.05, dashed lines, to p < 0.15.

structure and other aspects. Our work demonstrates that, given
a limited sample size of measurements, an a priori assignment
of the level of statistical significance is of fundamental im-
portance for the formation of a matrix of partial correlations.
Increasing the statistical significance threshold increases the
complexity of the network topology generated by the DSPC-
based approach. Final verification of the immunologically
correct structure of connections requires both an increase in
the sample size and conjugation with a priori mechanistic
views and models of the functioning of the immune system

components, i. e. the participation of clinical immunologists
(Qiao etal., 2025). An important step in this direction was the
development of the ImmunoGlobe tool for constructing and
analyzing the network of interactions in the immune system
(Atallah et al., 2020) using phenomenological information
from the fundamental textbook “Janeway’s Immunobiology”
(Murphy, Weaver, 2017).

The aim of this work is to implement and introduce a new
method for identifying relationships between cellular and
humoral components of the immune systems. Identification
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Fig. 7. Matrices of estimates of the variation coefficients for four significance levels: p < 0.01 (a); p < 0.05 (b); p < 0.1 (c); p < 0.15 (d).

of the network relationships between elements of immune
status is central to the systems immunology approach, but the
relevant analytical tools remain undeveloped. All currently
existing verified concepts of immune networks are limited to
schemes with no more than three or four components (antigen
presentation, differentiation pathways, paracrine and autocrine
interactions). For this reason, it is not possible to uniquely
select and verify one of the presented networks. If we adhere
to the generally accepted level of significance (p = 0.05), then
we should give preference to the network constructed in the
section “Heatmap and graph of connections for p = 0.05”.
Identifying the network structure of relationships between
components of cellular and humoral immunity is a necessary

element for the transition from a static description of immune
status to a systems dynamics consideration of the maintenance
of immune homeostasis.

Conclusion

The development of combination therapies for chronic
diseases associated with induction of several components of
the immune system requires understanding of the topology
and strength of the structural connections in the system. Our
study demonstrates for the first time that DSPC-based methods
can be used to obtain consistent estimates of significant partial
correlations for similar problems in a typical situation with
a large number of measured immune status parameters and
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Comparative analysis of topological properties of graphs of correlations between indicators of immune status

for various significance thresholds

Topological characteristics p <0.01
Number of nodes, n 23
Number of edges, m 12
Maximun digree, Ag 2
Diameter, D 2
Radius, r 1
Girth, g 0
Average path length, Ig 1.08
Energy, E,, 22.8
Spectral radius, p 1.4
Edge density, py 0.05
Clustering coefficient, C 0
Topological diversity of vertices, Dpspc 0.04
Number of node separator, n.,; 1
Number of edge separatrors, m¢,; 12
Number of unconnected subgraphs 11

a small number of patients. Translation of the results into
biomedical practice to address the challenges of personalized
treatment and prevention of immune-dependent pathological
processes requires an active participation of clinicians in
order to determine therapy targets and quantitatively predict
its effectiveness.

References

Armingol E., Baghdassarian H.M., Lewis N.E. The diversification of
methods for studying cell-cell interactions and communication. Nat
Rev Genet. 2024;25(6):381-400. doi 10.1038/s41576-023-00685-8

Atallah M.B., Tandon V., Hiam K.J., Boyce H., Hori M., Atallah W.,
Spitzer M.H., Engleman E., Mallick P. ImmunoGlobe: enabling
systems immunology with a manually curated intercellular immune
interaction network. BMC Bioinformatics. 2020;21(1):346. doi
10.1186/512859-020-03702-3

Basu S., Duren W., Evans C.R., Burant C.F., Michailidis G., Karnov-
sky A. Sparse network modeling and metscape-based visualization
methods for the analysis of large-scale metabolomics data. Bioinfor-
matics. 2017;33(10):1545-1553. doi 10.1093/bioinformatics/btx012

Cortese M., Hagan T., Rouphael N., Wu S.Y., Xie X., Kazmin D.,
Wimmers F., ... Subramaniam S., Mulligan M.J., Khurana S., Gol-
ding H., Pulendran B. System vaccinology analysis of predictors and
mechanisms of antibody response durability to multiple vaccines in
humans. Nat Immunol. 2025;26(1):116-130. doi 10.1038/s41590-
024-02036-z

Epskamp S., Fried E.I. A tutorial on regularized partial correlation
networks. Psychol Methods. 2018;23(4):617-634. doi 10.1037/
met0000167

p <0.05 p<0.1 p<0.15
53 59 59
44 69 106
3 4 6

1 17 7

1 9 4

4 3 3

3.6 6.0 33
58.7 775 94.6
23 3.0 43
0.03 0.04 0.06
0 0.026 0.055
0.54 0.82 0.96
27 21 2

40 24 2

10 1 1

Murphy K., Weaver C. Janeway’s Immunobiology. New York, NY:
Garland Science/Taylor & Francis Group, 2017. ISBN 978-0-8153-
4505-3 Available: https://inmunologos.wordpress.com/wp-content/
uploads/2020/08/janeways-immunobiology-9th-ed booksmedicos.
org .pdf

Ng C.T., Snell L.M., Brooks D.G., Oldstone M.B. Networking at the
level of host immunity: immune cell interactions during persis-
tent viral infections. Cell Host Microbe. 2013;13(6):652-664. doi
10.1016/j.chom.2013.05.014

Qiao L., Khalilimeybodi A., Linden-Santangeli N.J., Rangamani P.
The evolution of systems biology and systems medicine: From
mechanistic models to uncertainty quantification. Annu Rev Biomed
Eng. 2025;27(1):425-447. doi 10.1146/annurev-bioeng-102723-
065309

Rieckmann J.C., Geiger R., Hornburg D., Wolf T., Kveler K., Jarros-
say D., Sallusto F., Shen-Orr S.S., Lanzavecchia A., Mann M.,
Meissner F. Social network architecture of human immune cells
unveiled by quantitative proteomics. Nat Immunol. 2017;18(5):583-
593. doi 10.1038/ni.3693

Shilts J., Severin Y., Galaway F., Miiller-Sienerth N., Chong Z.S.,
Pritchard S., Teichmann S., Vento-Tormo R., Snijder B., Wright G.J.
A physical wiring diagram for the human immune system.
Nature. 2022;608(7922):397-404. doi 10.1038/541586-022-05028-x.
Erratum in: Nature. 2024;635(8037):E1. doi 10.1038/s41586-024-
07928-6

Toptygina A., Grebennikov D., Bocharov G. Prediction of specific an-
tibody- and cell-mediated responses using baseline immune status
parameters of individuals received measles-mumps-rubella vaccine.
Viruses. 2023;15(2):524. doi 10.3390/v15020524

Conflict of interest. The authors declare no conflict of interest.

Received July 30, 2025. Revised September 15, 2025. Accepted September 19, 2025.

1050 Vavilovskii Zhurnal Genetiki i Selektsii / Vavilov Journal of Genetics and Breeding - 2025 - 29 - 7


https://doi.org/10.1038/s41576-023-00685-8
https://doi.org/10.1186/s12859-020-03702-3
https://doi.org/10.1186/s12859-020-03702-3
https://doi.org/10.1093/bioinformatics/btx012
https://doi.org/10.1038/s41590-024-02036-z
https://doi.org/10.1038/s41590-024-02036-z
https://doi.org/10.1037/met0000167
https://doi.org/10.1037/met0000167
https://inmunologos.wordpress.com/wp-content/uploads/2020/08/janeways-immunobiology-9th-ed_booksmedicos.org_.pdf
https://inmunologos.wordpress.com/wp-content/uploads/2020/08/janeways-immunobiology-9th-ed_booksmedicos.org_.pdf
https://inmunologos.wordpress.com/wp-content/uploads/2020/08/janeways-immunobiology-9th-ed_booksmedicos.org_.pdf
https://doi.org/10.1016/j.chom.2013.05.014
https://doi.org/10.1016/j.chom.2013.05.014
https://doi.org/10.1146/annurev-bioeng-102723-065309
https://doi.org/10.1146/annurev-bioeng-102723-065309
https://doi.org/10.1038/ni.3693
https://doi.org/10.1038/s41586-022-05028-x
https://doi.org/10.3390/v15020524

SYSTEMS COMPUTATIONAL BIOLOGY Vavilovskii Zhurnal Genetiki i Selektsii

Original article Vavilov Journal of Genetics and Breeding. 2025;29(7):1051-1061

doi 10.18699/vjgb-25-110

Self-learning virtual organisms in a physics simulator:
on the optimal resolution of their visual system,
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and the computational complexity of the problem
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Abstract. Vision plays a key role in the lives of various organisms, enabling spatial orientation, foraging, predator
avoidance and social interaction. In species with relatively simple visual systems, such as insects, effective behav-
ioral strategies are achieved through high neural specialization, adaptation to specific environmental conditions,
and the use of additional sensory systems such as olfaction or hearing. Animals with more complex vision and
nervous systems, such as mammals, have greater cognitive abilities and flexibility, but this comes with increased
demands on the brain’s energy costs and computational resources. Modeling the features of such systems in a
virtual environment could allow researchers to explore the fundamental principles of sensorimotor integration and
the limits of cognitive complexity, as well as test hypotheses about the interaction between perception, memory
and decision-making mechanisms. In this work, we implement and investigate a model of virtual organisms with a
visual system operating in a three-dimensional physical environment using the Unity ML-Agents software — one of
the most high-performance simulation platforms currently available. We propose a hierarchical control architecture
that separates locomotion and navigation tasks between two modules: (1) visual perception and decision-making,
and (2) coordinated control of limb movement for locomotion in the physical environment. A series of numerical
experiments was conducted to examine the influence of visual system parameters (e.g, resolution of the “first-
person” view), environmental configuration and agent architectural features on the efficiency and outcomes of
reinforcement learning (using the PPO algorithm). The results demonstrate the existence of an optimal range of
resolutions that provide a trade-off between computational complexity and success in accomplishing the task,
while excessive dimensionality of sensory inputs or action space leads to slower learning. We performed system
performance profiling and identified key bottlenecks in large-scale simulations. The discussion considers biological
parallels, highlighting cases of high behavioral efficiency in insects with relatively low-resolution visual systems,
and the potential of neuroevolutionary approaches for adapting agent architectures. The proposed approach and
the results obtained are of potential interest to researchers working on biologically inspired artificial agents, evolu-
tionary modeling, and the study of cognitive processes in artificial systems.

Key words: virtual organism; computational modeling; computational complexity; vision system; neural network;
simulator; PPO; reinforcement learning; Unity ML-Agents
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AHHOTaLMA. 3peHyie UrpaeT KIIYeBYI0 POSb B >KN3HM MHOXECTBA Pa3/IyHbIX OpraH13moB, obecneynBas opreHTa-
LMito B MPOCTPAHCTBE, MOUCK NULLK, 36eraHne XMLLHNKOB V1 coLMaibHOe B3auMogencTaye. Y BUAOB C OTHOCUTENbHO
NPOCTO 3pUTENIbHOM CUCTEMON, TaKMX Kak Hacekomble, 3bPeKTUBHaA NoBeAeHYeCKan cTpaTerna JOCTUraeTcs 3a
CYeT BbICOKOW cneuvanv3aunm HeMpoHOB, afanTalny K KOHKPETHbIM YCIOBUAM Cpefbl, @ TakxKe 6narogapa fonos-
HUTENIbHbIM CEHCOPHbIM CUCTEMAM — OOOHAHNIO UK CITYXY. Y XKUBOTHBIX C 6051ee CNOXKHbIM 3peHNEM U HEPBHOW CU-
CTEMOW, TaKMX Kak MineKonuTaloLme, KOrHUTUBHbIE BO3MOXXHOCTM 1 CNOCOBHOCTY K ajanTaLyy 3HauYMTesbHO BbliLUe,
O[JHaKO BbILLIE 1 SHeprosaTpaTbl Ha paboTy mosra. MofenupoBaHrie 0COGEHHOCTEN TaKUX CUCTEM B BUPTYasbHOW
cpepe no3Bonusio 6bl NcciefoBath GyHAAMEHTaIbHbIE MPUHLMMbBI GYHKLMOHNPOBAHNA 1 00YUYEHNS KOTHUTVBHbIX
cuCTeM, BKoYaa MexaHn3Mbl BOCMPUATAA, NaMATU, MPUHATAA peLueHnid 1 Ux B3anmogencTame. B gaHHol paboTte
06bEKTOM UCCefoBaHNA ABNAIOTCA BUPTYasibHble OpraH13Mbl, 065agatoLLye 3pUTesibHOM CUCTEMO U GYHKLMOHN-
pytowme B TpexmepHoi ¢usnyeckor cpefe Ha 6ase Unity ML-Agents — ogHOro 13 Hanbonee BbICOKOMPON3BOAN-
TeJIbHbIX COBPEMEHHbIX CUMYNATOPOB. MpeanoxeHHaa nepapxuyeckans apxuTeKkTypa yrnpas/eHus, pasaenaiolas
KOFHUTUBHbIE 3afjaun MeXay ABYMA MOAYSAMU — 3PUTENbHOrO BOCMPUATUA/MPUHATUA PELIEHUIN 1 ynpaBieHna
KOOPAVMHUPOBAHHbIM ABVXXEHNEM KOHEYHOCTE Al NepemelleHns B GUsnueckol cpefie — nokasana CyLecTBEHHO
60nblUy0 CKOPOCTb 1 3GHEKTUBHOCTL 0OYUEHNA MO CPABHEHNIO C eAVHOW c1cTeMoit. [poBeaeHa cepusa UNCieH-
HbIX 3KCMEPUMEHTOB, HanpPaBAeHHbIX Ha BblAABMEHVE BAUAHWA NapaMeTPOB 3pUTESTIbHOW CUCTEMbI, KOHOUrypaLum
cpeabl N apPXUTEKTYPHbIX OCOOEHHOCTEN areHTOB Ha YCMeLWHOCTb UX 06yyeHuna ¢ noakpenneHrem (anroputm PPO).
Moka3aHo, UTO CylLecTBYeT [Mana3oH pa3peLleHnii, ob6ecneunBatoLLnii KOMIPOMUCC MEXAY BbIUMCINTENIbHON
CJIOXHOCTBIO 1 YCMELIHOCTbIO BbIMOMHEHNA 33[ia4L, @ U36bITOYHAA Pa3MePHOCTb CEHCOPHbIX BXOAHBIX AAHHBIX U
NPOCTPaHCTBa AeNCTBUI NPUBOAUT K 3aMeasieHno 06yyeHus. [JomKHOe BHYMaHVE YAENEHO TakKe OLieHKe BbluMC-
NUTENIbHOW CNOXHOCTU CUCTEMbI U MPOGUANPOBAHNIO NMPON3BOANUTENBHOCTM €€ OCHOBHbIX KOMMNOHEHTOB. ony-
YeHHble pe3ybTaTbl NPeACTaBAAT NOTEHLMAbHbIN MHTEPEC B KOHTEKCTE UCCe[0BaHNI UCKYCCTBEHHBIX areHTOoB,
BAOXHOB/NEHHbIX OMOIOMMUYECKMIN CUCTEMAMU, SBOSTIOLIIOHHOTO MOAENMPOBaHNA, BKJTIOUYaA HEPO3BOMIOLMOHHbIE
noaxoAbl Ana co3faHuns 6onee afanTUBHBIX Y YMHbIX areHTOB, 1 N3yUYeHWsA KOTHUTVBHbIX NMPOLECCOB B HYX.

KnioueBble cnoBa: BUPTYyaNibHbIi OPraHn3M; KOMMbOTEPHOE MOLENIMPOBAHWNE; BbIUNCINTENbHAA CIIOKHOCTb; 3pU-

TeNbHasA CMCTeMa; HePOHHaA ceTb; cumynaTop; PPO; obyueHue ¢ nogkpennexmem; Unity ML-Agents

Introduction

Modeling cognitive activity, behavior, and evolutionary me-
chanisms in virtual environments constitutes an important
step toward the development of artificial intelligence systems
capable of learning, adaptation, and interaction with complex
environments (Bongard, 2013; Stanley et al., 2019). The
advancement of such systems has been facilitated by modern
agent-based learning platforms, in particular Unity ML-Agents
(Juliani etal., 2018), which allow the creation of fully featured
three-dimensional simulations incorporating physics, vision,
and multiple trainable agents.

Despite the relatively small number of neurons due to their
small body size (compared, for instance, to mammals), the
nervous systems of many invertebrates, including insects,
exhibit remarkably complex, diverse, and adaptive behavior.
For example, ants possess approximately 250,000 neurons,
which is several orders of magnitude less than mammals
(a mouse has about 7.1-107), but these insects are capable of
solving complex tasks of navigation, social interaction, co-
ordination of collective actions, and route memory (Chittka,
Niven, 2009). Moreover, according to a number of studies,
certain species of ants are capable of passing the mirror test,
a behavioral indicator of self-awareness (Cammaerts M.-C.T.,
Cammaerts R., 2015). This makes them unique among insects
and highlights the potential of minimal but efficiently orga-
nized nervous systems, which are of considerable interest to
modern science.

Insect visual systems also serve as a source of inspiration
for the design of artificial agents. In particular, compound eyes
provide a wide field of view and high refresh rates, enabling
efficient responses to rapidly changing stimuli (Land, Nils-
son, 2012). However, their angular resolution is significantly
inferior to that of humans, but this limitation is compensated

by high sensitivity to movement and the capacity for learning
at the level of entire behavioral sequences.

These considerations give rise to several fundamental
research questions: what are the minimal requirements for
an agent’s visual system that enable successful adaptation to
its environment? What control architecture ensures cognitive
modularity under constrained computational resources? In
other words, how to construct an “artificial organism” — an
agent with simple but functional elements of perception and
decision-making. The present study addresses these questions
by investigating virtual organisms endowed with vision and
operating in a 3D environment, with a focus on their ultimate
cognitive efficiency, scalability, and capacity for learning in
tasks of search and navigation.

The interest in structures that enable movement with mini-
mal design complexity is also evident in engineering systems.
For example, a recent study (Song et al., 2022) examines the
control of hybrid soft limbs, reflecting the pursuit of struc-
turally simple but functionally efficient solutions for motion
control. The body model of the virtual organism used in the
present study, in terms of degrees of freedom and segment
composition, is comparable to those employed in such con-
structions. This makes it possible to regard it as comparable
in complexity to its physical counterparts.

In our previously published work (Devyaterikov, Palyanov,
2022), we presented a simulator of the evolution of virtual or-
ganisms in a 3D environment, where each agent was equipped
with a visual system and a neural network for processing
sensory input. The system was based on a combination of
neuroevolution and agent—environment interaction, enabling
agents to perform elementary cognitive tasks that required
the use of vision (such as searching for “food” necessary for
“survival”) and allowing the assessment of agent survivability
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within a population. The present work provides estimates
of the computational complexity of calculations related to
physics (agent bodies, the environment, and their interactions),
first-person 3D rendering for each agent, and the operation of
their neural networks. In addition, it introduces a new hierar-
chical agent model and presents the results of a quantitative
analysis of training time, speed, and efficiency as a function of
visual system resolution. The (Aksoy, Camlitepe, 2018) study
provides data on the number of ommatidia (photosensitive
sensors) for various ant species (from 100 to 3,000). Roughly
approximating such vision with a square pixel matrix, this
corresponds to a visual resolution from 10 x 10 to 55 x 55.

The present work combines reinforcement learning me-
thods (PPO (Schulman et al., 2017)), convolutional neural
networks (O’Shea, Nash, 2015), approaches to hierarchical
agent training (Vezhnevets et al., 2017), and practical analysis
of resource-saving simulation schemes (Peng et al., 2018).
We demonstrate that a hierarchical agent approach (e.g., a
“Walker/Searcher” pair) enables more stable and interpretable
behavior while reducing training time at a comparable level
of task complexity.

Particular attention is given to investigating the impact of
visual system resolution on agent learning rate, with an as-
sessment of the minimal input image size at which the ability
to perform visual search and navigation tasks is preserved.
Such investigations are relevant both for biologically inspired
modeling and for the development of compact and efficient
Al agent architectures capable of functioning under limited
computational resources (Hassabis, Humaran, 2017; Zador,
2019).

In addition, this study examines the effect of task decom-
position strategies (navigation and locomotion) on training
efficiency. This approach provides deeper insights into the
principles underlying cognitive modularity and distributed
control in complex agent systems (Botvinick et al., 2020;
Tschantz et al., 2020). The introduced Searcher agent, relying
exclusively on visual perception, interacts with the Walker
agent, responsible for physical movement. Such a scheme
enhances the adaptability of the model and improves the
interpretability of agent behavior.

Thus, the aim of the present work is to conduct a systematic
investigation of the limits of cognitive complexity in agents
equipped with visual systems, to develop optimal control
architectures and perceptual parameters, and to evaluate the
performance and scalability of the proposed system imple-
mented on the Unity ML-Agents platform.

Materials and methods

Problem statement. The problem under consideration is

formulated in terms of a Markov decision process, where the

agent interacts with a three-dimensional physical environment
and learns to maximize cumulative reward. The task performed
by the agent is described below:

Environment E: a square arena bounded by walls. Targets
with radius r appear randomly within the arena and must be
collected. Once a target is reached, a new one is generated.

Agent state s;: consists of an RGB image from the first-person
camera of size hxwx 3, long with a vector of control pa-
rameters (joint angles of the limbs and the corresponding
torques).
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Agent action a;: a single scalar value representing a normal-
ized rotation angle in the interval [—1, 1]. This parameter
determines the direction of the agent’s body movement. The
actual rotation angle is defined as 0 = a;* 0,5y, Where 05y
is the maximum allowable rotation angle specified in the
experimental parameters. In different experimental series,
various values of this parameter were used, which allowed
us to investigate its impact on policy efficiency (results are
reported in Section “Results with varying rotation angles”).
The restriction to a single control variable is due to the fact
that low-level locomotion tasks (coordination of limbs and
balance maintenance) are delegated to a separate Walker
module, enabling the focus to remain on the cognitive
aspects of the task, i.e., perception and decision-making.

Reward function R(s;, &;): an agent receives a positive reward
for successfully reaching the target.

Obijective: to maximize the cumulative reward over an epi-
sode of time T, i. e., to develop a policy that enables efficient
navigation in the environment and target collection based
on visual information.

One of the goals of our study is to identify the minimal
input image resolution at which the agent can still successfully
learn within a reasonable amount of time. The formal problem
formulation is as follows:

Training success is defined as achieving an average reward of
at least Ryoq = 5 per episode (where the reward is granted
for target collection by the agent). The value of Ryoy Was
determined experimentally. As shown in the training results
(see Section “Dependence of learnability on image resolu-
tion”), an untrained agent, due to random wandering, attains
on average no more than 2.

Training time of the agent until reaching the threshold value:
T(N) eR,.

Average reward R(Res, 7)) achieved by the agent after training
with input resolution Res = hxwx 3 over time T.

Admissible set of resolutions Rese N, from 20x20x 3 to
100x 100 x 3 with a step of 20 and with an additional case
of 84 x84 x 3, used as the default resolution in Unity ML-
Agents.

Itis required to find min, c gesT(NV), Where R(Res, T') > Ryoa),
that is, the minimal training time over admissible resolu-
tion for which the achieved reward meets or exceed the
threshold Ry,q-

Simulator architecture. The proposed system employs
a hierarchical control architecture for the agent, separating
perception and motion functions across two levels. The lower-
level agent (Walker) is responsible for physical locomotion
in the environment, relying on local sensors and a pre-trained
locomotion model. The higher-level agent (Searcher) receives
visual input from the camera and decides on the movement
direction, transmitting a control signal to the Walker agent in
the form of a normalized rotation angle. This approach makes
it possible to isolate the complex problem of sensorimotor
transformation (from image to action) from the tasks of motion
stabilization and limb coordination. As a result, training of
the Searcher becomes faster and more stable, since it controls
only a single variable. The internal communication between
agents is implemented within the Unity environment through
the transmission of the direction parameter to the Walker
controller. In the training mode, the Searcher agent processes
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Self-learning virtual organisms
in a physics simulator

Fig. 1. Unity model of the Walker agent, with the first-person camera view shown in the bottom right corner. Two environments,
the agents, and a number of targets are also presented.

visual data and generates a rotation angle, which is used as
the control parameter for selecting the body orientation at the
next step. The Walker, in turn, executes the specified direction,
ensuring movement in the intended direction.

During simulation, the environment is dynamically up-
dated: after a target (a unit of “food” required for survival) is
collected by the Searcher agent, a new one is generated at a
random position (to maintain the number of available “food”
units at a constant level). When the agent falls or the maximum
number of steps is reached, the episode is reset. The archi-
tecture supports parallel execution of multiple environments,
each containing one Searcher and one Walker, which enables
training to be scaled within the Unity ML-Agents framework.

Simulation environment. For the experiments, we selected
the modern Unity ML-Agents platform, which demonstrates
high performance and provides convenient tools for building
complex three-dimensional simulations with reinforcement
learning integration. Unity also offers built-in support for
parallel environments, visual sensors, and integration with
the PyTorch library.

Each environment represents a bounded square arena
(DynamicPlatform) with walls, a floor, and randomly placed
targets that the agent must collect. The platform size is fixed,
and the target spawn coordinates are uniformly sampled across
the available area. When the agent collides with a target, it
disappears and is immediately replaced by a new one. The
walls are impenetrable and serve as physical boundaries of
the environment.

Simulation parameters are specified via the CrawlerSettings
component and include the simulation tick rate of the physical
world, gravity, episode duration (max_step — the number of
simulation steps at which the agent receives observations and
performs actions), and the number of parallel environments.
If the agent falls (detected by body contact with the floor), the
environment is automatically reset. Each parallel environment
contains one Searcher agent, embedding a nested Walker,
equipped with an individual camera mounted at the front of
the head, which supplies the agent’s neural network with a
stream of first-person visual information.

Fig. 2. Walker agent model in Unity.

The number of simultaneously running environments
(num_envs) depended on the agent type: for the Walker agent,
which does not use visual input, 10 environments were em-
ployed, while for the Searcher agent, four environments were
used. This configuration enabled efficient utilization of GPU
resources and accelerated data collection through parallel in-
teraction with the environment. For each environment, actions
data, observations, and rewards were collected independently
and synchronized with the training strategy in Python via the
Unity ML-Agents gRPC interface. Figure 1 presents a view of
the simulation from the observer’s perspective, showing two
environments, the agents, and a number of targets.

Walker agent model. The lower-level agent (Walker) is
a complex articulated model with six limbs, implemented in
the Unity engine using the Rigidbody and ConfigurableJoint
components. Each limb consists of two segments: upper and
lower — with three degrees of freedom (resulting in a total of
18 degrees of freedom for all legs). This design enables the
agent to perform realistic locomotion and maintain stability
during movement. The agent model in the Unity environment
is shown in Figure 2.

The control system is implemented through the JointDrive
Controller module, which converts control signals into desired
jointangles and forces. The control parameters are represented
as a vector of dimension 30: 18 values control joint angles,
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Fig. 3. Walker agent model in motion.

and 12 correspond to the torques applied to them. Specifically,
for each of the six legs, the upper segment is controlled by
two angles (rotation about the X and Y axes), and the lower
segment by one angle (rotation about the X axis), yielding
18 control parameters in total. In addition, for each of these
12 segments, a control force is specified, determining the
intensity of movement, which yields another 12 parameters.
At each step, the agent receives observations that include
information on current joint angles, velocities, surface con-
tacts, target direction vector, body orientation, and ground
raycast data. The Walker agent model in motion is shown in
Figure 3.

The neural network architecture of the Walker consists of
three fully connected layers with LeakyReL U activation func-
tions and two outputs: an actor (30 action parameters) and a
critic estimating the value function (Fig. 4a). The input layer
has a dimensionality of 223 (vector features and joint param-

a Y
Vector
observations

~—

)

Joint control
data
-
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eters), while the hidden layers each contain 512 neurons. The
total size of the model is 655,903 parameters and 1,567 neu-
rons, making it lightweight enough for real-time training.

The reward function for the Walker agent is defined based
on the deviation of the agent’s current body velocity from the
target velocity and the alignment of its movement direction
with the specified vector. This enables the agent to learn pur-
poseful locomotion in the desired direction while maintaining
physical stability. After training, the Walker agent is used in
inference mode as part of the Searcher agent, providing stable
execution of movement.

During training, the critic block receives the same input
as the actor — the state feature vector. Based on these data,
it learns to approximate the expected cumulative reward the
agent will obtain in the future if it continues to act according to
the current policy. At the early stages of training, this estimate
is inaccurate, but it is gradually refined through backpropa-
gation of the error, grounded in the actual rewards received
by the agent. Thus, the critic does not initially “know” what
is good or bad — it learns to distinguish this by comparing
predicted rewards with the real rewards accumulated during
simulations.

After training, the Walker agent is used in inference mode
as part of the Searcher agent, ensuring stable motion execu-
tion based on the deviation of the current body velocity from
the target and the alignment of the movement direction with
the specified vector. This allows the agent to learn purpose-
ful locomotion in the desired direction while maintaining
physical stability.

Searcher agent model. The higher-level agent (Searcher)
is responsible for perceiving the environment and selecting
the direction of body movement. Unlike the Walker agent,
it does not interact directly with the physical components of
the simulation but instead controls the Walker by transmit-
ting a normalized rotation angle in the interval [—1, 1]. Thus,
the Searcher serves as a cognitive module that implements a
target-search strategy based on visual information. The pri-
mary input source for the Searcher agent is the image obtained

Vector .
. Actions
observations
Joint control Value
dat function
ata estimate

Value
Actions function
estimate
Actor head

[Critic head }

Fig. 4. Schematic representation of the Walker (a) and Searcher (b) agent’s neural network architecture.
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from a camera mounted on the agent’s body (at the front of
the head). The camera is oriented forward and positioned at
a height corresponding to the head of the virtual organism.
The image resolution varies across experiments from 20 x 20
to 100 x 100 pixels, with increments of 20 in each dimension
(three-channel RGB), allowing for analysis of the impact
of visual load and frame resolution on the model’s learning
performance.

For image processing, a convolutional neural network is
employed, consisting of two convolutional layers (Conv2D),
a flattening layer (Flatten), and subsequent fully connected
layers. The output of the visual input processing is concate-
nated with vector observations and fed into two output layers:
the actor (a single value representing the rotation angle) and
the critic (value function estimate). The activation functions
used are LeakyReL U and Swish. A schematic representation of
the Searcher agent’s neural network architecture is presented
in Figure 4b.

The Searcher agent is trained using the Proximal Policy
Optimization (PPO) algorithm with a continuous action space.
The objective function is to maximize the cumulative reward
for collecting targets in the arena. Upon colliding with a target,
the agent receives a positive reward; upon colliding with a
wall or remaining inactive, it is penalized. When max_step is
exceeded or the body falls, the simulation episode terminates
and a new one begins.

Unlike the Walker agent, which is pre-trained once and then
used only to execute the learned behavior (inference mode),
the Searcher agent is trained from scratch, and its neural
network includes image processing, which increases com-
putational costs but enables the realization of biologically
plausible behavior based solely on visual perception. This
makes it possible to model cognitive constraints and analyze
the impact of visual resolution on the speed and stability of
learning.

Training algorithms and hyperparameters. The PPO
algorithmis a gradient-based policy optimization method that
belongs to the family of actor-critic approaches. Such methods
combine the training of a policy and a value function. By
avoiding abrupt policy updates, in contrast to classical me-
thods of this type, PPO is designed to improve the stability and
reliability of training. The Actor, the component responsible
for selecting an action in each state, implements the agent’s
policy. The Critic, in turn, evaluates how good the chosen ac-
tion was by using the value function. This approach combines
the advantages of stochastic action selection (important for
exploration of the environment) with the evaluation of these
actions based on accumulated experience.

The PPO algorithm operates within the framework of a
Markov decision process (S, A, P, R, y), where S — the set of
states, A — the set of actions, P(S’|S, a) — the state transition
probability, R(s, a) — the reward function, y [0, 1] — the
discount factor.

The parameterized policy my(a|s) defines the probability of
selecting action a in state s, where 0 signifies the parameters of
the actor neural network. The critic Vy(s) is an approximation
of the value function '7(S) = E[R,|s, = s], with parameters ¢,
where R;= Iy + g + Y2l + ... is the discounted sum of
future rewards. In PPO, instead of direct gradient updates, the
so-called clipped objective function is used:

Self-learning virtual organisms
in a physics simulator

LCLIP(9) = E,[(r,(0) - A,, clip(r,(8), 1 —¢, 1 +€)- A)],

mo(@ysy)
Toog (at |ST)
new and the old policy, € (0, 1) the clipping parameter, typi-
cally e = 0.1 or 0.2, A, — the advantage estimate.

If the new action deviates too strongly from the old one
(i.e., r falls outside the interval [1 — ¢, 1 + ¢€]), the gradient is
suppressed. This prevents abrupt changes in the policy.

To estimate Ay, the generalized advantage estimation (GAE)
is used:

where: r(0) = — the probability ratio between the

Tt
A= EO (YN8t 8¢ = e+ yV(Se1) — V(S),

where A € [0, 1] — is the smoothing parameter. This method
improves training stability by reducing variance.
The loss function in PPO consists of:
« the policy loss LCLIP,
« the value critic loss (MSE between the predicted V(s;) and
the target value),
* an entropy bonus to encourage action diversity:

L{CLIP+VF+S - Et [LCLIP(Q) _ 01'(V(St) 7Vttarget)2 +Cy H[ne](st)]:

where H[x] is the policy entropy and ¢4, C, are the correspond-
ing coefficients.

Aschematic representation of the proximal policy optimiza-
tion algorithm is shown below:

Algorithm: PPO

1: foriteration=1,2, ... do

2 foractor=1,2,...,Ndo

3 run policy my,, in environment for T timesteps
4: compute advantage estimates ,il, e ﬁT

5 end for

6 optimize surrogate L w.r.t. 6, with K epochs and

minibatch size M<NT

& L= E{[LCHP(0) — c1-(V(sp) — V\¥"9)? + cpr H[m](5y)]
8: 60|d —0
9: end for

where N is the number of parallel actors collecting data over T
time steps, and K is the number of epochs. Neural networks are
used to approximate the target policy and the value function.

The choice of PPO in this work is motivated by several
factors: the algorithm supports continuous action spaces,
which is critical for the locomotion of virtual organisms with
multi-joint limbs. The update constraint allows the agent’s
policy to evolve incrementally without disrupting previously
learned behaviors. PPO can also be effectively applied in
architectures incorporating convolutional neural networks
(CNNs) that process images from the agents’ cameras. In
addition, the Unity ML-Agents environment provides a built-
in PPO implementation, which simplifies configuration and
accelerates the cycle of computational experiments.

The actor network receives state features (velocities, joint
positions, surface contacts, etc.) together with visual data
processed through convolutional layers. The agent’s objective
is to maximize the reward associated with locomotion and
stability while moving in the chosen direction. PPO enables
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smooth adaptation of the policy to complex dynamics and

noisy feedback from the environment.

For the Walker agent, the action space is represented by
a vector of 30 continuous values (18 for joint angles and
12 for actuation forces/torques controlling joint movements),
whereas the Searcher agent controls only a single parameter —
the movement direction (a normalized rotation angle in the
range [—1, 1]). Both models are trained asynchronously using
multiple parallel environment simulations (from 4 to 10),
which enables efficient data collection and accelerates the
optimization process.

The main training parameters are (detailed in the documen-
tation (Juliani et al., 2018)):

« algorithm: PPO (proximal policy optimization);

 framework: Unity ML-Agents + PyTorch backend;

* learning_rate: 3x 104, A coefficient that determines the step
size when updating neural network parameters;

* batch_size —the size of the data batch used for one training
step: Searcher: 1,024, Walker: 2,048;

* buffer size: 10,240. The number of environment interac-
tions used for one training cycle. Configured as a multiple
of batch_size x num_envs;

» num_epochs: 3. The number of optimizer passes (epochs)
over one data buffer before it is updated;

» gamma (discount factor): Searcher: 0.99, Walker: 0.995;

 lambda (GAE): 0.95;

« clip_range: 0.2.

The Walker agent was trained separately in an isolated en-
vironment until stable and straight locomotion was achieved.
The average number of steps to convergence was approxi-
mately 2—3 million. After this stage, the model weights were
fixed, and the agent was used only in inference mode.

The Searcher agent was trained independently of the
Walker. The average number of steps per experiment ranged
from 5 to 10 million, depending on the environment configura-
tion (camera resolution, max_step, number of target objects
in the environment, etc.).

Simulation parameters were specified through YAML con-
figurations of ML-Agents. To ensure stable and reproducible
results, a fixed parameter was used to set the initial value for
the random number generator applied in both the environment
and training (random_seed), along with consistent settings:
when the number of environments (num_envs) was changed,
buffer size was necessarily adjusted proportionally, as re-
quired by the ML-Agents framework.

All experiments were conducted on a computer equipped
with a CUDA-compatible GPU (see Section “System perfor-
mance and profiling”). The software versions used were: Uni-
ty 2022.3, ML-Agents 21.0, PyTorch 2.0.1, and Python 3.10.

Experiments. The experimental part of the study (nu-
merical experiments) was aimed at investigating the influence
of visual system parameters, environment configuration,
and architectural constraints on the training efficiency of
agents. All experiments were carried out in isolated envi-
ronments using a fixed Walker agent model and a trainable
Searcher agent. The main directions of investigation were as
follows:

1. Impact of camera image resolution on learnability. Arange

of resolutions was considered: 20 x 20, 40 x40, 60 x 60,

80x 80, 84 x84 (the default resolution for Unity ML-
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Agents), and 100 x 100 pixels. For each of these, a separate

training of the Searcher was conducted under otherwise

identical parameters. The objective was to determine the
minimal resolution at which the agent consistently achieves
the target behavior (Reward >5).

2. Impact of speed control capability. In one of the experi-
ments, the Searcher agent was additionally given the ability
to control the target movement speed (a second continuous
output parameter). The objective was to determine whether
this would lead to more flexible behavior or instead com-
plicate the learning task.

3. Variation of maximum rotation angle. The Searcher agent
transmits a body rotation command. In different experi-
ments, the maximum allowable rotation angles were tested:
90, 120, 180, and 270°. The hypothesis examined was that
larger angles may simplify navigation but make the behavior
less precise and stable.

4. Impact of episode length (max_step parameter). In the
experiments, two values of the max_step parameter were
considered: 5,000 and 20,000. The value max_step = 5,000
was used as the baseline, as it allowed the agent to receive
rewards quickly enough and provided timely feedback to
the learning algorithm. The value 20,000 was considered
as an alternative, applicable to tasks with longer action
sequences and delayed rewards.

5. Verification with manual control. To validate the behavior
of the trained Walker model, manual control of the agent
was implemented (via the A/D keys, left/right). This made
it possible, on the one hand, to confirm that the observed
effects (e. g., halting of movement) were caused by body
dynamics rather than the Searcher agent’s policy, and on the
other hand, to test whether a human, using the same type
of control, could successfully perform the target-search
task (an assessment of controllability and environment
perception).

All experiments were recorded using the Unity ML-Agents
logging system and analyzed in TensorBoard, a visualization
tool for monitoring the training process that allows real-time
plotting of reward dynamics, loss functions, simulation speed,
and other metrics. The success criteria are described in Section
“Problem statement”.

Results

Dependence of learnability on image resolution

The results of the series of experiments with different input
image resolutions showed that the minimal resolution at which
the agent consistently achieved the target behavior (average
reward >5) was 84 x 84 pixels. At resolutions of 20 x 20,
40x 40, and 60x% 60, training required substantially more
time, although the trend toward improvement was preserved.
The resolution of 100 x 100 also allowed the target reward to
be reached, but training at 84 x 84 was slightly faster due to
lower computational load. The results of this experiment are
presented as TensorBoard plots in Figure 5.

Impact of speed control on training

The addition of a second control parameter (movement speed)
increased the dimensionality of the action space and signifi-
cantly complicated training. The agent required more time to
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converge (approximately 33 % longer under otherwise identi-
cal conditions), and the resulting behavior was less stable — for
the given task, speed control is largely a redundant parameter.
This supports the simple hypothesis that increasing the number
of degrees of freedom requires a more complex policy and
hinders model training. The results of this experiment are
shown as a TensorBoard plot in Figure 6.

Average Reward

Step num

2.5

2.0

1.5

Average Reward

1.0

Step num

Self-learning virtual organisms
in a physics simulator

Results with varying rotation angles

The best results were obtained with a maximum rotation angle
of 90°. Increasing the angle to 120° led to a slight decrease in
stability, while at 180 and 270°, the agent did not reach the
target reward level, requiring longer and less efficient training.
This indicates that an excessively wide action space hinders
the development of a stable navigation policy.

Fig. 5. Training results of the Searcher agent at different input image resolutions.

The upper panel shows the average reward curves for all investigated resolutions; the magenta curve corresponds to 84 x84,
and the orange curve to 100 x 100. The lower panel presents the same data with the dominant curves removed, allowing a more

detailed view of the remaining variants (20 x 20, 40 x40 1 60 X 60, 80 x 80).

Average Reward

Step num

Fig. 6. Training results of the Searcher agent with input image resolution 84 x84 and the addition of a second control parameter (movement speed)

alongside the primary one (rotation angle).
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Impact of episode length (max_step)

With max_step = 5,000, the agent demonstrated stable train-
ing, receiving timely feedback on goal achievement. Increas-
ing the episode length to 20,000 did not improve training
quality, while simulation time and resource load increased.
Therefore, max_step = 5,000 was used as the primary set-
ting, as it provided a balance between training efficiency and
computational cost.

System performance and profiling

To evaluate the scalability and computational efficiency of
the simulator, profiling of key system components was con-
ducted under varying visual sensor resolutions and numbers
of parallel environments. All measurements were performed
on a machine equipped with an NVIDIA GeForce RTX 3070
GPU and an AMD Ryzen 5 7500F CPU (6 cores, 12 threads,
3.7 GHz base clock, 5.0 GHz in turbo mode).

The contribution of main simulation components to com-
putational costs:

 Physics Engine — less than 1 ms per step, virtually inde-
pendent of resolution;

 graphics and sensors (Camera.Render, PostProcess) —
from 3.2 to 9.5 ms depending on resolution (almost linear
dependence);

 neural network (PyTorch Inference) — approximately
35 ms per step when using convolutional architecture for
Searcher;

* Unity—Python communication (gRPC, serialization) —
from 45 to 60 ms. With an increasing number of agents, this
component becomes one of the main system bottlenecks,
since communication costs (serialization/deserialization,
data exchange) grow proportionally to the number of
agents;

* other (UI, garbage collection, VSync) — up to 20 % of
runtime, may increase during active debugging.

At a resolution of 84 x84 with four parallel agents, the
average simulation step time was approximately 3.6 ms,
corresponding to about 278 steps per second. At a resolution
of 100 x 100, the step time increased to 3.8 ms, reducing per-
formance to roughly 263 steps per second. All measurements
were conducted without scene visualization. In all experiments
with the Searcher agent, the number of simultaneously running
environments was set to 4.

Thus, the main limiting factor in scaling is not physics or
rendering, but data exchange between Unity and Python. This
should be considered when planning large-scale experiments
or transitioning to population-level modeling. Aworking pro-
totype for reproducing the results is available in the repository
at: https://github.com/DerpyFox/organism_simulator.

Discussion

Results interpretation

The obtained results demonstrate that the success of train-
ing agents with visual perception directly depends on the
resolution of the input image. Too low a resolution (up to
60 x 60) leads to a loss of spatial structure of the scene and
the agent’s inability to develop a stable strategy. On the other
hand, resolutions above 84 x84 do not provide a noticeable
gain in efficiency but increase the computational load. This
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confirms the existence of an optimal range of visual percep-
tion, comparable to that evolutionarily formed in insects: their
vision developed to be sufficiently detailed for performing
behavioral tasks (Chittka, Niven, 2009).

Despite the observed dependence between visual system
resolution and the success of agent training, it should be noted
that in nature there are organisms capable of effective behavior
even with extremely low visual resolution. For example, in
some ant species, as mentioned in the introduction, the visual
system is comparable in scale to a resolution of about 10 x 10,
yet this does not prevent them from confidently navigating,
locating food, interacting with their environment, and even
passing the mirror test (Cammaerts M.-C.T., Cammaerts R.,
2015). Such efficiency is determined not only by vision but
also by the developed olfactory system, which plays a key
role in perceiving the surrounding world. In addition, the
neural systems of real insects may possess a range of pro-
perties that enhance their effectiveness. These systems were
shaped through long evolutionary processes and are adapted
to specific living conditions and the typical tasks of a living
organism — for example, navigating in complex environments,
searching for food, and interacting with conspecifics. They
exhibit a high degree of neuronal specialization and mecha-
nisms of adaptation to changing stimuli. Such “tuning” to
real-world conditions makes it possible to efficiently process
even limited or fragmentary sensory signals, including visual,
olfactory, and mechanosensory inputs.

The addition of speed control and the increase in rotation
angle showed that even a slight expansion of the action space
leads to slower learning. Thus, it is important to maintain
a balance between the expressiveness of the model and its
learnability. The division of perception and body control tasks
between the Searcher and Walker agents proved to be critical
for achieving stable behavior.

Biological parallels and cognitive efficiency

The results resonate with principles observed in insects:
minimal but functionally redundant visual systems enable
successful navigation and real-time decision-making. Simi-
larly, the proposed architecture allows the agent to achieve
target strategies with limited resolution and a relatively small
neural network.

When the obtained results are considered in the context
of real biological systems, a parallel can be drawn with the
evolutionary trade-offs that arise between sensory accuracy,
computational cost, and behavioral adaptability. For example,
the visual systems of insects such as fruit flies (~150,000 neu-
rons) or honeybees (~960,000 neurons) provide basic object
recognition and spatial orientation with a minimal number of
neurons and extremely limited bandwidth (Menzel, 2012).
These organisms do not possess high-resolution visual sys-
tems, but they achieve high efficiency through a combination
of rapid response, sensorimotor architecture, and decision-
making strategies (Chittka, Niven, 2009). Such considerations
are well illustrated by insects with a high level of social or-
ganization. In ants, division of labor and communication are
shaped not only as innate behavioral patterns but also as the
result of flexible adaptation at the level of individual workers.
The distribution of roles within a colony may vary depending
on age, physiological state, and the current situation, while
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information transfer between ants is achieved through a wide
range of signals (Chittka, Muller, 2009). Thus, even simple
agents with limited cognitive capacities can achieve high ef-
ficiency through the organization of interactions and simple
behavioral rules.

Agents in our simulator demonstrate the ability for adap-
tive behavior even at relatively low visual resolutions (e.g.,
84 x 84 pixels), which allows further analogies to be drawn
with minimal cognitive systems in nature. Such models can be
employed as artificial systems that reproduce key behavioral
aspects of simple organisms and serve as a basis for generat-
ing hypotheses about the neurophysiological mechanisms of
perception and behavior in invertebrates.

System limitations

The main limitation of the system lies in the communication
overhead between the Unity environment and the PyTorch
training framework. Even with high computational perfor-
mance of the processing units, serialization and data transfer
via gRPC become the bottleneck. In addition, at this stage, the
environment remains limited in complexity: it lacks obstacles,
dynamic topography, and inter-agent interactions. Finally, the
agent architectures are fixed and do not undergo evolution or
temporal adaptation (only parameter weights change, while
network topology remains unchanged).

Future directions

Further development is possible in several directions. The in-
troduction of neuroevolutionary mechanisms (e. g., the NEAT
approach — NeuroEvolution of Augmenting Topologies) would
make it possible to investigate not only changes in neural
network weights but also the evolutionary optimization of
network structure. This is particularly relevant in the context
of energy costs: with excessive brain complexity, resource
consumption increases, whereas in simpler environments it
may be advantageous to reduce the number of neurons. In this
way, agents could autonomously adapt the size and potentially
the architecture of their neural networks, reducing redundancy
under conditions of low cognitive load. In biological systems,
even a slight increase in nervous system complexity can lead
to a noticeable rise in energy expenditure. For example, in the
fly Calliphora vicina, the retina alone consumes about 8 % of
the organism’s resting metabolic rate (Niven, Laughlin, 2008).
In humans, by contrast, the brain accounts for only about 2 %
of body mass yet consumes up to 20 % of the body’s energy
(Attwell, Laughlin, 2001). These data indicate that the benefit
of reducing the number of neurons or decreasing the complex-
ity of the sensory system can be substantial.

Introducing environmental elements involving resource
competition (multiple agents, a limited number of targets, and
the ability of more advanced agents to select and solve more
complex cognitive tasks from those available in the system,
thereby gaining additional advantages) would make it pos-
sible to analyze behavioral strategies at the population level.

A promising direction is the addition of an olfactory model —
a sensory channel based on short-term “traces” in the environ-
ment, analogous to pheromone markings in ants. Such traces
may decay over time, differ in content (e.g., distinguishing
between a satiated and a hungry ant), and influence an agent’s
trajectories, thereby reinforcing elements of indirect communi-

Self-learning virtual organisms
in a physics simulator

cation and collective behavior. It would also be reasonable to
incorporate memory and recurrent modules into the Searcher
model to study navigation under partial observability.

Conclusion

This study was aimed at the quantitative and qualitative evalu-
ation of architectural and sensory parameters in the task of
training visually guided agents in a three-dimensional simu-
lation. We proposed and implemented a hierarchical control
model in which the locomotion agent (Walker) functions as
a low-level executor of movements, while the perception and
navigation agent (Searcher) makes strategic decisions based
on visual information.

A systematic analysis demonstrated that even under lim-
ited sensory input (due to low resolution), agents are capable
of developing stable behavioral strategies, provided that
the model and environmental conditions are designed with
cognitive load in mind. It was established that a resolution of
84 x 84 pixels offers a compromise between computational ef-
ficiency and minimal cognitive adequacy, whereas increasing
the dimensionality of the action space without a correspond-
ing increase in training resources leads to degraded per-
formance.

Our results support the hypothesis that minimally complex
neural network agents can realize sophisticated behavioral
patterns under conditions of limited sensory perception, where
the agent receives only partial information about the environ-
ment. These findings are consistent with observed examples
of cognitive efficiency in invertebrates, such as ants and bees,
and open up prospects for the use of such models in bio-
logical modeling, robotics, and research in the field of neuro-
evolution.

In the future, the system may be extended toward popu-
lation-level simulations incorporating competition, inter-
agent communication, and strategy adaptation in a changing
environment. The architecture can be further enhanced with
memory modules, recurrent connections, or neuroevolutionary
mechanisms, enabling the study of more complex cognitive
phenomena in virtual populations.

It was also shown that the use of visual information, de-
spite its expressiveness, requires substantial computational
resources and, in some cases, may be less efficient than simpler
sensory models. These observations highlight the importance
of sensory architecture choice when designing minimally suf-
ficient cognitive agents.

Another key finding was the recognition of the critical role
of environment design and training structure in the success of
modeling. Initial attempts to train behavior through a single
neural network model that combined locomotion and strat-
egy did not lead to the emergence of the ability to detect and
collect targets (“food” units), due to difficulties in balancing
rewards and formulating the task. The introduction of a func-
tionally separated approach (search and locomotion) made it
possible to achieve a substantial improvement in learnability
and behavioral stability.

Thus, the obtained results demonstrate the potential of
neuro-agent systems in biologically inspired modeling tasks
and provide a foundation for further experiments aimed at
exploring the limits of cognitive complexity under constrained
perceptual and control resources.

1060 Vavilovskii Zhurnal Genetiki i Selektsii / Vavilov Journal of Genetics and Breeding - 2025 - 29 - 7



M.C. 3eHuH, A.l. JeBATepunKoB
A.lO0. ManbAHoB

References

Aksoy V., Camlitepe Y. Spectral sensitivities of ants — a review. Anim
Biol. 2018;68(1):55-73. doi 10.1163/15707563-17000119

Attwell D., Laughlin S.B. An energy budget for signaling in the grey
matter of the brain. J Cereb Blood Flow Metab. 2001;21(10):1133-
1145. doi 10.1097/00004647-200110000-0000

Bongard J.C. Evolutionary robotics. Commun ACM. 2013;56(8):
74-83. doi 10.1145/2493883

Botvinick M., Wang J.X., Dabney W., Miller K.J., Kurth-Nelson Z.
Deep reinforcement learning and its neuroscientific implications.
Neuron. 2020;107(4):603-616. doi 10.1016/j.neuron.2020.06.014

Cammaerts M.C. The visual perception of the ant Myrmica ruginodis
(Hymenoptera: Formicidae). Biologia. 2012;67(6):1165-1174. doi
10.2478/s11756-012-0112-z

Cammaerts M.-C.T., Cammaerts R. Are ants (Hymenoptera, Formici-
dae) capable of self recognition? J Sci. 2015;5(7):521-532

Chittka L., Muller H. Learning, specialization, efficiency and task al-
location in social insects. Commun Integr Biol. 2009;2(2):151-154.
doi 10.4161/cib.7600

Chittka L., Niven J. Are bigger brains better? Curr Biol. 2009;19(21):
R995-R1008. doi 10.1016/j.cub.2009.08.023

Devyaterikov A.P., Palyanov A.Y. A software system for modeling
evolution in a population of organisms with vision, interacting with
each other in 3D simulator. Vavilov J Genet Breed. 2022;26(8):
780-786. doi 10.18699/VJGB-22-94

Hassabis D., Humaran D., Summerfield C., Botvinick M. Neurosci-
ence-inspired artificial intelligence. Neuron. 2017;95(2):245-258.
doi 10.1016/j.neuron.2017.06.011

Juliani A., Berges V.-P., Teng E., Cohen A., Harper J., Elion C., Goy C.,
Gao Y., Henry H., Matter M., Lange D. Unity: A general platform
for intelligent agents. arXiv. 2018. doi 10.48550/arXiv.1809.02627

Land M.F., Nilsson D.-E. Animal Eyes. Oxford University Press, 2012.
Available: https://www.softouch.on.ca/kb/data/Animal%20Eyes.pdf

2025
29.7

CamoobyyaroLmecs BUPTYasibHble OpraHn3mbl
B dU3MUeCcKom cumynaTope

Menzel R. The honeybee as a model for understanding the basis of
cognition. Nat Rev Neurosci. 2012;13(11):758-768. doi 10.1038/
nrn3357

Niven J.E., Laughlin S.B. Energy limitation as a selective pressure on
the evolution of sensory systems. J Exp Biol. 2008;211:1792-1804.
doi 10.1242/jeb.017574

O’shea K., Nash R. An introduction to convolutional neural networks.
arXiv. 2015. doi 10.48550/arXiv.1511.08458

Peng P., Wen Y., Yang Y., Yuan Q., Tang Z., Long H., Wang J. Mul-
tiagent bidirectionally-coordinated nets: Emergence of human-level
coordination in learning to play StarCraft combat games. arXiv.
2017. doi 10.48550/arXiv.1703.10069

Schulman J., Wolski F., Dhariwal P., Radford A., Klimov O. Proximal
policy optimization algorithms. arXiv. 2017. doi 10.48550/arXiv.
1707.06347

Song K.-Y., Behzadfar M., Zhang W.-J. A dynamic pole motion ap-
proach for control of nonlinear hybrid soft legs: A preliminary study.
Machines. 2022;10(10):875. doi 10.3390/machines10100875

Stanley K.O., Clune J., Lehman J., Miikkulainen R. Designing neu-
ral networks through neuroevolution. Nat Mach Intell. 2019;1(1):
24-35. doi 10.1038/s42256-018-0006-z

Tschantz A., Anil K.S., Christopher L.B. Learning action-oriented
models through active inference. PLoS Comput Biol. 2020;16(4):
€1007805. doi 10.1371/journal.pcbi.1007805

Vezhnevets A.S., Osindero S., Schaul T., Heess N., Jaderberg M., Sil-
ver D., Kavukcuoglu K. FeUdal networks for hierarchical reinforce-
ment learning. In: Proceedings of the 34th International Conference
on Machine Learning. Vol. 70 (ICML’17). JMLR.org, 2017;3540-
3549

Zador A.M. A critique of pure learning and what artificial neural net-
works can learn from animal brains. Nat Commun. 2019;10(1):3770.
doi 10.1038/s41467-019-11786-6

Conflict of interest. The authors declare no conflict of interest.

Received July 30, 2025. Revised September 23, 2025. Accepted September 23, 2025.

CUCTEMHAA KOMMbIOTEPHAA BUOJIOTUA / SYSTEMS COMPUTATIONAL BIOLOGY 1061


https://doi.org/10.1163/15707563-17000119
https://pubmed.ncbi.nlm.nih.gov/11598490/
https://doi.org/10.1145/2493883
https://doi.org/10.1016/j.neuron.2020.06.014
https://doi.org/10.2478/s11756-012-0112-z
https://doi.org/10.2478/s11756-012-0112-z
https://www.semanticscholar.org/paper/Are-ants-(Hymenoptera%2C-Formicidae)-capable-of-self-Tricot-Cammaerts/8faa120324a9b0c9bec479502e876a189fbc282a
https://doi.org/10.4161/cib.7600
https://doi.org/10.1016/j.cub.2009.08.023
https://doi.org/10.18699/vjgb-22-94
https://doi.org/10.1016/j.neuron.2017.06.011
https://doi.org/10.48550/arXiv.1809.02627
https://www.softouch.on.ca/kb/data/Animal Eyes.pdf
https://doi.org/10.1038/nrn3357
https://doi.org/10.1038/nrn3357
https://doi.org/10.1242/jeb.017574
https://doi.org/10.48550/arXiv.1511.08458
https://doi.org/10.48550/arXiv.1703.10069
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.3390/machines10100875
https://doi.org/10.1038/s42256-018-0006-z
https://doi.org/10.1371/journal.pcbi.1007805
https://dl.acm.org/doi/10.5555/3305890.3306047
https://dl.acm.org/doi/10.5555/3305890.3306047
https://doi.org/10.1038/s41467-019-11786-6

STRUCTURAL COMPUTATIONAL BIOLOGY Vavilovskii Zhurnal Genetiki i Selektsii

Original article Vavilov Journal of Genetics and Breeding. 2025;29(7):1062-1072

doi 10.18699/vjgb-25-111

Molecular dynamic analysis of the functional role
of amino acid residues V99, F124 and S125
of human DNA dioxygenase ABH2
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Abstract. The ABH2 enzyme belongs to the AlkB-like family of Fe(ll)/a-ketoglutarate-dependent dioxygenases. Vari-
ous non-heme dioxygenases act on a wide range of substrates and have a complex catalytic mechanism involving
a-ketoglutarate and an Fe(ll) ion as a cofactor. Representatives of the AlkB family catalyze the direct oxidation of alkyl
substituents in the nitrogenous bases of DNA and RNA, providing protection against the mutagenic effects of endo-
genous and exogenous alkylating agents, and also participate in the regulation of the methylation level of some
RNAs. DNA dioxygenase ABH2, localized predominantly in the cell nucleus, is specific for double-stranded DNA sub-
strates and, unlike most other human AlkB-like enzymes, has a fairly broad spectrum of substrate specificity, oxidizing
alkyl groups of such modified nitrogenous bases as, for example, N'-methyladenosine, N3-methylcytidine, 1,N%-ethe-
noadenosine and 3,N*-ethenocytidine. To analyze the mechanism underlying the enzyme’s substrate specificity and
to clarify the functional role of key active-site amino acid residues, we performed molecular dynamics simulations of
complexes of the wild-type ABH2 enzyme and its mutant forms containing amino acid substitutions V99A, F124A and
S125A with two types of DNA substrates carrying methylated bases N'-methyladenine and N3-methylcytosine, respec-
tively. It was found that the V99A substitution leads to an increase in the mobility of protein loops L1 and L2 involved
in binding the DNA substrate and changes the distribution of n-1 contacts between the side chain of residue F102
and nitrogenous bases located near the damaged nucleotide. The F124A substitution leads to the loss of m-it stacking
with the damaged base, which in turn destabilizes the architecture of the active site, disrupts the interaction with the
iron ion and prevents optimal catalytic positioning of a-ketoglutarate in the active site. The S125A substitution leads
to the loss of direct interaction of the L2 loop with the 5’-phosphate group of the damaged nucleotide, weakening
the binding of the enzyme to the DNA substrate. Thus, the obtained data revealed the functional role of three amino
acid residues of the active site and contributed to the understanding of the structural-functional relationships in the
recognition of a damaged nucleotide and the formation of a catalytic complex by the human ABH2 enzyme.

Key words: DNA repair; base methylation; human DNA dioxygenase ABH2; MD modeling; functional role of amino
acid residues
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MoJIeKyISIpHO-AVHAMMNYECKNUIT aHa/INn3 PYHKIMOHAJIbHO POIN
AMIMHOKMCJIOTHBIX OCTaTKOB V99, F124 1 S125
ITHK-gmnoxkcureHaspol yeisoBeka ABH?2
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AHHoTauusA. HK-grnokcnreHasa yenoseka ABH2 otHocutca K cemencty AlkB-nofo6HbIX HEremMoBbIX AUOKCMIeHas,
KOTopble Ae/CTBYIOT Ha LUNPOKUIA CNEKTP CybCcTpaToB 1 06M1aatoT COXKHBIM KaTaMTUYECKIM MEXaHU3MOM C yyac-
TUeM a-KeTornyTapaTta 1 noHa Fe(ll) B kauecTBe KodakTopa. MNpencrtasutenu cemericta AlkB KaTanusmpyioT npamoe
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OyHKUMOHanbHaa ponb octatkoB V99, F124 1 S125
OHK-anokcnreHasbl yenoseka ABH2

OKMCJIeHMe aNKWUbHbIX 3amecTuTenei B a3oTncTbix ocHoBaHuAx [JHK n PHK, obecneyrBas 3awjuty ot MyTareHHOro
BO3[eNCTBMA SHAOTEHHbIX N 3K30r€HHbIX anNKUINPYIOLWKMX areHTOB, a TakKe y4acTBYA B PErynaLMmn YPOBHA METUN-
poBaHuA HekoTopbix PHK. ®epmeHT ABH2, nokan3oBaHHbIN NperMyLLeCTBEHHO B A4Pe KNeTKNU, MPoABAAeT cneuun-
duuHoCTb K AByuenoyeyHbiM JHK-cy6cTpatam 1, B oTnmnyme ot 6onblinHcTBa gpyrux AlkB-nogo6Hbix pepmeHTOB
yenoeka, obnagaeTt [OBOJSIbHO WMPOKNM CMEKTPOM Cy6CTpaTHON cneunduyHOCTY, OKUCAA ankuibHble rpymnnbl
TaKNX MOAUGULIVPOBAHHbIX a30TUCTbIX OCHOBAaHUIA, KaK, Hanpumep, N'-meTtunageHosuH, N3-metununutnaus, 1,N8-3te-
HOaZeHO3UH 1 3,N*-3TeHouUTMAMH. B AaHHOM paboTe C Lienblo aHanm3a MexaHri3ma, obecrneunsaiolLlero cybcTpaTHyto
cneundunyYHOCTb GepmMeHTa, 1 BbIACHEHNA GYHKLMOHANbHOM POSIM aMUHOKMCIIOTHBIX OCTaTKOB B COCTaBe akTUBHO-
ro LeHTpa HaMm1 BbIMOJIHEHO MOJIEKYNAPHO-AVHaMMYECKOe MOLENNPOBaHNe Komnnekcos depmeHta ABH2 gukoro
TUMA N ero MyTaHTHbIX GOpM, cofepKalnx aMUHOKUCIOTHbIE 3ameHbl VIO9A, F124A unu S125A, ¢ aBymA Trnamu
OHK-cy6cTpaTtoB, Hecywmx MeTUnMpoBaHHble ocHoBaHusA N'-meTunageHuH unn N3-MeTunuuTosnH. YCTaHOBMEHO,
41O 3ameHa VI9A NprBOANT K yBENMYEHMIO MOABMKHOCTM 6enkoBbix netenb L1 1 L2, yyacTBytowmx B CBA3bIBAHUN
[HK-cy6cTpaTta, 1 M3MeHsieT pacnpefeneHmne T-T-KOHTakToB 60KOBOW Lienu ocTaTka F102 ¢ a30TUCTbIMU OCHOBaHU-
AMY, PACMONIOXKEHHBIMW PALOM C NOBPEXAEHHbIM HyKneoTugom. 3ameHa F124A npnBogmnT K notepe TT-T-CTIKMUHIA C
NOBPEXAEHHbIM OCHOBAHUEM, YTO, B CBOIO ouepefb, 4eCTabUNN3NPYET apXUTEKTYPY aKTUBHOMO LIEHTPA, Bbi3blBaeT
HapyLleHne B3auMOAEeNCTBMA C MIOHOM Xene3a U NpenATCTBYeT ONTMManibHOMY KaTaMTUYecKoMy Nno3nLmMoHpOoBa-
HUIO a-KeTornyTapaTta B akTMBHOM LieHTpe. 3ameHa S125A nprBoauUT K noTepe NpAMOro B3anmoaencTena netnm L2 c
5'-pocdaTHO rpynmnoi NoBpeKAeHHOro HyKeoTAa, ocnabnas ceasbiBaHe pepmeHnTta ¢ [JHK-cybcTpaTom. Takum
06pa3om, NoslyyeHHble flaHHble NO3BONNIIN YCTAHOBUTb GYHKLIMOHANIbHYIO POJIb TPEX aMUHOKUCTIOTHBIX OCTAaTKOB aK-
TUBHOTO LieHTPa M paclpUTb MOHUMaHKE CTPYKTYPHO-OYHKLMOHANbHbIX CBA3EW B NpoLeccax y3HaBaHUA NOBPeX-
LEHHOro Hykneotuga v GopMMpoBaHMsA KaTalnTYeCckoro Komnnekca pepmeHtom ABH2 uenoseka.

KnioueBble cnoBa: penapauna AHK; metunuposaHne ocHoBaHui; AHK-guokcureHasa yenoseka ABH2; M-monenu-
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Introduction

The stability of genetic information encoded in the form of
nucleotide sequences in DNA is extremely important for nor-
mal functioning and survival of individual cells, organisms,
and species as a whole (Travers, Muskhelishvili, 2015). At the
same time, cellular DNA of all living organisms is regularly
subjected to damaging effects of various endogenous and
exogenous factors, such as chemically reactive reagents and
metabolites, ionizing and UV radiation, and others (Ougland
et al., 2015). Living organisms evolved multiple different re-
pair pathways for damage occurring in genomic DNA, some
of which are represented by a single enzyme, while others
involve sequential and coordinated work of entire enzymatic
cascades (Yi et al., 2009; Li et al., 2013; Muller, Hausinger,
2015; Ougland et al., 2015).

So, among enzymes participating in recognition and
removal of non-bulky individual damage to DNA nitro-
genous bases, the following can be distinguished: 1) DNA
glycosylases that remove damaged nitrogenous bases with
the formation of apurinic/apyrimidinic sites in DNA, which
are then processed with restoration of the original DNA
structure by other enzymes of the base excision repair (BER)
pathway (Ringvoll et al., 2006; Chen et al., 2010; Li et al.,
2013); 2) O%-alkylguanine-DNA-alkyltransferases (AGT)
that transfer the alkyl adduct to their own cysteine residue
(Ringvoll et al., 2006); 3) photolyases responsible for the
removal of UV-induced photodamage such as cyclobutane
pyrimidine dimers and pyrimidine-pyrimidine photoproducts
(i, He, 2013); 4) dioxygenases of the AIkB family, belonging
to the superfamily of Fe(II)/a-ketoglutarate(aKG)-dependent
dioxygenases that use non-heme iron as a cofactor and aKG as
a cosubstrate for direct oxidation of alkyl groups in damaged
DNA bases (Yang et al., 2009; Yi et al., 2009; Kuznetsov et al.,
2021). It should be noted that the diversity of repair pathways
for non-bulky DNA lesions is related to the great diversity of
possible chemical modifications of nitrogenous bases.

Representatives of the Fe(I1)/aKG- dependent dioxygenase
AIlkB family found in humans have attracted particular interest
in recent years due to their participation in the repair of alky-
lated DNA bases. It is believed that enzymes of this family may
play an important role in the progression of some oncological
diseases since they are often overexpressed in tumor cells and
neutralize the effect of alkylating drugs used in chemotherapy.
ABH?2 is one of the first identified human representatives of
the AlkB-like dioxygenase family (Duncan et al., 2002; Aas
et al., 2003). It is known that changes in ABH2 expression
levels affect the efficiency of removal of certain toxic DNA
damages in tumor cells, making this enzyme a potential marker
for cancer diagnostics and a possible therapeutic target (Wilson
etal., 2018).

To date, it is known that ABH2 exhibits activity against
at least 8 different alkylated DNA bases, namely N1-meth-
yladenosine (m!A), N3-methylcytidine (m3C), N3-methyl-
thymidine (m3T), N3-ethylthymidine (N3-EtT), 1,N6-etheno-
adenosine (¢A), 3,N*-ethenocytidine (¢C), 1,N2-ethenoguano-
sine (1,N2-¢G), and 5-methylcytidine (m°C) (Fig. 1) (Falnes,
2004; Ringvoll et al., 2006, 2008; Bian et al., 2019).

Methylation is the most common type of DNA base damage
caused by exposure to alkylating agents (Sall et al., 2022),
and mIA and m3C are substrates most effectively removed by
ABH2 from double-stranded DNA (dsDNA) (Duncan et al.,
2002; Aasetal., 2003; Xu etal., 2021). D.H. Lee et al. showed
that ABH2 oxidizes m*A and m3C in the context of dsSDNA
at least twice as efficiently compared to single-stranded DNA
(ssDNA) (Lee et al., 2005).

Currently known structural data allow suggestion of specific
features of ABH2 enzyme functioning and the mechanism
providing its substrate specificity. ABH2 contains a highly
conserved catalytic domain — a double-stranded B-helical
domain (DSBH) of the Fe(II)/aKG-dependent dioxygenase
superfamily. The unstructured N-terminal fragment of ABH2
also includes a proliferating cell nuclear antigen (PCNA)
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Fig. 1. Alkylated nitrogenous bases that are substrates for human DNA
dioxygenase ABH2.

binding motif (Xu et al., 2021). A triplet consisting of two
histidine amino acid residues and one aspartate (H171, H236,
and D173) coordinates the Fe(ll) cofactor in the enzyme’s
active site (Giri et al., 2011; Xu et al., 2021). D173 amino
acid residue, through interaction with R254 residue, also par-
ticipates in formation of a hydrogen bond network including
N159, Y161, R248, T252, and R254 amino acid residues, that
coordinate the aKG cosubstrate in the enzyme’s active site
(Waheed et al., 2020).

The ABH2 active site is surrounded by four functional
loops, L1-L4 (Fig. 2). These loops play a key role in stabili-
zing the position of the DNA substrate in the enzyme’s active
site (Xu et al., 2021). Loop L1, including amino acid residues

L3

S125 F124

V99

L2

L1

Functional role of amino acid residues V99, F124 and S125
of human DNA dioxygenase ABH2

98-107, contains a hydrophobic hairpin V101-F102-G103,
through which “testing” of base pair stability in the substrate
occurs. If a damaged base forms an unstable pair with its
partner from the complementary strand, V101 and F102
residues induce flipping of the damaged nucleotide into the
active site. Herewith the vacated space in the DNA duplex is
filled by F102 residue, stabilizing the flipped-out position of
the nucleotide through n-m interaction with the surrounding
bases (Chenetal., 2010, 2014; Yietal., 2012; Xuetal., 2021).

Loop L2, including amino acid residues 122-129, together
with loop L1 forms the so-called “nucleotide recognition lid”
(NRL). Y122 amino acid residue participates in a hydrogen
bond network forming the catalytically competent state of
the enzyme’s active site (Davletgildeeva et al., 2023), S125
residue forms a hydrogen bond with the 5'-phosphate of the
flipped damaged nucleotide; F124 and H171 amino acid
residues form n-n stacking with the flipped nitrogenous base
(Chenetal., 2010, 2014; Lenz et al., 2020). S125 amino acid
residue also participates in forming the wall of the damage-
binding pocket alongside V99, R110, and 1168 residues
(Davletgildeeva et al., 2023).

It should be noted that V99 holds an important position in
the network of hydrophobic residues formed by V101, V108,
F124, and L127 (Monsen et al., 2010). Loop L3, including
amino acid residues 198-213, and loop L4, including amino
acid residues 237-247, play an important role in binding to the
dsDNA substrate. R198, R203, and K205 amino acid residues
in loop L3 and the RKK sequence (R241-K242-K243) in loop
L4 form contacts with the DNA strand complementary to the

Fig. 2. Crystal structure of the ABH2 complex with dsDNA containing m'A (PDB ID 3BUC).
Loops L1-L4 are marked, damaged nitrogenous base mlA, aKG and Mn2* ion, as well as the amino acid residues considered

in this work (V99, F124, and S125) are shown.
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damaged strand, thereby ensuring effective binding of the
dsDNA substrate by the ABH2 enzyme (Yang et al., 2008;
Yi et al., 2009; Waheed et al., 2020).

Molecular dynamic analysis of structural data and experi-
mental verification of activity of recombinant preparations of
wild-type ABH2 and several of its mutant forms, conducted
by our group previously, allowed establishment of the role
of Y122, 1168, and D173 amino acid residues, which form
direct contacts with bases mA, m3C, as well as m®C, in the
active site pocket (Davletgildeeva et al., 2023). Comparative
analysis of enzymes revealed the influence of substitutions of
these amino acid residues on the enzyme’s catalytic activity,
and only a slight decrease in DNA binding efficiency. The
obtained data suggested that these residues are responsible
for precision positioning of the flipped damaged nucleotide
in the active site, which ensures effective catalytic reaction
(Davletgildeeva et al., 2023).

It should be noted that the broad spectrum of substrate
specificity of the ABH2 enzyme and the complex catalytic
mechanism of action, including cofactor and cosubstrate
for reaction implementation, complicate detailed studies of
the molecular mechanism of damaged DNA recognition and
catalytically competent complex formation as well as local
conformational changes affecting catalytic reaction efficiency.
Due to the above, in the present study, with the aim of further
elucidating the mechanism of substrate specificity of human
DNA dioxygenase ABH2 using molecular dynamics methods,
analysis of the functional role of three amino acid residues,
V99, F124, and S125, participating in the formation of the
pocket where the flipped-out damaged nucleotide is located,
was conducted.

Materials and methods

Complex models were built based on crystallographic struc-
tures of the ABH2-dsDNA complexes with metal ion (Mn2*)
and oKG: 3BUC (for m*A), and 3RZJ (for m*C) (Yang et al.,
2008; Yi et al., 2012). DNA sequence changes, correction of
unresolved amino acid residues and enzyme modifications
were performed using Chimera and Modeller (Sali, Blundell,
1993), protonation optimization of ionizable groups was done
using the H++ server (Anandakrishnan et al., 2012). MD
modeling was performed in GROMACS (Abraham et al.,
2015). The complex was placed in a dodecahedral cell with
TIP3P water and 50 mM KCI (Jorgensen et al., 1983; Joung,
Cheatham, 2008), the AMBER14SB/OL15 force field was
used to describe the complex (Cornell et al., 1996; Zgarbova
et al., 2011, 2015; Maier et al., 2015).

Parameterization for m!A, m3C and oKG was performed
using the Antechamber module (AMBER package), RESP
charges were calculated on the REDD server, topologies of
modified residues were converted to GROMACS format us-
ing ACPYPE (Bayly et al., 1993; Wang et al., 2004, 2006;
Vanquelef et al., 2011; Sousa da Silva, Vranken, 2012).

In order to preserve octahedral coordination geometry of
Fe2* ion under possible active site perturbations introduced by
amino acid residue substitutions, a distributed charge model
was used to describe the ion (Jiang et al., 2016). The follow-
ing parameters were used for MD calculations: system energy
minimization by the steepest descent method, van der Waals

2025
29.7

OyHKUMOHanbHaa ponb octatkoB V99, F124 1 S125
OHK-anokcnreHasbl yenoseka ABH2

interaction cutoff value set to 10 A, long-range Coulomb in-
teractions accounted for by the PME (Particle Mesh Ewald)
method (Essmann et al., 1995), hydrogen atom covalent bond
vibration restriction by the LINCS method (Hess et al., 1997).

After minimization, the system was heated to 310 K in NVT
ensemble for 500 ps using a V-rescale thermostat (Bussi et al.,
2007). Then equilibration in NPT ensemble was performed for
1 ns, pressure was maintained at 1 bar using a Parrinello-Rah-
man barostat (Parrinello, Rahman, 1981).

Classical molecular dynamics calculations were performed
for 250 ns duration at least three times. Trajectory analysis was
performed using built-in GROMACS tools and the MDTraj
library (McGibbon et al., 2015). Distribution changes between
stable states of wild-type ABH2 enzyme complexes and its
mutant forms with DNA substrates are shown in distance
distribution graphs between key atoms during modeling.
Interatomic distance distributions in MD trajectory are pre-
sented as histograms with 0.1 A step and step height equal
to the percentage of trajectory frames in which the distance
falls within the corresponding range of values. For each tra-
jectory, the sum of fractions across the entire distance range
equals 100 %.

Results and discussion

Model of the ABH2 V99A enzyme-substrate

complex with damaged DNA

When modeling enzyme-substrate complexes both with the
mlA-containing dsDNA substrate (hereafter mIA-DNA,
Fig. 3a, b), and with the m3C-containing dsDNA substrate
(hereafter m3C-DNA, Fig. 3c, d), the V99A substitution led
to changes both in the region of loops L1 and L2 interacting
with the nucleotide flipped into the enzyme’s active site and
the adjacent dsDNA region, and in the cosubstrate binding
region. Thus, in the model complex with m*A-DNA, the side
chain of F124 amino acid residue lost n-n stacking interac-
tions with the base of the nucleotide flipped into the active site
(Fig. 3a, b). This reduced the lifetime of the hydrogen bond
between the hydroxyl group of Y122 and the exocyclic amino
group of the damaged base (Fig. 4a). In the model complex
with the m3C-containing dsDNA substrate, partial loss of
contact between the hydroxyl group of the Y122 side chain
and the carboxyl group of the E175 side chain also occurred
(Fig. 4b), which also disrupted the contact network stabilizing
the flipped-out base.

The V99A substitution induced a change in the position of
F102 residue, which intercalates into DNA and is part of loop
L1. Herewith, in the complex with m*A-DNA, redistribution
of m-m contacts formed by F102 occurred from the nitrogenous
base of the complementary strand in the wild-type enzyme
(dG in Fig. 3a) to the nitrogenous base of the damaged strand
in case of ABH2 V99A (dA in Fig. 3b).

The values of the dihedral angle C-Ca-CB-Cy at F102
residue were 148.1 + 55.3° for wild-type enzyme and
127.2 + 47.7° for the V99A mutant form, indicating stability
of these positions during molecular dynamics. Meanwhile, in
the complex with m3C-DNA, the V99A substitution induced a
significant increase in the mobility of its side chain (dihedral
angle C-Ca-CB-Cy equals 135.6+58.6° and 100.24+100.3° for
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Fig. 3. Representative MD structures of ABH2 WT in complex with mA-DNA (a) and m3C-DNA (c), and ABH2 V99A in complex with

m1A-DNA (b) and m3C-DNA (d).

Key amino acid residues of the active site, damaged nitrogenous base, akKG and Mn2* ion are shown. Loops L1 (blue) and L2 (pink) are

highlighted with corresponding colors.

the wild-type enzyme and V99A, respectively). Increased mo-
bility of F102 residue led to guanine complementary to m3C
(dG inFig. 3c, d) acquiring the opportunity to return inside the
DNA structure in the mutant enzyme complex, entering into
n-n contact with the side chain of F102, while this guanine
was completely flipped out from the DNA double strand in
the wild-type enzyme complex.

The V99A substitution also induced changes in interaction
with the cosubstrate, which led to aKG adopting a catalytically
unfavorable conformation for half of the total modeling trajec-
tory time. Changes in position of hydrophobic residues V108,
F124,1.127,and L129 in loops L1 and L2 lead to reorientation
of amino acid residues Q112 and N159. In turn, in the wild-
type enzyme, the side chain of N159 is one of the elements
of the contact network supporting catalytically competent
orientation of the cosubstrate, forming a hydrogen bond with
the a-carboxyl group of aKG. Convergence of side chains
of Q112 and N159 residues in the ABH2 V99A mutant form
(Fig. 4c) leads to transfer of the hydrogen bond of the amide

group of N159 from the a-carboxyl group of aKG (Fig. 4d)
to the w-carboxyl group of aKG (Fig. 4e, f), provoking its
displacement from the optimal position for catalysis.

Thus, modeling results allow the suggestion that the V99A
substitution, leading to disruptions in the binding of both
substrate and cosubstrate in the enzyme’s active site, should
cause significant activity reduction. These data are in a good
agreement with experimental results obtained previously for
the V99A mutant form, revealing significant reduction (Mon-
senetal., 2010) or complete loss (Davletgildeeva et al., 2025)
of ABH2 V99A catalytic activity toward dsSDNA substrates
containing mXA or m3C as damage.

Model of the ABH2 F124A enzyme-substrate

complex with damaged DNA

To determine the functional role of F124 residue, modeling of
complexes of the ABH2 F124A mutant form with m*A- and
m3C-containing dsDNA was performed (Fig. 5). Detailed
analysis of distribution changes of distances between key
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Fig. 4. Distance distributions between key atoms when modeling complexes of the wild-type ABH2 enzyme and its V99A mutant

form with DNA substrates.

atoms of the active site in case of F124A substitution revealed
destabilization of both the flipped methylated nitrogenous base
and oK@ in the enzyme’s active site.

Thus, the F124A substitution, directly leading to loss of
n-1 stacking between the F124 side chain and the nitrog-
enous base, induces rotation and displacement of the flipped
base from the enzyme’s active site, with concomitant loss of
hydrogen bonds with side chains of Y122, D173, E175 resi-
dues (Fig. 6a, b). The hydrogen bond between the hydroxyl
group of S125 residue and the corresponding phosphate group
of'the nucleotide backbone is also lost, reflecting deterioration
of contact between loop L2 and DNA (Fig. 6c).

The cosubstrate also loses catalytically competent position
as a result of restructuring of the hydrogen bond network
involving amino acid residues coordinating it. The amide

group of N159 maintains a hydrogen bond predominantly
with the w-carboxyl group of aKG instead of the a-carboxyl
group (Fig. 6d). Destabilization of the cosubstrate position
is reflected in changes in the nature of contacts between side
chains of Y161 and R248 residues and the m-carboxyl group
of aKG. If in the wild-type enzyme complex, stable hydrogen
bonds are maintained between the guanidinium group of R248
and O2 atom of the w-carboxyl group of aKG, and between
the hydroxyl group of Y161 and O1 atom of the w-carboxyl
group, then in the ABH2 F124A mutant form complex, expan-
sion of these distance distributions occurs, indicating contact
destabilization (Fig. 6d, e).

The results of modeling indicate that amino acid residue
F124 plays an important role in the structure of the ABH2
enzyme active site. This conclusion agrees with data (Chen et
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Fig. 5. Representative MD structures of complexes ABH2 WT with m'A-DNA (a) and m3C-DNA (c), and ABH2 F124A with m'A-DNA

(b) and with m3C-DNA (d).

Key amino acid residues of the active site, damaged nitrogenous base, aKG and Mn2+ ion are shown. Loop L2 is highlighted with color

(pink).

al., 2010; Monsen et al., 2010), as well as with data obtained
previously in our laboratory (Davletgildeeva et al., 2025), ac-
cording to which the ABH2 F124A mutant form completely
lost catalytic activity toward m*A- and m3C-containing DNA
substrates.

Model of the ABH2 S125A enzyme-substrate

complex with damaged DNA

The S125A substitution in the ABH2 enzyme causes loss of
the hydrogen bond between the hydroxyl group of the amino
acid residue and the 5'-phosphate group of the damaged
nucleotide, leading to loss of direct interaction of loop L2
with m!A- (Fig. 7a, b) and m3C-DNA (Fig. 7c, d). Analysis
of distance changes between key residues of the active site
showed that in the enzyme complex with m*A-DNA, loss of
loop L2 interaction with DNA causes loss of the hydrogen
bond between the hydroxyl group of Y122 residue from
L2 and the exocyclic amino group of m!A (Fig. 8a). At the
same time, convergence of guanidinium groups of R110 and
R172 residues with the O3’ atom of the nucleotide of the
flipped nitrogenous base and the O5’ atom of the nucleotide
located 5" to the flipped nitrogenous base, respectively, occurs
(Fig. 8b, c). Thus, in case of DNA substrate containing m!A,
the S125A substitution leads to R110 and R172 amino acid
residues binding more strongly to the DNA sugar-phosphate
backbone.

Unlike the ABH2 S125A enzyme complex with m!A-
DNA, in the model complex with m3C-DNA, convergence
of guanidinium groups of R110 and R172 residues with
the sugar-phosphate backbone does not occur (Fig. 7c, d).

Meanwhile, compared to the WT enzyme, in case of S125A
substitution, stability of the hydrogen bond between the side
chain of E175 residue and the exocyclic amino group of m3C
decreases (Fig. 8d).

Deterioration of direct contact with the flipped base and
possible compensatory restructuring in case of S125A substitu-
tion in the ABH2 active site agrees with the results obtained
by B. Chen et al., since their work showed that the ABH2
S125A mutant form retains catalytic activity toward dsDNA
containing m1A as damage (Chen et al., 2010). However, in a
later work (Davletgildeeva et al., 2025), it was shown that this
substitution leads to loss of ABH2 catalytic activity toward
both m3C- and mA-containing DNA under the used reaction
conditions. This suggests that compensatory restructuring
that occurs according to modeling data in the ABH2 structure
upon S125A substitution cannot fully preserve the enzyme’s
catalytic activity on all types of DNA substrates.

Conclusion

Introduction of the V99A substitution into the ABH2 en-
zyme affected other amino acid residues forming the
hydrophobic network of which the substituted residue is a
part. This led to negative influence on functional loops L1
and L2, causing destabilization of their position, which, in
turn, led to reorientation or displacement of key amino acid
residues, Y122, E175, and F102, comprised in these loops.
Additionally, the V99A substitution led to a catalytically
unfavorable conformation of aKG in the enzyme’s active
site. The obtained data confirm the role of V99 amino acid
residue as an important participant in intraprotein coordination
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Fig. 6. Distance distributions between key atoms when modeling complexes of the wild-type ABH2 enzyme and its F124A mutant

form with DNA substrates.

necessary for effective oxidation of methyl groups in damaged
DNA bases by the ABH2 enzyme.

Substitution of amino acid residue F124, localized in NRL,
led to significant displacement of both L1 and L2 loops and
the damaged base itself relative to each other due to loss of
n-n stacking with the damaged nitrogenous base. This sub-
stitution also led to changes in Fe2* ion coordination, both
through changes in coordination type by the aKG molecule
and through additional coordination by D173 amino acid
residue. The obtained data suggest extreme importance of
F124 amino acid residue in the catalytic process carried out
by ABH2 DNA dioxygenase.

The S125A substitution led to loss of direct interaction
of loop L2 with the 5'-phosphate group of the damaged
nucleotide; however, according to MD modeling data, this

contact can be partially compensated by formation of bonds
between R110 and R172 amino acid residues and the DNA
sugar-phosphate backbone. It should be noted that such
contact compensation was found only in case of the ABH2
S125A complex with mA-containing DNA substrate, but not
in case of m3C, which indirectly indicates a more complex
mechanism responsible for recognition of different damages
in the enzyme’s active site.

Thus, the MD modeling data obtained in the present work
for complexes of human ABH2 DNA dioxygenase mutant
forms containing V99A, F124A, or S125A amino acid sub-
stitutions with m?A- and m3C-containing DNA substrates
indicate the important role of all three amino acid residues in
ensuring formation of a catalytically competent state of the
active site when interacting with damaged DNA.
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Fig. 7. Representative MD structures of complexes ABH2 WT with m'A-DNA (a) and m3C-DNA (c), and ABH2 S125A with
m'A-DNA (b) and with m3C-DNA (d).

Key amino acid residues of the active site, damaged nitrogenous base, akG and Mn2* ion are shown. Loop L2 is highlighted
with color (pink).
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Structural basis of the phosphoramidate
N-benzimidazole group’s influence on modified primer
extension efficiency by Tag DNA polymerase
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Abstract. We recently proposed a novel class of nucleic acid derivatives — phosphoramidate benzoazole oligonucleo-
tides (PABAO:s). In these compounds, one of the non-bridging oxygen atoms is replaced by a phosphoramidate N-ben-
zoazole group, such as benzimidazole, dimethylbenzimidazole, benzoxazole, or benzothiazole. Studies of the proper-
ties of these derivatives have shown that their use in PCR enhances the specificity and selectivity of the analysis. The
study investigates the effect of phosphoramide N-benzimidazole modification of DNA primers on their elongation by
Tag DNA polymerase using molecular dynamics simulations. We examined perfectly matched primer-template com-
plexes with modifications at positions one through six from the 3’-end of the primer. Prior experimental work demon-
strated that the degree of elongation suppression depends on the modification position: the closer to the 3'-end, the
stronger the inhibition, with maximal suppression observed for the first position, especially in mismatched complexes.
Furthermore, incomplete elongation products were experimentally observed for primers modified at the fourth posi-
tion. Our molecular dynamics simulations and subsequent analysis revealed the molecular mechanisms underlying
the interaction of modified primers with the enzyme. These include steric hindrance that impedes polymerase pro-
gression along the modified strand and local distortions in the DNA structure, which explain the experimentally ob-
served trends. We established that both different stereoisomers of the phosphoramidate groups and conformers of the
phosphoramidate N-benzimidazole moiety differentially affect the structure of the enzyme-substrate complex and the
efficiency of Tag DNA polymerase interaction with the modified DNA complex. Modification of the first and second in-
ternucleoside phosphate from the 3’-end of the primer causes the most significant perturbation to the structure of the
protein-nucleic acid complex. When the modification is located at the fourth phosphate group, the N-benzimidazole
moiety occupies a specific pocket of the enzyme. These findings provide a foundation for the rational design of specific
DNA primers bearing modified N-benzimidazole moieties with tailored properties for use in PCR diagnostics.

Key words: N-benzimidazole oligonucleotides; PABAO; molecular dynamics; structure; Tag DNA polymerase; molecular
diagnostics
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CTpVYKTYpPHBbIE OCHOBBI BIAUSHUS (pochopaMUITHOI
N-6eH3MIIa30/IbHOI I'PYIIIIbI HA 3(PPEKTUBHOCTD VIJIMTHEHIS
Moau@puIIMpoBaHHOro npaviMmepa Taq JJHK-1m1onmMepasoit
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AHHOTauuA. HeaaBHO Hamu Gbl1 MPEANOXEH HOBbIN KS1acC MPOM3BOAHbIX HYKNENHOBBIX KNCNOT — dochopammiHble
6eH30a30/1bHble ONIMFOHYKNEOTUAbl. B HVMX OAVH 13 HEMOCTMKOBbBIX aTOMOB Kucopofa 3amelleH Ha dochopamug-
Hyto N-6eH30a30MbHyl0 rpynny: 6eH3MIAA30MbHYI0, AVMETUNOEH3NMINAA30MbHYI0, 6EH30KCa30/bHY0 U 6eH3o-
TUa30MbHy. M3yyeHre CBOWCTB TakMX MPOU3BOAHbLIX MOKa3ano, Yto mx npumeHexuve B MNLUP yBennumBaet cneum-
®UYHOCTD 1 CeNeKTMBHOCTb aHanu3a. [laHHoe MccriefAoBaHVe MOCBALWEHO M3yyeHuto BAVAHWUA dochopammnpHonm
N-6eH3ummpasonbHoi moandukaunm JHK-npaiimepos Ha 3ddeKTUBHOCTb NX yanuHeHua Taq AHK-nonumepasoii npu
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Structural basis of Taq DNA polymerase elongation
of N-benzimidazole-modified primers

NoMoLLM MeTofa MOJIEKYNAPHON AUHaMUKK. Mbl paccmaTpriBaniu COBepLUEHHbIe KOMMIEKCbl HYKENHOBbBIX KACOT C
moandUKaLMAMYM B MOMOXEHMAX C NEPBOro MO LWeCToe cunTasa oT 3'-KoHua npaiMepa. PaHee 6bin0 NokKasaHo, UTo
CTerneHb NoAABNEHMA SMOHraLUMM 3aBUCUT OT MONOXKEHUA MoandrKaumm: yem 6nvxe K 3'-KoHLy, TeM CuiibHee NHTMou-
pOBaHMe, a MaKCMMasbHOe nofasneHve Habnopaetcs npu moandrikaumm B NepBOM NONOXKEHUN, 0OCO6EHHO B HECO-
BepLUeHHbIX KoMniekcax. Kpome Toro, B SKCnepumeHTax Habto4anncb NpoayKTbl HEMOMHOTO YAJIMHEHUA NPaiMepoB
C Mmogndukaumen B 4eTBEPTOM MonoxeHun. MpoBefeHHbIe KOMMbIOTEPHOE MOAENVPOBaHME 1 aHanu3 No3BONWAN
BbIABMUTb MOJNEKY/IAIPHbIE MeXaHM3Mbl B3auMOZENCTBUA MOAUDULMPOBaAHHbIX NMpaimMepoB ¢ GepmMeHTOM, BKtoYas
cTepuryecKkme NpenaTCTBUA ANA NPOABUXKEHUA NOMMEPasbl N0 MOANDULIMPOBAHHON Lien 1 IoKasbHble HapyLleHWs
cTpykTypbl [HK, KoTopble 06bACHAIOT Habnohaemble SKCNEPYIMEHTaNIbHO 3aKOHOMEPHOCTU. YCTaHOBJIEHO, UYTO Kak
pasnunuHble ctepeonsomepbl pochopammaHbix rpynm, Tak n KoHbopmepbl docdopammaHon N-6eH3rMmnLa3onbHOMN
rpynnbl NO-pasHOMY BAVAIOT Ha CTPYKTYPY pepMeHT-Cy6CTpaTHOro Komnnekca v 3pdeKTMBHOCTb B3anmogenctama Tag
[HK-nonumepasbl ¢ moanduumposaHHbiM JHK komnnekcom. MoandrkaLmsa nepBoro 1 BTOPOro MEXHYKe03naHoro
¢dochaTHOro octatka ¢ 3'-KOHUa Nparimepa B HaMbosnbLel CTEMNEHN BO3MYLUAET CTPYKTYPY 6eKOBO-HYKIENHOBOTO
KOMIMeKca, a NpU pacrnonoxeHnn mogudurKkaumm B 4etseptom pocpaTHom octatke N-6eH3rmmaasonbHas mogmuou-
KaLus pacnosnaraetca B KapmaHe pepmeHTa. [lonyyeHHble pe3ynbTaTbl OTKPbIBAOT NePCneKTrBbI ANA paLMOHaNbHOro
KOHCTpYMpoBaHua cneuudunyHblx, obnagatoLwmmMmm 3apaHee 3agaHHbiMu ceoncteamu JHK npaimepos ¢ mognounumpo-
BaHHbIMU N-6eH31MNAA30MbHbIMY MEXHYKEOTUAHBIMI 3BeHbAMMN ANA ncnonb3osaHuaA B MNLUP anarHoctmke.
Kntouesblie cnosa: N-6eH3MmaasonbHble onnroHykneotrabl; ®AO; MonekynapHaa AMHaMKKa; CTPYKTypa; Taq OHK-
nonnmepasa; MosieKynsipHaa fAMarHoCcTuKa

tal Medicine SB RAS (Vasilyeva et al., 2023). In PABAOs,
the non-bridging oxygen atom of the phosphate moiety is
substituted by an N-benzazole group (N-benzimidazole, N-
benzoxazole, or N-benzothiazole) (Fig. 1). PABAOs can be
synthesized using standard automated solid-phase phosphora-
midite chemistry.

To date, the physicochemical properties of several

Introduction

DNA-dependent DNA polymerase | from the bacterium
Thermus aquaticus (Tag DNA polymerase) is a widely used
enzyme for nucleic acid amplification by the polymerase
chain reaction (PCR) in various applications. It possesses
DNA polymerase and 5'—3' exonuclease activities but lacks
proofreading 3'—5' exonuclease activity (Terpe, 2013). This

enzyme is widely used for the detection of nucleic acids
(NA) and single-nucleotide variants (point mutations) in
diagnostic applications for various diseases, using diverse
PCR-based methods such as real-time PCR, allele-specific
PCR, and digital PCR (Kalendar et al., 2022; Starza et al.,
2022). Allele-specific PCR is based on the inhibition of primer
elongation when primers form duplexes with the template
strand containing one or more mismatches at or near the 3’-end
of the primer (Rejali et al., 2018). Often, a single nucleotide
substitution that disrupts full complementarity between the
primer and the DNA template does not provide sufficient
specificity for polymorphism detection. To enhance specific-
ity, additional single-nucleotide mismatches and/or structural
modifications are introduced into the primer. These modifica-
tions can be incorporated either into the nucleobase or into
the ribose-phosphate backbone and are typically positioned
near the 3’-end of the primer (Kutyavin, 2011; Ishige et al.,
2018; Chubarov et al., 2023). In particular, substitution of the
non-bridging oxygen atom in the phosphodiester backbone
affects both the thermodynamic stability of the primer—tem-
plate duplex and the coordination of the terminal 3'-OH group
within the enzyme’s active site. For example, incorporation
of a phosphorothioate modification at the terminal or penul-
timate internucleotide phosphate linkage from the 3'-end of
the primer results in only a modest reduction in elongation
efficiency (5-15 %) while simultaneously enhancing ampli-
fication specificity (Di Giusto, King, 2003). Introduction of
phosphoryl guanidine modifications into primer structures
likewise alters the efficiency and selectivity of target nucleic
acid sequence detection (Chubarov et al., 2020).

Recently, a novel class of nucleic acid derivatives, phos-
phoramidate benzazole oligonucleotides (PABAOs), was
developed at the Institute of Chemical Biology and Fundamen-

N-benzazole derivatives of NA have been investigated (Goly-
shev et al., 2024; Yushin et al., 2024; Novgorodtseva et al.,
2025) and their potential use as primers in PCR, including
allele-specific PCR, has been shown (Chubarov et al., 2024).
We have examined the elongation efficiency of 13-mer prim-
ers containing an N-benzimidazole modification on a 22-mer
DNA template using Taqg DNA polymerase (Golyshev et
al., 2025). When the modification is introduced at the first
or second internucleotide phosphate from the 3’-end of the
primer in perfectly matched duplexes, full-length extension

Fig. 1. Structure of a dinucleotide step of phosphoramidate benzazole
oligonucleotides containing an N-benzimidazole group and the model
systems used in this study.

The position of the phosphoramidate N-benzimidazole group is indicated by
ared asterisk.
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occurs with an efficiency of approximately 50 %. In contrast,
for duplexes containing a single-nucleotide mismatch at the
penultimate base pair from the 3'-end of the primer, the yield
of full-length product is markedly reduced. Incorporation
of the modification at the third position typically results in
the smallest decrease in full-length product yield among the
studied positions. Furthermore, for all perfectly matched du-
plexes bearing the modification, a distinct aborted elongation
product was consistently observed, corresponding to a partially
elongated primer in which the modification was at the fourth
position from the 3’-end.

In this work, we used molecular dynamics (MD) simula-
tions to elucidate the experimental patterns of PABAO primer
elongation by Taq DNA polymerase. Our study focused on
how the phosphoramidate N-benzimidazole group, positioned
at various sites along the primer, affects the structure and
dynamics of the enzyme—substrate complex. To this end, we
constructed molecular models and carried out MD simulations
of both the native (unmodified) and a series of modified nucleic
acid substrates containing the N-benzimidazole modification at
the 1st through 6th internucleotide phosphate positions from
the 3’-end of the primer, as well as their complexes with Taq
DNA polymerase. The simulation results correlate well with
experimental data and provide a mechanistic explanation for
the effects observed in vitro.

Methods

Model building. The structure of the Taq polymerase—-DNA
complex was constructed based on the experimentally de-
termined crystal structure with PDB ID: 1QTM as follows.
The protein coordinates, including the bound nucleoside tri-
phosphate (ANTP) and magnesium ions, were retained from
this structure. The DNA complex of the template strand with
the primer was modeled by building a protein—nucleic acid
complex using AlphaFold3 software (Abramson et al., 2024).
As input for these calculations, we provided the amino acid
sequence of Thermus aquaticus DNA polymerase | (UniProt
ID: P19821), along with the nucleotide sequences of the DNA
template and either the unextended or partially extended
primers, an incoming deoxyribonucleoside triphosphate
(dNTP), and two Mg?* ions in catalytic site. The resulting
AlphaFold3-predicted structure was then superimposed onto
the experimentally determined structure 1QTM by aligning
the protein backbone based on Ca atoms of equivalent
residues. Subsequently, the native nucleic acid components
in the 1QTM structure were replaced with the DNA duplexes
generated by AlphaFold3. For each constructed model, the
original dNTP was substituted with the nucleotide triphos-
phate complementary to the base in template at the active
site, ensuring correct base pairing for the elongation step
under investigation.

Since the N-benzimidazole modification generally requires
additional space for proper geometric accommodation within
the DNA/Taq polymerase complex, we employed amino acid
side-chain rotamer libraries (Shapovalov, Dunbrack, 2011)
implemented in UCSF Chimera (Pettersen et al., 2004) to
minimize van der Waals clashes between protein atoms and
bulky modification.

Partial atomic charges for amino acid residues in each
complex were assigned using the pdb2pqr software (ver-
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sion 3.7.1) (Unni et al., 2011). The pH was set to 8.3 to match
the experimental primer extension conditions (Golyshev et al.,
2025). As aresult, certain complexes exhibited differences in
the protonation states of specific charged residues. Out of the
36 modeled complexes, seven displayed distinct protonation
patterns. In the complexes LO/X2/R1, L0/X2/R2, L0/X3/
R1, LO/X3/R2, and L1/X2/R2 (notation defined below), the
residues LY S540, ASP610, LYS663, and ASP785 were found
in their protonated forms. In the complexes L0/X4/R1 and
L0/X4/R2, the residues LYS663, LYS762, and GLU786 were
also protonated.

The primer/template complexes were obtained from the
protein—nucleic acid complex by removing all residues except
those belonging to the DNA strands.

Molecular dynamics simulation. Structural investiga-
tions of complexes formed between native or modified DNA
and Tagq DNA polymerase were carried out using molecular
dynamics (MD) simulations and subsequent analysis with
the AMBER?20 software package (Case et al., 2020). Simu-
lations were performed using parallel computing on both
central processing units (CPUs) and graphics processing
units (GPUs) with CUDA architecture. All MD calculations
employed the ff19SB force field (Tian et al., 2020) for Taq
polymerase, the OL21 force field (Zgarbova et al., 2021) for
native DNA, and gaff2 parameters for the N-benzimidazole-
modified phosphate residues. Parameters for magnesium and
sodium ions were taken from (Li Z. et al., 2020). These force
fields represent the most up-to-date and rigorously validated
options currently recommended by the AMBER developers
for reliable biomolecular simulations. Parameters for the
deoxyribonucleoside triphosphates (ANTPs) were adopted
from (Meagher et al., 2003), which remain the only published
and widely accepted dNTP parameters compatible with the
AMBER force field family.

MD simulation protocol. Initial models were first relaxed
in implicit solvent (saltcon =0.10 M, igb =1, T = | K) using
the conjugate gradient method for 2,500 steps. The systems
were then solvated in an octahedral box of OPC water mole-
cules (Izadi et al., 2014), with a minimum distance of 14 A
between any solute atom and the box boundary. Sodium ions
(Na*) were added to neutralize the total charge of the periodic
cell. Subsequently, the solvated systems underwent restrained
energy minimization for 10,000 steps (with the first 200 steps
performed using the steepest descent algorithm), applying po-
sitional restraints of 1.0 kcal/(mol-A?) on all complex’ heavy
atoms to prevent structural distortion during initial solvent re-
laxation. Following minimization, the systems were gradually
heated from 0 to 300 K over 2 ns under constant volume (NVT
ensemble), using Langevin dynamics for temperature control
(ntt =3, gamma_In = 1.0). Pressure was then equilibrated to
1 atm over an additional 1 ns using a Monte Carlo barostat
(NPT ensemble). A final unrestrained energy minimization
was performed for 10,000 steps (first 200 steps: steepest
descent) to remove any residual clashes after equilibration.
A time step of 2 fs was used throughout, with bonds involving
hydrogen atoms constrained via the SHAKE algorithm. And
at the final stage, MD simulation was carried out for 100 ns
with parameters similar to the heating stage, but without
imposing positional restrictions on the atoms of the model
system.
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The MD simulation trajectories were analyzed using the
cpptraj module from the AMBER20 package (Roe, Cheatham,
2013). For each trajectory, the 10 most representative struc-
tures were identified through hierarchical clustering analysis,
using the average-linkage algorithm and root-mean-square
deviation (RMSD) of backbone atoms as the distance metric.

Molecular graphics were prepared using UCSF Chimera
version 1.15 (Pettersen et al., 2004).

Results

Selection and construction of molecular models

The structural and dynamic properties of PABAO complexes
with Tag DNA polymerase were investigated using a com-
prehensive set of model systems. We employed the DNA
complex formed by the primer 5'-GCTAACTAACTCC-3" and
the template strand 5'-GATATGATGGGAGTTAGTTAGC-3',
which was previously characterized in our experimental study
of modified primer elongation efficiency (Golyshev et al.,
2025). It has been shown that the introduction of benzoazole
modifications at various positions of the primer affects the
efficiency and specificity of its extension. As part of this
work, MD modeling of a set of protein-nucleic acid com-
plexes, as well as individual DNA complexes, was carried
out. Both native DNA complexes and complexes containing
N-benzimidazole modifications at the internucleotide phos-
phate groups from the 1st to the 6th position from the 3'-end
of the primer were considered. To evaluate the effect of primer
elongation and to obtain more reliable insights, we analyzed
oligonucleotide complexes containing unextended primers
with N-benzimidazole modifications positioned at 1 through
4 internucleotide phosphate from the 3’-end of the primer. In
addition, we examined systems in which the primer initially
bearing the N-benzimidazole modification at the first position
was extended by 1 to 5 nucleotides. Following such elonga-
tion, the modification was at positions 2 through 6 relative
to the new 3'-end of the primer. The sequences of the model
oligonucleotide complexes and their corresponding nomen-
clature are provided in Figure 1.

Model construction was carried out based on the crystal
structure with Protein Data Bank identifier (PDB ID) 1QTM,
as described in the Methods section. This structure represents
a fragment of Thermus aquaticus DNA polymerase | in its
closed conformation, bound to a dideoxyribonucleoside
triphosphate (ddNTP) and Mg2*, and lacking exonuclease
domain. The modification was introduced into the primer by
replacing the native phosphate group with a phosphoramidate
bearing an N-benzimidazole moiety (Fig. 1). Both stereo-
isomers of the phosphoramidate linkage (Sp and Rp) were
considered in our study.

Analysis of the constructed molecular models of modified
DNA in complex with Taq polymerase revealed that, for each
phosphoramidate stereoisomer (Sp and Rp), the N-benzimi-
dazole group can adopt two distinct orientations. These ori-
entations correspond to the dihedral angle OP—P—N—C (where
OP is the bridging oxygen, P is the phosphorus atom, N is the
benzimidazole nitrogen, and C is the adjacent carbon in the
heterocycle) of approximately —100 or +100°. Preliminary
molecular dynamics simulations of the protein—nucleic acid
complexes indicated that no transitions occurred between these

Structural basis of Taq DNA polymerase elongation
of N-benzimidazole-modified primers

two orientations of the N-benzimidazole group during the
simulation timescale. Therefore, we explicitly considered both
conformers (rotamers). For the model DNA complexes, we
adopted the following nomenclature: Li/X]j/Rk and Li/X]/Sk,
where i = 0-5 denotes the number of nucleotides by which
the primer has been elongated, j = 1-6 indicates the position
of the internucleotide phosphate (counting from the 3’-end
of the primer) at which the N-benzimidazole modification is
introduced, k=1, 2 specifies the rotameric conformation of the
benzimidazole group for each phosphoramidate stereoisomer.
For the rotamers R1 and S2, the dihedral angle defined by
the atoms OP2—P—N—C (for the Rp isomer) or OP1-P-N-C
(for the Sp isomer) was approximately —100°. In contrast, for
rotamers R2 and S1, the corresponding dihedral angle adopted
a value of approximately +100°. In these configurations, the
spatial orientation of the benzoazole ring in the R1 and S1 ro-
tamers directs the modified group away from the major groove
of the DNA duplex, whereas in the R2 and S2 rotamers, the
benzoazole ring is oriented toward the minor groove (Fig. 2).
For modeling, 36 complexes were built with modified DNA
and three with native DNA — non-extended and two extended
by 3 and 5 nt (L0, L3 and L5). Simulations were also carried
out for all DNA from these models.

During the construction of the protein—-DNA complexes
L3/X4/S2, 1.0/X4/S2, L0/X2/S2, and L4/X5/S2, significant
steric clashes were observed between the N-benzimidazole—
modified DNA residue and the surrounding protein residues.
In these cases, either the initial models were too distorted
to proceed with stable MD simulations, or during the early
stages of simulation (within the first few nanoseconds), the S2
rotamer spontaneously converted to the S1 conformation to
relieve the clashes. To enable simulations with the S2 rotamer,
we started from the relaxed structure of the corresponding S1
complex and performed 25 ns of restrained MD simulation
in which a flat-bottom harmonic potential was applied to the
dihedral angle OP1-P-N-C to gradually drive the system
toward the S2 conformation (during the first 0.2 ns, the force
constant of the restraint was linearly increased from 0 to 1,
while the flat-bottom potential was defined with “walls” at
—130.0 to —125.0° and —115.0 to —110.0°, the force constant
for the restraining potential was set to 200.0 kcal/mol/rad).
Following this restrained relaxation, the rotamer of the modi-
fied residue adopted the desired S2 conformation within the
protein—DNA complex. Subsequently, a 100-ns unrestrained
production MD trajectory was generated from this stabilized
structure. This trajectory was analyzed using the same proto-
cols applied to all other simulated systems.

Conformational flexibility analysis

Stability of the protein—nucleic acid complex

During MD simulations, the protein structure in certain mo-
dels underwent noticeable conformational rearrangements,
as evidenced by a pronounced increase in root-mean-square
deviation (RMSD) values for the protein backbone (Fig. S1)!.
In these trajectories, the RMSD exhibited considerable fluctua-
tions during the first 50 ns, indicating incomplete equilibra-
tion. To ensure robust and reliable analysis, we extended the

T Supplementary Figures $1-510 and Tables S1-56 are available at:
https://vavilov.elpub.ru/jour/manager/files/Suppl_Berdyugin_Engl_29_7.pdf
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Fig. 2. Spatial structure of DNA dinucleotide steps: native (a) and modified for the studied stereoisomers and conformers

(b) R1, (c) S1, (d) R2 and (e) S2.

simulations of these specific complexes by an additional 50 ns
beyond the initial 100-ns run, allowing the systems to reach an
equilibrium. The RMSD profiles for the full 150-ns trajecto-
ries are shown in Figure S1. For all subsequent structural and
dynamic analyses, we used only the final 50 ns.

Analysis of the MD trajectories revealed that the single-
stranded region of the template strand exhibited high confor-
mational flexibility and, as expected, did not adopt any stable
or preferred conformation during the simulations. Due to its
intrinsic disorder and lack of defined structural features, this
single-stranded segment was excluded from further struc-
tural analysis. Figure S2 shows the RMSD profiles along the
trajectories for all studied complexes. It is evident that, over
the 50-ns analysis segment, all structures remain stable, as
indicated by the plateauing of RMSD values after an initial
brief increase during the first 1-5 ns. The average RMSD
value across all analyzed complexes is 2.63 + 0.29 A, with a
mean standard deviation along the trajectory of 0.39 +0.11 A.

Protein structural stability
To assess structural changes in the protein during MD simu-
lations, RMSD time profiles were calculated for the protein
Ca atoms over the last 50 ns of each trajectory, using the first
frame of the respective analysis segment as the reference
structure (Fig. S3). The presented data clearly indicate that,
following initial relaxation during the first 50 ns, the protein
structure remains highly stable in all modeled complexes.
The analysis of RMSD distributions across the trajectories,
presented in Figure S4, shows that RMSD values remain
within a narrow range, below 3.5 A, and the distributions
themselves are relatively sharp, confirming the high confor-
mational stability of the protein throughout the simulations.
The presence of multiple peaks in some RMSD distributions
indicates that the system samples several distinct yet closely
related conformational substates during the simulation. This
observation is corroborated by the subsequent hierarchical

cluster analysis (see below), which identifies multiple popu-
lated clusters corresponding to these substates. Importantly,
the structural differences between these clusters are minor.

Stability of the DNA structure within the complex

To assess DNA structural changes during MD simulations,
we calculated the RMSD over the last 50 ns of each trajec-
tory, using the first frame of this segment as the reference
structure (Fig. S5). For this analysis, we considered two
distinct representations of the nucleic acid component: the
duplex region only and the full DNA construct, including the
single-stranded 5'-overhang of the template strand. This is
attributed to the high conformational flexibility of the single-
stranded overhang. As shown in the data, the duplex region
of the DNA remains highly stable in all trajectories after the
initial 50 ns. The RMSD analysis along the trajectories for
DNA in complex with the protein performed both including
and excluding the single-stranded template overhang revealed
a significant difference in the average RMSD values and their
standard deviations (averaged across all models). When the
single-stranded overhang was included, the mean RMSD
was 3.46 + 0.97 A, with a trajectory-wise standard deviation
of 0.84 + 0.31 A. In contrast, when only the duplex region
(primer—template hybrid) was considered, the mean RMSD
dropped significantly to 1.97 = 0.77 A, with a much lower
standard deviation of 0.39 +0.12 A. Thus, to ensure a reliable
and meaningful structural analysis, we excluded the single-
stranded DNA segment from our evaluations, as it adopted
highly variable conformations along the MD trajectories and
did not exhibit a stable or functionally relevant orientation
within the complex.

Stability of the structure for simulated free DNA

RMSD analysis of DNA trajectories in the absence of pro-
tein revealed significantly higher conformational mobility
compared to the DNA within the Taq polymerase complex
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Fig. 3. Superposition of the most representative protein structures from
the MD trajectories of all studied complexes, obtained by hierarchical
clustering.

The palm domain is shown in gray, the thumb domain in blue, and the fingers
domain in green. Protein structures were aligned based on the palm domain
to highlight conformational differences in the mobile domains. The panel on
the right shows the same superposition rotated by 90° around the vertical axis
relative to the left panel, providing a side view of domain arrangements.

(Fig. S6). For the full DNA construct (including the single-
stranded overhang), the average RMSD and its standard
deviation (averaged across all models) were 5.11 + 1.72
and 1.29 + 0.61 A, respectively. When the single-stranded
region was excluded, these values decreased to 2.45 + 0.41
and 0.50 £ 0.12 A. These results clearly demonstrate that
Taq polymerase substantially restricts the conformational
flexibility of both the duplex and single-stranded regions of
DNA upon complex formation. Moreover, the greater spread
in RMSD values (evidenced by higher standard deviations)
for free DNA indicates a broader ensemble of sampled con-
formations, whereas the protein-bound DNA adopts a more
constrained and homogeneous structural state.

Analysis of protein, DNA, and protein—-nucleic acid complex
structures

To evaluate the impact of the N-benzimidazole modification
on protein conformation, we calculated pairwise RMSD values
between Ca atoms of the most representative structures (i. e.,
cluster centroids) extracted from the last 50 ns of each MD
trajectory via hierarchical clustering. These RMSD values
were used to construct a two-dimensional heatmap (Fig. S7),
which visualizes structural similarities and differences across
all simulated complexes. The analysis revealed that the ave-
rage RMSD between native and modified complexes is very
similar, with a mean value of ~2.60 A, indicating that the
overall protein fold is largely preserved regardless of the
presence, position, or stereochemistry of the modification.
However, when comparing individual modified systems, span-
ning different modification positions (X 1-X6), stereoisomers
(Rp/Sp), and rotamers (R1/R2, S1/S2), the pairwise RMSD
values exhibit a broader range, from 1.31 to 4.37 A. Notably,
the average RMSD of each structure relative to all others falls
within a relatively narrow interval of 2.33-3.26 A (Table S1),
confirming that all modeled complexes adopt globally similar

Structural basis of Taq DNA polymerase elongation
of N-benzimidazole-modified primers

conformations. The average RMSD values for each modifi-
cation position, averaged over both stereoisomers and rota-
mers follow the trend: X1 < X2 < X6 < X4 < X3 <X35. This
ordering indicates that modifications at positions X3 and X5
induce the largest structural perturbations in Taq polymerase,
whereas modifications near the 3'-terminus (X1, X2) are best
accommodated with minimal impact on the protein conforma-
tion. Furthermore, when RMSD values are averaged across
all modification positions for each rotamer/stereoisomer
type, the following trend emerges: S1 > R1 > R2 > S2. This
sequence correlates directly with the spatial orientation of
the N-benzimidazole group relative to the DNA duplex, the
benzimidazole moiety toward the major groove leading to
greater steric interference with polymerase residues.

Comparison of the most representative structures from
the MD trajectories across all model complexes reveals that
structural differences are primarily localized to the fingers and
thumb domains, while the palm domain remains remarkably
stable in all systems (Fig. 3). Additionally, the N-terminal
region of the protein exhibits high conformational flexibility.
Such variations are associated both with the conformational
mobility of the thumb and fingers domains and with the effect
of modification on their arrangement.

Structure of DNA

It is well established that nucleic acid (NA) substrates
undergo significant conformational rearrangements upon
binding to DNA polymerases compared to their solution-
state structures (Vinogradova, Pyshnyi, 2010). Key structural
changes commonly observed in experimentally determined
polymerase-DNA complexes include: sugar pucker con-
formational shifts, narrowing of the minor groove, and
induction of a pronounced bend in the DNA duplex at the
active site. To characterize these effects in our systems, we
compared the structures of the DNA substrate in the free
state (i. e., without protein) and in complex with Tag DNA
polymerase, using the most representative conformations
identified by hierarchical clustering of the MD trajectories.
RMSDs between the duplex regions of the free and protein-
bound DNA structures were calculated for all combinations
of stereoisomers (Rp and Sp), rotamers (R1/R2 and S1/S2),
and extension states (elongated and nonelongated primers).
These RMSD values are summarized in Table S2.

The average RMSD between the duplex regions of DNA in
the free state and in complex with Taq polymerase across all
modeled systems is approximately 2.4 A. The largest structural
deviation was observed for the L0/X4/S1 complex, with an
RMSD of 3.3 A. This pronounced difference is attributed to
a marked widening of the minor groove in the protein-bound
state. In this orientation, the modification effectively shields
the nucleobases from solvent exposure and induces local
stretching of the sugar—phosphate backbone. In contrast, the
smallest RMSD values (i. e., the highest structural similarity
between free and bound DNA) were found for modifications
at positions X5 and X6 (Table S2). Furthermore, the RMSD
between unmodified and modified DNA substrates — both in
complex with Taq polymerase — averages ~1.75 A. Notably,
this deviation is smaller for modifications oriented toward the
major groove, as these conformers minimize direct contacts
with the protein.
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The average RMSD which computed across all rotamers
and stereoisomers for the DNA duplex in complex with Taq
polymerase is approximately 2.0 A. Lower RMSD values
are observed for systems in which the N-benzimidazole
modification adopts a consistent spatial orientation. Structural
analysis further reveals that, even in cases of pronounced
interactions between the modification and protein residues,
the overall architecture of the duplex region remains largely
unperturbed. In general, the structure of a substrate with a
modification largely depends on which regions of the protein
it interacts with, which is determined by both the isomer and
the conformer of the N-benzimidazole residue.

The structural parameters of the investigated nucleic acid
substrates are predominantly characteristic of B-form DNA.
However, localized deviations from ideal B-form DNA are
observed in the vicinity of the 3’-end of the primer and at
the site of N-benzimidazole modification. In particular, for
nonelongated model systems (L0), a pronounced increase
in the Roll and Buckle parameters was detected for AT base
pairs adjacent to the catalytic center. For both extended and
unextended complexes, the propeller twist angle of these AT
base pairs was consistently negative, a feature more typical
for A-tract DNA than canonical B-DNA (Strahs, Schlick,
2000). The Inclination of base pairs relative to the helical axis
increased the closer the N-benzimidazole modification was
positioned to the catalytic center. In contrast, this deviation
markedly decreased in complexes with an elongated duplex
region (L1-L5). Notably, the average Twist value across all
systems remained approximately 34°, independent of duplex
length or the presence and position of the modification. This
constancy in Twist suggests that the helical packing density
of the DNA duplex is largely preserved.

In all studied complexes, a significant widening of the DNA
minor groove (defined as the distance between phosphorus
atoms on opposite strands) was observed in the region ad-
jacent to the catalytic center, reaching 15-18 A. In modified
complexes, this widening increased further with the length of
the duplex region (i. e., in L1-L5 systems), which corresponds
to the progressive displacement of the modification away
from the 3'-end of the primer. In contrast, native (unmodified)
complexes exhibited a much smaller degree of minor groove
width increase. No clear correlation was found between the
structural parameters of the nucleic acid substrate and the
specific spatial orientation of the modification. This suggests
that the position of the modification relative to the 3'-primer
terminus dominates its impact on global DNA conformation
within the polymerase complex.

Analysis of sugar pucker conformations in the DNA duplex
reveals that, in most cases, deoxyribose adopts the C2'-endo
conformation which is characteristic of canonical B-form
DNA. However, near the 3'-end of the primer, specific nucleo-
tides, particularly those adjacent to the catalytic site, exhibit
Cl'-exo or O4’-endo sugar puckers. These non-canonical sugar
conformations are indicative of local structural strain and are
commonly associated with the catalytically active state of
DNA polymerases.

The presence of the modification in the DNA strand within
the Taq polymerase complex caused significant deviation from
canonical planar base pairing only in the case of terminal and
penultimate base pairs when the modification was located at

2025
29.7

CTpyKTypHble ocHOBbI yanHeHua Taq [IHK-nonnmepason
npanmepos ¢ N-6eH3nmraasonbHol MoardukaLumnen

the first or second position of the primer. Structural analysis
shows that the modification does not affect the nature of base
pairing: Watson—Crick pairs with standard hydrogen bond
lengths are formed, except for the terminal base pairs — a
finding previously observed both experimentally and in MD
simulations (Nonin et al., 1995; Zgarbova et al., 2014). Thus,
the modification at the first internucleotide phosphate residue
exerted the greatest influence on the local DNA structure
within the polymerase complex. Overall, the presence of the
modification does not significantly alter the DNA structure,
either in free duplexes or in the enzyme—substrate complex.

An analysis of the N-benzimidazole group orientation
within the DNA duplex was performed for both the free state
and the protein-bound complex. This was done by examining
the dihedral angle around the P-N bond, defined by the non-
bridging phosphate oxygen (OP1 for the Rp isomer and OP2
for the Sp isomer), the phosphorus atom, the nitrogen atom,
and the carbon atom of the benzoazole ring. The analysis
revealed considerable flexibility of the modified residue and
the possibility of interconversion between rotameric states
(Fig. S8).

Population analysis of the dihedral angles along the MD
trajectories shows that, for both elongated and nonelongated
systems, free DNA exhibits generally similar conformational
preferences (Fig. S8, S9). The data indicate that the Rp isomer
of the modified residue is predominantly oriented toward the
minor groove, whereas the Sp isomer preferentially points to-
ward the major groove, corresponding to a dihedral angle of ap-
proximately +100°. In some cases, the modification flips away
from the duplex, corresponding to an angle of about —100°
(rotamers R1 and S2). The lower population of this outward
orientation is attributed to the hydrophobic nature of the
benzimidazole group, which tends to minimize solvent ex-
posure by interacting with the DNA strands. In most cases,
the distributions for the two stereoisomers are qualitatively
similar: when two peaks are present for one isomer, they are
typically also observed for the other. Differences in peak
amplitudes suggest that the conformational space for the
modification is not fully sampled within the 50-ns trajectory
of each individual model. However, when the angular prob-
ability distributions are aggregated across all modification
positions for each stereoisomer, the average dihedral angles
for rotamers 1 and 2 of each isomer nearly coincide (Fig. 4),
indicating consistent conformational preferences irrespective
of modification position.

In the protein-bound complex, the orientation of the modi-
fication undergoes significant changes compared to free DNA
(Fig. 4). The plots of dihedral angle values and their proba-
bility distributions (Fig. 4, S9, and S10) show that, along
the MD trajectories, angles are observed not only between
the two main peaks characteristic of free DNA (+100° and
—100°), but also shifted beyond these values to larger absolute
magnitudes. This indicates substantial interactions between the
modified residue and the protein, which constrain and redirect
the conformational preferences of the N-benzimidazole group
relative to its behavior in the unbound state.

Comparison of the average probability distributions for
different stereoisomers in the complexes shows that they
differ significantly both from each other across modification
positions and from the distributions observed for free DNA
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Fig. 4. Dihedral angle values of the P-N bond in the phosphoramidate linkage for rotamers 1 and 2 along MD trajectories of free DNA (left) and DNA in

complex with the protein (right), aggregated across all studied models.

(Fig. 4, S8, and S10). Notably, the probability distributions
for rotamers R1 and R2 are markedly distinct. The main peak
for R1 is located around —80°, corresponding to an orienta-
tion of the modification toward the major groove (i. e., away
from the DNA helix). This is attributed to the fact that, in the
polymerase complex, the native phosphate backbone is tightly
coordinated by specific amino acid residues; consequently, the
bulkier phosphoramidate modification is sterically expelled
from the minor groove. In contrast, the primary peak for R2
appears near +100°, indicating that the modification is directed
into the minor groove. For the S1 rotamer, the dominant angle
is +100°, but the modification is oriented toward the major
groove —a consequence of the opposite stereochemistry at the
phosphorus center compared to the Rp series. The S2 rotamer
exhibits a markedly different behavior: its probability distribu-
tion shows multiple peaks of comparable amplitude spread
across nearly the entire angular range, indicating that the
modification can adopt diverse spatial orientations depending
on its position in the primer chain (Xj). This conformational
heterogeneity is driven by specific, position-dependent intera-
ctions with the protein environment.

It should be noted that, for all examined stereoisomers, a
distinct peak appears around 0° (Fig. 4), corresponding to an
orientation in which the modification points away from the
DNA helix. In this conformation, one of the amino groups of
the five-membered ring of the N-benzimidazole moiety forms
a hydrogen bond with the non-bridging oxygen atom of the
adjacent phosphate group. The absence of such orientations
in free DNA indicates that this conformation is specifically
stabilized by additional interactions with the protein, highligh-
ting the role of the polymerase in shaping the conformational
landscape of the modified backbone.

Analysis of interactions of modification with Taq polymerase

A hierarchical cluster analysis of the last 50 ns of each MD
trajectory was performed to identify the most representative
structures. The spatial arrangement of the N-benzoazole
groups relative to the polymerase active site was examined,
and the number of protein atoms in contact with the modifica-
tion was quantified. Contact maps between the modification
and Taq polymerase were also generated. All amino acid resi-
dues with at least one atom located within 3 A of the modified

phosphate group were considered to be in direct interaction
with the modification (Tables S3 and S4). The DNA duplex
region that engages with Taq polymerase spans 5-8 base
pairs, and approximately 40 amino acid residues participate
in this interaction. These residues are involved in nucleic acid
recognition, substrate stabilization, and catalysis (Eom et al.,
1996; Li Y. et al., 1998).

Analysis of contacts between the phosphoramidate
N-benzimidazole moiety and Taq polymerase revealed several
key patterns. First, in the complexes LO/X1/R1, L1/X2/R2,
L0/X3/R2, L2/X3/R1, and L4/X5/R2, the N-benzimidazole
group was accommodated within protein pockets. More-
over, for the fourth modification position (X4) with the R
stereoisomer, both rotamers (X4/R1 and X4/R2) occupied a
pocket, forming stable interactions between the modification’s
electronegative atoms and the protein’s positively charged
arginine residues (Fig. 5).

Overall, modifications at positions 1-5 form an extensive
network of hydrogen bonds and van der Waals contacts with
the protein, whereas interactions for the 6th position are con-
siderably weaker. Stereochemistry also strongly influences
the binding mode: Sp stereoisomers preferentially interact

Fig. 5. Structural comparison of the LO/X4 complexes: overall view (left)
and close-up of the modification interaction region with the thumb
domain of the enzyme (right).

Taq DNA polymerase is shown in blue, the DNA template strand in blue, and
the primer in red. The modified N-benzoazole groups are displayed as atomic
models, with Sp isomers colored red and orange, and Rp isomers in light and
dark green.
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with positively charged residues, while Rp stereoisomers
more frequently engage in contacts with hydrophobic amino
acids. Sp isomers are often oriented toward the major groove,
effectively shielding the heterocyclic bases of the duplex
from solvent exposure. In contrast, Rp isomers are predomi-
nantly directed away from the DNA and toward the protein
surface. The presence of the modification frequently disrupts
the regular nucleic acid structure due to interactions of the
N-benzimidazole group with protein pockets, which induce
strain in the sugar—phosphate backbone. Introduction of the
modification at the first or second position of the primer leads
to significant distortion of the terminal and penultimate base
pairs. Moreover, in the complexes L1/X2/S2, L0/X3/R1, and
L0/X2/R1, disruption of Watson—Crick base pairing near the
modification site is observed.

According to the literature data, residue Arg660 from the
fingers domain coordinates the phosphate group at the first
position of the primer from the 3"-end, Arg587 from the palm
domain coordinates the second internucleotide phosphate,
and Arg536 from the thumb domain interacts with the fourth
phosphate (Vinogradova, Pyshnyi, 2010). The presence of
the N-benzimidazole modification is expected to neutralize
the negative charge of the phosphate group and introduce
steric hindrance that impedes coordination of the phosphate
by arginine residues, which should reduce the catalytic rate.
However, structural analysis shows that, in the case of Sp
isomers at positions 2 and 4, the non-bridging oxygen atom of
the phosphate moiety is still coordinated by Arg536 for both
rotamers. Similarly, for Rp isomers with the modification at
positions 1 or 2, at least one rotamer retains coordination of
the phosphate oxygen by the corresponding arginine residue.

Both rotamers of the Rp isomer at the fourth position are
accommodated within a hydrophobic pocket of the thumb
domain, whereas the Sp isomer shows minimal interaction
with the protein. As a result, the Rp-modified phosphate group
impedes translocation of the polymerase to the next position
along the DNA strand, which is required for incorporation
of the subsequent nucleotide onto the primer. This steric and
dynamic blockage most likely explains the accumulation of
incomplete elongation products observed experimentally when
the modification is located at the fourth position.

We have previously shown (Golyshev et al., 2025) that in
primer elongation experiments with Taq DNA polymerase
using primers bearing the N-benzimidazole modification, in-
corporation of the modification at the second position results
in the smallest reduction in elongation efficiency for perfectly
matched complexes. This correlates with the lowest number
of contacts observed between the modification and the protein
among the first three internucleotide phosphate positions.
Furthermore, in all perfectly matched modified complexes,
a distinct band corresponding to a partially extended primer,
with the modification located at the 4th position from the 3'-
end, was clearly observed. This effect is most pronounced for
primers carrying modifications at the 1st and 3rd positions.
These experimental observations correlate well with structural
data showing that both rotamers of the R stereoisomer at posi-
tion 4 (X4/R1 and X4/R2) are accommodated within a protein
pocket and form stable interactions with the enzyme (Fig. 5).

Thus, steric interactions of Rp isomers with protein pockets
can slow down — or, as in the case of the fourth modification
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position, block — the translocation of Tag DNA polymerase
along the substrate. This is experimentally confirmed by the
reduced polymerization rate and the appearance of abortive
elongation products of the modified primer containing the
phosphoramidate N-benzimidazole group.

Substrate—-polymerase interaction energy

The interactions described in the previous section are reflected
in the binding energetics between the enzyme and its substrate.
Therefore, we calculated the interaction energy between the
nucleic acid substrate and Taq polymerase using the Molecu-
lar Mechanics/Generalized Born Surface Area (MM/GBSA)
calculation method, based solely on the MD trajectory of
the protein—-DNA complex. To minimize fluctuations in the
computed free energy arising from the high flexibility of the
single-stranded template overhang, only the duplex region of
the nucleic acid substrate was included in the energy calcula-
tions. The energies of the DNA, protein, their complex, and
the resulting binding (complexation) energies are reported in
Tables S5 and S6. Analysis of the interaction energies between
the modified nucleic acid substrates and Taq polymerase
revealed the following trends: 1) for native (unmodified)
complexes, the binding energy (in absolute value) increased
with duplex length, reflecting stronger stabilization of longer
primer—template hybrids within the polymerase active site;
2) in contrast, no clear correlation was observed between
binding energy and duplex length for modified complexes;
3) notably, modifications at the 5th and 6th internucleotide
phosphate positions exhibited weaker binding compared to
all other model systems, which correlates with the reduced
number of contacts between DNA and the protein observed
in these cases.

In the case of nonelongated model systems (L0), which have
the shortest duplex region, the complexation energy was, on
average, significantly lower (~ —200 kcal/mol) than that of
extended complexes (~ —180 kcal/mol). For the majority of
complexes, S stereoisomers exhibited more favorable (i. e.,
more negative) binding energies compared to their Rp coun-
terparts. This is likely due to the greater accessibility of the
non-bridging oxygen atom of the modified phosphate group
in the Sp configuration, facilitating its coordination by protein
residues. Among the two rotamers, the S1 conformation — in
which the N-benzimidazole group is oriented toward the major
groove — consistently displayed the most favorable binding
energy, as this orientation leaves the non-bridging phosphate
oxygen exposed for interaction with amino acid side chains.
It should be noted, no direct correlation was found between
the number of protein atoms in proximity to the modification
(Table S3) and the computed binding energy. However, the
strongest enzyme—substrate binding was observed for the
complexes L0/X4/R1 and L0/X4/R2, in which the modifica-
tion is buried within a protein pocket and engages with the
largest number of amino acid residues (Table S4).

Conclusion

In this work, we employed molecular simulation and analy-
sis to investigate the structure, dynamics, and interaction
energetics of DNA substrates containing a phosphoramidate
N-benzimidazole group at various positions within the primer
strand in complex with Taq DNA polymerase. We found that
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both the position of the modification near the 3’-end of the
primer and its stereochemistry significantly influence interac-
tions with the enzyme. Within the enzyme—substrate complex,
two stable rotamers were identified for each phosphoramidate
stereoisomer (Rp and Sp). Analysis of the stereochemical
effects revealed that Rp isomers generally exhibit stronger
interactions with the polymerase, with the most pronounced
binding observed when the modification is located at the
fourth internucleotide phosphate from the 3'-end of the
primer. Structural analysis of both DNA and protein showed
no major global rearrangements in either biopolymer upon
modification. Structural perturbations induced by the N-
benzimidazole group were either minor or strictly localized.
The greatest impact on local DNA conformation within the
polymerase complex was observed for modifications at the
first internucleotide phosphate position.

These computational findings correlate well with experi-
mental data on the processing of PABAO primers by Tag DNA
polymerase. In particular, they explain: 1) the reduced rate
of full-length product formation for modified primers, 2) the
accumulation of incomplete elongation products when the
modification is located at the fourth position from the 3"-end of
the primer, and 3) the significant decrease in primer elongation
efficiency upon modification at the first position (Chubarov
et al., 2024; Golyshev et al., 2025).

The results of this study provide a molecular basis for un-
derstanding how the phosphoramidate N-benzimidazole group
affects the elongation of PABAO primers. These insights will
be instrumental in the rational design of PABAO structures
for applications in molecular diagnostics using PCR-based
methods. Furthermore, the pronounced differences in poly-
merase interaction efficiency between Rp and Sp isomers of
PABAOs highlight the need to develop stereoselective syn-
thesis methods for these oligonucleotides. Such approaches
would enable precise control over the stereochemistry of the
phosphoramidate linkage, thereby allowing fine-tuning of the
biochemical and biophysical properties of phosphoramidate
benzazole oligonucleotides for optimized performance in
diagnostic assays.
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Abstract. In recent years, artificial intelligence methods based on the analysis of heterogeneous graphs of biomedical
networks have become widely used for predicting molecular interactions. In particular, graph neural networks (GNNs)
effectively identify missing edges in gene networks - such as protein—protein interaction, gene-disease, drug-target,
and other networks - thereby enabling the prediction of new biological relationships. To reconstruct gene networks,
cognitive systems for automatic text mining of scientific publications and databases are often employed. One such
Al-driven platform, ANDSystem, is designed for automatic knowledge extraction of molecular interactions and, on
this basis, the reconstruction of associative gene networks. The ANDSystem knowledge base contains information
on more than 100 million interactions among diverse molecular genetic entities (genes, proteins, metabolites, drugs,
etc.). The interactions span a wide range of types: regulatory relationships, physical interactions (protein—protein,
protein-ligand), catalytic and chemical reactions, and associations among genes, phenotypes, diseases, and more.
In the present study, we applied attention-based graph neural networks trained on the ANDSystem knowledge graph
to predict new edges between proteins and ligands and to identify potential ligands for the SARS-CoV-2 ORF3a
protein. The accessory protein ORF3a plays an important role in viral pathogenesis through ion-channel activity,
induction of apoptosis, and the ability to modulate endolysosomal processes and the host innate immune response.
Despite this broad functional spectrum, ORF3a has been explored far less as a pharmacological target than other
viral proteins. Using a graph neural network, we predicted five small molecules of different origins (metabolites and
a drug) that potentially interact with ORF3a: N-acetyl-D-glucosamine, 4-(benzoylamino)benzoic acid, austocystin D,
bictegravirum, and L-threonine. Molecular docking and MM/GBSA affinity estimation indicate the potential ability of
these compounds to form complexes with ORF3a. Localization analysis showed that the binding sites of bictegravir
and 4-(benzoylamino)benzoic acid lie in a cytosolic surface pocket of the protein that is solvent-exposed; L-threonine
binds within the intersubunit cleft of the dimer; and austocystin D and N-acetyl-D-glucosamine are positioned at
the boundary between the cytosolic surface and the transmembrane region. The accessibility of these binding sites
may be reduced by the influence of the lipid bilayer. The binding energetics for bictegravirum were more favorable
than for 4-(benzoylamino)benzoic acid (docking score —7.37 kcal/mol; MM/GBSA AG —14.71 + 3.12 kcal/mol), making
bictegravirum a promising candidate for repurposing as an ORF3a inhibitor.
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MpeackasaHune B3ammopeincTenii 6enka ORF3a SARS-CoV-2
c nuraHpamm: ANDSystem, rpadoBble ceTu, MOAenMpoBaHue

AHHOTauusA. B nocnegHve roabl MeToAbl ICKYCCTBEHHOTO MHTENJIEKTA, OCHOBAHHbIE Ha aHaNM3e reTeporeHHbIX rpados
6UOMEANLIMHCKIX CETEN, MOSTYYMNIV LIMPOKOE PacnpoCTpaHEHWE AN1A NpefcKa3aHUs MOSIEKYNAPHBIX B3aMMOAENCTBUI.
B uvactHocTu, rpadoBble HelipoHHble ceTu (graph neural networks, GNN) nossonsaioT 3¢PpeKTMBHO BbIABAATDL
OTCYTCTBYIOWME pebpa B reHHbIX CeTAX, TakUX Kak ceTu 6enoK-6enKoBbiX B3auMOAEeNCTBUN, reH-3aboneBaHue,
NeKapcTBO-MULLUEHb U Ap. U TeM CaMbiM MNpefcKasbiBaTb HOBble Guonornyeckre cBAsW. [nAa peKoHCTPYKuun
FEHHbIX CETEeN YacTO NMPUMEHSIOT KOTHUTMBHbIE CUCTEMbl aBTOMATUYECKOrO aHanmM3a TEKCTOB HayyHbIX Ny6nvkaumi
1 6a3 gaHHbix. OfHa U3 Takux nnatdopm, 6asnpyloLanca Ha MeToaax UCKYCCTBEHHOro nHTennekta,— ANDSystem,
npeAHasHayeHHana ONnA aBTOMATUYECKOrO M3BJIeYEHUA 3HAHUA O MOJNEKYNAPHbIX B3auMOLENCTBUAX U Ha 3TOW
OCHOBE — PEKOHCTPYKLMUM acCOLMaTUBHBIX FeHHbIX ceTell. basa 3HaHuin ANDSystem cofepXuT cBefieHns o 6onee yem
100 MSTH B3aVIMOAENCTBUI MEXAY Pa3SINYHbIMM MOEKYNAPHO-FeHETUYECKMMY 06beKTamm (reHbl, 6enkn, MeTabonuTbl,
nekapcTea u gp.). BzanmopencTema npencTaBneHbl WNPOKMM CMEKTPOM TUMOB: PerynaTopHble CBA3M, ¢pusmyeckne
B3ammogencTeua (6enok—6esnok, 6enok-nuraHa), Katanutuyeckne M XMMUYeCKne peakumu, accoumauum mexay
reHamu, peHoTMnamu, 3aboneBaHnAMM 1 Ap. B HacToAwem nccnefoBaHUM Mbl MPUMEHUN TPadoBble HENPOHHbIE
CETW C MEXaHU3MOM BHUMaHWA, 0byueHHble Ha rpade 3HaHui ANDSystem, ansa npefckasaHus HOBbIX pebep mexay
6enkamm 1 NUraHaamm 1 NoncKa NoTeHUManbHbIX NMraHaoB ana 6enka ORF3a SARS-CoV-2. BcnomoratenbHbIin 6enok
ORF3a SARS-CoV-2 urpaeT BaXHyl0 pofib B MaToreHese BMPYCa 3a CYET WNOH-KaHalbHOW aKTUMBHOCTW, WHAYKLNN
anonTo3a M CMOCOOHOCTN MOZYNMPOBATb SHAONN30COMANbHbIE MPOLECCHl U BPOXAEHHBIA UMMYHUTET XO3AMHA.
HecmoTps Ha wupokuin cnektp ¢yHkuun, ORF3a Kak dpapmakonornyeckasa MULLEHb M3yYeH 3HAYNTENIbHO MeHblue,
yem Apyrvie BUpYycHble 6enku. MNprumeHeHre rpadoBO HEMPOHHOW CETU MO3BONIMIO HaM NpeAckasaTb MATb Masbix
MOJNEKYNl Pa3HOro MPOUCXOXKAEHUA (MeTabonuTbl U NIeKapCTBO), MOTEHUManbHO B3avmogencTayowmnx ¢ ORF3a:
N-auetun-D-rnioko3amuH, 4-(6eH30MnamrHoO)6eH30MHaA KUCoTa, aycToumcTuH D, 6ukterpaBup u L-TpeoHUH.
MoneKkynApHbIi AOKMHT 1 oueHKa adduHHoCcTM MeTopom MM/GBSA noatBepannn noTeHuManbHyl0 CnocobHOCTb
3TUX coefnHeHnn obpa3oBbiBaTb Komnnekcbl ¢ ORF3a. AHanm3 nokanvsaumy nokasas, yYTo CaiTbl CBA3bIBAHWA
6uKTerpasupa 1 4-(6eH30M1amMMHO)6eH30MHOW KNCNOTbI PACMoNOXeHbl B LIUTO30/bHON MOBEPXHOCTHON 0651acTu
6ernKa, JOCTYNHOWN pacTBOpUTENiO; L-TPEOHUH CBA3bIBAETCA B MeXCYObeAVHUYHON LWenn AUMepPa, a aycTouuctH D
1 N-auetnn-D-rnioko3amMmuH — Ha rpaHuue mMexzy LMUTO30/IbHON MOBEPXHOCTbIO U TpaHCMeMOpaHHOW 06nacTbio.
[loCTynHOCTb 3TWX CaiTOB CBA3bIBAHWA MOXKET OblTb CHUXEHA M3-3a BAUAHUA NNMULHOrO 6UCNoA. SHepreTuyeckne
XapaKTEPUCTUKIM CBA3bIBaHNA Yy OMKTerpaBmpa no cpaBHEHMIO C 4-(6eH301MMaMnHO)6eH30MHOM KCNOTOM OKa3anucb
6onee BbICOKUMY (-7.37 KKan/Monb B AOKMHTe; —14.71 + 3.12 Kkan/mosnb no MM/GBSA), uTo filenaeT ero nepcneKTMBHbIM
KaHAMAATOM [fiA Peno3nUMOHNPOBaHUA Kak MHrmbutopa ORF3a. BlaumopeiicTere 6ukterpasupa ¢ ORF3a moxet
HapyLwaTb cBs3biBaHue ORF3a c 6enkom xo3auHa VPS39 — cybbeanHmuen komnnekca HOPS, yuacTsyiowero B CNAHNM
ayTodarocoMm M No3gHUX SHAOCOM C NIM30COMaMU. 3TO, B CBOK ouyepefb, MOXeT CHMMaTb MHAyumpyemyto ORF3a
610KaZly AaHHOTO NpoLecca U TeM caMblM CNOCOBCTBOBATb BOCCTAHOB/IEHNIO ayTodarnyeckoro NoToka v IM30COMHOM
ferpagaumm BUPYCHbIX KOMMOHEHTOB.

KnioueBble cnosa: ANDSystem; SARS-CoV-2; ORF3a; reHHble ceTu; rpaoBble HeMpOHHble CeTu; npefckasaHue
6enoK—nnraHg B3auMoAenCcTBUN; OGUKTerpaBup; 4-(6eH30MNaMMHO)6EH30MHAA KMUCNIOTa; MONEKYNAPHbIA LOKUHT;
noTeHuUManbHble leKapcTBa
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Introduction

The development of antiviral drugs is a priority due to the
risk of global pandemics and the emergence of new variants
of pathogenic viruses during such events, as demonstrated by
the COVID-19 pandemic caused by SARS-CoV-2 (Ng et al.,
2022). SARS-CoV-2 is an enveloped betacoronavirus with a
positive-sense single-stranded RNA genome of approximately
29.9 kb; the genome encodes structural (S, E, M, N) as well
as several nonstructural proteins that ensure replication and
virion assembly (Naqvi et al., 2020). Because these proteins
determine key stages of the viral life cycle, drug develop-
ment efforts have focused primarily on three main targets:
the main protease (3CLpro/Mpro), the RNA-dependent RNA
polymerase (RdRp), and the S glycoprotein (Spike protein)
(Boby et al., 2023).

A combination of experimental and computational ap-
proaches has been used to discover and optimize inhibitors
of these targets: de novo design, high-throughput screening,
and repurposing of known drugs (von Delft et al., 2023). This
approach has yielded compounds with confirmed antiviral

activity invitro and in vivo and has enabled clinical strategies
for treating COVID-19, including protease and polymerase
inhibition. In particular, the antiviral nirmatrelvir/ritonavir
(Paxlovid), which targets the main protease Nsp5 (nonstruc-
tural protein 5) of SARS-CoV-2, received full FDA approval
on May 25, 2023, for the treatment of adults with COVID-19
(FDA, 2023). The drug remdesivir (Veklury), which targets
the viral RNA-dependent RNA polymerase (RdRp, nspl12),
was approved by the FDA in October 2020 (FDA, 2020). In
parallel, alternative approaches are being developed to block
fusion of the viral and cellular membranes during SARS-
CoV-2 entry. In particular, peptide inhibitors complementary
to the HR1/HR2 domains of the S2 subunit of the Spike
protein prevent formation of the six-helix bundle (6-HB) —a
key structure that mediates membrane fusion — and thereby
block viral entry (Dong et al., 2024).

Among the promising classes of pharmacological targets
are accessory viral proteins that modulate the interactions of
SARS-CoV-2 with host cellular systems. One such protein is
ORF3a. It is predominantly localized to late endosomes and
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lysosomes, where it co-localizes with the human lysosomal
proteins LAMP1 and cathepsin D (Zhang J. etal., 2021; Hinkle
et al., 2025). ORF3a forms ion channels (viroporin activity)
(Zhang J. et al., 2022), induces apoptosis through oxidative
stress and caspase activation (Zhang Y. et al., 2021), acti-
vates the NLRP3 inflammasome (the ORF3a—NLRP3-ASC
cascade) (Zhang J. et al., 2022), and suppresses interferon
signaling pathways, thereby enhancing viral pathogenicity
(Zhang J. et al., 2022).

ORF3a is a dimeric membrane protein with three trans-
membrane helices and a large cytosolic C-terminal domain,
as shown by cryo-EM (Kern et al., 2021). It interacts with
the human protein VPS39 — a component of the HOPS com-
plex — and this interaction blocks fusion of autophagosomes
with lysosomes. A short tyrosine-based sorting signal motif,
YXX® (Y, tyrosine; X, any amino acid; @, a hydrophobic
residue), present in ORF3a as the sequence YNSV (residues
160-163), plays a key role in binding ORF3a to VPS39 (Ste-
phensetal., 2025). The point mutation Y160A, which disrupts
this motif, abolishes co-immunoprecipitation with VPS39 and
lifts the block on autophagosome-lysosome fusion (Zhang Y.
etal., 2021).

In recent years, artificial intelligence methods capable
of uncovering hidden patterns in large biomedical datasets
have seen increasingly widespread use in pharmacology and
related fields. Graph neural networks (GNNs) are regarded as
a particularly promising direction, as they enable the integra-
tion of heterogeneous biological information and the predic-
tion of novel interactions in complex networks that have not
previously been reported in the literature. An early study that
played a notable role in shaping this approach was conducted
by M. Zitnik et al. (2018), which showed that graph convolu-
tional neural networks can model drug—disease interactions
and predict drug side effects.

This approach has since advanced rapidly: studies have in-
tegrated diverse data sources (external databases, abstracts and
full texts of scientific publications, patents, electronic medical
records, etc.), predicted protein-ligand and protein—protein
interactions, and identified targets for drug repurposing using
GNNs (Stokes et al., 2020; Gaudelet et al., 2021). In particular,
the compound halicin was identified as a candidate with anti-
bacterial activity against resistant strains; using a graph neural
network, this molecule was shown to have bactericidal effects
against Mycobacterium tuberculosis, carbapenem-resistant
Enterobacteriaceae, as well as multidrug-resistant strains of
Acinetobacter baumannii, Pseudomonas aeruginosa, and
Clostridioides difficile (Stokes et al., 2020).

Methods for reconstructing and analyzing gene and associa-
tive networks are increasingly used to identify pharmacologi-
cal targets at the human genome scale (Ali, Alrashid, 2025).
Against this backdrop, cognitive systems and knowledge-
engineering methods that automate the extraction of facts
from the literature and specialized databases — and construct
biomedical knowledge graphs —are being actively developed.
In such graphs, nodes represent genes, proteins, metabolites,
diseases, drugs, and other biomedical entities, while edges
represent their interactions (regulatory relationships, pro-
tein—protein interactions, disease associations, etc.). Notable
resources implementing this approach include STRING

Prediction of ligand interactions with the SARS-CoV-2 ORF3a protein:
ANDSystem, graph neural networks, and modeling

(Nicholson, Greene, 2020; Szklarczyk et al., 2023), QIAGEN
Ingenuity Pathway Analysis (Krdmer et al., 2014), GeneGo/
MetaCore (Clarivate), and others.

We previously developed the cognitive platform AND-
System, designed for the reconstruction of associative gene
networks. It brings together two strands: 1) automatic know-
ledge extraction from scientific publications and biological
databases using semantic-linguistic templates and rules
(Ilvanisenko V.A. etal., 2015, 2019), and 2) integration of sta-
tistical and machine-learning methods, including graph neural
networks, to predict and add new protein—protein interactions
to the network (lvanisenko N.V. et al., 2024).

The ANDSystem knowledge base (KB) contains informa-
tion on more than 100 million interactions among various
types of molecular genetic entities (genes, RNAs, proteins,
metabolites, drugs), as well as cellular- and organism-level
entities such as cells, biological processes, diseases, and
phenotypic traits. Interactions are classified into 49 types,
including regulatory relationships (regulation of expression,
activity, stability, transport, etc.), physical interactions (pro-
tein—protein, protein—ligand), chemical interactions (catalytic
reactions, post-translational modifications, etc.), and associa-
tive links (gene—disease, gene—phenotype, biological process—
disease, etc.). Of particular note are “marker” relationships,
which indicate that a gene, biological process, or phenotypic
trait serves as an indicator of an associated disease or pheno-
type. In addition, the KB includes “risk factor” interactions,
in which a gene, process, disease, phenotypic trait, or other
entity is considered a risk factor for the associated disease
(Ilvanisenko V.A. et al., 2019).

A distinctive feature of ANDSystem is its web-based
module ANDDigest, designed for searching and analyzing
PubMed publications using ontological dictionaries (lvan-
isenko T.V. et al., 2020, 2022). The module supports complex
queries that simultaneously take into account multiple types
of entities from the ANDSystem dictionaries, as well as user-
specified refining keywords. Search results are presented in
graphical form with in-text annotation of the detected enti-
ties, options for sorting and filtering (by date, source citation
counts, and other parameters), visualization of the year-by-
year dynamics of mentions of the annotated entities, and links
to external databases.

ANDSystem has been used to address a wide range of
tasks based on the reconstruction and analysis of gene net-
works: reconstruction of the hepatitis C virus interactome
(Saik et al., 2016); prioritization of genes associated with
susceptibility to tuberculosis (Bragina et al., 2016); systems
studies of preeclampsia (Glotov et al., 2015); analysis of the
comorbidity of asthma and tuberculosis (Bragina et al., 2014);
investigation of endothelial apoptosis in lymphedema (Saik
et al., 2019); analysis of gene expression and the proteomic
profile of clinical Helicobacter pylori strains associated with
early stages of gastric cancer (Momynaliev et al., 2010); pro-
teome stability in the Mars-500 project (Larina et al., 2015);
interpretation of metabolomic data in studies of postoperative
delirium (lvanisenko V.A. et al., 2024); and the melanoma
response to THz radiation (Butikova et al., 2025). Applying
ANDSystem to the analysis of plasma metabolomic data from
patients with COVID-19 made it possible to reconstruct gene
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networks describing the molecular genetic pathways through

which SARS-CoV-2 proteins influence metabolic disturbances

during infection (Ivanisenko V.A. et al., 2022). It was shown
that nonstructural coronavirus proteins play a particularly
important role in such networks.

In the present study, we used graph neural networks with
an attention mechanism (Velickovi¢ et al., 2017) to predict
new ligands of the ORF3a protein among metabolites and
drugs represented in the ANDSystem knowledge base. Using
amodel we trained on the ANDSystem knowledge graph, five
small molecules of endogenous and exogenous origin were
predicted to potentially interact with ORF3a:

1. N-acetyl-D-glucosamine — a monomer of the natural
polysaccharide chitin. According to molecular modeling
data, it can form stable complexes with four SARS-CoV-2
proteins: the Spike protein (PDB ID: 6MO0J), the nucleo-
capsid phosphoprotein N (PDB ID: 6WKP), the S protein
(PDB ID: 6X79), and the 3CLpro protease (PDB ID: 7JVZ),
and may potentially elicit an immune response against the
virus (Baysal et al., 2021; Tekin, 2023).

2. 4-(benzoylamino)benzoic acid — an amide derivative of
benzoic acid. This compound exhibits antiviral activity
against and Rift Valley fever virus (Islam et al., 2018).

3. Austocystin D — a polyketide metabolite of fungi of the
genus Aspergillus with cytotoxic and antineoplastic activity
(Marks et al., 2011).

4. Bictegravir — a small-molecule integrase inhibitor used to
treat HIV infection (Sax et al., 2023). Studies have shown
its high binding affinity to the Spike protein (Ahsan, Sajib,
2021; Sunetal., 2021) and to the main protease of SARS-
CoV-2 (Mpro, PDB ID: 6L.U7) (Oner et al., 2023).

5. L-threonine — an essential amino acid involved in protein
synthesis, glycosylation, and regulation of the immune re-
sponse. Evidence indicates that L-threonine levels change
in various viral infections, including COVID-19, reflecting
metabolic reprogramming in response to infection (Barberis
et al., 2020). Several studies have shown that amino acid
profiles, including threonine, can serve as biomarkers of
COVID-19 severity and are involved in regulating inflam-
matory responses and mucosal barrier functions (Paez-
Franco et al., 2021).

Molecular docking and binding free energy calculations
indicated that bictegravir and 4-(benzoylamino)benzoic acid
are the most promising candidates for experimental validation.
For bictegravir, binding energies of —7.37 kcal/mol (AutoDock
Vina) and —14.71 £ 3.12 kcal/mol (MM/GBSA) were obtained,
indicating higher affinity compared with 4-(benzoylamino)
benzoic acid (—5.68 kcal/mol and —11.01 £ 3.58 kcal/mol,
respectively). Bictegravir is therefore of particular interest as
a candidate for drug repurposing studies.

Materials and methods

The ANDSystem cognitive system. ANDSystem is a cogni-
tive platform for the automated extraction of facts and knowl-
edge from scientific publication texts and factual databases,
their integration into a unified ontological model (a knowledge
graph), and the reconstruction of associative gene networks
(Ivanisenko V.A. et al., 2015, 2019). In the knowledge graph,
vertices correspond to molecular genetic entities (genes, RNA

2025
29.7

MpeackasaHune B3ammopeincTenii 6enka ORF3a SARS-CoV-2
c nuraHpamm: ANDSystem, rpadoBble ceTu, MOAenMpoBaHue

transcripts, proteins, metabolites, drugs) as well as cellular-
and organism-level objects (cell types, biological processes,
diseases, phenotypic traits). Edges represent relationships
between entities, including regulatory relationships (effects on
expression, activity, stability, transport, etc.), physical contacts
(protein—protein, protein—ligand interactions), chemical rela-
tionships (catalytic reactions, post-translational modifications,
etc.), and associative links (gene—disease, gene—phenotype,
process—disease, etc.). In its current version, the ANDSystem
knowledge graph contains more than 1.5 million nodes and
over 100 million edges.

For recognition of biomedical entity names and extraction
of context-dependent relationships, ANDSystem uses more
than 20,000 semantic linguistic templates and rules; in addi-
tion, large language models are employed, which improves
the recall and precision of automated analysis of textual
sources. To predict new interactions — particularly protein—
protein interactions — graph neural networks (GNNs) trained
on the ANDSystem knowledge graph, which is built from
the scientific literature and specialized databases, are used
(Ilvanisenko T.V. et al., 2024).

ANDSystem includes the ANDDigest module — a special-
ized web-based system for searching and analyzing PubMed
publications grounded in the ANDSystem ontological model
and using dictionaries covering 13 types of biomedical entities
(Ilvanisenko T.V. et al., 2020, 2022). The ANDDigest database
contains indexed and annotated PubMed texts, as well as com-
puted characteristics and statistical co-occurrence measures
for biomedical entities, which are used in subsequent stages
of analysis and knowledge extraction.

Obtaining vector representations of nodes in the
ANDSystem knowledge graph. To compute vector represen-
tations of nodes in the ANDSystem knowledge graph, we used
a graph neural network with an attention mechanism (GAT)
based on TransformerConv (the PyTorch Geometric package,
version 2.5.3) (Fey, Lenssen, 2019). The network architecture
comprised four hidden layers with 256 neurons each. Every
node in the ANDSystem knowledge graph was described
by a 13-dimensional binary vector in which a value of “1”
indicated the object’s membership in one of the 13 dictionary
types defined by the ANDSystem ontology. Each edge was
encoded by a 50-dimensional vector: the first 49 components
corresponded to different interaction types and took values
of 0 or 1 depending on whether the given type of relationship
was present between the node pair in the knowledge graph,
and the last component contained a numerical estimate of
their co-occurrence (the p-value). This measure reflects the
statistical significance of the joint mention of the object pair
in PubMed abstracts and was computed using the ANDDigest
module. The final node vector representations produced by
the neural network had a dimensionality of 256.

The attention mechanism in each hidden layer comprised
four independent heads that computed the contribution of
neighboring nodes, that is, nodes connected to the node under
consideration by edges in the ANDSystem graph. In doing
S0, it took into account both the features of the neighboring
nodes themselves and the features of the edges linking them
(relationship types and the p-value). The loss function was the
logistic loss (Mao et al., 2023) with a temperature parameter
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1= 0.2. Parameters were optimized using AdamW (Zhou et
al., 2024).

Given the large size of the ANDSystem knowledge graph,
to speed up training, the model was not trained on the entire
graph at once but on subgraphs automatically generated from
it. For each target node, a subgraph was constructed that in-
cluded the node itself and its neighbors within at most three
hops. At each “neighborhood level” (i. e., at distances of 1, 2,
or 3 hops), the number of neighboring nodes considered was
limited: up to 15 at the first level, 10 at the second, and 5 at
the third. These neighbors were selected at random.

The computations were performed on a workstation with
six NVIDIA GeForce RTX 4090 GPUs (24 GB of memory
each); all programs were written in Python version 3.12.11.

Fully connected neural network. To predict new interac-
tions (edges) between proteins and metabolites in the AND-
System knowledge graph, a fully connected neural network
(multilayer perceptron) was used. The size of the input layer
matched the dimensionality of the vector representation of a
pair of nodes (512). The model architecture included three
consecutive hidden layers with 512, 256, and 128 neurons.
Each hidden layer used the Rectified Linear Unit activation
function (ReLU) (Glorot et al., 2011):

f(x) = max(0, X).

The output layer contained a single neuron, the value of
which reflected the probability of an edge existing between
two nodes. For each protein—-metabolite node pair, the neu-
ral network returned a value from 0 to 1, interpreted as the
probability of an interaction between that pair. A standard
threshold of 0.5 was used for classification: values above this
threshold were interpreted as the presence of an interaction,
and values below, as its absence (Harris, 2021).

From the ANDSystem knowledge graph, 250,000 object
pairs were randomly selected, each consisting of one entity of
type “protein” and the other of type “metabolite”; these pairs
were treated as positive examples. As negative examples,
an equal number of protein-metabolite pairs were randomly
assembled from the set of all proteins and metabolites under
the condition that the corresponding edge was absent from
the original knowledge graph.

For each pair (u, v), we constructed a composite feature
vector of length 512 (with node embedding dimensionality
d = 256), comprising four blocks: 1) vector representation of
the protein e,; 2) vector representation of the metabolite e,;
3) element-wise absolute difference |e, —e,|; 4) element-wise
product (Hadamard product) e, x e,.

The resulting array of vectors was split in an 80, 10, 10 %
ratio into training, validation, and test subsets, respectively.
The training subset was used to fit the model parameters du-
ring training; the test subset served for interim performance
assessment and selection of the model’s optimal hyperparam-
eters; and the validation subset was used only to evaluate the
accuracy of the final model after training. In each subset, the
ratio of positive to negative examples was 1:1.

The model’s performance after each training epoch (i. e.,
after the model had processed the entire training set) was
evaluated on the test dataset using the Matthews correlation
coefficient (MCC) (Chicco, Jurman, 2020), given by the
formula:

Prediction of ligand interactions with the SARS-CoV-2 ORF3a protein:
ANDSystem, graph neural networks, and modeling

TPXTN—FPXFN
MCC=

b

J (TP+FP)X(TP+FN)X(TN+FP)x(TN+FN)

where TP (true positives) — the number of object pairs cor-
rectly classified by the model as interacting; TN (true nega-
tives) — the number of object pairs correctly classified by the
model as non-interacting; FP (false positive) — the number of
object pairs incorrectly classified by the model as interacting;
FN (false negative) — the number of object pairs incorrectly
classified by the model as non-interacting.

Training was conducted over 83 epochs; the achieved MCC
was 0.9542, indicating high model accuracy. The neural net-
work was implemented using PyTorch version 2.4.1.

Molecular docking was used for an initial assessment
of affinity via the docking score (Vina score) and for build-
ing protein-ligand complex models. The Vina score used
at this stage is an empirical estimate of the binding energy
(kcal/mol); more negative values correspond to higher pre-
dicted affinity. Calculations were performed with AutoDock
Vina 1.2.0 (Python API) (Trott, Olson, 2010; Eberhardt et
al., 2021). Docking was carried out in a blind-docking mode,
defining a search region that encompassed the entire surface
of the ORF3a protein.

The most energetically favorable protein-ligand confor-
mations (minimum Vina scores) were used as the starting
structures for estimating the binding free energy (AG) by the
MM/GBSA method.

MM/GBSA evaluation. AG was calculated using the Am-
berTools package (Case et al., 2023). The method accounts for
molecular mechanics energies and solvation contributions (the
generalized Born model) with a nonpolar component propor-
tional to the solvent-accessible surface area, and provides an
approximate thermodynamic descriptor of complex stability.
The three-dimensional structure of the SARS-CoV-2 ORF3a
protein was obtained from the Protein Data Bank (PDB ID:
6XDC).

Results

Prediction of new protein-ligand interactions

using graph neural networks

The analysis workflow employed in ANDSystem to predict
new interactions with graph neural networks is shown in
Figure 1.

An associative human gene network at the whole-genome
scale was exported from the ANDSystem knowledge base.
The network included all 13 object types (including genes,
proteins, metabolites, diseases, and others) and 49 interac-
tion types (regulatory relationships: regulation of expression,
activity, stability, transport, etc.; physical interactions: pro-
tein—protein, protein-ligand, etc.). In total, the graph con-
tained about 310,000 nodes connected by 48 million edges.
To obtain vector representations of nodes in the knowledge
graph, a graph neural network with an attention mechanism
was trained; an F1 score of 0.8003 was reached by epoch 230.

Based on the obtained vector representations of proteins
and metabolites in the ANDSystem knowledge graph, a mul-
tilayer perceptron was trained as a binary classifier to predict
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edges missing from the graph. Training lasted 83 epochs; the
achieved MCC was 0.9542. The trained model was then used
to predict protein—metabolite edges for the ORF3a protein. In
total, 38,172 potential links of this protein with small mol-
ecules of endogenous and exogenous origin were analyzed —
including human metabolites and those of other organisms, as
well as drugs, inorganic molecules, and ions — and five novel
interactions not present in the ANDSystem knowledge base
were identified.

In Figure 2, the ORF3a interaction network is shown: edges
initially present in the ANDSystem knowledge base are de-
picted in black, and new links predicted by the graph neural
network and the binary classification model are shown in red.
The knowledge base contained 19 interactions extracted from
scientific publications, including both direct physical contacts
and associative links between ORF3a and small molecules. For
example, physical interactions experimentally confirmed by
fluorescence and UV-visible spectroscopy were reported for
chlorin and cationic porphyrins; in the same study, molecular
docking indicated complex formation for related porphyrins
(bacteriochlorin, tetraphenylporphyrin, TPP) (Lebedevaetal.,
2021). As an example of an associative link, one can cite the
ORF3a-bradykinin association discussed in the context of an
intensified “bradykinin storm” via ORF3a/NS7b interaction
in COVID-19 (Messina et al., 2021).

The group of predicted interactions comprised five can-
didates: N-acetyl-D-glucosamine (a chitin monomer and a
precursor for glycosylation); 4-(benzoylamino)benzoic acid
(a derivative of benzoic acid); austocystin D (a polyketide
metabolite of Aspergillus fungi); bictegravir (an HIV integrase
inhibitor; a medicinal drug); and L-threonine (an essential
amino acid).

Molecular docking and binding energy evaluation
To assess the ability of the five predicted small molecules
to physically interact with ORF3a, we performed molecular

2025
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docking using AutoDock Vina and, for the resulting 3D com-
plex models, recalculated the binding free energy (AG) by the
MM/GBSA method (Table 1). The docking score (Vina score),
which provides an empirical estimate of affinity, was used
for the relative ranking of ligands, whereas the MM/GBSA
AG values were considered an approximate thermodynamic
descriptor of complex stability.

According to AutoDock Vina, the highest predicted affinity
was shown by austocystin D (—8.296 kcal/mol) and bictegravir
(—=7.368 kcal/mol); intermediate affinities, by N-acetyl-D-
glucosamine (—6.242 kcal/mol) and 4-(benzoylamino)benzoic
acid (—5.682 kcal/mol); and the lowest affinity, by L-threonine
(—4.89 kcal/mol).

According to MM/GBSA, the most negative (i. e., lowest)
AG was obtained for austocystin D (=21.67 + 2.30 kcal/mol),
followed by L-threonine (—19.04 +2.15) and N-acetyl-D-glu-
cosamine (—16.76 +2.58), whereas bictegravir (—14.71 +£3.12)
and 4-(benzoylamino)benzoic acid (—11.01 £ 3.58) had AG
values of smaller magnitude.

Taken together, the docking scores (Vina score) and the
AG estimates from the MM/GBSA method indicate the
potential formation of ORF3a complexes with the analyzed
small molecules, serving as complementary criteria for the
computational assessment of affinity.

The 3D models of ORF3a complexes with the ligands under
study, constructed based on the results of molecular docking,
are shown in Figure 3. According to cryo-EM data, ORF3a
forms a dimer; each subunit contains three transmembrane
helices and a large cytosolic C-terminal domain (Kern et al.,
2021). ORF3a is predominantly localized to the membranes
of the Golgi apparatus, endosomes, and lysosomes, partici-
pating in the regulation of vesicular transport and lysosomal
exocytosis; it is also detected at the plasma membrane (Hinkle
et al., 2025).

It is known that ORF3a interacts with VPS39 (the HOPS
complex) and blocks the fusion of autophagosomes with

Gene network graph at the

ANDSystem Knowledge

« Over 300 species
« More than 1.5 million

whole-genome scale in humans

. 310 thousand entities (nodes)

Graph neural network
with attention:
vector representations of nodes

h ) . + 48 million interactions (edges)
b|me<':||ca| entltles'(genes, » » TransformerConv: 4 layers; resulting -
protelns, metabolites, 256 dimensional node representations
diseases, etc.)
+ Over 100 million
interactions
¥ 4

Extended gene network,

containing the original graph
and the predicted
new interactions -

Prediction of new ORF3a-metabolite
interactions (new edges in the graph)
- multilayer perceptron (MLP)
(512—256—128—1)
« threshold 0.5

Fig. 1. Schematic representation of the computational pipeline for predicting new interactions between human proteins and
metabolites based on analysis of the ANDSystem knowledge graph.
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Fig. 2. Interaction network of ORF3a with small molecules reconstructed using ANDSystem.

Dark lines indicate interactions supported by scientific publications; red lines indicate interactions predicted by the graph
neural network: N-acetyl-D-glucosamine, 4-(benzoylamino)benzoic acid, austocystin D, bictegravir, and L-threonine.

Table 1. Calculated ORF3a-ligand binding metrics from AutoDock Vina and MM/GBSA

No. Ligand AutoDock Vina (kcal/mol)* MM/GBSA (kcal/mol)**
1 Austocystin D -8.296 -21.67+23

2 Bictegravirum -7.368 -14.71+3.12

3 N-acetyl-D-glucosamine -6.242 -16.76 £ 2.58

4 4-(Benzoylamino)benzoic acid -5.682 -11.01 £3.58

5 L-threonin -4.89 -19.04 +2.15

* AutoDock Vina docking score (kcal/mol); ** binding free energy AG (kcal/mol) estimated by the MM/GBSA method.

lysosomes, leading to the accumulation of unfused autophago-
somes and facilitating viral evasion of degradation (Zhang J.
etal., 2021; Miller et al., 2023). For clarity, the corresponding
region of the protein involved in the interaction with VPS39
is highlighted with a box in the Figure 3.

According to the docking results, the binding sites of
L-threonine, bictegravir, and 4-(benzoylamino)benzoic acid
are located on the cytosolic surface of the dimer and partially
overlap with the ORF3a—VPS39 binding region (Fig. 3a).
L-threonine binds at the intersubunit interface (inter-subunit
cleft) of ORF3a, is deeply buried there, and is essentially
solvent-inaccessible. Bictegravir and 4-(benzoylamino)
benzoic acid occupy solvent-exposed surface regions of the
protein (Fig. 4). Austocystin D and N-acetyl-D-glucosamine
bind at the boundary between the cytosolic surface and the
transmembrane domain (Fig. 3b).

Details of hydrogen (H-) and hydrophobic contacts between
the ligands and ORF3a amino acid residues are given in
Table 2 and illustrated in Figure 5. N-acetyl-D-glucosamine
forms multiple H-bonds with residues Lys61, 11e63, Thr64,

Argl126, and others. 4-(Benzoylamino)benzoic acid forms
H-bonds with Ser165 and Asp226, as well as hydrophobic
contacts with Val225 and Val228. Austocystin D forms H-
bonds with Ser165, Glu226, His227, and Asn234 and hydro-
phobic contacts with His227. Bictegravir forms three H-bonds
(Serl65, Glu226, Asn234). L-threonine, located deep in the in-
tersubunit cleft at the dimer interface, forms multiple H-bonds
(with six residues) and hydrophobic contacts with 11e186.

Discussion
Building on our previous work with GraphSAGE for pre-
dicting protein—protein interactions (Ivanisenko T.V. et al.,
2024), in this study, we applied a graph neural network
with an attention mechanism to predict interactions of the
SARS-CoV-2 ORF3a protein with small molecules on the
ANDSystem knowledge graph and identified five candidate
ligands: N-acetyl-D-glucosamine, 4-(benzoylamino)benzoic
acid, austocystin D, bictegravir, and L-threonine.

Unlike the GraphSAGE architecture, attention-based mo-
dels update node representations by explicitly weighting the
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N-acetyl-D-
glucosamine
Austocystin D

4-(Benzoylamino)benzoic acid

Fig. 3. Spatial structures of ORF3a complexes with the analyzed ligands.

a - ORF3a complex with L-threonine, bictegravir, and 4-(benzoylamino)benzoic acid; b - ORF3a complex with austocystin D and N-acetyl-
D-glucosamine. The protein is shown in a ribbon representation; the two subunits of the dimer are colored differently. In panel (b), the
protein structure is rotated to better display the ligands. Ligands are shown in a stick representation; their positions are indicated by
arrows. L-threonine is shown in a space-filling (spheres) representation for clarity. Lines mark the regions of the protein corresponding
to its position within the membrane (Kern et al., 2021): cytosolic side, transmembrane region, and luminal side (the lumen of the Golgi
apparatus and endo-/lysosomes). The boxed area denotes the region involved in interaction with the VPS39 protein. Images were

generated in ChimeraX.

contributions of their neighbors: more informative relations
receive higher weights, and less informative ones, lower
weights. Multiple attention heads operate in parallel, and
their outputs are then aggregated into the final node vector,
enabling a more precise accounting of the local graph context
(Wu et al., 2021).

To validate these predictions, we performed molecular
docking and estimated the binding free energy (AG) of the
protein—ligand complexes using the MM/GBSA method.
The calculations showed that the predicted binding sites of
austocystin D and N-acetyl-D-glucosamine are located at the
boundary between the cytosolic surface and the transmem-
brane domain of ORF3a, whereas L-threonine, bictegravir,
and 4-(benzoylamino)benzoic acid bind on the cytosolic side
of the dimer; moreover, the binding regions of bictegravir
and 4-(benzoylamino)benzoic acid partially overlap with the
ORF3a-VPS39 interaction region.

The interaction of ORF3a with the host protein VPS39, a
subunit of the homotypic fusion and protein sorting (HOPS)
complex that regulates the late stages of endosome—lysosome
compartment fusion, is well characterized (Zhang J. et al.,
2021; Miller et al., 2023). It hinders the fusion of autopha-
gosomes and late endosomes with lysosomes, thereby sup-
pressing autophagic flux — a key pathway for the degradation
of viral components.

The functional significance of the interaction interface be-
tween ORF3a and VPS39 is supported by the presence of an
YXX® motif in the cytosolic domain of ORF3a (Y, tyrosine;
X, any amino acid; @, a hydrophobic residue).

In ORF3a, this motif is present as the sequence YNSV
(residues 160-163). Studies (Zhang J. et al., 2021; Miller et
al., 2023) have shown that the point mutation Y 160A disrupts
co-immunoprecipitation of ORF3a with VPS39 and lifts
the blockade of HOPS-dependent fusion, partially restoring
autophagic flux.

It can be hypothesized that the predicted locations of the
binding sites for bictegravir and 4-(benzoylamino)benzoic
acid could influence the formation and/or stability of the
ORF3a-VPS39 complex, making them promising candidates
for functional intervention at the HOPS-dependent stage of
autophagosome-lysosome fusion.

Taken together across metrics (Vina score and MM/
GBSA AQG), bictegravir shows more negative values — in-
dicating higher predicted affinity — than 4-(benzoylamino)
benzoic acid (Vina score —7.37 kcal/mol and MM/GBSA
AG —14.71 + 3.12 kcal/mol vs. —5.68 kcal/mol and
—11.01 + 3.58 kcal/mol, respectively). In addition, bictegra-
vir is a licensed HIV integrase inhibitor (the drug Biktarvy)
(Gallant et al., 2017), making it a promising repurposing
candidate. A potential mechanism of action for bictegravir as
atherapeutic for COVID-19 could be inhibition of the ORF3a
interaction with the host protein VPS39, which in turn would
neutralize ORF3a’s ability to block fusion of endosome-
lysosome compartments and promote degradation of viral
components in lysosomes. In turn, 4-(benzoylamino)benzoic
acid may be of interest as an aromatic carboxamide fragment
for targeting protein—protein interaction interfaces within the
ORF3a structure (Marks et al., 2011).
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4-(Benzoylamino)benzoic

Fig. 4. Surface of ORF3a bound to bictegravir (a) and 4-(benzoylamino)benzoic acid (b).

Images were generated in ChimeraX.
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Fig.5. Detailed representation of the interactions of the analyzed ligands with ORF3a amino acid residues.

a - N-acetyl-D-glucosamine; b - 4-(benzoylamino)benzoic acid; ¢ —austocystin D; d - ictegravir; L-threonine. The ligand is shown in yellow and amino acid residues
in blue. Hydrogen bonds are shown as solid lines; hydrophobic interactions are shown as dashed lines. Images were generated in PyMOL.

Conclusion

Our approach — predicting new protein—ligand interactions
on the ANDSystem knowledge graph followed by molecular
docking and estimation of binding AG via the MM/GBSA
method — enabled us to identify promising small-molecule
ligand candidates for the SARS-CoV-2 ORF3a protein.
Among the selected compounds, bictegravir and 4-(benzo-
ylamino)benzoic acid are of greatest interest: their predicted
sites lie on the cytosolic surface of ORF3a and partially
overlap with the ORF3a—VPS39 interaction region. Based
on energetic estimates, bictegravir shows more negative
Vina score and AG values: AutoDock Vina, —7.37 kcal/mol;
MM/GBSA, —14.71 £ 3.12 kcal/mol. For 4-(benzoylamino)

benzoic acid, comparable but smaller-magnitude values
were obtained: —5.68 kcal/mol and —11.01 + 3.58 kcal/mol,
respectively.

Alimitation of this study is the lack of explicit consideration
of the lipid bilayer: the calculations were performed without
embedding the protein in a membrane, which may affect
the conformation of ORF3a and the energetic contributions
associated with ligand penetration into the hydrophobic
environment. As a next step, molecular dynamics in a
membrane model with recalculation of binding energies
could be performed, followed by experimental validation of
the results.
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Table 2. Molecular interactions of the ORF3a protein with ligands, obtained from analysis
of the reconstructed ORF3a-ligand complexes using the PLIP (Protein-Ligand Interaction Profiler) web server

Ligand Amino acid residue numbe* Amino acid residue** Distance, A Interaction type
Austocystin D 165B SER 2.45 H-bond

226A GLU 3.70

227A HIS 2.83

234B ASN 2.85

227A HIS 3.59 Hydrophobic
Bictegravir 165A SER 2.44 H-bond

226B GLU 2.20

234A ASN 235
N-acetyl- 61B LYS 2.07 H-bond
D-glucosamine

63B ILE 2.17

63B ILE 2.69

64B THR 3.15

122A ARG 2.07

122A ARG 2.52

126A ARG 2.36

142A ASP 245

143A ALA 3.03

206A TYR 2.87

206A TYR 3.69 Hydrophobic
4-(Benzoylamino) 165B SER 2.53 H-bond
benzoic acid

226A GLU 3.36

225A VAL 3.93 Hydrophobic

226A GLU 3.69

228A VAL 3.55
L-threonine 166B SER 3.28 H-bond

168B VAL 2.25

170A THR 2.08

185A GLN 2.34

187A GLY 2.36

188A GLY 2.85

186B ILE 3.69 Hydrophobic

* Amino acid residue numbering follows the ORF3a sequence; the chain identifier is given according to the PDB structure 6XDC.
**The amino acid involved in the interaction is indicated.
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Taken together, the in silico results identify bictegravir
as a priority candidate for experimental studies of its
interaction with ORF3a — including within a drug-repurposing
framework — and provide a foundation for further optimization
of small molecules targeting this protein.
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The effect of dimeric bisbenzimidazoles on the activity
of DNA repair enzymes TDP1, TDP2, PARP1 and PARP2
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Abstract. Oncological diseases remain a leading cause of pathological mortality worldwide, making the development
of anticancer drugs a critical focus in medicinal chemistry. A promising strategy to enhance therapeutic efficacy and
reduce chemotherapy-induced toxicity involves the combined inhibition of DNA repair enzymes and topoisomerases.
Of particular interest are minor-groove DNA ligands, which exhibit potent inhibition of DNA-dependent enzymes
while having low toxicity and mutagenicity. A number of research groups, including ours, are developing inhibitors
of DNA repair enzymes that act simultaneously on several targets: tyrosyl-DNA phosphodiesterase 1/2 (TDP1/TDP2),
poly(ADP-ribose) polymerase 1 (PARP1)/TDP1, topoisomerase 1 (TOP1)/TDP1.Such bifunctional inhibitors are designed
to resolve the problem of tumor cell resistance to known chemotherapy drugs and increase the effectiveness of the
latter. In this study, we evaluated the inhibitory activity of 22 minor-groove DNA ligands - bis- and trisbenzimidazoles
against four key repair enzymes: TDP1, TDP2, PARP1, and PARP2. Four series of dimeric compounds and their
monomeric units were studied. The difference in inhibitory activity of dimeric bisbenzimidazoles depending on the
structure of the compound and the enzyme is shown. Our findings reveal distinct structure-activity relationships, with
monomeric and dimeric ligands exhibiting potent TDP1 inhibition at micromolar to submicromolar ICs, values (half-
maximal inhibitory concentration). Notably, dimeric compounds from the DB,Py(n) and DB3P(n) series demonstrated
superior TDP1 inhibition compared to their monomers. In contrast, all tested compounds showed negligible activity
against the other three repair enzymes; so, the compounds demonstrate specificity to TDP1. It should be noted that
in this work, in the experiments with TDP1 and TDP2, the effect of the tested compounds as narrow-groove ligands
binding to DNA was excluded, and their direct effect on the enzyme was investigated. The results of molecular docking
suggest the possibility of direct interaction of active compounds with the active center of TDP1. According to the
results of modeling, the inhibitors are located in the binding region of the 3’-end of DNA in the active site of TDP1
and could form stable bonds with the catalytically significant TDP1 residues His263 and His493. These interactions
probably provide the high inhibitory activity of the compounds observed in biochemical experiments.

Key words: tyrosyl-DNA phosphodiesterase 1 (TDP1); TDP1 inhibitor; inhibitory activity; TDP2; PARP1; PARP2; DNA-
ligands; bisbenzimidazole derivatives
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Dimeric bisbenzimidazoles as inhibitors
of DNA repair enzymes TDP1, TDP2, PARP1 and PARP2

1 VIHCTUTYT XrMmyeckor 6uonoruv n dyHaameHTanbHon MeguumnHbl Cbmnpckoro otaeneHmna Poccuinckon akagemmm Hayk, HoBocnbumpck, Poccua

2 WHcTUTYT MonekynapHoii 6uonorum nm. B.A. DHrenbrapara Poccuiickoin akafiemui Hayk, MockBa, Poccna

3 DepfepanbHbIi NCCNEAOBATENBCKNIA LeHTP VIHCTUTYT uuTonorum n reHetrkn Cnbrnpckoro otaeneHns Poccrinckon akafemmn Hayk, Hosocrnbumpck, Poccusa
4 WHcTuTyT BrnoopraHunyeckoin xummnmn nm. akagemmkos M.M. Liemakuta 1 t0.A. OBunHHUKOBa Poccuincko akapemmn Hayk, Mocksa, Poccua

@ lavrik@1bio.ru

AHHoTauuA. OHKonornyeckrie 3aboneBaHnA OCTalTCA OLHOW U3 TMaBHbIX NPUYNH MaTONOMMUYeCcKol CMEePTHOCTH B
MMpe, YTO onpefensaeT An3aiiH NPOTUBOPAKOBbIX MPEnapaToB Kak KlouyeBoe HanpaBneHne MeanLUHCKON XUMUN.
KombrHaumsa unHrmbutopos ¢epmeHToB penapauun [HK ¢ uHrmbutopamm Tomousomepas — MNepCrneKTUBHbIN
NoaXoA ANs YCUNEHUA NPOTVBOPAKOBOrO AENCTBUA W CHUXKEHMWS TOKCUYHOCTU XumuoTtepanuun. Ocobblii nHTepec
npeacTaBnAloT  y3kobopo3gouHble [OHK-nuraHabl, cnocobHble 3¢dekTuBHO wuHrmbmposats [HK-3aBucrmble
depmeHTbl, 06nagaa nNpy 3TOM HU3KOWM TOKCMYHOCTBIO 11 MyTareHHOCTbI. PAf nccnefoBaTenbCcKMX rpynm, BKAYas
Hawy, pa3pabaTbiBaeT UHrM6MTOPLI depmeHTOB penapauun [HK, Aeicteyowre OfHOBPEMEHHO Ha HECKOJSIbKO
B3aMMOCBA3aHHbIX MuLeHel {Tnpo3un-AHK-docdonnactepasbl 1/2 (TDP1/TDP2), nonn(AA®-pubo3za)nonnmepasa 1
(PARP1)/TDP1, Tononsomepasa 1 (TOP1)/TDP1}. Takue 61dyHKUMOHaNbHbIE MHTMOUTOPbI MPY3BaHbI PeLINTb Npobriemy
PE3MCTEHTHOCTM OMyXONeBbIX KNeTOK K M3BECTHbIM XMmuonpenapatam 1 NoBbiCUTb 3PPEeKTVBHOCTb MOCNeaHMX.
B HacToALeM nccnefoBaHUY NpeacTaBneHbl AaHHbIE CKPUHUHIA MHIMOUPYIOLLEN aKTUBHOCTY 22 y3KOOOPO3[0UHbIX
nuraHpos, B3anmogenctayowmx ¢ AHK, - 6uc- n TpncbeH3MMmMaasonos — B OTHOLIEHUW 4eTbipex $epMeHTOB
penapauunun: TDP1, TDP2, PARP1 1 PARP2. /i3yueHbl ueTbipe cepumn ANMEPHbIX COEAUHEHNI 11 UX MOHOMEPHbIX e ANHUL,.
MokasaHa pa3sHMLUa B UHIMOMPYIOLWENn aKTUBHOCTM AUMEPHbIX 6MCOEH3MMIMAA30/0B B 3aBNCUMOCTM OT CTPYKTYpPbI
coeaunHeHVA 1 epmeHTa. MOHOMEpPHbIEe 1 AUMepPHble 61cHeH3MMIAa30bl SPGEKTUBHO MHIMOUPYIOT aKTUBHOCTL TDP1
B MUKPOMOJIAPHOM 1 CYOMUKpPOMONApHOM fnanasoHe ICg, (KOHLEHTpaLua noslyMakcmManbHOrO MHIMOMPOBaHNS).
OumepHble coefuHeHua rpynn DB,Py(n) n DB;P(n) npoasunn 6onee 3HaunTenbHYl0 WHIMOMPYIOLLYO akTUBHOCTb
B OTHOLWEHUN PpepMeHTaTMBHOW peakummn ¢ yyactmem TDP1 no cCpaBHeHWIO C MOHOMEpamy, BXOAALWMMU B KX
cocTaB. [InA Bcex NCCNefoBaHHbIX COeAVHEHNI Gblna NoKasaHa HU3Kaa MHrMbupyowasa cnocobHOCTb B OTHOLLEHNN
OCTanbHbIX Tpex depmeHTOB penapaunn HK, T. e. Habnogaetcs ux cneynduyeckoe Bo3aencTere NMeHHo Ha TDP1.
CnepyeT OTMETUTB, YTO B laHHOI paboTe B aKkcneprmeHTax ¢ TDP1 1 TDP2 6b1n10 NCKNIOUEHO AeNCTBIE UCCNEeLyEMbIX
COefIHEHNI KaK Y3KOOOPO3[4OUHbIX NuUraHaoB, cBasbiBaowmxca ¢ AHK, n nccnepoBaHo Mx HenocpeacTBEHHOE
BO3JencTBue Ha pepmeHT. Mo pesynbTaTtaM MONEKYNAPHOIO AOKMHIA MOXHO MPefnonoXnTb BO3MOXHOCTb MPSAMOro
B3aMMOLENCTBMA U3YYaeMblX COeMHEHUI C akTUBHbIM LeHTpom TDP1. CornacHo pesynbTaTaM MOLENMpOBaHUA,
VNHIMOMTOPbI pacnonaratTca B 061acTu cBA3biBaHUA 3'-koHua [HK c aktnBHbIM LeHTpomM TDP1 1 MmoryT 06pa3oBbiBaTh
YCTONYMBbIE CBA3U C KaTaIMTUYECKM 3HAaUYMMbIMM OCTaTKaMM akTUBHOTO LieHTpa His263 n His493. 3Tu B3aumogencTaus,
BEPOATHO, 06EeCMNeUnBaloT BbICOKYIO MHIMOVPYIOLLYIO akKTVBHOCTb COeAVHEHUN, HabnogaeMylo B GMOXMMUYECKMX
JKCNneprMeHTax.

Kniouesble cnosa: Tuposun-AHK docpoamactepasa 1 (TDP1); unrnbutop TDP1; nHrmbupytowan akTmusHocTs; TDP2;

PARP1; PARP2; OHK-nuraHgbl; npon3BogHble bucbeH3rmmuaasona

Introduction

Nowadays, DNA repair enzymes are actively studied by
various researchers to understand the mechanisms of main-
taining genetic stability and preventing the development of
various diseases. Disruptions in DNA repair systems lead to
the accumulation of modified bases, DNA breaks, and other
damages, which increase the risk of developing oncological
and other diseases. The study of DNA repair system fun-
ctioning helps to identify the causes of hereditary diseases,
neurodegenerative dysfunctions associated with repair defects,
and develop new methods for the therapy and prevention of
oncological diseases.

In recent years, considerable attention has been paid to DNA
repair enzymes as targets for drug development. Researchers
are actively searching for new compounds that suppress the
activity of DNA repair enzymes to enhance the efficacy of
anticancer therapy. Inhibition of enzymes involved in repair
increases the effectiveness of antitumor therapy, as this leads
to cancer cell death due to the accumulation of DNA damage
caused by chemotherapy or radiation therapy. Currently, such

repair enzymes as tyrosyl-DNA phosphodiesterases 1 and 2
(TDP1 and TDP2) and poly(ADP-ribose) polymerases 1
and 2 (PARP1 and PARP2) are considered promising targets
for drug development (Pommier et al., 2014; Curtin, Szabo,
2020; Zakharenko et al., 2023).

TDP1 is a DNA repair enzyme that participates in the re-
moval of covalent adducts of topoisomerase 1 (TOP1) from
DNA, catalyzing the hydrolysis of the phosphodiester bond
between the Tyr723 residue of TOP1 and the 3'-phosphate
group in the single-strand DNA break generated by TOPI.
TDP1 is also capable of removing other DNA-protein adducts
located at the 3'-end of DNA and various other damage at the
3’-end of DNA (Comeaux, van Waardenburg, 2014; Kawale,
Povirk, 2018). TDP2 catalyzes the hydrolysis of covalent ad-
ducts between DNA and the Tyr804 residue of the active center
of topoisomerase 2 (TOP2) (Pommier et al., 2010). TDP2
removes covalent adducts from DNA located at the 5’-end
of DNA through hydrolysis of the 5'-phosphodiester bond,
resulting in the formation of DNA with a free 5’-phosphate
(Pommier et al., 2014). TDP1 and TDP2 are capable of taking
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over each other’s functions to some extent, since TDP1 has
low activity in the cleavage of 5'-phosphotyrosyl bonds, while
TDP2 has low activity in the cleavage of 3'-phosphotyrosyl
bonds (Zeng et al., 2012; Pommier et al., 2014).

Today, topoisomerase inhibitors are widely used in clinical
practice as anticancer drugs. The most widely used topoiso-
merase inhibitors are topotecan and irinotecan, which sup-
press the activity of topoisomerase 1, as well as etoposide,
targeting topoisomerase 2 (Pommier et al., 2010). Their
mechanism of action consists in the formation of covalent
adducts of topoisomerases with DNA, replication arrest,
which ultimately leads to the suppression of cell proliferation.
Various researchers have expressed the opinion (Pommier
et al., 2014; Zakharenko et al., 2015) that the use of TDP1
and TDP2 inhibitors, which enhance the efficacy of topoiso-
merase inhibitors, may allow reduction of the dose of these
rather toxic drugs and, consequently, the toxicity of therapy.
Today, the search for TDP1 inhibitors is actively underway
(Zakharenko et al., 2023; Zhang M. et al., 2025). As TDP1
inhibitors, derivatives of natural compounds such as usnic
acid, berberines, coumarins, nucleosides, and steroids are
particularly notable (Zakharenko et al., 2023), which are ef-
fective inhibitors of the purified TDP1 enzyme and topotecan
sensitizers in experiments conducted on cellular and mouse
cancer models (Zakharenko et al., 2023; Kornienko et al.,
2024). Among TDP2 inhibitors, deazaflavins are worth noting,
being among the most active inhibitors found to date for this
enzyme (Marchand et al., 2016).

The enzymes PARP1 and PARP2 are key regulators of
DNA repair and other cellular processes. These enzymes cata-
lyze the DNA-dependent synthesis of the branched polymer
poly(ADP-ribose) (PAR) and subsequent ADP-ribosylation of
proteins. ADP-ribosylation of proteins is a post-translational
modification that is induced in response to DNA damage.
PARP1 participates in various DNA repair pathways (Ray
Chaudhuri, Nussenzweig, 2017; Lavrik, 2020). PARP2 is
also a DNA-dependent PARylation agent and can partially
replace PARP1 (Lavrik, 2020; Szanto et al., 2024); therefore,
the search for PARP1 and PARP2 inhibitors is an urgent task
of modern medicinal chemistry. In clinical practice, such
PARP1 and PARP2 inhibitors as olaparib, rucaparib, niraparib,
veliparib, and talazoparib are currently approved for use in
the treatment of ovarian, fallopian tube, breast, and peritoneal
cancer (Kim D.-S. etal., 2021). The inhibitors used today work
on the principle of synthetic lethality to destroy cancer cells
with defects in the homologous recombination system (for
example, with BRCA1/2 mutations), converting single-strand
DNA breaks into double-strand breaks that cannot be effec-
tively repaired, leading to cancer cell death. The active sites
of PARP1 and PARP2 are very similar (Schreiber et al., 2006;
Hoch, Polo, 2019); therefore, the currently known inhibitors
most often act on both enzymes, as well as on other enzymes
of the PARP family, due to the similarity of their active center
that binds nicotinamide adenine dinucleotide (NAD*) and ini-
tiates the synthesis of poly(ADP-ribose), therefore the search
for selective inhibitors of each of these enzymes is actively
conducted (Johannes et al., 2024). PARP inhibitors approved
for clinical use are quite toxic and cause severe side effects,
so the search for new inhibitors actively continues (Murai et
al., 2014; Kim D.-S. et al., 2021; Johannes et al., 2024).
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Small-molecule DNA-binding agents are an extremely
promising class of compounds for the search of new inhibi-
tors of repair enzymes. Of particular interest are minor-groove
DNA ligands capable of inhibiting DNA-dependent enzymes,
while not possessing high toxicity and mutagenicity, and being
well soluble in water. Such DNA ligands have a low level of
DNA geometry alteration and absence of covalent crosslink
formation when forming a complex with DNA (Arutyunyan
et al., 2023a).

Our research group has significant experience both in
experimental investigation of potential inhibitors at the
level of individual protein targets, cells, and animal models
(Zakharenko et al., 2023), and in the application of molecular
docking and modeling methods to study the mechanisms of
interaction of small molecules with target proteins. Effective
TDP1 inhibitors have been found that inhibit the recombinant
TDP1 enzyme in the submicromolar concentration range. The
lead compounds were topotecan sensitizers in experiments
conducted on cell cultures and mouse tumor models (Zakha-
renko et al., 2023; Kornienko et al., 2024). We have developed
and investigated inhibitors of PARP1, PARP2, and PARP3
based on conjugates of ADP and morpholino nucleosides us-
ing structural modeling of the active sites of these enzymes
(Sherstyuk et al., 2019; Chernyshova et al., 2024).

This work presents screening data of twenty-two minor-
groove ligands as inhibitors of TDP1, TDP2, PARP1, and
PARP2. The studied compounds are bis- and trisbenzimidazole
derivatives. Four monomeric compounds — MB,, MB,(Ac),
MB,Py(Ac), MB, — as well as four series of dimeric deriva-
tives were investigated. The dimeric derivatives were obtained
by condensation of monomeric subunits with dicarboxylic
acids DB,P(n), DB,Py(n), and DB,P(n), where (n) is the
number of methylene units in the linker (Fig. 1).

It was shown that the activity of the compounds varies
depending on their structure and the type of enzymatic target.
The studied compounds exhibited pronounced inhibitory
activity against TDP1, and the observed correlation indicates
an increase in inhibitor activity upon introduction of addi-
tional binding blocks into its structure, such as a pyrrole-
carboxamide fragment for the DB,Py(n) series, or when using
a combination of three benzimidazole blocks in the monome-
ric subunit. Despite the fact that extremely high ICg, values
were observed for the DB,(n) series, this phenomenon can be
explained by the high propensity of members of this series
of compounds to aggregation, since the introduction of a pi-
perazine fragment into the linker in the DB,P(n) series led to
the obtaining of inhibitors with the lowest IC; values, which
indirectly confirms our assumption. In order to elucidate the
possible mechanism of their inhibitory action for this enzyme,
molecular docking was performed, the results of which suggest
the presence of direct interaction between the active com-
pounds and the TDP1 enzyme. According to the constructed
binding model, the inhibitors are located in the region of the
DNA-binding pocket of TDP1 and are capable of forming
stable contacts with the catalytically important amino acid
residues His263 and His493. The efficacy of these compounds
as TDP1 inhibitors was confirmed by experimental data. The
results of the work can be used for the rational design of new,
even more effective TDP1 inhibitors.
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MB,

MB,Py(Ac)

DB,P(n),n=1,2,3,4

DB3P(n), n=1,2,3,4

DB;(n), n=1,5,9

DB,Py(n), n=1,3,4,5,7,9, 11

Fig. 1. Structures of bisbenzimidazole derivatives studied in this work.

Materials and methods
Materials and reagents. The studied compounds were synthe-
sized at the Engelhardt Institute of Molecular Biology in the
Laboratory of DNA-Protein Interactions according to previ-
ously developed methods (Ivanov et al., 2015; Arutyunyan et
al.,2023a, b; Susova et al., 2024). The list of [IUPAC names of
the compounds is provided in the Supplementary Materials?.
Recombinant human proteins tyrosyl-DNA phosphodieste-
rase 1 (TDP1) and tyrosyl-DNA phosphodiesterase 2 (TDP2)
were expressed in the E. coli system, poly(ADP-ribose)
polymerase 1 (PARP1) and poly(ADP-ribose) polymerase 2
(PARP2) were expressed in insect cells using a baculovirus
expression system and purified as described in (Sukhanova et
al., 2004; Sherstyuk et al., 2019; Dyrkheeva et al., 2020, 2021).
The oligonucleotide 5'-FAM-AAC GTC AGG GTC TTC
C-BHQ1-3' was synthesized at the Laboratory of Nucleic Acid
Chemistry, Institute of Chemical Biology and Fundamental
Medicine (Novosibirsk, Russia), according to (Zakharenko
etal., 2015).

1 Supplementary Tables S1, S2 and Figs S1-54 are available at:
https://vavilov.elpub.ru/jour/manager/files/Suppl_Dyrkheeva_Engl_29_7.pdf

Dimeric bisbenzimidazoles as inhibitors
of DNA repair enzymes TDP1, TDP2, PARP1 and PARP2

MB,(Ac)

MB;

Determination of TDP1 activity. The reaction mixture
(200 pl) for real-time fluorescent detection of TDP1 enzyme
activity (Zakharenko et al., 2015) contained TDP1 reaction
buffer (50 mM Tris-HCI, pH 8.0, 50 mM NacCl, and 7 mM
B-mercaptoethanol), 50 nM oligonucleotide 5'-FAM-AAC
GTC AGG GTC TTC C-BHQI-3', the test compound at
various concentrations, and TDP1 at a final concentration of
1.5 nM. The reaction mixtures were incubated at a constant
temperature of 26 °C in a POLARstar OPTIMA microplate
fluorometer (BMG LABTECH, GmbH, Ortenberg, Germany).
Fluorescence intensity (Ex485/Em520 nm) was measured
every minute for 10 min. Mean values of half-maximal
inhibitory concentration (IC., — the concentration of the
compound that inhibited 50 % of enzyme activity compared
to the untreated control well containing only enzyme and
substrate) were determined using a dose-response curve of the
fluorescence signal level versus inhibitor concentration and
calculated using MARS Data Analysis 2.0 (BMG LABTECH).
Kinetic curves were obtained in at least three independent
experiments and statistically processed in OriginPro 8.6.0
(OriginLab, Northampton, Massachusetts, USA).
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Determination of TDP2 activity. For determination of
TDP2 enzyme activity, an oligonucleotide 5'-tyrosine-AAC
GTCAGG GTCTTC C-FAM-3' containing a 6-FAM label at
the 3'-end and an L-tyrosine residue attached via the phenolic
OH group to the 5'-terminal phosphate was used as substrate,
synthesized at the Russian-French-Japanese Laboratory
of Bionanotechnology of Novosibirsk State University as
described in (Dyrkheeva et al., 2021). The substrate at a
concentration of 100 nM was incubated with TDP2 at a con-
centration of 200 nM in the absence or presence of inhibitor
(500 uM) for 10 min at 37 °C in buffer containing 50 mM
Tris-HCI, pH 8.0, 50 mM NaCl, 7 mM B-mercaptoethanol
(Dyrkheeva et al., 2021). The reaction was stopped by addition
of PAGE loading buffer (TBE, 10 % formamide, 7 M urea,
20 mM EDTA, 0.1 % xylene cyanol, and 0.1 % bromophenol
blue). The samples were then heated at 90 °C for 5 min. The
enzymatic reaction products were separated by electrophoresis
in 20 % denaturing PAGE with 7 M urea at an acrylamide
to bisacrylamide ratio of 19:1. A high-resolution Typhoon
FLA 9500 laser scanner (GE Healthcare, Chicago, Illinois,
USA) was used for gel scanning and visualization, and the
data were analyzed using QuantityOne 4.6.7 software (Bio-
Rad Laboratories, Inc., Hercules, California, USA). At least
three independent experiments were performed, and statistical
processing was carried out using OriginPro 8.6.0 (OriginLab,
Northampton, Massachusetts, USA).

Determination of PARP1 and PARP2 activity. For
determination of PARP1 and PARP2 enzyme activity in
the presence and absence of test compounds, radiolabeled
[*2P]-NAD* was synthesized from a-[32P]-ATP according to
the protocol (Sherstyuk et al., 2019). The auto-poly(ADP-
ribosyl)ation reaction was performed in buffer for PARP1:
50 mM Tris-HCI, pH 8.0, 10 mM MgCl,, 150 mM NaCl,
and 7 mM PB-mercaptoethanol, as well as 2 A, units/ml
activated DNA, 0.3 mM [32P]-NAD" at 37 °C. The reaction
was initiated by addition of PARP1 to 200 nM and carried out
for 2 min.

The buffer for PARP2 contained: 50 mM Tris-HCI, pH 8.0,
3 mM spermine, 150 mM NaCl, and 7 mM B-mercaptoethanol,
2 A, units/ml activated DNA, 0.6 mM [32P]-NAD" at 37 °C.
The reaction was initiated by addition of PARP2 to 600 nM,
and the reaction mixtures were incubated for 5 min. The reac-
tion was stopped by placing 5 pl aliquots on Whatman 1 paper
filters impregnated with 5 % trichloroacetic acid (TCA). The
filters were washed with 5 % TCA four times and air-dried
after removal of TCAwith 90 % ethanol. The incorporation of
the radioactive label into the reaction product was calculated
using a Typhoon FLA 9500 scanner (GE Healthcare, Chicago,
[llinois, USA). At least three independent experiments were
performed.

Molecular modeling. To evaluate the interaction of the
studied compounds with the TDP1 enzyme, we performed
molecular docking followed by analysis of the resulting com-
plexes. The study included preparation of protein and ligand
structures, molecular docking, energy minimization of com-
pounds in the binding site, and assessment of inhibitor affinity
using the Vinardo, X-Score, and REF2015 scoring functions.

The crystal structure of TDP1 (PDB ID: §V0OB) was used as
the target protein structure. Missing loops in the model were
reconstructed based on AlphaFold2 prediction (Jumper et al.,
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2021) performed in ColabFold (Mirdita et al., 2022) without
using multiple sequence alignment (MSA) and using 8VOB
as a template.

Hydrogen atoms were then added to the resulting model and
charges were calculated using the DockPrep utility in UCSF
Chimera (Pettersen et al., 2004). The inhibitor structures were
prepared in OpenBabel (O’Boyle et al., 2011): hydrogens
were added, partial charges were calculated, and geometry
minimization was performed.

Molecular docking was performed using the UCSF
DOCK 6.11 software package (Allen et al., 2015). Full-
atom flexible docking over the entire protein surface was
used. At the first stage of docking, the core fragments of the
inhibitors (MB,(Ac), MB,Py(Ac)) were positioned, after
which full-length molecules were docked with subsequent
minimization of their energy in the binding site. Up to nine
best conformations by GridScore were requested for each
compound. From the nine conformations obtained for each
ligand, the structure with the minimum RMSD relative to
the optimal conformation of the core fragment was selected.
In cases where DOCKG6 returned fewer than nine unique
conformations (due to clustering, energy filtering, or failure
to generate additional conformers), selection was performed
from all available conformations (Table S1).

Final assessment of the inhibitors’ binding ability to the
protein was performed using several independent scor-
ing functions: ContinuousScore from DOCK 6, Vinardo
(Quiroga, Villarreal, 2016), X-Score (Wang R. et al., 2002),
and REF2015 in the PyRosetta4 environment (Chaudhury
et al., 2010; Alford et al., 2017) according to the protocol of
Moretti et al. (2016). ContinuousScore is a scoring function
in DOCK 6 that accounts for van der Waals interactions,
electrostatic interactions, internal ligand energy, and penalties
for steric clashes through direct calculation of interatomic
distances. Vinardo is a scoring function for docking that ac-
counts for the contribution of hydrogen bonds, hydrophobic
and van der Waals interactions, as well as corrections for
non-optimal ligand positioning. The X-Score scoring func-
tion consists of three components: HPScore, HMScore, and
HSScore, based on different empirical principles for assessing
ligand-protein affinity. In this study, the averaged X-Score
was used, reflecting the influence of hydrophobic, polar, and
electrostatic contacts. The full-atom REF2015 scoring func-
tion implemented in PyRosetta includes contributions from
van der Waals, electrostatic, hydrogen bonding, solvation, and
additional atom pair interactions and allows correct ranking
of inhibitor positions close in energy.

To validate the molecular docking results and assess the
stability of the predicted complex over time, molecular
dynamics simulation of the TDP1 complex with the lead
compound DB,Py(1), which had shown the best inhibitory
activity, was performed. The simulation was carried out using
the OpenMM 8 package (Eastman et al., 2017). A detailed
protocol of the molecular dynamics simulation is presented
in the Supplementary Materials.

Results

In this work, the ability of four series of small-molecule
dimeric DNA ligands DB,P(n), DB,Py(n), DB,(n), DB;P(n)
as well as their monomeric units MB,, MB,(Ac), MB,Py(Ac),
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and MB; (Fig. 1) to inhibit the activity of recombinant DNA
repair enzymes TDP1 and TDP2, PARP1 and PARP2 was
studied for the first time (see the Table).

The first group of studied compounds represents dimeric
derivatives of the monomeric bisbenzimidazole ligand MB,,
a derivative of the widely studied minor-groove DNA ligand
Hoechst 33258, in which the hydroxyphenyl group is replaced
by a more hydrophilic aminomethylene fragment — DB,P(n).
As a linker for compounds of this group, 1,4-piperazine-
dialkyldicarboxylic acids containing a methylene, ethylene,
propylene, or butylene spacer were used (Fig. 1). This series
was also supplemented with the monomeric derivative
MB,(Ac), acylated at the aminomethylene fragment, which
structurally brings this compound, compared to MB,, closer
to half of the dimeric compound DB,P(n) and makes it a
more appropriate reference for comparison. The DB,P(n)
series differs from other ligand series by the presence of a
positively charged 1,4-piperazine introduced into the linker,

Dimeric bisbenzimidazoles as inhibitors
of DNA repair enzymes TDP1, TDP2, PARP1 and PARP2

which improves ligand solubility and may increase ligand
affinity for the enzyme.

The next group of compounds are derivatives of the
monomeric trisbenzimidazole compound MB;, which can be
considered as a derivative of MB, containing one additional
benzimidazole fragment, which increases the number of
potentially possible hydrogen bonds in the inhibitor-TDP1
complex. Dimeric derivatives of MB, are represented by
two series of compounds — DB,P(n), also dimerized with
1,4-piperazinedialkyldicarboxylic acids, and DB,(n), where
n-alkyldicarboxylic acids are used as linkers. The DB(n)
and DB,P(n) series are characterized by the presence of
trisbenzimidazoles in the structure, and DB;P(n), also by the
presence of 1,4-piperazine in the linker.

The third group of compounds includes derivatives of the
monomeric compound MB,Py(Ac), which is an isosteric
analog of MB,, due to the fact that the pyrrolecarboxamide
fragment contained in its structure can act as a hydrogen

Inhibitory activity of test compounds against TDP1, TDP2, PARP1, and PARP2

No. Compounds 1C5, TDP1, uM TDP2 PARP1 PARP2
% of residual activity (500 uM)

1 MB, 2+1 ~100 ~100 ~100

2 MB,(Ac) 1.5+05 ~100 ~100 ~100

3 DB,P(1) 6+4 66+7 5716 ~100

4 DB,P(2) 9+3 44 £ 11 51+15 80+ 20

5 DB,P(3) 41+£0.6 367 37+£10 64+ 16

6 DB,P(4) 2303 44+ 11 33+£13 85+13

7 MB,Py(Ac) 52 ~100 ~100 ~100

8 DB,Py(1) 0.25+£0.05 55+3 ~100 ~100

9 DB,Py(3) 0.41 £0.09 70+ 11 ~100 ~100
10 DB,Py(4) 04+0.15 ~100 ~100 ~100
1 DB,Py(5) 0.35+£0.13 ~100 ~100 ~100
12 DB,Py(7) 0.28 £0.01 ~100 ~100 ~100
13 DB,Py(9) 0.30 £0.08 ~100 ~100 ~100
14 DB,Py(11) 09+0.1 ~100 ~100 ~100
15 MB; 0.70 £0.05 ~100 65+ 15 ~100
16 DB5(1) >50 706 55+£13 ~100
17 DB;(5) >50 65+10 62+16 ~100
18 DB5(9) >50 ~100 ~100 ~100
19 DB;P(1) 0.10 £ 0.05 ~100 70+ 12 ~100
20 DB;P(2) 0.11£0.01 ~100 40+5 ~100
21 DB5P(3) 0.20 £0.05 ~100 47 £ 14 ~100
22 DB5P(4) 0.15+£0.03 ~100 4815 ~100

Note. ForICsq values and percentage of residual enzyme activity in the presence of inhibitor, the Table shows mean values + standard deviation (at least three

replicates).
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atom donor at the carboxamide nitrogen for hydrogen
bond formation, in a position analogous to benzimidazole.
Dimeric derivatives are represented by the DB,Py(n) series
containing n-alkyldicarboxylic acids as a linker. This series
is represented by a set of compounds containing 1, 3,4, 5, 7,
9, and 11 methylene units, which allowed for a more accurate
assessment of the dependence of the inhibitory activity of
compounds on spacer length. The DB,Py(n) series differs
from the DB,(n) series by the presence, in addition to the
bisbenzimidazole structure, of a pyrrolecarboxamide structure,
which is a fragment of the AT-specific antibiotic netropsin.

Using the real-time fluorescence analysis method, half-
maximal inhibitory concentration (ICy;) values of the studied
compounds (see the Table) were obtained in the reaction of
BHQI cleavage from the 3'-end of the oligonucleotide by
TDP1, which led to an increase in FAM fluorescence at the
5’-end of the chain (Zakharenko et al., 2015). It should also
be noted that a single-stranded oligonucleotide was used as
substrate to exclude the binding of dimeric bisbenzimidazoles
as minor-groove ligands to the DNA substrate and direct their
action toward the enzymatic target.

From the data obtained for the monomeric compounds
MB, and MB,(Ac) and their dimeric derivatives DB,P(n), at
n=1,2,3,4, the IC;, values were in the micromolar range,
and dimerization did not lead to an increase in the inhibitory
activity of the studied compounds. At the same time, for di-
mers of the monomeric MB,Py(Ac), which has an I1C,, value
of 5+2 uM, the half-inhibitory concentration parameter
value decreased significantly, ranging from 0.25 to 0.90 uM.
Similarly, the transition from monomeric MB,4 to the dimeric
DB,P(n) series led to an increase in the inhibitory activity of
the compounds, although not as pronounced; however, dimeric
derivatives of MB, that do not contain a piperazine fragment
in the linker — DB(n) compounds — showed the lowest level
of activity among all the inhibitors tested in this work. The
fact that the 1C, values for these compounds (see the Table)
deviate so strongly from the overall data set is most likely
due to the fact that DB,(n) compounds possess an extended
and planar geometry, as well as a rigid linker, which prevents
optimal positioning of compounds of this type in the enzyme
active site (Fig. 1).

Thus, according to the experimental data, all compounds
studied in this work, except for the DB,(n) group, effectively
inhibit TDP1 activity at micromolar and submicromolar
concentrations. A structure-activity correlation is observed,
consisting of a decrease in concentration to achieve the half-
maximal inhibition effect with an increase in the number of
blocks containing hydrogen bond donors in the compound.
In particular, dimerization is one of the simple approaches
to increasing such structures in one molecule, which leads
to a nonlinear increase in the binding constant (Neudachina,
Lakiza, 2014). A decrease in ICg is also observed upon in-
troduction of a piperazine fragment into the linker structure,
which may be due to an increase in the hydrophilicity of the
molecules. The results obtained allowed us to establish a
structure-activity correlation, as well as to assess the contribu-
tion of dimerization to the increase of the inhibitory capacity
of the studied compounds.

To study the effect of the studied compounds on TDP2 acti-
vity, we tested the ability of this enzyme to remove the tyrosine
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residue from the 5’-end of the oligonucleotide substrate in the
absence and presence of inhibitors, as described in (Dyrkheeva
etal., 2021). All compounds of the DB,P(n) group, as well as
DB,Py(n),atn=1, 3 and DB,(n), atn = 1, 5 at a concentration
of 500 uM inhibited enzyme activity by approximately 50 %,
while all other compounds showed no inhibitory activity (see
the Table). Thus, all tested compounds showed a significantly
lower propensity to inhibit TDP2 compared to TDP1. Inter-
estingly, the DB,P(n) group inhibited TDP1 less effectively
and TDP2 more effectively than compounds of other groups.

The next step of our work was to test the ability of the
studied compounds to inhibit PARP1 and PARP2, that is, their
enzymatic activity in the poly(ADP-ribose) (PAR) synthesis
reaction, at a rather high concentration range of compounds.
All studied compounds showed low efficiency in inhibiting
these two enzymes. The most active compounds were those of
the DB,P(n) group, representatives of which withn=2, 3,4
reduced the activity of PARP1 and PARP2 at a concentration of
500 uM. Inhibitory action was also observed for compounds of
the DB,(n) and DB,P(n) series at a concentration of 500 uM,
while these compounds exhibited inhibitory activity only
in the PAR synthesis reaction catalyzed by PARP1, but not
PARP?2 (see the Table).

Since, according to the experimental data, all studied
compounds, with the exception of the DB,(n) group,
effectively inhibit TDP1 activity, we further performed an
in silico evaluation of the ability of compounds of the DB,P(n)
and DB,Py(n) groups to bind to the TDP1 enzyme in order to
elucidate the possible molecular mechanism of their inhibitory
action. For this purpose, full-atom flexible molecular docking
over the entire surface of the TDP1 protein (PDB ID: 8V0B)
was performed for DB,P(n) and DB,Py(n) compounds.

According to the docking results obtained, it can be assumed
that conformations with minimum calculated energy for
each inhibitor form interactions in the TDP1 active site, near
His263 and His493 residues (Fig. 2a), similarly to compound
MB,(Ac) (Fig. S1). An additional analysis of the binding
ability of dimeric compounds to TDP1 was performed using
the Vinardo, X-Score, and REF2015 scoring functions in the
PyRosetta environment (Table S2). The obtained scoring
function values suggest high affinity of the studied inhibitors
of the DB,P(n) and DB,Py(n) groups for TDP1. It should be
noted that complete correlation of the parameters obtained by
docking (Table S2) with the ICg, values found experimentally
(see the Table) is not observed, which can be explained by
the contribution of hydrophobic linkers, which are difficult to
account for in energy calculations.

According to molecular modeling data, compound MB,(Ac)
(Fig. 2b), which is the monomeric unit for dimeric deriva-
tives DB,P(n), may form a hydrogen bond with His263 and
a m-cation interaction with His493, which could potentially
lead to blocking of the TDP1 catalytic act. In addition to
interactions with catalytically active residues, MB,(Ac) may
form hydrophobic contacts with Tyr204 and Ala520, as well
as a hydrogen bond with Phe259, which could enhance the
inhibitory action of this compound. In contrast to MB,(Ac),
compound MB,Py(Ac) (Fig. 2c) appears to interact with only
one catalytic residue — His493 — through hydrogen bond for-
mation. Such a difference in interactions could be the reason
for the higher inhibitory activity of MB,(Ac) compared to
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Dimeric bisbenzimidazoles as inhibitors
of DNA repair enzymes TDP1, TDP2, PARP1 and PARP2

Fig. 2. g, Structure of TDP1 (PDB ID: 8V0B) with inhibitor MB,(Ac) located in the positively charged region of the TDP1 active site.
The protein surface is colored according to the electrostatic potential distribution calculated using APBS (Jurrus et al., 2018). The
DNA-binding region of TDP1 is highlighted by a rectangular frame. Below is a scale of TDP1 surface electrostatic potential values
(in units of kT/e, where kT/e = 25.7 mV at 298 K). Color scale: red indicates negative potential (-5 kT/e), white indicates neutral
(0 KT/e), blue indicates positive potential (+5 kT/e). b, ¢, Predicted conformations of inhibitors MBZ(Ac) and MBZPy(Ac) (green) in

complex with TDP1 with contacting residues (cyan).

MB,Py(Ac), which is consistent with experimental data (see
the Table).

Analysis of interactions using PLIP (Protein—Ligand In-
teraction Profiler) (Salentin et al., 2015) for predicted TDP1
complexes with dimeric compounds of the DB,Py(n) group
(Fig. S2) showed that these compounds form a greater number
of protein-ligand contacts (hydrogen bonds and hydropho-
bic interactions) compared to the MB,Py(Ac) monomer. In
particular, compound DB,Py(1) forms hydrogen bonds with
Ser400 and Ser403, as well as hydrophobic interactions with
Pro463 — the residues of these amino acids are located in the
ligand binding site with the TDP1 active center, which likely
contributes to stabilization of the interacting dimer fragment
in the enzyme active site. The data obtained from docking
analysis, characterizing the larger contact surface area of
dimeric DB,Py(n) compounds with TDP1 compared to the
MB,Py(Ac) monomer, correlate with the decrease in 1C;,
values for dimers, which indicates an increase in the affinity
of these compounds for the enzyme active site (see the Table).
According to the data obtained, hydrophobic interactions with
Pro461 and/or Tyr204 residues localized in the TDP1 active
site may also contribute to increasing the inhibitory activity
of DB,Py(n) group compounds.

Analysis of interactions of compounds from the DB,P(n)
group with TDP1 showed that analogous amino acid resi-
dues participate in complex formation, with the exception of
Tyr204, with which DB,P(n) compounds, unlike DB,Py(n),
apparently do not interact (Fig. S3). In addition, possible dif-

ferences in the nature of interactions with the same amino acids
were noted. For example, for the Lys519 residue in the case
of DB,P(n) compounds, formation of hydrogen bonds with
nitrogen atoms of the piperazine fragment through the N1 atom
of the side chain can be assumed. At the same time, two types
of interactions with Lys519 are predicted in DB,Py(n) com-
pounds: a hydrogen bond between the backbone nitrogen atom
of Lys519 and the oxygen atom in the pyrrolecarboxamide
group (in DB,Py(1), DB,Py(4), DB,Py(7), DB,Py(9)), as well
as a m-cation interaction between pyrrole and the Lys519 side
chain (in DB,Py(3) and DB,Py(5)) (Fig. S2).

For compound DB,Py(1), which demonstrated the highest
inhibitory activity (lowest IC,, value) among the studied
derivatives, additional molecular dynamics modeling in the
predicted complex with TDP1 was performed. Analysis of
the MD trajectory showed that the TDP1-DB,Py(1) complex
maintains stability throughout the simulation time. RMSD
values of the ligand were in the range of 1.5-3.0 A (Fig. S4),
which indicates stable binding of DB,Py(1) in the protein
active site without signs of dissociation or significant con-
formational rearrangements. The data obtained confirm the
strength of the formed complex and are consistent with the
high biological activity of this compound.

It should be noted that our analysis of molecular contacts,
as well as the scoring function values obtained according to
molecular docking results, indicate the ability of compounds
of both analyzed groups — DB,P(n) with an aliphatic linker
and DB,Py(n) with a piperazine fragment in the linker — to
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form a stable complex with TDP1. Nevertheless, experimental
data show differences in their inhibitory activity: compounds
with an aliphatic linker demonstrate higher inhibition effi-
ciency compared to compounds containing a piperazine ring.
This difference cannot be fully explained based on contact
analysis, which suggests a possible difference in the confor-
mational mobility of these groups of compounds. In particular,
the inclusion of a piperazine fragment in the central part of
the linker apparently restricts its flexibility, which affects the
dynamics of inhibitor interaction with the active site, prevents
optimal positioning of the inhibitor in the enzyme active site
and, consequently, reduces its inhibitory activity.

Discussion

TDPI plays a key role in eliminating DNA damage located
at the 3'-end of DNA, stabilized by anticancer drugs used in
clinical practice, such as topotecan and irinotecan, which are
derivatives of the natural compound camptothecin (Comeaux,
van Waardenburg, 2014; Kawale, Povirk, 2018). Consequen-
tly, TDP1 activity may be a possible cause of tumor resistance
to TOP1 inhibitors used in the clinic. Currently, searches for
combined TOP1 and TDP1 inhibitors are actively underway
(Conda-Sheridan et al., 2013; Nguyen et al., 2015; Zhang X.-R.
etal., 2018; Hu et al., 2021;Yang et al., 2023).

Furthermore, since it is known that the activities of TDP1
and TDP2 overlap, albeit to a minor extent (Pommier et al.,
2014), the ability of these enzymes to perform each other’s
functions makes the combined use of inhibitors of these two
enzymes or the creation of agents capable of simultaneously
inhibiting both TDP1 and TDP2 quite promising. Simulta-
neous suppression of the activity of these two enzymes can
be used to enhance the efficacy of a large set of clinically
important anticancer drugs, TOP1 and TOP2 inhibitors. Triple
TOPI1/TDP1/TDP2 inhibitors have also been discovered,
which exhibit moderate activity against TDP1 and weak
activity against TDP2 (Wang P. et al., 2017). The most effec-
tive TDP2 inhibitors to date are deazaflavins, which exhibit
synergy with etoposide in vitro at non-toxic concentrations
(Marchand et al., 2016), and some effective TDP2 inhibitors
from other compound classes have also been found (Yang et
al., 2021; Zhang Y. et al., 2021).

It is known that the N-terminal domain of TDP1 directly
binds to the C-terminal domain of PARP1, and TDP1 under-
goes PARylation by PARP1 in order to be recruited to the
TOP1-DNA adduct (Das et al., 2014; Lebedeva et al., 2015).
PARylation of TDP1 stimulates its recruitment to sites with
damaged DNA without affecting the catalytic activity of this
enzyme (Chowdhuri, Das, 2021). It has also been shown
that PARP1 can interact with TDP1, forming protein-protein
contacts (Moor et al., 2015). It was established that the combi-
nation of TDP1 knockdown and inhibition of PARP1 activity
with rucaparib reduces cell proliferation more significantly
than these methods of enzyme function suppression separately
(Fam et al., 2013). Therefore, there is a suggestion in the
literature that the anticancer effect of TOP1 inhibitors can be
significantly enhanced by simultaneous inhibition of PARP1
and TDP1 (Smith et al., 2005; Alagoz et al., 2014; Das et
al., 2014; Murai et al., 2014; Elsayed et al., 2016; Matsuno
et al., 2018; Jing et al., 2020; Kim J.W. et al., 2020; Chow-
dhuri, Das, 2021; Florkemeier et al., 2022). The interaction
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between PARP1 and TDP1 enzymes has been demonstrated
in a number of publications (Das et al., 2014; Moor et al.,
2015), which makes the search for dual TDP1 and PARPI
inhibitors relevant.

Previously, we discovered dual TDP1 and TDP2 inhibitors,
as well as triple TDP1, TDP2, and PARP1 inhibitors (Dyr-
kheevaetal., 2021) — usnic acid thioethers that weakly inhibit
TDP2 and PARP1; therefore, the search for new compounds
capable of acting on two or three functionally interacting tar-
gets simultaneously is relevant. In this work, the ability of a
series of minor-groove DNA ligands to inhibit TDP1, TDP2,
PARP1, and PARP2 enzymes was tested. Effective inhibitors
acting on all four enzymes simultaneously were not found,
but it was shown that these compounds inhibit TDP1. The
DNA ligands studied in this work are capable of inhibiting
DNA-dependent enzymes through binding to double-stranded
DNA. However, in the present work we showed that they are
capable of selectively inhibiting TDP1, since the experiments
were conducted in the absence of double-stranded DNA as
an alternative target.

The results of molecular docking and analysis of inter-
molecular interactions suggest that most of the studied com-
pounds of the DB,P(n) and DB,Py(n) groups may possess high
affinity for the TDP1 enzyme and form stable complexes with
its catalytic center. Interactions with key catalytic residues of
the TDP1 protein active site were predicted for all compounds.

Conclusion

In this work, a study of the effect of dimeric bis- & tris-benzi-
midazoles on the activity of DNA repair enzymes — TDP1,
TDP2, PARP1, and PARP2 —was conducted. The main results
showed that all studied inhibitors, except compounds of the
DB;(n) series, effectively inhibit TDP1. The most active were
compounds DB,Py(n) and DB;P(n), capable of inhibiting
TDP1 in the submicromolar concentration range. The studied
compounds demonstrate high selectivity, with minimal effect
on the activity of other tested enzymes.

Based on the results of molecular docking, it is proposed
that the studied active inhibitors are localized in the region
of the DNA-binding pocket of TDP1 and may form stable
interactions with the catalytically important residues His263
and His493. These interactions likely underlie the observed
high inhibitory activity.

An important result is also the establishment of the struc-
ture-activity relationship. Dimerization had a mixed effect on
the inhibitory effect: compounds of the DB,Py(n) and DB,P(n)
series were significantly (by an order of magnitude) more ac-
tive than the corresponding monomers; in the DB,P(n) series,
the inhibitory activity was influenced not only by dimerization,
but also by linker length and the introduction of 1,4-pipera-
zine bearing two positive charges into the linker. The DB,(n)
series was inactive, unlike the monomer. Introduction of the
piperazine fragment into the linker in the DB,P(n) series led
to pronounced inhibitory activity compared to DB;(n) without
such a fragment. We propose that the enhancement of the
inhibitory effect is related to the introduction of two positive
charges into the linker and to the increase in the number of
possible contacts of ligands with the enzyme active site.

Overall, based on the results of this work, new strategies
for the development of cancer therapy may be proposed. The
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obtained data also highlight the potential of dimeric bis- &
tris-benzimidazoles as safe and effective tools for targeted
regulation of DNA repair enzymes.
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Computer modeling of spatial dynamics and primary
genetic divergence for a population system in a ring areal
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Abstract. One of the main goals of modern evolutionary biology is to understand the mechanisms that lead to the
initial differentiation (primary divergence) of populations into groups with genetic traits. This divergence requires
reproductive isolation, which prevents or hinders contact and the exchange of genetic material between populations.
This study explores the potential for isolation based not on obvious geographical barriers, population distance, or
ecological specialization, but rather on hereditary mechanisms, such as gene drift and flow and selection against
heterozygous individuals. To this end, we propose and investigate a dynamic discrete-time model that describes
the dynamics of frequencies and numbers in a system of limited populations coupled by migrations. We consider a
panmictic population with Mendelian inheritance rules, one-locus selection, and density-dependent factors limiting
population growth. Individuals freely mate and randomly move around a one-dimensional ring-shaped habitat.
The model was verified using data from an experiment on the box population system of Drosophila melanogaster
performed by Yu.P. Altukhov et al. With rather simple assumptions, the model explains some mechanisms for the
emergence and preservation of significant genetic differences between subpopulations (primary genetic divergence),
accompanied by heterogeneity in allele frequencies and abundances within a homogeneous area. In this scenario,
several large groups of genetically homogeneous subpopulations form and independently develop. Hybridization
occurs at contact sites, and polymorphism is maintained through migration from genetically homogeneous nearby
sites. It was found that only disruptive selection, directed against heterozygous individuals, can sustainably maintain
such a spatial distribution. Under directional selection, divergence may occur for a short time as part of the transitional
evolutionary process towards the best-adapted genotype. Because of the reduced adaptability of heterozygous
(hybrid) individuals and low growth rates in these sites (hybrid zones), gene flow between adjacent sites with opposite
genotypes (phenotypes) is significantly impeded. As a result, the hybrid zones can become effective geographical
barriers that prevent the genetic flow between coupled subpopulations.

Key words: metapopulation; migration; spatiotemporal dynamics; mathematical modeling; genetic divergence; gene
flow; hybrid zones; isolation
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AHHoTauuA. OfHa U3 KNoYeBbIX 3aja4 COBPEMEHHO 3BOIOLIMOHHOI GUONOrMN — 3yUYeHKe NPOLLECCOB, MPUBOAALLNX
K MepBUYHOMY pasfeneHuto (QuBepreHuMn) NonynAuMiA Ha pasnuyalolmeca reHoTMnaMu rpynnbl ocoben. Ona
LAVBEPreHuMmn oYeBUgHO HeOOXOAMa PenpPOoLYKTMBHasA U30AALMA, KOTOPan feraeT HEBO3MOXKHbIM KOHTaKT ocobel
WIIN CYLLeCTBEHHO 3aTPYAHAET 0OMeH reHeTuyeckon nHdopmaumeit mexay nonynaumnamum. Hactoswee nccnegosaHve
n3yyaeT BO3MOXHOCTb M30MALMM, B OCHOBE KOTOPOI iexaT He oueBMAHbIe reorpaduyeckre 6apbepbl, yaaneHHOCTb
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nonynAuNA AN SKONOrnyeckas creuranvsaums, a b HaceACTBEHHbIE MeXaHU3Mbl, Apeiid 1 NOTOK FeHOB, a TakXKe
0oTOOP NPOTUB reTepo3nroT. [11A 3TOro NpeAnoxeHa u UCCIeA0BaHa AVHaMUYeCKas MOLENb C ANCKPETHbIM BPEMEHeM,
KOTOpaA onuncbliBaeT ANHAMWUKY 4HacCToOT U YUCNIEHHOCTEN B cucCTeme MUTPaUMOHHO CBA3aHHbIX TMMUTUPOBAHHbIX
nonynauuini. PaccMaTpuBaeTCA MNaHMUKTMYHAA MONyNAUMA C  MeHAEeNeBCKMU NpaBuiamy  HaciefoBaHuA,
MOHOJIOKYCHbIM OTOOPOM, AeICTBEM MIIOTHOCTHO-3aBUCUMbIX PaKTOPOB, TMMUTUPYIOLLMX POCT YncneHHocTr. Ocobu
cBOOOAHO CKPeLLMBAIOTCA 1 NepemMeLLatoTca BAOb OAHOMEPHOTO KofbLieBoro apeana. Mogenb BeprduumpoBaHa ¢
MCMOJIb30BaHMEM [aHHbIX dKCMePUMEHTa Haj AWMYHON cuctemon nonynaumii aposodun Drosophila melanogaster,
nposefeHHoro nog pykosoactsom 0.M1. Antyxosa. MNpy 4OCTAaTOYHO NPOCTbIX MPEAMNONOKEHNAX MOAENb ONUCbIBAET
HeKkoTopble MeXaHV3Mbl BO3HWKHOBEHMS M COXpaHeHVA Ha OJHOPOAHOM apeasie CYLIeCTBEHHbIX FeHETUYECKMX
pasnununii (NepBUYHONM FeHETNYECKOW AMBEPreHumm), CONPoBOXKAAEMbIX HEOAHOPOLHOCTLIO B YaCTOTax annenen n
yncneHHocTAX. B aTom cnyyae dopmmpyeTtca HeCKOsIbKO 60bLUMX FPYNN FeHeTUYECKM ORHOPOAHbIX CyOnonynauunii,
pa3BMBalOLLMXCA HE3aBMCMMO. B MecTax nx KOHTaKTa akTMBHO MAET rubpuamsauns, a nonmmopensm coxpaHaerca
3a CYeT MUrpaumm C conpefenbHbIX OfHOPOAHBIX yyacTkoB. O6HapyKeHO, UTO YCTOMUMBO MOAAEPXKMBATb Takoe
NPOCTPAHCTBEHHOE pacrnpefeneHne MOXKET TOSTbKO AU3PYNTUBHbBIN (pa3pblBatolyunii) 0TOOP, HanpaBaeHHbIN NPOTUB
retepo3urot. Mpu aBrKyLLeM OTOOPe AUBEPreHLMs CYLLECTBYET HEMPOAOKMUTENbHOE BPEMS, KakK YacTb NepexogHoro
npouecca. 3a cYeT NMOHMMKEHHOW MPUCMOCOBNEHHOCTN reTepo3mnroT (MMepPULoB) U HU3KOWM CKOPOCTU POCTa Ha 3TUX
yyacTkax (3oHax rubpuamsaumm) CyLieCTBEHHO 3aTPyAHAETCA OOMEeH reHaMu MeXAy CMEXHbIMM yyacTKamu C
NPOTUBOMONIOXKHBIMU TOMO3UFOTHBIMM FreHoTUNamu (deHoTunamu). B pesynbrate 30HbI rMO6PUAM3aLMN BbIMOSHAT
dyHKLMI0 reorpaduueckoro bapbepa, KOTOpbI GaKTUYECKM OCTAaHABNBAET OOMEH FEHOB MEXAY Pa3HbIMM rpynnamm

B CJ/lyYae CMeXHOW CMnaTpuu.
KnioueBble cnoBa: MeTanonynayus;

Murpauyna; NpoCTpaHCTBEHHO-BpeMeHHaA AWMHaMUKa;

MaTeMaTtmnvyeckoe

mMoaennpoBaHNMe; reHeTnyeckana gnBepreHUns; NOTOK reHoB; rl/|6p|/|,qu|e 30HbI; N30nAumnA

Introduction

Genetic divergence cannot occur without effective mecha-
nisms of reproductive isolation and stopping the gene flow
between populations. This can be caused by large distances
between populations (allopatry), which cannot be overcome
during the lifetime of individuals, or by geographical barriers
that prevent the transfer of genes. However, even if popula-
tions of the same species live in the same or adjacent areas
(sympatry or parapatry) they can differ significantly in their
traits. Although individuals from these populations can inter-
act and produce viable, fertile hybrids, there is no blurring of
parental traits. Several mechanisms support the reproductive
isolation and the divergence between different forms, includ-
ing selection against hybrids, which often have lower fitness
than parental populations.

There are sufficient examples of reproductive isolation,
where different subpopulations have accumulated sufficient
differences even when they live sympatrically and have
developed effective measures to prevent hybridization. For
instance, recognition signals related to phonetic features
and used in mating behavior contribute to the stabilization
of extreme forms of a characteristic. Thus, the mating calls
of certain frog species (such as Microhyla carolinensis and
M. olivacea, Litoria verreauxii and L. v. alpina) differ greatly
in the contact zone where their ranges overlap, but do not differ
significantly in areas where they do not occur together (Blair,
1955a; Littlejohn, 1965; Smith et al., 2003). In addition, the
body sizes of different frog forms differ greatly in the contact
zone, which complicates the mating process (Blair, 1955b).

Prezygotic isolation of sympatric forms of the same species
or subspecies is often followed by ecological specialization,
which does not prevent copulatory behavior between indivi-
duals with different traits and their hybridization, but only
makes it unlikely. For example, the periods of sexual activity
for two species of Rhagoletis pomonella are determined by

the time of fruiting of the trees they were born on and lay their
eggs on —hawthorn and apple (Filchak et al., 2000). These two
races of flies of R. pomonella differ in their sensory process-
ing of key fruit odors: while some individuals are attracted
to apple and avoid hawthorns, others choose hawthorn and
avoid apples, which significantly hinders their contact (Tait et
al., 2021). The mating preferences of hybrids are not entirely
clear. However, when two races of R. pomonella are interbred
in the laboratory, a lower conception rate is recorded (Yee,
Goughnour, 2011), which signals some selection against
hybrids and persistent divergence in nature caused by spe-
cialization of flies.

There are a few examples of hybridization where it does
not have obvious negative effects, such as reduced fitness or
a catastrophic decline in the reproductive success of hybrids
(heterozygotes). For example, intraspecific variability in some
birds is often expressed as differences in plumage coloration.
At the same time, there is a clear divergence in traits between
different parts of a large range, and stable hybrid zones exist
over long periods of time in areas where the ranges overlap.
The populations of the carrion crow and hooded crow (Corvus
corone and C. cornix) are well known in Siberian (between
the Ob and Yenisei rivers) and European hybrid zones (Ha-
ring et al., 2012; Poelstra et al., 2014; Kryukov, 2019; Blinov,
Zheleznova, 2020), or northern flicker hybrid zone (Colaptes
auratus cafer and C. a. auratus) in USA (Aguillon, Rohwer,
2022). Another example is the hybridization of the great tit
(Parus major) and Japanese tit (P. minor) in the Amur region
(Kapitonova et al., 2012).

A genetic mechanism supporting isolation based on innate
mating preferences has been identified in crows: they prefer
to choose partners who are similar to themselves rather than
exotic individuals. The process of forming phenotypes in car-
rion and hooded crows is linked to chromosomal inversion,
which affects both feather coloration and the visual perception
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of feather colors, as well as certain aspects of reproductive
behavior (Poelstra et al., 2014). However, in areas where
hybridization occurs, which apparently arises simultaneously
with different colorations, mating preferences turn out to be
more diverse and complete isolation does not occur. This is
because the inverted chromosome region of the hooded crow
is inherited in its entirety and does not recombine with the
homologous regions of the carrion crow.

One simple model for studying genetic divergence is a
linear chain or ring of partially isolated subpopulations that
exchange genes. The studies on such models show that gene
flow between subpopulations coupled by migration can lead to
stable geographic variability of a trait and the maintenance of
hybrid zones only with disruptive selection. With directional
selection, stable divergence is impossible and can only occur
as part of a transition process under special initial conditions
(Bazykin, 1972; Frisman, 1986; Yeaman, Otto, 2011; Laru-
son, Reed, 2016). For chains of connected populations with
different topologies, it has been found that divergence occurs
more often in linear chains and rings, and less often in fully
connected networks (with global connectivity) (Laruson,
Reed, 2016; Sundqvist et al., 2016).

At the same time, for many natural populations with signifi-
cant divergence in characteristics and sometimes with known
isolating mechanisms, it can be difficult to identify a specific
adaptive trait that disruptive selection acts upon. This may be
due to hidden traits, such as innate immune factors or the major
histocompatibility complex, which are not directly related
to an external trait that we currently observe in individuals,
such as feather coloration in birds, skin or coat patterns, beak
shape and size, or behavioral characteristics. The observed
spatial distribution of a trait does not directly indicate the
causes or type of selection that led to this divergence in the
past. However, it can be successfully linked to the observed
trait and serve as an indicator or marker of fitness, particularly
for species with wide ranges, heterogeneous environmental
conditions, significant divergence, and a high degree of poly-
morphism (Orsini et al., 2008; Murphy et al., 2010).

This work is part of a series of studies investigating the
basic mechanisms of primary genetic divergence in systems
of panmictic populations of diploid organisms coupled by
migration and selection directed against heterozygotes (Zhda-
nova, Frisman, 2023; Kulakov, Frisman, 2025). We propose
a dynamic discrete-time model that takes into account the
action of density-dependent factors limiting population
growth, genetic drift (through certain perturbations of initial
conditions), natural selection, and migration of individuals
between adjacent sites. The model is verified based on data
from laboratory experiments with box populations of Dro-
sophila (Drosophila melanogaster) conducted under the
supervision of Yu.P. Altukhov, which showed significant
divergence in allele structure at the a-glycerophosphate de-
hydrogenase (a-Gdph) locus between groups of adjacent
boxes (Altukhov et al., 1979; Altukhov, Bernashevskaya,
1981; Altukhov, 2003).

In this article, we analyze the processes of selection and
migration (gene flow) that form and maintain the hetero-
geneous spatial distribution of allele frequencies, based on
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multiple computer simulations of a model. We investigate the
role of hybrid zones with high proportions of heterozygous
individuals in the a-Gdph gene and demonstrate that these
zones separate monomorphic groups of boxes apart and do
not allow the most adapted genotype to spread throughout
the entire ring area.

Material and methods

The study is based on an original mathematical model —a sys-
tem of coupled nonlinear maps (discrete-time equations) that
describes the dynamics of genotype frequencies and sub-
population abundances. The migration of individuals and gene
flow between subpopulations are described using a migration
matrix with random coefficients. We use the MT19937 random
number generator (Matsumoto et al., 1998), available in the
GSL numerical computation library. This generator has an
extremely long period (~10990) and low correlation, passing
most statistical tests for randomness in its pseudo-random
number sequences.

To validate the model, we use data from an experiment on
the D. melanogaster ring system, conducted by a team led by
Yu.P. Altukhov. The data consist of allele frequencies at the
locus encoding the a-Gdph enzyme, as well as the numbers
of flies in each box at different stages of the experiment (Al-
tukhov, 2003). We estimate model parameters using the least
squares method.

Numerical experiments are conducted with the author’s
software package, including the computer implementation of a
mathematical model, visualization of the results, and analysis
of dynamic regimes.

Model of local population

We consider a population of diploid organisms where be-
tween two adjacent generations, the following sequence of
elementary population processes occurs: zygote formation
from gametes, natural selection on zygotes (individuals),
migration (dispersal) between adjacent subpopulations, and
production of new gametes. We focus on populations in which
the adaptive diversity is determined by a single locus with
two alleles (A and a), which are inherited co-dominantly.
The phenotype of individuals is strictly determined by their
genotype. The population is panmictic, and Mendelian in-
heritance rules apply. This means that the population contains
individuals with genotypes AA, Aa, and aa. At time t, these
genotypes have abundances Nq(t), N,(t), and Nj;(t), respec-
tively, and frequencies q;(t) = Ny(t) / N(t), ga(t) = N,(t) / N(1),
and g3(t) = N5(t)/ N(t) (where N(t) = N1 (t) + Ny(t) + N;(t) is the
total population size).

Let us assume that the genotypes differ in their reproduc-
tive abilities, which is expressed by differences in gamete
production rates or individual survival rates. Denote the in-
tensity of gamete production for individuals with genotypes
AA, Aa, and aa as gaa, Jpa and gaa, respectively, taking into
account the death of some gametes before they combine into
zygotes in the next generation. Additionally, let W, W, and
W, represent the proportion of zygotes (or individuals) with
the corresponding genotype that survive the natural selection
and have the ability to migrate (disperse).
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In cases where gamete production intensity does not depend
on parental genotypes, i.€., gap = Jaa = Jaa = 0, the equations
for genotype frequencies in a local panmictic population can
be expressed as:

1 .
q(1+1)= W—(t)'(l"'sl)q] (),

1 .
44D =g () ) )
g;(r+1) = %ﬂ(l +53)q;(t)’

where qy(0) = (qy(0) + 0,(1/2)2,

A (D) = 2(a,(D) + 6,(0/2)(5(0) + G,(1)/2),

05(t) = (5(t) + q,(t)/2)? are the genotype frequencies
immediately after gametes combine into zygotes, but before
selection and migration of individuals (Zhdanova, Frisman,
2023; Kulakov, Frisman, 2025). The parameter Sy is the selec-
tion coefficient for zygotes with the corresponding genotype,
which links the fitness Wy of each genotype and the gamete
production rate gy as follows: 1+s, = gW, (k =AA, Aa, aa).
In system (1), the normalization factor

W (1) =1+ 8,0;(0) + 8,05(t) + S505(t) 2

is equal to the average (generalized) fitness, and its value
determines the population growth rate. If there are no factors
limiting the growth, the population size changes according to
the following equation:

N(t+1) =W (EONQ®). (3)

The number of individuals with each genotype is determined
by ratios: Ny(t+1) = q(t+ N(t+1) = (1+s)qt)N(t+1)
(k=AA, Aa, aa).

Of all the types of genetic selection determined by values Sq,
S,, and 3, disruptive selection is the most interesting (S, < S;
and s, < s;), as system (1) demonstrates bistability. Early
studies show that this type of selection is responsible for the
emergence and fixation of genetic differences in different parts
of a homogeneous area, even when environmental and other
factors are not considered.

At the same time, on a large temporal scale, the growth of
actual evolving populations is limited by environmental fac-
tors. This growth limitation can be described by a nonlinear
dependence of selection and gamete production parameters
on the abundance of genotypes or the total population density
in model (1)—(3). It is easy to show that if the rates of gamete
production are equal for all genotypes, then there is no dif-
ference between the limiting gamete production rate (g) and
the intensity of selection (Wjj) in case of competition for a
common resource. Therefore, without loss of generality, we
can assume that:

W = w; F(V), “4)

where wj; is the maximum proportion of individuals with
genotype ij (AA, Aa, or aa) that survive after natural selection
under minimal competition (at low density), F is the function
that describes the effect of density-dependent growth limita-
tion, and N is the total population size. Considering (4), the
frequency dynamics equations (1) will not change their form,

Computer modeling of spatial dynamics
and primary genetic divergence for a population system

except for replacing Wj; with wj; and gWj; with 1+s,, while
the population equations (3) will have a nonlinear dependency
on density:

N(t+1) = W({ONEOF(N(1)). (5)

In populations of diploid organisms, exchange of gametes
often requires contact between individuals. The probability
of this decreases significantly at low densities, i.e., there is
a direct correlation between the average individual fitness
and the population density — the Allee effect (Allee, 1958).
As a result, when the population size falls below a certain
critical value N, population growth becomes impossible and
effective natural selection ceases to operate. Instead, only
genetic drift determines the evolutionary trajectory of the
population. Therefore, to describe these density-dependent
limiting factors, we can use a function of the following form:

F(V) = ap(N)exp(-N/K), (6)
where ¢(N) is a sigmoid function equal to:
- 1
(P(N) - 1+e—h(N—N0)’ (7)

with parameter h > 2, which defines the slope angle of the
sigmoid at point N,,. The value of N, determines the minimum
population size required for simple reproduction (1:1). The
parameter K defines the ecological capacity of the habitat,
and a defines the average number of offspring per individual
with an average fitness of 1. These two parameters determine
the steady-state (equilibrium) population size N =~ KIn(a/).
Using (7), we can rewrite the equation (5) for population
dynamics as follows:

N(t+1) = INOeNV 1)exp(-N(t)/K), ®)

where r = al¥(t) is the total reproductive capacity of all
genotypes.

When r > 1, equation (8) has three fixed points [N(t+1) =
=N(t)]: 0, Ny and N = KIn(@# ). If N < N,, the number of
surviving offspring N(t+ 1) is less than the number of their
ancestors N(t), and the population inevitably declines, which
corresponds to a strong Allee effect. IFNg <N <Nandr> 1,
there are enough breeders and the population size increases.
With N > N, the population size exceeds the carrying capac-
ity of the habitat, and the population abundance falls to a
steady-state of N .

Let us now consider populations that are coupled by migra-
tion and evolve in the way described above.

Dynamic model with gene flow

One method for studying the dynamics and evolution of
dispersed population systems (metapopulations) is to con-
duct laboratory experiments using populations in boxes that
are connected by narrow corridors. In these experiments,
environmental conditions, growth parameters, selection, and
migration can be carefully controlled. Typically, the con-
nected boxes (chambers) form closed chains of subpopula-
tions that exchange a small number of individuals (Fig. 1a).
These population systems are often constructed in laboratory
settings, for example, for D. melanogaster (Altukhov et al.,
1979; Altukhov, Bernashevskaya, 1981; Dey, Joshi, 2006), or
Escherichia coli (Keymer et al., 2006).
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Fig. 1. a, Scheme of the population system — boxes coupled by narrow migration corridors. b, lllustration showing that gene flow between populations
of different sizes can significantly change the genotype in a small population, but has no effect on a large population. ¢, The probability density of an

exponentially distributed random value of the migration coefficient m; ;.

Consider a system of n boxes, or subpopulations, and each
box is numbered from 1 to n (Fig. 1a). Let 0 <m; ;<1 denote
the proportion of individuals from the total population size that
move from box j to box i (m; j is the migration coefficient).
The emigrants consist of individuals with three studied geno-
types, so it is true that m; ;NP = m; ;g ND +m; ;gD ND +
+ ml,qu(lja) N (J)

Then, for a system of subpopulations coupled by migra-
tion, the equations for frequency dynamics (1) and abundance
dynamics (8) take the following forms:

I+,
g ON em,, + g ON om0
NO@+1) =N (t+ 1)(1 M= mi+lv")+

Q/(f[)(t +h)= (ql(ci)*(t)N(i)(t)(l M- mi+1.i)+

+NO (1 Dm,,, + N (¢ + Dm

1,i+12
where k = 1, 2, 3 are the numbers of the groups of indi-
viduals with the genotypes AA, Aa, and aa, respectively,

q("" are the frequencies before migration, and N®'(t+1) =

= a Oty NDt)F(ND(t)) is the abundance of the ith sub-
population after selection but before migration. The nor-
malization coefficient G is equal to:

GO0 =W OO =mp, = m N (0)+ "

+W D @ym, N @)+ WD (Om, NV (@), (1o
where 7 O(t) = 1+ s,00"(t) + 5,47 () + 5,0 (1). To close
the chain of subpopulations into a ring, we assume that the
Ist box is connected to the 2nd and nth, the nth to the (n—1)th
and 1st, i.e., the following mapping applies to the site number:
i—i modn. In system (9), the factor (1 — m;_; j — M, ;) is the
proportion of individuals that stayed in the ith box after mi-
grating to the two neighboring boxes; m;;_; and m;,, are the
proportions of individuals from (i—1) and (i+1)-subpopulations
that migrated to the ith box.

Equations (9) demonstrate that the intensity of gene flow
from each subpopulation is not only dependent on the fre-
quencies of genotypes within the native site, as was the case
for the local population, but also on the absolute number of

individuals. This is clearly evident from the assumption that
migrants consist of individuals with all three possible geno-
types. Therefore, the flow of migrants from a small popula-
tion consisting, for example, solely of aa homozygotes, has
a minimal impact on a larger population consisting mainly
of AA homozygotes (Fig. 1b). Conversely, the flow from a
larger population can quickly change the frequencies even at
a low migration rate. Note that, in some cases, this mecha-
nism clearly violates the assumption of panmixia at the scale
of the entire metapopulation, as changes in the frequency
of non-comparable subpopulations are determined more by
the genetic structure of immigrants than by random mating,
genetic drift, or natural selection.

The flow of genes and individuals between subpopulations
can be either completely deterministic or random. In the first
case, the number and genetic structure of migrants depend on
factors such as population density at the source and sink sites,
or external environmental factors like food (taxis) and energy
flows (phototaxis). In the second case, both the direction and
proportion of migrants vary randomly from generation to
generation, without any clear pattern.

Below, we will only consider random migration. To de-
scribe this, we do the following. For each season number t,
we randomly select two migration coefficients m;_; jand my,, ;,
which are equal to the proportions of individuals that leave the
ith site and migrate to adjacent sites. We ignore the possibil-
ity of more distant dispersal. Each pair of values m; ;; and
m;;; will be generated independently using an exponentially
distributed random variable generator with an expected value
of m/2 and a median of min(2).

Figure 1¢ shows a histogram of the distribution of 200 rep-
licates, each consisting of 30 pairs of independent random
values for migration coefficients (n =30 and m = 0.05), along
with the graph of the theoretical probability density function.
Both curves are scaled to the same distribution parameter
L = 2m~L. This value corresponds to a situation where ap-
proximately half of all migration coefficients are less than or
equal to mIn(2) = 0.035, and their average is m =m/2 =0.025.

Next, we consider the dynamic regimes in the system (9)—
(10) with random migration, using parameter values obtained
from experimental data.
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Model verification

There are two ways to verify the model and search for condi-
tions of primary genetic divergence. First, we can perform a
series of simulations to ensure that the system (9) generates
regimes corresponding to genetic divergence with only re-
duced heterozygote fitness. Secondly, we need to compare the
results of simulations with the empirical data. However, this
can be challenging, as despite all the available research and
data, most natural populations with clear divergence in traits
across space are initially highly heterogeneous.

The ideal solution may involve using data from a carefully
designed animal experiment. In the mentioned experiment,
conducted under the supervision of Yu.P. Altukhov, evolution-
ary processes were studied in a system consisting of 30 boxes
connected by narrow tubes and inhabited by D. melanogaster
flies (Altukhov et al., 1979; Altukhov, Bernashevskaya, 1981).
The randomness of migration was provided by uniform envi-
ronmental conditions (lighting and food) and random rotation
of the ring system of connected boxes. During the experiment,
the spatial distribution and abundance dynamics, as well as
the frequency of alleles at the autosomal esterase-6 (Est-6)
and a-glycerophosphate dehydrogenase (a-Gdph) loci, were
analyzed. By the 60th generation, a clear and stable differentia-
tion of allele distribution at the a-Gdph locus formed between
groups of adjacent boxes.

Some parameters are immediately known from the de-
scription of the original experiment, such as the migration
coefficient (m = 0.03) and the number of boxes (n = 30).
Initially, a few heterozygous individuals for the considered
loci (150 pairs, from 1 to 37 in each box) were placed in the
boxes, i.e. qg')(O) = 1. At the same time, a large panmictic
population was established, which was similar in size and
initial frequency to the system of connected boxes. Based on
the frequency dynamics of the A allele at the a-Gdph locus in
a large population, we can easily estimate the selection para-
meters Sy (see the Table). As a basis for our study, we used the
values of s derived from earlier work (Zhdanova, Frisman,
2023), where they were obtained using a one-dimensional
equation for the frequency of allele A of the a-Gdph locus. The
pattern of change in the frequency of allele A in the experi-
ment closely matches the typical solution of model (1), with
disruptive selection (S,<S; and s, < s3) rather than directional
selection (S;>S,>S3 0r S3>5,> S9).

Based on the initial conditions (N?(0)=1...37, > N®(0) =
=300), the population growth pattern, and the limiting number
of individuals in each box (N = 135), as well as in the local
panmictic population, we can easily calculate the parameters
for population growth, including values of a, h, N, and K,
which are shown in the Table.

The average migration coefficient m = 0.025 in the Table
and the median value of mIn(2) =~ 0.035 indicate that in most

Values of parameters for model (9)

Computer modeling of spatial dynamics
and primary genetic divergence for a population system

cases, the number of migrants does not exceed 4-5 individuals,
which is similar to the results of the original experiment.

The greatest difficulty in verifying the model (9) involves
selecting initial distributions of allele frequencies and abun-
dances that yield final distributions similar to those presented
in Chapter 4 of the book (Altukhov, 2003). In order to select
initial conditions, we generate a set of initial frequencies and
abundances using a feature of the experiment: individuals
of the same sex are randomly included in some boxes and
do not produce offspring. To describe this, let us create a
vector of random numbers as follows: N(0) ~ U [0, 37], so
that > N®(0) = 300, and let some boxes be initially empty
(N®(0) = 0). As a result, since 0 < N®D(0) < N, (lower than
the effective number of breeders), in subsequent generations,
the boxes will still remain empty and will be recolonized by
migrants from neighboring boxes, the genetic structure of
which may already differ significantly from the original one
due to random genetic drift and selection. However, there may
not be enough migrants to effectively sustain the subpopula-
tion, and the box may remain empty for several generations.

Because the initial numbers in all boxes are below the effec-
tive population size (N,), the natural selection is not effective,
and we cannot ignore the effect of random genetic drift. The
authors of the outlined experiment assumed N~ 50. This
means that after the 2nd or 3rd generation, the effect of deter-
ministic selection processes begins to dominate over random
processes that change allele frequencies. It would be difficult
to directly describe genetic drift in the model (9) without sig-
nificant modification or transitioning to a simulation model.
Instead, we “simulate” the result of genetic drift by using the
most likely initial frequency distribution, which is typically
formed in model (1). With disruptive selection (S values from
the Table), system (1) predicts that the frequencies of offspring
genotypes in the 2nd and 3rd generations from completely
heterozygous ancestors (with ¢,(0) = 1) will be approximately
g1~ 0.27, g,~ 0.46 and g3~ 0.27. We can assume that, for
the first few generations, genetic drift will randomly shift the
frequencies away from their initial values while the popula-
tion sizes remain below the effective population size N. As
a result, the observed genetic divergence in the system of
coupled populations can be equally explained by the initial
differences in both population sizes and frequencies, caused
by the initial genetic drift prior to reaching the effective size
in each subpopulation.

To fit the initial frequencies, we generate two inde-

pendent vectors of random numbers: qf)(O) ~ UJ[0,1] and
a’(0) ~ U10,17 (" (0) =1 - (c"(0) +¢{"(0))), and estimate

how much the “true” initial frequencies may vary from the
theoretical values of 0.27, 0.46, and 0.27 due to drift, so that
after 50-60 generations, model (9) approximately describes

n m S s, S5

30 0.025 0.244 0.069 0.227

3.6 5 5 90

1114 Vavilovskii Zhurnal Genetiki i Selektsii / Vavilov Journal of Genetics and Breeding - 2025 - 29 - 7



M.MM. Kynakos, OJ1. XKpaHoBa KomnbioTepHOe MmofenvpoBaHue NpoCcTPaHCTBEHHOM AnHaMuKk 2025
E.A. ®pncman 1 NePBUYHOW FreHeTUYeCKoN ANBepreHLnm 29.7
a b
15 1.0 5 0.95
T 4
10 0.90
3
SE 05 R R
2
5 0.85
1
0 0 0.80
150000 200000 250000 300000 297150 298000 299000 300000
Num Num

Fig. 2. Squared errors SE and correlation coefficients R for 300,000 initial conditions are ranked in order of increasing R. The Num is the “number” of

initial conditions.

the real distribution of allele A frequencies at the a-Gdph locus.
After examining 300,000 randomly selected initial frequencies
and abundances, we found that only about 100 replicas most
accurately describe the actual distribution, with the following
distribution of initial frequencies:

g"(0)=0.25+0.1,
q"(0)=0.41+0.1,
q{"(0) = 0.33 £ 0.16.

(11

This shows that we obtain a slightly lower frequency of
heterozygotes and a shift towards homozygosity with the
aa genotype than those predicted by model (1). Note that the
experimental data also showed a slight shift in the average
frequency of allele A towards allele a in the 5th generation,
despite the lower fitness of S;. Therefore, it would be reason-
able to choose initial frequencies within these ranges. From
a new set of 300,000 initial conditions of type (11), about
3,000 describe the actual frequency distribution quite well
(Fig. 2). To assess the quality of the approximation, we used
the correlation coefficient R between the actual and model
frequency distributions of allele A at the a-Gdph locus in
generation t, as well as the squared error SE:

SE() = 2 (QU() - (") + 0.56' (1))

Simulation results
We now consider the verification of equations (9) and analyze
the mechanisms leading to stable genetic divergence.

Figure 3a shows two diagrams of the spatiotemporal dy-
namics in system (9) for the parameter values from the Table,
using the most favorable initial conditions (Fig. 2b).

In the first diagram, the pixel color encodes the predominant
genotype at site I and time t; in the second diagram, it encodes
the population size. Figure 3a shows that at the initial stages,
all subpopulations are polymorphic and contain all three
genotypes (shown in green). Over time, driven by selection
and the dispersal of individuals within the distributed system,
an equilibrium state is established. This state corresponds to a
stable genetic divergence that persists for a long time (includ-
ing for t>>200). In one part of the boxes, only individuals with

the AA genotype (red) are present; in another, only those with
the aa genotype (blue) are found; polymorphic subpopulations
with a high frequency of heterozygotes (green) are located
between them. In the diagram, the subpopulation numbered
i = 16, along with its neighbors, maintains polymorphism for
t>>200. The second diagram shows changes in population
size, where pink corresponds to the maximum values (~135)
and black to the minimum ones. This diagram reveals several
boxes that were initially empty, demonstrating that their loca-
tion does not correlate with the final distribution of genotypes.

As can be seen from Figure 3b, model (9) describes the
observed frequency distribution quite well. However, in all
simulation runs (i.e., replicas with varied migration coef-
ficients, m; ;), the distribution similar to that observed in the
Drosophila experiments emerges slightly earlier — around the
50th generation rather than the 60th. This discrepancy could be
attributed to inaccurately estimated growth parameters since
the equations (9) seem to describe a slightly faster population
growth and evolutionary rate than is observed in reality. Alter-
natively, genetic drift processes, which were simulated using
random initial frequencies, may have prevailed over selection
for a longer period in the real experiment than we assumed
(e. g., for 2-3 generations until the population size reached an
effective N = 50). However, there is another probable expla-
nation. In the experiments with D. melanogaster, the sex and
age composition of all subpopulations was artificially main-
tained to prevent generation overlap. Specifically, all adult
individuals were removed from the boxes after the females
laid eggs. However, the sex ratio varied considerably between
boxes throughout the experiment. Some boxes exhibited a
significant deficit of females, while others had a pronounced
shortage of males. Consequently, not all females were able to
produce offspring before the removal time, and some males
fertilized multiple females. This violation of panmixia likely
skewed the data, as each complete removal event set back the
evolutionary process slightly. These complex processes are
not fully captured by the relatively simple model (9), which
is why it predicts a slightly faster rate of evolution.

In Figure 3c, the final 100 distributions (for t=100...200) of
the total population size for each genotype are superimposed.
The figure shows that, due to fluctuations in the number of
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Fig. 3. a, Spatiotemporal dynamics of genotype frequencies and population sizes in the system of migration-coupled populations described by
model (9). b, Modeled and observed frequency (q) distributions of the allele A at the a-Gdph locus and the frequency (qy) of zygotes at the 50th, 60th,
and 100th generations. ¢, The distribution of the total population size across the area (left), along with its components represented by the numbers of

individuals with genotypes AA, Aa u aa.

migrants, the population size in different boxes undergoes
irregular, non-synchronous oscillations. Furthermore, it is
evident that the polymorphic subpopulations (i = 6 and 16)
have a lower average abundance (N®) than the surround-
ing monomorphic subpopulations, which is consistent with
the significant frequency of heterozygotes in these popula-
tions.

As shown in the first diagram of Figure 3a, the subpopula-
tions evolve at different rates. This rate is determined by how
close the initial population size of a subpopulation is to the
effective size (N,) and how close its initial allele frequency is
to its final state (q = 1 or 0). For instance, the diagram high-
lights box i = 27, where the frequency of allele A was among
the first to reach fixation (q = 1). Notably, this subpopulation
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Fig. 4. a, Modeled and observed dynamics of the frequency g of allele A at the a-Gdph locus and the total number of populations of D. melanogaster
in the box system. SE is the squared error, R? is the coefficient of determination, and APRX is the approximation error. Model dynamics of genotype
frequencies (b) and population sizes (c) of the subpopulations highlighted in Fig. 3a. d, Phase portraits illustrating the group dynamics of the two sub-
populations; the light brown color denotes the stage of rapid box colonization, and brown indicates the transition to the maximum population size.

evolves similarly to a large panmictic population (the first
graph in Fig. 4a). Other subpopulations, as a rule, evolve more
slowly.

Figure 4 demonstrates the correlation between the dynam-
ics of allele frequencies and population sizes predicted by
model (9) and the actual experimental data. Figure 4a shows
that the modeled and experimentally observed average fre-
quency of allele A across all 30 boxes follow a similar trend,
stabilizing at a value of = 0.65. The discrepancy between the
modeled and observed average frequency at time point t =5
can be explained by the fact that model (9) does not directly
account for genetic drift, which occurred in the experimental
population; instead, its effect is simulated solely through
random perturbations of the frequency in the polymorphic
population.

The third graph, Figure 4a, shows the observed and model-
ed total population sizes for the system of 30 subpopulations.
The fourth graph (Fig. 4a) shows that the transition to the
maximum population size proceeds through three stages:
explosive growth over 2—3 generations from a small number
of founders; reaching a quasi-stationary level with a total size
of approximately >.N® ~3800 individuals, at which point
there is already a distinct differentiation of genotypes by box
groups, but the system still remains sufficiently polymorphic
(Fig. 3b at t = 50); and a transition to the final distribution
(Fig. 3b at t=100) and the maximum total population size of
approximately 4,000 individuals. As can be seen, model (9)

describes only the general trends of population growth, which
is explained by the fact that its behavior is, in principle, the
only possible type of dynamics at r =al/ < 2~ 7.38. Further-
more, equation (8), which describes the dynamics of a local
population, does not account for sex and age structure or many
other factors that undoubtedly caused irregular fluctuations
in the experimental populations. More importantly, model (9)
describes only the reproductive core of the population sys-
tem — females and an equal number of males — and does not
consider the fact that some males could have remained single
and constituted the majority of migrants. As a result, the mo-
deled population size is lower than the actual observed size.

At the same time, the modeled dynamics of the total popula-
tion size, »,N®, result from non-synchronous fluctuations of
each subpopulation around a stationary value of approximately
135 individuals per box (Fig. 4C, d). Summing these values
smooths out all differences in the sizes of the subpopulations.
Despite heterogeneities in the initial distributions of individu-
als, population growth in the first 5 generations — driven by
increased fitness — occurs synchronously in almost all boxes
(the first and second panels in Fig. 4d). The exception are
boxes that were initially empty or had an insufficient number
of breeders (the third and fourth in Fig. 4d). For these boxes,
anon-zero population size of approximately 3—5 individuals is
maintained solely by migrants. In all other boxes, the numbers
slowly reach their maximum values and fluctuate around them
(dark dots in Fig. 4d).
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Fig. 5. Distribution of the average fitness values for each subpopulation before migration (a), population sizes (b), and frequencies (c) of the AA, Aa,
and aa genotypes. d, Distribution of the migration balance values for each site.

The graphs highlight the areas where groups with the AA (i = 28) and aa (i = 12) genotypes are formed, as well as areas with active hybridization of individuals

(i=6andi=16).The arrows on the balance charts indicate the flow directions o

We now consider the mechanisms that could generate and
maintain the observed spatial divergence in allelic composition
within this experimental population system.

Analysis of migration flows
One of the reasons for the observed differentiation between
the subpopulations is revealed by the small declines in popula-
tion size in boxes i = 6 and i = 16, where polymorphism was
maintained (boxes designated as Aa in Fig. 3). These declines
become apparent only in the final distribution, as these boxes
are surrounded by subpopulations with opposite genotypes
and have a large population number. However, the presence
of such subpopulations indicates only the possible mecha-
nisms for maintaining divergence, rather than the reasons of
its initial occurrence. These boxes can be considered as the
hybrid zones, the allelic composition of which is maintained
solely through migration and gene flow from sites inhabited
by individuals with fixed opposite genotypes.

To study the mechanisms of the formation and maintenance
of divergence, we will consider changes in the average fitness
in each box W (Fig. 5a), the numbers of individuals of each

f individuals with the corresponding genotypes.

genotype Nk(i) (Fig. 5b), and allele frequencies q,ﬁ” (Fig. 5¢)
over time. We will also assess the contribution of migration to
the process of natural selection and the transition to the final
frequency distribution. The migration balance of individuals
with genotype k (k=AA, Aa, or aa) in the subpopulation i will
be calculated using the following formula:
SO =My G IN D b m gl NG (12)
= (Mt M) gN @’
where ("N V" represents the number of individuals with geno-
type K after selection, but before migration. This value is equal
to the difference between the number of arrivals (the first two
terms) at the site with index i and the number of departures (the
third term) of individuals. The value of S indicates whether the
size of the subpopulation with index i has increased (S > 0) or
decreased (S < 0) due to migration (Fig. 5d). By comparing
these three values, we can easily determine the directions of
migration (arrows in Fig. 5d).
When selecting the initial conditions, it was found that the
experimentally observed frequency distribution in model (9)
occurs when the initial frequencies are shifted toward the
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prevalence of homozygotes with the aa genotype. Note that
the AA and aa genotypes differ in fitness by approximately
11 %. This means that for the most adapted AA genotype to
become fixed, it must overcome this fitness threshold for a
small proportion of subpopulations. However, a rarer set of
circumstances is required for the less adapted aa genotype
to avoid complete displacement, allowing both traits to be
maintained.

Figure 5a shows that after a period of rapid growth until the
5th generation, two sites are distinguished, numbered i = 12
and i =28, in which the frequency distribution yields the high-
est values of both average fitness W and total reproductive
potential al” ® among all others. Although this difference is
small (1 % for aa and 0.7 % for AA), it proves sufficient to
initiate the separation of individuals of the same genotype
near these boxes. This likely required a frequency shift in
more than one site. Figures 5b and 5¢ show the distributions
of population sizes and genotype frequencies, respectively.
It can be observed that near site i = 12 at t = 5, there are at
least six boxes with an increased number of aa homozygotes
(and g < 0.5) relative to their surroundings. This implies that
the flow of migrants from this region for any random m; ; is
primarily represented by this genotype, which promotes its
fixation. Site i =28 has only one neighboring box with a high
number of AA homozygotes (and g > 0.5), but this proves suf-
ficient to fix the best-adapted genotype. Until approximately
generation 50, sites i = 12 and i = 28 maintain the highest rates
of fitness increase, exhibit frequencies closer to their final
values (=1 or g =0), and clearly support larger numbers of
the corresponding genotype compared to their surroundings.
As a result, migrants from these boxes are more genetically
homogeneous than those from other boxes, and even the
stochastic migration does not alter the overall evolutionary
trend — homozygotes displace the less adapted heterozygotes.

On the migration balance S,E') graphs (Fig. 5d), it can be
observed that at the initial stages (t = 5), the distribution of
both the direction and intensity of individual flows between
sites appeared largely random and comparable across different
genotypes. As spatial differentiation progresses and better-
adapted individuals displace less adapted ones, homogeneous
areas with the largest population sizes (i = 12 and i = 28) be-
gin to contribute more significantly to migration than highly
polymorphic areas. By the 60th generation, two monomorphic
groups with opposite traits, AA and aa, reach their largest
sizes (AA — 17 boxes, aa — 8 boxes) and come into contact.
However, since they have by then accumulated a sufficient
number of individuals and their population sizes prove to be
comparable, the resulting migrant flows also become compa-
rable, despite the 11 % difference in fitness. As a result, in the
hybrid zones near sites numbered i = 6 and i = 16, two equally
large streams of individuals with opposite genotypes converge,
ensuring a non-zero number of heterozygotes in these boxes.
The outflow from these boxes is much weaker and is barely
sufficient to maintain a low level of polymorphism in their
vicinity. However, it is these hybrid zones that slow down the
flows of homozygous individuals of different forms, prevent-
ing the better-adapted AA genotype from achieving complete
fixation throughout its range.

2025
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Discussion

The verification of model (9) against the experimental data
from Yu.P. Altukhov’s study on box populations of D. mela-
nogaster, along with the analysis of scenarios underlying the
formation of heterogeneous distributions of allele frequencies
and population sizes, requires further clarification.

First, it is necessary to discuss the reason for the pronounced
differences in fitness observed among genotypes with different
allele combinations of the a-Gdph enzyme, as revealed by
estimates of the selection coefficients Sy. It is quite plausible
that the a-Gdph locus serves as a marker of disruptive selec-
tion operating within the system, acting not directly on the
a-Gdph gene itself, but on closely linked adaptive genes. This
may explain certain discrepancies between the observed and
modeled distributions and frequency dynamics, since the
overall adaptive effect and direction of selection — even for
genes strongly linked to a-Gdph — are not simply additive.
Instead, they result from more complex interactions, such as
polygenic or complementary gene effects, epistasis, or multi-
gene interaction.

Note that a significant difference in fitness is not a neces-
sary condition for genetic divergence in model (1). It has been
previously demonstrated that spatial differentiation can occur
even with small differences in fitness. The degree of difference
between genotypes, as well as the migration coefficient, deter-
mines the rate at which stable divergence is achieved, and the
size of the resulting monomorphic subpopulations and hybrid
zones (Kulakov, Frisman, 2025).

Despite the limitations noted above, the proposed model
allows to analyze the processes that led to the primary genetic
divergence observed in the experiment. It was found that the
combined effect of genetic drift, density-dependent limitation,
and gene flow —before the effective population size N and the
minimum number of breeders N, were reached — resulted in
some boxes accidentally containing a higher number of less
adapted aa individuals than the more adapted AA ones. As a
result, subpopulations with even a slight deviation in allele fre-
quencies from the theoretically expected values (typical for a
local panmictic population) reached the highest average fitness
and population growth rate earlier than others. As emigrants
carry the allelic composition of their source subpopulation,
clusters of boxes with either AA or aa genotypes form around
these rapidly growing groups. Gradually, these genotypes dis-
place the less-adapted heterozygous Aa individuals and occupy
the largest number of sites. The interaction between the two
migrant streams, carrying AA and aa genotypes, maintains
a non-zero number of heterozygous individuals in certain
boxes, creating hybrid zones. On the one hand, their presence
preserves the genetic diversity of the entire metapopulation.
On the other hand, these zones prevent the fittest individuals
from occupying the entire range.

This evolutionary scenario can be considered universal
for several reasons. The divergence of natural populations is
always preceded by the emergence of mutants with a new trait
in certain areas. For such a trait to become fixed, especially if it
confers no significant immediate advantage, strong reproduc-
tive isolation from the parental population is required. This
may be a case of disruptive selection, which is manifested
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not only in the reduced fitness of heterozygotes (hybrids) but
also in positive assortative mating, which further diminishes
the reproductive success of small hybrid populations. For in-
stance, in the case of the hooded and carrion crow mentioned
in the Introduction, the primary isolating mechanism appears
to be based on mating preferences. For crows, plumage color
is significantly associated with innate perception of potential
partners, which substantially reduces the likelihood of mat-
ing between dissimilar morphs but allows for crossbreeding
between already hybrid individuals or between hybrid and
“pure” forms (Poelstra et al., 2014; Kryukov, 2019).

Unlike seasonal migration, the dispersal of individuals and
colonization of new sites is a slow process that unfolds over
multiple generations. Consequently, the remote parts of a
new area will be inhabited only by the descendants of the
original migrants. During this gradual expansion, individuals
will inevitably interbreed with local populations. The model
proposed in this paper demonstrates that such dispersal will
inevitably cease if the recipient site is inhabited by individuals
possessing a different trait than the migrants, due to potential
selection against hybrids. In the case of crows, assortative
mating will restrict interbreeding between the different morphs
in newly colonized areas, thereby significantly reducing the
likelihood of further expansion. In the ring populations’ system
of Drosophila, the reduced fitness of heterozygotes decreases
hybrid fertility and prevents their descendants from dispersing
further. Consequently, for species where dispersal is a multi-
generational process, hybrid zones act as significant barriers.
They effectively impede the movement of individuals possess-
ing one trait into areas occupied by individuals with another
trait, without the need for those areas to be permanently settled,
and with a high probability of producing hybrid offspring. If
a more rapid dispersal mechanism is possible, this dynamic
can change dramatically.

Conclusion

The dynamic model proposed in this paper enables a detailed
investigation of the mechanisms underlying primary genetic
divergence. These mechanisms are attributed to differences
in genotype fitness, settlement patterns, migration, and the
formation of stable hybrid zones. The model demonstrates the
possibility of reproductive isolation between different forms
of diploid organisms, which arises not only from geographical
isolation, habitat remoteness, or ecological specialization but
also from hereditary mechanisms, genetic drift, gene flow,
and selection against heterozygotes. This type of selection
results in stable spatial genotype differentiation, maintained
by hybrid zones that act as effective barriers to the introgres-
sion of divergent traits.

Thus, disruptive selection is demonstrated to play a crucial
role — an effect that can be detected through certain marker
genes but is not always apparent from external morphology.
Consequently, it may be far more widespread in nature than
previously believed.
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Abstract. The nature of the last universal common ancestor (LUCA) of all living organisms remains a controversial issue
in biology. There is evidence of both thermophilic and mesophilic LUCA origin. The increasing complexity of the cellular
apparatus during the evolution from early life forms to modern organisms could have manifested itself in long-term
evolutionary changes in the nucleotide composition of genetic sequences. This work is devoted to the identification
of such trends in tRNA sequences. The results of an evolutionary analysis of single-nucleotide substitutions in tRNAs
of 123 species from three domains - Bacteria, Archaea and Eukaryota - are presented. A universal vector of directed
evolutionary change in tRNA sequences has been discovered, in which substitutions of guanine (G) to adenine (A)
and cytosine (C) to uracil (U) occur more frequently than the reverse. The most striking asymmetry in the number of
substitutions is observed in the following transitions: a) purine-to-purine, where G—A outnumbers A—G, b) pyrimidine-
to-pyrimidine, where C—U outnumbers U—C, and c) purine-to-pyrimidine and vice versa, where G—U outnumbers
U—G. As a result, tRNAs could lose “strong” three-hydrogen-bond complementary pairs formed by guanine and cytosine
and fix “weak” two-hydrogen-bond complementary pairs formed by adenine and uracil. 16 out of 20 tRNA families are
susceptible to the detected change in sequence composition, which corresponds to the significance level p = 0.006
according to the one-sided binomial test. The identified pattern indicates a high GC content in the common ancestor of
modern tRNAs, supporting the hypothesis that the last universal common ancestor (LUCA) lived in a hotter environment
than do most contemporary organisms.
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AcuMMeTpuda HYKJIeOTUIHbIX 3aMeH B TPHK
CBUOETENbCTBYET 00 00I1IeM IIPOVMCXOKIEHUN
COBpPEMEHHBIX OPraHM3MOB OT TepMO(MIJIbHOrIO IIpeaKa
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AHHoTauusA. MNpupoga nocnefaHero yHuBepcanbHoro obuwero npegka (last universal common ancestor, LUCA) Bcex
HbIHE >KMBYLMX OPraHM3MOB A0 CMX NMOpP OCTaeTcA akTyasnbHOW npobnemoit 6uonoruun. CylwecTByoT CBUAETENbCTBA B
nonb3y Toro, uto LUCA 6bin Kak Tepmoprnom, Tak 1 Me3opunom. YCnoxKHeHmne KNeToUHoro annapata B Xo4e 3BooLum
OT paHHMX GOPM MM3HU K COBPEMEHHbIM OpraHM3MaM MOFIO MPOABUTLCA B [OJTOBPEMEHHbIX BOJIOLMOHHbIX
N3MEHEHNAX HYKNEOTULHOrO COCTaBa FEHETMYECKMX MOCiefoBaTeENbHOCTEN. BbiABNEHNIO NOJOOHbIX TEHAEHUUA B
nocnegosatenbHocTax TPHK noceaLeHa 3ta pabota. MpeacTaBneHbl pesynbTaThl SBOMOLMOHHOIO aHann3a TouYeUHbIX
HyKneoTuaHbix 3ameH B TPHK 123 BnpoB Tpex gomeHos: Bacteria, Archaea n Eukaryota. O6Hapy»eH yH1BepcanbHbIl
BEKTOP HamnpaBNeHHOro 3BOOLMOHHOIO N3MeHeHUA nocnegosaTtenbHocTel TPHK, npy KoTopom 3ameHbl ryaHuHa (G)
n yutosmHa (C) Ha ageHuH (A) n ypaumn (U) cymMapHO nNponcxomnaT valle obpaTtHbix. Hanbonee apko acummeTpua
yncna 3aMeH HabnlofaeTca B crefylowwyx nepexofax: a) Mexxay nypvHamu B npeobnafaHumn ynicna 3ameH G—A Haj
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yncnom 3ameH A—G; 6) mexxgy nupumugrHamu B npeobnagaHum C—U Hapg U—C, a TakxKe B) Npu nepexofe 13 nypuHa
B MUPUMUAMH 1 Hao6opoT — B npeobnaganun G—U Hag U—G. B pesynbrate 3BosnoLMoHHOro npouecca TPHK mornm
TEPATb «CUJbHbIE» KOMMIEMEHTaPHbIE Napbl C TPEMSA BOLOPOAHBIMU CBA3AMMU, GOPMUPYEMbIE T'YaHVHOM U LUTO3UHOM,
n dukcmpoBaTtb «cnabble» KOMMIEMeHTapHble napbl C ABYMSA BOAOPOAHbIMK CBA3AMM, O6pasyemble afeHUHOM U
ypauunom. O6HapyXeHHOMY M3MEHEHUNIO COCTaBa NocneAoBaTeNnbHocTel Obinv noasepeHbl 16 13 20 cemencts TPHK,
YTO COOTBETCTBYET YPOBHIO CTaTUCTUYECKON 3HaunmMocTu p = 0.006 cornacHO OAHOCTOPOHHEMY GUHOMUANbHOMY TECTY.
BblfiBNeHHan 3aKOHOMEePHOCTb CBUAETENbCTBYET O BbICOKOM GC-cofiepaHuy B NOCNeA0BaTeNIbHOCTU O6Lero npefKka
coBpemeHHbIx TPHK 1, cnegoBatenbHo, noaTBepKAaeT NPefnosioKeHne 0 TOM, YTO caMas MOJIoAan U3 rMNoTeTUYECKUX
06LWMX NPefKOBbIX KNETOK, OT KOTOPOW MPOMU3OLAN BCE HbIHE XMBYLME OpraHu3Mbl (MOCNEAHWIA YHUBEPCanbHbIN
o6wmn npegok, LUCA), obutana B 6onee ropsayeit cpeae, Hexenu HblHe XKUBYLLME OpraH/3Mbl.

KnioueBble cnosa: 3sontoumns; Tepmodun; mytaumu; TPHK; matpuua nepexofa; nociefHUin YHUBEPCanbHbIA 06w

npefok

Introduction

Despite extensive research, the nature of the last universal
common ancestor (LUCA) of all living organisms remains
a pressing problem in biology. According to recent studies
(Moody et al., 2024), LUCA arose approximately 4.2 bil-
lion years ago and possessed the basic elements of the cel-
lular apparatus of modern prokaryotes (genes and molecular
genetic systems for transcription and translation, including
tRNAS). There is a debate about whether LUCA was a ther-
mophile (Di Giulio, 2000; Weiss et al., 2016; Moody et al.,
2024) or a mesophile (Galtier et al., 1999; Cantine, Fournier,
2017).

The increase in cellular complexity during the evolution
from early life forms to modern organisms could have mani-
fested itself in long-term evolutionary changes in the nucleo-
tide composition of genetic sequences. Thus, in the work
(Jordan et al., 2005), using the method of unrooted parsimony
(Rickert et al., 2025), patterns of systematic unidirectional
changes in the amino acid composition of proteins during their
evolution from ancestral forms were identified: an increase
in the content of the amino acids Cys, Met, His, Ser and Phe
due to a decrease in the content of the amino acids Pro, Ala,
Glu and Gly. In the work (Galtier et al., 1999), a comparison
of LUCA ribosomal RNAs and those of modern species based
on GC content was conducted, the results of which were sub-
sequently criticized (Di Giulio, 2000). Of interest is the work
(Men et al., 2022), in which fragments of LUCA ribosomal
RNAs (16S, 5S, and 23S rRNA) that are evolutionarily con-
served in modern sequences and correspond to sites of rRNA
interaction with ribosome proteins were reconstructed. Ho-
wever, this study examined rRNA nucleotide sequences in the
binary purine-pyrimidine code and, therefore, did not assess
the G/C content of the RNA. Therefore, evolutionary changes
in the RNA nucleotide composition from LUCA to modern
species have not been definitively established.

In this regard, it seemed interesting to study long-term
trends in changes in the nucleotide composition of RNA
sequences, namely tRNA molecules, which are the most
important element of translation systems in all organisms.

In our study, we examined the molecular evolution of
20 isoacceptor tRNA families, each of which mediates the
transfer of a specific amino acid during translation. These
tRNA families were analyzed for 123 organisms from three
domains: Bacteria, Archaea and Eukaryota.

Phylogenetic analysis was performed using the unrooted
parsimony method (Jordan et al., 2005). Single nucleotide

substitutions were identified that became fixed in tRNAs
during their evolution from ancestral sequences to modern
ones, and it was shown that substitutions of guanine (G)
or cytosine (C) for adenine (A) or uracil (U) are fixed more
often than substitutions of A or U for G or C. This shapes a
view of predominantly unidirectional evolutionary change
of tRNA sequences, during which they lost “strong” comple-
mentary pairs with three hydrogen bonds formed by guanine
and cytosine, and fixed “weak” complementary pairs with
two hydrogen bonds formed by adenine and uracil. This fea-
ture was characteristic of 16 of the 20 tRNA families, with
a significance level of p < 0.006 according to the one-sided
binomial test.

The obtained results indicate a high content of G/C in the
nucleotide sequences of tRNAs of the common ancestor of
modern Bacteria, Archaea and Eukaryota and, therefore, sup-
port the assumption that the last universal common ancestor,
LUCA, lived in a hotter environment than living organisms,
i. e., was a thermophile or heat-loving mesophile (moderate
thermophile). This conclusion is based on the fact that the
content of G and C nucleotides in nucleotide sequences is
associated with the optimal temperature of the organisms’
habitat, in connection with which genetic macromolecules
(DNA, RNA) can be considered as a kind of molecular ther-
mometers, and the content of G/C in them as an indicator of
the temperature of the habitat.

Materials and methods

The tRNA nucleotide sequences of three domains (Bacteria,
Archaea and Eukaryota) were taken from a curated database
presented in the paper (Sprinzl et al., 1998, Supplementary
Material S1)!. The database contained an alignment of tRNA
sequences “most compatible with the tRNA phylogeny and
known three-dimensional structures of tRNA” (Sprinzl et
al., 1998). Each tRNA was assigned to its amino acid by the
database authors.

The procedure for generating a sample of nucleotide se-
quences for evolutionary analysis was as follows. 1) For each
of'the 123 organisms, 20 tRNA groups were considered. Each
group included a tRNA interacting with one of the 20 amino
acids. Possible horizontal transfer (Soucy et al., 2015), as
well as transitions between groups as a result of remodeling
(a change in the isoacceptor group as a result of an anticodon
change, for which only about 20 cases are currently known

T Supplementary Materials S1 and S2 are available at:
https://vavilovj-icg.ru/download/pict-2025-29/appx41.zip
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Fig. 1. Scheme of building the sample from the tRNA sequence database.

(Bermudez-Santana et al., 2010; Velandia-Huerto et al., 2016;
Romanova et al., 2020)) were not considered. 2) For each
position of the nucleotide sequences of this group correspon-
ding to a specific organism and amino acid, the frequencies
of four nucleotides were calculated, and the nucleotide with
the highest frequency was assigned to the position in ques-
tion; considering all positions of the sequences of the group, a
consensus sequence of the tRNA group was constructed. 3) For
a consensus sequence corresponding to a particular group of
tRNAs, its similarity to each of the nucleotide sequences of the
multiple alignment included in the group under consideration
was assessed, and the sequence closest to the consensus was
selected from this group.

Thus, a sample of tRNA nucleotide sequences for evolutio-
nary analysis was formed, containing 20 x 123 = 2,460 typical
tRNA sequences (Fig. 1). Each sequence in this sample was
most typical for one of the isofunctional tRNA families of a
given organism (out of 123).

Following (Jordan et al., 2005), identification of nucleotide
substitutions recorded during the evolution of the nucleotide
sequences of each isofunctional tRNA family was carried out
based on the unrooted maximum parsimony method on phy-
logenetic trees with three vertices (Fig. 2) using the Dnapars
program (Phylip package, Phylip, https://phylip web.github.
io/phylip).

When analyzing a specific family of isoacceptor tRNAs, the
following procedure was performed. For each S1 nucleotide
sequence of 123 tRNA sequences in the family, the closest
(in terms of similarity) S2 nucleotide sequence was identified,
followed by the closest S3 sequence to S2 (Fig. 2), so that
S2 and S3 formed a pair of closest relatives. This resulted in
the formation of a phylogenetic triad in which S1 was the
“outgroup” relative to the pair S2 and S3.

The unrooted maximum parsimony method assumes that if
anucleotide is found at a certain position in the sequence that
is identical in S1, S2 and S3, then this nucleotide was present
at the same position in the tRNA in the common ancestor of
S1, S2 and S3. If, however, a different nucleotide is observed
in S3, then a single nucleotide substitution occurred along
the branch leading to S3. If all three nucleotides were differ-
ent, then, following (Jordan et al., 2005), this position was
considered uninformative and excluded from consideration.
This method does not require stationarity and reversibility of
the evolutionary process (Klopfstein et al., 2015).

Asymmetry of substitutions in tRNAs indicates common descent
of modern organisms from a thermophilic ancestor

Common Common
ancestor ancestor
A ?
A—G
S3 S2 S1 S3 S2 S1
A G A A G u

Fig. 2. Search for nucleotide substitutions using the unrooted maximum
parsimony method on the simplest trees of three closest tRNAs.

The identified A—G substitution in the group of two closest relatives, S2 and
S3, is shown on the left, and the uninformative substitution is shown on the
right.

Results

Following the approach of (Jordan et al., 2005) and conside-
ring nucleotide changes between the sequences of the closest
ancestors and descendants, we constructed a mutational transi-
tion matrix for each of the 20 aligned tRNA families. Table 1
shows an example of such a matrix for the tRNACYs family.
Off-diagonal elements M; | (i, k = 1,...,4) characterize the
total number of single substitutions in the tRNACYs sequences
of nucleotide i to nucleotide k. Diagonal elements M, |, cor-
respond to conserved positions. Rows and columns with gaps
in the alignments (=) mainly corresponded to the variable loop
region and were omitted for quantitative assessments.

Table 1 shows that among the nucleotide substitutions
identified for the tRNACYs family, the most frequently ob-
served were transitions, i. e. substitutions between purines
(Ng_a =139 and N,_, = 113) and between pyrimidines
(Ne_y =177 and Ny_,c = 138).

Itis noteworthy that the number of substitutions of “strong”
nucleotides with “weak” ones (G—A, G—U, C—A, C—U),
which is 417, exceeds the number of substitutions of “weak”
nucleotides with “strong” ones (A—G, A—C, U—C, U-QG),
which is 340. This indicates an evolutionary trend toward a
decrease in the G/C content of tRNAs in favor of an increase
in the A/U content. The effect we identified, described above,
was termed nucleotide substitution asymmetry.

We arrive at qualitatively similar conclusions by examining
mutational transitions in the tRNACU family (Table 2). In this
family, the number of substitutions of “strong” nucleotides
with “weak” ones is 454, and the number of substitutions of
“weak” nucleotides with “strong” ones is 302.

A similar analysis was performed for all 20 isoacceptor
tRNA families (Supplementary Material S2). Next, we esti-
mated the asymmetry effect for all isoacceptor tRNA families.
For this purpose, we calculated a general substitution matrix
by summing the corresponding elements of all 20 isoaccep-
tor tRNA family matrices (Supplementary Material S2). For
all tRNAs, the number of identified single substitutions was
24,653, and the number of uninformative substitutions was
2,083.

The diagonal elements of the resulting matrix (Table 3)
characterize the average nucleotide composition of tRNAs
from the studied species: 32.9 % (G), 27.8 % (C), 21.0 %
(U), 18.3 % (A), as well as the content of “strong” G + C
nucleotides (60.7 %) and “weak’ ones (39.3 %). Transitions
are represented by four out of the twelve off-diagonal ele-
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Table 1. Matrix of the number of single-nucleotide substitutions  Table 3. Matrix of the number of nucleotide substitutions
in tRNAYs sequences identified by the unrooted parsimony method for tRNAs,
mmarized for all i r famili
From\to A C G U B Su arized for a soacceptor fa es
From\to A C G U -
A 1,526 44 27
A 28,841 1,273 853
C 2,292 74 25
@ 43,778 1,829 951
G 91 2,469 6
G 1881 51,756 330
U 45 1,492 23
u 1,272 32,994 715
- 20 27 0 39 3,131
Note. Here and in Tables 2 and 3: green indicates the number of substitutions - 666 862 210 867 53,981
of “strong” nucleotides (G and C, which form complementary pairs with
three hydrogen bonds) with “weak” nucleotides (A and U, which form
complementary pairs with two hydrogen bonds). Yellow indicates the number
of substitutions of “weak”nucleotides Aand U with“strong”nucleotides Gand C. X o X
The column marked with a “~” sign indicates the number of substitutions at Table 4. Asymmetry of nucleotide substitutions in tRNAs
alignment positions corresponding to deletions.
Ag-A  Ac-u  Ag-u  Ag-c  Aa-u Acoa
0.16 0.14 0.12 0.028 0.008 0.011

Table 2. Matrix of the number of single-nucleotide substitutions
in tRNAGu sequences

From\to A C G u -

A 1,353 57 37
C 2,526 105 35
G 105 2,389 9
U 58 1,608 27
- 30 35 0 23 2,956

ments. The proportion of transitions in the total number of
substitutions was 56 %.

As in most partial matrices for individual families of isoac-
ceptor tRNAs (see, for example, Tables 1 and 2), in Table 3, the
number of substitutions of “strong” nucleotides with “weak”
ones (shown in green) exceeds the number of substitutions of
“weak’ nucleotides with “strong” ones (marked in yellow): cf.
NG—>A = 3451 and NAHG = 2949, NCHU = 3963 and NUHC =
3468, Ng_u = 1421 and Ny_,g = 1261, N¢_,, = 963 and
N =952

To quantitatively assess the asymmetry of substitutions
Ar_7, the relative difference was calculated, defined as the
doubled difference of two values divided by their sum — the
number of substitutions between nucleotides F and Z, where
F,Z€(A, U, G, C):

AF—>Z - 2(NF—>Z - NZ—»F)l (1)
Nz + Nz _p

Table 4 presents the results of Ag_,, calculations based on
(1) and Table 3. The asymmetry in the number of substitutions
was: 0.16 for G—A and A—G; 0.14 for C—U and U—C; 0.12
for G—U and U—G. The remaining transitions were slightly
asymmetric: from 0.008 to 0.028 (Table 4).

Based on Table 3, we can also calculate the balance of losses
and gains of B for the F-type nucleotide:

Be=2,(N;_r —Ac_7)- @

Table 5 shows the total decrease in the number of “strong”
G/C nucleotides in the studied nucleotide sequences of all
analyzed tRNA families by 1,198 (714 G + 484 C) due to the
evolutionary gain of the same number of weak A/G nucleotides
(512 A + 686 U). Considering the total number of G, C, A,
and U nucleotides in the studied tRNA sequences, the changes
in the number of these nucleotides during the evolution of
tRNA families, normalized by their number, were —0.014,
—0.011, +0.018, and +0.021 for G, C, A, and U, respectively
(Table 5).

The nucleotide substitution matrices for all 20 isoaccep-
tor tRNA families are given in Supplementary Material S2.
Table 6, obtained from these 20 matrices, shows the arithmetic
differences Nr_,, — N,_r (F, Ze(A, U, G, C)) between the
numbers of all possible types of nucleotide substitutions fixed
in the evolution of 20 isoacceptor families of tRNAs. Each
variant of the arithmetic difference in the number of F—Z
and Z—F substitutions corresponds to a specific column in
Table 6. Each row in this table corresponds to a specific isoac-
ceptor family of tRNAs. The last column shows the relative
difference in the number of substitutions, Ag_,y, Of “strong”
nucleotides, SE(G, C) with “weak” nucleotides, We(A, U),
determined by equation (1).

Table 6 shows that 16 tRNA families are characterized by
a positive value of the relative difference in the number of
substitutions, Ag_,w > 0. At the same time, four families of
tRNAs (bottom lines) are characterized by a negative differ-
ence, <0. Of these four families of tRNAs, for three tRNAs
(tRNASY, tRNAT and tRNAVY2!), the observed negative trend,
i. e. the predominance of W—S substitutions over S—W, is
insignificant (-0.06 < Ag_,w < —0.03), and only for tRNADS,
the predominance of W—S substitutions over S—W is pro-
nounced (Ag_,w =—0.34).

A one-sided binomial test was used to assess the significance
of the predominance of positive values Ag_,y Characterizing
the relative difference between a) the number of substitutions
of “strong” nucleotides with “weak” nucleotides (S—W) and
b) the number of substitutions of “weak” nucleotides with
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Table 5. Characteristics of the composition and evolutionary dynamics of the studied nucleotide sequences

of all analyzed tRNA families

Characteristics of the composition and evolutionary dynamics G @ A U
Total number of conserved nucleotides of four types in trees 51,756 43,778 28,841 32,994
of unrooted parsimony for the studied tRNA sequences
Average content of nucleotides of four types in the studied 329 27.8 18.3 21.0
tRNA sequences
Changes in the number of nucleotides of four types -714 -484 +512 +686
during the evolution of tRNA families
Changes in the number of nucleotides of four types during -0,014 -0,011 +0,018 +0,021
the evolution of tRNA families, normalized by their number

Table 6. Arithmetic differences Nr_,7 - Nz_¢ (F, ZE(A, U, G, C)) between the numbers of nucleotide substitutions

of all possible types fixed in the process of evolution of 20 isoacceptor families of tRNAs
tRNA Ng-a-Na—c  Ncou-Nysc Neou-Nywe  Neoc-Neog Nau—-Nysa  Neoa-Nac As_w"
Ala -5 36 21 0 -20 -4 0.13
Arg 20 41 4 6 21 21 0.14
Asn 45 30 10 4 -10 -11 0.19
Asp 32 4 20 2 -2 13 0.21
Cys 26 39 7 17 -1 5 0.20
GIn -4 -2 21 -3 10 31 0.11
Glu 66 60 14 0 -1 12 0.40
His 52 2 -18 10 -4 -17 0.04
lle 25 -2 5 16 13 8 0.12
Leu 62 89 25 6 -13 25 0.14
Met 34 45 -11 14 7 -9 0.12
Phe 20 44 7 4 19 8 0.24
Pro 29 21 24 -9 2 14 0.20
Ser 50 105 61 -5 -12 -32 0.19
Trp 44 13 6 0 3 -4 0.16
Tyr 44 48 7 -3 -23 5 0.24
Gly -11 4 -7 9 5 6 -0.04
Thr =21 -26 -17 -14 -5 0 -0.06
Val 12 12 -23 -5 7 -19 -0.03
Lys -18 -58 =31 3 5 -41 -0.34

*The last column shows the value of the relative difference in the number of substitutions between “strong” and “weak” nucleotides, Ag_,yy = 2(Ns_,yy = Ny_,s)/
(Ng_,w+ Nw_,s), where Se(G, C), We (A, U).

“strong” nucleotides (W—S) fixed during the evolution of
20 tRNA families (Lehmann, 2012). In our case, the level of
significance was calculated as the probability p of random
observation of 16 matrices out of 20 with substitutions in fa-
vor of a decrease in the number of “strong” G/C nucleotides:

see expression (3). At the same time, it was assumed that the
number of recorded substitutions of types S—>W and W—S
was the same on average.

p=Y,-20C0.520 = 0.0059.
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Using (3), the statistical hypothesis of the asymmetry of
evolutionary substitution matrices in the direction of G and
C nucleotide loss and A and U nucleotide gain was accepted
with a significance level of p < 0.006.

Discussion

Our analysis of the evolution of 20 isoacceptor tRNA families
of 123 species of the three domains (Bacteria, Archaea and
Eukaryota) from their ancestral forms revealed a tendency
to decrease the G/C composition of tRNAs in favor of an
increase in the A/U composition. This effect was called the
asymmetry of nucleotide substitutions. It consisted in the
evolutionary loss of “strong” nucleotides G and C, capable
of forming energy-advantageous complementary pairs with
three hydrogen bonds, and the gain of “weak” nucleotides A
and U, which form less stable complementary pairs with two
hydrogen bonds. 16 out of the 20 tRNA families were affected
by the detected change in sequence composition, which cor-
responds to the significance level of p < 0.006 according to
the one-sided binomial test.

The results suggest that the last universal common ancestor,
LUCA, lived in a hotter environment than currently living or-
ganisms; i. e. it was a thermophile or a thermophilic mesophile
(moderate thermophile). This conclusion is substantiated by
the fact that the content of nucleotides G and C in nucleotide
sequences is associated with the optimal temperature of or-
ganisms (Dutta, Chaudhuri, 2010), in connection with which
genetic macromolecules (DNA, RNA) can be considered as a
kind of molecular thermometers, and their G/C content is an
indicator of the temperature of the environment.

Early Earth conditions must have determined the energetic,
metabolic, biochemical, and environmental features of LUCA.
According to (Di Giulio, 2000; Weiss et al., 2016), LUCA
lived in hot springs, the high temperature of which facilitates
the course of biochemical reactions and molecular genetic
processes, but requires thermodynamic and Kinetic stability
of biomolecular structures, the thermodynamic fluctuations
of which are more pronounced the higher the temperature of
the environment. Modern thermophiles are adapted to high
temperatures due to the high content of nucleotides G and C
in the genome (Dutta, Chaudhuri, 2010), which form stronger
complementary bonds with each other. And this is especially
important for the thermal stability of structural RNAs, inclu-
ding tRNAs.

It should be noted that four out of the 20 families of tRNAs
studied in our work do not follow the general trend of los-
ing “strong” nucleotides. The reasons that determined the
peculiarities of the evolution of these tRNAs could vary. For
example, two families, tRNAGly and tRNAVal, correspond to
chemically simple, so-called “Miller” amino acids. Presu-
mably, these amino acids were part of the most ancient proteins
and the nucleotide composition of their tRNAs could have had
time to reach their individual evolutionary equilibrium, albeit
different from the average for all tRNAs. However, overall,
comparing the G/C composition of tRNAs in organisms li-
ving at different temperatures, our results suggest that modern
organisms, on average, live in colder environments than
LUCA.

AcummeTpua 3ameH B TPHK cBrnaeTenbcTByeT 06 o6Liem nponcxoxaeHun 2025
COBPEMEHHbIX OPraHN3MOB OT TEPMODUIBHOTO NPeaKa

29.7

Conclusion

A universal vector of directed evolutionary change in tRNA
sequences has been discovered, in which the substitution of
guanine (G) and cytosine (C) with adenine (A) and uracil (U)
in total occurs more often than the reverse. As a result of the
evolutionary process, tRNAs could lose “strong” comple-
mentary pairs with three hydrogen bonds, formed by guanine
and cytosine, and fix “weak” complementary pairs with two
hydrogen bonds, formed by adenine and uracil. 16 out of
the 20 tRNA families were affected by the detected change
in sequence composition, which corresponds to the level of
statistical significance p = 0.006 according to the one-sided
binomial test. This pattern suggests high G/C content in the
sequence of the common ancestor of modern tRNAs and,
therefore, supports the assumption that the youngest of the
hypothetical common ancestral cells, from which all currently
living organisms descended (the last universal common an-
cestor, LUCA), lived in a hotter environment than currently
living organisms.
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Assessing the dependence of brain activity
on individual single-nucleotide variability of genetic markers
of major depressive disorder using principal component analysis
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Abstract. Major depressive disorder (MDD) is one of the most widespread mental illnesses, which necessitates the search
for factors of increased predisposition to this disorder. Single nucleotide polymorphisms in genes of the brain’s neurotrans-
mitter systems are often considered as molecular genetic markers of MDD. Indicators of individual single nucleotide vari-
ability in neurotransmitter genes are used to assess the risk of MDD before its symptomatology at the behavioral level.
However, the predictive capabilities of analyzing genomic variations to assess the risk of depression are not yet sufficiently
reliable and are complemented by behavioral and neurophysiological information about patients. Neurophysiological
markers of MDD provide the most reliable estimates of the severity of pathological symptoms, but they reflect a person’s
state at the time of examination, and not a predisposition to the occurrence of this pathological state and do not allow
assessing the risk of its appearance in the future. Major depressive disorder is often accompanied by abnormalities in a
person’s ability to control motor responses, including the ability to voluntary suppress inappropriate behavior. The “stop-
signal paradigm” (SSP) is an experimental method for assessing the functional balance between the inhibitory and activa-
tion systems of the brain during targeted movements. Combined with EEG recording, this experimental method allows
for the consideration of not only participants’ behavioral characteristics, such as speed or accuracy of responses, but also
the brain’s neurophysiological features associated with behavior control. The objective of this study was to evaluate the
relationship between EEG responses in the stop-signal paradigm and individual single nucleotide variability in candidate
genes for MDD detection. Dimensionality in the original genetic and neurophysiological experimental data was reduced
by principal component analysis (PCA) to subsequently detect an association between EEG response components recorded
during the control of random motor responses and single nucleotide variations in genes, the variability of which is asso-
ciated with MDD risk. Variability in these genes has been shown to be associated with the amplitude of brain responses
under the conditions of test subjects using the PCA method. The results obtained can be used to develop systems for the
early diagnosis of depression, identify individual patterns of impairment in the brain, select methods for correcting the
disease and control the effectiveness of therapy.

Key words: stop-signal paradigm; EEG; event related potentials; single nucleotide polymorphisms (SNPs); major depressive
disorder; principal component analysis; regression analysis
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reHeTYeCKNX MapKepoB O00JIbIIOrO JelIpeCcCMBHOIO pacCTpOiCTBA
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The SNV of genes-candidate for depressive disorder
depends on EEG reactions in the stop-signal paradigm

AHHoTauuA. bonbluoe fenpeccrBHoe paccTpoicTBo (BP) oTHOCUTCA K Hanbonee WMPOKO PacnpoCTPaHEHHbIM NCUXU-
YyecknMMm 3aboneBaHUAM, 4To 00yCNoBAMBaET HEOOXOAMMOCTb NMOMCKa GpaKTOPOB MOBbILEHHOW NPEeAPaACMNONOKEHHOCT K
3TOMY HapylueHunio. B KauecTBe MonekynAapHo-reHeTuyecknx Mmapkepos BJIP yacTo paccmaTprBaloT OfHOHYKIEOTUAHbIE
nonumopdrambl reHoB HepoMeanaToOpHbIX cucteM Mo3ra. MNokasatenu MHAUBUAYaNbHON OJHOHYKIEOTUAHOW Bapwua-
6€eNbHOCTN B reHax HelMpomMeaMaTOPOB NPUMEHAIOTCA ANA OLEHKU pucka noasneHna BIP oo npoasneHua ero cumnto-
MaTMKM Ha noBefieHYeckom ypoBHe. OfHaKo NPOrHOCTMYECKe BO3MOXKHOCTY aHann3a reHOMHbIX Bapuvauuii Ana OLeHKU
purcKa Aenpeccun Ao HACTOALLEero BpeMeHN HeloCTaTOYHO HafleXHbl 1 [JOMOJIHAITCA NOBeAeHYeCcKon 1 Henpodursnono-
rmyeckon nHpopmaumein o naymeHTax. Hemmpodusmonornueckre mapkepbl P fatot Hanbonee HageXHble OLEHKM Bblpa-
YKEHHOCTW MaToNOrMYecKol CUMNTOMATVKM, HO OHU OTParkatloT COCTOAHME YenoBeKa B MOMEHT 06C/1ieloBaHNA, a He npea-
PacnonoKeHHOCTb K BO3HUKHOBEHWIO 3TOMO NMaTOIOMMYeCKOro COCTOAHUA U He NO3BOMAIOT BbIMOMHNUTL OLIEHKY pUCKa ero
nosaeneHua B 6ygywem. bonblioe penpeccnBHoOe pacCcTPOMCTBO YaCTO COMPOBOXKAAETCA OTKIOHEHMAMU B CMOCOBHOCTM
yenioBeKka KOHTPONMPOBATb ABUraTeNbHbIE PeaKLK, BKIOYasa BO3MOXHOCTb MPOU3BO/IbHO MNOAABNATb HeafekBaTHoe Nno-
BefeHue. «Cron-curHan napagurma» (CCr) — sKCneprMEHTaNbHbIN METOZ, AA OLeHKM GYHKLUMOHANbHOro 6anaHca mexay
TOPMO3HbIMM 1 aKTUBALMIOHHBIMW CCTEMaMV FOSIOBHOTO MO3ra B YC/IOBUAX BbINOMHEHMWA LieneHanpaBieHHbIX ABUXEHW.
O6beanHEHHbIN ¢ pernctpaumnent 331, STOT SKCNEePMMEHTaNbHbIM METOA NO3BOJIAET YUNTbIBATb HE TOSIbKO NMOBEAEHYeCK e
XapaKTePUCTUKN YUYACTHUKOB, TaKMe Kak CKOPOCTb MM TOYHOCTb OTBETOB, HO 1 Hepodr3nonornieckne ocobeHHoOCTA
rOIOBHOMO MO3ra, aCCOLMNPOBaHHbIE C KOHTPONEM Hafj noBefeHueM. Llenb HacToALero nccnefoBaHus 3akstodanach B
OLeHKe 3aBUCUMOCTY Mexay 0cobeHHoCTAMY 33T peakLuid B yCNOBUAX Napagnrmbl CTOM-CUFHAN U UHAUBUAYaNbHOW OLHO-
HYKJIEOTUAHOW BapuabenbHOCTbIO B reHax-KaHAMAaTax ana BblAsneHns BP. Pa3amepHOCTb B UCXOLHbIX FreHETUYECKUX U
HeNnpodU3NONOrMYecKnx SKCNepPMMEHTANbHbIX JaHHbIX Oblla CHUXKEHa NPY MOMOLLM aHanm3a rnaBHbIX KOMNoHeHT (PCA)
INA nocneayoLero BbiABNEHNA accoLmaumm Mexay KomnoHeHTamu 331 peaKkuuid, permcTpupyemMbiMy B yCTIOBUAX KOHTPO-
NA MPOU3BONIbHbIX ABUraTENbHbIX PeaKkLni, 1 O4HOHYKIEOTUAHBIMA BapnaLUAaMUN B reHaX, MU3MEHUMBOCTb KOTOPbIX acCo-
LuMmnpoBaHa ¢ puckom BIP. YcTaHOBNEHO, UTO M3MEHUYMBOCTDL B 3TVX FeHaxX acCoLMMPOBaHa C aMMIUTYAHbIMI NOKa3aTensamm
MO3rOBbIX OTBETOB B YC/IOBUAX TECTUPOBaHNA UCMbITyeMblx MeTogom CCI1. MonyyeHHble pe3ynbTaTbl MOFyT ObiTb UCMONb-
30BaHbl A1 Pa3paboTKM CMCTEM PaHHEN AMarHOCTUKU AeNPeCccuy, BbISBAEHNA MHAMBUAYabHbIX NAaTTEPHOB HAaPYLLEHVA B
paboTe rofoBHOro Mo3ra, nogbopa MeETOAOB KOPPEKLMUN 3a6011eBaHNA U KOHTPOSIA Hag 3G dEKTVBHOCTBIO Tepanun.

KnioueBble cnoBa: cTon-curHan napaanrma; 33I; Bbi3BaHHbIE NOTEHLMASbl; O4HOHYKIEOTUAHbBIE NoAMopdU3Mbl; 6onbLLoe

[lenpeccrMBHOE PacCTPONCTBO; METOS MMaBHbIX KOMMOHEHT; PErpPeCcCMOHHbIN aHanm3

Introduction

Major depressive disorder (MDD), also known as clinical
depression, is a psychiatric disorder characterized by sym-
ptoms including depressed mood, loss of interest or pleasure
in previously enjoyable activities, fatigue or loss of energy,
alterations in sleep and appetite, difficulties with concentration
and memory, as well as feelings of guilt and low self-esteem
(DSM-5, 2013). MDD ranks among the most prevalent psy-
chiatric disorders (Wong, Licinio, 2001). Susceptibility to
various forms of depressive disorders is known to depend on
both genetic factors and individual life experiences, particu-
larly during the period preceding the onset of MDD symptoms
(Cross-Disorder Group, 2013; Northoff, 2013; Haase, Brown,
2015; lvanov et al., 2019; Whitney et al., 2019). For many
years, the monoamine theory of depression was considered the
most plausible, and allelic polymorphisms in genes encoding
components of the brain’s monoaminergic neurotransmit-
ter systems have frequently been investigated as molecular
markers of depression susceptibility (Willner et al., 2013).
However, attempts to predict depression risk based solely on
genetic data have generally proven unsatisfactory (Duncan
et al., 2014; Halldorsdottir, Binder, 2017), as depression is a
multifactorial disorder arising from the interplay of multiple
genetic and environmental factors (Ivanov et al., 2019; Wang
et al., 2025). Consequently, the identification of reliable bio-
markers for depression necessitates the concurrent use of not
only genetic but also neurophysiological indicators reflecting
the functional state of the human brain.

Neurophysiological markers of depression may include the
amplitude and latency of event-related potentials (ERPs) de-
rived from electroencephalography (EEG) (Stone et al., 2025).
It is well established that depression is frequently associated

with impairments in inhibitory control, manifesting at both
behavioral and neurophysiological levels (Shetty et al., 2025).
An example of a method used to assess individual capacity
for behavioral self-control is the stop-signal paradigm (SSP)
(Band et al., 2003). This experimental paradigm provides an
objective measure of the functional balance between brain acti-
vation systems that govern goal-directed actions and inhibitory
systems responsible for suppressing inappropriate behavior.

A major challenge in the comprehensive investigation of
depression lies in the need to account for a large number of
variables, the interrelationships of which are not initially
evident to the researcher. This challenge can be addressed
through the application of dimensionality reduction techniques
designed to uncover latent dependencies among factors. In
particular, principal component analysis (PCA) is widely
employed to reduce the dimensionality of original datasets
and to identify the most informative features (Gewers et al.,
2021). PCA transforms the original variables into a lower-
dimensional space, thereby reducing the number of parameters
under analysis and mitigating redundancy inherent in high-
dimensional data (Subasi, Gursoy, 2010).

The aim of the present study was to investigate the associa-
tion between neurophysiological measures recorded during
the stop-signal paradigm and individual single-nucleotide
variability in genes linked to an elevated risk of depression.

In this work, we analyzed genetic and neurophysiological
data obtained from the publicly available ICBrainDB, deve-
loped by researchers at the Institute of Cytology and Genetics,
Siberian Branch of the Russian Academy of Sciences (ICG
SB RAS), and the Institute of Neuroscience and Medicine,
and hosted on the ICG SB RAS website (Ivanov et al., 2022).
Candidate genes for MDD had been previously selected
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through a bioinformatic analysis of scientific publications
retrieved from open-access databases containing information
on depressive spectrum disorders diagnosed in the studied
individuals (Ivanov et al., 2019).

Materials and methods

Participant sample. The sample comprised 212 individuals
for whom both genomic and EEG data were analyzed. Among
them, 47 participants residing in Novosibirsk had a clinically
diagnosed major depressive disorder, while 165 participants
had no diagnosed depression; of these, 67 resided in Novo-
sibirsk, 50 in Yakutsk, and 48 in Khandyga, Sakha Republic.

Experimental design. Participants performed a series of
tasks in a stop-signal paradigm modified by A.N. Savostyanov
and colleagues (2009). During the task, one of two visual
stimuli was presented on the screen; upon the appearance
of the target stimulus, participants were required to press a
button on the keyboard. On a subset of trials, a stop-signal
appeared shortly after the target stimulus, instructing the par-
ticipant to abort the already initiated motor response. Across
the experiment, each participant completed 135 trials, 35 of
which included a stop-signal. EEG was recorded using a
128-channel NVX-132 amplifier. Electrodes were positioned
according to the international 10-5 system, with AFz serving
as the ground electrode and Cz as the reference. The signal
bandwidth was set between 0.3 and 100 Hz, and the sampling
rate was 1,000 Hz.

EEG signal processing. Raw EEG recordings contained
non-neural noise, including ocular movement artifacts, facial
muscle activity, cardiac electrical activity, and vascular arti-
facts. All non-neural artifacts were removed using independent
component analysis (ICA), implemented in the EEGLAB
toolbox (Delorme, Makeig, 2004). ICA is a computational
algorithm that decomposes multichannel data into statistically
independent components. In contrast, PCA identifies compo-
nents characterized by high mutual dependence.

From the preprocessed EEG data, two types of epochs were
extracted: go-epochs (intervals of brain activity time-locked to
the participant’s button press following the target visual stimu-
lus) and stop-epochs (intervals corresponding to successful
inhibition of the motor response after stop-signal presentation).
Epoching for go-trials was performed relative to the onset of
the target stimulus, whereas for stop-trials it was aligned to the
onset of the stop-signal. Within go-epochs, two distinct EEG
peaks were identified: a premotor peak (400-600 ms post-
stimulus) and a postmotor peak (700—800 ms post-stimulus).
The premotor peak reflects brain activity associated with
motor preparation, whereas the postmotor peak corresponds
to neural processes occurring during movement execution.

In stop-epochs, two additional peaks were identified, either
preceding or following the suppression of the motor response.
These peaks and their corresponding time windows were de-
termined based on visual inspection of event-related potential
(ERP) waveforms recorded at electrode C3, which overlies the
motor cortex of the left hemisphere. Using the ERPLAB tool-
box (Lopez-Calderon, Luck, 2014), for each of these peaks,
the following quantitative measures were computed separately
for each participant and each EEG channel: peak maximum
amplitude, mean amplitude within the peak window, and peak
latency. Since each participant completed 100 go-trials and
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35 stop-trials during the experiment, brain responses were
averaged across trials for each participant. EEG channels were
grouped into 12 spatially defined regions: left frontal, medial
frontal, right frontal, left temporal, left central, medial central,
right central, right frontal, left parietal, medial parietal, right
parietal, and a combined occipital group. Consequently, the
initial EEG dataset comprised 144 parameters: 12 (electrode
groups) x 2 (ERP peaks) x 3 (quantitative measures: maxi-
mum amplitude, mean amplitude, latency) x 2 (experimental
conditions: go or stop).

Genetic data. Genetic material, collected as either whole
blood or buccal epithelial cells, was obtained from all par-
ticipants. Targeted sequencing of 164 genes was performed
using this material. These genes were selected based on prior
reconstruction and analysis of a gene network associated
with susceptibility to MDD (Ivanov et al., 2019). Targeted
sequencing libraries were prepared for these 164 genes, and
high-coverage next-generation sequencing (NGS) was
conducted for all participants. For each allele of every gene
in the list, a binary variability index was assigned for each
participant relative to the reference genome (lvanov et al.,
2022). If a participant’s allele sequence matched the reference
genome exactly, the variability index was set to 0; if one or
more nucleotide substitutions were present, the index was
set to 1 (regardless of the number of substitutions within the
allele). Across all participants, 799 single-nucleotide poly-
morphisms were identified in 121 of the 164 sequenced genes.
No nucleotide substitutions were detected in any participant
for the remaining 43 genes. Thus, the total number of input
genetic parameters was 242 (121 genes x 2 alleles per gene).

Results

As previously stated, the aim of this study was to assess the
association between EEG responses recorded during the stop-
signal paradigm and individual single-nucleotide variability in
candidate genes linked to MDD risk. To achieve this objective,
amulti-stage analysis of the experimental data was conducted,
and the results are presented below.

Task 1. Identification of MDD candidate genes exhibiting
significant associations between single-nucleotide
variability and EEG measures
To address Task 1, a series of linear models was constructed,
wherein each EEG parameter served as a dependent variable
and the binary indicator of the presence or absence of single-
nucleotide variants (SNVs) in a specific gene served as the
independent variable. The term “linear model series” refers
to separate linear regression analyses performed for each
unique pair of “EEG parameter — single-nucleotide variabi-
lity” (Table 1). Given 144 EEG parameters and 242 genetic
parameters, the initial number of parameter pairs subjected to
linear regression totaled 34,848. An individual linear regres-
sion model was formulated as follows:
EEG_parameter =By + By + e.

Here, B4 represents the binary predictor coded as 0 (no nuc-
leotide substitution in the allele) or 1 (at least one substitution
present).

The dependent variable was a quantitative EEG measure,
while the predictor was the binary indicator of nucleotide
substitution presence in a given gene allele. If at least one
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The SNV of genes-candidate for depressive disorder
depends on EEG reactions in the stop-signal paradigm

Table 1. Example of a parameter pair used in linear regression analysis.
The first parameter is individual variability in the ADRA2B gene; the second is the amplitude

of the premotor ERP peak in the right parietal cortex

Participant ID ADRAZB gene
(0 — no variability;

1 - variability present)
D_Nov_001 0
D_Yak_2016_001 1

substitution was present in one allele, the binary indicator
was assigned a value of 1. The two alleles of the same gene
were treated as two distinct binary predictors. This approach
enabled testing whether single-nucleotide variability in each
candidate gene was associated with alterations in a given
EEG parameter.

In addressing Task 1, multiple comparisons were corrected
using the Benjamini—Hochberg procedure (False discovery
rate, FDR) to control the expected proportion of false rejec-
tions of the null hypothesis (Benjamini, Hochberg, 1995).
The FDR method is more statistically powerful than the
Bonferroni correction and is particularly advantageous when
the number of tested hypotheses is large or when minimizing
false positives is prioritized over strict per-hypothesis control
of Type I error.

Associations were tested between all 144 EEG measures
and variability in each of the 121 genes in which at least one
SNV was detected in at least one participant. This analysis
revealed statistically significant associations (FDR-corrected
significance threshold g <0.05) for only five genes — ADRA2B,
TF, HCRTR2, WFS1, and PENK — and four EEG measures
recorded during go-epochs in the medial frontal, right parietal,
left parietal, and combined occipital cortical regions (Table 2).
Notably, significant associations for three genes (ADRA2B, TF,
HCRTR2) were observed across three cortical regions (right
parietal, left parietal, and occipital), whereas for the remaining
two genes (WFS1 and PENK), significant associations were
confined to the medial frontal cortex. These five genes were
subsequently included in further analyses.

Table 2 summarizes the linear regression results linking
EEG measures to polymorphisms in MDD candidate genes. It
lists 11 most significant “gene—EEG measure” pairs with the
lowest FDR-corrected p-values (g-values), along with their
uncorrected p-values. All reported associations are significant
at FDR < 0.05.

The average frequency of single-nucleotide variants for
each of the five selected genes across the entire participant
sample is presented in Table 3. The prevalence of variant car-
riers for these genes ranged from approximately one-third to
two-thirds of participants, ensuring sufficient variability for
robust statistical analysis.

Task 2. Dimensionality reduction

of neurophysiological data using principal

component analysis

In addressing Task 2, PCA with prior feature standardization
was applied to reduce the dimensionality of the EEG dataset
(Rokhlin et al., 2010). From the original set of 144 EEG
variables, 15 principal components were extracted. The

Amplitude of the postmotor EEG peak in the “go”
condition in the right parietal cortex, uv

1.68
8.05

Figure demonstrates that these 15 components collectively
account for approximately 80 % of the total variance in the
original EEG parameters, thereby capturing the majority of
inter-individual variability.

Task 3. Assessment of the influence of variability

in MDD candidate genes on integrated measures

of brain activity derived from PCA

In Task 3, for each of the five selected genes showing statis-
tically significant associations with specific EEG measures
(Table 2), a regression analysis was performed between the
principal components (PCs) and the binary indicators of poly-
morphism presence. Unlike in Task 1, where regression was
conducted on individual EEG parameters, here the analysis
was performed on integrated composite measures (the prin-
cipal components) that collectively explain 80 % of the total
inter-individual variance in the EEG data (see the Figure).

Among the 15 PCA-derived components of brain activity,
only the third principal component (PC3) exhibited a statisti-
cally significant association with genetic variability in the
MDD candidate genes. This finding is summarized in Table 4,
which presents the results of statistical significance testing for
the effects of genetic variability in the five candidate genes on
the three most informative PCA components.

To provide a neurophysiological interpretation of the
observed associations, factor loadings for the third principal
component (PC3) were computed for each of the original EEG
measures. In the context of PCA, a factor loading represents
the correlation coefficient between an original variable and a
principal component, indicating the strength and direction of
their association. The factor loadings of the original EEG mea-
sures for PC3 are presented in Table 5. As evident from these
results, PC3 is most strongly associated with brain activity in
occipito-parietal cortical regions and, to a somewhat lesser
extent, with frontal cortical activity. This cortical topography
is characteristic of functional processes involved in attentional
control during visual stimulus recognition. Furthermore, it is
apparent that both premotor and postmotor ERP peaks-across
both go- and stop-episodes contributed most substantially to
this component.

Task 4. Prediction of candidate gene variability based on
composite EEG measures (solving the inverse problem)

To address this task, logistic regression with L1 regularization
(Flach, 2016) was employed to predict the presence or absence
of single-nucleotide variants in MDD candidate genes using
the first 15 EEG-derived principal components (PC1-PC15).
Unlike linear regression, which models continuous dependent
variables, logistic regression is designed for binary outcomes.
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Table 2. Results of the association analysis between the amplitude of the postmotor ERP peak in go-episodes
of the stop-signal paradigm and binary variability in MDD candidate genes

Gene with identified Cortical region in which EEG responses

Significance level FDR-corrected significance

variability depended on gene variability (p-value) level (g-value)
ADRA2B right parietal 7.35E-34 1.15E-29
left parietal 9.88E-26 1.03E-22
occipital 2.65E-28 5.91E-25
TF right parietal 1.48E-32 7.70E-29
left parietal 1.66E-26 1.85E-23
occipital 1.34E-29 4.17E-26
HCRTR2 right parietal 1.48E-32 7.70E-29
left parietal 1.66E-26 1.85E-23
occipital 1.34E-29 4.17E-26
WFS1 medial frontal 4.93E-27 8.53E-24
PENK medial frontal 5.44E-28 1.06E-24

Table 3. Mean number of single-nucleotide variants in selected MDD* candidate genes

MDD candidate gene Mean variability**

Standard deviation (Std)

Percentage of individuals with no substitutions

in this gene
ADRA2B 0.29 0.45 70.54
TF 0.34 0.47 65.75
HCRTR2 0.34 0.47 65.75
WFS1 0.65 0.48 34.93
PENK 0.63 0.48 36.98

* Data are shown only for genes exhibiting significant associations between genetic variability and EEG measures. ** In this context, mean values represent the
proportion of participants in the sample who carried at least one nucleotide substitution in the respective gene.

14 o 4
ES o [

Proportion of Explained Variance

o
[N

1 2 3 4 5 6

Threshold: 80 % Variance

7 8 9 10 1 12 13 14 15

Number of Principal Components

Cumulative variance explained by principal component analysis of EEG data.

The red dashed line indicates the 80 % variance threshold.

In our case, the logistic model aimed to estimate the pro-
bability of genetic variability in MDD candidate genes based
solely on EEG-derived features, thus constituting the inverse
problem. The input features consisted of the first 15 princi-
pal components extracted from the original EEG parameter
space, while the target variables were binary indicators of

deviation from the human reference genome in the five genes
previously shown to exhibit significant associations with EEG
components: ADRA2B, WFS1, PENK, TF, and HCRTR2.
Model performance was evaluated using the area under the
receiver operating characteristic curve (AUC), computed
via 5-fold stratified cross-validation. The accuracy estimates
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(AUC values) and their standard deviations across the five
cross-validation folds are presented in Table 6. As shown in
Table 6, prediction accuracy for binary genetic variability in
three of the five candidate genes ranged from 0.73 to 0.78,
with standard deviations between 0.13 and 0.18. These results
indicate that the presence of binary variability in MDD candi-
date genes can be predicted from EEG data recorded during
the stop-signal paradigm with 70-80 % accuracy, thereby
providing convergent evidence for a robust link between
genetic susceptibility and neurophysiological phenotypes.

Thus, the sequential accomplishment of the four objectives
of our study enabled us to: (1) identify a list of candidate genes
for MDD, the variability of which is associated with measures
of brain activity during behavioral control; (2) determine com-
posite characteristics of brain activity accounting for 80 % of
the variance in EEG data; (3) identify an integrated measure of
brain activity most robustly associated with single-nucleotide
variability in MDD candidate genes; and (4) solve the inverse
problem by predicting variability in MDD candidate genes
based on EEG-derived measures.

Discussion

A fundamental challenge in identifying candidate genes for
most psychiatric disorders is that the behavioral effects of
single-nucleotide variations in any individual selected gene are
relatively weak (Duncan et al., 2014). Depression exemplifies
a disorder for which no direct and unambiguous associations
with specific g-enes have been established (Halldorsdottir,
Binder, 2017). This suggests that the genetic underpin-
nings of depression are highly heterogeneous across indivi-
duals and cannot be reduced to a small set of genes and their
mutations.

This has motivated a shift in focus from analyzing the con-
tribution of individual genes or mutations toward investigating
interconnected complexes of genes, their protein products,
and metabolites. Such gene complexes are referred to as
“gene networks” (Kolchanov et al., 2013). A gene network
may encompass dozens to hundreds of genes, along with the
multitude of proteins and metabolites they encode. Previously,
using bioinformatic approaches, fragments of a gene network
implicated in susceptibility to major depressive disorder

Table 5. Factor loadings of original brain activity measures for PC3

The SNV of genes-candidate for depressive disorder
depends on EEG reactions in the stop-signal paradigm

Table 4. Results of linear regression between the first three EEG
principal components (PC1-PC3) and variability in the five MDD
candidate genes*

Gene, the variability of which
influenced brain activity

Significance level (p-value)

PC3
WFS1 0.0055
TF 0.0065
HCRTR2 0.0065
PENK 0.0065
ADRA2B 0.0258

PC1
ADRA2B 0.3297
TF 0.2844
HCRTR2 0.2844
WFS1 0.2876
PENK 0.2844

PC2
TF 0.3109
HCRTR2 0.3109
WFS1 0.3028
PENK 0.3109
ADRA2B 0.3933

* Results are ordered by the significance level of the linear regression.

(MDD) were reconstructed (lvanov et al., 2019). In the same
study, a comprehensive dataset was assembled, integrating
psychometric, neurophysiological, and genetic data reflecting
the analysis of SNPs across 164 genetic loci incorporated into
the depression-related gene network (Ivanov et al., 2022). The
aim of the present study was to identify genes associated not
only with psychometric traits but also with neurophysiolo-
gical characteristics of brain activity, which may likewise be
considered as manifestations of depression.

EEG parameter

Occipital cortex, postmotor peak, stop-episodes
Right parietal cortex, premotor peak, stop-episodes
Left parietal cortex, premotor peak, stop-episodes
Right frontal cortex, postmotor peak, stop-episodes
Occipital cortex, postmotor peak, go-episodes

Right parietal cortex, postmotor peak, go-episodes
Medial parietal cortex, postmotor peak, go-episodes
Medial parietal cortex, premotor peak, stop-episodes
Left frontal cortex, postmotor peak, stop-episodes

Left parietal cortex, postmotor peak, go-episodes

Factor loading* for PC3 (p < 0.05)
0.24
0.22
0.21
0.19
0.19
0.18
0.17
0.17
0.17
0.16

* Factor loading denotes the correlation coefficient between an EEG measure and the integrated score of PC3.
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Table 6. Results of logistic regression for predicting
the presence of mutations using the 15 EEG
principal components

Gene AUC - measure of the accuracy Standard deviation
in predicting variability

WFS1 0.78 0.15

PENK 0.76 0.18

TF 0.75 0.13

HCRTR2  0.75 0.13

ADRA2B  0.73 0.15

Behavioral control is one of the core cognitive functions
in humans, and its impairment constitutes a symptom of
numerous neuropsychiatric disorders. In the present study,
we analyzed the relationship between parameters of human
ERPs and the presence of single-nucleotide variations in
candidate genes for MDD within a combined sample com-
prising both healthy individuals and those diagnosed with
depressive disorder. Our results demonstrate that the ampli-
tude of the postmotor positivity in go-trials of the stop-signal
paradigm is associated with binary variability in five MDD
candidate genes: ADRA2B, TF, HCRTR2, WFS1, and PENK
(Table 2).

Associations with genetic variability were observed not
only for several localized EEG measures reflecting cortical
activity in specific brain regions during brief phases of task
performance but also for an integrated measure of global brain
activity derived via PCA, which captures more general fea-
tures of the nervous system’s functional state (Table 4). This
integrated brain activity measure significantly influenced by
genetic variability reflects the engagement of cortical regions
involved in visual signal perception and voluntary attentional
control (Table 5). Furthermore, we demonstrated that these
integrated EEG measures can serve as predictors of single-
nucleotide variability in MDD candidate genes with 70-80 %
accuracy when applying logistic regression (Table 6), thereby
indicating the feasibility of solving the inverse problem:
predicting genetic variability from neurophysiological data.

Additional findings from our prior work indicate that ERP
amplitudes during performance of the stop-signal paradigm
are positively correlated with the severity of depressive
symptoms (Zorina et al., 2025). Thus, a coherent link emerges
between specific genes, the variability of which is associated
both with depression at the behavioral level and with a neuro-
physiological marker of elevated depressive symptomatology.
Information from Ivanov et al. (2019) further clarifies the
biological roles of these genes: (a) ADRA2B encodes the alpha-
2B adrenergic receptor, a member of the G protein-coupled
receptor family; (b) TF encodes transferrin; (c) HCRTR2
encodes hypocretin (orexin) receptor type 2; (d) WFS1 en-
codes wolframin; and (e) PENK encodes the proenkephalin
precursor protein. Our new findings indicate that variability in
these MDD candidate genes is associated with brain activity
parameters reflecting an individual’s capacity for behavioral
self-control —a function impaired in MDD — thereby support-
ing the existence of a composite genetic-neurophysiological
marker linked to depression risk.
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Conclusion
The present analysis revealed statistically significant associa-
tions between polymorphisms in the ADRA2B, TF, HCRTR2,
WFS1, and PENK genes and EEG signal characteristics
recorded during performance of the stop-signal paradigm.
Principal component analysis effectively reduced data dimen-
sionality and enabled the identification of the most informative
indices of integrated brain activity. Logistic regression models
demonstrated that EEG-derived parameters can predict, with
moderate accuracy, the presence of single-nucleotide substitu-
tions in MDD candidate genes. These results may facilitate
the assessment of complex interdependencies between genetic
and neurophysiological markers associated with depression.
Limitations. This study did not specifically evaluate differ-
ences between clinically diagnosed patients with depression
and healthy participants. A more detailed comparison of the
identified associations between neurophysiological and mo-
lecular biological markers of depression remains an objective
for future, more granular analyses currently planned in our
ongoing research.
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Senescent cell accumulation is associated
with T-cell imbalance in the skin
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Abstract. Organismal aging is accompanied by the accumulation of senescent cells — damaged, non-functional
cells that exhibit cell cycle arrest, resistance to apoptosis, metabolic dysfunction, and production of a wide range
of pro-inflammatory substances. The age-related accumulation of these cells is associated with impaired tissue
function, contributes to chronic inflammation (inflammaging), and promotes the development of various age-
associated diseases. Conversely, the elimination of senescent cells restores tissue functions and positively affects
overall metabolism. Under normal conditions, senescent cells are removed by the innate immune system; however,
the efficiency of this process declines with age. The involvement of adaptive immunity and the role of T cells in
the clearance of senescent cells remain poorly understood. The aim of this study was to identify alterations in local
T cell immunity associated with the accumulation of senescent cells in human skin. The analysis was performed on
publicly available single-cell RNA-sequencing data from skin biopsies, and the senescent status was assessed using
the SenePy algorithm with Gaussian mixture models. It was found that the emergence of senescent cells occurs
heterogeneously across cell types within the tissue. The accumulation of these cells is associated with alterations in
the CD4* to CD8* T cell ratio, as well as with an increased abundance of regulatory T cells. Functional analysis revealed
that these quantitative age-related shifts were accompanied by more pronounced activation of regulatory T cells
together with features of anergy and exhaustion in CD8* T cells, whereas functional changes in CD4* T cells were
heterogeneous. These findings underscore the importance of adaptive immunity in maintaining tissue homeostasis
and suggest potential age-related dysfunction of tissue-resident T cells. Understanding the mechanisms underlying
the interaction between adaptive immunity and senescent cells is crucial for the development of senolytic vaccines
and other immunological approaches aimed at enhancing endogenous elimination of senescent cells.
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AHHoTauuA. CTapeHre opraHi3ma COMpPOBOXAAETCA HAKOMIEHNEM MOBPEXAEHHbIX HEeDYHKLMOHANbHbIX KETOK,
KOTOpPble Ha3blBalOT CEHECLEHTHbIMU. DTV KNETKM Haxo4ATCA B COCTOAHUN apecTa KNeTOYHOro LKA, YCTONYMBbI
K arnonTo3y, MMeIoT HapyLWeHHbI MeTabonm3Mm, a TakKe MpPoAyLMPYIOT WMPOKUIA CMEKTP MPOBOCMannUTENbHbIX
$akTOpOB — UMTOKMHOB, XEMOKWMHOB, MpOTeas, MOJSeKyn aaresvm W NpoAyKTOB apaxMAOHOBOro Kackaga.
HakonneHuve Takmnx KNeToK C BO3pacTOM CBA3aHO C HapylleHveM QYyHKLUMI TKaHel, CnocobCTBYeT XPOHUYECKOMY
BocnaneHuio (inflammaging) n pa3snTuio pasnuUHbIX BO3pacT-accoLUMpPoOBaHHbIX 3aboneBaHuin. B coto ouepenb,
MMMNHaAUNA CeHeCLEeHTHbIX KJIeTOK BOCCTaHaB/MBaeT TKaHeBble d)yHKU,VII/I N NO3UTUBHO CKa3blBae€TCA Ha 06UJ,eM
MeTabonu3me. B HopMme ceHecCUeHTHble KNeTKU yOanAlTCA CUCTEMON BPOXAEHHOrO WMMYHWUTETa, O4HAaKO C
BO3pacTomMm 3ddeKTMBHOCTb 3TOro npouecca nagaetr. lMpy 3TomM yyacTme afanTMBHOMO WMMMYHWUTETa U POfb
T-nMMPoLMTOB B yAANEHUN CEHECLIeHTHbIX KNEeTOK OCTaloTCA HemsyuyeHHbIMU. Llenbio nccnepoBaHua 6bin nonck
MN3MEeHeHWI B NIOKaJIbHOM T-KNeTOYHOM MMMYHUTETE, KOTOPble CBA3aHbl C HAKOMMEHNEM CEHECLIEHTHbIX KNeTOoK B
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Senescent cell accumulation is associated
with T-cell imbalance in the skin

KOXe yenoBeKka. AHasim3 MPOBOAUIICA Ha OTKPbITbIX JaHHbIX PHK ceKBeHMpPOBaHMS eOUHMYHBIX KNEeTOK 61MonTaToB
KoXM. CEHECLIEHTHBIN CTaTyC KNEeTOK OLeHMBanu Npy MNOMoLWM anroputMa SenePy ¢ MpUMeHEHMEM CMELLaHHbIX
rayccoscmx MO,EI,EJ'IeVI. Bbino BbIABJ/IEHO, YTO NOABJIEHNE KNETOK C BblpaXXeHHbIMW NPpU3HakaMy CeHeCUeHTHOCTU B
npenenax TKaHy MPOUCXOANT HEPABHOMEPHO CPEAM KEeTOUHbIX TUMOB. HakomnneHne 3Tmx KNeToK accoLnmpoBaHo C
M3MeHeHVeM COOTHoLWeHMs nonynaunin CD4* n CD8* nnmdoumMTOB, a TaKXKe CONPSKEHO C yBeNMUYeHNEeM COLlepXKaHus
perynatopHbix T-numdoumnToB. B xoae $yHKLMOHANBbHOIO aHann3a O6GHAPYKEHO, UTO [AaHHble KOMMYECTBEHHbIE
M3MEHEHNA C BO3PAcTOM COMPOBOXAAITCA 0Oosee BblpaXKEHHOW aKTVMBALMEN PerynatopHbix T-numdounToB
COBMECTHO C aHepruein u uctoweHnem CD8* numdoumToB, Torga Kak QyHKUMOHanbHble n3MeHeHua CD4*
NMMbOLIMTOB UMEIOT FreTeporeHHbIli xapakTtep. lMonyyeHHble pe3ynbTaThl NMOAYEPKUBAKOT 3HAYEHWEe afanTUBHOIO
MMMYHUTETa B NOAAEPKaHNM TKaHEBOTO rOMeOCTa3a 1 YKa3blBaloT Ha NoTeHUMasbHyo AnchyHKUMIO 3GPEeKTOPHbIX
TKaHeBbIX T-MTMMOLMTOB, KOTOPAs BO3HMKAET C BO3pacToM. [ToHVMaHVe MEXaHM3MOB B3aUMOLECTBMA afanTUBHOIO
VMMYH/TETa C CEHECLEHTHbIMU KJIETKaMN Ba)KHO B KOHTEKCTe Pa3paboTKU CEHOMUTUYECKMX BaKUWH U OPYrux
VIMMYHOJIOTMYECKUX MOAXOLOB, HaNpPaBNEHHbIX Ha YCUEHVE SHAOTEHHON SIMMUHALNM CEHECLEHTHBIX KITETOK.

KnioueBble cloBa: CEHECLEHTHOCTb; afanTMBHbLIN UMMYHUTET;, perynatopHble T-nuMOLUTbI; TPaHCKPUMTOM
eVHNYHbIX KIeTOK; CTapeHne; TFeHeTMYeCKne CUTHaTypbl; TKaHepesuaeHTHble T-numdounTbl; SNUMMHaALMA

CEeHeCUEHTHbIX KNeTOK; KOXa

Introduction

Cellular senescence is a state of irreversible cell cycle arrest
triggered by diverse stressors, including replicative exhaus-
tion, DNA damage, telomere shortening, oxidative stress, and
oncogene activation (Regulski, 2017; Di Micco et al., 2021).
Senescent cells exhibit resistance to apoptosis, diminished
cellular function, metabolic dysregulation, and multiple
aberrations in protein quality control machinery. A hallmark
feature of these cells is their sustained secretion of a broad
array of pro-inflammatory mediators, collectively termed
the senescence-associated secretory phenotype (SASP). The
SASP is widely regarded as a primary driver of chronic,
low-grade inflammation associated with aging, commonly
referred to as inflammaging. Although senescence serves as
an important tumor-suppressive mechanism, the prolonged
persistence and accumulation of senescent cells in tissues
disrupt tissue homeostasis, impair organ function, and
contribute to the pathogenesis of age-related and degenera-
tive diseases (Di Micco etal., 2021; Liao et al., 2021; Witham
et al., 2023).

Preclinical studies in animal models have demonstrated
that targeted elimination of senescent cells improves tissue
function and metabolism, extends healthspan and lifespan,
and attenuates the progression of age-associated pathologies
(Yousefzadeh et al., 2019; Yang et al., 2023). Under physio-
logical conditions, senescent cells are efficiently cleared by
the immune system, with innate immune mechanisms being
the most extensively characterized in this context. Natural
killer (NK) cells recognize senescent cells primarily via the
activating receptor NKG2D and eliminate them through per-
forin—granzyme-mediated cytotoxicity and interferon-gamma
(IFN-y) secretion (Antonangeli et al., 2019). Invariant natural
killer T (iNKT) cells can also target senescent cells upon
activation by glycolipid antigens (Arora et al., 2021). Fur-
thermore, SASP-derived factors recruit macrophages, which
contribute to the clearance of senescent cells during tissue
remodeling (Song P. et al., 2020). However, with advancing
age, the immune system’s capacity to eliminate senescent
cells declines — likely due to immunosenescence — resulting
in increased senescent cell burden, chronic inflammation,
tissue dysfunction, and heightened susceptibility to age-related
diseases (Song S. et al., 2020; Hense et al., 2024).

Despite extensive research into the physiological clearance
of senescent cells, the role of adaptive immunity in their elimi-
nation remains poorly understood (Matveeva et al., 2024).
Conventional experimental approaches often inadequately
reproduce the complex three-dimensional tissue architecture
essential for critical interactions between adaptive immune
system and senescent cells. A substantial proportion of T lym-
phocytes resides in peripheral tissues, does not recirculate, and
exhibits functional properties distinct from those of circulating
peripheral T cells (Li et al., 2025). Conversely, senescent cells
are predominantly localized within the parenchyma and stroma
of organs, where they can shape a unique microenvironment
that modulates the efficacy of immune surveillance (Zhang W.
et al., 2024). In this context, single-cell RNA sequencing
(scRNA-seq) data derived directly from tissues hold particular
significance. Such data enable the identification of senescent
cells across diverse cell types and facilitate the assessment of
key features of adaptive immunity, including the composition
of specific T-cell subsets and their functional competence.
By preserving the native tissue context, ScRNA-seq datasets
from multiple organs allow for the correlation of senescent
cell burden with both quantitative and qualitative alterations
in T-lymphocyte populations — the principal effectors of adap-
tive immunity (Kim S., Kim C., 2021).

In this study, we utilized publicly available SCRNA-seq data
to evaluate whether age-related accumulation of senescent
cells in tissues is associated with alterations in the tissue-
resident T-cell pool. It is currently accepted that cellular senes-
cence manifests differently across distinct cell types (Cohn et
al., 2023). Moreover, robust and universal molecular markers
of senescence applicable to all senescent cell types remain
elusive. Consequently, we employed the SenePy algorithm
to infer cellular senescence status. Unlike conventional dif-
ferential expression analyses, SenePy identifies co-expression
gene network clusters associated with aging (Sanborn et
al., 2025). Skin aging is a multifaceted process driven by
cumulative exposure to diverse damaging factors throughout
life. Key hallmarks of skin aging include the accumulation
of senescent cells, disruption of dermal extracellular matrix
architecture, degradation of elastic fibers, and impairment of
barrier function (Shin et al., 2025). In the present study, the
identification of senescent cells within each human skin cell
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type, combined with quantification of various T-lymphocyte
subpopulations, revealed significant age-related alterations in
tissue-resident T cells that were associated with the accumula-
tion of senescent cells.

Materials and methods

For this analysis, we used publicly available single-cell RNA
sequencing (SCRNA-seq) datasets deposited in the NCBI Gene
Expression Omnibus (GEO) and the Genome Sequence Ar-
chive for Human (GSA-Human). Skin biopsy samples from
healthy donors (n = 32; age range: 1876 years) were auto-
matically retrieved from these repositories (see Supplementary
Materials, Table S1)1.

Unique Molecular Identifier (UMI) count matrices were
generated from raw sequencing reads using the 10x Genomics
Cell Ranger pipeline (v9.0.1). Subsequent processing of count
matrices and associated metadata was primarily performed
using the Scanpy toolkit (Wolf et al., 2018). Prior to down-
stream analysis, low-quality cells were filtered out based on
the following criteria: (i) total UMI counts <500 or >5 median
absolute deviations (MAD); (ii) number of detected genes
>5 MAD; and (iii) mitochondrial gene expression >15 %
or >4 MAD from the median. Doublets were identified and
removed using the Scrublet package (Wolock et al., 2019).

Following quality control, samples were integrated into a
unified dataset and prepared for clustering. This preprocessing
pipeline included: (i) library-size normalization to a target sum
of 10,000 UMIs per cell (scanpy.pp.normalize_total(target
sum=1e4)); (ii) log-transformation; (iii) scaling; (iv) dimen-
sionality reduction via principal component analysis (PCA);
and (v) batch-effect correction using the Harmony algorithm
(Korsunsky etal., 2019). Cell-type annotation was performed
on log-normalized data using CellTypist (Dominguez et al.,
2022), which employs pre-trained logistic regression models.
Specifically, we applied the “Adult Human Skin” model
(Reynolds et al., 2021), which encompasses annotations for
diverse dermal, epidermal, and immune cell populations in
human skin. To validate and refine automated annotations,
cells were further clustered using the Leiden algorithm. Cluster
identities were cross-referenced with CellTypist predictions,
and manual curation of annotations was performed where
necessary. The full data processing workflow is illustrated
in Figure 1. Particular attention was devoted to the accurate
annotation of T-lymphocyte subpopulations. To this end, the
T-cell cluster was isolated from the integrated dataset and
reprocessed starting from the original UMI count matrix to
ensure a more precise representation of T-cell heterogeneity
in reduced-dimensional space. Annotations were refined as
needed based on this focused re-analysis. Samples exhibiting
insufficient representation of specific cell types were excluded
from relevant downstream analyses at corresponding stages
of the study.

Canonical markers of cellular senescence are highly cell
type-specific and poorly reflect the true senescent state in vivo.
Therefore, cellular senescence status was assessed using the
SenePy algorithm, published in 2025 (Sanborn et al., 2025),
which enables discrimination between bona fide senescence-
associated markers and genes, the expression of which is

T Supplementary Tables $1-54 and Fig. S1 are available at:
https://vavilovj-icg.ru/download/pict-2025-29/appx42.zip
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Fig. 1. Schematic representation of the data processing workflow.

elevated for reasons unrelated to senescence. Within this
algorithm, the identification of genes potentially associated
with age-related accumulation of senescent cells is performed
under the following criteria: the gene must be expressed in
fewer than 5 % of cells from young donors, and in more than
1 % but fewer than 20 % of cells from older donors. Ad-
ditionally, either the proportion of cells expressing the gene
in aged individuals must be at least 2.5-fold higher than in
young individuals, or the absolute increase in the proportion
of expressing cells (i. e., the difference between old and young
donors) must exceed 5 %. This strategy enables the identifi-
cation of cell type-specific genetic signatures of senescence
within a given tissue, thereby allowing more accurate detection
of senescent cells in ex vivo samples compared to conventional
approaches. Each cell is assigned a continuous numerical
metric — the “SenePy score” — reflecting the degree to which
its gene expression profile aligns with the corresponding cell
type-specific senescence signature.

Following SenePy scoring, Gaussian Mixture Models
(GMMs) were fitted to the distribution of SenePy scores within
each annotated cell type. Depending on the shape of the score
distribution, models comprised either two or three compo-
nents. The threshold for classifying a cell as senescent was
defined as the value lying between the two rightmost GMM
components. This approach enabled a quantitative estimation
of the fraction of cells exhibiting robust senescence features
within each cell population.

Correlation analyses were performed using the spearmanr()
function from the scipy.stats module to compute Spearman’s
rank correlation coefficient and associated p-values. To ac-
count for multiple comparisons, Bonferroni correction was
applied.

Differentially expressed genes (DEGs) in T-lymphocyte
populations from young and old donors were identified using
the rank_genes_groups() function from the Scanpy package,
employing the Mann—-Whitney U test. Genes were considered
differentially expressed if they met the following criteria: false
discovery rate (FDR) < 0.01, presence in more than 10 %
of cells within the target group, and detection in fewer than
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Fig. 2. Cell type annotation of human skin using the CellTypist tool.

DC - dendritic cells; KC - keratinocytes; LE - lymphoid epithelial cells;
Tc - cytotoxic T lymphocytes (classical phenotype: CD3+CD8%); Th — T helper
cells (classical phenotype: CD3+CD4*); Treg — regulatory T cells (classical
phenotype: CD3+CD4+FoxP3*); VE - vascular endothelial cells.

50 % of cells in the comparison group. Functional enrich-
ment analysis of the identified DEGs was performed in the
R programming language using the enricher() function from
the clusterProfiler package (Yu et al., 2021). Gene sets from
the C5 (ontology gene sets) and C7 (immunologic signature
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gene sets) collections of the Molecular Signatures Database
(MSigDB; Subramanian et al., 2005) were used as reference
annotations. Significantly enriched gene sets were manually
grouped into functional categories.

Results

To identify senescent cells in human skin tissues, we adapted
and applied the recently published SenePy algorithm (Sanborn
etal., 2025), followed by Gaussian Mixture Modeling (GMM).
The analysis was performed on the major skin cell populations
previously annotated (Fig. 2).

As a result, we observed a significant age-associated in-
crease in the proportion of senescent cells across multiple
cell types in human skin samples (Fig. 3). Specifically, the
fraction of senescent cells rose with age in tissue-resident
dendritic cells, macrophages, T lymphocytes, keratinocytes,
melanocytes, fibroblasts, pericytes, and endothelial cells.
Notably, the rate of accumulation varied between cell types,
reflecting the heterogeneity of aging processes among distinct
cellular populations within the same tissue.

Our analysis revealed a significant age-related accumulation
of cells exhibiting senescence features in the skin, consistent
with prior evidence implicating cellular senescence as a key
hallmark of tissue aging (Childs et al., 2015). The overall
proportion of senescent cells across all cell types also showed

Fibroblast
p=0.61,p=0.00532

Mast cell
p=0.71,p=0.0465

GSE_id/group size

Tc
p=0.69, p=0.00462

VE
p=0.61,p=0.0157

Age, years

Fig. 3. Correlations between the accumulation of senescent cells in distinct human skin cell types and donor age.

For each cell type, samples with cell counts below 2SD (standard deviations) from the mean across all donors were excluded from the
analysis. Statistically significant correlations are highlighted with red boxes. DC - dendritic cells; KC - keratinocytes; LE - lymphoid epithelial
cells; Tc - cytotoxic T lymphocytes; Th - T helper cells; Treg - regulatory T cells; VE - vascular endothelial cells.
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a positive correlation with donor age (Fig. 4), indicating
a progressive disruption of tissue homeostasis. Given that
senescent cells are characterized by a stable cell cycle arrest
and thus lack proliferative capacity, their age-dependent ac-
cumulation is likely attributable to a decline in the efficiency
of mechanisms responsible for their clearance.

Therefore, in the next step, we sought to investigate how
the proportions of major T-lymphocyte subpopulations in
the skin change with age. Correlation analysis did not reveal
statistically significant age-related changes in the proportions
of the three T-lymphocyte subpopulations examined, nor in
key immunological indices (Fig. 5). Given the absence of
detectable age-associated alterations among tissue-resident
T lymphocytes, we next sought to explore potential associa-
tions between T-lymphocyte populations and the accumulation
of senescent cells independent of chronological age.

Different cell types may exhibit varying rates of aging or dif-
fering immunogenicity of their senescent counterparts, which
could account for the observed heterogeneity in age-related
accumulation of senescent cells. Therefore, we first sought
to determine whether any alterations in skin T-lymphocyte
populations were associated with the burden of senescent cells.
Specifically, we assessed the relationship between the accumu-
lation of senescent cells within each cell type and the relative
abundance of T-lymphocyte subpopulations (Fig. S1). We
found a significant increase in total T-lymphocyte frequency
associated with the accumulation of senescent pericytes, as
well as modest trends (p < 0.07) toward elevated regulatory
T-cell (Treg) proportions correlating with senescent cell bur-
den in certain cell types.

In the next step, we examined how the proportions of dif-
ferent T-lymphocyte populations vary with the total burden of
senescent cells across all cell types. We observed a significant
increase in the relative abundance of both T helper (Th) cells
and regulatory T (Treg) cells as the cumulative number of
senescent cells rose (Fig. 6). Moreover, we noted a statisti-
cally significant elevation in the “tissue immunoregulatory
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Fig. 4. Proportion of senescent cells across all cell types as a function
of donor age.

index” — defined as the Th/Tc ratio — which reflects a shift
toward T helper dominance over cytotoxic T lymphocytes.

Thus, we identified a significant association between the ac-
cumulation of senescent cells in human skin and an imbalance
in T-cell immunity. This imbalance was characterized by an
increased proportion of regulatory T cells and T helper cells,
accompanied by a relative decrease in cytotoxic T lympho-
cytes. Notably, these alterations were not directly correlated
with chronological age, underscoring the specific role of
interactions between T-cell immunity and senescent cells,
independent of aging per se.

The age-independent shifts in the tissue-resident T-lym-
phocyte pool observed in earlier analyses highlight the in-
volvement of adaptive immunity in tissue aging processes.
However, these findings do not provide insight into the func-
tional states of Treg cells, Th, or cytotoxic T lymphocytes.
To further characterize the functional implications of these
changes, we performed differential gene expression analysis
followed by functional enrichment profiling of T-lymphocyte
populations (see Materials and methods), comparing cells from
older versus younger donors (Fig. 7).

a Treg % vs Age Th % vs Age Tc % vs Age
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g z d
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b Treg/Th vs Age Treg/Tc vs Age Th/Tc vs Age
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© = i)
= = =

Age, years
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Fig. 5. Age-related changes in the proportions of major T-lymphocyte populations (a) and their ratios (b).

The immunological indices shown - Th/Tc, Treg/Tc, and Treg/Th ratios — are widely used to assess immune status with greater precision and sensitivity
in various pathological or compromised conditions. In this figure, the proportion of each T-lymphocyte subset is expressed relative to the total number
of T lymphocytes, thereby reflecting the balance among subpopulations within the entire pool of skin-resident T cells. Treg - regulatory T cells;

Th - T helper cells; Tc - cytotoxic T lymphocytes.
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Fig. 6. Proportions of major T-lymphocyte populations relative to the total number of senescent cells.

In this figure, the abundance of each T-lymphocyte subset is expressed as a fraction of the total cell count across all cell
types, rather than as a proportion of the total T-cell pool. This approach captures age-independent shifts in T-lympho-
cyte representation within the entire skin cellular landscape and more accurately reflects biologically relevant changes
associated with the accumulation of senescent cells. Th — T helper cells; Tc — cytotoxic T lymphocytes; Treg — regulatory
T cells.
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Fig. 7. Results of functional enrichment analysis of differentially expressed genes (DEGs) in tissue-resident
T-lymphocyte populations from older versus younger donors.

Red bars represent enrichment of functional pathways by upregulated genes, while gray bars indicate enrichment
by downregulated genes. The X-axis shows the -log,  -transformed FDR-corrected p-value, such that higher values

correspond to stronger enrichment. Tc - cytotoxic T lymphocytes; Th - T helper cells; Treg - regulatory T cells.

Functional enrichment analysis revealed statistically signi-
ficant overrepresentation of biological pathways associated
with enhanced functional activity of T helper (Th) cells,
including tissue adaptation, differentiation, and response to
cytokines involved in their homeostasis. Additionally, en-
richment of pathways characteristic of quiescent and anergic
states was observed in this population (highlighted with blue
boxes). Notably, however, these Th cells did not exhibit clear
molecular signatures of exhaustion. In contrast, age-related
alterations in cytotoxic T lymphocytes were associated with
enrichment of pathways typical of quiescence, anergy, and
exhaustion. Intriguingly, this Tc population also displayed
significant downregulation of pathways directly linked to
their effector function — particularly cytotoxicity. Conversely,
regulatory T cells showed no evidence of quiescence, anergy,
or exhaustion. Instead, similar to Th cells, Treg cells exhibited
heightened functional and proliferative activity. Moreover,
this population demonstrated significant enrichment of genes
involved in differentiation and response to homeostatic cyto-

kines —specifically IL-2, IL-7, and IL-15 — which are essential
for the maintenance and survival of tissue-resident regulatory
T cells (Table S2).

Thus, functional enrichment analysis of differentially
expressed genes (DEGs) identified from scRNA-seq data
revealed distinct functional states across T-lymphocyte
subsets. Cytotoxic T lymphocytes exhibited clear signatures
of exhaustion and reduced functional activity. In contrast,
regulatory T cells displayed heightened functional activity
and showed no evidence of exhaustion or anergy. Changes
in the Th population were more heterogeneous: alongside
increased functional activity, these cells also exhibited features
characteristic of anergy and quiescence.

Discussion

The accumulation of senescent cells is a hallmark of tissue
aging and is closely linked to the development of chronic,
low-grade systemic inflammation — termed “inflammag-
ing” — which constitutes a major risk factor for age-related
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diseases (Franceschi et al., 2018). Using a modern algorithm
for identifying senescence-associated gene signatures, we
demonstrated that the proportion of cells exhibiting senescence
features increases with age in human skin. Importantly, this
accumulation is not uniform across all cell types, underscoring
the heterogeneity of aging trajectories among distinct cellular
populations and highlighting the multifaceted nature of tissue
aging (Ge et al., 2022).

The immune system plays a central role in the surveil-
lance and clearance of senescent cells. The pro-inflammatory
secretome of senescent cells — commonly referred to as the
senescence-associated secretory phenotype (SASP) —recruits
innate immune effectors such as macrophages, neutrophils,
natural killer (NK) cells, and NKT cells, which contribute to
the recognition and elimination of senescent cells (Song P.
et al., 2020). Although emerging evidence implicates T lym-
phocytes in these processes, the role of adaptive immunity
in senescent cell clearance remains incompletely understood
(Matveeva et al., 2024). Our findings reveal that the burden
of senescent cells in human skin is associated with a local
imbalance in T-cell immunity, suggesting that T lymphocytes
actively participate in regulating senescent cell homeosta-
sis. Notably, higher senescent cell loads correlated with an
increased proportion of regulatory T cells and an elevated
Th/Tc ratio. This shift points toward the establishment of an
immunosuppressive microenvironment that may facilitate im-
mune evasion by senescent cells (Zhang W. et al., 2024). This
interpretation is further supported by functional profiling of
T-cell populations in older donors. Cytotoxic T lymphocytes
exhibited molecular signatures of exhaustion and diminished
effector potential, whereas both Treg and Th cells displayed
heightened functional activity and signs of tissue adaptation.
Collectively, these quantitative and qualitative alterations
in the skin-resident T-cell compartment in aged individuals
may promote peripheral tolerance to senescence-associated
antigens. This aligns with the hypothesis that aging impairs
the immune system’s capacity to recognize and efficiently
eliminate senescent cells, thereby contributing to their pro-
gressive accumulation (Song P. et al., 2020).

Itis well established that senescent cells not only generate a
pro-inflammatory milieu but also can actively suppress effec-
tor T-cell functions and evade immune surveillance (Lorenzo
etal., 2022). For instance, certain SASP-derived chemokines
selectively recruit Treg-cells, while senescence-driven pola-
rization of monocytes toward an M2-like macrophage pheno-
type suppresses cytotoxic T-cell activation (Zhang X. et al.,
2024). Moreover, aging-associated activation of endogenous
retroelements — particularly LINE-1 — triggers an IFN-y-
mediated response (Zhang X. et al., 2020). This antiviral-like
response may fuel chronic inflammation and drive T-cell ex-
haustion, a phenotype strikingly reminiscent of the cytotoxic
T-cell dysfunction observed in our cohort of older donors.

In summary, our data indicate that the skin T-cell compart-
ment undergoes substantial functional remodeling with age.
The decline in cytotoxic activity coupled with enhanced
regulatory T-cell function may foster immunological tole-
rance, thereby enabling the persistence and accumulation of
senescent cells and contributing to inflammaging. We propose
that this represents an active process of peripheral tolerance
to senescence-associated antigens, wherein the aging immune

2025
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system progressively loses its ability to detect and eliminate
senescent cells. The identified imbalance in tissue-resident
T-lymphocyte populations thus constitutes a promising
therapeutic target for interventions aimed at restoring immune
surveillance and promoting the clearance of senescent cells.

Conclusion
In this study, we employed bioinformatic analyses of pub-
licly available scRNA-seq data derived from skin biopsies
of healthy donors to identify aging-associated alterations in
tissue-resident adaptive immunity. We demonstrated that skin
aging — manifested as the accumulation of senescent cells
across multiple cell types — is associated with a shift in the
balance between Th and cytotoxic T lymphocytes, as well as
an increased proportion of Treg cells. Functional enrichment
analysis further revealed a general decline in cytotoxic poten-
tial among tissue T cells, concurrent with enhanced regulatory
activity. These changes likely reflect compensatory adapta-
tions within the tissue T-cell compartment in response to the
persistent accumulation of senescent cells and the resulting
chronic inflammatory microenvironment. In this context, the
observed T-cell remodeling appears to promote an immuno-
suppressive milieu, potentially contributing to the age-related
decline in the efficiency of senescent cell clearance.
scRNA-seq data provide a powerful tool for investigating
immune-senescence interactions at the tissue level. Preserva-
tion of the tissue cellular context enables the identification of
physiologically relevant aging signatures and facilitates the
analysis of gene programs associated with activation or sup-
pression of specific immune components. Nevertheless, this
approach has inherent limitations. The loss of spatial tissue
architecture precludes direct assessment of cell-to-cell interac-
tions, while technical artifacts introduced during sample prepa-
ration and data integration from multiple sources necessitate
rigorous preprocessing, batch-effect correction, and norma-
lization — steps that may introduce substantial uncertainty into
the results. Therefore, to gain a deeper understanding of the role
of adaptive immunity in the surveillance and elimination of se-
nescent cells, future studies should integrate SCRNA-seq with
spatial transcriptomics, histological validation, and methods
capable of defining the antigen specificity of T and B cells.
Additionally, longitudinal analyses of T- and B-cell receptor
repertoires will be essential to elucidate dynamic changes in
antigen recognition during aging and their functional conse-
quences for immune-mediated clearance of senescent cells.
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Abstract. In recent years, the rapid growth of sequencing data has exacerbated the problem of functional annota-
tion of protein sequences, as traditional homology-based methods face limitations when working with distant homo-
logs, making it difficult to accurately determine protein functions. This paper introduces the OrthoML2GO method for
protein function prediction, which integrates homology searches using the USEARCH algorithm, orthogroup analysis
based on OrthoDB version 12.0, and a machine learning algorithm (gradient boosting). A key feature of our approach
is the use of orthogroup information to account for the evolutionary and functional similarity of proteins and the ap-
plication of machine learning to refine the assigned GO terms for the target sequence. To select the optimal algorithm
for protein annotation, the following approaches were applied sequentially: the k-nearest neighbors (KNN) method;
a method based on the annotation of the orthogroup most represented in the k-nearest homologs (OG); a method
of verifying the GO terms identified in the previous stage using machine learning algorithms. A comparison of the
prediction accuracy of GO terms using the OrthoML2GO method with the Blast2GO and PANNZER2 annotation pro-
grams was performed on sequence samples from both individual organisms (humans, Arabidopsis) and a combined
sample represented by different taxa. Our results demonstrate that the proposed method is comparable to, and by
some evaluation metrics outperforms, these existing methods in terms of the quality of protein function prediction,
especially on large and heterogeneous samples of organisms. The greatest performance improvement is achieved
by combining information about the closest homologs and orthogroups with verification of terms using machine
learning methods. Our approach demonstrates high performance for large-scale automatic protein annotation, and
prospects for further development include optimizing machine learning model parameters for specific biological tasks
and integrating additional sources of structural and functional information, which will further improve the method’s
accuracy and versatility. In addition, the introduction of new bioinformatics tools and the expansion of the annotated
protein database will contribute to the further improvement of the proposed approach.
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AHHOTauusA. B nocnepHve roabl GbICTPbIN POCT 06bEMOB [JaHHbIX CEKBEHMPOBAHUA 060CTpMN Npobnemy dyHKLMO-
HafbHOM aHHOTaLMM GEKOBbIX NOC/e0BATENbHOCTEN, MOCKOMbKY TPAANLMOHHbIE METOAbI, OCHOBAHHbIE HA FOMOJIO-
T, CTaNKNBAIOTCA C OrPaHNYEHVAMM NpY paboTe C OTAANIEHHBIMY TOMOJIOraMU, YTO 3aTPYAHAET Hanbonee ToUHoe

© Malyugin E.V,, Afonnikov D.A., 2025

This work is licensed under a Creative Commons Attribution 4.0 License


https://orcid.org/0000-0001-9738-1409
https://orcid.org/0000-0001-9738-1409

E.V. Malyugin
D.A. Afonnikov

OrthoML2GO: prediction
of protein functions by homology

onpepfeneHvie pyHKUMI 6enkoB. B Halel paboTe npeacTaBneH MeTos npefckasaHna ¢yHKuuin 6enkos OrthoML2GO,
KOTOPbIN NHTErPUPYyeT NONCK rOMOSTIOTMYHbIX MOCeA0BaTeNbHOCTEN € NoMoLybio anroputma USEARCH, aHanu3 opto-
rpynn Ha 6a3e OrthoDB 12-i4 Bepcun 1 anropnt™ MalLMHHOTO OOyUYeHNA (rpadneHTHbIN 6ycTUHS). KnioueBas ocobeH-
HOCTb Mofxofa 3aK/oyaeTcs B UCNONb30BaHUN MHbOPMaLmM 06 opTorpynnax AnA yyeTta 3BOMOLNOHHOIO U GyHK-
LIMOHANIbHOTO CXOACTBA 6ENKOB 1 MPUMEHEHUA MaLLVHHOTO 00yyeHnA ANnAa fanbHelero yTouHeHa TepmrHoB Gene
Ontology (GO) ans aHanu3mpyemon nocneaoBaTenbHOCTY. AnA Bbibopa onTMManbHOro anropmMTMa aHHoTaumm 6enxkos
6bIN1 MO3TANHO NPVIMEHEHbI CrefytoLve Noaxoapl: MmeTtog k 6nvxanwnx cocepein (KNN); meToa Ha OCHOBE aHHOTa-
Ln opTorpynnbl, Hanbonee npeacTaBneHHon y k 6nvxkaiwmx romonoros (OG); MmeToa BeprdMKaLmy BbIABIEHHbIX HA
npepabiayLiem stane TepMmHoB GO € MOMOLLbIO anIrOPUTMOB MaLLMHHOTO 0byyeHuA. [poBefeHO CpaBHEHVE TOUHOCTH
npeackasaHua TepmuHos GO metogom OrthoML2GO ¢ nporpammamu aHHoTauum Blast2GO n PANNZER2 Ha BbibopKax
nocrefoBaTeNlbHOCTEN Kak OTAENbHbIX OPraHM3MOB (YenioBeK, apabraoncnc), Tak 1 Ha KOMOMHNPOBAHHON BblbOpKe
nocnefoBaTeslbHOCTEN, MPeACTaBNEHHbIX Pa3HbIMM TaKCOHaMU. Pe3ynbTaTbl MOKa3anu, YTo NPeAnoXKeHHbI METOA He
YCTynaeT, a MO HEKOTOPbIM MOKasaTenAM NPeBOCXOAUT MX MO KauecTBy npeAckasaHna GyHKUMIN 6enkoB, 0co6eHHO
Ha 60nbLIMX U Pa3HOPOAHbIX BbIOOPKaX OPraHM3MOB, a HaMGONbLUMIA NMPUPOCT TOYHOCTU JOCTUTAeTCA 3a CUET KOMOU-
Haumm nHbopmaLum o 6rKawmx roMosiorax 1 OpTOrpynmnax B COUYeTaHUN C BepudmrKaLlmen TepMMHOB MeTofaMm
MaLIMHHOro 06yyeHna. PazpaboTaHHbI NOAX0L AEMOHCTPUPYET BbICOKYI0 S3OPEKTUBHOCTL ANA KpynHOMacWwTabHOM
aBTOMaTUYeCKol aHHoTauun 6enkoB. MNepcnekTyBbI AanbHENLWero pasBUTUA BKIOYAIOT ONTMMU3aLMI0 NapaMeTpoB
Mopeneil MalMHHOTO 00yUYeHsl MOA KOHKPETHbIe G1oNormyeckme 3aaadun v MHTErpaLyio JONOMHUTENbHbBIX MCTOYHN-
KOB CTPYKTYPHO-GYHKLIMOHaNIbHON MHOPMALIMK, YTO MO3BOIUT eLLe 60sIbLie NOBbICUTb TOYHOCTb U YHUBEPCASIbHOCTb
meTopaa. Kpome Toro, BHefipeHvie HOBbIX UHCTPYMEHTOB 61MoMHGOPMATHKL U paclumpeHmne 6asbl AaHHbIX aHHOTUPO-
BaHHbIX 6e/1IKoB 6yayT cnocobCTBOBaTb JasibHENLLEMY COBEPLLEHCTBOBAHMIO MPEASIOKEHHOMO NOAX0AA.

KnioueBble cnoBa: npefckasaHune GyHKUMIA 6esika; reHHaA OHTONONMA; FOMOJSIOTA; OPTOrpynna; MalyHHoOe obyyeHne

Introduction

The introduction of next-generation sequencing (NGS) tech-
nologies has led to exponential growth in the volume of data
on DNA, RNA, and protein sequences (Goodwin et al., 2016).
The primary sources of these data are large-scale and numer-
ous projects in genomics, transcriptomics, and proteomics
(Chengetal., 2018; Lewin et al., 2018). However, the function
of a significant proportion of the sequences identified in such
projects remains unknown (Galperin, Koonin, 2010).

Expert gene annotation requires substantial time to search
for gene function information in the literature, and although
it is the most reliable method, it is impractical to apply it to
the vast number of newly predicted genes. Therefore, for most
new amino acid sequences (hereafter referred to as sequences
for brevity), the development of effective automatic annotation
methods is necessary to determine their molecular functions,
roles in cellular processes, and cellular localization. Given
the widespread use of the Gene Ontology (GO) database for
functional annotation (Ashburner et al., 2000; Du Plessis et
al., 2011; Gene Ontology Consortium, 2023), the task reduces
to automatically assigning these terms to sequences.

Most methods for predicting protein function, based on
sequence or three-dimensional structure analysis, rely on a
fundamental principle: function can be predicted by estab-
lishing reliable structural or evolutionary similarity with a
protein, the function of which is already known (Benso et
al., 2013). A crucial task here is deciphering the relationship
between the detected structural or sequence similarity and the
actual level of functional relatedness (Pearson, 2013). Among
these methods, homology-based function prediction methods
are widely regarded for their broad applicability and relative
simplicity. Homology-based methods assign GO terms to
the analyzed protein based on the similarity of its amino acid
sequence to the primary structures of proteins with known
functions. In other words, the function of a protein can be

deciphered by analyzing its similarity to other proteins for
which the function has been reliably determined (Eisenberg
et al., 2000; Pearson, 2013).

The BLAST method (Altschul et al., 1990) is widely used
for comparing the amino acid sequences and identifying
homologous regions. However, new tools for searching ho-
mologous sequences in databases have recently emerged, such
as GHOSTX (Suzuki et al., 2014), DIAMOND (Buchfink et
al., 2015), MMseqs2 (Steinegger, S6ding, 2017), and others.
Their characteristic feature is high processing speed, orders
of magnitude faster than BLAST, achieved primarily through
more efficient processing of matched sequence fragments.

The concept of homology is fundamental for drawing con-
clusions about the evolutionary processes of gene formation
and function. In the early 1970s, Walter Fitch (Fitch, 1970)
proposed classifying homologous proteins into orthologs
and paralogs according to their origin. Orthologs originate
from the evolutionary divergence of genes in different taxa
during speciation. Paralogs are formed through gene duplica-
tions. It is assumed that orthologs retain the function of the
ancestral gene from the ancestral species, while paralogs may
acquire new functions after duplication events (Fitch, 2000;
Kuzniar et al., 2008; Altenhoff et al., 2019). Given the im-
mense importance of orthologs for comparative genomics and
functional annotation, information on orthologous genes and
their families is accumulated in several specialized databases,
which are crucial for identifying and analyzing orthologous
groups of genes (orthogroups) (Jensen et al., 2008; Kriven-
tseva et al., 2008). It should be noted that methods involving
machine learning algorithms are successfully used to solve
gene function prediction problems, allowing for increased
accuracy compared to earlier approaches (Sanderson et al.,
2023; Yuan et al., 2023).

This work investigates the possibility of predicting protein
functions based on searching for homologous sequences,
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Table 1. List of organisms included in the study
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Species name Number of sequences

Arabidopsis thaliana 27,655

Homo sapiens 19,763

Drosophila melanogaster 28,543 (includes isoforms)

Solanum tuberosum 40,722 (includes isoforms)

Danio rerio 33,428 (includes isoforms)

Chlamydomonas reinhardtii 16,090

Oryza sativa 34,226 (includes isoforms)

considering their orthologs, and employing machine learning
methods. A step-by-step analysis of the influence of these
three factors on the accuracy of GO term prediction was per-
formed. It is shown that among machine learning methods,
the gradient boosting algorithm demonstrates the highest
prediction accuracy. Based on this, the OrthoML2GO predic-
tion algorithm was implemented. Its accuracy was compared
with the Blast2GO and PANNZER2 methods. It is shown that
the proposed method provides higher accuracy, especially on
large and heterogeneous datasets.

Materials and methods

Amino acid sequence data. The lists of organism species
and amino acid sequences used in the work are presented
in Table 1. They include organisms with varying degrees of
genome annotation completeness (Table S1), representing
different taxa of both plants and animals: dicots, monocots,
unicellular algae, vertebrates, arthropods (Table 1).

OrthoDB as a source of homologous sequences, anno-
tations, and orthology information. The OrthoDB v 12.0
database (https://www.orthodb.org/) (Tegenfeldt et al., 2025)
was used as a source of homologous sequences, their GO
term annotations, and orthology data. The database includes
information on 5,827 eukaryotic species, 17,551 bacteria,
607 archaea, and 7,962 viruses. It contains over 162 million
sequences classified into over 10 million orthogroups. The
database also includes GO annotation for part of the sequences
and thus represents a convenient source for their classification
into orthologs and GO annotation. Furthermore, this database
provides classification of protein sequences into orthologous
families, for which generalized functional annotations of
proteins in GO terms are also provided.

Search for homologous sequences. The search for homo-
logs was performed using the USEARCH v 11.0.667 algo-
rithm (https://drive5.com/usearch/) (Edgar, 2010) with the
usearch_local command. It performs searches for high-identity
matches orders of magnitude faster than BLAST. During the
search for homologous sequences, it was inevitable that the
list of homologs included the query sequence itself. For an
objective evaluation, identical sequences were excluded from
the search results.

' Supplementary Tables $1-512 are available at:
https://vavilov.elpub.ru/jour/manager/files/Suppl_Malugin_Engl_29_7.pdf

Annotation source

TAIR (Reiser et al., 2024)

EBI Gene Ontology Annotation Database (Huntley et al.,, 2015)
FlyBase (Oztiirk-GColak et al., 2024)

SpudDB (Hamilton et al., 2025a)

ZFIN (Bradford et al., 2022)

PhycoCosm (Grigoriev et al., 2021)

RGAP (Hamilton et al., 2025b)

General sequence annotation scheme. The GO term an-
notation pipeline was implemented using Linux bash scripts
and the R programming language using the computational
resources of the “Bioinformatics” collective use center at ICG
SB RAS. Three algorithms for annotating protein functions
based on the OrthoDB database were developed (Fig. 1).

On the left (Fig. 1a), the OrthoDB v 12.0 database (Tegen-
feldt et al., 2025) is schematically shown in a large oval
with representatives of orthologous groups (orthogroups)
OGL1...0G3 (Sequences of orthologous families are shown as
rectangles of the same color). The first, basic sequence predic-
tion algorithm is based on the search for k-nearest homologs
and is denoted as KNN. Using the USEARCH program, ho-
mologous sequences are searched for the analyzed sequence in
the OrthoDB database and ranked by similarity level. They can
include representatives of both the same orthogroup and others
(shown in different colors). The analyzed sequence is assigned
the GO terms of the k most similar sequences (Fig. 1b).

The second method is based on the principle of orthology
and is denoted as OG. For each of the k-nearest homologs of
the analyzed sequence, its orthogroup in the OrthoDB database
is determined. The orthogroup to which the analyzed sequence
belongs is determined by a voting method: it is the orthogroup
with the highest frequency of occurrence among all k-nearest
homologs (Fig. 1c). GO terms for sequences from this ortho-
group are assigned to the analyzed sequence (Fig. 1d).

The third approach, denoted as KNN+OG (Fig. 1e), in-
volves combining the GO terms obtained from the KNN and
OG algorithms for the query sequence (Fig. 1f). This list of
GO terms is compared with the reference (true) annotation
using measures such as: precision, recall (sensitivity), ac-
curacy, and F-score (F-measure), which was the resulting
measure (Fig. 1g and “Verification of terms using machine
learning methods” section).

Methods for annotating the analyzed sequence with GO
terms. K-nearest homologs method (KNN). The k-nearest
homologs by similarity level are determined as a result of
searching the OrthoDB database with the USEARCH program
with the following parameters: identity (amino acid sequence
identity) = 50 %, coverage (coverage of the analyzed sequence
by the found homolog) = 70 %, e-value (statistical signifi-
cance of the found match) = 1075, which is justified by the
goal of reducing false positives at the homolog search stage.
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Fig. 1. General scheme of sequence annotation and its evaluation. Sequences belonging to the same orthogroup are represented by different shades

of the same color: blue, green, or red.

a - OrthoDB database with orthogroups; b — assignment of GO terms from the k-nearest homologs (KNN method); ¢ — determination of the most frequent
orthogroup by voting; d - assignment of GO terms associated with the selected orthogroup (OG method); e - combination of GO terms obtained by the KNN
and OG methods (KNN+OG method); f - verification of the combined term list using machine learning; g - comparison of predicted terms with the reference

annotation and calculation of metrics.

The analyzed sequence was assigned the GO terms of the
k most similar sequences available in the OrthoDB database.
The value of parameter k can vary (Kharsikar et al., 2007;
Dongardive, Abraham, 2016). Therefore, the optimal value
within the interval k = 1-30 with a step of 5 was determined
based on the highest accuracy in term identification using the
OrthoDB annotation (Tables S4-S9).

Using orthologous groups (OG). In this method, for each
of the k-nearest homologs identified by the KNN method,
the orthologous group corresponding to the most ancient
ancestral taxon was selected using the OrthoDB annotation.
Then, the orthogroup with the highest frequency among
the k-nearest homologs was determined and assigned to the
analyzed sequence. GO annotation terms for sequences from
this orthogroup in the OrthoDB database were assigned to
the analyzed sequence. The KNN+OG method combines GO
terms (excluding duplicates) obtained separately by the KNN
and OG methods described above.

Verification of terms using machine learning methods.
To refine the list of predicted GO terms at the third stage of
analysis (Fig. 1f), three machine learning (ML) algorithms
were employed: logistic regression (LR), gradient boosting
(XGB), and random forest (RF). Note that this stage does not
allow adding new terms to the annotation. Instead, it filters
out terms for which the similarity parameters between the

analyzed sequence and its homologs do not meet the speci-
fied criteria.

The logistic regression method (LR) is implemented in the
built-in stats package (R Core Team, 2013) via the function
glm (family = binomial). Logistic regression predicts the
probability of an object belonging to a class (e.g., “spam” or
“not spam”). It predicts the probability of an object belonging
to a class based on a weighted sum of features and passes it
through a logistic (sigmoid) function, which normalizes the
result to a number (probability) between 0 and 1. Gradient
boosting (XGB —eXtreme Gradient Boosting) was used in the
variant implemented in the xghoost package (Chen, Guestrin,
2016), function xgb.train. The random forest method (RF)
was applied in the version from the randomForest package
(Liaw, Wiener, 2002), function randomForest. Both gradient
boosting and random forest are ensemble algorithms based
on decision trees. This means that the final prediction is the
result of the collective work of many individual decision trees.
The parameters of the gradient boosting and random forest
algorithms are specified in the Table S12.

Parameters for the models were selected during training,
and in each method, their set was the same for all GO terms,
analyzed sequences, and their homologs. These are terms
reflecting the level of similarity, amino acid composition, and
frequency of GO terms (Table S2). If a GO term in a homolog
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was present in the annotation of the analyzed sequence in
the training set, the prediction function value in the machine
learning method was 1, otherwise, 0.

To evaluate the accuracy of machine learning methods,
amino acid sequences of Arabidopsis thaliana and Homo
sapiens proteins were used (Table 1). The set of sequences
for each of these two species was divided into two parts: 80 %
for training and 20 % for testing. Additionally, a combined
sample of proteins from the organisms listed in Table 1 was
formed: from the combined sample, 50,000 sequences were
randomly selected for training, and 20,000 non-overlapping
sequences were selected for testing the machine learning
models (Table S3).

Evaluation metrics. Annotation accuracy evaluation was
performed in R using the dplyr package (Wickham et al.,
2025). For this, two lists were formed: (a) a reference list
with amino acid sequences annotated with GO terms from
databases for model organisms (more details in Table S1)
and (b) a list obtained through functional annotation using
various annotation methods (Fig. 1). To assess the accuracy
of the annotation obtained by each of the methods described
above, they were compared with the reference annotation.
Hereafter, True Positive (TP) refers to GO terms present in
both lists; False Positive (FP) refers to terms present in the
predicted annotation list but absent in the reference (true) list;
False Negative (FN) refers to terms present in the reference
list but absent in the predicted annotation list.

The following metrics were used to evaluate protein annota-
tion: Precision (PR), Recall (RC), Accuracy (AC), as well as
the F-score metric, which was the resulting measure (Note.
Here, “Accuracy (AC)” is a defined metric, distinct from the
general concept of prediction accuracy):

Precision (PR) —the proportion of true positive predictions
among all positive predictions of the method:

:lx
TP+FP

Recall (RC) — the proportion of true positive predictions
among all true terms in the reference annotation:
TP

PR 100. (1)

Accuracy (AC) is defined as the arithmetic mean of Preci-
sion and Recall:

AC

_PR ; RC 100. @3)

F-score (F-measure) represents the harmonic mean between
Precision and Recall. This metric approaches zero if either
Precision or Recall approaches zero:

PRxRC
PR+RC

Since machine learning algorithms (LR, XGB, RF) esti-
mate the probability of a GO term belonging to the analyzed
sequence, and not a binary decision, it is necessary to choose
a cutoff threshold (t) above which the term will be considered
predicted. To account for data imbalance and to choose an
optimal threshold independent of its specific value, the F,
metric was calculated for the cutoff threshold t € (0; 1) with

F1=2

100. (4)

2025
29.7
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a step of 0.1. A GO term was considered correctly predicted
(positive class) if its predicted probability exceeded thresh-
old t. Fr s is defined as the maximum value of F-score(t)
across all thresholds:

_ PR(t) x RC(t
Frnax = maX[ZPJR(Eﬁ%]X 100. (5)

In GO term prediction tasks, where the distribution of terms
by frequency of occurrence is extremely imbalanced (some
terms are very common, others are extremely rare), and clas-
sification is multi-label (one protein can correspond to many
terms), the F,.x metric is often used. It is calculated for the
entire set of predictions by varying the cutoff threshold (t),
above which a term predicted by the ML model is considered
positive. F.x shows the maximum quality that the model
can achieve in the ideal case of threshold selection. Unlike
the F1-score, which is calculated for a fixed threshold, F .
evaluates the quality of ranking terms by probability.

Comparison with other methods. To validate the de-
veloped OrthoML2GO method, it was compared with the
Blast2GO (Conesa et al., 2005) and PANNZER?2 (T6ronen et
al., 2018) methods. BLAST homology searches were launched
on the computational complex of the “Bioinformatics” col-
lective use center at ICG SB RAS. The launch parameters
for Blast2GO and PANNZER2 were run with default para-
meters.

Results and discussion

Impact of orthogroup information

on GO term prediction performance

To assess the influence of orthogroup information on function
prediction performance, a comparison of the F1-score was
conducted for three annotation methods with three algorithms
(KNN, OG, and KNN+OG) depending on the number of near-
est homologs for A. thaliana sequences (Fig. 2).

As shown in Figure 2, the F1-score depends on the para-
meter k for all three annotation variants. However, the nature
of these dependencies is different: OG demonstrates the low-
est performance (F1 < 41 %). For the OG method, as for the
other methods, a maximum is observed at k = 15. Moreover,
increasing the parameter k results in a gradual, albeit slight,
decrease in the F1-score. For the most accurate prediction,
determining the correct orthologous group of the protein,
which can be identified even at small values of K, is sufficient.
A further increase in k only adds noise to the prediction due
to an increase in false positive GO terms from orthogroups to
which the protein in question does not actually belong.

The KNN method shows a pronounced dependence of
performance on the parameter k. At small values (k = 5), the
F1-score is the lowest (~40 %) and lower than the OG and
KNN+OG methods, which is probably due to an insufficient
number of homologs for reliable statistical inference and
high sensitivity to noise and potential annotation errors of
individual sequences. When k increases to 15, F1 grows to
a maximum value (~52 %); however, a further increase in k
leads to a gradual decrease in performance, as distant homo-
logs which may carry functionally irrelevant information for
the target sequence (false positive GO terms) begin to enter
the sample.
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Fig. 2. Dependence of the F1-score in A. thaliana proteins on the parameter k (number of nearest homologs) for three

annotation variants.

The X-axis shows the values of k. The Y-axis shows the values of the F7-score (in percent). Lines of different colors correspond to
different annotation algorithms of our method: KNN - blue line; OG - green line; KNN+OG - red line.

Note that combining the KNN and OG methods (KNN+OG)
leads to an increase in the F1-score for all values of the pa-
rameter k, and the greatest increase (more than 3 % in absolute
value) is observed precisely at k = 5. This can be explained by
the fact that with small k, the list of homologs may be unstable
and statistically unreliable. Incorporating orthogroup informa-
tion, which aggregates data on the function of a whole group
of evolutionarily related genes, stabilizes the prediction and
compensates for the insufficiency of data from a small number
of nearest neighbors.

It is worth noting that the F1-score value in the range of
40-52 % represents a competitive result for the task of protein
function prediction, as confirmed by comparison with other
popular methods (see section “Comparison of the performance
of KNN, KNN+OG, and OrthoML2GO with the Blast2GO
and PANNZER? tools”). This is due to the rather complex
nature of the task: firstly, as mentioned earlier, GO annotation
is multiple, i.e., one protein corresponds to many terms, and
the prediction is considered correct only if all correct terms are
found and no extra ones are added. Secondly, the distribution
of GO terms is extremely imbalanced: some terms are very
common, others are extremely rare, which further compli-
cates achieving high accuracy. Thus, the absolute value of
the F1-score should be interpreted in the context of the task’s
complexity and in comparison, to alternative approaches.

Results for other organisms are shown in the Supplemen-
tary materials (Tables S4-S9). Combining the KNN and
OG methods (KNN+OG) allows us to obtain an integrated
prediction that demonstrates the greatest gain in accuracy
at small values of the parameter k for all organisms except
Chlamydomonas reinhardtii. For example, for Danio rerio
proteins at k = 5, the KNN+OG method surpasses the basic
KNN by more than 13 % in absolute value of the F1-score
(74.66 vs. 61.37 %). This is explained by the fact that with
small k, the list of homologs may be statistically unreliable and
sensitive to noise in the annotations of individual sequences.

Integrating orthogroup data mitigates the statistical unreli-
ability associated with a small number of nearest homologs.
Thus, the hybrid KNN+OG approach not only demonstrates
the best performance at the peak (at k = 15) but also signifi-
cantly reduces the dependence of prediction accuracy on the
parameter k, making the method more robust.

Thus, combining the KNN and OG variants (KNN+OG)
allows obtaining an integrated prediction, giving a better es-
timate compared to each of them individually for all values
of the parameter k for most organisms, and it will be used for
machine learning.

Verification of GO terms

by various machine learning algorithms

To verify false positive GO terms obtained at the previous
stage, machine learning algorithms such as logistic regres-
sion (LR), gradient boosting (XGB), and random forest (RF)
were used (see section “Verification of terms using machine
learning methods”). A comparison of the accuracy of ma-
chine learning methods using the F ., measure (see section
“Evaluation metrics”) on test data of A. thaliana, H. sapiens,
and a combined sample of 20,000 sequences from different
organisms is presented in Table 2.

Logistic regression demonstrates significantly lower Fpay
values compared to gradient boosting and random forest me-
thods, with the difference reaching over 25 %. This is likely
due to the fact that ensemble methods (XGB and RF), un-
like the linear LR model, are capable of capturing complex
nonlinear relationships between features. Furthermore, these
methods are more robust to noise in the data due to bagging
(RF) and boosting (XGB) procedures, which average the
predictions of many individual decision trees, reducing the
influence of outliers and incorrect annotations of individual
proteins. Gradient boosting (XGB) demonstrates the best re-
sults on Arabidopsis sequences and the general sample of all
organisms, but it only slightly trails the random forest method
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Table 2. Comparison of the F,,,, measure on test data
for different machine learning algorithms, %

Dataset LR XGB RF

Arabidopsis thaliana 53.20 68.95 66.86
Homo sapiens 71.92 83.92 84.02
Combined sample 52.25 79.55 78.32

on human proteins (with an F, difference of only 0.1 %).
Thus, for the final version of the OrthoML2GO method, the
gradient boosting (XGB) machine learning method was cho-
sen, as it showed the best results on the test samples.

Comparison of the performance of KNN, KNN+OG,

and OrthoML2GO with the Blast2GO and PANNZER2 tools
For a comprehensive assessment of the developed method’s
effectiveness, its performance was compared with two widely
used automatic functional annotation tools — Blast2GO and
PANNZER2. The comparison was performed on three test
datasets: individual proteomes of A. thaliana and H. sa-
piens, as well as a combined sample including sequences
of all organisms listed in Table 1. As the resulting metric
for methods not using machine learning (KNN, KNN+OG,
Blast2GO), the F1-score was applied, while for OrthoML2GO
and PANNZER?2, which output a probabilistic estimate, the
Fmax metric was used, allowing us to evaluate the maximum
achievable quality of the model with an ideal choice of cutoff
threshold (Table 3).

Analysis of the results demonstrates that the developed
OrthoML2GO method, integrating homology search, ortho-
group analysis, and verification of GO terms using gradient
boosting, shows a statistically significant advantage in perfor-
mance over all compared methods on all test samples. Thus,
for A. thaliana, OrthoML2GO achieved an F,,, of 68.95 %.
This represents an 18.21 % increase over PANNZER2
(Fmax = 50.74 %) and a 14.65 % increase over the F1-score
of Blast2GO (54.30 %). On human proteins, compared to
PANNZER2, OrthoML2GO performed significantly bet-
ter —83.92 vs. 75.14 %, while for the Blast2GO method, the
F1 value was 54.95 %. On the combined sample of all orga-
nisms, an improvement in the F-measure indicator of more
than 30 % was observed compared to all other methods.

Notably, the hybrid KNN+OG approach, which underlies
OrthoML2GO, demonstrates a small but consistent improve-
ment compared to the basic KNN on all samples, confirming

2025
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the usefulness of integrating orthogroup information. How-
ever, the main gain in accuracy is provided by gradient boost-
ing (XGB), which effectively verifies false positive predictions
arising from annotation noise.

Akey factor contributing to the success of the OrthoML2GO
method is its integration of evolutionary information from
homologs and orthogroups within the OrthoDB database,
combined with subsequent verification of GO terms using
gradient boosting. In contrast to PANNZER?2 and Blast2GO,
our method incorporates orthogroup information and verifies
GO terms using decision tree ensembles, adaptively selecting
the most informative features. Ultimately, this allowed reduc-
ing the proportion of false positive annotations and increasing
accuracy from 8 % (on human protein sequences) to 30 % (on
the combined sample) compared to analogues.

It is important to note a potential limitation in the compari-
son: our machine learning models were trained on a sample of
sequences from OrthoDB, while Blast2GO and PANNZER?2
rely on broader datasets derived from UniProt. This differ-
ence in training data may introduce a bias in the comparative
accuracy estimates.

Assessment of prediction performance

for different GO aspects

For a more detailed analysis of the method’s performance, a
comparative analysis of the prediction accuracy of GO terms
for the three main aspects (ontologies) of Gene Ontology
was performed: Biological Process (BP), Molecular Function
(MF), and Cellular Component (CC). The evaluation results on
the combined sample for various machine learning algorithms
used at the verification stage are presented in Table 4.

The results show that all machine learning algorithms
demonstrate a similar trend: the highest prediction accuracy
is achieved for the Cellular Component (CC) aspect, followed
by Molecular Function (MF), and the accuracy is somewhat
lower for Biological Process (BP). This is consistent with the
generally accepted view in bioinformatics: predicting cel-
lular localization (CC) is often the easiest task, as it strongly
correlates with the presence of specific signal peptides and
domains. Prediction of molecular function (MF) also largely
depends on conserved functional domains. At the same time,
prediction of involvement in biological processes (BP) is the
most complex, as the same protein can participate in several
processes, and the processes themselves are defined by com-
plex interactions of many proteins, which is more difficult to
deduce solely from homology and orthology data.

The XGB method, chosen for OrthoML2GO, demonstrated
the best results among all tested algorithms across all three

Table 3. Comparison of the methods KNN, KNN+OG, OrthoML2GO (XGB), PANNZER2 and Blast2GO on three datasets, %

Dataset KNN* KNN+OG*
Arabidopsis thaliana 51.54 51.68
Homo sapiens 71.72 72.18
Combined sample 47.29 47.35

OrthoML2GO (XGB) PANNZER2 Blast2GO*
68.95 50.74 54.30
83.92 75.14 54.95
79.55 49.14 42.11

Note. For methods marked with an asterisk *, the F1-score is reported; for OrthoML2GO and PANNZER2, the F,,, metric is used.
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Table 4. Comparison of prediction performance for Gene Ontology aspects on the combined sample, %

Molecular Function

Algorithm BP MF
Biological Process

LR 50.9 48.5

RF 78.4 77.0

XGB (OrthoML2GO) 78.8 79.8

cC
Cellular Component

56.8
82.9
83.6

Table 5. Estimates of GO term annotation accuracy for different aspects by various methods

according to literature data, %

Method BP MF

PANNZER2 784 85.8
DeepGOPIlus 58.5 474
GOLabeler 58.6 37.2
NetGO 2.0 66.6 36.6
TALE+ 66.7 459

CcC

853
69.9
69.1
66.3
67.7

Reference

Toronen et al., 2018
Kulmanov, Hoehndorf, 2020
You et al., 2018

Yao et al.,, 2021

Cao, Shen, 2021

aspects, further confirming its suitability as the final classi-
fier. The performance of our method is competitive with the
accuracy estimates of other methods reported in the literature
(Table 5). The comparison was performed using the Fp,.
metric for individual Gene Ontology aspects: BP —biological
processes, MF — molecular functions, CC — cellular com-
ponents.

It can be noted that the OrthoML2GO method (Table 4)
demonstrated competitive results: 78.8 % (BP), 79.8 % (MF),
and 83.6 % (CC) on a sample of 20,000 sequences from seven
heterogeneous organisms — both plants and animals. Upon
comparison, it is evident that OrthoML2GO surpasses most
of the studied methods in all aspects. However, PANNZER?2
showed higher values for MF (85.8 %) and CC (85.3 %),
albeit on a smaller and less diverse sample (5,000 sequences
from Swiss-Prot).

It is worth noting that direct quantitative comparison
with other methods may be complicated by methodological
differences. Firstly, test samples differ significantly: most
methods use the UniProt/Swiss-Prot database, while our
combined sample includes both plants and animals, which
may affect the comparability of results. Secondly, the ver-
sion of Gene Ontology is critically important: OrthoML2GO
relies on the latest version of OrthoDB v12 annotation
(GO 2025), which may lead to difficulties in comparing qual-
ity metrics.

To demonstrate the applicability of the OrthoML2GO
method to poorly studied organisms, the proteome of the green
alga Ostreococcus lucimarinus was annotated (Tables S10
and S11). The method predicted functions for 5,273 out
of 7,603 protein sequences. The analysis revealed a pre-
dominance of such biological processes as phosphorylation
(G0:0016310) and translation (GO:0006412). Among mo-
lecular functions, ATP binding (GO:0005524) and nucleotide

binding (GO:0000166) were the most frequent, and among
cellular components, membrane (G0:0016020) and nucleus
(G0:0005634). These results demonstrate the method’s ability
to annotate poorly studied proteomes and identify functional
profiles characteristic of non-model organisms.

Conclusion

The developed method, OrthoML2GO, which integrates ho-
mology searches and orthogroup analysis from the OrthoDB
database with gradient boosting, demonstrated high efficiency
on test samples. One of the main results is a significant im-
provement in annotation accuracy due to the combined
approach, which combines the k-nearest neighbors method
and information about orthologous groups (KNN+OG).
This hybrid method surpassed the individual KNN and OG
approaches, especially at small values of the parameter k.
Verification of GO terms using machine learning algorithms,
particularly gradient boosting (XGB), allowed for a further
increase in accuracy through effective filtering of false po-
sitive predictions arising from distant homologs and ortho-
groups.

The obtained results confirm that the use of evolutionary
information contained in the OrthoDB orthogroups, combined
with machine learning algorithms, is an effective strategy
for automatic prediction of protein sequence functions. The
proposed OrthoML2GO method can be a good alternative
to existing methods. It is worth noting that further improve-
ment in accuracy is possible by optimizing machine learning
parameters, as well as by including additional sources of
biological information. As prospects for further research, the
following directions are outlined: evaluation of the model’s
transferability to poorly annotated proteomes and comparative
analysis with other methods using machine learning, including
neural network-based ones.
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