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Dear colleagues,
We introduce the current is­
sue of the Vavilov Journal of 

Genetics and Breeding, dedicated to 
computational biology. 

Methods for genome sequencing 
have been rapidly developed over 
the past two decades. Sequencing 
has become cheaper by almost five 
orders of magnitude: for instance, 
from $100,000 to $500 for a personal 
human genome. Great progress has 
been made in transcriptomics, pro­
teomics, metabolomics, and other 
omics technologies. We witness a 
new generation of techniques for 
biological object visualization on 
the genome, cellular, tissue, and 
organismal levels of living system 
organization. This informational 
explosion makes genetics the main 
source of  huge bodies of data. Ge­
netics outruns not only other fields of 
knowledge but global social media 
in the rate of information accumula­
tion. Indeed, up to 40  exabytes of 
data are produced in life sciences 
annually, whereas the largest social 
platform YouTube produces only 
2 exabytes, 20 times less. 

Analysis of big genetic data has 
given rise to a new paradigm of mo­
dern genetics. It is focused on gene 

networks: groups of orchestrated genes that interact via their 
products: RNA, proteins, and metabolites. Gene networks are 
responsible for the formation of molecular, biochemical, cellu­
lar, physiological, morphological, behavioral, and other traits 
of the body on the base of information encoded in the genome. 
The regulation of gene networks is enormously complicated. 
The complexity is evident from the fact that the operation of a 
particular gene network element can be controlled by tens and 
hundreds of elementary regulatory processes. This is true for 
gene transcription regulation, mediated by tens of transcription 
factors, which interact with binding sites in gene promoters, 
and for proteins, whose activity is modulated by interaction 
with numerous ligands, acting as allosteric regulators. The 
same is true for metabolic pathways, where the number of el­
ementary regulatory processes sometimes exceeds the number 
of biochemical reactions by an order of magnitude. Another 
fundamental property of living systems found in big data 
analysis is the extremely high level of genetic variability in 
populations of  humans, animals, plants, and microorganisms.  

Analysis of big genetic data requires the development of 
a new generation of methods to process very large bodies of 
information. This generation includes bioinformatics methods 
for the reconstruction, analysis, and modeling of structural 
organization and molecular mechanisms of the functioning 
of genomes, genes, and genetic macromolecules encoded by 
them: RNA and proteins. It also includes novel methods of 
computational systems biology for the reconstruction, analy­
sis, and modeling of genetics systems operating on the levels 
of cells, tissues, organs, and entire organisms. 

The new epoch of  big genetic data, including life sciences, 
demands transformation of  key approaches in bioinformatics 
and computational systems biology. What are fundamental 
trends in this field? First, it is the integration of conventional 
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methods in bioinformatics and computational systems biology 
with artificial intelligence and deep machine learning. Second, 
employment of the results as grounds for the development of 
a new generation of software and data support for interpreting 
big genetic data, and, most importantly, for planning experi­
ments to verify the results of computer-aided predictions from 

big data analysis. Progress in this direction would mark a 
fundamental transformation of the basic paradigm in modern 
research: Science directed by hypotheses is complemented by 
new science directed by big data analysis. 

This progress occurs in all sciences, but just bioinformatics 
and computational systems biology are at the forefront. 
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Abstract. DNA oxidation is one of the main types of damage to the genetic material of living organisms. Of the many 
dozens of oxidative lesions, the most abundant is 8-oxoguanine (8-oxoG), a premutagenic base that leads to G→T trans
versions during replication. Double-stranded DNA can conduct holes through the π system of stacked nucleobases. 
Such electron vacancies are ultimately localized at the 5’-terminal nucleotides of polyguanine runs (G-runs), making 
these positions characteristic sites of 8-oxoG formation. While such properties of G-runs have been studied in vitro at 
the level of chemical reactivity, the extent to which they can influence mutagenesis spectra in vivo remains unclear. 
Here, we have analyzed the nucleotide context of G-runs in a representative set of 62 high-quality prokaryotic genomes 
and in the human telomere-to-telomere genome. G-runs were, on average, shorter than polyadenine runs (A- runs), and 
the probability of a G-run being elongated by one nucleotide is lower than in the case of A-runs. The representation of 
T in the position 5’-flanking G-runs is increased, especially in organisms with aerobic metabolism, which is consistent 
with the model of preferential G→T substitutions at the 5’-position with 8-oxoG as a precursor. Conversely, the fre-
quency of G and C is increased and the frequency of  T is decreased in the position 5’-flanking A- runs. A biphasic pattern 
of G-run expansion is observed in the human genome: the probability of sequences longer than 8–9 nucleotides being 
elongated by one nucleotide increases significantly. An increased representation of C in the 5’-flanking position to long 
G-runs was found, together with an elevated frequency of 5’-G→A substitutions in telomere repeats. This may indicate 
the existence of mutagenic processes whose mechanism has not yet been characterized but may be associated with 
DNA polymerase errors during replication of the products of further oxidation of 8-oxoG.
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Аннотация. Окисление ДНК представляет собой один из главных видов повреждения генетического материала 
живых организмов. Из многих десятков продуктов окислительного повреждения ДНК в наибольшем количе-
стве встречается 8-оксогуанин (8-oxoG) – предмутагенное основание, приводящее при репликации к трансвер-
сиям G→T. Двуцепочечная ДНК обладает способностью к проводимости положительных зарядов, связанных 
с дефицитом электронов в π-системе азотистых оснований. Такие заряды в конечном итоге локализуются на 
5’-концевом нуклеотиде полигуаниновых трактов (G-трактов). В связи с этим 5’-концевые нуклеотиды G-трактов 
служат характерными местами образования 8-oxoG. Эти свойства G-трактов хорошо изучены in vitro на уровне 
реакционной способности, но остается неясным, насколько они могут отражаться в спектрах мутагенеза in vivo. 
В работе проанализирован нуклеотидный контекст G-трактов в репрезентативном наборе из 62 полных гено-
мов прокариот и в геноме человека с покрытием «от теломеры до теломеры». Показано, что G-тракты в среднем 
короче полиадениновых трактов (A-трактов) и вероятность удлинения G-трактов на один нуклеотид ниже, чем 
в случае A-трактов. Установлено, что представленность T в положении, примыкающем к G-трактам с 5’-стороны, 
повышена, в особенности у организмов с аэробным метаболизмом, что согласуется с моделью преимуществен-
ных мутаций G→T в 5’-положении с 8-oxoG как предшественником. В то же время в положении, примыкающем 
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DNA damage reflected in the evolution  
of G-runs in genomes

к A-трактам, повышена частота встречаемости G и C и снижена частота встречаемости T. В геноме человека 
наблюдается двухфазный характер разрастания G-трактов: начиная с длины 8–9 нуклеотидов вероятность их 
удлинения на один нуклеотид заметно увеличивается. Выявлена повышенная представленность C с 5’-стороны 
от длинных G-трактов и A при заменах в теломерных повторах, что может свидетельствовать о существовании 
мутагенных процессов, механизм которых пока не охарактеризован, но может быть связан с ошибками ДНК-
полимераз при репликации продуктов дальнейшего окисления 8-oxoG. 
Ключевые слова: повреждение ДНК; мутагенез; 8-оксогуанин; G-тракты; теломеры

Introduction
Oxidative DNA damage is an inevitable consequence of res­
piration, which relies on the oxidation of organic compounds 
with molecular oxygen and has been the basis of energy 
metabolism in the vast majority of living organisms for over 
two billion years (Prorok et al., 2021). Damaged nucleotides 
are generally quickly repaired; however, some of them may 
remain in DNA until replication, which is one of the main 
sources of mutations (Liu et al., 2016; Chatterjee, Walker, 
2017; Tubbs, Nussenzweig, 2017). Based on our understan­
ding of the molecular mechanisms of DNA polymerase errors, 
it has now become possible to identify characteristic patterns 
of mutations caused by various types of genotoxic stress or 
even by specific damaged bases (Alexandrov et al., 2013; 
Koh et al., 2021).

Of all DNA structural elements, the guanine base has the 
lowest redox potential (Cadet et al., 2008, 2017; Fleming, 
Burrows, 2022). The most common product of its oxida­
tion, 7,8-dihydro-8-oxoguanine (8-oxoG), occurs in DNA 
at the background level of ~1/106 guanines, and this level 
increases significantly under oxidative stress of various origins  
(ESCODD et al., 2005; Dizdaroglu et al., 2015; Chiorcea-
Paquim, 2022; Fig. 1a, b). The presence of an oxygen atom at 
C8 in 8-oxoG sterically hinders the regular anti conformation 
of its nucleoside, 8-oxo-2′-deoxyguanosine (8-oxodG), and 
the syn conformation becomes energetically favorable (Cho 
et al., 1990; Fig. 1c, d ). Consequently, in the absence of Wat­
son–Crick bonds with cytosine, which additionally stabilize 
the anti conformation, 8-oxodG preferentially adopts the syn 
conformation, in which it can form a Hoogsteen-type pair 
with adenine (Kouchakdjian et al., 1991; McAuley-Hecht 

et al., 1994; Lipscomb et al., 1995). Because of this, DNA 
polymerases incorporate dAMP opposite 8-oxoG in the DNA 
template with high frequency (Shibutani et al., 1991; Miller, 
Grollman, 1997; Maga et al., 2007; Yudkina et al., 2019).

In the living cell, the outcome of primary DNA oxidation 
events can be influenced by numerous additional factors and 
DNA repair systems that remove damaged bases from the ge­
nome. Even so, 8-oxoG exhibits relatively high mutagenicity 
in vivo, characterized by a spectrum dominated by G→T trans­
versions mostly independent of the surrounding nucleotide 
context (Wood et al., 1992; Moriya, 1993). Such mutations are 
frequently found in human tumors and form the basis of the 
SBS18 and SBS36 mutational signatures (Alexandrov et al., 
2013; Pilati et al., 2017; Viel et al., 2017; Kucab et al., 2019). 
Guanidinohydantoin and spiroiminodihydantoin, the products 
of further oxidation of 8-oxoG, also significantly contribute 
to mutagenesis, predominantly causing G→C transversions 
(Fleming, Burrows, 2017; Kino et al., 2020).

The stacked π system of DNA has considerable hole con­
ductivity (Giese, 2002; Genereux, Barton, 2010). Numerous 
experiments and quantum mechanical calculations show that a 
positive charge resulting from one-electron oxidation of DNA 
can migrate along the π system over significant distances, and 
its final acceptors are the G bases, which are mainly oxidized 
to 8-oxoG. In this case, the G bases located in the first 5′-posi­
tion in runs of several Gs are especially sensitive to oxidation 
(Sugiyama, Saito, 1996; Saito et al., 1998; Kurbanyan et al., 
2003; Adhikary et al., 2009).

Although the mechanism of positive charge migration and 
preferential oxidation of guanines at the 5′-end of G-runs is 
generally accepted today, all experimental data supporting it 

Fig. 1. Structures of 2’-deoxyguanosine (a), 8-oxo-2’-deoxyguanosine (b), Watson–Crick 8-oxodG(anti ):dC pair (c) 
and Hoogsteen 8-oxodG(syn):dA pair (d).
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were obtained in relatively simple in vitro systems. The mu­
tagenesis spectra caused by the appearance of 8-oxoG in this 
context have not yet been studied. If preferential conversion 
of G to 8-oxoG does indeed occur at the 5′-end of G-runs, it 
can be expected that the mutagenic properties of 8-oxoG at 
these positions will result in an increased frequency of G→T 
mutations, which should be reflected in an increased frequency 
of T before G-runs. In this study, to test this hypothesis, we 
analyzed the occurrence of nucleotides flanking G-runs from 
the 5′-side in prokaryotic and human genomes.

Materials and methods
The T2T-CHM13v2.0 human genome assembly, which in­
cludes full-length telomeres and highly repetitive regions 
(Nurk et al., 2022), and the prokaryotic genomes listed in 
Table 1 were used for the analysis.

UGENE v37.0 software package (Okonechnikov et al., 
2012) and custom-written bash scripts were used to extract 
nucleotide frequencies at given positions. The expected fre­
quency of nucleotides in the flanking positions before and 
after Gn (or An) runs in prokaryotic genomes was calculated 
based on the total number of A, C, and T (or C, G, and T) in 
a given genome as pA = NA/(NA+NC+NT), where pA is the 
expected representation (in this case, for A), and NA, NC, 
and NT are the numbers of A, C, and T in both strands of 
the genome, respectively. For the human genome, due to the 
well-known underrepresentation of the CG dinucleotide, the 
expected frequency was calculated in a similar way but based 
on the number of AG, CG, and TG dinucleotides. Statistical 
analysis was performed using SigmaPlot v11.0 (Grafiti, USA), 
DATAPLOT (National Institute of Standards and Technology, 
USA), and RStudio v1.2 (Posit PBC, USA). Dunn’s correction 
was used for all multiple comparisons and test series to adjust 
the significance level.

Results and discussion
To analyze the nucleotide distribution in prokaryotic genomes, 
a sample of 54 bacterial and 8 archaeal genomes was compiled, 
maximally reflecting the taxonomic diversity in these domains 
of life (Table 1). Only high-quality genomes classified in the 
RefSeq database (O’Leary et al., 2016) as reference genomes 
were included. The sample taxonomic representation was one 
genome per phylum, with the exception of Methanobacteriota 
and Thermoproteota for Archaea, and Actinomycetota, Bac­
teroidota, and Thermodesulfobacteriota for Bacteria with a 
representation of 2 genomes from different orders per phylum, 
as well as Bacillota and Pseudomonadota (3 genomes from 
different orders per phylum). The G+C content in the studied 
genomes ranged from 23.5 to 69  % (Table 1). The parameters 
of archaeal genomes did not differ significantly from those of 
bacterial ones, so the representatives of both domains were 
considered as a single group of prokaryotes.

Since the prokaryotic genomes mostly consist of protein-
coding sequences, mutations in which can be subject to natural 
selection, we have first assessed the possible impact of all 
16 potential amino acid substitutions resulting from G→A, 
G→C and G→T nucleotide substitutions in the first posi­
tion of G-runs (codon changes HHG→HHH, HGG→HHG, 
GGG→HGG, where H is A, C or T). Two independent met­
rics were used for this purpose: the conservation index Cn, 

calculated on the basis of partition distances in a set of 
physicochemical properties of amino acid residues (Taylor, 
1986; Livingstone, Barton, 1993), and the weights of amino 
acid substitutions in the BLOSUM62 matrix, compiled from 
several hundred groups of homologous proteins (Henikoff S., 
Henikoff J.G., 1992). Although G→A substitutions generally 
caused smaller changes in the properties and occurrence of 
amino acid residues, as expected for class-conserving point 
mutations, the difference from G→C and G→T substitutions 
was not statistically significant (Kruskal–Wallis test with 
Dunn’s correction for multiple comparisons, p > 0.05).

All genomic sequences were searched for the HGnH and 
BAnB runs and the corresponding complementary-strand 
DCnD and VTnV runs (H = A, C or T; B = C, G or T; D = A, 
G or T; V = A, C or G) with the length n ≥ 2. The frequency 
of polypurine runs in the genomes was higher than that ex­
pected from a random nucleotide distribution with the same 
G+C composition (one-sample Wilcoxon test, p  <  0.001), 
indicating the functional importance of such sequences. An 
increased frequency of substitutions at the first position of  
G-runs should gradually lead to their shortening. Indeed, when 
comparing the lengths of G-runs and A-runs in prokaryotic 
genomes, adjusted for the content of the respective purine 
nucleotides, it turned out that G-runs are, on average, shorter 
(Fig. 2a). In this case, HGG trinucleotides were more common 
than BAA, but in longer repeats, the frequency of A-runs was 
higher (Fig. 2b).

For a more detailed analysis of the run length distribution, 
we have studied the variability of their lengths in each genome. 
The number of G-runs and A-runs in each genome decreased 
almost strictly exponentially in the length range from 2 to 5–6. 
At n > 5–6, deviations in either direction were observed in 
some cases due to the small number of such runs, especially 
in small genomes (Fig. 3a, b). Using the linear portion of the 
relationship between the log of the number of repeats and run 
length, one can determine the increment coefficient kinc, which 
indicates how easily a run can be extended by one nucleotide in 
a genome with a given nucleotide composition: the higher the 
kinc, the greater the proportion of longer runs in the genome. 
When comparing the dependence of kinc for G-runs and A-
runs in genomes of different composition, we have found that 
G-runs grow more slowly with increasing G+C content than 
A-runs grow with increasing A+T content (Fig. 3c). Thus, in 
prokaryotic genomes, the balance of G-run elongation and 
shortening, determined by many factors, is shifted towards 
shortening compared to A-runs.

The lengths of polypurine runs can change in either direc­
tion due to DNA polymerase slippage during DNA synthesis 
(Kunkel, Bebenek, 2000) or selection based on the physi­
cochemical properties of polypurine regions (Bansal et al., 
2022), but these processes are independent of the nucleotides 
surrounding the run. In contrast, shortening of G-runs due 
to damage to the 5′-terminal base should be accompanied 
by a characteristic mutational spectrum determined by the 
properties of replicative DNA polymerases. Therefore, it was 
of interest to determine the extent to which the frequencies 
of 5′-flanking nucleotides differ from each other and from 
their overall abundance in the genome. To quantitatively 
characterize these differences, we have introduced the Δrep 
parameter representing the difference between the observed 
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Table 1. Prokaryotic genomes used for the analysis

Species Phylum Genome assembly G+C, % O2

Archaea domain

Methanobacterium formicicum Methanobacteriota GCF_001458655.1 41.0 AN

Methanosarcina barkeri GCF_000970025.1 39.0 AN

Nanobdella aerobiophila Nanobdellota GCF_023169545.1 24.5 A

Nitrososphaera viennensis Nitrososphaerota GCF_000698785.1 52.5 A

Promethearchaeum syntrophicum Promethearchaeota GCF_008000775.2 31.0 AN

Sulfolobus acidocaldarius Thermoproteota GCF_000012285.1 36.5 A

Thermoproteus tenax GCF_000253055.1 55.0 AN

Cand. Nanohalobium constans Cand. Nanohalarchaeota GCF_009617975.1 43.0 A

Bacteria domain

Acidobacterium capsulatum Acidobacteriota GCF_000022565.1 60.5 A

Bifidobacterium longum Actinomycetota GCF_000196555.1 60.5 AN

Mycobacterium tuberculosis GCF_000195955.2 65.5 A

Aquifex aeolicus Aquificota GCF_000008625.1 43.5 A

Fimbriimonas ginsengisoli Armatimonadota GCF_000724625.1 61.0 A

Atribacter laminatus Atribacterota GCF_015775515.1 38.5 AN

Bacillus subtilis Bacillota GCF_000009045.1 43.5 A

Clostridioides difficile GCF_018885085.1 28.5 AN

Lactococcus lactis GCF_003176835.1 35.0 A

Bacteroides fragilis Bacteroidota GCF_000025985.1 43.0 AN

Saprospira grandis GCF_000250635.1 46.5 A

Cyclonatronum proteinivorum Balneolota GCF_003353065.1 51.5 A

Bdellovibrio bacteriovorus Bdellovibrionota GCF_000196175.1 50.5 A

Caldisericum exile Caldisericota GCF_000284335.1 35.5 AN

Caldithrix abyssi Calditrichota GCF_001886815.1 45.0 AN

Campylobacter jejuni Campylobacterota GCF_000009085.1 30.5 A

Chlamydia trachomatis Chlamydiota GCF_000008725.1 41.5 AN

Chlorobium limicola Chlorobiota GCF_000020465.1 51.5 AN

Chloroflexus aurantiacus Chloroflexota GCF_000018865.1 56.5 A

Desulfurispirillum indicum Chrysiogenota GCF_000177635.2 56.0 AN

Coprothermobacter proteolyticus Coprothermobacterota GCF_000020945.1 45.0 AN

Synechococcus elongatus Cyanobacteriota GCF_022984195.1 55.5 A

Deferribacter thermophilus Deferribacterota GCF_049472675.1 30.5 AN

Deinococcus radiodurans Deinococcota GCF_020546685.1 66.5 A

Dictyoglomus thermophilum Dictyoglomota GCF_000020965.1 33.5 AN

Elusimicrobium minutum Elusimicrobiota GCF_000020145.1 40.0 AN

Fibrobacter succinogenes Fibrobacterota GCF_000146505.1 48.0 AN

Fidelibacter multiformis Fidelibacterota GCF_041154365.1 45.5 AN

Fusobacterium nucleatum Fusobacteriota GCF_003019295.1 27.0 AN

Gemmatimonas aurantiaca Gemmatimonadota GCF_000010305.1 64.5 A

Ignavibacterium album Ignavibacteriota GCF_000258405.1 34.0 A

Kiritimatiella glycovorans Kiritimatiellota GCF_001017655.1 63.5 AN

Lentisphaera profundi Lentisphaerota GCF_028728065.1 40.5 A

Mycoplasma mycoides Mycoplasmatota GCF_018389705.1 23.5 A

Myxococcus xanthus Myxococcota GCF_000012685.1 69.0 A

Nitrospina watsonii Nitrospinota GCF_946900835.1 57.0 A

Nitrospira moscoviensis Nitrospirota GCF_001273775.1 62.0 A

Planctopirus limnophila Planctomycetota GCF_000092105.1 53.5 A
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Table 1 (end)

Species Phylum Genome assembly G+C, % O2

Escherichia coli Pseudomonadota GCF_000005845.2 51.0 A

Pseudomonas aeruginosa GCF_000006765.1 66.5 A

Sphingomonas paucimobilis GCF_016027095.1 65.5 A

Rhodothermus marinus Rhodothermota GCF_000024845.1 64.5 A

Spirochaeta thermophila Spirochaetota GCF_000184345.1 61.0 AN

Thermanaerovibrio acidaminovorans Synergistota GCF_000024905.1 64.0 AN

Desulfovibrio desulfuricans Thermodesulfobacteriota GCF_017815575.1 57.0 AN

Thermodesulfobacterium commune GCF_000734015.1 37.0 AN

Thermodesulfobium narugense Thermodesulfobiota GCF_000212395.1 34.0 AN

Thermomicrobium roseum Thermomicrobiota GCF_000021685.1 64.5 A

Thermosulfidibacter takaii Thermosulfidibacterota GCF_001547735.1 43.0 AN

Thermotoga maritima Thermotogota GCF_000230655.2 46.0 AN

Verrucomicrobium spinosum Verrucomicrobiota GCF_000172155.1 60.5 A

Vulcanimicrobium alpinum Vulcanimicrobiota GCF_027923555.1 68.5 A

Cand. Cloacimonas acidaminovorans Cand. Cloacimonadota GCF_000146065.2 38.0 AN

Cand. Velamenicoccus archaeovorus Cand. Omnitrophota GCF_004102945.1 53.0 AN
Note.  Assembly ID in the RefSeq database (O’Leary et al., 2016). A, aerobes and facultative anaerobes; AN, anaerobes.
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and expected frequency of each nucleotide. The frequency 
of T in the first position before G-runs was statistically sig­
nificantly higher than expected and than the frequency of A 
and C (Fig. 4a). The frequency of A and C nucleotides in this 
position was slightly lower than expected, but this difference 
did not reach significance; their representation also did not 
differ from each other. T was more frequent than either A or 
C nucleotide at any G-run length, and its representation was 
higher than expected before G2, G4, G5, and G6 runs (Fig. 4b). 
A was underrepresented in this position only before G4 runs, 
and C was underrepresented before G5 and longer G-runs. 
In contrast, T was underrepresented both at the 3′-side of G-
runs and at the second position from their 5′-side (Fig. 4a). 

Overall, these data support a model of preferential oxidation 
of the first G in the runs to 8-oxoG followed by G→T trans- 
versions.

Quite unexpectedly, the nucleotide distribution before 
A-runs was even more uneven than before G-runs. At this 
position, T was underrepresented, while C and G were over­
represented (Fig. 4c). For C, this deviation was explained pri­
marily by overrepresentation of CAA trinucleotides, while for 
G, an increased frequency of occurrence was observed up to a 
run length of 6 nucleotides (Fig. 4d ). A decrease in the frac­
tion of  T also occurred in runs of any length (Fig. 4d ). After 
A-runs, the occurrence of C and T was lower than expected, 
while G was higher than expected (Fig. 4c). It is possible that 
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Fig. 3. Dependence of the number of polypurine runs in prokaryotic genomes on the run length and the nucleotide composition of the genome. 
a, b, examples of the dependence of the number of G-runs N(Gn) on their length for the genomes of E. coli (a; genome size 4.64 × 106 bp, G+C content 
51.0  %) and Ch. trachomatis (b; genome size 1.04  × 106 bp, G+C content 41.5  %). c, dependence of kinc on the nucleotide composition of the genome 
(G+C  content for G-runs, A+T  content for A-runs). Black dots, G-runs, white dots, A-runs; dashed lines show linear regressions with the regression 
coefficients indicated on the plot.

Fig. 4. Representation of different 5’- and 3’-flanking nucleotides in polypurine runs. a, c, deviation from the frequency of 5’- and 
3’-flanking nucleotides for G-runs (a) and A-runs (c) of any length expected on the basis of the content of the respective nucleotide 
in the genome. b, d, deviation from the frequency of 5’-flanking nucleotides in G-runs (b) and A-runs (d) 2–8 nucleotides long.
Difference from expected: # p < 0.05, ## p < 0.01, ### p < 0.005, #### p < 0.001 (one-sample Wilcoxon test with Dunn’s correction for multiple 
comparisons); ns, no significant difference. Differences between groups: * p < 0.05, ** p < 0.01, *** p < 0.005, **** p < 0.001 (Kruskal–Wallis 
test with Dunn’s correction for multiple comparisons).
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these deviations can also be explained by DNA damage and 
subsequent DNA polymerases errors; however, the mechani­
stic reasons underlying such events remain unclear at present.

The amount of 8-oxoG generated in the genome directly 
depends on the presence of reactive oxygen species in the 
intracellular environment (Halliwell, Gutteridge, 2015). Pro­
karyotes are exceptionally diverse in their energy metabolism 
pathways: some follow a strictly anaerobic lifestyle, while 
others are obligate aerobes or facultative anaerobes and are 
subject to more intense oxidative stress. We have compared 
the statistics of the occurrence of 5′-flanking nucleotides of  
G-runs in the genomes of these two groups (Table 1). In aero­
bic prokaryotes, T was found at this position with an increased 
frequency compared to the expected, and A, with a decreased 
frequency (Fig. 5). For anaerobic microorganisms, no signi­
ficant difference in the occurrence of 5′-flanking nucleotides 
was found (Fig. 5). However, when comparing the abundance 
of A, C and T directly between the aerobic and anaerobic 
groups, the differences did not reach statistical significance, 
which is most likely due to insufficient sample size. For  
A-runs, the difference in the occurrence of 5′-flanking nucleo­
tides in the genomes of aerobes and anaerobes was the same 
as in the combined group (compare Fig. 4c and Fig. 5). Thus, 
the reduced level of oxidative stress in anaerobic microorga­
nisms may be associated with a less pronounced predominance  
of T at the position flanking the 5′-side of G-runs; however, 
further research is required to answer this question more 
definitively.

Unlike those of prokaryotes, eukaryotic genomes are 
characterized by a large number of repetitive elements such 
as transposons, satellite and telomeric DNA, the precise 
sequences of which are inaccessible to traditional high-
throughput sequencing methods (Richard et al., 2008; Liao 
et al., 2023). The advent of ultra-long sequencing (Oxford 
Nanopore, PacBio HiFi) has made it possible to fill these gaps. 
The recently published human genome read using a combina­
tion of methods with telomere-to-telomere (T2T) coverage 
and high quality (estimated telomeric error rate of ~ 4×10−8) 
(Nurk et al., 2022), provides the opportunity to analyze the 
context of G-runs without the distortions caused by a higher 
representation of unique sequences.

The significantly larger size of the human genome com­
pared to prokaryotic ones allowed us to identify interesting 
patterns in the distribution of Gn runs size. For n  =  2–8, 
their number decreased exponentially and was described by 
an increment coefficient kinc = −0.674, which is very close 
to the center of the distribution of kinc values for G-runs in 
prokaryotes (compare Fig. 6a and Fig. 3c; z = 0.141). For 
n = 9–16, the exponential dependence was preserved, but the 
rate of decrease in the number of runs decelerated: the kinc 
value increased to −0.198, which lies far outside the range 
of kinc values for prokaryotic genomes (compare Fig. 6a and 
Fig. 3c; z = 5.97). Runs of this size were absent in prokaryotic 
genomes or were present in a handful of cases, so it was impos­
sible to detect this transition. Further increase in the length of  
G-runs was accompanied by an even greater deceleration 
of the rate of decrease in their number (Fig. 6a). Obviously, 
around n = 8–9 (the breakpoint value determined by the piece­
wise regression method: n = 8.72 ± 0.04), the balance of G-run 

shortening and elongation is shifted in favor of the latter; run 
growth due to DNA polymerase slippage during replication 
or repair becomes self-sustaining, as in the well-studied case 
of trinucleotide repeat runs (Mirkin, 2007; McMurray, 2010).

An even more unexpected pattern emerged from the analysis 
of the frequency of 5′-flanking nucleotides. Since it is well 
known that the number of CG dinucleotides in the human 
genome is reduced due to their role in epigenetic regulation 
(Fazzari, Greally, 2004), the expected frequency was calcu­
lated based on the dinucleotide rather than the total nucleotide 
frequency. At n = 2, the nucleotide frequency closely matched 
the expected value, but then the Δrep values for A steadily 
decreased, while the representation of C and T, in contrast, 
increased at virtually the same rate (Fig. 6b). However, starting 
from n = 8–11 (the breakpoint value for Δrep(C)−Δrep(T), de­
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Fig. 7. Examples of the distribution of TTAGGG, TTACGG, TTATGG, and TTAAGG repeats in human chromosomes. a, distribution 
of the repeats along the entire length of chromosomes 10, 2, 4, 6, 18, and 9. The number of repeats is calculated in 100-kb bins. 
b, distribution of TTAGGG repeats in telomeric regions and in the region of fusion of the ancestral telomeres on chromosome 2. 
The number of repeats is calculated in 100-bp bins.
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termined by the piecewise regression method: n = 9.28 ± 1.10), 
the dependencies for C and T diverged sharply: the representa­
tion of T decreased, while the representation of C increased. 
One possible explanation for this phenomenon may be that 
longer G-runs serve as more effective traps for holes migra
ting along the DNA duplex leading to hyperoxidation of the 
5′-terminal 8-oxoG to guanidinohydantoin and spiroimino­
dihydantoin with a corresponding switch in the preferential 
nucleotide substitutions from G→T to G→C.

Telomeric DNA is a distinct class of highly repetitive DNA 
in eukaryotic genomes, represented in humans by multiple 
copies of the TTAGGG hexanucleotide. Telomeric repeats are 
known to serve as hotspots for DNA oxidation to form 8-oxoG 
(Billard, Poncet, 2019; Opresko et al., 2025). Telomere ends 
in germline cells are elongated by telomerase, a specialized 
DNA polymerase that uses telomerase RNA as a template, so 
changes in these regions are not associated with damage to 
genomic DNA. However, even in the presence of active telo­
merase, the bulk of telomere length is replicated by the usual 
semiconservative mechanism (Pfeiffer, Lingner, 2013; Higa 
et al., 2017; Bonnell et al., 2021), which can lead to the ac­
cumulation of mutations in them. Thus, the telomere sequence 
in human somatic cells (in the case of the T2T genome, the 
immortalized telomerase-expressing CHM13hTERT chorionic 
cell line) reflects both their recent elongation by telomerase 
in germline cells and mutagenesis events in past generations 
and in individual development.

The distribution of TTAGGG repeats in chromosomes 
(calculated for both DNA strands) had a fairly expected pat­
tern, with frequency peaks at the ends of the chromosomes 
and a dip in the pericentromeric region (Fig. 7a). The only 
exception was chromosome 8, for which, on the contrary, a 
slight increase in the number of these repeats was observed 
in the centromere region. On chromosome 2, a peak in the 
frequency of telomeric repeats was clearly visible in the 
region of the fusion of two ancestral hominid chromosomes 
that formed the evolutionarily young human chromosome 2 
(Ijdo et al., 1991; Fig. 7a). However, a more detailed analysis 
of this region shows that it has already significantly degraded, 
keeping far fewer TTAGGG repeats than in true telomeres 
(Fig. 7b). Interestingly, similar peaks were found on chromo­
somes 15 and 22 in the introns of the active protein-coding 
genes ATP10A and MICAL3; they may represent remnants of 
translocated telomere fragments.

TTAAGG, TTACGG, and TTATGG repeats were dis­
tributed across chromosomes without telomeric peaks. The 
overall frequency of  TTACGG repeats was significantly lower 
than that of  TTAAGG and TTATGG, consistent with the re­
duced abundance of CG dinucleotides in the human genome 
(Fig. 7a). Separate peaks in repeat frequency were observed 
on chromosome  2 for TTAAGG, chromosomes  8, 12, 17, 
and Y for TTACGG, and chromosomes 4 and 22 for TTATGG 
(Fig. 7a). A characteristic pattern of repeat distribution in the 
pericentromeric region with gaps in all TTANGG variants was 
observed for chromosomes 1–5, 7, 10–12, 16, 19, and 21. In 
other cases, one repeat type predominated in the centromere 
region, while others were depleted, with their combined defi­
ciency compensating for the excess of the predominant type, as 
shown in Fig. 7a for chromosome 6. In chromosomes 6, 13–15, 

22, and X, TTATGG was the predominant repeat; in chromo­
some 8, it was TTAGGG, and in chromosome 17, TTACGG. 
Chromosome 18 was distinguished by coinciding peaks in the 
distribution of two repeats, TTACGG and TTATGG (Fig. 7a). 
In the long arm of chromosome 9, in the region of constitu­
tive heterochromatin adjacent to the pericentromeric region 
with an excess of TTATGG, there was a long stretch with a 
predominance of TTACGG.

Obviously, the cases of co-localization or oppositely phased 
localization of  TTANGG repeats in non-telomeric regions are 
not due to point mutations in the TTAGGG repeat but reflect 
the presence of repeating elements containing one or two of 
these hexanucleotides in these loci. In contrast, point mutations 
in the first position of the G3-run of the telomeric repeat should 
be most obvious in the regions consisting mainly of  TTAGGG, 
that is, in the telomeres proper and intrachromosomal blocks 
of telomere-like repeats. To analyze the frequency of sub­
stitutions in such regions, we have singled out the telomeric 
regions and intrachromosomal blocks where at least 100 co­
pies of the TTAGGG repeat were found in 100-kb bins. They 
were divided into shorter 100-bp bins. A bin filled with only 
TTAGGG repeats corresponds to 16 or 17 copies (depending 
on the position of the first complete hexanucleotide in the bin). 
The bins containing at least 9 TTAGGG copies, accounting 
for more than half the bin length, were selected for analysis.

Counting the occurrence of TTAAGG, TTACGG, and 
TTATGG in the studied regions revealed clear significant 
enrichment of G→A substitutions at the first position of the 
G3-run compared to G→C and G→T substitutions (Table 2). 
In comparison with G→A, the total number of G→C and 
G→T changes was fivefold lower, and their frequencies did 
not differ significantly from each other. Thus, although telo­
meric repeats serve as preferential sites of guanine oxidation, 
this is not reflected in the increased frequency of G→T point 
mutations. The difference between the representation of A and 
C+T at the 5′-flanking position of GG dinucleotides between 
telomeric repeats and the rest of the genome may indicate the 
existence of a mutational process in telomeres that is distinct 
from G oxidation at the 5′-position of GGG.

Conclusion
In conclusion, the analysis of the nucleotide context of G-
runs in a set of 62 complete prokaryotic genomes and in the 
human T2T genome revealed that the representation of T at 
the position adjacent to G-runs is generally increased, which 
is consistent with the model of G oxidation at the 5′-position 
of the runs followed by G→T mutations. Other patterns in 
the distribution of 5′-flanking nucleotides were also identi­
fied: uneven nucleotide frequency at the position adjacent 
to A-runs, increased representation of C at the 5′-side of 
long G-runs in the human genome, and the predominance of 
G→A substitutions at the 5′-position in telomeric repeats. The 
hypothesis that G-run elongation may lead to a shift in the 
specificity of single-nucleotide mutations from G→T to G→C 
due to a change in the nature of the precursor lesion can be 
tested experimentally. The characteristic mutation spectrum 
in telomeric repeats may be caused by their tendency to fold 
into G-quadruplex structures, which hinder the movement of 
DNA polymerases (Pfeiffer, Lingner, 2013; Higa et al., 2017; 
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Bonnell et al., 2021), but this proposal requires a detailed 
study of the fidelity of human replicative DNA polymer­
ases on intact and damaged templates of this structure. For  
A-runs, the existence of preferential sites of DNA damage is 
not known; given that A-runs are longer than G-runs (Fig. 2), 
the difference in the relative representation of C, G, and T in 
the 5′-flanking position may not be associated with the muta­
tional process. The explanation of all these identified patterns 
requires further research.
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Abstract. De novo motif search is the main approach for determining the nucleotide specificity of binding of the key 
regulators of gene transcription, transcription factors (TFs), based on data from massive genome-wide sequencing 
of their binding site regions in vivo, such as ChIP-seq. The number of motifs of known TF binding sites (TFBSs) has 
increased several times in recent years. Due to the similarity in the structure of the DNA-binding domains of TFs, many 
structurally cognate TFs have similar and sometimes almost indistinguishable binding site motifs. The classification 
of TFs by the structure of the DNA-binding domains from the TFClass database defines the top levels of the hierar-
chy (superclasses and classes of TFs) by the structure of these domains, and the next levels (families and subfamilies 
of TFs) by the alignments of amino acid sequences of domains. However, this classification does not take into ac-
count the similarity of TFBS motifs, whereas identification of valid TFs from massive sequencing data of TFBSs, such 
as ChIP- seq, requires working with TFBS motifs rather than TFs themselves. Therefore, in this study we extracted from 
the Hocomoco and Jaspar databases the TFBS motifs for human and fruit fly Drosophila melanogaster, and considered 
the pairwise similarity of binding site motifs of cognate TFs according to their classification from the TFClass database. 
We have shown that the common tree of the TF hierarchy by the structure of DNA-binding domains can be split into 
separate branches representing non-overlapping sets of TFs. Within each branch, the majority of TF pairs have signifi-
cantly similar binding site motifs. Each branch can include one or more sister elementary units of the hierarchy and 
all its/their lower levels: one or more TFs of the same subfamily, or the whole subfamily, one or several subfamilies of 
the same family, an entire family, etc., up to the entire class. Analysis of the seven largest human and two largest Dro-
sophila TF classes showed that the similarity of TFs in terms of TFBS motifs for different corresponding levels (classes, 
families) is noticeably different. Supplementing the hierarchical classification of TFs with branches combining signifi-
cantly similar motifs of TFBSs can increase the efficiency of identifying involved TFs through enriched motifs detected 
by de novo motif search for massive sequencing data of TFBSs from the ChIP-seq technology.
Key words: de novo motif search; motifs of transcription factor binding sites; structural variants of motifs of transcrip-
tion factor binding sites; similarity of motifs of transcription factor binding sites; cooperative action of transcription 
factors; massive whole-genome sequencing of transcription factor binding sites
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DNA-binding domain structure of transcription 
factors and similarity of their binding site motifs

Аннотация. Поиск мотивов de novo – базовый подход определения нуклеотидной специфичности связывания 
важнейших регуляторов транскрипции генов, транскрипционных факторов (ТФ), на основе данных массово-
го полногеномного секвенирования районов их сайтов связывания in vivo, таких как ChIP-seq. Количество из-
вестных мотивов сайтов связывания ТФ (ССТФ) возросло в несколько раз в последние годы. Из-за сходства 
структуры ДНК-связывающих доменов ТФ многие структурно родственные ТФ имеют сходные или даже не-
различимые мотивы сайтов связывания. Классификация ТФ по структуре ДНК-связывающих доменов из базы 
данных TFClass определяет верхние уровни иерархии (суперклассы и классы ТФ) по структуре этих доменов, а 
следующие уровни (семейства и подсемейства ТФ) по выравниваниям аминокислотных последовательностей 
доменов. Однако эта классификация не учитывает сходство мотивов ССТФ, а для идентификации действующих 
ТФ по данным массового секвенирования ССТФ ChIP-seq приходится иметь дело с мотивами ССТФ, а не с сами-
ми ТФ. Поэтому в данной работе мы взяли из баз данных Hocomoco/Jaspar мотивы CCТФ человека/плодовой 
мушки Drosophila melanogaster и рассмотрели сходство мотивов сайтов связывания в парах родственных ТФ 
согласно их классификации в базе данных TFClass. Показано, что общее дерево иерархии ТФ по структуре ДНК-
связывающих доменов можно разделить на отдельные неперекрывающиеся множества ТФ – ветви. В пределах 
каждой ветви большинство пар ТФ имеет значимо похожие мотивы сайтов связывания. Каждая ветвь включает 
одну или несколько сестринских элементарных единиц иерархии и все более низкие ее/их уровни: один или 
несколько ТФ одного подсемейства или целое подсемейство, одно или несколько подсемейств одного семей-
ства, целое семейство и т. д. до целого класса. Анализ семи крупнейших классов ТФ человека и двух плодовой 
мушки показал, что сходство ТФ по мотивам ССТФ для разных соответствующих уровней (классов, семейств) за-
метно отличается. Дополнение иерархической классификации ТФ ветвями, объединяющими значимо сходные 
мотивы ССТФ, может повысить эффективность идентификации ТФ, вовлеченных в регуляцию транскрипции, 
по результатам de novo поиска обогащенных мотивов для данных массового секвенирования ССТФ с помощью 
технологии ChIP-seq. 
Ключевые слова: de novo поиск мотивов; мотивы сайтов связывания транскрипционных факторов; структур-
ные варианты мотивов сайтов связывания транскрипционных факторов; сходство мотивов сайтов связывания 
транскрипционных факторов; кооперативное действие транскрипционных факторов; массовое полногеном-
ное секвенирование сайтов связывания транскрипционных факторов

Introduction
The study of the regulation mechanisms of eukaryotic genes 
transcription is necessary for understanding molecular genetic 
processes in the cell. Gene transcription is carried out under the 
control of special proteins, transcription factors (TFs), which 
regulate it specifically by the nucleotide context by binding to 
genomic DNA (Lambert et al., 2018). This specificity is due to 
nucleotide sequences of binding sites being recognized by in-
dividual TFs (TFBSs). The variability of binding sites reflects 
the ability of each TF to bind to different DNA sequences; 
therefore, the set of similar binding site sequences interacting 
with a TF is called the motif of its binding sites (D’haeseleer, 
2006). The length of the region of genomic DNA directly 
interacting with an individual TF, as well as the length of the 
TFBS motif, usually vary from 6 to 20 base pairs (bp) (Spitz, 
Furlong, 2012; Zambelli et al., 2013; Vorontsov et al., 2024). 
One TF may have several distinct motifs of binding sites. 
The most popular model of the TFBS motif is the positional 
weight matrix (PWM). To build a model of the PWM motif, 
it is necessary to calculate the nucleotide frequencies at all 
positions using this alignment of the TFBSs representing this 
motif, and calculate the contributions (or weights) to the total 
estimate of affinity using these frequencies for each of the four 
nucleotides at each position. The total estimate of affinity for 
a potential site in a DNA sequence is equal to the sum of the 
weights corresponding to the nucleotides encountered, for all 
its positions (Wasserman, Sandelin, 2004).

Experimental ChIP-seq technology is based on chromatin 
immunoprecipitation (ChIP), i. e. application of antibodies 
to the target protein under study, for example, a TF. This  
technology is used to identify interactions of target proteins 
with genomic DNA in vivo. The essence of this technology is 
to perform chromatin immunoprecipitation and subsequently 

to map the genomic loci of the interaction between a target 
protein and genomic DNA. TFs in vivo, as a rule, act as part of 
multiprotein complexes formed by protein-protein interactions 
of several TFs, which allows them to regulate gene transcrip-
tion together, even without direct connections of each of the 
TFs with genomic DNA. Therefore, in vivo TFs can bind to 
DNA in a variety of ways:
 •  directly, there is a binding site of the target TF in DNA;
 •  with another “partner” TF, binding sites for both target and 

partner TFs co-occur in DNA, they are found with a spacer 
or an overlap (Levitsky et al., 2019);

 •  indirectly, there is a binding site for a partner TF in DNA, 
and that for the target TF is absent (Slattery et al., 2014).
The individual genomic loci mapped in a ChIP-seq ex-

periment are called peaks and range in length from several 
hundreds to thousands of bp (Johnson et al., 2007, Nakato, 
Shirahige, 2017; Lloyd, Bao, 2019). Each of the peaks does 
not necessarily contain the binding site of the target TF, 
direct binding can be performed by one of the possible part-
ner TFs. Massive application of other in vivo experimental 
sequencing technologies besides ChIP-seq, e. g. CUT&RUN 
(Sken, Henikoff, 2017), as well as in vitro technologies 
(PBM, HT-SELEX) (Stormo, Zhao, 2010; Jolma et al., 2013; 
Franco-Zorrilla et al., 2014) allowed to accumulate data on the 
nucleotide specificity of binding sites of hundreds of TFs for 
the main model eukaryotic species. Several databases (DBs) 
performed uniform primary processing of massive genome-
wide TFBS sequencing data, including ChIP-seq data (GTRD, 
Kolmykov et al., 2021; ReMap, Hammal et al., 2022; Cistrome 
DB, Taing et al., 2024).

Enrichment analysis of TFBS motifs, in particular the 
de novo motif search (Zambelli et al., 2013; Liu et al., 2018; 
Bailey, 2021), was initially used only to confirm the vali
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dity of the results of ChIP-seq experiments (sets of DNA 
sequences or peaks). Then, the de novo motif search became 
the standard approach for analysis of peak sets, allowing to 
determine enriched motifs, presumably corresponding to the 
motifs of the binding sites of the target TF and several partner 
TFs, cooperatively acting in the regulation of gene transcrip-
tion (Spitz, Furlong, 2012; Slattery et al., 2014; Morgunova, 
Taipale, 2017).

To date, for several hundred TFs of the main eukaryotic 
taxa, such as mammals, insects and higher plants, TFBS 
motifs of the PWM model (nucleotide frequency matrices) 
are compiled in a number of DBs, JASPAR (Rauluseviciute 
et al., 2024), Hocomoco (Vorontsov et al., 2024) and Cis-BP 
(Weirauch et al., 2014). For example, the Hocomoco DB (ver-
sion 12, Vorontsov et al., 2024) amounts to 1,443 binding site 
motifs for 949 human TFs. The analysis pipeline used by the 
Hocomoco DB for human and mouse TFBS motifs allowed 
identifying more than one structural type of motif for several 
hundred annotated TFs.

For a single TF, both the number of different binding site 
motifs and the structure and variability of each of the motifs 
are determined by the structure of the DNA binding domain 
(DBD) of this TF (Wingender, 1997, 2013). Based on the 
analysis of the similarity of the structure of DBDs of TFs 
and the alignment of the amino acid sequences of DBDs of 
TFs, a hierarchical classification of TFClass was developed, 
first for human TFs, and then for their orthologs in rodents 
and mammals (Wingender et al., 2013, 2015, 2018). This 
classification has six hierarchy levels. The upper levels of the 
hierarchy, superclass and class are defined according to the 
general topology and structural features of the DBDs of TFs. 
The next levels of the family and subfamily are deduced by 
the similarity of amino acid sequences of DBDs of TFs based 
on their alignments. The lower levels are the TF gene and the 
structural variant of its protein. In total, mammals have nine 
superclasses. Analysis of the structure of DBDs of TFs in 
plants did not reveal additional superclasses, however, about 
half of the TF classes turned out to be plant-specific (Plant-
TFClass DB, Blanc-Mathieu et al., 2024).

The most important function of TFs in vivo is their ability 
to bind DNA specifically. However, the TFClass classifica-
tion does not take into account the similarity of TFBS motifs 
at certain hierarchy levels, in specific classes, families, etc. 
The similarity of TFBS motifs can vary greatly in different 
classes of TFs. For example, the largest class of mammalian 
TFs, C2H2 zinc finger factors {2.3}, has the most noticeable 
variability in TFBS motifs (Najafabadi et al., 2015; Lambert 
et al., 2018). Hereinafter, numbers in curly brackets denote 
the TF classification nomenclature from the TFClass (Win
gender, 1997, 2013; Wingender et al., 2013, 2015, 2018). For 
example, TF JUN belongs to the superclass Basic domains 
{1}, the class Basic leucine zipper factors (bZIP) {1.1}, the 
Jun-related family {1.1.1}, and the Jun subfamily {1.1.1.1}. 
To determine a functioning TF by a given enriched motif of 
its binding sites as a result of a de novo motif search, we can 
apply not only the classification of TFs by the structure of 
their DBDs but also the classification of TFs by the similarity 
of TFBS motifs.

An important step in the analysis of the results of de novo 
enriched motif search applied for ChIP-seq data is the most 
precise determination of the motifs of binding sites of tar-
get and partner TFs based on the enriched motifs obtained.  
A common way to limit the list of putative TFs for each 
enriched motif is to assess the significance of its similarity 
to the TFBS motifs of known TFs from the DBs (Weirauch 
et al., 2014; Rauluseviciute et al., 2024; Vorontsov et al., 
2024). Standard tools such as TomTom (Gupta et al., 2007) 
can be used to assess similarity in the pairs of motifs of the 
PWM model.

The estimate of the total number of human TFs is 1,659 
(Shen et al., 2023); however, both the number of structurally 
different DBDs of TFs and the number of TFs with distinct 
binding site motifs are much smaller, since the TFs with simi-
lar DBDs usually have similar binding site motifs (Ambrosini 
et al., 2020). The most obvious exception to this general 
rule is the TF class C2H2 zinc finger {2.3} (Lambert et al.,  
2018).

The presence of two or more structurally distinct binding 
site motifs for a single TF is widespread across various TF 
classes (Vorontsov et al., 2024). This is explained by the abi
lity of certain TFs to bind only as dimers of related TFs (for 
example, TF pairs from the classes Basic helix-loop-helix 
factors (bHLH) {1.2}, or Basic leucine zipper factors (bZIP) 
{1.1}), or as a dimer or monomer (for example, TFs from the 
class Nuclear receptors with C4 zinc fingers {2.1}) (Amoutzias 
et al., 2008). Commonly, TFBS motifs of related TFs from 
the same class or family exhibit a high to moderate degree of 
similarity depending on the position of the class, family, or 
subfamily in the TFClass/Plant-TFClass hierarchy. However, 
even among the TFBS motifs of the same TF, a certain variety 
of structural variants can be observed. For example, for TF 
CDX2 (Homeo domain factors {3.1} class) and THB (Nuclear 
receptors with C4 zinc fingers {2.1} class), there are two 
and four motifs in Hocomoco (version 12), respectively. The 
two TFBS motifs of CDX2 TF are not significantly similar 
(p-value > 0.001, Gupta et al., 2007) (Fig. 1a), significant 
similarity is also absent in three of the six possible pairs of 
the four THB binding site motifs (Fig. 1b, c). It can be as-
sumed that more often families or subfamilies, rather than 
TF classes, represent significantly similar motifs (Nagy G., 
Nagy L., 2020; de Martin et al., 2021; Zenker et al., 2025). 
We study this issue in more detail in this work.

The most important step in the analysis of ChIP-seq data, 
de novo motif search, reveals a list of enriched motifs for  
ChIP-seq peaks. For the PWM motif model, each motif is 
a matrix of nucleotide frequencies, and it is necessary to 
determine a list of known TFs from DBs, such as Jaspar 
(Rauluseviciute et al., 2024), Hocomoco (Vorontsov et al., 
2024) or Cis-BP (Weirauch et al., 2014), having significantly 
similar motifs of binding sites of known TFs. However, in ad-
dition to the dependence of the number of binding site motifs 
on the DBD structure of a TF, TFs are extremely unevenly 
distributed in superclasses, classes, and even families. In the 
most complete human/mouse DB of TFBS motifs (Hocomoco, 
version 12, Vorontsov et al., 2024), the five largest TF classes 
represent about 75 % of all motifs (1,082 of 1,443): C2H2 
zinc finger factors {2.3}, Homeo domain factors {3.1}, Basic 
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helix-loop-helix factors (bHLH) {1.2}, Nuclear receptors 
with C4 zinc fingers {2.1}, and Basic leucine zipper factors 
(bZIP) {1.1}. The ten largest classes comprise about 90 % of 
all motifs (1,303 out of 1,443). The eight largest TF families 
from a total of four classes represent more than 51 % (742 
out of 1,443) of all TFBS motifs: More than 3 adjacent zinc 
fingers {2.3.3}, HOX-related {3.1.1}, Multiple dispersed 
zinc fingers {2.3.4}, Paired-related HD {3.1.3}, NK-related 
{3.1.2}, Three-zinc finger Kruppel-related {2.3.1}, Tal-
related {1.2.3}, and Ets-related {3.5.2}. A recent analysis of 
1,725 TFs of the model plant Arabidopsis thaliana revealed 
about 40 % of them (686) with available TFBS motifs; the 
inclusion of TFBS motifs for 92 TFs from other plants showed 
an extremely limited vocabulary of only 74 distinct plant TFBS 
motifs (Zenker et al., 2025).

Very often, an enriched motif from the results of a de novo 
motif search has a high similarity to the TFBS motifs of 
known TFs from one or more families of the same class, or 
even an entire class falls into the list of TF candidates. The 
result is a list of several dozen TFs, and choosing a specific 
TF among them is not an easy task. Such long lists of TF can-
didates may complicate the identification of TFs most likely 
associated with enriched motifs. However, this complexity 
can be reduced by the systematic analysis of the similarity 
of the binding site motifs of TFs classified by the hierarchy 
levels from the TFClass DB. To date, for cognate TFs of a 
given structure of a DBD (class, family and subfamily), it 
has not been determined which of these levels is sufficient 
to identify a set of TFs with significantly similar binding site 
motifs. To solve this issue, one needs to find a set of certain 
arrays (or branches) of several consecutive levels of the  
TFClass hierarchical classification, for which the TFBS mo-
tifs are significantly similar. This approach is able to further 
systematize the hierarchical classification of TFs, adapt it to 
apply to the results of a de novo motif search. The resulting 
refined TF hierarchy will reflect the similarity of DBDs of 
TFs and the similarity of TFBS motifs.

We propose to include the annotation of the branches of 
similar binding site motifs of known TFs in a standard protocol 
of de novo motif search applied to the results of genome-wide 
mapping of TFBS in vivo, for example, using ChIP-seq tech-
nology. The application of branches can notably simplify the 

analysis of enriched TFBS motifs. The TF branches connect 
the generally accepted units of the hierarchical classification 
of TFs by DBDs, namely superclasses, classes, families, 
subfamilies (Wingender, 1997, 2013; Wingender et al., 
2013, 2015, 2018) to the similarity of TFBS motifs (Gupta  
et al., 2007).

Materials and methods
Input data and parameters. The input data are sets of TFBS 
motifs; each motif is represented by a nucleotide frequency 
matrix, an identifier and a TF name; for each TF, its superclass, 
class, family and subfamily (if any) are indicated, according to 
the TFClass DB (Wingender et al., 2013, 2015, 2018). TFBS 
motifs for human Homo sapiens and fruit fly Drosophila 
melanogaster were extracted from Hocomoco (version 12, 
https://hocomoco.autosome.org/) (Vorontsov et al., 2024)  
and Jaspar https://jaspar.elixir.no/ (Rauluseviciute et al., 
2024). Both DBs construct TFBS motifs based on in  vivo 
massive sequencing data (e. g. ChIP-seq), and in vitro ones  
(e. g. HT-SELEX). TFBS motifs are nucleotide frequency 
matrices consistent with the traditional PWM model. In both 
DBs, TF classification is applied according the DBD structure 
by hierarchy levels of superclass, class, family, subfamily and 
TF (TFClass DB, Wingender, 2013; Wingender et al., 2013, 
2015, 2018). We selected for analysis the classes amounting 
to at least 50 TFBS motifs: seven / two classes for human / 
Drosophila TFs, see theTable.
Similarity metric of two TFs. We applied the TomTom tool 
(Gupta et al., 2007) to assess the significance of similarity 
(p-value) in pairs of TFBS motifs, the parameter of the motif 
comparison function was the Pearson correlation coefficient. 
Two TFBS motifs were considered similar if the significance 
level reached the threshold, −Log10[ p-value] > Thr = 3.

We define the similarity metric for a pair of TFs based 
on their binding site motifs according to the distribution of 
similarity in all possible pairs of binding site motifs of one 
and another TF, since TFs can have one or more binding site 
motifs. Let two TFs X/Y have NX/ NY motifs, {Mi}, 1 ≤ i ≤ NX 
and {Mj}, 1 ≤ j ≤ NY, correspondingly. The distribution of 
similarity estimates in a pair of these TFs based on their 
binding site motifs includes NX × NY pairs of motifs. Let 
the similarity Score(Mi, Mj) of motifs Mi and Mj be given 

Fig. 1. Similarity of different binding site motifs representing individual TFs.
a, b – two/four binding site motifs of CDX2 / THB TFs from the Homeo domain factors {3.1} / Nuclear receptors with C4 zinc fingers {2.1} 
classes. For each motif, the Hocomoco DB identifier is indicated (Vorontsov et al., 2024). The PWM motif model logo represents nucleotide 
frequencies at positions as letter heights (Schneider, Stephens, 1990); c – motif similarity estimates calculated by the TomTom tool (Gupta 
et al., 2007) for four TFBS motifs of THB TF, the color reflects the significance of the similarity, −Log10[ p-value].

а b c

https://hocomoco.autosome.org/
https://jaspar.elixir.no/
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by TomTom (Gupta et al., 2007) as the logarithm of the 
significance p-value:

	 Score(Mi, Mj) = –Log10[ p-value(Mi, Mj)]. 	      (1)

Then for two TFs X and Y, the similarity metrics ScoreX,Y 
will be defined as follows:
	 ScoreX,Y = Max

1 ≤ i ≤ NX, 1 ≤ j ≤ NY  
{Score(Mi, Mj)}.	       (2)

If this metrics ScoreX,Y (2) exceeds the pre-defined threshold 
Thr, then TFs X and Y can be considered significantly similar 
in their binding site motifs. For one TF, the heterogeneity of 
binding site motifs is estimated as the median (the second 
quartile, Q2) of the distribution over all possible pairs of 
binding site motifs of that TF:
	  ScoreX = Median

1 ≤ i < NX, i < j ≤ NX  
{Score(Mi, Mj)}.	      (3)

Similarity metric of two sets of TFs. Let a class have a 
family A with NA TFs. The distribution of all possible TF 
pairs in this family includes NA × (NA – 1)/2 variants. Let a 
family B from the same class have NB TFs. The distribution 
of all possible TF pairs of families A and B includes NA × NB 
variants. For both the intra-family and inter-family cases, for 
all TF pairs, the similarity estimates are calculated by the 
formula (2). Likewise, pairs of subfamilies in the same family 
and pairs of classes in the same superclass are considered.

For the obtained distribution of similarity estimates, it is 
possible to calculate five similarity metrics for two sets of 
TFs: minimum (Min), quartiles Q1, Q2 (median) and Q3, and 
maximum (Max). Min/Max metrics indicate the choice of the 
minimum/maximum values, and quartile metrics indicate the 
value of the corresponding fraction of the entire distribution. 
For example, the Q2 (median) metric for two sets of TFs 
reflects a level of similarity of 50 % of all possible TF pairs 
from these sets. Let the first {X} and second {Y} sets have K 
and T TFs, 1 ≤ k ≤ K, 1 ≤ t ≤ T, then based on the distributions 
of the similarity values in TF pairs calculated by the formula 
(2) {ScoreX(k),Y(t)}, the similarity metric Score{X},{Y} of the 
two TF sets is calculated as follows:
            Score{X},{Y} = Median

1 ≤ k ≤ K, 1 ≤ t ≤ T  
{ScoreX(k),Y(t)}.	       (4)

Definition of the branch in the TF hierarchical clas-
sification. If the similarity score of two sets of TFs based on 
their binding site motifs exceeds the predetermined threshold 
Thr, then these TFs can be referred to the same branch. Next, 
consider the median metric (4). For example, an entire class 
can belong to the same branch if more than half of all its 
possible TF pairs are similar in terms of binding site motifs. 
Although it is possible that certain families of a class do not 
show significant similarity, with a probability of more than 
50 %, an arbitrary pair of TFs from this class shows the sig-
nificant similarity of binding site motifs.

To perform cluster analysis and construct trees reflec- 
ting the similarity of TFs based on the TFBS of the sister 
classes of the same superclass, the sister families of the 
same class, etc., we used the UPGMA algorithm scheme 
(unweighted pair group method with arithmetic mean) (Sokal, 
Michener, 1958). During the classification, we applied the 
median metric (Q2, formula (4)) described above to evaluate 
any pair of objects.

To search for branches, the analysis starts at the superclass 
level, and continues at lower levels of the hierarchy: the 
class, family, subfamily, or TF. First, the TF similarity metric 
is calculated within a given hierarchy level, for example, a 
class, as well as for all families of this class. This gives a list 
of families with similarities exceeding the threshold Thr. All 
such families initially refer to different branches; to analyze 
the remaining families, we need to go to a lower level. Then 
the TF similarity metrics are calculated for all possible pairs 
of the sister families of this class. This gives the similarity 
matrix for families of the class. The diagonal values of the 
matrix show the similarities within each family and those 
above the diagonal provide the similarities for all pairs of 
different families. Next, we select a pair of families with the 
highest similarity. If this similarity exceeds the threshold, then 
a pair of such families (branches) are joined into one branch. 
After that, the similarities in all pairs of updated branches are 
recalculated. Calculations continue as long as there are pairs 
of branches that allow joining based on their similarity. In 
such a way we can gradually descend to the lower levels and 
reach the level of TF.

TFBS motif sets from the Hocomoco and Jaspar DBs used in analysis

Taxon: species TF class Number of motifs Number of TFs

Mammals:  
H. sapiens

Basic leucine zipper factors (bZIP) {1.1}    86    47

Basic helix-loop-helix factors (bHLH) {1.2} 115    76

Nuclear receptors with C4 zinc fingers {2.1}    93    44

C2H2 zinc finger factors {2.3} 479 373

Homeo domain factors {3.1} 309 184

Fork head/winged helix factors {3.3}    65    43

Tryptophan cluster factors {3.5}    67    38

Total 1,214 805

Insects:  
D. melanogaster

C2H2 zinc finger factors {2.3}    79    57

Homeo domain factors {3.1} 106    90

Total 185 147
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The similarity of the binding site motifs of single TFs is 
analyzed separately (see formula (3)), although, obviously, 
this analysis takes place inside one branch, since according to 
formulas (2) and (4), each branch for any TF contains all its 
binding site motifs, and we can only note TFs (Fig. 1) having 
significantly different binding site motifs.

The purpose of the whole analysis is to sequentially find 
such sets of TFs (for example, for a class, this is a list of family 
clusters), for which the metric (4) exceeds the given threshold 
Thr, and the list for each of the branches includes as many 
elementary classification units as possible.

TF superclasses are heterogeneous enough in the similarity 
of binding site motifs since each superclass splits into multiple 
branches. A branch in the TFClass hierarchy is defined as the 
maximum possible set of TFs from the highest class level to 
the lowest level (in practice, this is a class, family, subfamily, 
TF), such that in this set for the majority of TF pairs there is a 
significant similarity of TFs based on their binding site motifs, 
according to the similarity metric (4).

A branch may include one or more sister classification units:
 •  a whole class,
 •  one or more families of the same class,
 •  one or more subfamilies of the same family,
 •  one or more TFs of the same subfamily.

The final result of the analysis is the determination of the 
set of all branches, within each of the branches, the metric (4) 
indicates significant similarity of TFs based on TFBS motifs. 
Figure 2 is a scheme of the analysis used in the work.

Results

Similarity of TFs in sister subfamilies of the same families
In order to start a massive analysis of different degrees of 
similarity of  binding site motifs to cognate TFs according to 
the TFClass hierarchical classification, we test the TFBS motif 

similarity for subfamilies of individual families belonging to 
various TF classes. Figure 3 shows the fraction of similar TFs 
based on the binding site motifs within subfamilies of different 
families, using the five metrics Min, Q1, Q2, Q3, and Max. The 
Q2 metric (median) is calculated according to the formula (4), 
others metrics are computed likewise. By construction, among 
these metrics from Min to Max, the fraction of the similar 
TFBS motifs is growing. However, regardless of the metric 
choice, some subfamilies show a lower similarity or even a 
complete lack of similar TFBS motifs, compared to other 
subfamilies. For example, for the three subfamilies of the Fox 
{3.3.1} family, the values of the Q2 metric are close to 100 % 
(Fig.  3f ), and for the subfamilies TWIST {1.2.3.2}/MEIS  
{3.1.4.2} of the families Tal-related {1.2.3}/TALE-type 
HD {3.1.4}, respectively, these values are less than 50 % 
(Fig. 3b, d ).

Thus, the similarity of TFs based on binding site motifs can 
vary significantly across the subfamilies of the same families. 
Obviously, the same conclusion can be drawn for the families 
of the same classes. Further, in the analysis, the median metric 
(Q2) (4) was used to assess the similarity of the two sets of TFs, 
since the meaning of its application is the most transparent 
compared to the Min, Q1, Q3, and Max metrics. Hereinafter, 
the value of the Q2 metric is called “similarity”.

Similarity analysis of human TFs 
Figure  4 shows the human TF similarity trees based on 
binding site motifs for the main classes of the three largest 
superclasses: Basic domain {1}, Zinc-coordinating DNA-
binding domains {2} and Helix-turn-helix domains {3}. Of 
all the classes, only one class Tryptophan cluster factors {3.5} 
shows the significant similarity of  TFs based on their binding 
sites motifs (similarity 3.68). The classes Basic leucine zipper 
factors (bZIP) {1.1} and Nuclear receptors with C4 zinc 
fingers {2.1} reach the similarity values of 2.51 and 2.68, 

Analyzing subfamilies of the family X1

Analyzing subfamilies of the family X2

Input data

Input data

Classification of 
class X, its families, 
subfamilies of 
TFs info branches 
within which the 
TF are significantly 
similar in terms of 
their BSs

MX1 > Thr

MX2 > Thr

MX1,X2 > Thr

MX1 < Thr

MX2 < Thr

MX1,X2 < Thr

Calculation of similarity 
metric within family X1, MX1

Calculation of similarity 
metric within family X2, MX2

Calculation of similarity metric 
between families X1 and X2, MX1,X2

Analyzing TFs of 
the family X1

Analyzing 
families  
X1 и X2

AnalyzingTFs of 
the family X2

X1 family is part of  
a soparate branch

X2 family is part of  
a separate branch

X1 and X2 families 
are not part of a separate 

branch

X1 and X2 families 
are part of  

a separate branch

List of TF BS motifs 
from DB for the 
class X

Hierarchical 
classification of 
TFs by the DBD 
structure: class X 
includes families 
X1 and X2, their 
subfamilies, and 
their TF lists

Fig. 2. Scheme of analysis to determine branches of similar motifs of TFBS. The scheme shows in detail the stage of analysis of one class 
X consisting of two families X1 and X2. The blue color shows the input data, dark green – analysis stages, light green – similarity metric 
calculations, gray – verification of similarity conditions for motifs, light yellow – intermediate results, dark yellow – final results. The 
scheme discloses the analysis of two families X1 and X2 of class X. The analysis of subfamilies of these families and the analysis of TFs in 
each of the subfamilies are performed similarly to the analysis of families X1 and X2, as described in the text.
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respectively, indicating a trend towards significant similarity. 
The classes Fork head/winged helix factors {3.3}, Homeo 
domain factors {3.1} and Basic helix-loop-helix factors 
(bHLH) {1.2} show lower similarity values of 1.14, 1.42 and 
1.47. The lowest similarity of TFs based on the binding site 
motifs is found for the class C2H2 class zinc finger factors 
{2.3} (0.44); this class is the largest in human, allowing the 
greatest variability in the structure of TFs (Najafabadi et al., 
2015; Lambert et al., 2018, 2019).

Therefore, to identify branches within all classes except 
the class Tryptophan cluster factors {3.5}, it is necessary 
to proceed to the analysis of their families. Next, we will 
separately consider each of the three superclasses in more 
detail.

The first superclass has two large classes, Basic leucine 
zipper factors (bZIP) {1.1} and Basic helix-loop-helix factors 
(bHLH) {1.2}; the similarity of TFs based on binding site 
motifs between these classes is very low (0.523, Fig. 5a). The 
similarity of TFs within each class is noticeably higher, but the 
Basic leucine zipper factors (bZIP) {1.1} class has distinctly 
more similar TFs (2.51) than the Basic helix-loop-helix factors 
(bHLH) {1.2} class (1.47).

There are eight families in the Basic leucine zipper factors 
(bZIP) {1.1} class (Fig. 5b, e): from Jun-related {1.1.1} to  
C/EBP-related {1.1.8}. Each family of the class has one or 
more other families with significantly similar TFs based on 
binding site motifs. As a result, all families fall into four 
branches (Fig. 5e); there are two branches of two families 
(XBP1-related {1.1.5} and CREB-related {1.1.7}, ATF4-
related {1.1.6} and C/EBP-related {1.1.8}), and the branches 

of one (Maf-related {1.1.3}) and three families (Jun-related 
{1.1.1}, Fos-related {1.1.2}, B-ATF-related {1.1.4}).

In the Basic helix-loop-helix factors (bHLH) {1.2} class, 
within each of the families, with the exception of one (PAS 
{1.2.5}), TFs have significant similarities based on the binding 

Fraction of similar Tfs by TFBS motifs, % Fraction of similar Tfs by TFBS motifs, %
а

c

e

b

d

f

Similarity metrics of Tfs by TFBS motifs, % Similarity metrics of Tfs by TFBS motifs, %

Fig. 3. Fraction of significantly similar TFs based on the binding site motifs for subfamilies of different families using the five similarity metrics: Min, Q1, 
Q2, Q3, and Max. 
a–e, and f – Jun-related {1.1.1}, Tal-related {1.2.3}, bHLH-ZIP {1.2.6}, TALE-type HD {3.1.4}, HD-LIM {3.1.5}, and FOX {3.3.1} families, respectively. Color marks 
subfamilies. The X  axis lists TF similarity metrics; the Y  axis shows the fraction of significantly similar TFs based on the binding site motifs in the subfamily. 
Significant similarity requires the criterion −Log10[p-value] > 3 (Tomtom tool, Gupta et al., 2007).

Fig. 4. Similarity of TFs based on binding site motifs in the largest classes 
of the three largest human superclasses.
a, b, and c – class TF trees for the superclasses Basic domain {1}, Zinc-
coordinating DNA-binding domains {2}, and Helix-turn-helix domains {3}. The 
X  axis reflects the value of the Q2 metric, the dash line shows its threshold 
value 3. The green color shows the class Tryptophan cluster factors {3.5}, which 
forms a separate branch, and the gray color indicates paths, the Q2 metric 
values of which are less than the threshold. Horizontal line break marks the 
value of the Q2 metric.
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site motifs (Fig. 5b, values on the diagonal), but there are 
no significant similarities between TF families based on the 
binding site motifs. Therefore, each of the families, with 
the exception of the PAS {1.2.5} family, forms a separate 
branch (Fig. 5f). The PAS family {1.2.5} is divided into four 
branches {1.2.5.1}, {1.2.5.2}, {1.2.5.3} and {1.2.5.4} by four 
subfamilies (Fig. 5d).

The second superclass has two large classes Nuclear 
receptors with C4 zinc fingers {2.1} and C2H2 zinc finger 
factors {2.3}, the similarity of TFs based on binding site 
motifs between these classes is very low (0.554, Fig. 6a). In 
the Nuclear receptors with C4 zinc fingers {2.1} class, TFs 

have the similarity only slightly below the threshold (2.68), 
and the TF similarity in the class C2H2 zinc finger factors 
{2.3} is very low (0.443).

In the class Nuclear receptors with C4 zinc fingers {2.1} 
(Fig. 6b), only one family, Steroid hormone receptors {2.1.1}, 
has a similarity of TFs 2.39 below the threshold. This family 
is divided into two branches according to the two subfamilies: 
GR-like (NR3C) {2.1.1.1} and ER-like (NR3A) {2.1.1.2} 
(Fig. 6c). The similarity of TFs between these subfamilies is 
low (0.822), and within each subfamily, it is high (6.41 and 
3.59). TFBS motifs from these related subfamilies have a 
similar structure: TFs of both subfamilies can bind DNA as 
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PAS {1.2.5}
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factors (bZIP) {1.1}
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Fig. 5. TF similarity based on binding site motifs for the Basic domain {1} superclass.
a–d – heatmaps for classes of the superclass, for families of the Basic leucine zipper factors (bZIP) {1.1}/Basic helix-loop-helix factors 
(bHLH) {1.2} classes and for subfamilies of the PAS {1.2.5} family of the Basic helix-loop-helix factors (bHLH) {1.2} class. A brown circle on 
the heatmap diagonal means that the subfamily has only one TF with one TFBS motif. The color reflects the value of the Q2 similarity 
metric. Here and further to the right of each heatmap are the names of classes/families/subfamilies along with their numerals, and 
above are only numerals; e and f – family trees for the classes Basic leucine zipper factors (bZIP) {1.1} and Basic helix-loop-helix factors 
(bHLH) {1.2}. The Y axis reflects the value of the Q2 metric, the dash line shows its threshold value 3. All colors except gray reflect 
individual branches, and gray highlights paths, the Q2 metric value of which is less than the threshold. A horizontal line break marks 
the value of the Q2 metric for the family. The Jun-related {1.1.1} family (e) has a lower similarity of 3.99 (b) than the similarity of the 
union of Jun-related {1.1.1} and Fos-related {1.1.2} families, so the direction of the path of the Jun-related {1.1.1} family from the 
junction point of these two families changes to the opposite.
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monomers or as dimers formed by an inverted repeat (Nagy G., 
Nagy L., 2020), but regardless of this, the monomeric subunits 
in TFBS motifs of the GR-like (NR3C) {2.1.1.1} (Fig. 6d) and 
ER-like (NR3A) {2.1.1.2} subfamilies (Fig. 6e) are clearly 
distinct. The Thyroid hormone receptor-related {2.1.2} family 
forms a separate branch, since the similarity of its TFs with the 
TFs of four of the five other families is below the threshold 3 
(Fig. 6b, g). Four families from the RXR-related receptors 
{2.1.3} to GCNF (NR6) {2.1.6} form one branch: Figure 6f 
shows the tree dividing the Nuclear receptors with the C4 zinc 
fingers {2.1} class into branches by families.

In the C2H2 zinc finger factors {2.3} class (Fig. 6f ), only 
one family, Three-zinc finger Kruppel-related {2.3.1}, forms 
a separate branch. To determine the branches of the other 
four families of the class, we need to go down to the levels 

of subfamilies or TFs, see the list of all branches of the C2H2 
zinc finger factors {2.3} class in Table S11.

The third superclass includes three large classes Homeo 
domain factors {3.1}, Fork head/winged helix factors {3.3}, 
and Tryptophan cluster factors {3.5}. The similarity between 
TFs of different classes based on binding site motifs is very 
low in all three possible pairs of classes (Fig. 7a, cells above 
the diagonal). Similarity of TFs within each of the classes 
Homeo domain factors {3.1}, Fork head/winged helix factors 
{3.3} is medium, 1.42 and 1.12. The class Tryptophan cluster 
factors {3.5} forms one branch (Fig. 4).

In the class Fork head/winged helix factors {3.3}, two 
families E2F {3.3.2} and RFX {3.3.3} represent two separate 
1 Supplementary Table S1 and Figures S1 and S2 are available at: 
https://vavilov.elpub.ru/jour/manager/files/Suppl_Levitsky_Engl_29_7.pdf
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branches, and the similarity of TFs of the FOX family {3.3.1} 
almost reaches the threshold (similarity value 2.89, Fig. 7b). 
A vivid illustration of the correctness of the division of the 
Fork head/winged helix factors {3.3} class into three families 
(Fig. 7b) is a noticeable excess of the similarity of TFs within 
families (three values on the diagonal) in relation to the 
similarity of TFs between families (three values above the 
diagonal).

Among the 16  subfamilies of the FOX family {3.3.1} 
(Fig.  7e), only three subfamilies FOXD {3.3.1.4}, FOXH 

{3.3.1.5} and FOXL {3.3.1.12} achieved TF similarity below 
the threshold 3: 2.19, 2.48 and 2.17, respectively. Four, five 
and two subfamilies form separate branches (Fig. 7e). There 
are two subfamilies, FOXH {3.3.1.8} and FOXR {3.3.1.18}, 
with low similarity of TFs based on binding site motifs with 
other subfamilies and between themselves (Fig. S1).

Two families (NK-related {3.1.2} and HD-LIM {3.1.5}) of 
the Homeo domain factors {3.1} class merge into one branch; 
each of five HOX-related {3.1.1}, TALE-type HD {3.1.4}, 
HD-SINE {3.1.6}, HD-PROS {3.1.7} and HD-CUT {3.1.9} 

Fig. 7. Similarity of TFs based on binding site motifs for the superclass Helix-turn-helix domains {3}. 
a–c – heatmaps for classes of the superclass, for families of the classes Fork head/winged helix factors {3.3} and Homeo domain factors 
{3.1}. The brown circle on the heatmap diagonal means that the family has only one TF with one binding site motif. The color reflects 
the value of the Q2 similarity metric; d – logo of two binding site motifs of TF PIT1 from the subfamily POU1 {3.1.10.1}; e and f – trees 
for subfamilies of the FOX {3.3.1} family and for families of the Homeo domain factors {3.1} class. The Y axis reflects the value of the 
Q2 metric, the dash line shows its threshold value 3. Dotted lines mean a single TF with one binding site motif in the current family 
or subfamily. All colors except gray reflect individual branches, and gray indicates paths, the Q2 metric value of which is less than the 
branch threshold. Horizontal line break marks the value of the Q2 metric. The subfamily FOXA {3.3.1.1} (e) has a lower similarity of 
6.22 (Fig. S1) than the similarity of the union of the subfamilies FOXA {3.3.1.1} and FOXB {3.3.1.2}, so the direction of the path of the 
subfamily FOXA {3.3.1.1} from the junction point of these two subfamilies changes to the opposite.
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families represents a separate branch (Fig.  7c, f ). To find 
branches for the remaining families Paired-related HD {3.1.3}, 
HD-ZF {3.1.8} and POU {3.1.10}, it is necessary to proceed 
to the subfamily level (Fig. S2, Table S1). The Paired-related 
HD {3.1.3} family is divided into two separate branches, 
combining 12 and 6 subfamilies (Fig. S2a, Table S1). The HD-
ZF {3.1.8} family is divided into two branches according to 
two subfamilies, ZEB {3.1.8.3} and ZHX {3.1.8.5} (Fig. S2b). 
Three subfamilies POU2 {3.1.10.2}, POU3 {3.1.10.3} and 
POU5 {3.1.10.5} merge into one branch. The subfamily 
POU1 {3.1.10.1} is represented by one TF PIT1 with two sig
nificantly dissimilar TFBS motifs PIT1.H12CORE.0.SM.B 
and PIT1.H12CORE.1.S.B (Fig.  7d). The remaining three 
subfamilies POU4 {3.1.10.4}, POU6 {3.1.10.6} and HNF1-
like {3.1.10.7} of the family POU {3.1.10} form separate 
branches (Fig. S2c).

The full list of branches for the seven largest TF classes 
Basic leucine zipper factors (bZIP) {1.1}, Basic helix-loop-
helix factors (bHLH) {1.2}, Nuclear receptors with C4 zinc 
fingers {2.1}, Homeo domain factors {3.1}, Fork head / 
winged helix factors {3.3} and Tryptophan cluster factors 
{3.5} is given in Table S1.

In general, based on the results presented in Figures 5–7 
and in Figures S1, S2 and Table S1, we can conclude that 
often TFs of the same family already have dissimilar binding 
site motifs. However, this general trend is broken for some 
classes and families. It is most clearly violated for the largest 
class of human TFs C2H2 zinc finger factors {2.3} (Fig. 6f ), 
for which it is necessary to descend to the level of subfamilies 
or even to the level of TFs to determine branches. 

Similarity analysis of Drosophila TFs
To determine how the discovered patterns of similarity in 
different classes of TFs depend on the choice of taxon, we 
conducted an analysis analogous to that carried out above 

for the insect taxon sufficiently distant from the mammalian 
taxon. According to the Jaspar DB, there are only two classes 
of insect TFs with more than 50 binding site motifs (see the 
Table). All these TFs belong to the species D. melanogaster. 
The results obtained for insect TFs from these two classes, 
C2H2 zinc finger factors {2.3} and Homeo domain factors 
{3.1}, are in good agreement with the results obtained above 
for human TFs from seven classes (Fig. 4–7).

In the Drosophila C2H2 zinc finger factors {2.3} class 
(Fig. 8a), as well as in the same class in human (Fig. 6f ), 
only one family, Three-zinc finger Kruppel-related {2.3.1}, 
has significantly similar TFs based on binding site motifs. 
Only TFs of one other family, BED zinc finger {2.3.5}, have 
very different similarity of  binding site motifs (human 0.001, 
Drosophila 6.32). However, this family is very small: in 
Drosophila, it contains two almost indistinguishable binding 
site motifs of one TF Dref; and in human, two TFs ZBED1 
and ZBED5 have clearly dissimilar to each other motifs 
of binding sites. The other three common families in both 
taxa, Other factors with up to three adjacent zinc fingers 
{2.3.2}, More than 3 adjacent zinc fingers {2.3.3}, Multiple 
dispersed zinc fingers {2.3.4}, as well as all remaining 
Drosophila TFs with unspecified families, assigned to the 
family Unclassified {2.3.0}, show extremely low similarity 
of TFs based on binding site motifs. In general, for both 
human and Drosophila TFs, the class C2H2 zinc finger factors 
{2.3} has TFs with very low similarity of binding site motifs  
(Fig. 6f, 8a).

Drosophila TFs from the Homeo domain factors {3.1} 
class (Fig. 8b) show slightly less similarity in terms of binding 
site motifs than TFs from the same human class (Fig. 7c). 
However, in each of these two taxa, among the eight common 
families, families with greater and lesser similarity of TFs 
based on binding site motifs are distinguished. Namely, in 
both taxa, TFs from four families – HOX-related {3.1.1}, 

а bC2H2 zinc finger factors {2.3} Helix-turn-helix domains {3}

Fig. 8. Similarity of Drosophila TFs from the two large classes based on binding site motifs.
a and b – heatmaps for families of the classes C2H2 zinc finger factors {2.3} and Homeo domain factors {3.1}. The color reflects the value of the Q2 similarity metric.
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NK-related {3.1.2}, Paired-related HD {3.1.3} and HD-LIM 
{3.1.5} – have the greatest similarity, both within and between 
families (Fig. 7c, f ); however, the similarity itself exceeds the 
value 2 for Drosophila TFs, but does not reach the threshold 3 
(Fig. 8b). The remaining families have TFs that are not similar 
both to each other and to TFs of the above families of the 
class. In general, much smaller similarity in the binding site 
motifs of Drosophila TFs of the Homeo domain factors class 
{3.1} (Fig. 8b) compared with the human TFs of the same 
class (Fig.  8c) can be explained by the noticeably smaller 
number of available massive sequencing data for Drosophila 
TFBSs (see the Table). Another explanation is the difference 
in the methods for obtaining TFBS motifs in the Hocomoco 
and Jaspar DBs.

Discussion
We propose a new systematic approach to refine the hierarchi-
cal classification of TFs according to the structure of  DBDs by 
a set of  branches combining TFs with similar motifs of  bind-
ing sites. The similarity of the binding site motifs of known 
TFs can now be evaluated with various experimental massive 
sequencing technologies, including in vitro HT-SELEX and 
in vivo ChIP-seq data, for example, experimental results for 
different tissue conditions and developmental stages.

Estimates of the total numbers of  human/Drosophila TFs 
are 1,659/651 (AnimalTFDB, Shen et al., 2023). The Hoco
moco DB (version  12) for human and the Jaspar DB for 
Drosophila annotated 1,443 TFBS motifs for 949 TFs and 
334 TFBS motifs for 273 TFs. Hence, although the ratios of the 
number of TFs with known binding site motifs to the estimates 
of the total numbers of TFs for human and Drosophila are close 
(57 and 51 %), on average, one TF accounts for 1.52/1.22 an-
notated binding site motifs for human (Hocomoco)/Drosophila 
(Jaspar). In accordance with this, the GTRD (Kolmykov et 
al., 2021) provides data on 21988/3027 ChIP-seq experiments 
for 1,531/595 human/Drosophila TFs. Therefore, the diversity 
of structural types of TFBS motifs has already been studied 
markedly better in human than in Drosophila.

The possible correspondence of the enriched motifs from 
the results of a de novo motif search to binding sites of target or 
partner TFs complicates the task of analyzing TF binding data 
in vivo. In vitro massive sequencing data, such as HT-SELEX 
or DAP-seq, reflect only the direct binding of target TFs, and 
completely exclude the cooperative binding of target TFs to 
any partner TFs and indirect binding of target TFs. Therefore, 
the nucleotide binding specificity of target TFs in vitro can 
determine only a fraction of their binding loci in vivo. In vivo 
TFBS sequencing data reflect the main cooperative mechanism 
of target TF binding to genomic DNA, including its interac-
tions with various partner TFs (Morgunova, Taipale, 2017). 
This complicates the connection of enriched de novo motifs 
to specific partner TFs.

The variability of TFBS motifs derived from the system-
atization of their modern massive sequencing data reflects 
the diversity of the structure of TF DBDs. DBDs of TFs 
are important for the function of the direct binding of target 
and partner TFs. For example, only TFs from certain classes 
have the ability to function as dimers of closely related TFs 

(Amoutzias et al., 2008). Among the ones studied here (see 
the Table), those are TF classes Basic leucine zipper factors 
(bZIP) {1.1}, Basic helix-loop-helix factors (bHLH) {1.2} 
and Nuclear receptors with C4 zinc fingers {2.1}. The main 
function of a TF, its ability to interact with genomic DNA, 
depends on the place of this TF in the general hierarchy of the 
structure of the DBDs of all TFs, that is, on a superclass, class, 
family and subfamily of this TF. Previously, these levels of 
hierarchical classification of TFs were defined by the structure 
of their DBDs and the alignments of amino acid sequences of 
DBDs of TFs (TFClass DB, Wingender, 1997, 2013; Wingen-
der et al., 2013, 2015, 2018); notably, the similarity of TFBS 
motifs was not taken into account to define the hierarchy. 
A systematic analysis of the similarity of TFBS motifs can 
make the classification of TFs more efficient for the practical 
application at the stage of interpreting enriched motifs, the 
results of a de novo motif search based on massive mapping 
of TFBS in vivo, such as ChIP-seq.

Deducing the general topology of the branches of signifi-
cantly similar TFBS motifs consists in selecting for each TF 
such a level of hierarchy among options of one class, one 
or more sister families (or subfamilies), or individual TF, 
so that for the TFs of the entire branch, most TF pairs have 
significantly similar binding site motifs. To determine the list 
of branches, we need the following: the hierarchical classifica-
tion of TFs according to the structure of their DBDs from the 
TFClass/Plant-TFclass DBs; TFBS motif sets from DBs; the 
formula for calculating similarity in a pair of TF sets based 
on their binding site motifs (4). Identifying all branches along 
the TFClass/Plant-TFclass hierarchy will help avoid exces-
sive detail in the output data of a de novo motif search. These 
misleading data and excessive information arise since for any 
of the individual classification units, such as a specific class, 
or family/subfamily, there is the variability of the TFBS motifs 
similarity not restricted. Initially, there were no such restric-
tions for DBD TFs, too (Wingender, 1997, 2013; Wingender 
et al., 2013, 2015, 2018).

We include TF classes with more than 50 TFBS motifs 
in the analysis (see the Table). Of the seven largest human 
classes (Fig. 4), only one, the Tryptophan cluster factors {3.5} 
class, shows significant similarity of TFBS motifs. For the 
classes Basic leucine zipper factors (bZIP) {1.1} and Nuclear 
receptors with C4 zinc fingers {2.1}, similarity is below the 
significance threshold (value 3), but is still noticeable (values 
between 2 and 3). Even the classes Basic helix-loop-helix fac-
tors classes (bHLH) {1.2}, Homeo domain factors {3.1} and 
Fork head/winged helix factors {3.3} have lower similarity 
(values ranging from 1 to 2). However, for the C2H2 zinc 
finger factors {2.3} class, the similarity value is less than 1. 
This low value reflects the presence of a majority of TF pairs 
with completely different binding site motifs in this class; ap-
proximately the same similarity values are observed between 
binding site motifs in any pair of TFs from different classes of 
the same superclass (see values in cells above the diagonal in 
Fig. 5a, 6a, 7a). Similar discrepancies are observed at a lower 
level of TF families.

For each of the classes Basic leucine zipper factors (bZIP) 
{1.1} and Nuclear receptors with C4 zinc fingers {2.1}, in 
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most cases, several sister families are joined into one branch 
(Fig. 5e, 6g). For the classes Basic helix-loop-helix factors 
classes (bHLH) {1.2}, Homeo domain factors {3.1} and Fork 
head/winged helix factors {3.3} (Fig. 5f, 7b, f ), partitioning 
into branches is closer to the level of families. The level of 
families is clearly not enough to distinguish branches in 
the C2H2 zinc finger factors {2.3} class (Fig. 6f ). So, our 
analysis confirms clear differences in the variability of bind-
ing site motifs for the largest classes of human TFs (Fig. 4–7) 
(Lambert et al., 2018; Ambrosini et al., 2020). A concordant 
trend is also observed for the motifs of binding sites from the 
two largest classes of insect TFs (Fig. 8). This conclusion is 
in good agreement with the results of a massive comparison 
of the nucleotide specificity of orthologous human and Dro-
sophila TFs, where it was found that, in general, human and 
Drosophila TFBS motifs showed a high level of conservation 
(Nitta et al., 2015). Later, a detailed analysis refined this find-
ing. The analysis of similarity of binding site motifs of TFs 
from various classes in different eukaryotic taxa in lines of 
multicellular animals and higher plants showed that conserva-
tion in both animal and plant lineages is highly dependent on 
the TF class (Lambert et al., 2019). For example, almost half 
of the dissimilar binding site motifs of orthologous human 
and Drosophila TFs belonged to the C2H2 zinc finger factors 
{2.3} class, which is consistent with the results of our analysis 
(Fig. 6f, 8a). The analysis (Lambert et al., 2019) also showed 
that for some orthologous TFs of Drosophila and human, the 
similarity extended even to the level of subtle dinucleotide 
frequency preferences in the TFBS motifs.

We have also concluded that among the large classes of 
TFs, the class C2H2 zinc finger factors {2.3} has TFs with the 
most variable binding site motifs in human and Drosophila 
(Fig. 6f, 8a). Compared to the class C2H2 zinc finger factors 
{2.3}, both taxa have less variable TFBS motifs in the class 
Homeo domain factors {3.1}. However, for TFs of the class 
Homeo domain factors {3.1}, a greater variability of bind-
ing site motifs is found in Drosophila compared to human 
(Fig. 7c, 8b). This result may reflect differences in the TFBS 
motifs processing pipelines in the Hocomoco and Jaspar DBs.

In the Hocomoco DB, binding site motifs for each indi-
vidual TF reflect data from several massive sequencing experi-
ments for this TF (Kolmykov et al., 2021; Vorontsov et al., 
2024), such as ChIP-seq and HT-SELEX; for example, often 
even available data of human and mouse species are combined. 
The goal of the analysis in the Hocomoco DB is to integrate 
all available data on the binding sites of individual TFs. This 
allows identifying as much as possible different structural 
types of motifs of the binding sites of each TF. The Jaspar 
DB has a simpler way of presenting each of the motifs with a 
separate experiment, which can be considered justified since 
there is still only a small amount of data on individual TFs. 
For insect TFBS motifs, an analysis similar to that carried 
out to obtain Hocomoco DB TFBS motifs has not yet been 
carried out, which is partly due to the significantly smaller 
pool of massive sequencing data available (Kolmykov et al., 
2021; Rauluseviciute et al., 2024). It can be assumed that the 
approach of the Hocomoco DB compared to that of the Jaspar 
DB most likely reflects a greater number of minor motifs of 

binding sites for each of the TFs, which may contribute to a 
greater similarity of motifs deduced in our study, according to 
the formulas (2) and (4). Nevertheless, regular updates and 
an increase in the amount of data on known TFBS motifs in 
both Hocomoco and Jaspar DBs in recent years (Vorontsov et 
al., 2024; Rauluseviciute et al., 2024) indicate that the clas-
sification of TFBS motifs may be refined in the near future.

In general, based on our results, we can conclude that for 
both taxa, mammals and insects, marked differences in the 
similarity of  binding site motifs of  TFs from large classes and 
their families make it difficult to use the standard TFClass DB 
terminology, which includes TF classes, families and subfami-
lies, to describe the variability of TFBS motifs. Therefore, a 
more efficient detection of functionally involved TFs by mas-
sive sequencing of TFBS in vivo requires a systematic analysis 
of the similarity of  binding site motifs of  known TFs in order 
to define the variability of TFBS motifs within different ele
mentary classification units from classes to individual TFs.

In the future, a more extensive analysis of the similarity of 
binding site motifs within all classes, families, subfamilies of 
TFs and individual TFs in model species of mammals, insects 
and higher plants can be a solid basis for more efficient defini-
tion of TFBS motifs from ChIP-seq massive sequencing data. 
Based on the performed massive analysis, we suggest that the 
results of a de novo motif search, for the detected enriched 
motifs, should indicate not only the names of TFs with the 
names of the class/family/subfamily attached to them, but also 
the branches of the hierarchical classification of TFs defined 
in our study. These branches are composite classification 
units that integrate several consecutive hierarchy levels. Each 
branch represents, within the framework of united multi-level 
classification of TFs by similarity and DBD alignment, a set 
of TFs with significantly similar binding site motifs.

Conclusion
In this work, we present the approach for a systematic analy-
sis of the similarity of the motifs of binding sites of known 
TFs based on a multi-level hierarchy of TFs according to the 
structure of DBDs from the TFClass DB, which includes 
the levels of superclasses, classes, families, subfamilies and 
individual TFs. In the general hierarchy, we determined for 
the large classes of mammalian (human) and insect (fruit fly) 
TFs the common trees of branches with TFs significantly 
similar in motifs of binding sites. Our analysis included seven 
mammalian TF classes, Basic leucine zipper factors (bZIP) 
{1.1}, Basic helix-loop-helix factors (bHLH) {1.2}, Nuclear 
receptors with C4 zinc fingers {2.1}, C2H2 zinc finger fac-
tors {2.3}, Homeo domain factors {3.1}, Fork head/winged 
helix factors {3.3} and Tryptophan cluster factors {3.5}, and 
two classes of insect TFs, C2H2 zinc finger factors {2.3} and 
Homeo domain factors {3.1}. We have shown that both for the 
taxon of mammals and for the taxon of insects, the similarity 
of the binding site motifs is noticeably different among TFs 
from distinct classes. A systematic analysis of the similarity of 
the binding site motifs of structurally related TFs, determined 
according to the hierarchical classification, allowed to deter-
mine the levels of the hierarchy (classes, families, subfamilies, 
TFs), starting from which and lower in the hierarchy the bind-
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ing site motifs of known TFs become significantly similar. In 
addition to improving the identification of involved TFs from 
the results of a de novo motif search, leading to more efficient 
identification of gene regulation mechanisms, our results may 
refine the hierarchical classification of TFs by their DBDs. We 
do not redefine the classification of TFs by elementary units 
from the class, family and lower in the hierarchy; we provide 
additional information about the similarity of the TFBS motifs, 
which reflects the main function of TFs, the function of specific 
binding to the DNA sequence, which, of course, should more 
accurately distinguish different TFs.
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Abstract. The development of high-throughput sequencing has expanded the possibilities for studying the regula-
tion of gene expression, including the reconstruction of gene regulatory networks and transcription factor regulatory 
networks (TFRNs). Identifying the molecular aspects for regulation of biological processes via these networks remains a 
challenge. Solving this problem for plants will significantly advance the understanding of the mechanisms shaping ag-
ronomically important traits. Previously, we developed the PlantReg program to reconstruct the transcriptional regula-
tion of biological processes in the model species Arabidopsis thaliana L. The links established by this program between 
TFRNs and the genes regulating biological processes specify the type of regulation (activation/suppression). However, 
the program does not determine whether activation/suppression of the target gene is due to the cooperative or com-
petitive interaction of transcription factors (TFs). We assumed that using information on the mutual arrangement of TF 
binding sites (BSs) in the target gene promoter as well as data on the activity type of TF effector domains would help to 
identify the cooperative/competitive action of TFs. We improved the program and created PlantReg 1.1, which enables 
precise localization of TF BSs in extended TF binding regions identified from genome-wide DAP-seq profiles (https://
plamorph.sysbio.ru/fannotf/). To demonstrate the capabilities of the program, we used it to investigate the regulation 
of target genes in previously reconstructed TFRNs for auxin response and early reaction to salt stress in A. thaliana. The 
study focused on genes encoding proteins involved in chlorophyll and lignin biosynthesis, ribosome biogenesis, and 
abscisic acid (ABA) signaling. We revealed that the frequency of competitive regulation under the influence of auxin 
or salt stress could be quite high (approximately 30 %). We demonstrated that competition between bZIP family TFs 
for common BS is a significant mechanism of transcriptional repression in response to auxin, and that auxin and salt 
stress can engage common competitive regulatory mechanisms to modulate the expression of some genes in the ABA 
signaling pathway.
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dopsis thaliana
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Аннотация. Развитие высокопроизводительного секвенирования расширило возможности изучения регуля-
ции экспрессии генов, в том числе для реконструкции генных регуляторных сетей и регуляторных сетей транс-
крипционных факторов (РСТФ). Актуальной задачей остается выявление молекулярных аспектов регуляции 
данными сетями биологических процессов. Решение этой задачи для растений позволит существенно про-
двинуться в понимании механизмов формирования хозяйственно важных признаков. Ранее мы разработали 
программу PlantReg для реконструкции транскрипционной регуляции биологических процессов у модельного 
вида Arabidopsis thaliana L. Воспроизводимые этой программой связи между РСТФ и генами, обеспечивающими 
протекание биологических процессов, охарактеризованы по типу регуляции (активация/подавление). Однако 
программа не позволяла определять, в каких случаях активация/подавление экспрессии гена-мишени обуслов-
лены кооперативным или конкурентным взаимодействием транскрипционных факторов (ТФ). Мы предложили 
использовать информацию о взаимном расположении сайтов связывания (СС) ТФ в промоторе гена-мишени, а 
также данные о типе активности трансактивационных доменов ТФ для выявления кооперативного/конкурент-
ного действия ТФ. Мы усовершенствовали программу, создав версию PlantReg 1.1, где обеспечили возможность 
точной локализации СС ТФ в протяженных районах связывания ТФ, устанавливаемых на основании полноге-
номных профилей DAP-seq (https://plamorph.sysbio.ru/fannotf/). Для демонстрации возможностей программы 
была исследована регуляция генов-мишеней ранее реконструированных нами РСТФ ответа на ауксин и солевой 
стресс у A. thaliana. В фокусе изучения были гены, кодирующие белки, участвующие в процессах биосинтеза хло-
рофилла и лигнина, биогенеза рибосом и в передаче сигнала абсцизовой кислоты. В данной работе установлено, 
что частота случаев конкурентной регуляции под влиянием ауксина и солевого стресса может быть достаточно 
высока (около 30 %). Показано, что конкуренция ТФ семейства bZIP за общие СС является значимым механизмом 
подавления транскрипции в ответ на ауксин, и что ауксин и солевой стресс могут задействовать общие механиз-
мы конкурентной регуляции для модуляции экспрессии некоторых генов сигнального пути абсцизовой кислоты. 
Ключевые слова: генная онтология; биологические процессы; генные регуляторные сети; сайт связывания; 
транскрипционный фактор; Arabidopsis thaliana

Introduction
Development of genome-wide analysis techniques (such as 
RNA-seq (Deshpande et al., 2023), ChIP-seq (Park, 2009), 
and DAP-seq (O’Malley et al., 2016)) has opened up wide op-
portunities for systems biological research on mechanisms that 
ensure transcriptional regulation of biological processes and 
the formation of phenotypes (Marshall-Colón, Kliebenstein, 
2019; Zemlyanskaya et al., 2021). Based on the analysis of 
genomic and transcriptomic data, the community is actively 
developing approaches to infer gene regulatory networks and 
TFRNs (Ko, Brandizzi, 2020; Rybakov et al., 2024). A TFRN 
is a set of regulatory interactions (links) between TF-coding 
genes, represented as a graph. The graph nodes correspond 
to the genes, and the directed edges reflect the regulatory 
interactions of a TF, encoded by one gene, with another gene. 
TFRN inference and identification of relationships between 
these networks and biological processes (or phenotypes) 
are essential to understanding the core regulatory circuits 
that drive biological processes, and to developing predictive 
models for these regulations (Huang et al., 2025; Leong et al., 
2025; Sun Y. et al., 2025).

Several software tools for TFRN inference in various spe-
cies are currently available to researchers. For example, the 
NetAct R  package (Su et al., 2022) allows reconstructing 
mammalian TFRNs based on transcriptomic data and a da-
tabase of TF target genes curated by the authors. Previously, 
we developed the CisCross-FindTFnet program for TFRN 
inference in the model plant species Arabidopsis thaliana 
(Omelyanchuk et al., 2024) and the PlantReg program for 
establishing regulatory links between TFRNs and genes that 
mediate the biological processes under the TFRN control 
(Lavrekha et al., 2024). Both programs integrate data from 
transcriptomic experiments and a representative collection of 
genome-wide DAP-seq TF binding profiles, with PlantReg 
employing the results of CisCross-FindTFnet as input data.

An important step in TFRN inference is to determine 
the mode of regulation exerted by a TF within the network 
(activators or repressors), since this characteristic shapes the 
network topology and dynamics (Dhatterwal et al., 2024). 
Large-scale determination of the activity of transcriptional 
effector domains in more than 400 A. thaliana TFs (Hummel 
et al., 2023) contributed to solving this problem. However, this 
is not sufficient for the correct classification of links within 
the network, since many TFs can function both as activators 
and suppressors, depending on the cell type, conditions, 
TF isoforms, specific promoters, and other factors (Boyle, 
Després, 2010; Martínez et al., 2018; Nagahage et al., 2018; 
Wang et al., 2020). This is why, when reconstructing the TFRN 
from transcriptomic data, the modes of regulation exerted 
by TFs are usually inferred from the profiles of their targets 
among differentially expressed genes (DEGs) (Su et al., 2022; 
Omelyanchuk et al., 2024).

Previously, we reconstructed two TFRNs in A.  thaliana: 
the first, TFRN-A, controls the transcriptional response to 
auxin, the second, TFRN-S, controls the early response to 
salt stress (Lavrekha et al., 2024; Omelyanchuk et al., 2024). 
Using the PlantReg algorithm, we demonstrated how TFRN-A 
is involved in regulation of four different biological processes 
by auxin (activation of ribosome biogenesis and suppression 
of response to ABA, as well as chlorophyll and lignin bio-
synthesis), and how TFRN-S enhances ABA response during 
early salt stress. In these networks, TFs were divided into four 
classes: upregulated activator (UA), upregulated suppressor 
(US), downregulated activator (DA), and downregulated sup-
pressor (DS). DAs and DSs form an R subnetwork (normally 
active before stimulus application, repressed due to stimulus 
action), UAs and USs set up an A subnetwork (activated by 
the stimulus).

An important role of transcriptional repression has been 
identified in transcriptional responses to both auxin and salt 
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Fig. 1. Principles of regulation of biological processes by TFs from TFRN-A (a) and TFRN-S (b).
Yellow and green rectangles represent the repressed and activated subnetworks of TFRNs. Arrow thickness reflects the number of 
corresponding links in TFRNs. UA – upregulated activator; US – upregulated suppressor; DA – downregulated activator; DS – down-
regulated suppressor.
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Fig. 2. Cooperative (a) and competitive (b) regulation of a target gene by a pair of TFs from a TFRN.
Yellow and green rectangles represent the repressed and activated TFRN subnetworks. Predicted TF modes of regulation are shown at the bottom, while possible 
alternative modes are shown at the top (in the cloud). The connected dots between TFs in (a) denote protein interactions; in (b) arrows represent the substitution 
of one TF with another after stimulus application and gray funnels designate the ratio of TF activities (larger bases correspond to higher activity); uDEG – 
upregulated DEGs; dDEG – downregulated DEGs; UA – upregulated activator; US – upregulated suppressor; DA – downregulated activator; DS – downregulated 
suppressor.

stress. The auxin response is characterized by extensive re-
programming of the large R subnetwork, which was active 
before hormone treatment, through its suppression by US-type 
TFs from the A subnetwork (Fig. 1a) (Omelyanchuk et al., 
2024). In contrast, the salt stress response activates the wide 
A subnetwork, partly through the inhibition of its DS-type 
suppressors from the R subnetwork (Fig. 1b) (Lavrekha et 
al., 2024). 

The majority of the suppressors from both TFRNs are also 
involved in the regulation of the above-mentioned biological 
processes, affected by auxin and salt stress (Lavrekha et al., 
2024; Omelyanchuk et al., 2024). However, according to the 
literature, most of the predicted suppressors in both TFRNs 
possess an activator-type transcriptional effector domain 
(Hummel et al., 2023; Omelyanchuk et al., 2024). Suppression 
of targets by these TFs may occur due to their cooperative or 
competitive interactions with other TFs. The PlantReg pro-
gram enables establishing regulatory links between TFs and 
genes that mediate biological processes, but it does not detect 
cooperation or competition among TFs. At the same time, it 
is crucial to understand the mechanisms of TF interactions in 
transcriptional regulation to effectively use TFRNs and their 
relations to biological processes in plant bioengineering.

Information on the mutual arrangement of the TF binding 
sites (BSs) in the target promoter, coupled with data on the 
activity of the TF effector domains (Hummel et al., 2023), 

can be used to identify and characterize the cooperative or 
competitive action of TFs. For example, if the BSs of two 
predicted suppressors, operating within the same subnetwork, 
are close to each other, and only one has a transcriptional ef-
fector domain exhibiting suppressor activity, while the other 
TF is a transcriptional activator, it is plausible to assume that 
a cooperative interaction between TFs converts an activator 
TF into a repressor (Fig. 2a). Such examples are widespread 
and described in detail in the literature (Hanna-Rose, Hansen, 
1996; Ahn et al., 2006; Veerabagu et al., 2014; Martínez et 
al., 2018; Wang et al., 2020). 

Similarly, if the BSs of a predicted activator from one sub-
network and a predicted repressor from another subnetwork 
overlap in the promoter of a target gene, and the predicted 
activity of one of the TFs does not match the established activi
ty of its transcriptional effector domain, we can assume that 
TFs may compete for the common BS, and the replacement 
of a strong activator with a weaker one manifests itself as sup-
pression of the target gene, while the replacement of a strong 
repressor with a weaker one manifests itself as activation of 
the target gene (Fig. 2b). A decrease in promoter activity with 
an increase in the concentration of a weak activator compared 
to a strong one, as well as the reverse transition, have been 
shown in a number of experiments (Tamura et al., 2004; Zhang 
et al., 2006; Chupreta et al., 2007; Selvaraj et al., 2015; Ren 
et al., 2015; Brackmann et al., 2018).
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Updates in PlantReg 1.1 compared to the original version are highlighted in pink.

To identify TF targets, the PlantReg program recruits DAP-
seq peaks. However, this does not enable precise localization 
of TF BSs, since the peak size (over 150 bp) significantly 
exceeds the length of the sequences recognized by TFs (below 
20 bp). In this study, we improved the program by creating 
PlantReg version 1.1, which enables precise localization of 
TF BSs in extended TF binding regions from genome-wide 
DAP-seq profiles (https://plamorph.sysbio.ru/fannotf/). We 
used PlantReg 1.1 to identify genes involved in chlorophyll 
and lignin biosynthesis, ribosome biogenesis, and ABA signal-
ing, the expression of which can be suppressed under TFRN-A 
or TFRN-S control due to competition between TF activators 
for common BSs. 

The analysis revealed that the frequency of competitive 
regulation under auxin and salt stress exposure can be quite 
high. Furthermore, we demonstrated that competition between 
bZIP family TFs for common BSs is an essential mechanism 
for transcription repression in A.  thaliana auxin response, 
and that auxin and salt stress can utilize common competi-
tive regulation to modulate the expression of some genes in 
ABA signaling.

Materials and methods
Integration of data on TF BSs in 5′-regulatory regions 
into PlantReg 1.1. The original PlantReg version (Lavrekha 
et al., 2024) was designed to reconstruct the mechanisms 
underlying transcriptional regulation of biological processes 
in A. thaliana based on the analysis of a DEG list and a list 
of  TFs – known or putative transcriptional regulators of these 
DEGs. PlantReg performs gene ontology (GO) enrichment 
analysis of the input DEG list, and identifies potential TF 
targets among DEGs associated with enriched biological 
processes, recruiting genome-wide TF binding profiles avail-
able in the web version of the program (Fig. 3a). The output 
of PlantReg is presented in five blocks, which reflect the 

relationships between biological processes, DEGs, and TFs 
that regulate the expression of these DEGs.

The basic workflow of the updated PlantReg 1.1 version 
is shown in Figure 3. In addition to the original functionality, 
it includes data on recognized TF BSs in the 5′-regulatory 
regions (Fig. 3a), which are added to output blocks 1 and 4 
to enable investigation on the mutual arrangement of BSs in 
promoters. The output block 1 in the original PlantReg version 
presents a sublist of DEGs associated with enriched biological 
processes (Fig. 3b). Each gene in the sublist is characterized 
by a set of associated GO terms (biological processes) with 
evidence codes, the number of GO terms, a list of potential 
transcriptional regulators with an indication of their TF fami-
lies, and the number of TFs. 

In output block  4, the same information is presented in 
an alternative format with the GO terms and transcriptional 
regulators for each gene listed line by line. In PlantReg 1.1, 
the nucleotide sequence of the TF BS recognized in the cor-
responding TF binding region, the genomic coordinates of 
the TF BS (block 4) or the coordinates of the TF BS relative 
to the transcription start site (block 1), and the DNA strand 
harboring the TF BS were added to the description of each 
gene (Fig. 3b). Information on the TF BS localization is avail-
able only when the CisCross-MACS2 genome-wide profile 
collection is selected as a parameter.

Recognition of TF BSs in the 5′-regulatory regions of 
A.  thaliana genes. Position frequency matrices describing 
the BSs of A. thaliana TFs were generated by de novo motif 
search in DAP-seq peaks from the CisCross-MACS2 collec-
tion available in the web version of the PlantReg program 
(Lavrekha et al., 2024). The CisCross-MACS2 peak set col-
lection was compiled previously (Lavrekha et al., 2022) by 
processing raw data from genome-wide DAP-seq profiling of 
BSs for 403 A. thaliana TFs (O’Malley et al., 2016). In each 
peak set, the top 2,000 peaks were selected by height and used 

https://plamorph.sysbio.ru/fannotf/
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Fig. 4. The number of genes encoding TFs in TFRN-A and TFRN-S, as well 
as TF target genes, which mediate biological processes affected by auxin 
(Processes-A) or salt stress (Processes-S). 
The “Processes-A” set includes genes for chlorophyll biosynthesis, lignin bio-
synthesis, ribosome biogenesis and ABA transport, conjugation, and the sig-
naling pathways. The “Processes-S” set includes only genes for ABA transport, 
conjugation, and the signaling pathway.

for de novo motif search employing the STREME program 
(Bailey et al., 2021). 

A background set was generated by the AntiNoise program 
(Raditsa et al., 2024). The motif with the highest enrichment 
significance (with a p-value below  0.05) was assumed to 
describe the BS for TF of interest. To test this assumption, 
the identified motifs were juxtaposed to known TF BSs by 
comparing with motifs from the JASPAR2024 CORE (Rau-
luseviciute et al., 2024), CisBP (Weirauch et al., 2014), and 
ArabidopsisDAPv1 (O’Malley et al., 2016) databases using 
the Tomtom program (Gupta et al., 2007).

The search for potential TF BSs in the 5′-regulatory regions 
of A. thaliana genes ([–2500; +1) relative to the transcription 
start site) was performed using the position weight matrix 
method with the scan_sequence function of the universalmotif 
R-package (Tremblay, 2024). To extract the nucleotide se-
quences of the 5′-regulatory regions, the A. thaliana TAIR10 
genome version (Lamesch et al., 2012) and the Araport11 
genomic annotation (Cheng et al., 2017) were used.

Search for genes, the transcription of which is regulated 
by competitive suppression or activation. Regulatory links 
between components of the TFRN-A/S (Lavrekha et al., 2024; 
Omelyanchuk et al., 2024) and genes involved in biological 
processes affected by auxin and salt stress, as well as com-
petitive gene suppression or activation under auxin and salt 
stress exposure were identified using PlantReg 1.1. As input, 
we used the lists of TFs that constituted TFRN-A (39 ele-
ments) and TFRN-S (19 elements) (the lists are designated 
as “TFRN-A” and “TFRN-S” in Fig. 4) (Table S1)1, as well 
as the lists of DEGs upregulated (uDEGs) and downregulated 
(dDEGs) by auxin (5,201 uDEGs and 6,704 dDEGs) or salt 
stress (1,476 uDEGs and 944 dDEGs), which were used pre-
viously to reconstruct the TFRNs (De Rybel et al., 2012; Wu 
et al., 2021; Omelyanchuk et al., 2024).
1 Supplementary Tables S1–S7 are available at: 
https://vavilov.elpub.ru/jour/manager/files/Suppl_Lavrekha_Engl_29_7.xlsx

The lists of uDEGs and dDEGs from the two transcriptomic 
experiments were separately fed into the PlantReg 1.1 program 
along with the corresponding list of TFs from the TFRN-A 
or TFRN-S. The threshold for GO terms enrichment was set 
at 0.001. To localize the TF binding regions, the CisCross-
MACS2 collection of genome-wide TF binding profiles and 
a 5′-regulatory region length of 1,000 bp were selected. This 
analysis resulted in “TF-regulator–target gene” pairs, where 
the TFs from the TFRN-A or TFRN-S were TF-regulators, and 
the uDEGs and dDEGs from the corresponding transcriptomic 
experiment were the target genes.

The DAP-seq data, recruited by PlantReg 1.1 to map TF 
binding regions in the A. thaliana genome, contain two types 
of peak sets: in the first case (“col” peak sets), native genomic 
DNA from leaves was used to prepare libraries; in the second 
case (“colamp” peak sets), genomic DNA with methylcytosine 
epigenetic marks removed by PCR amplification was used. 
TF-regulator–target gene pairs reconstructed using “col” 
peak sets were selected from the PlantReg 1.1 output. Next, 
among the target genes regulated by TFRN-A, we chose the 
genes annotated with GO terms related to chlorophyll bio-
synthesis (16  genes), lignin biosynthesis (14  genes), ABA 
signaling (34 genes), and ribosome biogenesis (28 genes); 
these processes were previously considered in (Omelyanchuk 
et al., 2024). 

Among the target genes regulated by TFRN-S, we selected 
genes annotated with GO terms related to ABA signaling 
(24 genes), which was previously discussed in (Lavrekha et 
al., 2024). As a result, 110 genes were chosen (designated as 
“Processes-A” and “Processes-S” in Fig. 4) (Tables S1–S3).

To identify among these genes the ones potentially regu-
lated by competitive suppression or activation, we selected 
the genes that met the following requirements: a) more than 
one TF was involved in the regulation of the gene, b) the BSs 
of these TFs considerably overlapped (over 80 %), and c) the 
genes encoding these TFs changed their expression in opposite 
directions in the transcriptomic experiment.

Results

A collection of the predicted TF BSs in 5’-regulatory  
regions of A. thaliana genes, integrated into PlantReg 1.1
To enable prediction of cooperative and competitive interac-
tions of TFs in the transcriptional regulation of biological 
processes, automatic localization of TF BSs in 5′-regulatory 
regions was implemented in PlantReg 1.1. For this purpose, 
the results of TF BS recognition in promoters using the posi-
tion weight matrices (see the “Materials and methods” sec-
tion) were systematized and integrated into PlantReg 1.1. For 
300 TFs (74 %), the motif identified de novo in at least one 
peak set (“col” or “colamp”) was similar to a known BS for 
this TF available in the JASPAR, CisBP, or ArabidopsisDAPv1 
databases (Fig. 5a). The proportion of TFs with BSs recog-
nized in more than 90 % of peaks mapped to 5′-regulatory 
regions was quite high and varied from 42 (for 500 bp-long 
5′-regulatory regions) to 74 % (for 2,000 bp-long 5′-regula-
tory regions) (Fig. 5b). 

In the following sections, we illustrate the potential of 
using the new functionality of PlantReg 1.1 to solve specific 
biological challenges.

https://vavilov.elpub.ru/jour/manager/files/Suppl_Lavrekha_Engl_29_7.xlsx
https://vavilov.elpub.ru/jour/manager/files/Suppl_Lavrekha_Engl_29_7.xlsx
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Fig. 5. Characteristics of the collection of predicted TF BSs in the 5’-regulatory regions of A. thaliana genes integrated into 
PlantReg 1.1. 
a – comparison of motifs recognized de novo in DAP-seq peaks with known TF BSs in the JASPAR, CisBP, and ArabidopsisDAPv1 databases; 
b – proportions of DAP-seq peak sets mapped to the 5’-regulatory regions (col – shades of green/colamp – shades of blue) with the motifs 
recognized in more than 90 % of peaks (light shade), in 50–90 % of peaks, and in less than 50 % of peaks (dark shade).

Competitive regulation of gene expression  
in response to auxin and salt stress in A. thaliana
We assumed above that the suppression of target gene tran-
scription with an increase in the level of US-type TFs or 
activation due to a decrease in the level of DS-type TFs in 
response to auxin and under salt stress may occur through 
competitive regulation of their expression by a pair of activa-
tor TFs. To test this hypothesis, we identified regulatory links 
between TFRN-A/S and genes involved in chlorophyll and 
lignin biosynthesis, ribosome biogenesis, and ABA signaling 
using PlantReg 1.1. Fourteen genes were picked as potential 
targets for competitive regulation by TFs from TFRN-A and 
TFRN-S (Tables S1, S6 and S7). 

Additionally, 11  genes encoding TFs from TFRN-A 
and TFRN-S were also found as potential targets for com-
petitive regulation (Tables S4 and S5). All 25 selected genes 
(12  dDEGs, 10  uDEGs, and three genes, ABCG25 (ATP-
binding cassette family G25), GBF3 (G-box binding factor 3), 
and PYL7/RCAR2 (PYR1-like  7/Regulatory components of 
ABA receptor 2), the expression of which changed in opposite 
directions under auxin and salt stress) made up as much as 
32 % of the total number of genes regulated by suppressors 
(79  genes) (Tables  S1, S6 and  S7). Thus, the competitive 
regulation of the target genes by TFRNs may be a frequent  
event.

TFs are grouped into families, classes, and superclasses 
based on the similarity of their DNA-binding domains 
(Blanc-Mathieu et al., 2024). TFs from the same family 
often recognize similar DNA sequences and, therefore, can 
compete for the binding sites. In the 5′-regulatory regions of 
25 selected genes, TFs can compete within the following six 
families: AP2/ERF (APETALA2/ETHYLENE RESPONSIVE 
FACTOR), bZIP (BASIC LEUCINE-ZIPPER), BZR1/BES1 
(BRASSINAZOLE RESISTANT 1/BRI1 EMS SUPPRES-
SOR 1), HD-ZIP (HOMEODOMAIN LEUCINE ZIPPER), 

MYB (V-MYB AVIAN MYELOBLASTOSIS VIRAL 
ONCOGENE HOMOLOG), WRKY (Table S6). In addition, 
we identified possible competition between TFs from different 
families of the same superclass, namely: “basic domains” and 
“Helix-Turn-Helix domains” (Table S6). 

Moreover, in the promoters of uDEGs MAPKKK18 (Mi-
togen-activated protein kinase kinase kinase 18) and RRP47 
(Sas10/Utp3/C1D family), the same BS can be occupied by 
TFs from the families belonging to two different superclasses: 
AP2/ERF (“Beta-hairpin exposed by an alpha/beta-scaffold” 
superclass) and bZIP (“basic domains” superclass) in the 
first case, and AP2/ERF and LBD (“Zinc-coordinating DNA 
binding domains” superclass) in the second case (Table S6). 
In the distal promoter of dDEG GBF3, TFs from the families 
of two other superclasses, bZIP (“basic domains”) and MYB 
(“Helix-Turn-Helix domains”), can compete for the common 
BS. We also detected a possible competition for the common 
BS among TFs from different families belonging to two (in 
the promoters of AFP1 (ABI five binding protein), MYB73 
and PYL7) and even three different superclasses (in the distal 
promoter of GBF3) (Table S6).

Competition of bZIP family TFs  
in promoters of genes regulated by TFRN-A
To identify combinations of activator TFs systematically re
cruited by TFRN-A or TFRN-S to suppress target gene ex
pression, we conducted a comparative analysis of TF-regu-
lator–target gene pairs determined with PlantReg 1.1. Three 
DA-type TFs (bZIP3, bZIP68, and GBF3) and a US-type TF 
(bZIP53) share common BSs in the promoters of several genes 
regulated by TFRN-A. These include CHLG (Chlorophyll G) 
(Fig. 6a, b), HEME2 (AT5G14220), and CH1 (Chlorina 1), 
which encode chlorophyll biosynthetic enzymes, as well as 
ABCG25, encoding ABA exporter that transports ABA across 
the plasma membrane (Tables S6 and S7). 
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Fig. 6. Overlapping TF BSs in target gene promoters revealed with PlantReg 1.1. 
а – distal CHLG promoter with overlapping BSs for bZIP family TFs (bZIP3, bZIP53, bZIP68, and GBF3); c – distal and core GBF3 promoters 
with overlapping BSs for bZIP family TFs (bZIP3, bZIP53, bZIP68, TGA4/5/9, and GBF3), TF color coding in (c) is the same as in (a);  
e, g – proximal UGT72B1 and BEH2 promoters, respectively, with overlapping BSs for BEH2 (red fill color) and BMY2 (blue fill color).  
b, d, f, h – transcriptional regulation of the CHLG, GBF3, UGT72B1, and BEH2 genes, respectively. Underlined BSs lie on the antisense strand 
with regard to the gene body strand. Coordinates are given relative to the transcription start site. US – upregulated suppressor; DA – 
downregulated activator.

Since bZIP53 was described in the literature as a tran-
scriptional activator (Alonso et al., 2009; Weltmeier et al., 
2009), it is logical to assume that the suppression of the 
above-mentioned genes may be a consequence of competi-
tion among bZIP family TFs for common BSs in promoters, 
resulting in replacement of a strong activator by a weaker 
one. Indeed, the activity of the transactivation domains of 
these TFs was previously investigated and it was shown that 
bZIP53 is a transcriptional activator, but a much weaker one 
than representatives of the same family bZIP3, bZIP68, and 
GBF3 (Hummel et al., 2023). 

It is noteworthy that a similar combination of transcriptional 
regulators competing for a common BS (bZIP3, bZIP68, and 
GBF3 as DA, bZIP53 as US) was identified in the promoters of 
dDEGs ERF15, GBF3 (Fig. 6c, d), and AT1G19000 encoding 
TFs from the TFRN-A (Tables S6 and S7). Thus, competition 
between the bZIP family TFs for a common BS is likely to 
be an essential mechanism of transcriptional repression in 
auxin response.

We also found a potential replacement of the bZIP3, 
bZIP68, and GBF3 activators with a weaker one, bZIP53, in 
the promoter of GBF3, which itself encodes a TF involved 
in its competitive regulation (Fig. 6c, d). A similar situation 
was observed for BEH2 (BES1/BZR1 HOMOLOG2) (DA) 

and BMY2 (BETA-AMYLASE  2, also known as BETA-
AMYLASE  8/BAM8) (US), both belonging to the BZR1/
BES1 family. These TFs regulate not only the expression of 
DFB and UGT72B1, the genes that control lignin levels, but 
also BEH2 (Fig. 6e–h). 

Theoretically, such feedback could act as a “trigger” for 
more intensive competitive suppression of common targets 
by a pair of activator TFs: an increase in the abundance of a 
weaker transcriptional activator leads to competitive suppres-
sion of the gene encoding a stronger transcriptional activator 
(which is a common target for both TFs including that stron-
ger one), and thereby the inhibitory effect on other common 
targets will increase. Some DA-type TFs can compete with 
each other for a common BS prior to auxin treatment, when 
R subnetwork is active (Fig. 6a–d), providing additional re
gulatory flexibility to TFRN-A.

Competitive regulation of ABA signaling genes  
by TFRN-A and TFRN-S
Both auxin and salt stress modulate response to ABA: in the 
first case, it is attenuated, and in the second case, it is enhanced 
(Lavrekha et al., 2024; Omelyanchuk et al., 2024). Compari-
son of the regulatory links inferred based on data from different 
experiments enables a deeper understanding of transcription 
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regulation. Using PlantReg 1.1, we found that three genes 
involved in ABA signaling (PYL7, AFP1, and ABCG25) are 
under the control of both TFRNs.

Downregulation of PYL7 by auxin and its upregulation by 
salt stress is carried out by TF sets specific for each stimulus. 
These TF sets bind to different sites in the PYL7 promoter 
(Fig. 7a, b). Apparently, auxin and salt stress utilize distinct 
molecular mechanisms for competitive modulation of PYL7 
expression. In contrast, both stimuli can engage the same set of 
competing activator TFs to regulate AFP1 and ABCG25, but in 
different ways. AFP1 gene expression is mediated by bZIP68 
under normal conditions. After auxin treatment, bZIP68 is 
replaced by BMY2 (which is likely a weaker activator); un-
der salt stress, on the contrary, bZIP68 is replaced by BIM2 
(BES1-interacting Myc-like protein 2), which is a stronger 
activator according to (Hummel et al., 2023) (Fig. 7c, d). In 
the ABCG25 promoter, auxin induces replacement of activator 
TFs from the bZIP family with a weak activator bZIP53 that 
results in a decrease in ABCG25 transcripts (Fig. 7e, f ). Salt 
stress modulates the relocation of a similar set of activators 
within the same set of BSs, but in this case, downregulation 
of bZIP3 expression is accompanied by accumulation of 
GBF3 transcripts.

Interestingly, a similar pattern was observed in the promoter 
of GBF3 encoding a TF involved in both TFRNs. Under salt 
stress, which activates GBF3, GBF3 TF replaces bZIP3 at three 
BSs in the proximal GBF3 promoter (–116; +1) (Fig. 8a, b), 
and at seven BSs in the distal promoter (–1,312;  –701) 
(Fig. 8c–f ), thereby apparently enhancing its self-activation. 
After auxin treatment, another redistribution of  bZIP family 

TFs occurs at the same sites (Fig. 8). These results are con-
sistent with an important role of competition for BSs between 
bZIP family TFs in modulation of gene expression (Schindler 
et al., 1992; Foster et al., 1994; Ko, Brandizzi, 2022). At the 
same time, auxin response recruits some specific mechanisms 
for GBF3 regulation that are not involved in the response to 
salt stress. Thus, MYB3R1 can replace MYB70 and MYB73 
at the common site after auxin treatment.

Discussion
In this work, we collected and systematized information 
on potential TF BSs in A. thaliana promoters to integrate it 
into the PlantReg 1.1 program. Along with the data on TF 
effector domain activity (Hummel et al., 2023), this allows 
to predict the cooperative and competitive interaction of TFs 
within the TFRNs in the transcriptional regulation of  biologi-
cal processes. Previously, we reconstructed two TFRNs that 
control the responses to salt stress and auxin in A. thaliana 
and showed that transcriptional repression plays an important 
role in both cases (Lavrekha et al., 2024; Omelyanchuk et al., 
2024). However, according to the literature, the overwhelming 
majority of predicted suppressors in the TFRNs have activator-
type effector domains (Hummel et al., 2023; Omelyanchuk 
et al., 2024). We used PlantReg 1.1 to identify the molecular 
mechanisms underlying the possible transformation of activa-
tor TFs into transcriptional repressors.

We found that more than one-third of the targets of TFs 
that were predicted as suppressors could be competitively 
regulated by a pair of TFs, one of which is a strong transcrip-
tional activator and the other is a weak one. Thus, competitive 
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Fig. 7. Overlap of TF BSs in target promoters under auxin treatment and early salt stress, revealed using PlantReg 1.1. 
a – proximal PYL7 promoter; c – distal AFP1 promoter; e – proximal ABCG25 promoter. b, d, f – transcriptional regulation of the PYL7, ATF1, 
and ABCG25 genes, respectively. For each panel, the details of regulation in response to auxin (A) and early salt stress (S) are located at the 
top and bottom, respectively. TF BSs are represented by rectangles according to the color coding of the regulation type: UA – upregulated 
activator; US – upregulated suppressor; DA – downregulated activator; DS – downregulated suppressor.



V.V. Lavrekha, N.A. Omelyanchuk, A.G. Bogomolov 
Y.A. Ryabov, P.K. Mukebenova, E.V. Zemlyanskaya

948 Vavilovskii Zhurnal Genetiki i Selektsii / Vavilov Journal of Genetics and Breeding • 2025 • 29 • 7

PlantReg 1.1: molecular mechanisms  
of transcription factor activity in regulatory networks

a

c

e

b

d

f

A

A

A

A

A

A

C

C

C

C

C

C

–116

–893

–1,312

+1

+1–701–744–862

+1–1036

GBF3

GBF3

GBF3

Fig. 8. Overlapping BS TFs in the GBF3 promoter under auxin treatment and early salt stress, revealed using PlantReg 1.1. 
a, c, e – proximal (–116; +1) and distal (–1,312; –701) GBF3 promoters with overlapping BS TFs; b, d, f – diagrams of GBF3 transcriptional 
regulation in the proximal and distal promoters. For each panel, the regulations in response to auxin (A) and early salt stress (S) are located 
at the top and bottom, respectively. TF BSs are represented by rectangles according to the color coding of the regulator type: UA – 
upregulated activator, US – upregulated suppressor, DA – downregulated activator, DS – downregulated suppressor. 

regulation of gene expression is likely a universal mechanism 
allowing modulation of gene expression during responses to 
salt stress and auxin in A. thaliana.

Auxin is a key regulator of most plant processes involved in 
switching between developmental programs (Vanneste et al., 
2025). The most standard concept of switching is replacement 
of a repressor with an activator, such as the substitution of the 
E2F TF repressor complex with E2F activators before the onset 
of the cell cycle in the promoters of many plant and animal 
genes (van den Heuvel, Dyson, 2008; Sánchez-Camargo et 
al., 2021), or, conversely, replacement of a transcriptional 
activator with a repressor (Berlow et al., 2017). However, the 
results obtained with PlantReg 1.1 indicate that in the auxin 
response, instead of the canonical activator–repressor switch, 
substitution of a strong activator with a weaker one can be 
actively used to suppress transcription.

At least some of the cases when a strong activator is 
substituted with a weaker one, predicted by PlantReg  1.1, 
are supported by previously published data. These include, 
for example, the replacement of three activators, bZIP3, 
bZIP68, and GBF3, by a weaker activator bZIP53 during 
auxin-induced suppression of chlorophyll biosynthesis genes 
CHLG, HEME2, and CH1 (Hummel et al., 2023). Competi-
tion between bZIP family TFs for a common binding site and 
its influence on target gene expression has been previously 
described for many TFs from this family (Schindler et al., 

1992; Foster et al., 1994; Ko, Brandizzi, 2022). It is also 
known that a number of bZIP family TFs redundantly regulate 
chlorophyll biosynthesis in a complex manner. In particular, 
chlorophyll biosynthesis is impaired in the gbf1 gbf2 gbf3 
triple mutant, demonstrating the important role of GBFs in 
this process (Sun T. et al., 2025). Overexpression of another 
family member, bZIP1, results in decreased chlorophyll levels, 
while the bzip1 bzip53 double mutant demonstrates a less 
pronounced decrease in chlorophyll levels and attenuated 
CHLG expression compared to the wild type ( padj = 0.03) 
(Wildenhain et al., 2025).

The plant-specific BZR1/BES1 TF family mediates tran
scriptional response to brassinosteroids (plant steroid hor-
mones). In addition to BZR1 and BES1, this family also 
includes four other TFs, called BES1 homologues: BEH1, 
BEH2, BEH3, and BEH4 (Shi et al., 2022). Recently, the 
BZR1/BES1 family has been supplemented with two unusual 
TFs, BAM7 and BMY2, which are similar to β-amylases but 
also exhibit very weak homology to BES1 (Reinhold et al., 
2011). These TFs lack amylase catalytic activity but possess 
BZR1-like domains that bind to the sequences recognized by 
TFs from this family. BMY2 is a transcriptional activator, 
while BAM7 regulates its activity.

It has been previously suggested that BMY2 controls the 
transcription of target genes by competing with the other 
BZR1/BES1 TFs for BSs (Reinhold et al., 2011). According 
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to the results obtained with PlantReg 1.1, this may take place 
in the promoters of some genes downregulated by auxin, 
including UGT72B1 (UDP-glucose-dependent glucosyltrans
ferase  72  B1), which encodes a monolignol-conjugating 
enzyme. In the UGT72B1 promoter, BMY2 (which is likely a 
weaker activator) competes with BEH2 (Fig. 6e, f; Tables S6 
and S7).

A more detailed analysis of the BEH2 and BMY2 targets 
predicted using PlantReg  1.1 provides several important 
details to auxin regulation of lignin biosynthesis. Auxin, by 
activating BMY2, inhibits BEH2 self-activation replacing 
BEH2 with the less active BMY2 TF at their common BSs 
(Fig. 5g, h). This leads to a decrease in BEH2 levels in the 
nucleus, which in turn facilitates the replacement of this TF 
at its sites in the UGT72B1 promoter with a weaker activator 
BMY2 (Fig. 5e, f ) and, consequently, causes a decrease in the 
UGT72B1 transcript level. Activation of UGT72B1 by BMY2 
is supported by an increase in UGT72B1 transcript level upon 
BMY2 overexpression and downregulation of this gene in the 
bmy2 bam7 double mutant (Reinhold et al., 2011). 

Notably, auxin suppresses the transcription of most genes 
encoding lignin biosynthetic enzymes (Omelyanchuk et al., 
2024), thereby reducing monolignol levels. At the same 
time, auxin downregulates UGT72B1 expression and as a 
consequence inhibits monolignol conjugation, partially com-
pensating for the decrease in monolignol levels. Interestingly, 
brassinosteroids also modulate lignin levels through BEH2. 
Brassinosteroids enhance lignin biosynthesis by activating 
most of the enzymes involved in this process (Percio et al., 
2025). They simultaneously suppress BEH2 via both GSK3 
(GLYCOGEN SYNTHASE KINASE  3)-like kinases and 
BES1 (Otani et al., 2022). Since BEH2 activates UGT72B1, 
which conjugates monolignols, brassinosteroids restrict the 
withdrawal of monolignols from lignin biosynthesis, thereby 
further increasing the lignin level.

The data obtained using PlantReg 1.1 allow formulating 
specific hypotheses for planning further experimental stud-
ies. It is worth emphasizing, however, that these predictions 
may contain false-positive results. For example, in the pair of 
TFs HB21 (DA) and HB40 (US) from TFRN-A, which bind 
the same sites in the promoter of the auxin-repressed gene 
bZIP50, HB40 is a more potent activator. This means that 
competition for BS with HB21 cannot explain the suppression 
of target gene expression with HB40 increase. It is possible 
that HB21 and HB40 are expressed in different tissues or at 
different developmental stages. To explain why HB40, which 
is an activator by nature, can function as a repressor, we need 
to explore how this TF recruits corepressors.

Conclusion
PlantReg 1.1 is designed to reveal regulatory relationships 
between TFRNs and genes that mediate the biological pro-
cesses controlled by these networks. The updated version of 
the program includes functionality for precise localization of 
TF BSs in target promoters. Due to this, it becomes possible 
to analyze the mutual arrangement of TF BSs and, using data 
on the effector TF domains, to identify potential cooperative 
or competitive TF action in the promoter of a particular gene.

PlantReg 1.1 was successfully applied to reconstruct the 
transcriptional mechanisms regulating chlorophyll and lignin 

biosynthesis, ribosome biogenesis, and ABA response under 
auxin and salt stress. Analysis of the mutual arrangement 
of TF BSs revealed that the activity of a number of genes 
regulating these processes can be suppressed as a result of 
competition between a pair of activator TFs for a common BS, 
with a weaker activator replacing a stronger one. Some of the 
obtained results were supported by literature data.

Thus, the results obtained using PlantReg 1.1 allow formu-
lating specific hypotheses for planning further experimental 
studies. It is worth emphasizing, however, that the predictions 
may contain false-positive results. Reducing their incidence is 
one possible direction for further development of the program.
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Abstract. Since the work of Nobel Prize winner Thomas Morgan in 1909, the fruit fly Drosophila melanogaster has been 
one of the most popular model animals in genetics. Research using this fly was honored with the Nobel Prize many 
times: in 1946 (Muller, X-ray mutagenesis), in 1995 (Lewis, Nüsslein-Volhard, Wieschaus, genetic control of embryogene
sis), in 2004 (Axel and Buck, the olfactory system), in 2011 (Steinman, dendritic cells in adaptive immunity; Beutler and 
Hoffman, activation of innate immunity), and in 2017 (Hall, Rosbash and Young, the molecular mechanism of the circa-
dian rhythm). The prominent role of Drosophila in genetics is due to its key features: short life cycle, frequent genera-
tional turnover, ease of maintenance, high fertility, small size, transparent embryos, simple larval structure, the possibil-
ity to observe visually chromosomal rearrangements due to the presence of polytene chromosomes, and accessibility 
to molecular genetic manipulation. Furthermore, the highly conserved nature of several signaling pathways and gene 
networks in Drosophila and their similarity to those of mammals and humans, taken together with the development of 
high-throughput genomic sequencing, motivated the use of D. melanogaster as a model organism in biomedical fields 
of inquiry: pharmacology, toxicology, cardiology, oncology, immunology, gerontology, and radiobiology. These stud-
ies add to the understanding of the genetic and epigenetic basis of the pathogenesis of human diseases. This paper 
describes our curated knowledge base, FlyDEGdb (https://www.sysbio.ru/FlyDEGdb), which stores information on dif-
ferentially expressed genes (DEGs) in Drosophila. This information was extracted from 50 scientific articles containing 
experimental data on changes in the expression of 20,058 genes (80 %) out of the 25,079 Drosophila genes stored in 
the NCBI Gene database. The changes were induced by 52 stress factors, including heat and cold exposure, dehydra-
tion, heavy metals, radiation, starvation, household chemicals, drugs, fertilizers, insecticides, pesticides, herbicides, and 
other toxicants. The FlyDEGdb knowledge base is illustrated using the example of the dysf (dysfusion) Drosophila gene, 
which had been identified as a DEG under cold shock and in toxicity tests of the herbicide paraquat, the solvent to
luene, the drug menadione, and the food additive E923. FlyDEGdb stores information on changes in the expression of 
the dysf gene and its homologues: (a) the Clk, cyc, and per genes in Drosophila, and (b) the NPAS4, CLOCK, BMAL1, PER1, 
and PER2 genes in humans. These data are supplemented with information on the biological processes in which these 
genes are involved: oocyte maturation (oogenesis), regulation of stress response and circadian rhythm, carcinogenesis, 
aging, etc. Therefore, FlyDEGdb, containing information on the widely used model organism, Drosophila, can be helpful 
for researchers working in the molecular biology and genetics of humans and animals, physiology, translational medi-
cine, pharmacology, dietetics, agricultural chemistry, radiobiology, toxicology, and bioinformatics.
Key words: human; disease; biomedicine; model animal; fruit fly Drosophila melanogaster; differentially expressed 
genes (DEGs); RNA-Seq; qPCR; microarray; knowledge base
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Аннотация. С 1909 г. благодаря исследованиям нобелевского лауреата Моргана дрозофила Drosophila mela­
nogaster стала одним из самых популярных модельных животных в генетике. Фундаментальные исследо-
вания с дрозофилой в качестве модельного объекта неоднократно были отмечены Нобелевской премией: 
в  1946 г. (Мёллер, мутагенез при рентгеновском излучении), в 1995 (Льюис, Нюссляйн-Фольхард, Вишаус, 
генетический контроль эмбриогенеза), в 2004 (Эксел и Бак, обонятельная система), в 2011 (Стайнман, ден-
дритные клетки в адаптивном иммунитете; Бётлер и Офман, активация врожденного иммунитета) и в 2017 г. 
(Холл, Росбаш и Янг, молекулярный механизм циркадного ритма). Столь яркая роль дрозофилы в генетике 
обусловлена рядом ее ключевых признаков: кратким жизненным циклом, частой сменой поколений, легко-
стью в содержании, высокой плодовитостью, малым размером, прозрачностью эмбриона, простым строени-
ем личинки, возможностью визуальных наблюдений хромосомных перестроек за счет наличия политенных 
хромосом, доступностью для молекулярно-генетических манипуляций. Кроме того, благодаря высокой кон-
сервативности ряда сигнальных путей и генных сетей дрозофилы и их сходству с таковыми у млекопитающих 
и человека в совокупности с техническим развитием геномного секвенирования стало возможно использо-
вание D. melanogaster как модельного объекта в биомедицинских исследованиях в области фармакологии, 
токсикологии, кардиологии, онкологии, иммунологии, геронтологии и радиобиологии для поиска генетиче-
ской и эпигенетической основ патогенеза болезней человека. В настоящей статье описана созданная нами 
курируемая база знаний FlyDEGdb (https://www.sysbio.ru/FlyDEGdb), в которой представлена информация 
о дифференциально экспрессирующихся генах (ДЭГ) дрозофилы, экстрагированная из 50 научных статей 
с экспериментальными данными об изменении экспрессии 20 058 генов (80 %) из числа всех 25 079 генов 
дрозофилы согласно базе данных NCBI Gene под действием 52 стрессовых факторов, включая высокую и 
низкую температуры, обезвоживание, тяжелые металлы, радиацию, голод, яды, бытовую химию, лекарства, 
удобрения, инсектициды, пестициды и гербициды. Содержание базы знаний FlyDEGdb проиллюстрировано 
на примере гена dysf (dysfusion) дрозофилы, который был идентифицирован в качестве ДЭГ при множестве 
стрессовых воздействий: холодовом шоке и в испытаниях на токсичность гербицида параквата, растворите-
ля толуола, лекарственного препарата менадиона, пищевой добавки Е923. В FlyDEGdb представлена инфор-
мация об изменениях экспрессии гена dysf и его гомологов Clk, cyc, per у дрозофилы и генов NPAS4, CLOCK, 
BMAL1, PER1 и PER2 человека, а также информация о биологических процессах, в которые вовлечены эти 
гены: созревание ооцитов (оогенез), регуляция стресс-ответа и циркадного ритма, канцерогенез, старение 
и др. Поэтому FlyDEGdb, содержащая информацию о таком модельном организме, как дрозофила, может 
быть полезна для исследователей, работающих в области молекулярной биологии и генетики человека и 
животных, физиологии, трансляционной медицины, фармакологии, диетологии, агрохимии, радиобиологии, 
токсикологии и биоинформатики. 
Ключевые слова: человек; заболевание; биомедицина; модельное животное; дрозофила; Drosophila melano­
gaster; дифференциально экспрессирующиеся гены (ДЭГ); RNA-seq; qPCR; микрочип; база знаний 

Introduction
Animal models are broadly employed in biomedical studies of 
the physiological, genetic, and epigenetic mechanisms regu-
lating evolutionarily fixed phenotypic human traits in health 
and disease, as well as in response to external and internal 
stress factors (Mukherjee et al., 2022). Their use is based on 
strict criteria of the correspondence between the human phe-
notypic features under study and their counterparts in model 
animals (Gryksa et al., 2023). Over a century ago, Thomas 
Hunt Morgan (1910), Professor of Experimental Zoology in 

the Columbia University, laid the foundation of a series of 
discoveries in heredity in a then new biological object, Droso­
phila melanogaster. His results were honored with the Nobel 
Prize “For his discoveries concerning the role played by the 
chromosome in heredity” in 1933. Later genetic studies using 
Drosophila were honored with the Nobel Prize five times 
more. In 1946, it was awarded to Hermann Muller “For the 
discovery of the production of mutations by means of X-ray 
irradiation”; in 1995, to Edward Lewis, Christiane Nüsslein-
Volhard, and Eric Wieschaus “For their discoveries concern-
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ing the genetic control of early embryonic development”; in 
2004, to Richard Axel and Linda Buck “For their discoveries 
of odorant receptors and the organization of the olfactory 
system”; in 2011, to Ralph Steinman “For his discovery of 
the dendritic cell and its role in adaptive immunity” together 
with Jules Hoffman and Bruce Beutler “For their discoveries 
concerning the activation of innate immunity”; and in 2017, 
to Jeffrey Hall, Michael Rosbash, and Michael Young “For 
their discoveries of molecular mechanisms controlling the 
circadian rhythm” (Lakhotia, 2025). 

This great significance of Drosophila for research is de-
termined by the low cost of their maintenance, high fertility, 
frequent generation turnover, small size, optical transparency 
of embryos, simple larva structure, short life cycle, availability 
of numerous natural strains adapted to various ecoclimatic 
conditions (Telonis-Scott et al., 2013; Chen et al., 2015; von 
Heckel et al., 2016; Mikucki et al., 2024), relatively small 
genome, and ease of molecular genetic manipulations. It is 
of special importance that many signaling pathways and gene 
networks of Drosophila are similar to those of the human 
(Yu et al., 2022). Owing to this fact, many results in trans-
lational medicine, pharmacology, toxicology, immunology, 
gerontology, etc. obtained with Drosophila can be transferred 
to humans (De Gregorio et al., 2001; Chatterjee, Perrimon, 
2021; Wu K. et al., 2021; Ali et al., 2022; Rand et al., 2023). 

Within this line of inquiry, scientists of the Institute of 
Cytology and Genetics (ICG) of the Siberian Branch of the 
Russian Academy of Sciences, Novosibirsk, have investigated 
features of stress response in rats (Markel, 1985; Oshchepkov 
et al., 2024) and mice (Chadaeva et al., 2019; Avgustinovich 
et al., 2025) for over 40 years. The results, reported in many 
publications, present valuable data on changes in gene ex-
pression induced by various experimental procedures. Huge 
volumes of genome-wide data (Big Data) on DEGs in rats and 
mice have been obtained and documented in our knowledge 
bases RatDEGdb (Chadaeva et al., 2023) and MiceDEGdb 
(Podkolodnaya et al., 2024), respectively. 

D. melanogaster is another model species, in which ex-
periments on stress in animals have been conducted at ICG 
for over 25 years (Gruntenko et al., 1999; 2023). The effort 
on developing the FlyDEGdb knowledge base, which stores 
information on Drosophila DEGs, is the continuation of 
our works in biomedical knowledge bases RatDEGdb and 
MiceDEGdb. The pilot version of FlyDEGdb v.0.1 is freely 
available at https://www.sysbio.ru/FlyDEGdb. It stores ex-
perimental data on the expression of 80 % of Drosophila 
genes: 20,058 of the 25,079 annotated in NCBI Gene (Brown 
et al., 2015). The information presented in FlyDEGd was 
extracted from 50 papers reporting experimental data on the 
action of 52 stress factors on 31 D. melanogaster strains. The 
factors included heat and cold, dehydration, heavy metals, 
radiation, starvation, household chemicals, drugs, fertilizers, 
insecticides, pesticides, herbicides, and other toxicants. The 
informational content of FlyDEGdb v0.01 is illustrated by 
the Drosophila dysf (dysfusion) gene, which was identified as 
a DEG in cold shock and in tests of the herbicide paraquat, 
solvent toluene, drug menadione, and food additive E923. 
FlyDEGdb presents data on changes in the expression of dysf 

itself and its homologs: Clk, cyc, and per in Drosophila and 
NPAS4, CLOCK, BMAL1, PER1, and PER2 in the human. In 
addition, FlyDEGdb provides information on the biologic pro-
cesses involving these genes: oogenesis, regulation of stress 
response and circadian rhythms, carcinogenesis, aging, etc. 

We also compare data on stress-induced Drosophila DEGs 
presented in FlyDEGdb with data on changes in the expres-
sion of DEGs of the hypothalamus of rat strains WAG and 
ISIAH in response to restriction stress, reported by D.Y. Os-
hchepkov et al. (2024) and presented in RatDEGdb. The 
responses of rats and Drosophila to stresses reveal a common 
molecular event: reduction in the expression of large gene 
groups involved in the formation of the plasma membrane. 
The FlyDEGdb knowledge base, storing information on the 
model species Drosophila, can be a useful tool for students of 
the molecular biology and genetics of the human and animals, 
physiology, translational medicine, pharmacology, nutrition 
science, agricultural chemistry, radiobiology, toxicology, and 
bioinformatics. 

Materials and methods
Stress-inducible Drosophila DEGs. Experimentally detected 
Drosophila DEGs were sought in the PubMed database (Lu, 
2011) with queries composed from various combinations 
of key words “Drosophila melanogaster”, “differentially 
expressed gene”, “stress response”, “drying”, “heat shock”, 
“radiation”, “cold shock”, “oxidative stress”, “continuous 
lighting”, “toxin”, “diet”, “heavy metal”, “drug”, “herbicide”, 
“pesticide”, “insecticide”, “RNA-seq”, “microarray”, and 
“qPCR”. 

Only DEGs with reported log2(DEG) = log2([DEG expres-
sion in Drosophila under a particular stress factor] / [normal 
DEG expression]) values and PADJ estimates of statistical 
significance with correction for multiple comparisons for 
the stress-induced expression of the DEG were added to 
FlyDEGdb. In addition, we eliminated those in which the 
log2(DEG) values ranged from –0.46 to 0.46. This range cor-
responds to statistically insignificant ( p ≥ 0.05, Fisher’s Z-test) 
differences in DEG expression before and after the exposure 
to stress with ±5 % accuracy of expression measurements. 

FlyDEGdb knowledge base. Figure  1 illustrates the 
informational structure of the FlyDEGdb knowledge base. 
It includes five relational tables. The first of them, named 
“FlyDEGs” (Fig. 1A), stores experimental data on a particular 
Drosophila DEG, which is assigned a unique number (field 
“FlyDEGid”). Field “FlyStrain” of the table indicates the 
Drosophila strain in which the DEG has been found in ex-
periments. Field “FlyBioSample” indicates the tissue sample 
studied in the experiment. Field “PhenomenonFlyModel” 
indicates the corresponding stress factor. Fields “FlyModel 
Subject” and “FlyNormalSubject” indicate the model and 
control individuals, respectively, used in the experiment. The 
experiment type, “RNA-seq”, “Microarray”, or “RT-qPCR”, 
is shown in field “ExperimentType”. Field “FlyGeneSymbol” 
contains the identifier of the Drosophila DEG according 
to the NCBI Gene database (Brown et al., 2015). Fields 
“Log2(Model/Norm)” and “Padj” contain the quantity of the 
stress-induced change in DEG expression as compared to the 

https://www.sysbio.ru/FlyDEGdb
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Fig. 1. The informational structure of the FlyDEGdb knowledge base on differentially expressed genes (DEGs) of Drosophila melanogaster. Relational 
tables: (A) FlyDEGs –  experimental data on DEGs in Drosophila tissue samples in response to a stress factor relative to the norm according to the paper 
cited; (B) FlyHomologs – lists of Drosophila genes homologous to particular Drosophila genes according to the FlyBase database (Ozturk-Colak et al., 
2024); (C) FlyPhenomenon – phenotypic traits associated with deviations in the expression of Drosophila genes relative to the norm according to the 
paper cited; (D) FlyHumanHomologs – human genes homologous to a particular Drosophila gene according to FlyBase (Ozturk-Colak et al., 2024); 
(E) HumanDisorder – human diseases associated with deviations in particular human genes relative to the norm according to the paper cited.
Names of relational tables and their fields were chosen following the guideline on the construction of friendly interfaces (Wade, 1984). Data types: int – integer 
number; float – real number; enum – binary indicator; text – character string; PMID – identifier of the referred paper in PubMed (Lu, 2011). Arrows (→) – relational 
links pointing to the annotation of experimental data on Drosophila DEGs (relational table FlyDEGs) on the one side and, on the other side, data on ipsidirectional 
changes in the expression of homologous Drosophila (solid lines) or human (dotted lines) DEGs indicated in the FlyHomologs and FlyHumanHomologs tables, 
obtained in independent experiments referred to in relational tables FlyPhenomenon and HumanDisorder.

FlyDEGdb: FlyDEGs

(A)
FlyDEGdb: FlyHomologs

FlyDEGdb: FlyHumanHomologs

FlyDEGdb: FlyHumanDisorder

FlyDEGdb: FlyPhenomenon

(B)

(C)

(D)

(E)

norm and its significance level with correction for multiple 
comparisons, respectively, as they are reported. The source is 
indicated in field “FlyDegPMID” as its identifier in PubMed 
(Lu, 2011). 

Finally, field “ReferenceSpecies” indicates the reference 
biologic species (“Fly” for Drosophila or “Human” for the 
human in the pilot version FlyDEGdb v0.1), the experimental 
data on which are used in the annotation of a particular DEG. 
Absence of such annotation is indicated as “ND”. 

Here we apply the term “annotation” to the supplementation 
of experimental data on stress-induced changes in the expres-
sion of a particular Drosophila DEG reported in a particular 
paper with experimental data from independent sources on 
phenotypic manifestations of ipsidirectional changes in the 
expression of homologous human and Drosophila genes. 
Supplementary Table S11 provides details of the annotation 
procedure. 

To conclude the description of the informational structure 
of FlyDEGdb (Fig. 1), we indicate the data types used: int, 
integer number; float, real number; enum, binary indicator; 
text, character string. 
1 Supplementary Tables S1–S3 and Figure S1 are available at:  
https://vavilov.elpub.ru/jour/manager/files/Suppl_Podkol_Engl_29_7.pdf

The relational tables FlyDEGs, FlyHomologs, FlyPhe-
nomenon, FlyHumanHomologs, and HumanDisorder were 
integrated to the FlyDEGdb knowledge base (https://www.
sysbio.ru/FlyDEGdb) by using the MySQL-compatible da-
tabase management studio MariaDB 10.2.12 (MariaDB Corp 
AB, Finland). 

Statistical methods. The statistical analysis of Drosophila 
DEGs was conducted with Past v.4.04 application (Hammer et 
al., 2001) and the STATISTICA package (Statsoft™, United 
States).

Results and discussion 

FlyDEGdb knowledge base
We sought papers on Drosophila DEGs in PubMed (Lu, 2011) 
with keywords listed in section “Materials and methods” to 
populate FlyDEGdb. We found 51 articles describing 287 ex-
periments on 31 Drosophila strains originating from various 
geographical areas and their transgenic modifications. The 
articles described over 190,000 stress-inducible Drosophila 
DEGs. The results of the search are shown in Tables S1–S3. 
The articles cover a wide range of Drosophila studies concern-
ing age-related human diseases, Drosophila tests of drugs, 

https://vavilov.elpub.ru/jour/manager/files/Suppl_Podkol_Engl_29_7.pdf
https://vavilov.elpub.ru/jour/manager/files/Suppl_Podkol_Engl_29_7.pdf
https://www.sysbio.ru/FlyDEGdb
https://www.sysbio.ru/FlyDEGdb
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Fig. 2. The interface of the FlyDEGdb knowledge base on D. melanogaster DEGs supports the real-time dialogue for 
user access to the informational content.
Interface commands: DOWNLOAD DB – download the entire body of information of the current version FlyDEGdb v0.1 as a 
text file in an Excel-compatible format; START (HOMOLOG) – access to Drosophila DEGs annotated with the use of indepen-
dent experimental data on the phenotypic manifestation of ipsidirectional expression changes relative to normal values in 
homologous genes in reference biologic species: Drosophila and the human; START (USUAL) – access to Drosophila DEGs 
omitting annotation. Left half of the table with information on Drosophila DEG (green background): experimental data on 
the Drosophila DEG considered; right half (lilac background): annotation of the DEG on the grounds of independent data 
on the phenotypic manifestation of ipsidirectional expression changes in homologous genes in reference biologic species: 
Drosophila and the human.

and tests for toxicity of household chemicals, fertilizers, 
insecticides, pesticides, herbicides, etc. 

Figure 2 illustrates user access to the information stored in 
the pilot FlyDEGdb version.

Three buttons at the top of the FlyDEGdb interface provide 
access to the information:
  • “DOWNLOAD DB” allows downloading all information 

from the current version FlyDEGdb v0.1 as a text file in an 
Excel-compatible format.

  • “START (USUAL)” provides access to experimental data 
on stress-inducible Drosophila DEGs described in the main 
relational Table “FlyDEGs” (Fig. 1A). 

  • “START (HOMOLOG)” provides access to the annotations 
of Drosophila DEGs as described in section “Materials 
and methods”. 
Below there are interface fields for choosing the needed 

type of information: experimental data on Drosophila DEGs 
and/or annotation of Drosophila DEGs. The “Page Number” 
field allows alphabetical navigation over all DEGs stored in 
the knowledge base. 

The bottom part of the interface outputs tabulated informa-
tion on DEGs obtained by the user according to the specified 
query. Its description is provided in section “Materials and 
methods”. Their storage in FlyDEGdb is shown in Figure 1. 

Table 1 provides a detailed description of the Drosophila 
dysf DEG in response to various stress factors, as well as 
information on homologous DEGs in Drosophila and the 

human. Seven columns on the left contain experimental data 
on Drosophila dysf in response to the toxic effect of the her-
bicide paraquat, which increases the expression, and toluene, 
which decreases it. The expression changes are characterized 
by log2(DEG) values and significance levels PADJ. Column 
PMID indicates information sources. 

Six columns on the right in Table  1 contain the results 
of annotation of the Drosophila dysf gene compared to the 
homologous Clk gene of the same species and to homolo-
gous human genes NPAS4 and CLOCK on the base of four 
independent PMID papers. It is apparent that (a) the dysf 
upregulation (excess) is associated with Drosophila oogenesis 
impairments; (b) the downregulation (deficit) of the Clk gene, 
homologous to Drosophila dysf, disrupts the circadian rhythm; 
(c) the upregulation of the human NPAS4 gene, homologous 
to Drosophila dysf, improves the efficiency of the stress re-
sponse; (d) the downregulation of the human CLOCK gene, 
homologous to Drosophila dysf, disrupts the circadian rhythm. 
Similar examples are shown in rows 5–11. 

Comparison of stress-induced homologous  
rat and Drosophila genes on the grounds of information 
from FlyDEGdb and RatDEGdb
Table 2 presents information on DEGs detected in a restriction 
stress experiment in the hypothalamus or WAG and ISIAH rats 
(Oshchepkov et al., 2024) in comparison with homologous 
Drosophila DEGs described in FlyDEGdb. 
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FlyDEGdb: differentially expressed genes  
in Drosophila melanogaster

Table 2. Using the FlyDEGdb knowledge base to the analysis of DEG expression in the hypothalamus of WAG and ISIAH rats  
in response to restriction stress (Oshchepkov et al., 2024)

(Oshchepkov et al., 2024) FlyDEGdb (this paper) PC1, 65 % PC2, 33 %

No. rat DEG log2(stress/norm) Drosophila DEG log2(stress/norm) NFlyDEG overall stress 
response  

interspecies 
differenceWAG ISIAH

I II III IV V VI VII VIII

   1 Acr –0.75 –0.76 Jon74E –6.28 28 –1.17 –3.56

   2 Alox12* –0.72 –0.78    0

   3 Atp2b4 –1.00 –0.61 PMCA –0.48    7 –1.04 –0.26

   4 Cd180 –1.19 –1.61 Toll–7 –3.60 43 –2.07 –1.96

   5 Cdkn1a 0.93 1.35 dap –0.79 12 2.01 –0.64

   6 Chrna7 –0.95 –0.68 nAChRα6 –2.23 21 –1.12 –1.25

   7 Creb5 –0.63 –0.66 Atf-2 0.28    3 –0.74 0.16

   8 Cryab 0.67 0.82 l(2)efl –1.96 22 1.35 –1.26

   9 Cyp26b1 –0.76 –0.80 Cyp313a2 –5.80 714 –1.19 –3.29

10 Ddit4 0.61 0.65 scyl –0.81 31 1.22 –0.59

11 Dhrs9 –1.60 –1.40 CG8888 –1.84 13 –2.18 –0.96

12 Evi2b* –0.62 –0.68 0

13 Fkbp5 0.79 1.38 Fkbp59 –1.99 28 1.87 –1.32

14 Flvcr2* –0.70 –0.59    0

15 Fmo2 0.69 0.96 Fmo-2 –2.30 56 1.46 –1.47

16 Fosb 1.75 1.23 kay –1.12 29 2.58 –0.85

17 Fosl1 1.23 1.70 kay –1.12 22 2.51 –0.86

18 Fosl2 0.68 0.74 kay –1.12 22 1.33 –0.78

19 Gpd1 1.02 1.68 Gpdh1 –1.08    9 2.32 –0.83

20 Hpd 0.69 0.62 Hpd –2.97 21 1.18 –1.82

21 Hspa1b 2.88 1.01 Hsc70-4 –0.56 14 3.37 –0.56

22 Il17rd* –0.76 –0.65    0

23 Il21r* –0.60 –0.66    0

24 Lims2 0.59 1.02 stck –1.15 20 1.47 –0.81

25 Lmod2 1.07 1.00 tmod –3.56 26 1.75 –2.20

26 Maff 0.59 0.82 maf-S –1.72 20 1.29 –1.12

27 Map3k6 1.21 1.18 Ask1 –0.51    9 2.12 –0.48

28 Mt2A 0.65 0.59 MtnA –8.97 156 0.89 –5.24

29 Npas4 1.09 –0.67 dysf –1.22    6 0.61 –0.76

30 P2ry4 –1.14 –0.76 PK2-R1 –4.04 51 –2.07 –2.27

31 Pcdh11x* –0.61 –0.69    0

32 Pik3ap1 –0.63 –0.95 stumps –2.81 27 –1.08 –1.58

33 Pla2g3 0.78 1.86 GIIIspla2 –2.41 24 2.21 –1.59

34 Plek –0.61 –0.90 kmr –2.83 27 –1.03 –1.59

35 Ptch1 –0.64 –0.82 ptc –1.75 17 –0.95 –0.98

36 Rasgrp3 –0.66 –0.62 Sos –1.04 18 –0.79 –0.59

37 Rin3 0.59 1.07 spri –1.13 14 1.51 –0.80

38 Scrt2 0.65 0.64 scrt –1.65 24 1.21 –1.07

39 Tmc7 –0.87 –0.72 Tmc –2.16    4 –1.08 –1.22

40 Tnfrsf11a* 0.82 1.18    0

41 Ttll10 –0.68 –0.86 TTLL1B –9.99 27 –1.33 –5.67

42 Zbtb16 1.23 2.05 CG43120 1.44 36 2.87 0.57

Overall number of Drosophila DEGs homologous to rat DEGs 1,601

Notе. NFlyDEG – number of Drosophila DEGs homologous to the rat DEG according to FlyBase (Ozturk-Colak et al., 2024). * Rat genes (Flvcr2, Alox12, Evi2b, Il17rd, 
Il21r, Pcdh11x, Tnfrsf11a), for which no homologous Drosophila genes are found in FlyDEGdb v0.1 (NFlyDEG = 0).
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Consider the representation of this information by the 
example of the first row of the table. It describes the rat Acr 
DEG. Column I indicates the gene name; columns II and III, 
stress-induces changes in its expression in rats of the WAG 
and ISIAH strains, respectively. Column IV indicates the name 
of the homologous Drosophila Jon74E gene; column V, the 
magnitude of its expression change; and column VI shows the 
total number of such Drosophila DEGs homologous to Acr. 

Columns VII and VIII show the values of the first (PC1) and 
second (PC2) principal components revealed in the analysis 
of the above-described experimental data on the magnitude 
of stress-induced change in Drosophila DEG expression 
from FlyDEGdb and homologous rat genes from RatDEGdb 
(Oshchepkov et al., 2024). The analysis was conducted with 
Past v.4.04 software (Hammer et al., 2001).

The first principal component (PC1) is the weighted-mean 
estimate of the overall stress-induced change in the expression 
of homologous Drosophila (DEGFLY) and rat (DEGISIAH and 
DEGWAG) genes: 
	 PC1 = 0.1 log2(DEGFLY) + 
	         + [log2(DEGISIAH) + log2(DEGWAG)].	      (1)

Principal component PC1 explains 65 % of the variance in 
the entire set of the considered experimental data on homolo-
gous rat and Drosophila DEGs. 

Principal component PC2 is the weighted-mean estimate 
of the interspecies difference between Drosophila and rat in 
stress-induces changes in the expression of DEGs and their 
homologs:
	 PC2 = log2(DEGFLY) – 
	        – 0.1 [log2(DEGISIAH) + log2(DEGWAG)].     (2)
Principal component PC2 explains 33 % of the variance in 
the considered experimental data.

Thus, we were first to find that two-thirds (65 %) of the 
variance in gene expression change in the rat and Drosophila 
exposed to stress were determined by common mechanisms 
of response to stress (PC1), and one-third (33  %) reflects 
interspecies difference between the rat and Drosophila (PC2). 

The statistical significance ( p < 0.05) of principal com-
ponents PC1 and PC2 found in our study was deduced from 
1,000 bootstrap samples with a special module of Past v.4.04 
software (Hammer et al., 2001) (Fig. S1).

The numerical values of PC1 and PC2 are shown in col-
umns VII and VIII of  Table 2 and in Figure 3. For example, the 
PC1 and PC2 values for the rat Acr gene and the homologous 
Drosophila Jon74E gene, described in the first row of  Table 2, 
are –1.17 and –3.56, respectively. 

Figure 3 presents the results of the correlation analysis be-
tween principal components PC1 and PC2 on the grounds of 
experimental data on pairs of homologous rat and Drosophila 
DEGs (Table 1). Each point in the figure corresponds to the PC 
values calculated for a pair of DEGs: Drosophila gene from 
FlyDEGdb and the homologous rat gene from RatDEGdb. 
The PC1 and PC2 values are plotted along the Y and X axes, 
respectively. We see that the red dash-dotted line PC1 = 0 
divides all DEGs into two disjoint groups: (1) group of DEGs 
with PC1 < 0, indicating stress-induced downregulation in 
both rats and Drosophila, and (2) group with PC1 > 0, indi-

cating stress-induced upregulation in both species, according 
to Equation (1). 

We can see a qualitative difference between the two DEG 
groups (above and below the red line) found in our comparison 
of stress-induced changes in the expression of homologous 
Drosophila and rat genes. The DEG group with stress-induced 
downregulation (blue) demonstrates a highly significant 
( p < 10–12) positive correlation between PC1 and PC2. By 
contrast, no correlation between PC1 and PC2 is observed 
in the second DEG group with stress-induced upregulation  
(green). 

Unexpectedly, our results on the rat and Drosophila coin-
cided with independent observations by D.Yu. Oshchepkov 
et al. (2025). They analyzed changes in the expression of 
homologous genes of the rat and human induced by stFress 
and hypertension, respectively. In both cases, a significant 
correlation between the first and second principal components 
was noted only in the stress-induced downregulation of ho
mologous genes. 

The correlation between PC1 and PC2 in the PC1 < 0 area, 
which corresponds to stress-induced downregulation in the 
human, rat, and Drosophila, implies that the species may 
share common molecular mechanisms for gene inhibition 
under stress conditions of different sorts. 

Fig.  3.  Results of the correlation analysis between principal compo
nents PC1 and PC2 for experimental data on pairs of DEGs homologous 
between the rat and Drosophila (Table 1). 
Principal components: PC1, Y axis; PC2, X axis. Each point corresponds to the 
values calculated for a certain pair of DEGs: Drosophila gene from FlyDEGdb 
and its homolog from RatDEGdb. The red dash-dotted line is the boundary be-
tween figure areas for stress-induced downregulation (blue) and upregulation 
(green) according to the PC1 estimate by Equation (1); the solid line reflects 
the linear correlation between PC1 and PC2 at PC1 < 0; the dotted lines border 
the 95 % confidence range for the correlation; alphabetical designations r, γ, R, 
τ, and PADJ are correlation coefficients, respectively: linear correlation, Good-
man–Kruskal generalization; Spearman–Kendal rank correlation, and their sta-
tistical significance levels with Bonferroni correction for multiple comparisons, 
as calculated with Statistica software (Statsoft™, United States).
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Table 3. Assessments of gene ontology term enrichment in the group of Drosophila genes with stress-induced downregulation

Gene Ontology  (GO) Enrichment PADJ

No. Gene Ontology 
identifier, GO:ID

Gene Ontology term Share of Drosophila DEGs 
with stress-induced 
downregulation

Share of  
GO:ID

1 GO:0005887 integral component of plasma membrane 12 of 56 12 of 520 0.0025

2 GO:0005892 acetylcholine-gated channel complex 3 of 56 3 of 7 0.005

3 GO:0005886 plasma membrane 18 of 56 18 of 1485 0.005

4 GO:0120025 plasma membrane-bounded cell projection 11 of 56 11 of 717 0.05

5 GO:0005929 cilium 6 of 56 6 of 188 0.05

The commonly known molecular mechanisms for gene 
expression downregulation under stress include the arrest 
of pre-mRNA splicing in eukaryotes (Yost, Lindquist, 1986; 
Cuesta et al., 2000) and translation inhibition (Bresson et al., 
2020). 

We used the STRING software (Szklarczyk et al., 2021) to 
assess the Gene Ontology (GO) term enrichment in the group 
of Drosophila genes with stress-induced downregulation (blue 
dots in Figure 3). The results are shown in Table 3. 

The analysis revealed five GO terms in which the list of 
Drosophila genes with stress-induced downregulation is sig-
nificantly ( p < 0.05) enriched. Four of the five (GO:0005887, 
GO:0005892, GO:0005886, GO:0120025, and GO:0005929) 
are directly related to components of the plasma membrane. 
The fifth term (GO:0005929, cilium), also belongs to this 
group, as cilia are specific organelles on the outer surface of 
eukaryotic cell membranes. This fact implies that the plasma 
membrane of Drosophila cells is one of the universal targets of 
stress factors described in FlyDEGdb. In this regard, note that 
stress-induced downregulation of Drosophila genes encoding 
components of plasma membranes in cells can slower their 
growth under stress. Our assumption agrees with the results 
presented in (Kassahn et al., 2009), where mechanisms of 
animal response to stress factors are reviewed. It should also 
be mentioned that M.F. Haque et al. (2025) detected an inhibi-
tion of Escherichia coli cell growth under stress. 

To conclude, we note that the year 2023 marked the 80th 
anniversary of the famous maxim by Hans Selye “Stress is 
the spice of life” (Rochette et al., 2023). Our work once more 
illustrates the fundamental significance of the stress issue in 
life sciences. 

Conclusion 
We developed the FlyDEGdb knowledge base, which is a 
body of experimental data on differentially expressed genes 
(DEGs) of Drosophila and their response to a broad range 
of stressing factors: cold, heat, dehydration, heavy metals, 
ionizing radiation, starvation, household chemicals, drugs, 
agricultural fertilizers, insecticides, pesticides, herbicides, 
and other toxicants. The knowledge base, storing information 
on the commonly used model species, D. melanogaster, can 
be employed by students of translational molecular biology 
and genetics of the human and animals, physiology, transla-
tional medicine, pharmacology, nutrition science, agricultural 
chemistry, radiation biology, toxicology, and bioinformatics.
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Abstract. Hepatocellular Carcinoma (HCC) is the most common primary liver cancer characterized by rapid progres­
sion, high mortality rate and therapy resistance. One of the key areas in studying the molecular mechanisms of HCC 
development is the analysis of disturbances in apoptosis processes in hepatocytes. Throughout life apoptosis en­
sures the elimination of old and defective cells while the attenuation of this process serves as one of the leading fac­
tors in carcinogenesis. In this study we reconstructed and analyzed the gene network regulating hepatocyte apo­
ptosis in humans based on single-cell transcriptome sequencing (scRNA-seq) data and the ANDSystem knowledge 
base which employs artificial intelligence and computational systems biology methods. Comparative analysis of 
gene expression revealed weakened transcription of genes involved in the regulation of inflammatory processes 
and apoptosis in tumor hepatocytes compared to hepatocytes of normal liver tissue. The reconstructed network 
included 116 differentially expressed genes annotated in Gene Ontology as genes involved in the apoptotic pro­
cess (apoptotic process GO:0006915), along with their 116 corresponding protein products. It also included 16 ad­
ditional proteins that, while lacking GO apoptosis annotation, were differentially expressed in HCC and interacting 
with genes and proteins participating in the apoptosis process. Computational analysis of the gene network identi­
fied several key protein products encoded by the genes NFKB1, MMP9, BCL2, A4, CDKN1A, CDK1, ERBB2, G3P, MCL1, 
FOXO1. These proteins exhibited both a high degree of connectivity with other network objects and differential ex­
pression in HCC. Of particular interest are proteins CDKN1A, ERBB2, IL8, and EGR1, which are not annotated in Gene 
Ontology as apoptosis participants but have a statistically significant number of interactions with genes involved in 
apoptosis. This indicates their role in regulating programmed cell death. The obtained results can guide the design 
of new experiments studying the role of apoptosis in carcinogenesis and aid in the search for novel therapeutic 
targets and approaches for HCC therapy using apoptosis modulation in malignant hepatocytes. Furthermore, the 
proposed approach to reconstructing and analyzing the apoptosis regulation gene network in hepatocellular car­
cinoma can be applied to analyze other tumor forms providing a systemic understanding of disturbances in key 
regulatory processes in oncogenesis and potential therapy targets.
Key words: hepatocellular carcinoma; single cell transcriptomics; apoptosis; gene networks; cognitive system 
ANDSystem
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Reconstruction and analysis of the gene network 
regulating apoptosis in hepatocellular carcinoma

из ключевых направлений в изучении молекулярных механизмов развития гепатоцеллюлярной карцино­
мы является анализ нарушений процессов апоптоза в гепатоцитах. На протяжении всей жизни благодаря 
апоптозу происходит элиминация старых и дефектных клеток, тогда как ослабление апоптотической гибели 
служит одним из ведущих факторов канцерогенеза. В настоящем исследовании выполнены реконструкция 
и анализ генной сети регуляции апоптоза гепатоцитов у человека на основе данных секвенирования транс­
криптома одиночных клеток (scRNA-seq) и базы знаний ANDSystem, использующей методы искусственного 
интеллекта и компьютерной системной биологии. Сравнительный анализ экспрессии генов показал осла­
бление транскрипции генов, вовлеченных в регуляцию воспалительных процессов и апоптоза, в опухолевых 
гепатоцитах по сравнению с гепатоцитами нормальной ткани печени. Реконструированная сеть включала 
116 дифференциально экспрессирующихся генов, аннотированных в Gene Ontology как гены, вовлеченные 
в процесс апоптоза (apoptotic process GO:0006915), 116 соответствующих белков, а также 16 дополнительных 
белков, не имеющих GO-аннотации, но дифференциально экспрессируемых при гепатоцеллюлярной карци­
номе и вовлеченных во взаимодействия с генами и белками, участвующими в процессе апоптоза. Компью­
терный анализ генной сети выявил ряд ключевых белков – продуктов генов NFKB1, MMP9, BCL2, A4, CDN1A, 
CDK1, ERBB2, G3P, MCL1, FOXO1, демонстрирующих как высокое число связей с другими объектами сети, так и 
дифференциальную экспрессию при гепатоцеллюлярной карциноме. Особый интерес представляют белки 
CDKN1A, ERBB2, IL8 и EGR1, не аннотированные в Gene Ontology как участники апоптоза, но обладающие ста­
тистически значимым числом взаимодействий с генами, вовлеченными в апоптоз, что указывает на их роль 
в регуляции программируемой клеточной гибели. Полученные результаты могут найти применение для пла­
нирования новых экспериментов по изучению роли апоптоза в канцерогенезе и поиска новых мишеней и 
подходов для терапии гепатоцеллюлярной карциномы, основанных на модуляции апоптоза в злокачествен­
ных гепатоцитах. Предложенный подход к реконструкции и анализу генной сети регуляции апоптоза при ге­
патоцеллюлярной карциноме может быть использован для анализа других форм опухолей и дает системное 
представление о нарушениях ключевых регуляторных процессов в онкогенезе и потенциальных мишенях 
для терапии.
Ключевые слова: гепатоцеллюлярная карцинома; транскриптомика одиночных клеток; апоптоз; генные 
сети; когнитивная система ANDSystem

Introduction
Hepatocellular carcinoma (HCC) is the most common pri-
mary liver cancer arising from the malignant transformation 
of hepatocytes. Approximately 750,000 people die from 
this disease worldwide each year (Ganesan, Kulik, 2023). 
This malignancy is characterized by marked resistance to 
anticancer drugs and a high rate of recurrence (Zou et al., 
2025), underscoring the relevance of investigating both the 
molecular mechanisms of tumorigenesis and the development 
of tumor resistance – and, on this basis, identifying targets for 
anticancer therapy. The principal risk factors for HCC include 
chronic infection with hepatitis B and C viruses, alcoholic 
cirrhosis, and non-alcoholic steatohepatitis; other established 
risk factors comprise obesity, type 2 diabetes mellitus, and 
tobacco smoking (Ogunwobi et al., 2019).

Viral infections and/or adverse environmental factors 
(exposure to hepatotoxic agents) induce alterations in the 
functioning of a number of signaling pathways in hepa-
tocytes, leading to their malignant transformation and the 
development of HCC. It has been established that the hepa-
titis B virus X protein (HBx) suppresses the activity of the 
pro-apoptotic protein p53, impairs DNA repair, and activates 
several signaling cascades (STAT, NF-κB, AP-1, etc.) in-
volved in cell proliferation and survival, thereby promoting 
HCC progression (Jiang Y. et al., 2019). The pathogenesis 
of HCC involves changes in: (a) growth factor signaling 
pathways such as insulin-like growth factor (IGF), epidermal 
growth factor (EGF), platelet-derived growth factor (PDGF), 
fibroblast growth factor (FGF), and hepatocyte growth factor 
(HGF/MET); (b) signaling pathways related to cell differen-

tiation, including WNT, Hedgehog, and Notch; and (c) an-
giogenesis-related pathways driven by vascular endothelial 
growth factor (VEGF) and FGF (Dhanasekaran et al., 2016). 
In addition, disruption of apoptosis – programmed cell death – 
makes a crucial contribution to HCC progression (Fabregat, 
2009). Chronic liver inflammation resulting from hepatitis 
B or C virus infection or exposure to adverse environmental 
factors leads to hepatocyte apoptosis accompanied by a com-
pensatory increase in their proliferation, which, under condi-
tions of high oxidative stress caused by inflammation, results 
in the accumulation of DNA mutations and an increased 
likelihood of malignant transformation of hepatocytes (Yang 
et al., 2019). Moreover, apoptosis plays a key role in elimi-
nating malignant cells; therefore, activation of apoptosis is 
one of the mechanisms of action of anticancer drugs in HCC  
(Hajizadeh et al., 2023). It has been shown that suppression 
of the extrinsic and intrinsic apoptosis pathways – particu-
larly by regulatory microRNAs – may be associated with 
the development of HCC and poor clinical outcomes (Khle-
bodarova et al., 2023). It has also been established that the 
hepatitis B virus HBx protein suppresses the activity of the 
pro-apoptotic protein p53, contributing to the initiation and 
progression of HCC (Jiang Y. et al., 2019). Available data 
indicate that disruption of the balance between pro-apoptotic 
and anti-apoptotic proteins in hepatocytes is one of the factors 
underlying HCC development and the emergence of drug re-
sistance (Ladd et al., 2024; Wu et al., 2024). This necessitates 
investigating the mechanisms by which apoptotic pathways 
in hepatocytes are perturbed during HCC development and 
identifying key regulatory nodes of apoptosis, the expres-
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sion of which differs between healthy and tumor hepato- 
cytes.

It is well known that disturbances in the interactions among 
tumor cells, the stroma, and immune cells play an important 
role in disease progression, fostering HCC development, 
the emergence of drug resistance, and recurrence (Xue et 
al., 2022). Notably, HCC exhibits a high degree of cellular 
heterogeneity, which highlights the importance of methods 
that probe the molecular processes of HCC development at 
the single-cell level (Li X. et al., 2022).

One such method – single-cell transcriptome sequenc-
ing  – provides valuable information on gene expression 
features across different cell types within tumor tissue. This 
is particularly relevant when comparing malignantly trans-
formed hepatocytes within the tumor to normal hepatocytes 
from histologically unaltered liver tissue (Zhang et al., 2022). 
However, differential expression analysis alone is insufficient 
to elucidate the mechanisms of tumor transformation. Based 
on such experimental data, it is necessary to reconstruct 
gene networks – ensembles of coordinately functioning 
genes – which provide valuable insights into dysregulated 
molecular mechanisms of gene–gene interactions responsible 
for the development of pathological processes (Saik et al., 
2019; Ivanisenko V.A. et al., 2022; Antropova et al., 2023; 
Butikova et al., 2025).

The aim of our study was to reconstruct and analyze the 
gene network regulating apoptosis in hepatocytes in human 
hepatocellular carcinoma using an integrated approach 
that combines single-cell transcriptomic data with the 
ANDSystem software-information platform designed for 
gene network reconstruction based on automated analysis 
of scientific publications and biomedical factual databases 
(Demenkov et al., 2011; Ivanisenko V.A. et al., 2015, 2019). 
The system employs artificial intelligence methods and an 
ontological description of the domain, ensuring high cov-
erage and accuracy in knowledge extraction from diverse 
sources of experimental information (Ivanisenko T.V. et al., 
2020, 2022, 2024).

By comparing scRNA-seq transcriptomic data for normal 
hepatocytes and hepatocytes malignantly transformed in 
HCC, we identified 1,853 differentially expressed genes 
(DEGs). Using ANDSystem, we reconstructed an interaction 
network between the DEGs and genes annotated in Gene 
Ontology as involved in apoptosis (GO:0006915). Analysis 
of the resulting gene network highlighted several DEGs, 
the products of which (including BCL2, NFKB1, FOXO1, 
MCL1, CDKN1A, ERBB2, IL8, and EGR1) exhibit signifi-
cant connectivity with components of the apoptosis network. 
Notably, some of these proteins (CDKN1A, ERBB2, IL8, 
EGR1) were not annotated in Gene Ontology as apoptosis 
participants, underscoring their potential novelty and impor-
tance for understanding the mechanisms of programmed cell 
death in HCC. In addition, based on scRNA-seq data, we 
observed decreased expression of key inhibitors of apopto-
sis in hepatocellular carcinoma cells. This finding suggests 
that evasion of apoptosis in HCC may be driven not by 
the enhancement of anti-apoptotic mechanisms but, on the 

contrary, by disruption of pro-apoptotic signaling pathways. 
The results obtained may be useful for planning further ex-
perimental studies aimed at elucidating the mechanisms of 
apoptosis regulation in hepatocytes in HCC and are also of 
interest for developing targeted therapeutic strategies aimed 
at modulating apoptotic processes in tumor cells of the liver.

Material and methods
GEO database. For the analysis, we used single-cell tran-
scriptome sequencing data from primary hepatocellular car-
cinoma (HCC) specimens and paired histologically normal 
liver tissues, available in the NCBI Gene Expression Om-
nibus (GEO) under accession GSE149614. Data from eight 
patients were analyzed (patients 3, 4, 5, 6, 7, 8, 9, and 10).

Transcriptome data analysis. Single-cell RNA-sequenc-
ing (scRNA-seq) data processing and downstream analyses 
were performed in Python using the Scanpy package (v1.9.3) 
(Wolf et al., 2018). Initial filtering included: (1) removing 
cells with detected expression for fewer than 100 genes, and 
(2) removing genes detected in fewer than 3 cells. Normal-
ization was carried out with scanpy.pp.normalize_total(), 
followed by a log1p transformation. Cell clustering was 
performed using the Leiden algorithm (Traag et al., 2019). 
Differentially expressed (marker) genes for each identified 
cluster were determined with scanpy.tl.rank_genes_groups(), 
employing the Wilcoxon rank-sum test.

Based on the expression of known hepatocyte marker 
genes (ALB, HNF4A, SERPINA1, CYP3A4, TAT, TF) (Si-
Tayeb et al., 2010) and the clustering results, cells classified 
as hepatocytes were selected. For subsequent comparative 
analyses between tumor and normal hepatocytes, pseudobulk 
samples (Squair et al., 2021) were generated for each patient 
by aggregating expression values across all cells separately 
for tumor and normal tissue.

Statistically significant differences in gene expression 
between the pseudobulk tumor group and the pseudo-
bulk normal hepatocyte group were identified in R using  
DESeq2 (v1.42.0) (Love et al., 2014). Differentially expressed 
genes were defined by thresholds of p-value < 0.05 and 
|logFC| > 0.5.

Reconstruction of gene networks. Reconstruction and 
analysis of the gene network regulating hepatocyte apoptosis 
in human hepatocellular carcinoma were performed using the 
ANDSystem software-information platform (Demenkov et 
al., 2011; Ivanisenko V.A. et al., 2015, 2019). The effective-
ness of ANDSystem has been demonstrated in a number of 
studies, including reconstruction of the endothelial apoptosis 
regulatory network in lymphedema (Saik et al., 2019) and 
investigations of molecular mechanisms associated with 
hepatocellular carcinoma (Demenkov et al., 2023; Khlebo-
darova et al., 2023). The system has also been applied to the 
interpretation of omics data – metabolomics (Ivanisenko V.A. 
et al., 2022, 2024) and proteomics (Momynaliev et al., 2010; 
Larina et al., 2015) – demonstrating its versatility and ap-
plicability to diverse data types and diseases.

The network reconstruction comprised several stages. 
First, using the Query Wizard of the ANDVisio software 
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module (Demenkov et al., 2011), a graphical user interface 
within ANDSystem, we reconstructed an associative gene 
network that included genes and their protein products 
involved in apoptosis. The list of human protein-coding 
genes participating in apoptosis was obtained from The Gene 
Ontology Resource (https://geneontology.org/) for the term 
GO:0006915 “apoptotic process”.

At the second stage, we searched for novel proteins in-
volved in the regulation of apoptosis in hepatocytes during 
HCC development. We considered as candidates those pro-
teins that are not annotated in The Gene Ontology Resource 
as apoptosis participants but regulate the expression of the 
initial genes involved in apoptosis.

To identify such proteins, using the Pathway Wizard in 
ANDVisio, we retrieved all direct relationships of the types 
Expression regulation, Expression upregulation, Expression 
downregulation, and Interaction from the protein products of 
all DEGs identified in the experiment to the DEGs involved 
in apoptosis according to Gene Ontology.

We then assessed the statistical significance of the speci-
ficity of the linkage between the identified proteins and the 
baseline apoptosis gene network constructed in stage 1. The 
specificity metric was defined as the proportion of a protein’s 
interactions that connect to genes in the network relative to 
the total number of that protein’s genome-wide interactions. 
The statistical significance of the deviation between the ob-
served number of a given protein’s interactions with network 
genes and the number expected by chance was evaluated 
using the hypergeometric distribution:

P(X ≥ x) = 
min(N, n)

∑
k = x  

 n 
k  

M – n 
N – k  
M 
N

        
,

where M is the total number of protein-coding genes in the 
database, n is the number of genes in the analyzed gene 
network, N is the total number of human genes that interact 
with the protein under study, and x is the number of network 
genes that interact with the protein under study.

P-values were calculated using the Python library (scipy.
stats.hypergeom). To correct for multiple testing, the Bon-
ferroni adjustment (Narkevich et al., 2020) was applied, 
under which DEGs were considered statistically significant 
if their Bonferroni-adjusted p-value satisfied p < 0.05. All 
computations were performed using statsmodels and other 
standard Python tools.

Thus, the final gene network regulating apoptosis during 
HCC development included both the DEGs and their products 
annotated in Gene Ontology as participating in the apoptotic 
process, and the protein products of DEGs that were statisti-
cally significantly linked to this apoptosis network but not 
annotated as apoptosis participants in Gene Ontology.

Gene network analysis. For each network component 
(gene or protein), ANDSystem computed the Network Con-
nectivity metric, defined as the number of other network 
objects (nodes) to which the component is connected (i. e., its 
degree). Network hubs were defined as proteins and genes, 
Network Connectivity of which exceeded the critical value 

(quantile) corresponding to a p-value of 0.05. The quantile 
was calculated from the empirical distribution of Network 
Connectivity across all nodes of the gene network. Thus, 
the number of connections for hub nodes was statistically 
significant at p < 0.05.

Phylostratigraphic analysis of gene networks. The 
evolutionary age of genes was determined using the  
GenOrigin database (http://chenzxlab.hzau.edu.cn/) (Tong 
et al., 2021), which provides gene age annotations across 
species inferred by phylostratigraphic analysis. To assess 
the statistical significance of differences in the distribution 
of gene ages between the full set of human protein-coding 
genes and the genes in the reconstructed apoptosis network 
of hepatocytes in HCC, we applied a hypergeometric test. 
The probability of observing m or more genes from a given 
age interval among M network genes was calculated using 
the hypergeom.pmf function from SciPy. The analysis was 
performed for the 20 age intervals represented in GenOrigin. 
The following parameters were used in the calculations:  
N – the total number of human protein-coding genes; n – the 
number of human protein-coding genes in a given age inter-
val; M – the number of genes in the reconstructed network; 
m – the number of network genes within the interval under 
analysis. Differences were considered statistically significant 
at p < 0.05.

Functional annotation of gene sets. Functional annotation 
of the genes represented in the network was performed using 
the web-based Database for Annotation, Visualization and  
Integrated Discovery (DAVID 2021) (https://david.
ncifcrf.gov/; Sherman et al., 2022) with default settings. 
Over-representation analysis of Gene Ontology terms 
describing biological processes, molecular functions, and 
cellular components, as well as KEGG pathways (i. e., 
enrichment analysis of gene sets to identify key biologi-
cal processes associated with the genes under study), was 
carried out for (i) the complete set of DEGs identified 
from the hepatocyte transcriptome analysis and (ii) the 
subset of DEGs included in the hepatocyte apoptosis regu-
latory gene network. In DAVID, over-representation of GO 
terms and KEGG pathways was evaluated using Fisher’s  
exact test (Sherman et al., 2022). Statistical significance 
of enrichment was defined as a Bonferroni–Šidák-adjusted  
p-value < 0.05 (Šidák, 1967). 

Results 

Analysis of differential gene expression in HCC
As a result of comparing single-cell transcriptomes (ma-
lignantly transformed tumor hepatocytes vs. hepatocytes 
from histologically normal liver tissue), 1,853 differentially 
expressed genes (DEGs) were identified. The data for these 
DEGs are provided in Table S11. Among them, 964 genes 
showed increased expression and 889 genes showed de-
creased expression in tumor hepatocytes compared with 
normal liver cells. The results of the functional annotation 

1 Tables S1–S7 and Figs S1 and S2 are available at: 
https://vavilov.elpub.ru/jour/manager/files/Suppl_Adam_Engl_29_7.xlsx

https://vavilov.elpub.ru/jour/manager/files/Suppl_Adam_Engl_29_7.xlsx
https://vavilov.elpub.ru/jour/manager/files/Suppl_Adam_Engl_29_7.xlsx
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of DEGs using the DAVID web resource – namely, the lists 
of significantly overrepresented Gene Ontology terms and 
KEGG pathways – are presented in Tables S2 and S3. The 
ten most significant biological process terms (those with the 
highest proportion of DEGs associated with the term rela-
tive to the total number of DEGs) for the upregulated and 
downregulated gene sets are shown in Table 1.

For the genes with increased expression in malignantly 
transformed cells, significantly overrepresented terms were 
related to cell division (#1, #2 in Table 1), chromatin organi-
zation (#3 in Table 1), DNA repair and replication (#4, #5 in 
Table 1), mRNA splicing (#6 in Table 1), rRNA processing  
(#7 in Table 1), protein translation (#8, #9 in Table 1), and 
protein folding (#10 in Table 1). For the upregulated genes, 
KEGG pathways related to oxidative phosphorylation 
(hsa00190: Oxidative phosphorylation) and DNA replication 
(hsa03030: DNA replication) were significantly overrepre-
sented (Table S2).

For the genes with decreased expression, significantly 
overrepresented terms described intracellular signal trans-
duction (#1, #2 in Table 1), transcriptional regulation (#3–5 

in Table 1), positive and negative regulation of apoptosis 
(#6–8 in Table 1), inflammation (#9 in Table 1), cell migra-
tion (#10 in Table 1), T-cell receptor signaling pathways 
(#10 in Table S3), and receptor tyrosine kinases (#11 in  
Table S3).

For the genes with increased expression, significantly 
overrepresented KEGG pathways included the MAPK sig-
naling pathway (hsa04010), NF-κB signaling (hsa04064), 
chemokine signaling (hsa04062), and T-cell receptor signa
ling (hsa04660) (Table S3). 

Gene network of DEGs involved in the apoptosis  
process according to Gene Ontology data
As described in the “Materials and methods” section, re-
construction of the gene network regulating apoptosis in 
hepatocytes during HCC development was carried out in two 
stages. Given the well-established importance of apoptosis 
in HCC (Hajizadeh et al., 2023; Ladd et al., 2024; Wu et al., 
2024), as well as the over-representation of apoptosis-related 
processes among downregulated genes identified in our study 
(Table 1) in malignantly transformed hepatocytes, the first 

Table 1. Overrepresented Gene Ontology terms for genes with increased and decreased expression  
in tumor hepatocytes compared with hepatocytes from histologically normal liver tissue in HCC

Genes  
with increased expression

Genes  
with reduced expression

  # Gene Ontology term %* p-value**   # Gene Ontology term %* p-value**

   1 GO:0051301~cell division 7.7 0.000    1 GO:0007165~signal  
transduction 

12.4 0.000

   2 GO:0007059~chromosome  
segregation 

3.6 0.000    2 GO:0035556~intracellular  
signal transduction 

5.5 0.000

   3 GO:0006325~chromatin  
organization 

3.1 0.020    3 GO:0045944~positive regulation  
of transcription by RNA polymerase II 

10.9 0.000

   4 GO:0006281~DNA repair 3.7 0.005    4 GO:0000122~negative regulation  
of transcription by RNA polymerase II 

9.4 0.000

   5 GO:0006260~DNA replication 2.8 0.000    5 GO:0045893~positive regulation 
of DNA-templated transcription

6.6 0.021

   6 GO:0000398~mRNA splicing,  
via spliceosome 

2.8 0.004    6 GO:0006915~apoptotic  
process 

7.0 0.000

   7 GO:0006364~rRNA  
processing 

2.7 0.000    7 GO:0043065~positive regulation  
of apoptotic process 

3.9 0.012

   8 GO:0006412~translation 3.4 0.000    8 GO:0043066~negative regulation  
of apoptotic process

5.3 0.017

   9 GO:0032543~mitochondrial  
translation 

2.4 0.000    9 GO:0006954~inflammatory  response 4.7 0.019

10 GO:0006457~protein folding 3.3 0.000 10 GO:0016477~cell migration 4.0 0.000

* Proportion of genes associated with the given term relative to the total number of up- or downregulated genes; ** p-value for the statistical significance of Gene 
Ontology term over-representation with the Bonferroni–Šidák correction. The table reports the ten most significant terms (those with the highest proportion  
of DEGs associated with the term relative to the total number of DEGs) describing biological processes for the upregulated and downregulated gene sets.
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stage incorporated into the gene network those genes and 
their protein products that, according to Gene Ontology, are 
involved in apoptosis and the expression of which in tumor 
hepatocytes differs from that in hepatocytes from histologi-
cally normal liver tissue. Of the 746 protein-coding genes 
(Table S4) annotated in The Gene Ontology Resource under 
the term “apoptotic process” (GO:0006915), 116 (16 % of all 
genes annotated to this term) were differentially expressed 
in malignantly transformed hepatocytes. Of these, 49 genes 
were upregulated and 67 genes were downregulated in tumor 
hepatocytes compared with healthy liver cells, accounting for 
42.2 and 57.8 %, respectively, of the 116 apoptosis-related 
DEGs. The associative gene network reconstructed using 
ANDSystem (Fig. S1) comprised the 116 DEGs involved 
in apoptosis and their 116 protein products. Characteristics 
of this network are presented in Table 2 (column “Gene 
network, stage 1”); its visualization is shown in Fig. S1, and 
the full list of components (proteins and genes) is provided  
in Table S5.

At the second stage, to identify novel protein regula-
tors of apoptosis during the malignant transformation of 
hepatocytes, the network reconstructed in stage one was 
expanded by adding the protein products of all DEGs re-
vealed by the comparative analysis of transcriptomes from 
malignantly transformed hepatocytes and hepatocytes of 
histologically normal liver tissue. In expanding the net-
work, we selected relationship types pertaining to gene 
expression regulation – expression regulation, expression 
upregulation, expression downregulation, and interaction. 
We found that, of the 116 apoptosis-related DEGs, the 
expression of 68 genes (59 %) is regulated by 223 proteins 
encoded by genes that are differentially expressed in tumor 
hepatocytes relative to normal liver tissue, but are not an-
notated in Gene Ontology as participating in apoptosis.  
The list of these genes is provided in Table S6. Of them, 
102 genes were upregulated and 121 genes were downre
gulated.

According to functional annotation, the downregulated 
genes were significantly overrepresented (Bonferroni-ad-
justed -value < 0.05) for biological processes including 
leukocyte cell–cell adhesion (GO:0007159), neutrophil 
chemotaxis (GO:0030593), cell division (GO:0051301), 
and positive regulation of the PI3K/Akt signaling pathway  
(GO:0051897).

Next, for the 223 candidate proteins potentially involved 
in regulating hepatocyte apoptosis during HCC development, 
we assessed the statistical significance of their specificity of 
association with the apoptosis regulatory gene network. For 
each protein, we calculated the probability that the observed 
fraction of its interactions with network genes relative to its 
total interactions with human protein-coding genes could 
arise by chance. As a result, 16 DEGs (11 downregulated 
and 5 upregulated) were identified as significantly associated 
(Bonferroni-adjusted p-value < 0.05) with 43 apoptosis genes 
(Table 3). As seen in Table 3, the products of IL8, ERBB2, 
EGR1, TGFB2, and CDKN1A have the highest numbers 
of links to DEGs already annotated in Gene Ontology as 

apoptosis participants. Proteins encoded by CDN1A, ETS2, 
EGR1, BACH2, KLF5, and FEN1 are transcription factors 
according to The Human Transcription Factors database 
(Lambert et al., 2018; https://humantfs.ccbr.utoronto.ca/).

The final gene network of hepatocyte apoptosis in HCC 
is shown in Fig. S2, and its characteristics are presented in 
Table 2 (column “Gene network, stage 2”). The complete list 
of proteins and genes in the network is provided in Table S7. 
As seen in Table 2, upon expanding the initial apoptosis 
gene network with proteins that regulate the expression of 
apoptosis genes, the number of links of all types increased, 
with the exception of downregulation. Network hubs – that 
is, the nodes (genes or proteins), Network Connectivity (the 
number of other nodes connected to a given node) of which 
exceeded the critical (quantile) threshold corresponding to 
a p-value of 0.05 (see “Materials and methods”) – are listed 
in Table 4.

A total of 11 network hubs were identified (Table 4), 10 of 
which are proteins, and one is the gene MMP9, the product 
of which also appears among the network hubs. According to 
scRNA-seq data (Table S1), the expression of genes encod-
ing three proteins (CDK1, MMP9, G3P) was increased in 
malignantly transformed hepatocytes compared with hepa-
tocytes from histologically normal liver tissue, whereas the 
expression of genes encoding the remaining seven proteins 
(NFKB1, BCL2, A4, CDKN1A, ERBB2, MCL1, FOXO1) 
was decreased. The genes encoding two network hubs – 
CDKN1A and ERBB2 – had not previously been annotated 
in Gene Ontology as participants in the apoptotic process.

Network of gene expression regulation involved  
in hepatocyte apoptosis during the development  
of hepatocellular carcinoma
Taking into account the scRNA-seq-identified changes in the 
expression of genes, the products of which are involved in 
hepatocyte apoptosis during HCC development, we analyzed 
gene expression regulation within the final apoptosis net-
work. To this end, we filtered the edges of the reconstructed 
network, retaining only those proteins that either enhance 
(edge type “expression upregulation,” Fig. 1) or suppress 
(edge type “expression downregulation,” Fig.  2) the ex-
pression of genes comprising the final apoptosis regulatory 
network.

The expression-activation network (Fig. 1) comprised 
38 proteins that activate the expression of 40 gene compo-
nents of the apoptosis network. According to ANDSystem, 
NFKB1  activates the expression of 15 genes (including 
BCL2, MCL1, CFLAR, etc.), IL-8 activates 5 genes, ERBB2 
activates 4 genes, and EGR1, SDF1, and TGFB2 each 
activate 3 genes; the remaining proteins in the expression-
activation network regulate fewer than three apoptotic 
genes. In our scRNA-seq analysis (Table S1), both these 
regulators and their target genes exhibited decreased ex-
pression in malignantly transformed hepatocytes compared 
with hepatocytes from histologically normal liver tissue. By 
contrast, the matrix metalloproteinase gene MMP9, which 
was upregulated, is activated, according to ANDSystem, by 

https://humantfs.ccbr.utoronto.ca/
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five proteins (MEIN1, PPIA, TRIB3, CHK1, FEN1), the 
expression of which was also increased in tumor hepatocytes. 
In addition, CDC20, FEN1, KLF5, and their target genes 
showed increased expression.

The expression-repression network (Fig. 2) of genes 
involved in apoptosis in HCC comprised 15 proteins con-
nected by “expression downregulation” type of interactions 
to 9 genes. According to ANDSystem, the expression of 

MMP9 can be suppressed by five proteins (NFKB1, GELS, 
NR4A1, FOXO1, EGR1), the expression of which is re-
duced in malignantly transformed hepatocytes according 
to scRNA-seq, which may account for the elevated MMP9 
expression observed in the scRNA-seq analysis. The expres-
sion of BCL2, which is decreased in tumor hepatocytes, can 
be suppressed by four proteins (CDK1, VDAC1, MMP9, 
CYC), the expression of which is increased in malignant 

Table 2. Characteristics of associative networks of genes and proteins involved in apoptosis  
of hepatocytes in HCC

Parameter Gene network

Stage 1 Stage 2

Number of network components 238 248

    genes 116 116

    proteins 116 132

Number of interactions 1,512 1,933

Of these, the following types of interactions:

Gene expression

Expression 116 116

Differential expression      2      2

Coexpression      7      7

Protein interactions

Interaction 259 385

Catalyze    21    29

Cleavage      2      5

Modification    34    50

Regulatory interactions

Regulation    85    95

Upregulation    69    79

Downregulation    24    24

Expression downregulation 122 134

Expression regulation 309 385

Expression upregulation 165 213

Activity downregulation    35    47

Activity regulation    60    79

Activity upregulation    25    35

Modification downregulation    15    17

Modification regulation    54    64

Modification upregulation    51    60

Degradation downregulation      9    12

Degradation regulation    17    34

Degradation upregulation      7    21

Transport regulation    24    40
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Table 4. Hubs of the apoptosis gene network in hepatocytes in human hepatocellular carcinoma

No. Object type  
in the network

Name of the 
object in the 
network

Protein/gene name Number of linked 
network objects

p-value Expression

   1 Protein NFKB1 Nuclear factor kappa B subunit 1 87 0.004 Decreased

   2 Gene MMP9 Matrix metallopeptidase 9 48 0.008 Increased

   3 Protein BCL2 BCL2 apoptosis regulator 46 0.012 Decreased

   4 Protein A4 Amyloid beta precursor protein 43 0.016

   5 Protein CDN1A Cyclin dependent kinase inhibitor 1A 35 0.020

   6 Protein CDK1 Cyclin dependent kinase 1 33 0.024 Increased

   7 Protein ERBB2 Erb-b2 receptor tyrosine kinase 2 31 0.028 Decreased

   8 Protein MMP9 Matrix metallopeptidase 9 29 0.036 Increased

   9 Protein G3P Glyceraldehyde-3-phosphate dehydrogenase 29 0.036

10 Protein MCL1 MCL1 apoptosis regulator, BCL2 family member 27 0.044 Decreased

11 Protein FOXO1 Forkhead box O1 27 0.044

Note.  p-value – the critical threshold (quantile) calculated from the observed distribution of Network Connectivity across all nodes of the gene network. Proteins 
not previously annotated in Gene Ontology as participants in the apoptotic process are shown in bold.

Table 3. List of proteins encoded by DEGs of malignantly transformed hepatocytes that are involved  
in the regulation of apoptosis in HCC but are not annotated in Gene Ontology as participants in apoptosis  
(GO:0006915, apoptotic process) 

No. Protein Name of the protein Number  
of interactions

Expression p-value

DEG Total

   1 IL8 C-X-C motif chemokine ligand 8 10 25 Decreased 0.00000

   2 ERBB2 Erb-b2 receptor tyrosine kinase 2 9 32 0.00025

   3 EGR1 Early growth response 1 7 23 0.01576

   4 CDKN1A Cyclin dependent kinase inhibitor 1A 6 35 0.00004

   5 TGFB2 Transforming growth factor beta 2 6 14 0.00861

   6 ETS2 ETS proto-oncogene 2 transcription factor 5 8 0.00018

   7 KLF5 KLF transcription factor 5 5 13 Increased 0.00196

   8 SDF1 C-X-C motif chemokine ligand 12 5 15 Decreased 0.04080

   9 GELS Gelsolin 4 14 0.0012

10 K2C7 Keratin 7 3 3 0.00071

11 IMA1 Karyopherin subunit alpha 2 3 12 Increased 0.00198

12 FEN1 Flap structure-specific endonuclease 1 3 8 0.00576

13 NEP Neprilysin 3 9 Decreased 0.00765

14 CDC20 Cell division cycle 20 3 19 Increased 0.01919

15 NEUT Neurotensin 3 4 0.02776

16 BACH2 BTB domain and CNC homolog 2 3 7 Decreased 0.03851

Note.  Number of interactions to apoptosis DEGs – the number of expression-regulatory links from the protein to genes involved in apoptosis according to Gene 
Ontology; Total number of links – the number of links from the protein to all components of the final gene network (genes and proteins); Expression – direction 
of the gene’s expression change in tumor hepatocytes relative to normal cells (increased; decreased); p-value – statistical significance of the protein’s association 
with apoptosis genes, computed using the hypergeometric test with the Bonferroni correction. Proteins are sorted in descending order of the significance of their 
association with the apoptosis network. Transcription factors are shown in bold, according to The Human Transcription Factors database (Lambert et al., 2018; 
https://humantfs.ccbr.utoronto.ca/).
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hepatocytes compared with hepatocytes from healthy liver 
tissue. Among the proteins involved in apoptosis regulation 
in HCC but not annotated in Gene Ontology as participants 
in this process, the expression-repression network included 
EGR1, CDN1A, GELS, and CDC20.

Phylostratigraphic analysis  
of the gene network
The analysis of the evolutionary age distribution of genes 
in the reconstructed apoptosis network in HCC is presented 
in Figure 3. The proportion of genes in the reconstructed 

Fig. 1. Gene network of expression activation for gene components of the apoptosis regulatory network during HCC development.
Proteins and genes with increased expression are outlined in green; those with decreased expression are not outlined. Proteins that had not 
previously been annotated in Gene Ontology as participants in apoptosis are shown as larger circles. Shown are only the protein components of 
the hepatocyte apoptosis regulatory network in HCC (see Fig. S2) that activate (type of interaction – expression upregulation) the expression of 
gene components of the same network.

Fig. 2. Gene network of expression repression for gene components of the apoptosis regulatory network during HCC development. 
Proteins and genes with increased expression are outlined in green; those with decreased expression are not outlined. Proteins not previously 
annotated in Gene Ontology as participants in apoptosis are shown as larger circles. Shown are only the protein components of the hepatocyte 
apoptosis regulatory network in HCC (see Fig. S2) that suppress (type of interaction – expression downregulation) the expression of gene 
components of the same network.

Gene

Protein
Expression upregulation

Gene
Protein
Expression downregulation
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apoptosis network was significantly higher ( p < 0.05, hy-
pergeometric test) than that among all human protein-coding 
genes in the following age intervals: (1) 1,480–1,496 mil-
lion years, 13 genes; (2) 952–1,023 million years, 17 genes; 
(3)  797–824 million years, 5 genes; (4) 676–684 million 
years, 14 genes. 

Discussion
Apoptosis is a tightly regulated and evolutionarily conserved 
program of cell death that performs key functions in normal 
physiological processes such as embryogenesis and tissue 
homeostasis in the adult organism. Resistance to apoptosis 
is a well-known hallmark of cancer cells that supports their 
survival and tumor growth (Kashyap et al., 2021). However, 
the literature also reports that apoptotic processes can be 
activated in tumor cells, especially at late stages of neoplasm 
development. Thus, although evasion of apoptosis is a well-
established oncogenic mechanism (Moyer et al., 2025), tumor 
cell populations cannot continuously suppress the apoptotic 
program across all cells within a tumor (reviewed in Morana 
et al., 2022). This indicates specific features of apoptosis 
regulation during malignant progression that depend on 
tumor stage, tissue of origin, and cell type, given the well-
known cellular heterogeneity of tumors (Li C. et al., 2020). 
Therefore, detailed investigation of the molecular genetic 
mechanisms of apoptosis in different types of malignan-
cies – particularly HCC – at the single-cell level is required.

In the present study, using publicly available scRNA-seq 
data, we performed a comparative analysis of the tran-
scriptomes of malignantly transformed hepatocytes and 
hepatocytes from histologically normal liver tissue, and we 
reconstructed the gene network regulating apoptosis in hepa-
tocytes during human hepatocellular carcinoma. Analysis of 
the scRNA-seq data and gene expression regulation within 
the reconstructed network showed that expression of genes 
NFKB1, BCL2, and MCL1 – network hubs (Table 4) – is re-
duced in malignant hepatocytes compared with healthy cells. 
The BCL2 and MCL1 proteins are known key inhibitors of 
apoptosis, as they prevent activation of BAX/BAK, which is 

required to increase mitochondrial membrane permeability 
and subsequently activate effector caspases (Newton et al., 
2024). Upregulation of BCL2 expression is considered one 
of the major mechanisms by which cells acquire resistance 
to apoptosis during malignant transformation (Moyer et al., 
2025). However, in our study we observed decreased expres-
sion of BCL2 and MCL1 in HCC hepatocytes, which – ac-
cording to analysis of the apoptosis regulatory network – may 
be due both to reduced expression of proteins that activate 
BCL2 and MCL1 expression (such as NF-κB, SDF1, ERBB, 
IL-8; Fig. 1) and to increased expression of proteins that 
suppress BCL2 expression (Fig. 2).

It is noteworthy that NFKB1 is the principal hub of the 
hepatocyte apoptosis network in HCC (Table 4) and a key 
protein in the network that activates expression of genes 
involved in hepatocyte apoptosis (Fig. 2), which, accord-
ing to ANDSystem, can activate a number of anti-apoptotic 
genes, including BCL2 and MCL1. In tumors, activation of 
the NF-κB signaling pathway promotes survival by inhibit-
ing apoptosis (Gupta et al., 2023); therefore, the decreased 
NFKB1 expression found in our study (Tables S1 and 4) may 
plausibly increase hepatocyte susceptibility to apoptosis. 
On the other hand, activation of NFKB1 is reported to be 
necessary for apoptosis via the extrinsic pathway induced 
by chemokines – particularly IL1b (Wang P. et al., 2023) – 
and mediated by the TNFR1 receptor (Moyer et al., 2025). 
Thus, reduced NFKB1 expression in malignantly transformed 
hepatocytes could, on the one hand, facilitate apoptosis of 
malignant hepatocytes by weakening expression of apoptosis 
inhibitors, but on the other hand hinder induction of extrinsic 
apoptosis, which requires NF-κB activation. In addition, our 
scRNA-seq analysis (Table S1) showed increased expression 
of genes encoding pro-apoptotic proteins in tumor hepato-
cytes, such as BID – a BAX/BAK activator (Moyer et al., 
2025) – and FADD (FAS-associated death domain protein), 
a key component of the extrinsic apoptotic pathway (Nagata 
et al., 2017; Kashyap et al., 2021). One of the apoptosis 
network hubs, cyclin-dependent kinase 1 (CDK1), also 
shows increased gene expression in malignant hepatocytes 

Fig. 3. Distribution of the evolutionary age of genes in the reconstructed hepatocyte apoptosis network during HCC development. 
The X-axis shows gene age intervals (million years) according to the GenOrigin database; the Y-axis shows the proportion of genes in each interval. Blue bars 
indicate the distribution for the full set of human protein-coding genes; red bars indicate the distribution for genes in the reconstructed hepatocyte apoptosis 
network in HCC. * – denotes statistical significance of the difference in gene representation for a given age interval between the full set of human protein-coding 
genes and the reconstructed network.
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(Table  S1). G. Massacci et al. (2023) demonstrated that 
CDK1 phosphorylates BCL2L1, BCL2, and MCL1, thereby 
suppressing their anti-apoptotic functions. However, that 
study also emphasized that the role of CDK1 in apoptosis 
regulation may depend on experimental context and cell-
specific features.

Overall, the scRNA-seq data indicate decreased expres-
sion of key anti-apoptotic genes and increased expression 
of important pro-apoptotic genes in malignant hepatocytes 
compared with healthy hepatocytes. Our results suggest that, 
in the context of HCC, a reduction in anti-apoptotic protein 
levels is insufficient to trigger apoptosis. This, in turn, sug-
gests that evasion of apoptosis by upregulating inhibitors of 
apoptosis is not the predominant mechanism of HCC pro-
gression, which may instead be driven by other causes likely 
related to the hepatocyte microenvironment – particularly 
dysregulation of inflammatory processes – as supported by 
scRNA-seq studies (Lu et al., 2022; Jiang S. et al., 2024). 
We also believe that activating pro-apoptotic effectors, such 
as caspases, should be a key therapeutic objective.

It is well known that NF-κB proteins are major regulators 
of inflammation, and increased expression stimulates the 
inflammatory response (Wang P. et al., 2023). Therefore, 
the reduced expression of the NFKB1 gene, which encodes 
one member of this family, NFKB1, is consistent with the 
attenuated expression of genes involved in the inflamma-
tory response in malignant hepatocytes, as indicated by the 
functional annotation of DEGs (Table 1).

A search for regulatory links between the DEGs controlling 
hepatocyte apoptosis in HCC and proteins – the products of 
other DEGs identified by scRNA-seq – allowed us to iden-
tify more than 200 proteins (Table S6) that could potentially 
modulate the expression of genes governing hepatocyte apop-
tosis during HCC, even though they are not annotated in Gene 
Ontology as regulators of this process. Notably, functional 
annotation of the genes encoding these proteins revealed in 
tumor cells a reduced expression of genes, the products of 
which support leukocyte migration and adhesion – chemo-
kines (CCL5, CXCL2, CXCL8, CXCL1), transforming growth 
factor-β2 (TGFB2), the tyrosine kinase SYK, and integrin 
ITGA4. However, according to ANDSystem, these same 
proteins can regulate key nodes of the hepatocyte apoptosis 
regulatory network. In particular, CCL5 induces expression 
of matrix metalloproteinase 9 (MMP9) (Sevenich, Joyce, 
2014), which is one of the principal hubs of the reconstructed 
apoptosis regulatory network in HCC hepatocytes. MMP9 is 
a member of the multifunctional family of zinc-dependent 
endopeptidases and is activated during inflammation and in 
certain cancers. Matrix metalloproteinases cleave extracellu-
lar matrix proteins and play crucial roles in cellular apoptosis, 
angiogenesis, tumor growth, and metastasis (Verma et al., 
2015). MMP9 is known to be capable of inducing apoptosis 
(Liang et al., 2019). These findings indicate that reduced ex-
pression of genes encoding key immune defense components 
may promote tumor progression not only by weakening the 
immune response to transformed cells but also by influencing 
apoptotic processes within them.

At the same time, the previously proposed statistical ap-
proach (Yatsyk et al., 2025) for assessing the significance 
of a given protein’s or gene’s association with a network of 
interest (in this case, apoptosis), together with analysis of 
the reconstructed network, enabled us to prioritize several 
proteins – potential participants in the regulation of the 
apoptotic process in hepatocytes – the altered expression of 
which is likely to disrupt apoptosis regulation in hepatocytes 
and thereby contribute to the onset and progression of HCC. 
These proteins (ERBB2, CDN1A, IL8, EGR1) are signifi-
cantly associated with the hepatocyte apoptosis regulatory 
network in HCC and act as central regulators (hubs) influen
cing a large number (>20) of its nodes.

The ERBB family of erythroblastic leukemia viral on-
cogene homologs, which includes the epidermal growth 
factor receptor (EGFR) and ERBB2, ERBB3, and ERBB4, 
regulates a broad range of essential cellular functions, such 
as survival, growth, and migration of tumor cells, and has 
therefore attracted attention as a therapeutic target in cancer 
(Chen et al., 2024). ERBB2, a member of this family, the 
expression of which was reduced in malignant hepatocytes 
according to scRNA-seq, has not previously been annotated 
as involved in apoptosis regulation, yet it emerged as a 
statistically significant hub of the reconstructed apoptosis 
regulatory network (Table 4). Elevated ERBB2 expression 
is associated with breast tumor growth, and suppression of 
ERBB2 and ERBB3 induces apoptosis in breast cancer cells 
(Xiang et al., 2010). Although there are no data on the role of 
ERBB2 in apoptosis induction in HCC, our network analysis 
indicates that this protein regulates several apoptosis-related 
proteins and genes in HCC, including NFKB1, AKT2, CDK1, 
MCL1, and FOXO1. In particular, ERBB2 has been shown to 
phosphorylate cyclin-dependent kinase CDK1, increasing the 
resistance of cancer cells to apoptosis induced by the cyto-
static anticancer drug paclitaxel (Vahedi et al., 2015). ERBB2 
also appears to activate expression of the anti-apoptotic genes 
NFKB1, AKT2, and MCL1 (Fig. 1), which are downregulated 
in malignant hepatocytes according to our scRNA-seq data. 
Thus, ERBB2 is an important potential node in the regulation 
of apoptosis in hepatocytes, and changes in its expression 
may contribute to HCC development.

IL-8, also known as CXCL8, is a pro-inflammatory chemo-
kine of the CXC family. Elevated IL-8 levels are associated 
with poor prognosis across various cancers, including hepato-
cellular carcinoma. In HCC, increased IL-8 expression is also 
linked to enhanced metastatic potential of tumor cells (Han 
et al., 2023). Choi et al. (2016) showed that IL-8 knockdown 
promoted apoptosis in HCC cells.

CDN1A (also known as CDKN1A), cyclin-dependent 
kinase inhibitor 1A encoded by the CDKN1A gene, has not 
previously been annotated in Gene Ontology as a protein in-
volved in apoptosis; however, its role in apoptosis during HCC 
development has been discussed in the literature (Thanga- 
velu et al., 2024). Reports emphasize that the role of CDN1A 
in regulating apoptosis during tumorigenesis is context-
dependent, as CDKN1A can both suppress and promote 
apoptosis (Manu et al., 2019). Experimental data indicate  
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that CDKN1A is a p53 target and can stimulate apoptosis 
in tumor cells by activating the TNF receptor or the pro-
apoptotic protein BAX, or by modulating the intrinsic 
apoptotic pathway via changes in mitochondrial membrane 
permeability (Abbas, Dutta, 2009). The natural compound 
N-trans-feruloyloctopamine can enhance apoptosis of HCC 
cells through its interaction with CDKN1A (Ma et al., 2021).

ANDSystem data indicate that this protein is one of 
the central nodes of the apoptosis regulatory network in 
hepatocytes during HCC development. It interacts with 
other network hubs, in particular with well-known apoptosis 
regulators such as NFKB1, BCL2, and CDK1. However, 
scRNA-seq analysis showed that CDKN1A expression was 
reduced in tumor hepatocytes compared with normal liver 
cells (Table 4). These findings suggest that attenuation 
of CDKN1A expression in hepatocytes may represent an 
important link in HCC pathogenesis, facilitating tumor-cell 
evasion of apoptosis; nevertheless, its role in hepatocyte 
apoptosis regulation in HCC requires further experimental  
investigation.

Early growth response protein 1 (EGR1) suppresses proli
feration and enhances apoptosis of malignantly transformed 
cells in many tissues and organs, including the liver (reviewed 
in Wang B. et al., 2021). It has also been shown that EGR1 
can inhibit HCC growth by repressing transcription of 
PFKL (phosphofructokinase-1, liver type) and by inhibiting 
aerobic glycolysis in tumor cells (Pan et al., 2024). In our 
study, EGR1, the expression of which is reduced, acts as an 
activator of genes (LCN2, NR3C1, NR4A1; Fig. 1) involved 
in apoptosis control, the expression of which is likewise 
reduced in malignant hepatocytes. Our results suggest that 
decreased EGR1 expression may be one of the mechanisms 
underlying weakened apoptosis during malignant trans- 
formation.

The use of phylostratigraphic analysis to assess gene evo-
lutionary age is important for studying the evolution of gene 
networks and identifying their key components (Mustafin et 
al., 2021). Notably, most genes in the hepatocyte apoptosis 
network and those in the overrepresented age intervals are 
older than 600 million years (Fig. 3), whereas relatively 
young genes are scarce, indicating evolutionary conserva-
tion of the network genes and their importance for cellular 
viability. In particular, the overrepresented group of genes 
aged 1,480–1,496 million years corresponds to the period of 
mitochondrial–eukaryotic cell symbiosis (Raval et al., 2023). 
During these stages of symbiosis, many genes responsible for 
mitochondrial programmed cell death evolved, including key 
factors regulating cytochrome c release and oxidative stress 
control – early adaptations that maintained symbiotic balance 
(Zmasek, Godzik, 2013). Moreover, we found a statistically 
significant excess of genes in the hepatocyte apoptosis net-
work, relative to the human genome as a whole, within the 
952–1,023-million-year interval. This interval includes, in 
particular, proteins such as BCL2 – a network hub – and 
BCL2L1. These proteins are well-known key inhibitors of 
apoptosis (Moyer et al., 2025). Orthologs of BCL2 family 
genes are found in sponges (Porifera), placozoans (Placo-

zoa), and hydras (Hydra) (Banjara et al., 2020), i. e., at a 
relatively early stage of metazoan evolution. The critical role 
of apoptosis in innate and adaptive immunity suggests that 
this function arose early in the evolution of multicellular-
ity and likely preceded the adaptation of apoptosis to other 
processes – such as development, homeostasis, and removal 
of damaged cells in Metazoa – laying the groundwork for 
complex multicellular life (Suraweera et al., 2022). Thus, 
changes in hepatocyte gene expression during HCC involve 
highly conserved genes – including the network hub BCL2 – 
that, beyond apoptosis, may regulate other cellular processes, 
underscoring the complexity of regulatory interactions during 
malignant transformation.

Accordingly, our study – using an integrated approach that 
included hepatocyte transcriptome analysis and reconstruc-
tion/analysis of a DEG network involved in apoptosis – pro-
vides new insights into the regulation of hepatocyte apoptosis 
during human HCC development. Our findings, which show 
decreased expression of key apoptosis inhibitor genes, sup-
port the view that evasion of apoptosis is not invariably 
characteristic of cancer cells and that the role of apoptosis in 
tumor development depends on the cell type, tissue context, 
and tumor microenvironment (Morana et al., 2022). In addi-
tion, reduced expression in malignant hepatocytes of genes 
involved in inflammatory control, together with decreased 
NFKB1 – a central regulator of inflammation (Wang P. et al., 
2023) – points to an important role for interactions between 
hepatocytes and the immune system in HCC development, 
warranting further experimental and theoretical investigation. 
The identified network hubs (NFKB1, MMP9, BCL2, A4, 
CDN1A, CDK1, ERBB2, G3P, MCL1, FOXO1) may serve 
as useful targets for modulating apoptosis in hepatocytes in 
HCC therapy, an increasingly promising direction (Ladd et 
al., 2024; Wu et al., 2024).

Conclusion
Analysis of scRNA-seq data from normal and malignantly 
transformed hepatocytes revealed changes in the expression 
of genes involved in the control of hepatocyte apoptosis 
in HCC. In malignant hepatocytes, expression of the key 
apoptosis inhibitors BCL2 and MCL1 was decreased, as 
was the expression of genes involved in the inflammatory 
response. These findings indicate that evasion of apoptosis 
by upregulating key apoptosis inhibitors does not appear 
to be a characteristic feature of hepatocytes during HCC 
development. Reconstruction and analysis of the hepatocyte 
apoptosis – regulatory network in HCC showed that reduced 
expression of NFKB1 may be an important factor under- 
lying the decreased expression of a range of apoptosis-related 
genes, including BCL2 and MCL1. In addition, network 
reconstruction and analysis identified several key genes 
(NFKB1, MMP9, BCL2, A4, CDN1A, CDK1, ERBB2, G3P, 
MCL1, FOXO1) that both display differential expression in 
malignant versus healthy hepatocytes and function as hubs 
of the hepatocyte apoptosis network in HCC. Dysregulated 
expression of these genes may lead to apoptosis dysregula-
tion in tumor cells.
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Among the DEGs, we also identified genes (CDKN1A, 
ERBB2, IL8, EGR1) that, although not annotated in Gene 
Ontology as apoptosis participants, exhibited numbers of 
regulatory interactions of their products with apoptosis genes 
that significantly exceeded chance expectations according to 
a hypergeometric test. This suggests that the proteins encoded 
by these genes play specific roles in regulating hepatocyte 
apoptosis in HCC and represent promising candidates for 
further investigation.

The results obtained can be used to guide future experi-
mental studies on the regulation of hepatocyte apoptosis in 
HCC. The hypotheses proposed may facilitate the develop-
ment of targeted therapeutic strategies aimed at modulating 
programmed cell death in malignant liver cells.
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Abstract. The rapid advancement of omics technologies (genomics, transcriptomics, proteomics, metabolomics) and 
other high-throughput methods for experimental studies of molecular genetic systems and processes has led to the 
generation of an unprecedentedly vast amount of heterogeneous and complex biological data. Effective use of this 
information resource requires systematic approaches to its analysis. One such approach involves the creation of do-
main-specific knowledge/data repositories that integrate information from multiple sources. This not only enables the 
storage and structuring of heterogeneous data distributed across various resources but also facilitates the acquisition 
of new insights into biological systems and processes. A systematic approach is also critical to solving the fundamental 
problem of biology – clarifying the regularities of morphogenesis. Morphogenesis is regulated through evolutionarily 
conserved signaling pathways (Hedgehog, Wnt, Notch, etc.). The Hedgehog (HH) pathway plays a key role in this pro-
cess, as it begins functioning earlier than others in ontogenesis and determines the progression of every stage of an or-
ganism’s life cycle: from structuring embryonic primordia, histo- and organogenesis, to maintaining tissue homeostasis 
and regeneration in adults. Our work presents HH_Signal_pathway_db, a knowledge base that integrates curated data 
on the molecular components and functional roles of the human Hedgehog (HH) signaling pathway. The first release 
of the database (available upon request at bukharina@bionet.nsc.ru) contains information on 56 genes, their protein 
products, the regulatory interaction network, and established associations with pathological conditions in humans. 
HH_Signal_pathway_db provides researchers with a tool for gaining new knowledge about the role of the Hedgehog 
pathway in health and disease, and its potential applications in developmental biology and translational medicine.
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circuits
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Cигнальный путь Hedgehog у человека:  
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Аннотация. Стремительное развитие омиксных технологий (геномики, транскриптомики, протеомики, метабо-
ломики) и других высокопроизводительных методов экспериментального исследования молекулярно-генети-
ческих систем и процессов привело к генерации беспрецедентно огромных объемов разнородных и сложных 
биологических данных. Эффективное использование этого информационного ресурса требует системных под-
ходов к их анализу. Один из подходов состоит в создании предметно-ориентированных баз знаний/данных – ре-
позиториев, интегрирующих информацию из множества источников, что позволяет не только хранить и струк-
турировать распределенные по различным источникам гетерогенные данные, но и получать новые сведения 
о биологических системах и процессах. Критически важен системный подход и к решению фундаментальной 
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задачи биологии – выяснению закономерностей морфогенеза. Регуляция морфогенеза осуществляется через 
эволюционно консервативные сигнальные пути (Hedgehog, Wnt, Notch и др.). Ключевая роль в этом процессе 
принадлежит пути Hedgehog (HH), поскольку в онтогенезе он начинает функционировать ранее других и детер-
минирует реализацию каждого этапа индивидуального развития организма: от структурирования эмбриональ-
ных зачатков, гисто- и органогенеза до поддержания тканевого гомеостаза и процесса регенерации у взрос-
лых особей. Нами создана база знаний HH_Signal_pathway_db, в которую сведена информация о компонентах 
и функциях HH сигнального пути у человека. Первый релиз базы (доступен по запросу bukharina@bionet.nsc.ru) 
содержит информацию о входящих в него 56 генах, их белковых продуктах, сети регуляторных взаимодействий, 
а также об установленных связях с некоторыми патологическими состояниями человека. HH_Signal_pathway_db 
предоставляет исследователям инструмент для получения новых знаний о роли пути Hedgehog в норме и при 
патологии и возможностях применения их в области биологии развития и трансляционной медицины. 
Ключевые слова: база знаний; сигнальный путь Hedgehog; морфогенез; эволюция; генные сети; регуляторные 
контуры

Introduction
Modern molecular-genetic and biomedical studies using ad-
vanced techniques generate vast amounts of heterogeneous 
information (Regev et al., 2017; Schermelleh et al., 2019, Ken-
neth, 2022). This includes data obtained during investigations 
of various aspects of morphogenesis – a fundamental process 
leading to the formation of intricate organism architecture. 
Understanding the mechanisms underlying morphogenesis 
is essential not only for answering one of biology’s most 
profound questions – how a single cell gives rise to a highly 
complex, spatially organized multicellular organism – but 
also for explaining the mechanisms of tissue regeneration, the 
causes of congenital anomalies, and pathological conditions 
of various etiologies, including oncological diseases.

Numerous genes, proteins, miRNAs, and signaling mo
lecules are involved in regulating morphogenesis (ENCODE 
Project Consortium, 2012; Briscoe, Thérond, 2013; Bartel, 
2018; Ghafouri-Fard et al., 2022; McIntyre et al., 2024). Some 
of these components belong to specific signaling pathways. 

Signaling pathways (signal transduction) act as transmit-
ter of signals received at the external cell membrane into the 
nucleus. Cascades of intermolecular interactions involving 
ligands, receptors recognizing those ligands, intracellular 
signal transducers of both protein and non-protein nature, 
transcription factors and co-regulators, etc., mediate pathways. 
The outcome of pathways’ activity is alteration of target gene 
expression and corresponding protein levels, which ultimately 
leads to changes in the functional state of the cell.

Signaling pathways in animals and humans are evolution-
arily conserved, and their roles are similar across different 
taxonomic groups. The pathways constitute complex networks 
characterized by crosstalk, and the development of a fully-
functional organism requires the precise coordination of their 
activities. Signaling pathways are critically important for 
normal ontogenesis, mutations or alterations in gene expres-
sion within these pathways can lead to severe developmental 
disorders (Artavanis-Tsakonas et al., 1999; Ingham, McMa-
hon, 2001; Logan, Nusse, 2004; Rubin, 2007; Perrimon et al., 
2012; Briscoe, Thérond, 2013; Huttlin et al., 2017).

The Hedgehog (HH) signaling pathway, which owes its 
name to the discovery of the hedgehog (hh) gene in Drosophila 
melanogaster in the early 1980s, plays a substantial role in 
controlling morphogenesis. The larvae of flies mutant for this 
gene are covered with spines, giving them a hedgehog-like 
appearance (Nüsslein-Volhard, Wieschaus, 1980).

The Hedgehog signaling pathway is not merely one of the 
pathways orchestrating organismal development, but a central 
regulator of morphogenesis. It determines the anterior-poste-
rior and dorso-ventral body axes and segmentation of embryo
nic primordia in animals, histo- and organogenesis, and the 
maintenance of stem cell pools in adult tissues, among other 
processes. Dysfunction of this signaling pathway is associated 
with numerous congenital anomalies and human diseases, 
including cancer of various organs (Ingham, McMahon, 2001; 
Spinella-Jaegle et al., 2001; Varjosalo, Taipale, 2007; Briscoe, 
Thérond, 2013; Wu et al., 2017; Skoda et al., 2018; Jamieson 
et al., 2020; Fitzsimons et al., 2022; Ingham, 2022; Dutta et 
al., 2023; Jing et al., 2023). It is exactly the reason, that there 
continues to be unrelenting interest in comprehensive investi-
gation of the molecular-genetic organization and functioning 
mechanisms of the HH pathway. The general scheme of the 
Hedgehog signaling pathway is shown in Figure 1.

For the transmission of the HH signal, the recipient cell must 
contain a specific set of core proteins involved in the process, 
which must be in certain functional states. These proteins 
include: the transmembrane receptors Patched1 and Patched2 
(PTCH1/2), the inactive form of the transmembrane protein 
Smoothened (SMO), complexes formed by transcription fac-
tors GLI1/3 and scaffold protein Suppressor of fused homolog 
(SUFU), active protein kinase A (PKA), which is responsible 
for generating the repressive form of the transcription factor 
GLI3 (GLI3R).

When the signaling pathway is inactive due to absence of 
HH ligands (Fig. 1a), PTCH1/2 receptors are localized on the 
primary cilium – a specialized external organelle of the cell 
that acts as a sensor for outside signals (Ingham, McMahon, 
2001; Eggenschwiler, Anderson, 2007; Oro, 2007; Carballo 
et al., 2018).

PTCH1/2 block the migration of the SMO protein, which 
is located in the intracellular space, to the ciliary membrane, 
and SMO cannot interact with protein kinase A (PKA) to in-
hibit its activity. As a result, PKA phosphorylates the GLI3/
SUFU complex, the complex dissociates, and GLI3 undergoes 
proteolytic cleavage to form the repressor GLI3R, which 
then enters the nucleus and suppresses the transcription of its 
target genes, including some genes of the HH pathway itself 
(Gorojankina, 2016; Dilower et al, 2023).

Signal transduction activation occurs when extracellular 
ligands – proteins belonging to the Hedgehog family (three 
types exist in humans: Sonic Hedgehog (SHH), Indian Hedge-
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hog (IHH), and Desert Hedgehog (DHH)) – bind to PTCH1/2. 
The ligand/receptor complex is then removed from the ciliary 
membrane and transported to the intracellular space, where it 
is degraded in the lysosome. The position of PTCH1/2 is taken 
by SMO, which suppresses the activity of protein kinase A, 
thereby preventing the phosphorylation of the SUFU/GLI3 
complex and the formation of GLI3R. Subsequently, within 
the cilium, the SUFU/GLI1/3 complexes are degraded, and the 
active forms of GLI1/3 are generated. These enter the nucleus 
and activate the transcription of target genes, ensuring signal 
transmission (Ingham, McMahon, 2001; Varjosalo, Taipale, 
2007; Briscoe, Therond, 2013; Gorojankina, 2016) (Fig. 1b).

There are two variants of the HH pathway – the canonical 
one, shown in Figure 1, and the non-canonical one, in which 
the activation of the GLI1/3 transcription factors occurs 
without the involvement of SMO, thereby altering the signal 
transduction route (Brennan et al., 2012; Briscoe, Thérond, 
2013; Carballo et al., 2018).

Currently, information concerning the HH pathway in 
humans is scattered across a vast number of sources (at the 
time of writing, on request “Hedgehog signaling” in PubMed 
alone returns 15,247 publications: https://pubmed.ncbi.nlm.
nih.gov/?term=hedgehog+signaling), and this body of litera-
ture is continually expanding. Despite the extensive growth 
in the number of studies in this field, a complete and thorough 
understanding of the evolution, structure, and mechanisms 
of the HH pathway has not yet been achieved (Ingham et al., 
2011; Briscoe; Thérond, 2013; Breeze, 2022).

To integrate, structure, and analyze existing data, the authors 
are creating a specialized knowledge base HH_Signal_path-
ways_db. The database is curated with diverse information 
related to all aspects of the organization and functioning of 
the Hedgehog pathway, which enables a systematic approach 
to its study.

Bioinformatic analysis of the structural and functional 
organization of the HH pathway opens up opportunities for 
deeper insight into the molecular-genetic basis of morphoge
nesis, mechanisms of organ and tissue regeneration, the aging 
process, the emergence of pathologies of various etiologies, 
as well as for developing methods for their diagnosis and 
pharmacotherapy.

As part of this work, new results have been obtained, inclu
ding reconstruction of the associative gene network of the HH 
signaling pathway, identification of regulatory circuits, and 
acquisition of data regarding the evolution of genes involved 
in the pathway.

Materials and methods
Structure and content of the HH_Signal_pathway_db 
knowledge base. Figure  2 shows a block diagram of the 
database format developed by the authors.

The list of genes included in the human HH pathway 
(Table  1) was extracted from the KEGG database (https://
www.genome.jp/kegg/) by querying (Environmental Informa-
tion Processing→Signal Transduction→Hedgehog Signaling 
Pathway).

Fig. 1. General scheme of the human Hedgehog signaling pathway. 
a – the mechanism of action when no HH ligand is present; b – the mechanism when PTCH1/2 receptors bind to HH ligands (details 
explained in text). 
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To fill the “gene information” and “gene product informa-
tion” blocks, data were retrieved from the NCBI Gene (https://
www.ncbi.nlm.nih.gov/gene), UniProt (https://www.uniprot.
org), TRRUST (https://www.grnpedia.org/trrust/) data- 
bases. 

Data for the “TPB affinity to the promoter” block (TBP, 
the TATA-binding protein, is a key regulator of transcription 
initiation in eukaryotic genes) was taken from the Human_
SNP_TATAdb database (Filonev et al., 2023).

The “evolutionary characteristics” block was filled using 
Orthoweb, a specialized software package developed to cal-
culate two evolutionary indices: the phylostratigraphic age 
index (PAI) and the divergence index (DI) (Mustafin et al., 
2021; Ivanov et al., 2024). 

The PAI index reflects the distance of a taxon from the root 
of the phylogenetic tree and is calculated as the distance from 
the root to the node where the divergence of the species under 
study from the most distant related taxon occurred: the higher 
the PAI, the “younger” the gene in question. For human genes, 
PAI values range from 0 (Cellular Organisms, the root of the 
tree) to 15 (Homo sapiens).

The gene evolutionary variability index (DI – Divergence 
Index) estimates the ratio between non-synonymous sub- 
stitutions (which alter the encoded amino acid) in the sequen
ces of the analyzed gene and its ortholog (dN), and synony-
mous substitutions (which do not change the encoded amino 
acid) (dS) in the nucleotide sequences of genes and their 
orthologs:

DI = 
∑ n
     i = 1 dndsi

n      , 

where dndsi is the dN/dS value for the gene and its i-th ortho-
log, and n is the number of orthologous genes.

The DI allows for determining the type of selection pressure 
acting on a given gene. DI values <1 and >1 are interpreted 
as evidence of stabilizing and positive selection, respectively, 
while DI = 1 indicates neutral evolution (Jeffares et al., 2015; 
Spielman, Wilke, 2015).

To construct the associative gene network and identify 
regulatory circuits (lower-dimensionality gene networks), the 
cognitive software and information system ANDSystem was 
used. This platform employs artificial intelligence methods to 
automatically extract knowledge from scientific publications 
and factual databases and, via the ANDVisio module, visua
lizes the results as a graph (Demenkov et al., 2011; Ivanisenko 
et al., 2015, 2019, 2022).

The gene network was reconstructed for 56 genes of the 
Hedgehog signaling pathway. It reflects associations with pro-
teins encoded by these genes (“expression”), with transcription 
factors regulating gene expression (“expression regulation”), 
with proteins regulating protein transport (“transport regula-
tion”), and with miRNAs involved in post-transcriptional 
regulation of protein expression (“miRNA regulation”).

Functional annotation of genes was performed using 
the DAVID web resource (https://davidbioinformatics.nih.
gov/) (Sherman et al., 2022). This tool identifies biological  
processes that are statistically overrepresented in the analyzed 
gene set. The false discovery rate (FDR), calculated using the 
Benjamini-Hochberg correction, was used as the significance 
criterion. Only processes with an FDR < 0.05 were considered.

Results and discussion

The HH_Signal_pathway_db knowledge base
The current version of the HH_Signal_pathway_db contains 
structured information on 56 human genes related to the HH 
pathway (Table 1). The first release of the database contains 
the following blocks: 1) a list of HH signaling pathway genes 
with links to literary sources from the PubMed database; 
2) lists of proteins encoded by HH signaling pathway genes 
and their functions; 3) Gene Ontology terms; 4) values of gene 
evolutionary age indices (PAI); 5) values of gene evolutionary 
variability indices (DI); 6) values of TBP binding affinity to 
gene promoters, a key determinant of transcription intensity; 
7) lists of pathologies associated with each gene; 8) a recon
structed associative gene network and the regulatory circuits 
identified within it. A sample of filled database blocks for 
a specific gene, using the SMURF2 gene as an example, is 
shown in Figure 3.

Below are some results of bioinformatic analysis of the 
information presented in the HH_Signal_pathway_db.

Functional annotation of HH signaling pathway genes
Analysis of biological process terms in Gene Ontology 
(GO) for the 56 genes performed using the DAVID resource, 
revealed 221 biological processes statistically significantly 
associated with the signaling pathway. Generally, these 
processes can be conditionally grouped into three main 
categories: morphogenesis (94), intracellular processes 
(60), and intercellular communication (67). Table 2. For all 
processes listed FDR < 0.05.

Morphogenesis
 • GO:0042733~embryonic digit morphogenesis 
 • GO:0042475~odontogenesis of dentin-containing tooth 
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https://davidbioinformatics.nih.gov/
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Table 1. Genes of the Hedgehog signaling pathway (according to the KEGG database

No. Gene symbol Gene ID Gene full name
1 ARRB1 408 arrestin beta 1 
2 ARRB2 409 arrestin beta 2 
3 BCL2 596 BCL2 apoptosis regulator 
4 BOC 91653 BOC cell adhesion associated, oncogene regulated
5 BTRC 8945 beta-transducin repeat containing E3 ubiquitin protein ligase
6 CCND1 595 cyclin D1 
7 CCND2 894 cyclin D2 
8 CDON 50937 cell adhesion associated, oncogene regulated
9 CSNK1A1 1452 casein kinase 1 alpha 1 
10 CSNK1A1L 122011 casein kinase 1 alpha 1 like 
11 CSNK1D 1453 casein kinase 1 delta 
12 CSNK1E 1454 casein kinase 1 epsilon 
13 CSNK1G1 53944 casein kinase 1 gamma 1 
14 CSNK1G2 1455 casein kinase 1 gamma 2 
15 CSNK1G3 1456 casein kinase 1 gamma 3 
16 CUL1 8454 cullin 1
17 CUL3 8452 cullin 3
18 DHH 50846 desert hedgehog signaling molecule
19 DISP1 84976 dispatched RND transporter family member 1
20 EFCAB7 84455 EF-hand calcium binding domain 7
21 EVC 2121 EvC ciliary complex subunit 1 
22 EVC2 132884 EvC ciliary complex subunit 2
23 FBXW11 23291 F-box and WD repeat domain containing 11
24 GAS1 2619 growth arrest specific 1 
25 GLI1 2735 GLI family zinc finger 1 
26 GLI2 2736 GLI family zinc finger 2 
27 GLI3 2737 GLI family zinc finger 3 
28 GPR161 23432 G protein-coupled receptor 161 
29 GRK2 156 G protein-coupled receptor kinase 2
30 GRK3 157 G protein-coupled receptor kinase 3
31 GSK3B 2932 glycogen synthase kinase 3 beta
32 HHAT 55733 hedgehog acyltransferase 
33 HHATL 57467 hedgehog acyltransferase like
34 HHIP 64399 hedgehog interacting protein
35 IHH 3549 Indian hedgehog signaling molecule
36 IQCE 23288 IQ motif containing E 
37 KIF3A 11127 kinesin family member 3A 
38 KIF7 374654 kinesin family member 7 
39 LRP2 4036 LDL receptor related protein 2
40 MEGF8 1954 multiple EGF like domains 8 
41 MGRN1 23295 mahogunin ring finger 1 
42 MOSMO 730094 modulator of smoothened 
43 PRKACA 5566 protein kinase cAMP-activated catalytic subunit alpha
44 PRKACB 5567 protein kinase cAMP-activated catalytic subunit beta
45 PRKACG 5568 protein kinase cAMP-activated catalytic subunit gamma
46 PTCH1 5727 patched 1
47 PTCH2 8643 patched 2
48 SCUBE2 57758 signal peptide, CUB domain and EGF like domain containing 2
49 SHH 6469 sonic hedgehog signaling molecule
50 SMO 6608 smoothened, frizzled class receptor
51 SMURF1 57154 SMAD specific E3 ubiquitin protein ligase 1
52 SMURF2 64750 SMAD specific E3 ubiquitin protein ligase 2
53 SPOP 8405 speckle type BTB/POZ protein 
54 SPOPL 339745 speckle type BTB/POZ protein like
55 SUFU 51684 SUFU negative regulator of hedgehog signaling
56 TPTEP2-CSNK1E 102800317 TPTEP2-CSNK1E readthrough
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 • GO:0007507~heart development 
 • GO:0001658~branching involved in ureteric bud  

morphogenesis 
 • GO:0003151~outflow tract morphogenesis 
 • GO:0030324~lung development 
 • GO:0003180~aortic valve morphogenesis 
 • GO:0045766~positive regulation of angiogenesis 
 • GO:0001501~skeletal system development 

 • GO:0001942~hair follicle development 
 • GO:0021983~pituitary gland development 
 • GO:0001822~kidney development 
 • GO:0001525~angiogenesis 
 • GO:0042060~wound healing 
 • GO:0001889~liver development 
 • GO:0072091~regulation of stem cell proliferation
 etc.

Fig. 3. An example of filling out the HH_Signal_pathway_db knowledge base block for the SMURF2 gene.
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Intracellular processes
Regulation of transcription 

 • GO:1902895~positive regulation of miRNA transcription 
 • GO:1902894~negative regulation of miRNA transcription 
 • GO:0006357~regulation of transcription by RNA  

polymerase II 
 • GO:0006338~chromatin remodeling 
 • GO:0006355~regulation of DNA-templated transcription 
 • GO:0010468~regulation of gene expression

Response to stress
 • GO:0071456~cellular response to hypoxia 
 • GO:0034599~cellular response to oxidative stress 
 • GO:0071466~cellular response to xenobiotic stimulus 
 • GO:0034644~cellular response to UV 
 • GO:0006974~DNA damage response

Regulation of cyclic processes 
 • GO:0048511~rhythmic process 
 • GO:0051726~regulation of cell cycle

Apoptosis
 • GO:0043066~negative regulation of apoptotic process
 • GO:0043065~positive regulation of apoptotic process

Intercellular communication 
 • GO:0042127~regulation of cell population proliferation 
 • GO:0050673~epithelial cell proliferation 
 • GO:0010595~positive regulation of endothelial cell  

migration 
 • GO:0001938~positive regulation of endothelial cell  

proliferation 
 • GO:0042127~regulation of cell population proliferation 
 • GO:0072089~stem cell proliferation 
 etc.

Involvement in signaling pathways
 • GO:0038084~vascular endothelial growth factor signaling 

pathway 
 • GO:0007173~epidermal growth factor receptor signaling 

pathway
 • GO:0008543~fibroblast growth factor receptor signaling 

pathway 
 • GO:0007224~smoothened signaling pathway 
 • GO:0060070~canonical Wnt signaling pathway 
 • GO:0030509~BMP signaling pathway 
 • GO:0000165~MAPK cascade 
 • GO:0007219~Notch signaling pathway 
 • GO:0070371~ERK1 and ERK2 cascade
 etc.

A significant role of the Hedgehog signaling pathway 
is its participation in the morphogenetic processes of em-
bryogenesis, histogenesis, and organogenesis. The pathway 
genes are involved in the formation of the nervous system, 
the development of cartilage and skeletal tissue, angiogen-
esis, and the development of kidneys, liver, lungs, heart, the 
endocrine pancreas, and genitals (Ingham, McMahon, 2001; 
Roy, Ingham, 2002; Fitzsimons et al., 2022; Ingham, 2022; 
Dilower et al., 2023).

Among the fundamental intracellular processes regulated 
by HH pathway genes are transcription (Gao Y. et al., 2023), 
response to stress stimuli (Chung et al., 2022), and main-
tenance of genomic stability (Ingham, McMahon, 2001). 
Furthermore, the signaling pathway modulates the cellular 

response to hypoxia, oxidative stress, and other adverse fac-
tors, which can be critical for cell survival (Kim, Lee, 2023; 
van der Weele et al., 2024). The involvement of Hedgehog 
signaling pathway elements in DNA repair (Gao Q. et al., 
2019), apoptosis (Harris et al., 2011; Rimkus et al., 2016), 
and cell cycle regulation confirms its role in controlling cell 
proliferation and differentiation (Roy, Ingham, 2002).

According to available data, the HH pathway acts as a 
mediator of intercellular communication not only by itself; 
its components, in particular beta-arrestins (ARRB1/2), ki-
nases (CCND1, CSNK1A1, CSNK1E, CSNK1A1L, GSK3B, 
PRKACA, PRKACB, PRKACG, TPTEP2-CSNK1E), ubi
quitination proteins (BTRC, CUL1, FBXW11), and others, are 
involved in other signaling cascades, including MAPK/ERK, 
Wnt, Notch, and VEGF. The participation of HH pathway pro-
teins in other signaling pathways has also been demonstrated 
by other authors (Rubin, 2007; Butí et al., 2014; Edeling et 
al, 2016; Luo, 2017; Fang et al., 2023).

Associative gene network  
of the Hedgehog signaling pathway
The network reconstructed with ANDSystem contains infor-
mation on 56 genes, 504 proteins, 126 miRNAs, and 1,412 in-
teractions of various types between its elements. A general 
view of the network is presented in Figure 4.

Analysis of the gene network revealed certain patterns 
pertaining to intra-network interactions. Specifically, it was 
shown that there are at least seven regulatory circuits within 
the network (Fig. 5, 6). These can be tentatively divided into 
two groups.

The circuits of the first group mediate the auto-regulation 
of the signaling pathway as a whole. The second group regu-
lates the interaction of some components within the signaling 
pathway itself. The first group comprises four circuits – three 
with positive feedback loops, implementing pathway auto-
activation (Fig.  5a–c), and one with a negative feedback 
loop, mediating autorepression of the pathway (Fig.  5d). 
The auto-activation circuits include the membrane proteins 
GAS1, BOC, CDON, which participate in the interaction of 
the PTCH1/2 receptor with its HH ligand, thereby facilitating 
signal transduction. The expression of the genes encoding 
these membrane proteins is controlled by the GLI1/3 transcrip-
tion factors (Allen et al., 2007; Song et al., 2015; Echevarría-
Andino et al., 2023).

The main component of the fourth circuit is the HHIP pro-
tein, which prevents the binding of PTCH1/2 to HH, thereby 
prohibiting signal propagation. The HHIP gene is a target 
of GLI1/3 transcription factors (Chuang, McMahon, 1999; 
Falkenstein, Vokes, 2014).

The second group, defining the character of certain interac-
tions within the HH pathway, is formed by three circuits. The 
first controls the interaction between PTCH1 and SMO via a 
positive feedback loop (Fig. 6a). The second is a mutual regu-
lation circuit of the genes encoding the GLI1/3 transcription 
factors (Fig. 6b). It can exist in two states depending on the 
functional status of the pathway. In the presence of the HH 
signal, the circuit operates in a mode of mutual gene activa-
tion via positive feedback loops. In the absence of the signal, 
the repressor form GLI3R suppresses the transcription of the 
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Fig.  4. A reconstruction of the associative gene network for the human Hedgehog signaling pathway, generated by the 
ANDSystem tool.

Fig. 5. Auto-regulation of the HH signaling pathway. 
a–c – regulatory circuits with positive feedback; d – regulatory circuit with negative feedback; SP – signaling pathway.

Fig. 6. Schemes of mutual regulation of components in three regulatory circuits of the HH signaling pathway. 
a – regulation of PTCH1 and SMO; b – auto-regulation of GLI1/3; c – regulation of GLI2/3 and SUFU.
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GLI1/2 genes and turns off the auto-activation. Thus, the bal-
ance between the activator and repressor forms of GLI is main-
tained (Wang et al., 2000; Vokes et al., 2007; Briscoe, Thérond, 
2013). The third circuit of the group functions with the par-
ticipation of two miRNAs – hsa-mir-93 and hsa-mir-378A, 
regulating the levels of GLI2/3 and SUFU via negative feed-
back loops (Fig. 6c). The involvement of miRNAs, including 
hsa-mir-93 and hsa-mir-378A, in regulating the expression 
of HH pathway proteins was established by A. Helwak et al. 
(2013). Analysis of the reconstructed HH signaling pathway 
gene network revealed that the genes encoding these miRNAs 
are targets for the GLI2/3 transcription factors.

Evolutionary characteristics of human Hedgehog  
signaling pathway genes: 
The distribution of genes by values of their phylostratigraphic 
indecies PAI is presented in Table 2 and Figure 7.

The vast majority of pathway genes are characterized by 
indices of PAI = 01 (35 genes) and PAI = 02 (18 genes), indi-
cating their emergence at the level of the first unicellular eu-
karyotes and the first multicellular animals. Two genes – BCL2 
and SUFU – originated significantly earlier – at the cellular 
level of biological organization (their PAI = 00). Both of these 
genes control the cell pool – BCL2 as an apoptosis regulator, 
and SUFU as an inhibitor of tumor growth, i. e., uncontrolled 
cell proliferation (Willis et al., 2003; Cheng, Yue, 2008).

Only one gene, HHIP, originated during the formation of 
chordates, has a PAI value of 03. The eponymous protein 
inhibits the signaling cascade already at its initial stage by 
binding to the PTCH1 receptor and preventing the ligand–
receptor interaction. 

Previously, independent data on the emergence time of 
certain components of the human Hedgehog (HH) signaling 
pathway prior to vertebrate divergence had been obtained 
for all HH ligands (Kumar et al., 1996) and for the GLI tran-
scription factors (Shimeld et al., 2007), and these findings are 
consistent with the results presented.

A comparison of the PAI value distribution between HH 
cascade genes and all human protein-coding genes (Fig. 7) 
showed a statistically significant bias towards more ancient 
values in HH pathway genes (p < 0.05, Mann–Whitney test). 
This aligns with the fact that this pathway is activated earlier 
than others in ontogeny, suggesting that its core components 
therefore had to emerged at early stages of multicellular or-
ganisms evolution. Indeed, all forms of HH, GLI, PTCH, and 

SMO proteins, which play the main role in signal transduc-
tion, are characterized by PAI = 01–02, and their functional 
analogs are present even in invertebrate animals (Ingham, 
McMahon, 2001; Wilson, Chuang, 2010). Notably, all genes 
of the regulatory circuits except HHIP, have ancient origin, at 
that HHIP is the only gene included in the regulatory circuit 
with negative feedback.

Figure 8 shows the distribution of DI index values for 
HH pathway genes. Given that this pathway orchestrates the 
implementation of fundamental cellular processes involved 
in morphogenesis, including division, differentiation, and 
apoptosis, it is unsurprising that 89 % of its genes (50) have 
a DI index <0.5, with 12 of them (≈21 %) having an index 
below 0.1. This fact confirms that the signaling pathway, and 
the genes of the regulatory circuits governing its function, are 
under stabilizing selection which limits the accumulation of 
genomic changes.

In the analyzed set of 56 genes, only two have DI > 1 – 
these are CSNK1A1L (1.213) and EFCAB7 (1.051). This 
finding, within the framework of the applied method, sug-
gests that these genes may be under positive selection. The 
kinase CSNK1A1L phosphorylates GLI1/3 proteins. Ac-
cording to KEGG database data (hsa04340), in the human 
HH signaling pathway, several other kinases (CSNK1A1, 
CSNK1D, CSNK1E, CSNK1G1, CSNK1G2, CSNK1G3, 
TPTEP2-CSNK1E), encoded by genes of the same name, also 
participate in this process. All of them fall into the group with 
PAI = 02_Eukaryota, however, the DI values for them range 
from 0.0361 for CSNK1A1 to 0.264 for CSNK1D, indicating 
the action of stabilizing selection on them. It can be assumed 
that CSNK1A1L might have “incorporated” into the signal-
ing pathway later in evolution than the other kinase genes, 
and therefore may currently be experiencing the influence of 
positive, rather than stabilizing, selection.

The EFCAB7 protein, together with EVC, EVC2, and IQCE 
proteins, is involved in anchoring SMO to the primary cilium 
of mammalian cells, which distinguishes the signal transduc-
tion mechanism from the analogous process in Drosophila, 
whose cells do not possess primary cilia (Chen et al., 2009; 
Gorojankina, 2017). Probably, the weak pressure of posi-
tive selection on the EFCAB7 gene, reflected in its DI value 
close to one, is related precisely to the later emergence of the 
mechanism involving primary cilia in the signal transduction 
process compared to other pathway components performing 
the same function – the EVC, EVC2, and IQCE genes (Chen 

Table 2. Distribution of 56 human Hedgehog signaling pathway genes  
according to phylostratigraphic index (PAI) values 

PAI Index_Таxon Genes

00_Cellular Organisms SUFU, BCL2

01_Eucaryota ARRB1, ARRB2, BTRC, CCND1, CCND2, CSNK1A1, CSNK1A1L, CSNK1D, CSNK1E, CSNK1G1, CSNK1G2, CSNK1G3, 
CUL1, CUL3, DHH, DISP1, EFCAB7, FBXW11, GRK2, GRK3, GSK3B, IHH, KIF3A, KIF7, MOSMO, PRKACA, PRKACB, 
PRKACG, PTCH1, PTCH2, SMURF1, SMURF2, SPOP, SPOPL, TPTEP2-CSNK1E

02_Metazoa BOC, CDON, EVC, EVC2, GAS1, GLI1, GLI2, GLI3, GPR161, HHAT, HHATL, IQCE, LRP2, MEGF8, MGRN1, SCUBE2, 
SHH, SMO

03_Chordata HHIP

Note.  Gene names belonging to regulatory circuits with feedback are highlighted in bold.
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et al., 2009; Wilson, Chuang 2010), which are evidently under 
stabilizing selection, as indicated by their DI values of 0.298, 
0.421, and 0.679, respectively.

Thus, the overwhelming majority of Hedgehog signaling 
pathway genes can be characterized as ancient, subject to 
stabilizing selection, preventing the accumulation of genetic 
variability and promoting functional stability of the genes. 
Their conservatism confirms the critical role of the HH path-
way in regulating fundamental ontogenetic processes.

Conclusion
A prototype of the HH_Signal_pathway_db knowledge 
base has been developed. It accumulates information on the 
structural and functional organization of the evolutionarily 
conserved Hedgehog (HH) signaling pathway in humans, 
integrating data from KEGG, NCBI Gene, UniProt, and other 
sources. The database systematizes fragmented data on the 
HH signaling pathway in humans and can serve as a tool for 
systematic analysis of its role in ontogenesis, maintaining 
homeostasis, and pathology development.

The bioinformatic analysis of some data from the base, in 
particular, showed that: 1) according to functional annotation, 
the pathway’s genes are associated with three categories 
of processes: intracellular, organ morphogenesis, and 
intercellular communication, including interaction with other 
signaling cascades; 2) the vast majority of the pathway’s genes 
are of ancient origin and subject to stabilizing selection; 3) the 
reconstructed associative gene network of the HH pathway 
contains 56 genes, 504 proteins, 126 miRNAs, and establishes 
1,412 interactions among them; 4) the network’s functioning 
is regulated by seven regulatory circuits – five with positive 
and two with negative feedback. One of the negative feedback 
circuits involve two miRNAs.
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Abstract. Macrophages are immune system cells that perform various, often opposing, functions in the organism 
depending on the incoming microenvironment signals. This is possible due to the plasticity of macrophages, which 
allows them to radically alter their phenotypic characteristics and gene expression profiles, as well as return to their 
original, non-activated state. Depending on the inductors acting on the cell, macrophages are activated into various 
functional states. There are five main phenotypes of activated macrophages: M1, M2a, M2b, M2c, and M2d. Although 
the amount of genome-wide transcriptomic and proteomic data showing differences between major macrophage 
phenotypes and non-activated macrophages (M0) is rapidly growing, questions regarding the mechanisms regulat-
ing gene and protein expression profiles in macrophages of different phenotypes still remain. We compiled lists of 
proteins associated with the macrophage phenotypes M1, M2a, M2b, M2c, and M2d (phenotype-associated proteins) 
and analyzed the data on potential mediators of macrophage polarization. Furthermore, using the computational 
system ANDSystem, we conducted a search and analysis of the relationships between potential regulatory proteins 
and the genes encoding the proteins associated with the M2 group phenotypes, obtaining estimates of the statistical 
significance of these relationships. The results indicate that the differences in the M2a, M2b, M2c, and M2d macro-
phage phenotypes may be attributed to the regulatory effects of the proteins JUN, IL8, NFAC2, CCND1, and YAP1. The 
expression levels of these proteins vary among the M2 group phenotypes, which in turn leads to different levels of 
gene expression associated with specific phenotypes.
Key words: macrophage phenotypes; expression regulation; proteomes; ANDSystem; automated text analysis
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фенотип-ассоциированные гены макрофагов группы М2: 
биоинформатический анализ
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Аннотация. Макрофаги – клетки иммунной системы, выполняющие в организме различные, часто противопо-
ложные функции в зависимости от поступающих сигналов микроокружения. Это возможно благодаря пластич-
ности макрофагов, позволяющей кардинально менять фенотипические признаки и профили экспрессии генов, 
а также возвращаться в исходное, неактивированное состояние. В зависимости от действующих на клетку ин-
дукторов макрофаги поляризуются в различные функциональные состояния. Принято выделять пять основных 
фенотипов активированных макрофагов: М1, M2a, M2b, M2c и M2d. Хотя количество полногеномных транскрип-
томных и протеомных данных, показывающих различия между основными фенотипами макрофагов и неакти-
вированными макрофагами (M0), растет стремительно, все еще остаются вопросы, касающиеся механизмов ре-
гуляции профилей экспрессии генов и белков у макрофагов разных фенотипов. Нами были составлены списки 
белков, ассоциированных с фенотипами макрофагов M1, M2a, M2b, M2c, M2d (фенотип-ассоциированные бел-
ки), проанализированы данные о возможных посредниках поляризации макрофагов. Далее с использованием 
компьютерной системы ANDSystem проведен поиск и анализ связей между потенциальными регуляторными 
белками и генами, кодирующими белки, ассоциированные с фенотипами группы M2, получены оценки стати-
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стической значимости этих связей. Результаты указывают на то, что различия в фенотипах макрофагов М2a, 
M2b, M2c, M2d могут быть обусловлены регуляторными действиями белков JUN, IL8, NFAC2, CCND1 и YAP1. Уро-
вень их экспрессии варьируется в зависимости от фенотипов группы M2, что в свою очередь приводит к раз-
личным уровням экспрессии генов, связанных с конкретными фенотипами.
Ключевые слова: фенотипы макрофагов; регуляция экспрессии; протеомы; система ANDSystem; автоматиче-
ский анализ текстов

Introduction
Macrophages are immune system cells that play a key role in 
processes such as: maintaining body homeostasis (Mosser et 
al., 2021), defense against infections (Zhang M., Wang, 2014), 
proinflammatory and anti-inflammatory responses (Xu et al., 
2013), tissue regeneration with concomitant stimulation of 
proliferation (Wynn, Vannella, 2016), and many others. The 
ability of macrophages to exhibit different functions through 
polarization (changing their functional state depending on 
signals from the microenvironment) is associated with their 
unique plasticity (Mills, 2012; Gurvich et al., 2020). Pola
rization leads to macrophages acquiring various phenotypes –  
functional states characterized by unique morphological, mo-
lecular and functional features, depending on the polarization 
inducers: proteins, peptides, polysaccharides, etc.

Each macrophage phenotype is characterized by a group 
of proteins (Martinez et al., 2008). These groups overlap, but 
different macrophage phenotypes can have radically diffe
rent functions. For example, the M1 phenotype corresponds 
to proinflammatory macrophages, essential for the body’s 
response to infections. M2a macrophages promote wound 
healing and clear the body of apoptotic cells (Murray et al., 
2014). M2b macrophages are called regulatory for their abi
lity to regulate T-helper cells, which leads to a switch in the 
immune response from proinflammatory to anti-inflammatory. 
M2c macrophages are necessary for tissue remodeling and the 
phagocytosis of apoptotic cells. M2d macrophages are called 
tumor-associated macrophages because they accompany tu-
mor tissues (Zhang Q., Sioud, 2023).

In several studies, a link has been demonstrated between 
specific macrophage phenotypes and certain pathologies, as 
well as an association of disease outcomes with particular 
macrophage phenotypes. For example, patients with ovar-
ian cancer exhibited a pronounced predominance of M1 
phenotype macrophages over M2, which was associated 
with improved survival (Zhang M. et al., 2014). Additiona
lly, the shift of macrophages from the M2 phenotype to M1 
suppressed tumor metastasis (Yuan et al., 2017). Research 
on juvenile idiopathic arthritis in remission showed that the 
M2 macrophage group predominantly consisted of M2b and 
M2c, while the number of M2a macrophages was significantly 
reduced (Feng et al., 2021). In contrast, children with active 
juvenile idiopathic arthritis had a predominance of M2a and 
M2b macrophages, while the presence of M2c was decreased. 
The study of differences between macrophage phenotypes 
holds significant fundamental importance and also represents 
substantial practical interest for early disease diagnosis, prog-
nosis, and management of disease progression (Zhang M. et 
al., 2014; Lampiasi, 2023).

It should be noted that there is conflicting information in 
the literature regarding the proteins and genes characterizing 
different macrophage phenotypes. For example, the fractalkine 
receptor (CX3CR1) is designated as a marker of the M2a 
phenotype in one publication (Joerink et al., 2011), while in an-
other publication (Chhor et al., 2013), this protein is identified 
as a marker of the M1 phenotype. Metalloproteinase MMP12 
is highlighted as a marker of the M1 phenotype (Hirani et al. 
2021), but the article (Lee et al. 2014) shows that this protein 
is characteristic of the proteomes of the M2 phenotype and 
dendritic cells. The chemokine CXCL13 is described as an 
M1 marker in the study (Martinez et al. 2006), while in the 
work (van der Lans et al. 2015) it is noted as a marker of M2.

How do proteomes intersect in macrophages of different 
phenotypes to achieve significant functional differences? 
What molecular and genetic regulatory mechanisms underlie 
macrophage polarization? Despite the rapid accumulation of 
genome-wide transcriptomic and proteomic data characteri
zing the differences between the major macrophage pheno-
types and their differences from non-activated macrophages 
(M0) (Gurvich et al., 2020; Oates et al., 2023), questions 
about how gene and protein expression profiles are regulated 
in macrophages of different phenotypes remain open.

The aim of this study was to identify mediator proteins that 
control the activity of phenotype-associated genes in different 
phenotypes of M2 macrophages. For this purpose, we used the 
ANDSystem information system, which is based on machine 
learning and artificial intelligence methods, including graph 
neural networks (Ivanisenko V.A. et al., 2015; Ivanisenko T.V. 
et al., 2024). ANDSystem provides automated analysis of 
scientific publication texts and factographic databases in the 
medical and biological domains. Currently, the ANDSystem 
knowledge base contains knowledge and facts extracted from 
more than 40 million scientific publications and patents, as 
well as factual databases, including information on molecular 
and genetic objects and processes that are important for the 
functioning of gene networks and their basic components: met-
abolic networks, signal transduction pathways, DNA-protein 
and protein-protein interaction networks. The effectiveness of 
ANDSystem has been demonstrated in a wide range of studies: 
reconstruction of molecular genetic mechanisms of asthma and 
hypertension comorbidity (Zolotareva et al., 2019), analysis 
of the plasma metabolome of patients with postoperative 
delirium (Ivanisenko V.A. et al., 2023), reconstruction of the 
hypermethylation regulatory network affecting the develop-
ment of hepatocellular carcinoma in hepatitis C virus disease 
(Antropova et al., 2023).

In this work, the following tasks were addressed: 1) forma-
tion of phenotype-associated protein lists in macrophages of 
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the main phenotypes (M1, М2a, M2b, M2c, M2d); 2) analysis 
of differential protein expression data in the M2 phenotype 
group as potential mediators of macrophage polarization;  
3) analysis of regulatory relationships from mediator pro-
teins to genes encoding phenotype-associated proteins using 
ANDSystem. 

Materials and methods
Proteomic data on macrophages of different phenotypes. 
Two types of information about proteins in different macro-
phage phenotypes were used in the work:
1) Our curated database MACRO_GENES, containing lists of 

genes and proteins associated with macrophage phenotypes 
(Table S1)1. It was formed through manual analysis of sci-
entific publications describing characteristic proteins that 
allow differentiation of macrophage phenotypes M1, M2a, 
M2b, M2c, M2d. Only those proteins, the presence of which 
in macrophages of certain phenotypes was confirmed by 
experimental data, were included in the MACRO_GENES 
database.

2) Proteomic data on differentially expressed proteins in 
M2a, M2b, M2c, and M2d macrophage phenotypes were 
obtained from the work by P. Li and colleagues (2022): 
approximately 200  proteins for each phenotype under 
consideration. Hereafter, such proteins will be referred to 
as regulatory proteins or differentially expressed proteins.
Search for potential regulators influencing the activity 

of phenotype-associated genes. The search for potential 
regulatory proteins influencing the activity of phenotype-asso-
ciated genes was carried out using the knowledge base of the  
ANDSystem software and the ANDVisio software module in-
cluded in this system (Demenkov et al., 2012; Ivanisenko V.A. 
et al., 2015; Ivanisenko T.V. et al., 2024). The ANDSystem 
knowledge base includes information on interactions between 
molecular biological objects (genes, proteins, metabolites, bio-
logical processes, etc.), obtained through automated analysis 
of over 40 million scientific publications and patents, as well 
as a large number of biomedical factual databases. The current 
version of this knowledge base contains information on over 
36 million proteins from various organisms and approximately 
the same number of genes, 76 thousand metabolites, 100 mil-
lion interactions, 21  thousand diseases, and more.
1 Supplementary Tables S1–S3 and Figures S1–S6 are available at: 
https://vavilov.elpub.ru/jour/manager/files/Suppl_Antropova_Engl_29_7.pdf

To search for connections between regulatory proteins 
and phenotype-associated genes, the frame model software 
of the ANDSystem was used (Fig.  1). Step  1: The first 
slot of the frame was filled based on proteomic analysis 
data (Li et al., 2022) with a list of differentially expressed 
proteins for each phenotype (M2a, M2b, M2c, and M2d). 
Step 2: The second slot of the frame was filled with a list of 
phenotype-associated genes for the same phenotype from 
our curated MACRO_GENES database (Table S1). Step 3:  
Using the ANDVisio software module with the filled frame, 
regulatory connections described in the ANDSystem knowl-
edge base were searched for the studied macrophage pheno-
type.

The analysis resulted in graphs of regulatory processes, in 
which nodes corresponded to differentially expressed proteins 
from the paper (Li et al., 2022) and phenotype-associated 
macrophage genes from the MACRO_GENES database. 
Edges connecting graph nodes corresponded to regulatory 
relationships between them.

Search for functionally significant regulatory proteins 
of phenotype-associated macrophage genes in regulatory 
process graphs. A key step in analyzing regulatory processes, 
associated with macrophage phenotype-associated genes and 
identified using frame models, is the search for functionally 
significant regulatory proteins (also called central nodes). 
Central nodes play a key role in signaling and coordinating 
regulatory processes. A wide range of methods have been 
developed to assess centrality (Ghasemi et al., 2014; Jalili 
et al., 2016; Ivanisenko V.A. et al., 2019). In our study, node 
centrality was assessed based on the number of interactions 
of the protein in question with phenotype-associated genes of 
the corresponding phenotype.

A high degree of centrality can be observed as a result of 
functional innovations between genes and proteins, as well as 
due to random factors. To distinguish between these situations, 
the statistical significance of the observed degree of centrality 
was assessed using the hypergeometric test. In this context, 
the hypergeometric test is used to measure the number of con-
nections between a given protein and randomly determined 
phenotype-associated genes.

Here: M is the total number of genes represented in the 
ANDSystem knowledge base; N is the total number of genes 
with which a specific protein interacts in the ANDSystem 
knowledge base; n is the number of phenotype-associated 
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Fig. 1. Schematic diagram of a frame model for searching for regulatory links between differentially 
expressed proteins and phenotype-associated genes.
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genes for a specific phenotype in the MACRO_GENES 
database; x is the observed number of interactions of the 
protein in question with phenotype-associated genes for a 
specific phenotype. Then, under the null hypothesis of a 
random distribution of interactions, the value of X obeys the 
hypergeometric distribution law:

X ~ Hypergeom(M, N, n),
and the p-value for the right-tailed (enrichment) test was 
calculated using the formula:

 
.

p-values were calculated using the SciPy Python library 
(scipy.stats.hypergeom). A Bonferroni correction was used 
to correct for multiple testing. At p < 0.05, the observed de-
gree of centrality was considered statistically significant, and 
the corresponding protein was considered as a functionally 
significant regulatory protein controlling the expression of 
phenotype-associated genes.

Results and discussion
Our work aimed to identify regulatory proteins that influence 
genes, the expression of which differs between the M2a, M2b, 
M2c, and M2d macrophage phenotypes. Understanding the 
regulatory mechanisms that determine differences between 
macrophage phenotypes is not only of fundamental impor-
tance but also holds promise for applications in medicine 
and pharmacology, as the prevalence of a certain macrophage 
phenotype has been shown to be associated with the develop-
ment and outcome of a number of pathologies (Zhang M. et 
al., 2014; Yuan et al., 2017; Feng et al., 2021).

General characteristics of phenotype-associated genes 
and proteins of macrophages M1, M2a, M2b, M2c, M2d
Table 1 presents a summary of our curated database, MACRO_
GENES, of phenotype-associated genes encoding phenotype-
associated proteins, i. e., proteins specific to macrophages of 
each of the phenotypes under consideration: M1, M2a, M2b, 
M2c, and M2d. The presence of proteins in specific phenotypes 
was confirmed by experimental data presented in the relevant 
publications. A detailed description of the gene information 
in MACRO_GENES is given in Table S1.

Some phenotype-associated proteins are used in experimen-
tal studies as specific markers for distinguishing macrophage 
phenotypes. In Table 1, the genes encoding such proteins are 
highlighted in green. If a protein is characteristic of a specific 
phenotype but is also considered a specific marker for another 
phenotype, the gene encoding it is highlighted in orange 
(Table  1). For example, the CCL2 protein is considered a 
marker for the M1 phenotype, but some publications indicate 
that it is also characteristic of the M2a and M2d phenotypes. 
Table 1 illustrates the complex pattern of marker intersections 
between different macrophage phenotypes.

Figure 2 shows a Venn diagram demonstrating the distribu-
tion of genes encoding phenotype-associated proteins across 
five macrophage types (M1, M2a, M2b, M2c, M2d). The 
diagram is constructed based on the information provided in 
Table 1. Note that the M1 and M2d phenotypes have the most 
matching proteins (17). The M2a/M2c and M1/M2c phenotype 
pairs have 15 and 13 common proteins, respectively. The M2b 
and M1 phenotypes have 11 matching proteins. A relatively 
small number of matching proteins (8) can be noted for the 
M2c and M2d phenotype pair. M2b has the fewest overlaps 
(6 proteins) with M2a.

Table 1. Lists of genes encoding phenotype-associated proteins of macrophages M1, M2a, M2b, M2c  
and M2d presented in the MACRO_GENES database

Macrophage 
phenotype

Genes encoding phenotype-associated proteins*

M1 ARGI2, CAHM6, CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CCL15, CCL19, CCL20, CCR2, CCR7, CD38, CD80, CD86, CSF2, CXCL2, CXCL5, 
CXCL9, CXCL10, CXL11, FCG2B, FCG3A, FCGR1, GBP2, GBP5, GROA, HLA-DRA, HMGB1, IDO1, IFNA1, IFNB, IFNG, IL1A, IL1B, IL1R1, 
IL2RA, IL3, IL6, IL7RA, IL8, IL12B, IL15, IL15RA, IL17, IL18, IL23A, IRF1, IRF4, IRF7, ISG20, ITGAX, KCNN2, LAG3, MARCO, MET, MIF, 
MMP13, NAMPT, NFKB1, NOS2, PGH2, SOCS3, STAT1, TIMP1, TLR2, TLR4, TNFA, TNR5, TSP1, UBD, VEGFA

M2a ALOX15, ARG1, CCL1, CCL2, CCL7, CCL8, CCL13, CCL14, CCL15, CCL17, CCL18, CCL22, CCL23, CCL24, CCL26, CCR2, CD200R1, CD209, 
CD274, CDH1, CDK11B, CLEC4A, CLEC7A, CLEC10A, CSF1R, CXCR1, CXCR2, EDN1, EGR2, FCER2, FGF2, FLT1, FN1, HAVCR2, HLA-DPA1, 
HLA-DPB1, HLA-DRA, HLA-DRB1, HLA-DRB3, HRH1, IGF1, IL1R1, IL1R2, IL4, IL10, IL27, IRF4, ITGAX, KLF2, LGALS3, MMP9, MMP14, 
MRC1, MRC2, MYC, PDCD1LG2, PGF, PPARG, PTGS1, RAMP1, SCN3A, SOCS1, TGFB1, TGM2, TREM2, VEGFA

M2b CCL1, CCL4, CCL20, CD86, CD163, COX2, CXCL3, HLA-DRA, IFNA1, IL1B, IL1R1, IL6, IL10, MRC1, NOS2, PTPRC, SIGLEC10, SPHK1, TNFA, 
TNFSF14, VEGFA

M2c ARG1, BCL3, C1QA, CCL8, CCL16, CCL18, CCL23, CCR2, CCR3, CCR10, CD14, CD163, CD300E, CDK11A, CDK11B, CSF1R, CX3CR1, 
CXCL12, CXCL13, CXCR4, EPAS1, F5, FCRLA, FPR1, GAS6, GXYLT2, HIF1A, IL1B, IL1R1, IL4R, IL10, IL21R, IRF3, IRF5, IRF8, ITGAX, JAK3, 
LIN7A, MAF, MARCO, MCTP2, MERTK, MMP2, MMP8, MMP14, MRC1, MRC2, MSR1, NOS2, PCOLCE2, PGF, PLOD2, SELENOP, SERPINA1, 
SH3PXD2B, SLAMF1, SOCS3, SPP1, SRPX2, STAT1, STAT3, STAT6, TGFB1, THBS1, TIMP1, TLR1, TLR2, TLR4, TLR5, TLR8, VCAN, VTCN1

M2d ADORA2A, AIF1, C1QA, C1QC, CCL2, CCL3, CCL4, CCL5, CCL7, CD81, CD274, COX2, CSF3R, IL8, CXCL9, CXCL10, CXCL16, EGF, FCRL2, 
FGF2, FGFR1, GDF15, HLA-DMA, ID3, IDO1, IDO2, IL1A, IL1B, IL6, IL10, IRF7, LILRB4, MIF, MMP2, MMP9, MRC1, MSR1, NCAM1, NOS2, 
PDCD1LG2, PDGFB, TBX6, TGFBI, TNFA, VEGFA

* Genes encoding proteins that are markers of various macrophages phenotypes are highlighted in green. Genes that are expressed in macrophages of a particular 
phenotype, according to some sources, but are markers of macrophages of a different phenotype, according to other sources, are highlighted in orange.
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Fig.  2. Venn diagram for comparison of macrophage phenotypes 
M1, M2a, M2b, M2c, M2d according to the gene lists presented in the 
MACRO_GENES database.

General characteristics of differentially expressed proteins 
of the M2 macrophage group
To search for mediator proteins that transmit signals from 
macrophage polarization inducers to phenotype-associated 
genes, we used lists of differentially expressed proteins (com-
pared to non-activated macrophages) from P. Li et al. (2022). 
The published data, summarized in Tables S2 and S3, indi-
cate that the distribution of differentially expressed proteins 
across the four macrophage phenotypes (M2a, M2b, M2c, 
M2d) is characterized by significant overlap, i. e., there is no 
one-to-one correspondence between differentially expressed 
proteins and macrophage phenotypes. Therefore, to identify 
regulatory pathways that mediate macrophage polarization 
into different phenotypes, we required bioinformatic analysis 
of large volumes of molecular genetic data, conducted using 
the ANDSystem computer system.

Search for regulatory links from differentially expressed 
proteins to phenotype-associated genes of macrophages 
based on frame models
To analyze large volumes of published data on various macro
phage phenotypes, we used the methods and information 
resources of computer-aided knowledge engineering imple-
mented in the ANDSystem. Using the framework-based 
approach realized in this system, we searched for regulatory 
links between differentially expressed proteins and phenotype-
associated genes in macrophages.

Regulatory process graphs were reconstructed, with nodes 
corresponding to differentially expressed proteins from the 
paper (Li et al., 2022) and phenotype-associated macrophage 
genes from the MACRO_GENES database. Edges connecting 
graph nodes corresponded to regulatory relationships between 
them. Figure  3 shows an example of a graph of potential 
regulatory relationships between differentially expressed 
proteins and phenotype-associated macrophage genes in the 
M2b phenotype.

Figure 3 shows that most phenotype-associated genes are 
regulated by more than one protein. Furthermore, most of the 
proteins shown in the figure are involved in the regulation 
of multiple genes. Similar regulatory relationship diagrams 
for M2a, M2c, and M2d macrophages are presented in the 
Supplementary Materials (Fig. S1–S3).

Identification of statistically significant regulators  
of phenotype-associated genes
Quantitative characteristics of regulatory links between 
differentially expressed proteins and phenotype-associated 
genes identified using frame models are shown in Section A 
of Table 2.

In the second stage of the analysis, centrality metrics 
characterizing the functional significance of differentially 
expressed proteins for the regulation of phenotype-associated 
genes were assessed. Centrality assessments allowed us to 
identify proteins regulating phenotype-associated genes with 
a Bonferroni-corrected statistical significance threshold of 
p  <  0.05 (Table  2B). Accounting for the statistical signifi-
cance of differentially expressed proteins based on centrality 
metrics led to a significant reduction in the number of nodes 
corresponding to phenotype-associated genes and the number 
of edges corresponding to regulatory events. For example, for 
the M2a phenotype, of the 40 differentially expressed proteins 
associated with phenotype-associated genes, 16 were statisti-
cally significantly associated with these genes (Table 2B). For 
the M2b phenotype, it was 6 out of 12 proteins. Accordingly, 
the number of regulatory events and phenotype-associated 
genes in the reconstructed graphs decreased.

Figure 4 shows the lists of differentially expressed proteins 
statistically significantly associated with the phenotype-
associated genes of macrophages M2a, M2b, M2c and M2d. 
Proteins, the levels of which are elevated in specific mac
rophage phenotypes according to the study (Li et al., 2022),  
are highlighted in red. Proteins, the levels of which are de
creased compared to non-activated macrophages are high-
lighted in blue. Green lines connect proteins with oppositely 
changing expression levels in macrophages of different phe-
notypes.

Figure  5 shows examples of schemes of statistically 
significant regulatory interactions between differentially 
expressed proteins of M2a macrophages and phenotype-
associated genes reconstructed using the ANDSystem. The 
corresponding schemes for macrophages of the M2b, M2c, 
and M2d phenotypes are presented in Figures S4–S6. Figure 5 
demonstrates regulatory connections using two alternative op-
tions for controlling molecular genetic processes in the same 
M2a macrophage phenotype: through an increase (Fig. 5A) 
and a decrease (Fig. 5B) in the levels of regulatory proteins.  
A description of the reconstructed connections obtained using 
frame models is given in Table 3.

As an example, let us consider the binding of the regula-
tory protein TGM2 (the lower protein in Figure 5A, marked 
with a blue asterisk). Proteomic data (Li et al., 2022) show 
that the level of this protein is elevated in the M2a pheno-
type compared to non-activated macrophages. According to 
information from the ANDSystem knowledge base obtained 
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Fig.  3. A graph of potential regulatory links between differentially expressed proteins (left) and phenotype-associated genes 
(right) in M2b macrophages, presented in the ANDSystem interface. Green balls on the arrows in the interactive ANDSystem 
interface allow users to obtain additional information about specific regulatory links.

Gene

Expression regulation

Interaction regulation

Protein

Table 2. Quantitative characteristics of potential regulatory links identified based on frame models

Components of frame models M2a M2b M2c M2d

A. Results of the first stage of analysis  
of the regulatory interactions reconstructed graph

Differentially expressed proteins 40 12 41 43

Regulatory events 127 51 216 252

Phenotype-associated genes 26 12 41 31

B. Results of the second stage of the analysis (taking into account statistical estimates  
of the centrality of regulatory proteins,  

p < 0.05)

Differentially expressed proteins 16    6 10 15

Regulatory events 85 19 89 133

Phenotype-associated genes 23    8 28 29

through its interface, in M2a macrophages, the TGM2 pro-
tein has an activating effect on the expression of the M2a 
phenotype-associated genes CD274 and FN1 (Liu et al., 2021; 
Sun et al., 2021), which is consistent with the data presented 
in Table 1 (the mentioned genes are marked with black as-
terisks in Figure 5A). TGM2 also has a suppressive effect on 
the PPARG gene (Maiuri et al., 2008), which is inconsistent 
with the data in Table  1 and indicates that the expression 

of this gene is also activated by some other factors, such as 
AHR, CDK4, CCL5, the level of which is increased in this 
phenotype (Fig. 5A).

Among the proteins with reduced levels (compared to  
non-activated macrophages) in M2a macrophages, as an ex-
ample we consider the CBP protein, which regulates the phe-
notype-associated genes CCL2, CD274, and CDH1 (Fig. 5B, 
marked with asterisks). According to information from the 
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Fig. 5. Graph of the regulation of phenotype-associated gene expression (from the MACRO_GENES database) in M2a macrophages by differentially 
expressed regulatory proteins from the article (Li et al., 2022), statistically significantly associated with these genes: (A) through an increase and  
(B) through a decrease in the level of regulatory proteins in this phenotype. The blue asterisk in (A) indicates the TGM2 protein discussed in the text, 
black asterisks indicate its target genes; green triangles indicate the discussed proteins AHR, CDK4, CCL2, TGM2. Blue asterisks in (B) indicate the CBP 
protein discussed in the text and its target genes.

Fig. 4. Differentially expressed proteins statistically significantly (p < 0.05) 
associated with the phenotype-associated genes of macrophages M2a, 
M2b, M2c, and M2d. Proteins, the levels of which, according to (Li et al. 
2022), are elevated in a particular phenotype are highlighted in red, while 
those, the levels of which are decreased compared to non-activated 
macrophages, are highlighted in blue. Green lines connect proteins with 
oppositely expressed changes in macrophages of different phenotypes.

ANDSystem knowledgebase, when CBP is suppressed in the 
M2a phenotype, CCL2 expression increases (Huang et al., 
2021), which is consistent with the data presented in Table 1 
(MACRO_GENES database). At the same time, the CBP 
protein positively influences the expression of the phenotype-

associated genes CD274 and CDH1 (Liu et al., 2020; Heng et 
al., 2021). It can be hypothesized that other regulators have 
a greater influence on the activity of these genes. Figure 5A 
shows that such regulators for the CD274 gene may include 
the proteins AHR, CCL5, TGM2, and CDK4, the levels of 
which are elevated in the M2a phenotype (Fig. 5A, double 
green asterisks).

All statistically significant regulatory interactions identified 
in M2 macrophages between differentially expressed proteins 
and phenotype-associated genes are presented in Table 3. For 
M2a macrophages, these were interactions of nine regulatory 
proteins with increased levels (compared to non-activated 
macrophages), marked with arrows (↑), and four proteins 
with decreased levels (↓), regulating 23 phenotype-associated 
genes. For M2b, these were four upregulated and two down-
regulated proteins regulating eight phenotype-associated 
genes (see also Figure S4). For M2c, two upregulated and 
eight downregulated proteins regulating 28 genes were identi-
fied (see also Figure S5). For M2d, 13 upregulated and two 
downregulated proteins regulating 29 genes were found (see 
also Figure S6).

Thus, based on a computer analysis of differences in the 
proteomes of different macrophage phenotypes, as well as 
the use of large volumes of information accumulated in the 
ANDSystem knowledge base, some regulatory proteins were 
identified that mediate the action of macrophage polarization 
inducers on phenotype-associated macrophage genes. Future 
research is planned using frame models containing more slots 
reflecting the intermediate stages of action of macrophage 
polarization inducers on phenotype-associated macrophage 
genes. This will enable the identification of more subtle fea-
tures of the regulatory pathways running from macrophage 
polarization inducers to phenotype-associated genes through 
the action of intermediary proteins.

BА
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Conclusion
A study of published data on phenotype-associated genes and 
proteomes of M2 macrophages, and a subsequent search for 
regulatory links between them using a frame-based approach 
implemented in the ANDSystem computer system, made it 
possible to identify potential regulatory proteins that mediate 
differences in gene expression in M2 macrophage phenotypes. 

The obtained results suggest that the differences between the 
M2a, M2b, M2c and M2d phenotypes may be associated, in 
particular, with the regulatory functions of the proteins JUN, 
IL8, NFAC2, CCND1 and YAP1, the level of which varies 
between phenotypes, leading to differences in the expression 
of phenotype-associated genes.

Table 3. Relationships between functionally significant differentially expressed regulatory proteins*  
and the phenotype-associated genes they regulate in M2 group macrophages, identified using frame models

M2a M2b M2c M2d

Protein Target genes Protein Target genes Protein Target genes Protein Target genes

AHR (↑)** ARG1, MMP9, MYC, 
PPARG, CCL22, 
CCR2, CDH1, 
CD274, IL10

AHR (↑) IL1B, CCL20, IL10 AHR (↑) ARG1, CXCL12, STAT3, 
SOCS3, CCR2, HIF1A, 
TLR2, IL1B, IL10

AHR (↑) IDO1, IDO2, IL1B, 
IL8,MMP9, NCAM1, 
CD274, IL1A, IL10

TGM2 (↑) PPARG, CD274, FN1, 
MMP14

IGF2 (↑) NOS2 MBD2 (↑) CXCL12, NOS2, SOCS3 IL1B (↑) FGF2, FGFR1, CXCL10, 
IL8, MMP9, VEGFA, 
TGFB1, CCL2, CCL3, 
CCL4, CCL5, NOS2, 
COX2, IL10, IL1A, TNF, 
PDCD1LG2, MIF 

CCL5 (↑) VEGFA, CD274, 
MMP9

NINJ1 (↑) IL1B

NFAC2 (↑) EGR2, IL4, FLT1, 
MMP9

IL8 (↑) CCL1, VEGFA TGFR1 (↓) MMP14, TGFB1, 
HIF1A, PGF

MBD2 (↑) CXCL9, CXCL10, CD274, 
CCL5, MMP2, NOS2

HMGA2 (↑) FLT1, MMP9, VEGFA, 
CCL2

TGFR1 (↓) VEGFA ZEB2 (↓) MAF, MMP14, TGFB1, IL8 (↑) IL1B, FGF2, CXCL10, 
MMP9, CCL2, CD274, 
MMP2, VEGFA

ITAM (↑) ARG1, CDK11B JUN (↓) CD86, COX2, NOS2, 
IL1B, IL10, CCL20, 
VEGFA 

CCND1 (↓) TGFB1, STAT3, HIF1A YAP1 (↑) IRF7, FGFR1, PDGFB, 
CD274

CDK4 (↑) PPARG, LGALS3, 
CD274

IL8 (↓) MMP14, MMP2, 
MMP8, TLR5, CXCL12, 
ARG1, CCR2, HIF1A, 
IL1B, CDK11B

NAMPT (↑) IL1B, FGF2, IL8, MMP9, 
CCL2, CD274, MMP2

CXL10 (↑) MMP9, CCL2

CCND1 (↓) VEGFA, TGFB1, 
CD274

IGF2 (↓) CDK11B, MMP2, 
HIF1A, NOS2

IL1A (↑) IL6, IL1B, VEGFA, CD274

CCL20 (↑) MMP9, CD274

FLT3 (↓) *** MMP9 PLMN (↓) TGFB1, CXCL12, 
CXCR4

CXL10 (↑) IL1B, MMP9, CCL2, 
MMP2

CCL3 (↓) CCR2, VEGFA, 
PPARG

TRFL (↓) HIF1A, TLR4 TIGAR (↑) MMP9, MMP2

PLMN (↓) MMP9, TGFB1 JUN (↓) TGFB1, CXCL12, 
MMP14, MMP2, 
ARG1, IL1B, NOS2, 
HIF1A, TLR2, TLR4, 
IL10, CX3CR1, THBS1, 
SERPINA1, BCL3, 
CCL18, ITGAX

HMGA2 
(↑)

MMP9, CCL2, MMP2, 
VEFGA

CD38 (↓) VEGFA SRC (↑) CXCL10, MMP2, VEFGA, 
NOS2

TGFR1 (↓) TGFB1, CD274, 
MMP14, PGF

ITB3 (↑) MMP2

CBP (↓) CD274, CCL2, CDH1 TGFR1 (↓) VEGFA, TGFB1, CD274

FOSL2 (↓) CD274, IRF4, ITGAX GDF15 (↓) MMP9, CCL2, GDF15, 
CD274, MMP2

* – Proteins selected based on the centrality criterion (p < 0.05); ** ↑ – proteins with increased expression levels; ***↓ – proteins with decreased expression levels.
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Abstract. Accumulated evidence links dysregulated cytokine signaling to the pathogenesis of autism spectrum 
disorder (ASD), implicating genes, proteins, and their intermolecular networks. This paper systematizes these find-
ings using bioinformatics analysis and machine learning methods. The primary tool employed in the study was the 
ANDSystem cognitive platform, developed at the Institute of Cytology and Genetics, which utilizes artificial intel-
ligence techniques for automated knowledge extraction from biomedical databases and scientific publications. 
Using ANDSystem, we reconstructed a gene network of cytokine-mediated regulation of autism spectrum disorder 
(ASD)-associated genes and proteins. The analysis identified 110 cytokines that regulate the activity, degradation, 
and transport of 58 proteins involved in ASD pathogenesis, as well as the expression of 91 ASD-associated genes. 
Gene Ontology (GO) enrichment analysis revealed statistically significant associations of these genes with biological 
processes related to the development and function of the central nervous system. Furthermore, topological network 
analysis and functional significance assessment based on association with ASD-related GO biological processes al-
lowed us to identify 21 cytokines exerting the strongest influence on the regulatory network. Among these, eight 
cytokines (IL-4, TGF-β1, BMP4, VEGFA, BMP2, IL-10, IFN-γ, TNF-α) had the highest priority, ranking at the top across 
all employed metrics. Notably, eight of the 21 prioritized cytokines (TNF-α, IL-6, IL-4, VEGFA, IL-2, IL-1β, IFN-γ, IL-17) 
are known targets of drugs currently used as immunosuppressants and antitumor agents. The pivotal role of these 
cytokines in ASD pathogenesis provides a rationale for potentially repurposing such inhibitory drugs for the treat-
ment of autism spectrum disorders.
Key words: autism spectrum disorder (ASD); neurodevelopmental disorders; cytokines; automatic text analysis of 
scientific publications; ASD pathogenesis; ASD treatment; computer reconstruction of gene networks
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Аннотация. Многочисленные исследования подтверждают связь нарушений цитокиновой регуляции с раз-
витием расстройств аутистического спектра (РАС) на уровне генов, белков и их межмолекулярных взаимодей-
ствий. В работе эти данные были систематизированы с применением биоинформатического анализа и мето-
дов машинного обучения. Главным инструментом в исследовании являлась когнитивная система ANDSystem, 
разработанная в Институте цитологии и генетики СО РАН и задействующая методы искусственного интеллекта 
для автоматического извлечения информации из биомедицинских баз данных и текстов научных публикаций. 
С использованием ANDSystem была реконструирована ассоциативная генная сеть цитокиновой регуляции 
генов и белков, ассоциированных с РАС. В результате анализа удалось идентифицировать 110 цитокинов, кото-
рые, согласно воссозданной сети, регулируют активность, деградацию и транспорт 58 белков, вовлеченных в 
развитие РАС, а также экспрессию 91 гена, ассоциированного с этими расстройствами. Анализ перепредстав-
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ленности биологических процессов Gene Ontology выявил статистически значимые ассоциации этих генов с 
процессами, связанными с развитием и работой центральной нервной системы. Анализ топологических ха-
рактеристик сети и оценка функциональной значимости элементов сети через их ассоциацию с биологически-
ми процессами Gene Ontology, связанными с РАС, позволили выделить 21 цитокин, оказывающий наибольшее 
влияние на элементы сети. Среди них наибольший приоритет имели восемь цитокинов (IL-4, TGF-β1, BMP4, 
VEGFA, BMP2, IL-10, IFN-γ, TNF-α), которые занимали высокое положение по результатам всех использованных 
методик приоритизации. Кроме того, из 21 приоритетного цитокина выделяются восемь цитокинов (TNF-α, 
IL- 6, IL-4, VEGFA, IL-2, IL-1β, IFN-γ, IL-17), которые являются мишенями препаратов, применяемых в качестве им-
муносупрессантов и противоопухолевых средств. Установленная роль этих цитокинов в патогенезе РАС созда-
ет предпосылки для потенциального перепрофилирования препаратов, направленных на их ингибирование, 
для терапии расстройств аутистического спектра. 
Ключевые слова: расстройства аутистического спектра (РАС); нарушения нейроразвития; цитокины; авто-
матический анализ текстов научных публикаций; патогенез РАС; терапия РАС; компьютерная реконструкция 
генных сетей

Introduction
DSM-5 (Diagnostic and Statistical Manual of Mental Disor-
ders, Fifth edition) classifies autism spectrum disorder (ASD) 
as a category of neurodevelopmental conditions exhibiting 
a substantial genetic component, with diagnosis predicated 
solely on behavioral criteria (American Psychiatric Associa-
tion, 2013). The core diagnostic profile of ASD comprises 
persistent deficits in social communication and reciprocal 
social interaction, co-occurring with restricted, repetitive 
patterns of behavior, interests, or activities. Contemporary 
diagnostic frameworks mandate the manifestation of these 
symptoms during the early developmental period. While their 
severity can vary, certain individuals may develop compen-
satory strategies through learned behaviors, which can mask 
underlying deficits. A substantial heterogeneity is observed in 
the behavioral phenotypes associated with ASD (Van der Zee, 
Derksen, 2021). Furthermore, the neurophysiological features 
associated with autism were identified not only in diagnosed 
individuals but also in the general population (Harms et al., 
2010; Tsai et al., 2013; Tseng et al., 2015).

ASD classification delineates idiopathic forms, lacking 
clear genetic correlates, from syndromic forms, which are 
defined by monogenic mutations and associated comorbid 
features (Ziats et al., 2021). А considerable subset of syn-
dromic ASD cases is driven by mutations disrupting the 
mTOR signaling pathway, leading to its persistent hyperacti-
vation (Ganesan et al., 2019). A prior bioinformatic analysis 
utilizing the SFARI Gene database (Abrahams et al., 2013) 
demonstrated that approximately 58 % of genes harboring 
ASD-associated mutations are directly linked to the mTOR 
signaling pathway (Trifonova et al., 2019). The mTOR pro-
tein (mechanistic target of rapamycin) is a serine/threonine 
kinase that serves as the central component of two protein 
complexes: mTORC1 and mTORC2. Rapamycin-sensitive 
mTORC1 responds to nutrient availability and growth factors, 
regulating cell growth and metabolism. mTORC2, in contrast, 
is largely rapamycin-insensitive and is activated in response 
to stress and growth factor signaling, regulating cell survival 
and proliferation processes (Ragupathi et al., 2024).

mTOR signaling pathway plays a critical regulatory role 
in diverse physiological processes, including cellular and 
tumor growth (Onore et al., 2017), immune function (Liu et 
al., 2015), as well as memory formation and neural circuit 
plasticity (Hoeffer, Klann, 2010). Furthermore, constitutive 

hyperactivation of this pathway has been shown to suppress 
autophagy (McMahon et al., 2012) and impair normal synaptic 
pruning mechanisms (Tang et al., 2014).

Synaptic pruning is a fundamental neurodevelopmental 
process involving the microglia-mediated elimination of 
superfluous synaptic connections persisting from develop-
ment through adulthood. This refinement mechanism en-
hances the efficiency of neural transmission and facilitates 
the reallocation of metabolic and computational resources to 
behaviorally relevant circuits, thereby underlying effective 
learning and long-term memory formation (Navlakha et al., 
2015). Impairments in this pruning cascade are implicated 
in the neuropathology of ASD, manifesting as an increase in 
dendritic spine and synaptic density across both supra- and 
infragranular layers of the frontal, temporal, and parietal 
cortices (Hutsler, Zhang, 2010).

Microglia, central to the process of synaptic pruning, 
are integral to the CNS immune environment, where their 
activity is modulated by cytokine signalling. Moreover, as 
a major source of pro-inflammatory cytokines in the brain, 
microglia function as critical orchestrators of neuroinflamma-
tory processes and possess the capacity to induce or modulate 
diverse cellular responses (Smith et al., 2012). Postmortem 
analyses of individuals with ASD have revealed hallmarks of 
neuroinflammation associated with classical (M1) microglial 
activation, with documented elevations in interferon IFN-γ 
and cytokines IL-1β, IL-6, IL-12p40, TNF-α, and CCL2 in 
both brain tissue and cerebrospinal fluid (Vargas et al., 2005; 
Li et al., 2009; Morgan et al., 2010).

Cytokines provide regulatory signaling essential for normal 
early brain development, synaptic plasticity, and the preser-
vation of brain homeostasis. Pronounced alterations in the 
cytokine milieu disrupt fundamental neurodevelopmental 
mechanisms such as neuronal migration and differentiation, 
ultimately leading to the emergence of behavioral deficits 
(Ashwood et al., 2011). Moreover, comparative analyses of 
plasma and serum cytokine levels further reveal statistically 
significant alterations in the immunological profile of individu-
als with ASD relative to neurotypical controls (Onore et al., 
2017). Therefore, a systemic immune regulatory imbalance 
perpetuates a state of chronic neuroinflammation in ASD.

In this study, we employed artificial intelligence (AI)-based 
software tools to reconstruct associative gene networks,  
aiming to identify and systematize regulatory interactions 
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between cytokines and ASD-associated genes and proteins. 
The analysis was performed using the ANDSystem cognitive 
platform (Ivanisenko V.A. et al., 2015), a tool specifically de-
signed for automated extraction and integration of data from 
scientific literature and biological databases.

The objective of this research was to reconstruct and 
analyze the gene network of cytokine-mediated regulation 
of ASD-associated genes and proteins, with the specific goal 
of identifying promising cytokine targets for ASD immuno-
modulation therapy.

Network analysis identified 110 cytokines regulating activ-
ity, degradation, and transport of 58 ASD-associated proteins, 
alongside influencing the expression of 91 ASD-related genes. 
Gene Ontology enrichment analysis revealed significant in-
volvement of these genes in CNS development and function. 
Among the 21 cytokines exerting the greatest influence on 
the network, eight (TNF-α, IL-6, IL-4, VEGFA, IL-2, IL-1β, 
IFN-γ, IL-17) are targeted by existing immunosuppressive 
and antitumor drugs. The identified role of these cytokines in 
ASD pathogenesis provides a strong foundation for exploring 
drug repurposing strategies targeting them.

Materials and methods
The study’s first phase involved in silico reconstruction of a 
network mapping cytokine interactions with ASD-associated 
proteins and genes (consolidated gene network). To achieve 
the most comprehensive coverage of these regulatory interac-
tions, five specialized gene subnetworks reflecting different 
pathways of cytokine influence were first reconstructed (Sup-
plementary Table S1)1. These subnetworks were subsequently 
integrated into a consolidated gene network.

The second phase comprised a structural bioinformatic 
analysis of the integrated network and functional annotation of 
its components using Gene Ontology to identify ASD-relevant 
biological processes. This was followed by prioritization of 
cytokines according to their predicted regulatory impact on 
ASD-associated genes and proteins.

The final stage focused on identifying promising targets  
for immunomodulatory ASD therapy among the cytokines 
demonstrating the highest significance in the conducted ana- 
lysis.

Stage 1. A set of ASD-associated genes (234 genes) was ob-
tained from the SFARI Gene database (Abrahams et al., 2013) 
(https://gene.sfari.org). The sample included genes annotated 
in this database as having a high confidence of association 
with ASD (Category 1 according to the database’s internal 
scoring system). Lists of cytokine genes (186 genes) and cy-
tokine receptor genes (114 genes) were compiled using data 
extracted from the Human Protein Atlas (HPA) (https://www.
proteinatlas.org/), a comprehensive knowledge base focused 
on the spatial localization and expression profiles of human 
proteins in tissues, cells, and organs (Uhlén et al., 2015).

Gene networks were reconstructed using the ANDVisio 
software (Demenkov et al., 2012), which utilizes data from 
the ANDSystem’s knowledge base for network reconstruction 
and structural analysis. ANDSystem is designed for automated 
analysis of scientific publications and databases and employs 
ontological modeling, graph analysis, and natural language 
1 Supplementary Table S1 is available at: 
https://vavilov.elpub.ru/jour/manager/files/Suppl_Levanova_Engl_29_7.pdf

processing mechanisms (Ivanisenko V.A. et al., 2019; Ivani
senko T.V. et al., 2020, 2022, 2024).

A consolidated network was assembled from subnetworks 
reconstructed using ANDVisio’s ʻPathway Wizardʼ. This 
tool enables the retrieval and visualization of gene networks 
from the ANDSystem knowledge base that match specified 
query templates. Five individual subnetworks were initially 
constructed using five distinct query templates (Table S1) and 
subsequently merged into a unified graph.

Stage 2. Gene Ontology (GO) term enrichment analysis 
for biological processes (GO_BP) (Ashburner et al., 2000) 
was performed on the consolidated gene network utilizing 
the DAVID bioinformatics platform (Huang et al., 2009; 
Sherman et al., 2022) (https://davidbioinformatics.nih.gov/). 
DAVID provides functional gene annotation and evaluates the 
statistical significance of GO term enrichment within gene sets 
against user-defined confidence thresholds.

Network topology analysis and cytokine ranking were per-
formed using the statistical tools implemented in ANDVisio. 
Cytokines were evaluated based on two centrality metrics: 
betweenness centrality, defined as the fraction of the shortest 
paths traversing a node, and degree centrality, representing 
the number of its direct connections. Both parameters serve 
as measures of nodal influence within the network, where 
higher values correspond to greater functional significance. 
Furthermore, pathway-based prioritization of cytokines was 
conducted using a custom Python 3.10 script to assess their 
representation in ASD-associated biological pathways.

Stage 3. Cytokines identified through prior analysis were 
subsequently evaluated as potential targets for pharmacologi-
cal intervention. This assessment incorporated data from the 
DrugBank (Knox et al., 2024) (https://go.drugbank.com/) 
and GETdb (Zhang et al., 2024) (https://togodb.org/db/getdb) 
databases. 

Results of gene network reconstruction  
and analysis

Reconstruction of cytokine interactions  
with ASD-associated proteins and genes
During the initial research phase, five sub-networks were 
reconstructed using the Pathway Wizard software (Fig. 1). 
The subnetwork reconstruction utilized two datasets: ASD-
associated gene set from the SFARI database (https://gene.
sfari.org) and a list of cytokines and their receptors obtained 
from the Human Protein Atlas database (https://www.pro-
teinatlas.org/).

Following automated reconstruction, all retrieved connec-
tions and network elements were manually reviewed against 
source publication texts to eliminate errors arising from inac-
curate information extraction.

Integration of the reconstructed subnetworks produced a 
consolidated network representing cytokine interactions with 
ASD-associated proteins and genes (Fig. 2). This integrated 
network contained 1,112 nodes classified into two distinct 
types and 3,675 specific interactions between them, as detailed 
in Table 1.

Network analysis identified 110  regulatory cytokines 
(Fig. 2, I) targeting 58 ASD-associated proteins (Fig. 2, II) 
and 91 ASD-related genes (Fig. 2, III).

https://vavilov.elpub.ru/jour/manager/files/Suppl_Levanova_Engl_29_7.pdf
https://vavilov.elpub.ru/jour/manager/files/Suppl_Levanova_Engl_29_7.pdf
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Fig.  1.  Example of subnetwork reconstruction: modeling cytokine interactions with ASD-associated proteins via Pathway Wizard software using 
Template 1 from Supplementary Table S1.
Roman numerals indicate: I,  cytokines regulating ASD-associated proteins and genes, II,  mediator genes, III,  mediator proteins, IV,  ASD-associated proteins 
regulated by cytokines through signaling pathways. Letters denote: A, gene expression regulation, B, gene expression, C, regulation of protein activity, transport, 
and degradation.
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Fig. 2. Reconstructed consolidated network of cytokine interactions with ASD-related proteins and genes.
Roman numerals indicate: I,  cytokines regulating ASD-associated proteins and genes, II,  ASD-associated proteins regulated by cytokines, III,  ASD-associated 
genes regulated by cytokines.

Table 1. Types and quantities of nodes and interactions in the consolidated gene network  
of cytokine interactions with ASD-associated proteins and genes

Interaction type Count Node type Count

Activity regulation 369 Protein 621

Degradation regulation    64 Gene 491

Expression regulation 2,772

Transport regulation    65

Gene expression 409
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Functional enrichment analysis  
of the cytokine-regulated gene set
Gene Ontology enrichment analysis was performed using 
the DAVID platform on the subset of ASD-associated genes 
identified as being under cytokine regulatory control in the 
reconstructed consolidated network. This analysis revealed 
significant enrichment (FDR < 0.05, false discovery rate) for 
56 biological processes related to nervous system development 
and function. Specifically, these cytokine-regulated genes 
were overrepresented in processes including dendritic spine 
morphogenesis, hippocampal development, and neuronal 
migration (Table 2). Only the most statistically significant and 
biologically specific processes are presented in Table 2, while 
general cellular processes such as transcriptional regulation 
were excluded from the final selection.

Cytokine prioritization
To identify cytokines with the greatest impact on the regula-
tory network, we conducted multi-criteria prioritization based 
on three network topological and functional parameters: node 
degree, betweenness centrality, and enrichment in ASD-
associated biological processes.

To evaluate the involvement of cytokines in ASD-associated 
biological processes, we developed a custom script that pro-
cesses two primary inputs: cytokines identified through net-
work reconstruction, and ASD-associated biological processes 
derived from Gene Ontology enrichment analysis of SFARI 
gene sets. The algorithm assessed each cytokine’s involve-
ment in the listed ASD-associated biological processes. This 
analysis identified 13 cytokines that participate in biological 
processes implicated in ASD (FDR < 0.05, Table 3).

To rank the cytokines by their influence within the network, 
two centrality metrics were employed: betweenness centra
lity and degree centrality. Betweenness centrality reflects the 
number of the shortest paths in a network that pass through a 
given node, while degree centrality is defined by the number 
of its direct connections to other nodes. These metrics quantify 
a node’s influence on the network, as higher values indicate 
a more significant impact of the node. 15  most influential 
cytokines based on each metric are presented in Table 4.

Cytokines as potential targets  
for pharmacological intervention
Based on the data presented in Tables 3 and 4, a list of 21 po-
tentially key regulators was compiled: BMP2, BMP4, BMP7, 
GDF2, GPI, IFN-γ, IFNL1, IL-10, IL-33, IL-15, IL-17, IL-1β, 
IL-2, IL-22, IL-4, IL-6, IL-8, OSTP, TGFB1, TNF-α, and 
VEGFA. Validation of this list against the GETdb database 
confirmed the status of these cytokines as promising pharma-
cological targets.

According to the DrugBank database records, 8 out of the 
21 cytokines (TNF-α, IL-6, IL-4, VEGFA, IL-2, IL-1β, IFN-γ, 
IL-17) are established targets for approved pharmaceuticals. 
Notably, four of these (IL-4, VEGFA, TNF-α, and IFN-γ) were 
also identified among the eight highest-priority candidates in 
our analysis, which were ranked based on a consensus across 
multiple prioritization metrics (IL-4, TGF-β1, BMP4, VEGFA, 
BMP2, IL-10, IFN-γ, and TNF-α).

In clinical practice, drugs targeting cytokines TNF-α, IL- 6, 
IL-4, VEGFA, IL-2, IL-1β, IFN-γ, and IL-17 are primari
ly used as immunosuppressants and antitumor agents. The 
therapeutic mechanisms of these agents principally involve 
either receptor blockade, utilizing cytokine antagonists, or 
direct cytokine neutralization through monoclonal antibodies. 

Discussion
Analysis of Tables 3 and 4 identified 21 cytokines (BMP2, 
BMP4, BMP7, GDF2, GPI, IFN-γ, IFNL1, IL-10, IL-33, 
IL-15, IL-17, IL-1β, IL-2, IL-22, IL-4, IL-6, IL-8, OSTP, 
TGFB1, TNF-α, and VEGFA) as potential pharmacological 
targets, based on the GETdb database. Cross-referencing with 
the DrugBank database revealed that eight of them (TNF-α, 
IL-6, IL-4, VEGFA, IL-2, IL-1β, IFN-γ, and IL-17) are 
already targeted by approved therapeutics. A review of the 
existing literature confirms the critical role of specific pro-
inflammatory cytokines (TNF-α, IL-6, IL-2, IL-1β, IFN-γ, 
VEGFA, IL-17A) in CNS development and function. These 
factors, secreted by classically activated microglia, are key 
drivers of neuroinflammation. Furthermore, dysregulation 
of specific cytokines, such as IL-6, IFN-γ, and IL-17A, dur-
ing gestation, induced by maternal immune activation, may 

Table 2. Enrichment analysis of ASD-associated genes from the integrated network that are regulated by cytokines 

No. Biological process Gene count FDR

1 Excitatory postsynaptic potential 6 9.7 · 10–4

2 Regulation of dendritic spine development 4 9.7 · 10–4

3 Hippocampal development 6 9.7 · 10–4

4 Positive regulation of glutamatergic synaptic transmission 5 8.5 · 10–4

5 Neuron migration 7 8.5 · 10–4

6 Neurodevelopment 12 7.6 · 10–4

7 Negative regulation of neuronal apoptosis 8 4.6 · 10–4

8 Transmembrane calcium ion import 4 4.6 · 10–4

Note.  FDR, false discovery rate.
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alter embryonic brain development and predispose to autism 
spectrum disorder  (ASD) (Fujitani et al., 2022; Majerczyk 
et al., 2022).

Studies using maternal immune activation (MIA) mouse 
models demonstrate that CD4+ T-lymphocytes from affected 
offspring exhibit elevated IL-17A production (Morgan et 
al., 2010; Parkhurst et al., 2013). Furthermore, it was estab-
lished that the activity of maternal RORγt-expressing pro-
inflammatory T-cells (Th17), the primary source of IL-17A, 

is a prerequisite for the induction of ASD-like phenotypes 
in the offspring. It was further demonstrated that ASD-like 
phenotypes in the offspring require the activity of maternal 
RORγt-expressing Th17 cells, which are the primary source of 
IL-17A. Choi G.B. et al. (2016) demonstrated that both IL-17A 
neutralization and direct targeting of Th17 cells in pregnant 
mice prevent the development of MIA-induced behavioral 
abnormalities in their offspring. Conversely, the administration 
of IL-17A into the fetal brain was shown to cause disruptions 

Table 3. Prioritization of cytokines based on their representation in ASD-associated biological processes

No. Cytokine Number of ASD-associated  
biological processes

PadjValue FDR

   1 BMP2 6 1.0 · 10–6 3.8 · 10–5

   2 IL-4 5 5.0 · 10–7 2.7 · 10–5

   3 TGFB1 8 1.9 · 10–7 2.1 · 10–5

   4 BMP4 6 8.7 · 10–6 2.0 · 10–4

   5 IFN-γ 4 7.2 · 10–5 1.5 · 10–3

   6 VEGFA 5 8.8 · 10–5 1.6 · 10–3

   7 BMP7 4 1.0 · 10–4 1.8 · 10–3

   8 TNF-α 5 3.0 · 10–4 4.3 · 10–3

   9 IL-33 3 4.0 · 10–4 6.0 · 10–3

10 IL-10 3 1.9 · 10–3 2.1 · 10–2

11 IFNL1 2 2.4 · 10–3 2.5 · 10–2

12 GPI 2 5.7 · 10–3 4.9 · 10–2

13 GDF2 2 5.7 · 10–3 4.9 · 10–2

Note.  FDR, false discovery rate, PadjValue, PValue with the Bonferroni correction.

Table 4. Prioritization of cytokines based on betweenness centrality and degree centrality

No. Cytokine Betweenness centrality No. Cytokine Degree centrality

   1 TNF-α 19.3 · 104 1 TNF-α 100

   2 IL-6 10.4 · 104 2 IL-6 69

   3 IL-4 10.2 · 104 3 IL-4 65

   4 TGFB1 9.8 · 104 4 BMP4 52

   5 BMP4 9.0 · 104 5 TGFB1 51

   6 VEGFA 8.5 · 104 6 VEGFA 51

   7 IL-2 7.7 · 104 7 IL-2 47

   8 IL-1β 6.5 · 104 8 IL-1β 46

   9 BMP2 5.7 · 104 9 IL-10 46

10 OSTP 5.5 · 104 10 BMP2 37

11 IL-10 5.4 · 104 11 IFN-γ 34

12 IL-8 4.0 · 104 12 IL-22 32

13 IFN-γ 3.9 · 104 13 IL-17 32

14 IL-17 3.1 · 104 14 OSTP 30

15 IL-15 2.9 · 104 15 IL-8 29

Note.  Betweenness centrality is defined as the number of the shortest paths in a network that pass through a particular node, while degree centrality represents 
the number of direct connections a node has with other elements in the network.
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in cerebral hemisphere development and the manifestation of 
ASD-associated symptoms. These behavioral manifestations 
are linked to altered right-hemispheric activity, a region critical 
for adaptation mechanisms (Nikolaeva, Vergunov, 2020). This 
lateralized dysfunction is further supported by the significantly 
higher prevalence of left-handedness in children with ASD 
(Nikolaeva, Gaidamakina, 2018).

Paradoxically, despite the documented role of IL-17A in 
impairing CNS development, emerging evidence indicates 
its therapeutic potential for normalizing behavioral deficits 
in adult offspring of mothers with MIA. A study by M. Reed 
et al. (2020) demonstrated that lipopolysaccharide  (LPS) 
therapy normalized behavior in adult offspring from mothers 
with immune activation (MIA); however, it was ineffective 
in monogenic models of autism spectrum disorder. This 
divergent outcome was attributed to variations in cytokine 
secretion, specifically a significantly lower production of 
IL- 17A in response to LPS in monogenic models compared 
to MIA-induced counterparts.

In addition to pro-inflammatory cytokines, anti-inflam-
matory cytokine IL-4 is involved in ASD pathogenesis. This 
cytokine is critical for inducing the alternative activation 
pathway of microglia (M2 phenotype). Microglia in the M2 
state exhibit anti-inflammatory and reparative functions, 
which include the secretion of numerous growth factors 
such as IGF-I, FGF, CSF1 and neurotrophic factors (Sica, 
Mantovani, 2012). Subsequently, these factors activate Trk 
receptors, a family of receptor tyrosine kinases involved in 
the regulation of synaptic plasticity.

Studies have identified a significant elevation of IL-4 levels 
in the amniotic fluid and maternal serum during pregnancy 
in women whose children were later diagnosed with ASD 
(Goines, Ashwood, 2013). The role of increased IL-4 con-
centration in ASD pathogenesis, however, remains unclear: 
it could either contribute to the development of pathology or 
represent a compensatory mechanism in response to inflam-
matory processes.

We hypothesize that repurposing established clinical cy-
tokines offers a viable path for ASD therapy. To test this, we 
propose to initiate studies analogous to those by M. Reed et 
al. (2020), utilizing agents targeting the cytokines TNF-α, 
IL-6, IL-4, VEGFA, IL-2, IL-1β, IFN-γ, and IL-17, with ex-
isting clinical applications. Planning of future research must 
account for the variable efficacy of cytokine interventions, 
which is influenced by disease etiology and developmental 
stage. A comprehensive approach should involve the use of 
rodent models that represent distinct methods of inducing ASD 
and its various forms, followed by a comparative analysis of 
the resulting data. This methodology will facilitate a more 
profound understanding of the effects of cytokines on the 
development and symptoms of ASD of diverse origins, as 
well as an assessment of the potential for repurposing the cor-
responding pharmaceutical agents for treating and alleviating 
ASD symptoms.

Conclusion
• Using the ANDSystem knowledge base and its components, 
we performed a computer-based reconstruction of five 
specialized gene subnetworks. These subnetworks represent 
distinct pathways through which cytokines influence proteins 

and genes associated with autism spectrum disorder (ASD), 
thereby providing a comprehensive mapping of cytokine 
interactions with ASD-associated biomolecules. Through 
the integration of these subnetworks into a unified model, 
a  network for cytokine regulation of ASD-associated 
genes and proteins was reconstructed for the first time. The 
consolidated network comprises 1,112 nodes of two types 
(491 genes and 621 proteins) interconnected by 3,675 edges 
representing five distinct types of interactions.

• Analysis of the final gene network enabled the identification 
of 110  cytokines that regulate the activity, transport, and 
stability of network components implicated in ASD. 
Furthermore, 58  proteins and 91  genes involved in ASD 
pathogenesis, all of which are under cytokine regulation, 
were identified. Key characteristics of the network were 
defined, providing evidence for the significant role of cyto
kine-mediated regulation in ASD pathogenesis, and revea- 
ling specific cohorts of ASD-linked genes under cytokine 
control.

Subsequent Gene Ontology (GO) enrichment analysis for 
biological processes was performed on the subset of ASD-
associated genes identified as being under cytokine regulatory 
control in the reconstructed interaction network. This analysis 
revealed 56 statistically significant biological processes related 
to neurodevelopment. Notable among these were dendritic 
spine morphogenesis, hippocampal development, neuronal 
migration, and the regulation of synaptic transmission.

•  Cytokine prioritization was conducted to pinpoint 
key regulators, employing an analysis of network metrics 
(betweenness centrality and node degree) alongside an 
evaluation of functional relevance via linkage to ASD-
associated GO biological processes. This approach yielded a 
set of 21 cytokines, with 8 (IL-4, TGF-β1, BMP4, VEGFA, 
BMP2, IL-10, IFN-γ, TNF-α) ranking highest across all 
evaluated parameters.

Notably, 8 out of the 21 key cytokines (TNF-α, IL-6, IL-4, 
VEGFA, IL-2, IL-1β, IFN-γ, IL-17) are targeted by existing, 
clinically approved drugs, highlighting an opportunity for 
repurposing immunomodulatory agents for ASD. The other 
13 cytokines are potential targets for compounds in clinical 
development. Further in vitro and in vivo studies are required 
to delineate the precise mechanisms through which these 
cytokines influence neurodevelopment and to assess the 
therapeutic efficacy of their modulation.
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Abstract. Reconstruction and analysis of gene networks regulating biological processes are among the modern methodo­
logical approaches for studying complex biological systems that ensure the vital activity of organisms. Thermoregulation 
is an important evolutionary acquisition of warm-blooded animals. Multiple physiological systems (nervous, cardiovas­
cular, endocrine, respiratory, muscular, etc.) are involved in this process, maintaining stable body temperature despite 
changes in ambient temperature. This study aims to perform a computer reconstruction of the human thermoregulation 
gene network and present the results in the Termo_Reg_Human 1.0 knowledge base. The gene network was reconstructed 
using the ANDSystem software and information system, designed for the automated extraction of knowledge and facts 
from scientific publications and biomedical databases based on machine learning and artificial intelligence methods. The 
Termo_Reg_Human 1.0 knowledge base (https://www.sysbio.ru/ThermoReg_Human/) contains information about the hu­
man thermoregulation gene network, including a description of 469 genes, 473 proteins, and 265 microRNAs important for 
its functioning, interactions between these objects, and the evolutionary characteristics of the genes. Using the ANDVisio 
software tool (a module of ANDSystem), each gene, protein, and microRNA involved in the thermoregulation of the hu­
man body was prioritized according to its functional significance, i. e., the number of interactions with other objects in the 
reconstructed gene network. It was found that the key objects with the largest number of functional interactions in the 
human thermoregulation gene network included the UCP1, VEGFA, PPARG and DDIT3 genes; STAT3, JUN, VEGFA, TLR4 and 
TNFA proteins; and the microRNAs hsa-mir-335 and hsa-mir-26b. We revealed that the set of 469 human genes from the 
network was enriched with genes whose ancestral forms originated at an early evolutionary stage (Unicellular organisms, 
the root of the phylostratigraphic tree) and at the stage of Vertebrata divergence. 
Key words: heat; cold; gene network; database; microRNA; evolution; phylostratigraphy; gene age
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Генная сеть и база знаний  
по терморегуляции организма человека 
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Аннотация. Реконструкция и анализ генных сетей, регулирующих биологические процессы, – один из эффективных 
подходов к исследованию сложных систем обеспечения жизнедеятельности организмов. Терморегуляция  – важ­
ное эволюционное приобретение человека и других теплокровных животных. Терморегуляция осуществляется при 
участии многих физиологических систем организма (нервной, сердечно-сосудистой, эндокринной, дыхательной, 
мышечной и т. д.), что способствует поддержанию относительно постоянной температуры тела в условиях колеба­
ния температуры окружающей среды. Цель работы – компьютерная реконструкция генной сети терморегуляции че­
ловека и представление полученных результатов в соответствующей базе знаний Termo_Reg_Human 1.0. Генная сеть 
реконструирована с использованием программно-информационной системы ANDSystem, предназначенной для 
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The gene network and knowledge base 
on human thermoregulation

автоматизированного извлечения знаний и фактов из текстов научных публикаций и баз данных биомедицинской 
направленности, основанной на методах машинного обучения и искусственного интеллекта. База знаний Termo_
Reg_Human 1.0 (https://www.sysbio.ru/ThermoReg_Human/) содержит информацию о генной сети терморегуляции 
человека, включая описание 469 генов, 473 белков и 265 микроРНК, значимых для ее функционирования; взаимо­
действиях между этими объектами, а также эволюционные характеристики генов. С использованием программного 
инструмента ANDVisio (модуля системы ANDSystem) проведена приоритизация каждого гена, белка и микроРНК, 
участвующих в терморегуляции организма человека по их функциональной нагруженности – количеству связей с 
другими объектами реконструированной генной сети. Установлено, что к числу ключевых объектов, имеющих наи­
большее количество функциональных связей в генной сети терморегуляции человека, относятся гены UCP1, VEGFA, 
PPARG, DDIT3, белки STAT3, JUN, VEGFA, TLR4, TNFA и микроРНК hsa-mir-335 и hsa-mir-26b. Обнаружено обогащение 
генной сети терморегуляции генами, предковые варианты которых сформировались на эволюционных этапах по­
явления одноклеточных организмов и дивергенции позвоночных.
Ключевые слова: тепло; холод; генная сеть; база данных; микроРНК; эволюция; филостратиграфия; возраст гена

Introduction
Humans and most other mammals are homoiothermic, capable 
of maintaining a relatively constant body temperature when 
the ambient temperature varies (Osvath et al., 2024). Human 
thermoregulation is carried out with the participation of: 
1) thermoreceptors located on the body’s surface and in the 
internal organs; 2) afferent neural signal transmission path­
ways; 3) thermoregulatory centers in the hypothalamus and 
other parts of the brain; 4) efferent neural pathways that control 
adaptive reactions (Nakamura, 2024). Such adaptive reactions 
include: a) shivering and nonshivering thermogenesis (chemi­
cal mechanisms of thermoregulation) (Ikeda, Yamada, 2020; 
Dumont et al., 2025); b) physical thermoregulation, including 
the regulation of heat transfer through evaporation and convec­
tion, as well as thermal insulation (Nakamura, 2011; Tattersall 
et al., 2012); c) behavioral reactions: avoidance of open areas 
of the Earth’s surface characterized by extreme temperatures; 
crowding of individuals, etc. (Tattersall et al., 2012; Tansey, 
Johnson, 2015; McCafferty et al., 2017). 

Chemical thermoregulation is carried out through heat 
production during skeletal muscle contractions (Blondin et 
al., 2019; Dumont et al., 2025), and nonshivering thermoge­
nesis in brown adipose tissue (Tansey, Johnson, 2015; Ikeda, 
Yamada, 2020) and muscles (Blondin et al., 2019). Physical 
thermoregulation is carried out by changing the heat transfer 
from the body: conduction, radiation, perspiration, evapora­
tion of water from the respiratory passages, thermal insulation 
due to the subcutaneous fat layer, piloerection (Nakamura, 
2011; Tattersall et al., 2012). Both chemical and physical 
thermoregulatory processes are actively controlled by the 
neuroendocrine system (Charkoudian et al., 2017; Nakamura, 
2024; Mittag, Kolms, 2025). 

In addition, the thermoregulatory reactions are associated 
with changes in the cardiovascular system (Tansey, Johnson, 
2015). Thus, thermoregulation is provided by a variety of 
biological processes occurring in the nervous, endocrine, 
cardiovascular, respiratory, muscular and other body systems. 
The genetic regulatory mechanisms controlling the above 
processes also play a significant role in thermoregulation 
(Festuccia et al., 2009; Rehman et al., 2013; Li et al., 2015; 
Horii et al., 2019; Xiao et al., 2019; Kudsi et al., 2022; Song 
et al., 2022; Valdivia et al., 2023).

Reconstruction and analysis of gene networks regulating 
biological processes are among the effective approaches to 

study complex biological systems that ensure vital activity of 
organisms (Ignatieva et al., 2017; Saik et al., 2018; Mustafin 
et al., 2019, 2021; Mikhailova et al., 2024). A large amount 
of experimental genetic data has been accumulated on the 
problem of thermoregulation, presented in tens of thousands 
of scientific publications and many specialized databases (e. g. 
KEGG Pathway, WikiPathways, MetaCyc, REACTOME, 
etc.). In this regard, in our work, we reconstructed the hu­
man thermoregulation gene network using the ANDSystem 
software and information system, designed for the automated 
extraction of knowledge and facts from the texts of scientific 
publications and biomedical databases using machine learn­
ing and artificial intelligence methods (Ivanisenko V.A. et al., 
2019; Ivanisenko T.V. et al., 2024). The results obtained from 
the analysis of 30 million publications are accumulated in the 
specialized knowledge base of the ANDSystem in the form of 
a global knowledge graph (Ivanisenko T.V., 2024).

Information on the reconstructed human thermoregulato­
ry gene network is presented in the Termo_Reg_Human 1.0. 
knowledge base (https://www.sysbio.ru/ThermoReg_ 
Human/), including descriptions of 469 genes, 473 proteins 
and 265 microRNAs important for gene network functioning, 
as well as interactions between them. 

Each gene, protein, and microRNA involved in human body 
thermoregulation was prioritized according to their functional 
load, i. e., the number of interactions with other objects of the 
reconstructed gene network, using the ANDVisio software tool 
(a module of the ANDSystem). The key objects with the largest 
number of functional interactions in the human thermoregula­
tion gene network were found: the UCP1, VEGFA, PPARG 
and DDIT3 genes, the STAT3, JUN, VEGFA, TLR4 and TNFA 
proteins, and microRNAs hsa-mir-335 and hsa-mir-26b. 

The Termo_Reg_Human 1.0 knowledge base also presents 
the results of an evolutionary analysis of genes functioning 
in the thermoregulation gene network: this gene network was 
enriched with genes, the ancestral forms of which emerged 
at two important evolutionary stages corresponding to a) the 
appearance of unicellular organisms and b)  the divergence 
of vertebrates.

Materials and methods
Lists of genes used for building a gene network. The list 
of human genes involved in thermoregulation was compiled 
based on the Gene Ontology, EntrezGene, and ANDSystem 

https://www.sysbio.ru/ThermoReg_Human/
https://www.sysbio.ru/ThermoReg_Human/
https://www.sysbio.ru/ThermoReg_Human/


СИСТЕМНАЯ КОМПЬЮТЕРНАЯ БИОЛОГИЯ / SYSTEMS COMPUTATIONAL BIOLOGY

Генная сеть и база знаний  
по терморегуляции организма человека 

Е.В. Игнатьева, П.С. Деменков, А.Г. Богомолов … 
А.Д. Михайлова, А.Е. Алексеева, Н.С. Юдин

2025
29 • 7

1011

K
i    

N – K
n – i  

N
n    

K
i    

N – K
n – i  

N
n    

databases (Ivanisenko V.A. et al., 2019) using the keywords 
shown in Supplementary Material S11.

Building of the gene network. The gene network of 
thermoregulation was built using the ANDSystem software 
and information system (Ivanisenko V.A. et al., 2019; Ivani­
senko T.V. et al., 2024). ANDSystem, based on machine 
learning and artificial intelligence methods, is designed for 
the automated extraction of knowledge and facts about the 
structural and functional organization of gene networks from 
scientific publications and biomedical factographical data­
bases. The information obtained in this way is accumulated 
in the specialized knowledge base of ANDSystem in the form 
of a global knowledge graph (Ivanisenko T.V. et al., 2024). 
Based on this information, a reconstruction of the graphs of 
target gene networks is carried out, the nodes of which cor­
respond to molecular genetic objects (genes, RNA, proteins 
and metabolites), functioning as part of gene networks, and the 
edges connecting these nodes indicate the functional interac­
tions between objects. Supplementary Material S2 provides a 
detailed description of the reconstruction process of the human 
thermoregulatory gene network.

Prioritization of genes, proteins, and microRNAs ac-
cording to their functional significance in the human 
thermoregulation gene network. Prioritization of  gene 
network nodes (genes, microRNAs and proteins) was per­
formed using the ANDVisio software tool (a module of 
the ANDSystem). The number of interactions with other 
objects was calculated for a specific object in the human 
thermoregulation gene network graph. Next, the probability 
of obtaining the observed number of interactions for random 
reasons was estimated for each gene network object. Next, 
the probability of observing this number of interactions in­
volving this specific object of the gene network by chance 
was estimated. The probability was calculated using a hyper- 
geometric test:

p-value = ∑ k    i = 0 
K
i    

N – K
n – i  

N
n    

 ,      

where: k – the number of interactions of this specific object 
(node) in the gene network; n – the number of objects (nodes) 
involved in the gene network under consideration; K – the 
number of interactions of this specific object (node) in the 
ANDSystem knowledge base global network graph; N – the 
total number of objects (nodes) in the ANDSystem knowledge 
base global graph (Ivanisenko V.A. et al., 2019).

When calculating the p-value, only objects of the same 
type (genes, proteins, microRNA) as the considered object 
of the human thermoregulation gene network were taken 
into account. Next, correction for multiple hypothesis test­
ing was applied (Benjamini, Yekutieli, 2001), resulting in a 
P-adjusted value.

Analysis of the evolutionary characteristics of the 
genes. The analysis of the evolutionary characteristics of 
genes involved in the reconstructed gene network was carried 
out using the Orthoweb system (Ivanov et al., 2024), which 
calculates the phylostratigraphic index (PAI) of each gene, 
1 Supplementary Materials S1–S7 are available at:  
https://vavilov.elpub.ru/jour/manager/files/Suppl_Ignatieva_Engl_29_7.pdf

characterizing the evolutionary age of the gene. Details of 
the calculation procedure for the PAI index are described in 
Supplementary Material S2.

Functional annotation of genes. The identification of 
Gene Ontology terms associated with genes of a certain phy­
lostratigraphic age was carried out using the DAVID web 
server and its GOTERM_BP_DIRECT dictionary (Sherman 
et al., 2022).

Implementation of the knowledge base on human ther-
moregulation. Data for the knowledge base information tables 
were extracted from text outputs of the ANDVisio program 
(a module of the ANDSystem) using original Python scripts. 
The online implementation of the knowledge base was per­
formed using MySQL 5.1.73 and PHP 5.3.3. Apache HTTP 
Server 2.2.15 and Nginx 1.4.1 were used.

Results and discussion

Genes associated with thermoregulatory processes
The search through the Gene Ontology, EntrezGene, and 
ANDCell (the information component of ANDSystem) da­
tabases identified 467 protein-coding genes associated with 
thermoregulation, as well as two genes encoding microRNAs.

The gene network of human thermoregulation
Based on the list of human genes involved in thermoregu­
lation mentioned above, the gene network of human ther­
moregulation was reconstructed using ANDSystem. The 
view of the entire reconstructed gene network is shown in 
Figure 1. The gene network includes 469 genes, 473 proteins, 
265 microRNAs and 7,018 interactions between them. The 
number of proteins exceeds the number of genes because the 
gene network contains six genes that encode more than one 
protein due to alternative splicing or proteolytic cleavage of 
the precursor protein.

It should be noted that ANDSystem identifies two types 
of relationships between gene networks objects, based on 
the analysis of scientific literature and biomedical databases: 
direct molecular genetic interactions between gene network 
objects and indirect actions, i. e. relationships in which the 
effect of one gene network object on another is shown, but the 
molecular genetic mechanism of such effect remains unknown 
and/or may involve intermediate objects.

Figure 2 shows two fragments of the thermoregulatory gene 
network. Figure 2a illustrates molecular genetic interactions 
of the gene encoding the thermoreceptor TRPV1, which 
is activated when temperature increases. According to the 
ANDSystem knowledge base, TRPV1 expression is regulated 
by interleukin 13 (IL13) and toll-like receptor 4 (TLR4). These 
regulatory relations are described in the articles (Rehman et 
al., 2015; Li et al., 2015) and can be categorized as “indirect”, 
since we are talking about the action of the cytokine IL13 
(an extracellular signaling molecule) and the TLR4 receptor 
located on the cell membrane, which affect TRPV1 expression 
through signal transduction pathways. In addition, TRPV1 is 
coexpressed with other genes from the thermoregulation gene 
network, including thermoreceptor-encoding genes (TRPM8, 
TRPA1, TRPV3, TRPV4), as well as NTRK1 encoding neu­
rotrophic receptor tyrosine kinase  1. The experiments that 

https://vavilov.elpub.ru/jour/manager/files/Suppl_Ignatieva_Engl_29_7.pdf
https://vavilov.elpub.ru/jour/manager/files/Suppl_Ignatieva_Engl_29_7.pdf
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The gene network and knowledge base 
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Fig. 1. The view of the entire gene network of human thermoregulation reconstructed using the 
ANDSystem tool. 
The gene network includes 469 genes, 473 proteins, 265 microRNAs, and 7,018 interactions between 
these objects. Genes, proteins, and microRNAs with the highest number of interactions in the network 
are shown separately. Numbers in parentheses indicate the number of interactions in the network. 

Fig. 2. The fragments of the thermoregulation gene network shown in Figure 1. 
a – regulatory interactions involving the gene encoding the TRPV1 heat sensing receptor; b – regulatory interactions involving the PPARG gene and the encoded 
transcription factor PPARG.
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revealed the coexpression of these genes are described in the 
research papers (Zhu, Oxford, 2007; Cao et al., 2009; Cheng 
et al., 2011; Gouin et al., 2012; Nguyen et al., 2017).

Figure 2b shows the regulatory relationships involving the 
PPARG gene and its encoded protein. PPARG expression is 
regulated by transcription factors ZN423, EGR1, CEBPB, 
which affect the level of transcription by interacting with 
DNA in the PPARG regulatory regions. PPARG expression is 
also regulated by transcription cofactors MECP2 and PRGC1/
PGC-1-alpha and the WN10B protein, which activates the 
Wnt signaling cascade. In addition, cytokines TNF, IL4, IL1B, 
and LEP are involved in the regulation of PPARG expression. 

The transcription factor PPARG, encoded by the gene under 
consideration, controls the transcription of a) genes regulat­
ing metabolic processes in adipocytes: LCN2, UCP1, FABP4, 
PNPLA2, SLC27A1, LIPE, and DDIT3; b) genes encoding 
transcription factors STAT3 and ARNTL; and c)  the SIRT6 
gene encoding the NAD-dependent protein deacetylase. The 
references to scientific publications supporting these interac­
tions are provided in Supplementary Material S3.

The Termo_Reg_Human knowledge base
At the next stage of the study, the Termo_Reg_Human 1.0. 
knowledge base (https://www.sysbio.ru/ThermoReg_Human/)  
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Fig. 3. Structure of the Termo_Reg_Human 1.0. knowledge base.

was developed. This knowledge base contains data on 469 ge­
nes, 473 proteins, and 265 microRNAs involved in human 
thermoregulation.

Termo_Reg_Human 1.0. contains four main tables: Genes_
evol, Proteins, MicroRNA и Genes_all (the knowledge base 
scheme is shown in Figure 3).

The Genes_evol table contains a description of each of the 
469 genes functioning as part of the human thermoregulation 
gene network, including: the EntrezGene GeneID, the number 
of interactions of the gene with other genes and proteins of 
the gene network, and the evidence type supporting the as­
sociation of the gene with thermoregulation (Gene Ontology, 
ANDSystem, Entrez Gene). This table also presents such 
evolutionary characteristics for each protein-coding gene as 
the phylostratigraphic age index (PAI) and the divergence 
index (DI), calculated using the OrthoWeb software package 
(Ivanov et al., 2024).

The Proteins table contains data on proteins encoded by 
genes from the Genes_evol table. The description of each pro­
tein includes the UniProtKb Entry Name, the NCBI GeneID 
of the gene encoding the protein, the number of interactions 
the protein has in the gene network, and the names of the 
microRNAs that regulate protein expression.

The MicroRNA table contains information about mi­
croRNAs that regulate the expression of proteins involved 
in the network. These are two microRNAs encoded by genes 
from the list of 469 genes mentioned above, as well as addi­
tional microRNAs found using the ANDVisio program during 
the reconstruction of the network. The MicroRNA table shows 
for each microRNA: 1) microRNA name within the network; 
2) official symbol of the gene encoding this microRNA; 3) the 
number of interactions involving this microRNA; 4) the names 
of proteins for which this microRNA acts as an expression 
regulator.

The fourth table, Genes_all, contains additional data on 
all 469 genes characterized in the Genes_evol table, as well 
as data on the genes encoding microRNAs included in the 
network using the ANDVisio program.

The web interface allows to view data on genes and pro­
teins associated with thermoregulation, as well as to search 
for genes/proteins by identifiers or their names. In addition, 
a search for objects (genes, proteins, microRNAs) by the 
number of functional interactions in the network is available. 
The interface displays objects with a number of interactions 
exceeding the value specified by the user.

Using data from the Termo_Reg_Human 1.0 knowledge 
base in bioinformatics research
Prioritization of genes by the number of interactions in 
the gene network. Figure 4a shows the distribution of genes 
by the number of interactions with other objects of the hu­
man thermoregulation gene network (genes, proteins, and 
microRNAs). Most genes (373 out of 467) have a low number 
of interactions with other objects in the network (five or less). 
One fifth of all genes, that is, 90 genes, have from 6 to 25 
interactions. Only four genes had more than 25 interactions: 
UCP1 (41 interactions), VEGFA (36), PPARG (30), and DDIT3 
(26). A statistical analysis using the hypergeometric distribu­
tion confirmed that these four genes have significantly more 
interactions than would be expected by chance: the P-adjusted 

value varies from 2.44·10–05 for the DDIT3 gene to 1.20·10–28 
for the UCP1 gene. Functional characteristics of these genes 
with the largest number of interactions are shown in Table 1.

The UCP1 gene encodes the uncoupling protein 1 (called 
thermogenin), which is involved in one of the key processes 
of heat generation – nonshivering thermogenesis in brown 
adipose tissue (Wollenberg Valero et al., 2014). This protein, 
localized in the mitochondrial inner membrane, increases 
its permeability, dissipating the proton gradient generated 
in oxidative phosphorylation. As a result, the processes of 
oxidative phosphorylation and ATP synthesis are uncoupled, 
and heat is released (Ikeda, Yamada, 2020).

The VEGFA gene encodes vascular endothelial growth fac­
tor A (Naik et al., 2012). The resulting activation of the blood 
supply to tissues is important for thermoregulatory processes: 
heat exchange between the internal parts of the body and its 
surface, heat dissipation through evaporation and convection, 
etc. (Tansey, Johnson, 2015).

The PPARG gene encodes the transcription factor PPARG, 
which belongs to the nuclear receptor superfamily. PPARG 
controls the activity of genes governing the metabolism of 
fatty acids and glucose (Festuccia et al., 2009), and also 
activates the production of the UCP1 (uncoupling protein 1, 
thermogenin) in brown and beige adipocytes (Valdivia et al., 
2023).

The DDIT3 gene encodes CHOP (C/EBP homologous pro­
tein), a transcription factor from the C/EBP family regulating 
differentiation of adipocyte precursor cells into mature adipo­
cytes, which play a crucial role in nonshivering thermogenesis 
(Okla et al., 2015).

Prioritization of proteins by the number of interactions 
in the gene network of thermoregulation. Analysis of the 
thermoregulation gene network revealed that proteins gene­
rally have more interactions than genes (Fig. 4b): the propor­
tion of proteins that had no more than five interactions was 
less than half of their total number (144 out of 473). 55 % of 
the proteins (261 proteins) had from 6 to 30 interactions, 13 % 
of the proteins (63 proteins) had from 31 to 100 interactions. 
Five proteins (STAT3, JUN, VEGFA, TLR4, TNFA) had more 
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Fig. 4. Distribution of genes, proteins, and microRNAs involved in the 
thermoregulatory gene network according to the number of interactions 
in this network (based on information from the Termo_Reg_Human 1.0 
knowledge base).  
a – distribution of genes according to the number of interactions; b – distribu­
tion of proteins according to the number of interactions; c – distribution of 
microRNAs according to the number of interactions. The rectangular panels 
show the names of the genes, proteins, and microRNAs with the highest num­
ber of interactions.
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than 100 interactions with other network objects. A statisti­
cal analysis using the hypergeometric distribution confirmed 
that these five proteins have a significantly greater number of 
interactions with the rest of the network objects than would be 
expected by chance: P-adjusted value ranged from 2.04·10–18 

for the TLR4 protein to 3.79·10–43 for the STAT3 protein. 
The characteristics of these five proteins are given in Table 2.

STAT3 (143 interactions in the network) is a transcription 
factor acting at the final step of the JAK/STAT3 signal trans­
duction pathway. STAT3 regulates adipocyte differentiation 
during the induction phase, and subsequent inactivation of 
the JAK/STAT3 pathway in these cells provides UCP1 gene 
expression activation and the conversion of preadipocytes 
into mature brown fat cells (Song et al., 2022). In addition, 

STAT3 is involved in the signaling pathway activated by the 
heat sensing receptor TRPV1 in brain regions that control 
body temperature (Yoshida et al., 2016).

The JUN protein (124  interactions in the network) is a 
subunit of the transcription factor AP1 (the JUN/FOS hete­
rodimer). JUN is involved in the regulation of cytokine ex­
pression, thereby controlling the inflammatory processes that 
are associated with elevated body temperature (Schonthaler 
et al., 2011; Johnson Rowsey, 2013). It has been shown that 
when the expression of the JUN gene in the liver is inactivated 
in liver-specific c-Jun knock-out mice, an increase in body 
temperature occurs due to the activation of the sympathetic 
nervous system and subsequent stimulation of UCP1 expres­
sion in brown fat (Xiao et al., 2019). 

As mentioned above, the VEGFA protein, which has 
112 interactions in the network, controls vascular endothe­
lium growth (Naik et al., 2012), which is important for heat 
exchange between tissues and the external environment 
(Tansey, Johnson, 2015).

TLR4 (109 interactions in the network) is a transmembrane 
protein, toll-like receptor 4. It can be activated by lipopoly­
saccharides (LPS) found in bacterial cell walls, leading to an 
increase in body temperature in response to infection (Roth, 
Blatteis, 2014). Additionally, activation of the TLR4 receptor 
by lipopolysaccharides leads to oxidative stress, mitochondrial 
dysfunction, and inhibition of the brown adipocyte differentia­
tion (Okla et al., 2018).

The TNFA protein, tumor necrosis factor, belongs to the 
cytokine family (107 interactions in the network). It activates, 
in particular, prostaglandin synthesis in endothelial cells. 
These prostaglandins act on neurons in the preoptic area of 
the hypothalamus, the brain’s thermoregulatory center, leading 
to increased body temperature (Leon et al., 1998; Netea et al., 
2000; Gil et al., 2007; Nakamura, 2024). TNFA has also been 
shown to have a direct effect on adipocytes in vitro, reducing 
the expression of thermogenin (UCP-1) (Valladares et al., 
2001) and the enzyme triglyceride lipase ATGL/PNPLA2 
(Kim et al., 2006). Thus, the cytokine TNFA plays an important 
role in thermoregulation, but its effect on body temperature 
depends on the type of cells affected by this cytokine.

Prioritization of microRNAs by the number of interac-
tions in the gene network of thermoregulation. MicroRNAs 
regulate gene expression at the translational level. These 
RNAs bind to the mRNA targets within miRISC complex, 
inhibiting protein synthesis with or without transcript degra­
dation (O’Brien et al., 2018). According to the Termo_Reg_ 
Human 1.0 knowledge base, the thermoregulation gene net­
work includes 265 microRNAs that are involved in regulating 
the expression of 297 genes. Data on these regulatory rela­
tionships was obtained from the miRTarBase, which contains 
experimentally confirmed information about interactions 
between microRNAs and their mRNA targets (Cui et al., 
2025). The proportion of microRNAs having not more than 
five regulatory interactions in the network was 64 % (170 out 
of 265) (Fig. 4c). 35 % of the total set of microRNAs (93 out 
of 265) had from 6 to 30 interactions. Two microRNAs had 
the highest number of interactions (more than 35). These are 
hsa-mir-335 (64  interactions) and hsa-mir-26b (39  interac­
tions). An assessment of the statistical significance of the 
number of interactions between these microRNAs and other 
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Table 1. Functional characteristics of genes with the highest number of interactions in the thermoregulatory network 

Gene 
symbol

Number of interactions 
in the network

Role in thermoregulation P-adjusted PAI

UCP1 41 Encodes uncoupling protein 1, which is expressed in brown adipose tissue  
and enables heat generation through nonshivering thermogenesis  
(Wollenberg Valero et al., 2014; Ikeda, Yamada, 2020)

1.2 · 10–28 1

VEGFA 36 Encodes vascular endothelial growth factor A, which regulates tissue 
vascularization, facilitating heat exchange and heat transfer (Naik et al., 2012)

1.8 · 10–6 6

PPARG 30 Encodes a nuclear receptor that regulates adipocyte differentiation,  
fatty acid metabolism, and glucose uptake in fat cells (Festuccia et al., 2009)

2.66 · 10–7 6

DDIT3 26 Encodes the transcription factor CHOP, which plays a key role in adipogenesis 
(Okla et al., 2015)

2.44 · 10–6 7

Notе. Genes are listed in descending order based on the number of interactions in the gene network.
Here and in Tables 2 and 3: P-adjusted indicates the probability of observing a given number of interactions in a network by chance, calculated using hypergeo­
metric distribution with correction for multiple comparisons.

Table 2. Functional characteristics of proteins with the highest number of interactions in the network of thermoregulation  

Protein Number of interactions 
in the network

Role in thermoregulation P-adjusted

STAT3 143 The transcription factor STAT3 regulates gene expression in brain regions that control 
thermoregulation (Yoshida et al., 2016), regulates the differentiation of adipocytes  
into brown fat cells, as well as UCP1 gene expression (Song et al., 2022)

3.79 · 10–43

JUN 124 The transcription factor JUN regulates cytokine expression (Schonthaler et al., 2011; 
Johnson Rowsey, 2013) as well as UCP1 gene expression in brown adipocytes  
(Xiao et al., 2019)

3.78 · 10–33

VEGFA 112 VEGFA (vascular endothelial growth factor A) was previously characterized in Table 1 6.72 · 10–28

TLR4 109 TLR4 is a cell surface receptor activated by lipopolysaccharides, which contributes  
to fever (Roth, Blatteis, 2014) and affects brown fat cell differentiation (Okla et al., 2018)

2.04 · 10–18

TNFA* 107 TNFA (tumor necrosis factor A) is a cytokine that can induce fever (Leon et al., 1998; 
Netea et al., 2000; Gil et al., 2007), and also affects gene expression in adipocytes 
(Valladares et al., 2001; Kim et al., 2006)

1.78 · 10–30

Notе. Proteins are listed in descending order of the number of interactions in the gene network.
* TNFA is encoded by the TNF gene.

objects of the network using the ANDVisio program showed 
that microRNAs hsa-mir-335 and hsa-mir-26b regulate the 
expression of a significantly larger number of genes from the 
thermoregulatory network than would be expected by chance 
(P-adjusted < 0.01). 

The two microRNAs mentioned above are important for 
thermoregulatory processes (Table 3). So, hsa-mir-335 regu­
lates the expression of thermoreceptors TRPM8 and TRPV4, 
as well as the VEGFA protein, one of the key proteins for 
thermoregulation, which is involved in 112 interactions in the 
network. The hsa-mir-26b microRNA regulates the expres­
sion of JUN (Jun proto-oncogene, AP-1 transcription factor 
subunit), which is involved in 124 interactions in the network. 
As noted above, JUN affects the expression of thermogenin 
(uncoupling protein 1, UCP1) in brown fat cells (Xiao et al., 
2019). This microRNA also regulates the expression of the 
EDN2 (endothelin-2) protein, which controls vasoconstriction, 
a process that mediates physical thermoregulation (Inoue et 
al., 1989).

The list of genes associated with thermoregulation we have 
created contains the MIR21 and MIRLET7c genes. The mi­
croRNAs encoded by these genes, hsa-mir-21 and hsa-let-7c, 
regulate cellular processes in response to elevated temperature 
(Jiang et al., 2016; Permenter et al., 2019). The effect of the 
hsa-mir-21 and hsa-let-7c microRNAs on the expression of 15 
and 5 proteins, respectively, was revealed in the reconstructed 
gene network (Table 3).

Among the proteins, the expression of which is regulated 
by hsa-mir-21, VEGFA (vascular endothelial growth factor A) 
was found to have 112 interactions in the network (Table 3). 
Multiple mentions of this protein in this report are an evidence 
of its important role in thermoregulation. Among the proteins, 
the expression of which is controlled by hsa-let-7c, the fol­
lowing were identified: a) COX2, a subunit of cytochrome c 
oxidase, involved in mitochondrial electron transport, encoded 
by the MT-CO2 gene (Aich et al., 2018); b) DICER1, ribo­
nuclease type III, involved in microRNA biogenesis (Wingo 
et al., 2015); c) CNOT3/NOT, CCR4-NOT transcription com­
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Table 3. Characteristics of microRNAs with the highest functional significance within the network of human thermoregulation

MicroRNA Gene 
encoding 
microRNA

Number  
of interactions  
in the network

P-adjusted Regulated mRNAs* Examples of functionally significant 
proteins encoded by mRNA targets  
of microRNA

MicroRNAs with the highest number of interactions in the network

hsa-mir-335 MIR3 64 < 0.001 TRPM8, TRPV4, VEGFA, ANO1, ANO3, 
NPR3, AQP5, ARRDC3, ACVR2B, BAAT, 
CASQ1, CD14, CD36, CDKN1A, CRNN, 
DDIT3, DNAJC3, DBH, EIF2AK3, ELOVL6, 
FABP4, FOS, FOXO1, ABAT, GRB10, 
HDAC6, HMOX1, HSPA1A, HSPA1B, 
HSPB3, IGF2BP2, IGF1R, NFKBIA, 
IL1A, IL4, JAK2, KCNK4, KDM6B, LEPR, 
MOCOS, AVP, NOS3, NPY, NR1D1, NR2F6, 
NTSR1, PLA2G7, PTGS2, PPARGC1A, 
PTGES, RB1, SLC27A1, SCARA5, SCN9A, 
SQSTM1, STAT6, TCIM, TFE3, PTH2, TAC4, 
TMEM135, NGFR, TSHR, WNT10B

Thermoreceptors TRPM8 and TRPV4, 
and growth factor VEGFA, involved  
in 112 interactions in the network

hsa-mir-26b MIR26b 39 < 0.01 JUN, EDN2, ACADM, ADRA2A, AGTR1, 
AKT1, BAG3, CASP8, CASQ1, CAV1, 
CD36, STUB1, CHORDC1, CRYAA, CXCR4, 
DNAJA2, DNAJA3, DNAJB4, EIF2AK3, 
EIF2B1, GRIK2, HADH, HMOX1, HSF1, 
IER5, NOX3, NRDC, NTSR1, PARK7, PDCL3, 
PTGS2, RBM3, RRAGC, SLC25A44, SMS, 
STAT6, VCP, TNFRSF11A, ZNF423

Transcription factor JUN, involved 
in 124 interactions in the network, 
EDN2 (endothelin-2), controlling 
vasoconstriction

microRNAs encoded by genes from the list of 469 genes associated with thermoregulation

hsa-mir-21 MIR21 15 < 0.05 VEGFA, PRKAB2, ALMS1, APC, CPEB3, 
DAXX, DOCK7, EIF2S1, IL1B, PARP1, RB1, 
RDH11, RRAGC, SMARCA4, STAT3 

VEGFA (vascular endothelial growth 
factor A), involved in 112 regulatory 
interactions in the network

hsa-let-7c MIRLET7c 5 > 0.05 MT-CO2/COX2, DICER1, CNOT3,  
IP6K1, QKI

COX2, involved in mitochondrial 
electron transport (Aich et al., 2018), 
DICER1, involved in microRNA 
biogenesis (Wingo et al., 2015), 
CNOT3/NOT, participating  
in microRNA-mediated mRNA 
degradation (Wakiyama et al., 2022)

* mRNAs the translation of which is regulated by this microRNA (mRNAs encoding proteins described in the right column are underlined).

plex subunit 3, participating in microRNA-mediated mRNA 
degradation (Wakiyama, Takimoto, 2022).

Phylostratigraphic age of genes involved in the gene 
network of human thermoregulation (PAI-based analysis). 
The analysis of the evolutionary age of genes was carried 
out using the PAI (phylostratigraphic age index), the data on 
which were obtained from the Genes_evol information table 
from the Termo_Reg_Human 1.0 knowledge base. The phy­
lostratigraphic age index was calculated using the Orthoweb 
system (Ivanov et al., 2024) as proposed in our previous 
studies (Mustafin et al., 2017). We constructed a distribution 
of PAI values for 467 protein-coding genes functioning in the 
thermoregulation gene network described in the Termo_Reg_
Human 1.0 knowledge base (the Thermoregulation_467 gene 
set, in Figure 5 this distribution is marked with orange bars). 
It turned out that this distribution has two maxima. The first 
of them is observed at PAI = 1 (176 genes, 38 % of their total 

list). The phylostratigraphic index PAI = 1 corresponds to the 
evolutionary stage of the emergence of unicellular organisms. 
The second peak is observed at PAI = 6 (100 genes associated 
with thermoregulation, 22 % of their total list). The phylo
stratigraphic index PAI = 6 corresponds to the evolutionary 
stage of the Vertebrata divergence.

To evaluate the statistical significance of the two peaks, a 
reference PAI index distribution was constructed for all hu­
man protein-coding genes (19,504 genes, the all_CDS_19504 
gene set, marked in blue in Figure 5), as it was done in our 
previous study (Mikhailova et al., 2024). This distribution 
also has two, but less noticeable, peaks. Using the chi-square 
method, the number of genes from the Thermoregulation_467 
gene set falling into peaks 1 and 6 was compared with the 
number of genes expected for random reasons in these peaks. 
In both cases, a difference was found between the observed 
and expected number with the level of significance p < 0.05 
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Fig. 5. Distribution of PAI values for protein-coding genes associated with thermoregulation (Thermoregulation_467 set) and for 
all human protein-coding genes (all_CDS_19504 set). 
One asterisk (*) indicates a significant (p < 0.05) excess of the observed number of genes associated with thermoregulation corresponding 
to PAI = 1 (unicellular organisms, the root of the phylostratigraphic tree) over the expected number of genes with PAI = 1 calculated based 
on the distribution of PAI values for the complete set of protein-coding genes (all_CDS_19504 set). Two asterisks (**) show a significant 
(p < 0.01) excess of the observed number of genes associated with thermoregulation corresponding to PAI = 6 (the stage of Vertebrata 
divergence) over their expected number.
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and p < 0.01 (Supplementary Materials S4 and S5). Thus, it 
was shown that the gene network of thermoregulation was 
enriched with genes, the ancestral forms of which originated 
at the early evolutionary stage (emergence of unicellular 
organisms, the root of the phylostratigraphic tree) and at the 
stage of Vertebrata divergence.

Functional analysis of the genes from the Thermoregula-
tion_467 set performed using the DAVID tool showed that a 
group of genes with PAI = 1 is enriched with associations with 
the Gene Ontology terms related to transcription regulation 
(Supplementary Material S6), the most important mechanism 
for regulating gene expression in unicellular organisms. As 
for the group of genes with an index value of PAI = 6, it is 
enriched with genes involved in signal transduction (Supple­
mentary Material S7), a vital process that ensures intercellu­
lar communications in a multicellular organism. This result 
is consistent with the idea that the interactions of a great 
number of physiological systems of the body (respiratory, 
circulatory, muscular, nervous, etc.) play a crucial role in the 
thermoregulation of the human body (Tansey, Johnson, 2015; 
Nakamura, 2024). In this case, the process of transcription 
provides genetic control over cell differentiation and formation 
of tissues involved in thermoregulation, and the coordination 
of the activity of physiological systems that ensure thermo­
regulation is carried out at the cellular level through signal 
transduction pathways.

Conclusion
In this study, a gene network comprising human genes, 
microRNAs, and proteins associated with thermoregulation 
was built. Additionally, the Termo_Reg_Human 1.0 knowl­
edge base was developed to systematize current data on the 
molecular and genetic mechanisms underlying thermore­
gulatory processes. Based on data contained in the knowledge 
base, the prioritization of genes, proteins and microRNAs by 
the number of interactions in the network of thermoregulation 

was carried out, and the evolutionary characteristics of the 
genes were identified.

Enrichment of the thermoregulation gene network with 
genes, the ancestors of which were formed at the evolutionary 
stages of unicellular organisms and Vertebrata divergence, 
was revealed. The patterns in the evolution of the genes we 
discovered should be taken into account when developing new 
concepts for the emergence of endothermy across different 
animal taxa (Osvath et al., 2024).
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Abstract. Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized primarily by joint involvement with 
progressive destruction of cartilage and bone tissue. To date, RA remains an incurable disease that leads to a significant 
deterioration in quality of life and patient disability. Despite a wide arsenal of disease-modifying antirheumatic drugs, 
approximately 40 % of patients show an insufficient response to standard treatment, highlighting the urgent need to 
identify new pharmacological targets. The aim of this study was to search for novel biological processes that could serve as 
promising targets for the targeted therapy of RA. To achieve this goal, we employed an approach based on the automated 
extraction of knowledge from scientific publications and biomedical databases using the ANDSystem software. This 
approach involved the reconstruction and subsequent analysis of two types of associative gene networks: a) gene networks 
describing genes and proteins associated with the development of RA, and b) gene networks describing genes and proteins 
involved in the functional responses to drugs used for the disease’s therapy. The analysis of the reconstructed networks 
identified 11 biological processes that play a significant role in the pathogenesis of RA but are not yet direct targets of 
existing disease-modifying antirheumatic drugs. The most promising of these, described by Gene Ontology terms, include: 
a) the Toll-like receptor signaling pathway; b) neutrophil activation; c) regulation of osteoblast differentiation; d) regulation 
of osteoclast differentiation; e) the prostaglandin biosynthetic process, and f ) the canonical Wnt signaling pathway. The 
identified biological processes and their key regulators represent promising targets for the development of new drugs 
capable of improving the efficacy of RA therapy, particularly in patients resistant to existing treatments. The developed 
approach can also be successfully applied to the search for new targeted therapy targets for other diseases.
Key words: rheumatoid arthritis; gene networks; targeted therapy; ANDSystem
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Применение программно-информационной системы 
ANDSystem для поиска мишеней таргетной терапии 
ревматоидного артрита на основе анализа  
биологических процессов
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Аннотация. Ревматоидный артрит (РА) – системное аутоиммунное заболевание, сопровождающееся поражением 
преимущественно суставов с прогрессирующей деструкцией хрящевой и костной тканей. До настоящего 
времени РА остается неизлечимым заболеванием, приводящим к значительному ухудшению качества жизни 
и инвалидизации пациентов. Несмотря на наличие широкого арсенала базисных противовоспалительных 
препаратов, около 40 % пациентов демонстрируют недостаточный ответ на стандартное лечение, что подчеркивает 
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острую необходимость поиска новых фармакологических мишеней. Целью настоящей работы был поиск новых 
биологических процессов, которые могут служить перспективными мишенями для таргетной терапии РА. Для 
достижения поставленной цели был применен подход, основанный на автоматическом извлечении знаний из 
текстов научных публикаций и биомедицинских баз данных с помощью программно-информационной системы 
ANDSystem. Данный подход включал реконструкцию и последующий анализ ассоциативных генных сетей двух 
типов: а) генные сети, описывающие гены и белки, ассоциированные с развитием РА, и б) генные сети, описывающие 
гены и белки, вовлеченные в функциональные ответы на действие лекарств, применяемых для терапии заболевания. 
В  результате анализа реконструированных сетей выявлено 11 биологических процессов, играющих значимую 
роль в патогенезе ревматоидного артрита, но до сих пор не являющихся прямыми мишенями существующих 
базисных противовоспалительных препаратов. К числу наиболее перспективных относятся следующие 
процессы, описываемые терминами онтологии генов: а) сигнальный путь Toll-подобных рецепторов; б) активация 
нейтрофилов; в) регуляция дифференцировки остеобластов; г) регуляция дифференцировки остеокластов; 
д) биосинтез простагландинов; е) канонический сигнальный путь Wnt. Выявленные биологические процессы и их 
ключевые регуляторы представляют собой перспективные мишени для разработки новых лекарственных средств, 
способных повысить эффективность терапии РА, в том числе у пациентов, резистентных к существующим методам 
лечения. Разработанный подход может быть успешно использован для поиска новых мишеней таргетной терапии и 
при других заболеваниях.
Ключевые слова: ревматоидный артрит; генные сети; таргетная терапия; ANDSystem 

Introduction
Rheumatoid arthritis (RA) is a chronic autoimmune disease 
characterized by systemic inflammation that primarily affects 
the joints and leads to progressive destruction of cartilage 
and bone tissue (Guo et al., 2018). According to the World 
Health Organization, RA affects approximately 0.5–0.6 % of 
the global population, occurring 2–3 times more frequently 
in women than in men, and is one of the leading causes of 
disability among working-age adults (Kvien et al., 2006; 
GBD 2023).

The pathogenesis of RA involves complex interactions 
between genetic factors, immune dysregulation, and environ-
mental triggers, resulting in the activation of proinflamma-
tory cytokines, infiltration of immune cells into the synovial 
membrane of the joints, and chronic inflammation (Firestein, 
McInnes, 2017). Despite significant progress in understanding 
the molecular mechanisms of RA, complete remission of the 
disease remains unattainable, and current therapeutic strate-
gies are primarily aimed at preventing disease progression 
(Smolen et al., 2016).

Modern treatment strategies for rheumatoid arthritis  are 
based on the use of several classes of drugs with anti-inflam-
matory effects (Ding et al., 2023; Smolen et al., 2023), includ-
ing: a) conventional synthetic (cs) disease-modifying antirheu-
matic drugs (csDMARDs) such as methotrexate, leflunomide, 
sulfasalazine, and hydroxychloroquine; b) targeted synthetic 
(ts) DMARDs (tsDMARDs) such as tofacitinib and baricitinib; 
c) biologic DMARDs (bDMARDs), including inhibitors of 
tumor necrosis factor (infliximab, adalimumab), interleukin-6 
(tocilizumab, sarilumab), interleukin-1 (anakinra), and anti-
CD20 monoclonal antibodies (rituximab); d) nonsteroidal 
anti-inflammatory drugs (NSAIDs) for symptomatic treat-
ment; and e) glucocorticoids (GCs) for rapid suppression of 
inflammation.

Particular attention in clinical practice is given to first-line 
drugs such as csDMARDs and tsDMARDs, which are capable 
of modulating immune responses at the level of intracellular 
signaling pathways and metabolism (van der Kooij et al., 
2007). The action of tsDMARDs, in particular, targets specific 

genes encoding key components of the JAK/STAT signaling 
pathway. For instance, tofacitinib suppresses inflammation by 
specifically inhibiting Janus kinase 3 (JAK3), which plays a 
crucial role in cytokine signaling that regulates lymphocyte 
survival, proliferation, differentiation, and apoptosis (Adis 
Editorial, 2010). Although csDMARDs and tsDMARDs 
are effective in achieving remission in a substantial propor-
tion of patients, their use is limited by side effects such as 
hepatotoxicity, immunosuppression, and the development of 
resistance (Olivera et al., 2020). Moreover, approximately 
40 % of RA patients exhibit a poor response to therapy, and 
5–20 % show no improvement at all with standard treatment 
(Smolen et al., 2016), highlighting the need to identify new 
molecular targets for the development of more effective 
therapeutic agents.

The development of rheumatoid arthritis involves a number 
of signaling pathways – including JAK/STAT, Notch, MAPK, 
Wnt, PI3K, SYK, and others – which regulate many biological 
processes implicated in the pathogenesis of the disease, such 
as the inflammatory response and remodeling of bone and 
cartilage tissue (Ding et al., 2023). These and other biological 
processes and signaling pathways can serve as potential targets 
for RA drug therapy. For example, experiments in laboratory 
mice have shown that treatment with CEP-33779 – a highly 
selective inhibitor of JAK2, a key component of the JAK/STAT 
signaling pathway – can reduce inflammatory manifestations 
in arthritis by suppressing cytokine production and the activa-
tion of T and B lymphocytes (Stump et al., 2011).

The aim of our study was to identify biological proces
ses – new promising pharmacological targets for rheumatoid 
arthritis therapy – based on the reconstruction and analysis 
of a specific type of gene network known as an associative 
gene network (AGN). 

A gene network is a group of coordinately functioning genes 
that control the phenotypic traits of an organism (Kolchanov et 
al., 2013). Interactions between genes within a gene network 
occur through their primary and secondary products – RNAs, 
proteins, and metabolites. An associative gene network repre-
sents an extension of the traditional gene network, integrating 
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genomic, molecular, phenotypic, and environmental entities 
and describing diverse types of interactions and associations 
among them (Demenkov et al., 2021). 

To reconstruct AGNs, we used the ANDSystem software 
platform, which enables the automatic extraction of knowledge 
and facts from scientific publications and biomedical factual 
databases (Ivanisenko V.A. et al., 2019). To achieve this goal, 
the following tasks were addressed: a) reconstruction of an 
associative gene network for RA, including genes and proteins 
involved in the development of the disease; b) reconstruction 
of associative gene networks describing the mechanisms of 
action of drugs used in RA therapy, including genes and pro-
teins participating in the functional response to these drugs; 
and c) identification, based on the reconstructed associative 
gene networks, of biological processes representing promising 
targets for RA therapy.

Based on the approach described above, 11  biological 
processes were identified that play a significant role in the 
development of rheumatoid arthritis but have not yet been re
cognized as direct targets of currently used disease-modifying 
antirheumatic drugs (DMARDs). These processes, described 
by Gene Ontology terms, include: a) the Toll-like receptor 
signaling pathway, b) neutrophil activation, c) regulation 
of osteoblast differentiation, d) regulation of osteoclast dif-
ferentiation, e) prostaglandin biosynthetic process, and f ) the 
canonical Wnt signaling pathway. The identified biological 
processes and their key regulators represent promising targets 
for the development of new therapeutic agents for rheumatoid 
arthritis. The approach implemented in this study can also 
be applied to the identification of novel targets for targeted 
therapy in other diseases.

Materials and methods
List of disease-modifying antirheumatic drugs (DMARDs). 
To compile a list of conventional synthetic DMARDs and 
targeted synthetic DMARDs used in the treatment of rheuma-
toid arthritis, we referred to the official document of the All-
Russian Public Organization “Association of  Rheumatologists 
of Russia” – “Clinical Guidelines: Rheumatoid Arthritis 
(ICD-10: M05, M06)” (Nasonov et al., 2024). This document 
provides a classification of drugs used for RA therapy, their 
pharmacotherapeutic characteristics, and Anatomical Thera-
peutic Chemical (ATC) classification codes. Based on these 
recommendations, the following list of drugs was compiled 
for further analysis: csDMARDs (methotrexate, leflunomide, 
sulfasalazine, hydroxychloroquine) and tsDMARDs (tofaci-
tinib, baricitinib).

Reconstruction and analysis of associative gene net-
works. The reconstruction of associative gene networks was 
performed using the ANDSystem software and information 
platform (Ivanisenko V.A. et al., 2019, 2024; Ivanisenko T.V. 
et al., 2024). This system is based on methods of machine 
reading and artificial intelligence designed for the automatic 
extraction of knowledge and facts from large-scale genetic 
and biomedical data sources, such as scientific publications, 
patents, and factual databases.

Through the analysis of more than 40 million scientific 
articles and patents, as well as 150  factual databases, the 
ANDSystem knowledge base has accumulated biomedically 
significant information represented as semantic knowledge 

graphs, describing 12 types of biological entities (including 
genes, proteins, diseases, biological processes, drugs, etc.) and 
over 40 types of functional relationships among them. These 
relationships include gene expression regulation, protein 
degradation, modification, and transport, as well as physi-
cal interactions such as protein–protein and protein–ligand 
interactions. 

In addition, the ANDSystem knowledge base contains de-
scriptions of associative relationships linking genes, proteins, 
and metabolites with entities such as diseases, biological pro-
cesses, and pharmaceutical compounds (Ivanisenko V.A. et al., 
2019, 2024; Ivanisenko T.V. et al., 2024). The knowledge base 
also includes “marker” relationships, indicating that certain 
genes, proteins, biological processes, or phenotypic traits can 
serve as markers of specific diseases.

Identification of biological processes based on informa-
tion from reconstructed associative gene networks. The 
analysis of overrepresented biological processes in the recon-
structed associative gene networks was carried out using the 
DAVID web server, version 2021 (https://david.ncifcrf.gov/; 
Sherman et al., 2022), with default settings. DAVID evaluates 
the degree of overlap between the list of genes functioning 
within each reconstructed gene network and the lists of genes 
corresponding to biological processes described in the Gene 
Ontology (GO). Based on this comparison, the hypergeometric 
test was applied to calculate the probability that the observed 
overlap between gene lists could occur by chance. In our 
study, biological processes significantly associated with the 
reconstructed gene networks were identified using a p-value 
threshold of <0.05, corrected by the Bonferroni method. The 
biological processes that met this criterion were classified 
into two categories: a) biological processes significant for the 
rheumatoid arthritis gene network, and b) biological processes 
significant for the gene networks representing responses to 
csDMARD and tsDMARD therapies used in RA treatment.

Results

Reconstruction of the associative gene network  
of rheumatoid arthritis
Using the ANDSystem platform, we reconstructed the associa-
tive gene network of rheumatoid arthritis based on information 
contained in the ANDSystem knowledge base.

The graph of the reconstructed associative gene network had 
a star-shaped topology: the central node corresponding to the 
term “Rheumatoid arthritis” was connected by edges to other 
nodes of the network graph that represented proteins and genes 
associated with RA according to the ANDSystem knowledge 
base (Supplementary Fig. S1)1. In total, the graph contained 
4,685 nodes, corresponding to 2,178 genes and 2,507 proteins 
(Table S1 in the Appendix), as well as 9,877 edges between 
the central node (rheumatoid arthritis) and the other nodes. 
Note that the number of edges exceeded the number of nodes. 
This is because the same node representing a gene or protein 
could be linked to the central node by multiple edges, each 
of which, according to the ANDSystem knowledge base, 
described a specific type of interaction between RA and a 
given gene or protein.
1 Supplementary Figures S1 and S2 and Tables S1–S6 are available at:  
https://vavilovj-icg.ru/download/pict-2025-29/appx37.xlsx

https://david.ncifcrf.gov/
https://vavilovj-icg.ru/download/pict-2025-29/appx37.xlsx
https://vavilovj-icg.ru/download/pict-2025-29/appx37.xlsx
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Table 1. Characteristics of relationships between the central and peripheral nodes  
in the rheumatoid arthritis gene network

No. Interaction type Number of interactions Proportion, %

Regulatory interactions 4,381 44.4

1 Expression downregulation    93 0.9

2 Expression regulation 472 4.8

3 Expression upregulation 365 3.7

4 Activity downregulation    15 0.2

5 Activity regulation    26 0.3

6 Activity upregulation    10 0.1

7 Regulation 1,812 18.3

8 Upregulation 802 8.1

9 Downregulation 786 8.0

Other Interactions 5,496 55.6

1 Association 4,449 45.0

2 Involvement 172 1.7

3 Marker 338 3.4

4 Risk factor 274 2.8

5 Treatment 263 2.7

* The percentage (%) indicates the proportion of a specific relationship type relative to the total number of relationships in the associative 
gene network of rheumatoid arthritis.

Table S1 lists the genes and proteins included in the re-
constructed associative gene network of rheumatoid arthritis, 
which comprises, in particular, genes and proteins involved in 
the inflammatory process: interleukins (IL1, IL6, IL13, and 
others), members of the tumor necrosis factor (TNF) family, 
the key inflammatory regulator NF-κB, and genes and proteins 
functioning in the Wnt, JAK/STAT, Notch, MAPK, PI3K, and 
SYK signaling pathways, all of which are known to play a 
defining role in RA pathogenesis (Ding et al., 2024).

Table 1 presents a classification of 14 types of relationships 
between the central and peripheral nodes in the RA gene 
network. These relationships fall into two categories. The 
first category (regulatory relationships) comprises nine types, 
such as expression downregulation, expression upregulation, 
activity regulation, and others. For example, expression of 
interleukin-1 beta (IL1B) is increased in rheumatoid arthritis 
(Mohd et al., 2019), which is reflected in the ANDSystem 
knowledge base as an “expression upregulation” relation-
ship between RA and the IL1B protein. Interleukin-6 (IL6) 
stimulates fibroblasts in the synovial membrane of the joints 
(Singh et al., 2021) and contributes to one of the symptoms 
of RA (bone loss), which is represented in ANDSystem as a 
“positive regulation” relationship between the disease “Rheu-
matoid arthritis” and the IL6 protein.

The second category (other relationships) includes five ad-
ditional relationship types identified during the reconstruction 
of the RA gene network, describing situations in which a gene 
or protein is associated with RA in some way. For example, 
these may include structural or functional features of a gene 
if a mutation in that gene constitutes a risk factor for RA.

Based on the information contained in the associative gene 
network of rheumatoid arthritis and the ANDSystem knowl-
edge base, it is possible to reconstruct the detailed mechanisms 
underlying the involvement of specific genes and proteins in 
the development of  RA. Figure 1 illustrates, as an example, the 
regulatory interactions between genes and proteins function-
ing within the Wnt signaling pathway, which is regulated by 
proinflammatory cytokines such as interleukin-1 beta, tumor 
necrosis factor alpha (TNFA), and interleukin-6.

As shown in Figure  1, regulation of the Wnt signaling 
pathway in rheumatoid arthritis involves interleukin-1 beta, 
tumor necrosis factor alpha, and interleukin-6, which activate 
the expression of the WNT5A gene encoding the WNT5A 
protein – a ligand of FZD receptors participating in the non-
canonical Wnt pathway (Miao et al., 2013). According to the 
ANDSystem data, WNT5A, in turn, activates the expression 
of the IL1B gene encoding interleukin-1 beta. Thus, IL1B and 
WNT5A mutually activate each other’s expression, forming a 
positive feedback loop, indicated in Figure 1 by bold arrows.

Reconstruction of associative gene networks  
involved in functional responses to RA therapies
Figure 2 shows the AGN for responses to tsDMARDs (see 
also Table S2). It contains two nodes corresponding to the drug 
names (tofacitinib, baricitinib) and 157 edges linking these 
nodes to other nodes representing 22 proteins and 51 genes. 
As seen in Figure 2, according to the ANDSystem knowledge 
base, tofacitinib is characterized by a substantially larger num-
ber of interactions with proteins and genes (60) compared to 
baricitinib (26). In response to both drugs, genes involved in 
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Fig. 1. Mechanism of regulation of key components of the Wnt signaling pathway by proinflammatory cytokines, reconstructed from the rheumatoid 
arthritis gene network in the ANDSystem knowledge base. 
Proinflammatory cytokines are highlighted with green frames; components of the positive feedback regulatory loop are indicated with bold arrows; 
and the DKK1 gene and its encoded protein Dickkopf-1 (DKK1) – an inhibitor of the canonical Wnt pathway – are shown in blue frames.

Fig. 2. Reconstructed associative gene network of the response to two targeted synthetic disease-modifying antirheumatic drugs – 
tofacitinib and baricitinib. 

Tofacitinib

Baricitinib

the inflammatory response – MMP3, IL2RA, CXCL10 – and 
proteins (STAT3, STAT5A, JAK1, JAK2), members of the 
JAK/STAT pathway, were implicated.

Figure S2 presents the AGN for responses to csDMARDs 
(methotrexate, leflunomide, sulfasalazine, hydroxychloro-
quine). The graph contains 261 nodes, four of which corre-

spond to the drug names (see also Table S2). The remaining 
nodes are connected to these four drug nodes by 485 edges 
and represent 106 proteins and 151 genes. The largest number 
of interactions in the csDMARD response AGN was observed 
for methotrexate (160). Proteins and genes associated with this 
drug include, in particular, IL1R1, TNFA, the inflammatory 
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Table 2. Distribution of interaction types in the reconstructed associative gene networks  
of the response to synthetic and targeted synthetic disease-modifying antirheumatic drugs

No. Interaction type csDMARD tsDMARD

Interaction number Interaction rate, % Interaction number Interaction rate, %

Regulatory interactions 529 87.6 143 91.1

   1 Expression downregulation 73 15.1 35 22.3

   2 Expression regulation 158 32.6 57 36.3

   3 Expression upregulation 64 13.2 12    7.6

   4 Activity downregulation 18    3.7    6    3.8

   5 Activity regulation 34    7.0    7    4.5

   6 Activity upregulation 16    3.3    1    0.6

   7 Modification downregulation 10    2.1    8    5.1

   8 Modification regulation    8    1.6    9    5.7

   9 Мodification upregulation    4    0.8    3    1.9

10 Transport regulation 28    5.8    5    3.2

11 Degradation downregulation    5    1.0 No No

12 Degradation regulation    6    1.2 No No

13 Degradation upregulation    1    0.2 No No

Other interaction type 60 12.4 14    7.8

14 Catalyze 14    2.4    2    1.1

15 Physical interaction 46    7.8 12    6.7

transcription factor NFKB1, and caspases (CASP1, CASP3, 
CASP9). Hydroxychloroquine ranked second by number of 
interactions (73), being linked to proinflammatory cytokines 
such as IL1B and TNFA, as well as to catalase (CAT) and 
cytochromes involved in xenobiotic metabolism (CP2B6, 
CYP1B1). Sulfasalazine and leflunomide ranked third and 
fourth (26 and 17 interactions, respectively). Notably, some 
proteins in the csDMARD response AGN (e. g., IL1B, CCL2, 
TNFA, CASP3) are targets of multiple drugs.

The distribution of interaction types in the AGN of the 
response to csDMARDs and tsDMARDs is provided in 
Table 2. As can be seen from Table 2, regulatory interactions, 
particularly the regulation of gene expression, predominated 
among those in the AGN of the response to csDMARD and 
tsDMARD.

Identification of biological processes based on information 
from reconstructed associative gene networks
Using the DAVID web resource based on Gene Ontology, 
an overrepresentation analysis of biological processes in the 
reconstructed gene networks was performed for: a) the rheu-
matoid arthritis gene network and b) the gene networks of the 
response to two types of anti-inflammatory drugs (csDMARD 
and tsDMARD).

For the reconstructed associative gene networks of rheuma-
toid arthritis and the response to csDMARD and tsDMARD, 

381, 64, and 44 overrepresented biological processes were 
identified, respectively. Most significant processes are cha
racterized in Table  3 (for details, see Tables  S4–S6). As 
seen in Table 3, the inflammatory response (GO identifier: 
GO:0006954) was statistically significantly overrepresented 
in both the RA gene network and the gene networks of the 
response to csDMARD and tsDMARD. It is interesting to note 
that the list of most significantly overrepresented processes 
for csDMARD response gene network included xenobiotic 
metabolic processes, which were not overrepresented in the 
tsDMARD gene network. For the tsDMARD response gene 
network, the JAK/STAT (GO identifier: GO:0007259, Table 3) 
and cytokine (GO identifier: GO:0019221, Table 3) signaling 
pathways were most significantly overrepresented.

For further analysis, from the 381  identified biological 
processes overrepresented in the RA AGN (Table 3), 71 pro-
cesses were selected using the ANDSystem knowledge base, 
characterized by the interaction types “Regulation”, “Down-
regulation”, and “Upregulation” with the disease “Rheumatoid 
arthritis”. An intersection was performed between the list of 
71 biological processes involved in the pathogenesis of RA 
and the lists of overrepresented biological processes for the 
AGN of the response to the csDMARD (64 processes) and 
tsDMARD (44 processes) drug groups. As a result, 59 biologi-
cal processes were found that are involved in the pathogenesis 
of RA but are not included in the list of overrepresented pro-
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Table 3. Results of the overrepresentation analysis of Gene Ontology (GO) biological processes for the associative gene networks  
of rheumatoid arthritis, as well as the gene networks of the response to synthetic disease-modifying antirheumatic drugs (сsDMARD) 
and targeted synthetic disease-modifying antirheumatic drugs (tsDMARD)

Gene network Overrepresented  
process number

The most statistically significant overrepresented biological processes

Identifier Name p-value*

Rheumatoid arthritis 
gene network

381 GO:0006954 Inflammatory response 3.7 · 10–123

GO:0006955 Immune response 8.2 · 10–103

GO:0007165 Signal transduction 2.9 · 10–60

csDMARD response 
gene network

64 GO:0006805 Xenobiotic metabolic process 5.6 · 10–21

GO:0009410 Response to xenobiotic stimulus 1.9 · 10–19

GO:0006954 Inflammatory response 1.4 · 10–14

tsDMARD response 
gene network

44 GO:0006954 Inflammatory response 4.2 · 10–16

GO:0007259 Cell surface receptor signaling pathway via JAK/STAT 2.2 · 10–11

GO:0019221 Cytokine-mediated signaling pathway 3.0 · 10–10

* p < 0.05.

Table 4. Biological processes for which no regulating drugs from the csDMARD and tsDMARD groups  
used in the therapy of rheumatoid arthritis have been identified 

No. The Gene Ontology 
identifier (GO)

The Gene Ontology biological process The number  
of rheumatoid arthritis genes 
involved in the process

p-value*

   1 GO:0034612 Response to tumor necrosis factor 58 9.8 · 10–23

   2 GO:0031295 T cell costimulation 29 3.3 · 10–13

   3 GO:0002224 Toll-like receptor signaling pathway 19 8.3 · 10–8

   4 GO:0014823 Response to activity 26 1.3 · 10–7

   5 GO:0034097 Response to cytokine 24 8.64 · 10–7

   6 GO:0010468 Regulation of gene expression 53 2.0 · 10–3

   7 GO:0045668 Negative regulation of osteoblast differentiation 27 8.5 · 10–5

   8 GO:0042119 Neutrophil activation 12 1.53 · 10–3

   9 GO:0045671 Negative regulation of osteoclast differentiation 15 3.27 · 10–2

10 GO:0001516 Prostaglandin biosynthetic process 12 1.5 · 10–2

11 GO:0060070 Canonical Wnt signaling pathway 30 2.2 · 10–2

* p-value – significance level of the overrepresentation of Gene Ontology terms for the set of genes associated with rheumatoid arthritis, with the Bonferroni 
correction. 

cesses for the AGN of the response to the considered drugs. 
From these 59 processes, 48 were removed that, according 
to the ANDSystem knowledge base, are linked to the consid-
ered csDMARD (methotrexate, leflunomide, sulfasalazine, 
hydroxychloroquine) and tsDMARD (tofacitinib, baricitinib) 
drugs by interactions of the types “Regulation”, “Downregula-
tion”, and “Upregulation”.

This resulted in a list of 11 biological processes (Table 4). 
The identified processes are characterized by the following: 
firstly, these processes are involved in the pathogenesis of 

rheumatoid arthritis. Furthermore, no regulating csDMARDs 
and tsDMARDs have been identified for them. It is these 
processes that are of particular interest as targets for the de-
velopment of drugs for rheumatoid arthritis therapy.

As seen from Table 4, the biological processes involved in 
the pathogenesis of rheumatoid arthritis but not regulated by 
disease-modifying antirheumatic drugs included: a) inflam-
matory responses (GO identifiers GO:0034097, GO:0034612, 
GO:0031295, GO:0002224); b) bone tissue morphogenesis 
(GO:0045668, GO:0045671); c) the canonical Wnt signal-
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Fig. 3. Main stages for searching for biological processes promising as targets for the development of new antirheumatic drugs.
RА – rheumatoid arthritis; AGN – associative gene network; BP – biological process; csDMARD – conventional synthetic disease-modifying 
antirheumatic drugs (methotrexate, leflunomide, sulfasalazine, hydroxychloroquine); tsDMARD – targeted synthetic disease-modifying 
antirheumatic drugs (tofacitinib, baricitinib).
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ing pathway (GO:0060070); d) prostaglandin biosynthesis 
(GO:0001516); e) response to activity (GO:0014823) and 
regulation of gene expression (GO:0010468).

Thus, we have conducted a search for biological processes – 
new promising pharmacological targets for RA therapy – 
based on the reconstruction and analysis of associative gene 
networks.

Figure  3 shows the schematic diagram, implemented in 
our work, for searching for biological processes that are new 
promising targets for the development of antirheumatic drugs.

Discussion
The search for new drug targets for the treatment of rheuma-
toid arthritis is important for modern medicine, given that up 
to 40 % of patients do not achieve a full response to existing 
therapy (Ding et al., 2023). In this regard, we have proposed a 
method for identifying biological processes as targets for new 
antirheumatic drugs, based on the reconstruction of associative 
gene networks and a comparative analysis of biological pro-
cesses associated with rheumatoid arthritis and those regulated 
by the disease-modifying antirheumatic drugs currently used 
in clinical practice (Nasonov et al., 2024). 

The ANDSystem knowledge base, which we used for re
constructing the gene networks, integrates accumulated infor
mation from scientific literature on the molecular mechanisms 
of drug action and disease pathogenesis, allowing for the 
discovery of new therapeutic targets at a systemic level, in-
cluding biological processes, thereby increasing the efficacy 
of therapy and diagnostics. In our work, we reconstructed 
associative gene networks (AGNs) for rheumatoid arthritis, 
as well as AGNs describing the interactions of synthetic and 
targeted anti-inflammatory drugs with human genes and pro-
teins. The analysis showed that the rheumatoid arthritis gene 

network is enriched with genes involved in the regulation of 
the inflammatory response, which corresponds to the well-
known data on the leading role of systemic inflammation in 
the pathogenesis of this disease (Firestein, McInnes, 2017; 
Figus et al., 2021). It is therefore no coincidence that the 
reconstructed gene networks of proteins and genes targeted 
by csDMARDs (Fig. S2) and tsDMARDs (Fig. 2) primarily 
include genes and proteins involved in the functioning of the 
immune system. 

According to the results of the functional annotation of 
genes, for conventional synthetic disease-modifying antirheu
matic drugs, the list of statistically significantly overrepresent-
ed biological processes included processes related not only to 
inflammation but also to xenobiotic metabolism. This suggests 
that csDMARDs impose a significant load on the biochemical 
systems responsible for xenobiotic removal, potentially lead-
ing to serious adverse effects (Olivera et al., 2020).

On the other hand, for genes involved in the response to 
targeted synthetic disease-modifying antirheumatic drugs, 
xenobiotic metabolism processes were not significantly over-
represented. However, the list of overrepresented processes 
for tsDMARDs response gene network, along with inflamma-
tion, included processes related to the functioning of the JAK/
STAT signaling pathway, which is crucial for pathogenesis of 
RA (Ding et al., 2023). This suggests a more targeted action 
of tsDMARD on the pathogenesis of RA and emphasizes the 
importance of developing targeted therapies to increase treat-
ment efficacy and reduce side effects. However, the diversity 
and complexity of the interactions of biological processes 
leading to the development of RA, and the insufficient efficacy 
of therapy with existing disease-modifying antirheumatic 
drugs, necessitate the search for new targets for RA treatment 
(Smolen et al., 2016).
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Our approach, based on the reconstruction of gene networks 
involved in the development of the disease and in the response 
to known drugs, as well as on a comparative analysis of the 
biological processes regulated by these gene networks, al-
lowed us to identify 11 biological processes (Table 4). These 
processes are key to the pathogenesis of RA but are not targets 
of the anti-inflammatory drugs currently in use. It should be 
noted that the regulation of expression (GO:0010468) and the 
response to activity (GO:0014823) belong to a group of rather 
broad processes, covering many molecular mechanisms in the 
cell, which complicates the development of targeted drugs.

Literature analysis revealed that for processes such as the re-
sponse to cytokines (GO:0034097), the response to tumor ne-
crosis factor TNFA (GO:0034612), and T-cell co-stimulation 
(GO:0031295), there is evidence of their partial regulation by 
the currently used csDMARDs and tsDMARDs. For example, 
tsDMARDs like tofacitinib and baricitinib effectively block 
the JAK/STAT signaling pathways, which are downstream of 
cytokine and TNFA receptors, providing powerful suppression 
of inflammatory responses (Palmroth et al., 2021).

However, biological processes such as the Toll-like receptor 
signaling pathway, neutrophil activation, negative regulation 
of osteoblast differentiation, negative regulation of osteoclast 
differentiation, the canonical Wnt signaling pathway, and 
prostaglandin biosynthesis are not directly regulated by the 
disease-modifying antirheumatic drugs that are currently 
actively used by rheumatologists in accordance with clinical 
guidelines (Nasonov et al., 2024). Nevertheless, the biological 
processes and pathways listed above may be important for the 
pathogenesis of RA. For example, neutrophil activation plays 
an important role in inflammation in RA patients, and CXCR2 
inhibitors, being investigated for other inflammatory condi-
tions, could be adapted for RA (Alam et al., 2020).

It is known that the Wnt signaling pathway plays a signifi-
cant role in fibroblast activation and synovial inflammation, as 
well as in bone resorption and joint destruction in the develop-
ment of rheumatoid arthritis (Miao et al., 2013). The expres-
sion of genes encoding Wnt family proteins, which activate 
the Wnt signaling pathway, was increased in the synovium in 
rheumatoid arthritis, partly due to proinflammatory cytokines 
(Prajapati, Doshi et al., 2023). At the same time, the activation 
of the non-canonical Wnt signaling pathway, in turn, leads to 
an increased expression of inflammatory mediators, includ-
ing the transcription factor NF-κB and cytokines (Miao et al., 
2013), increasing inflammation. 

According to the ANDSystem knowledge base (Fig.  1), 
interleukin-1 beta and the WNT5A protein mutually activate 
each other’s expression, which may create a vicious cycle in 
the pathogenesis of rheumatoid arthritis. Therefore, modulat-
ing the Wnt signaling pathway may be a promising approach 
to reduce joint inflammation in RA. In particular, it has been 
shown that the NAV2 protein promotes the inflammatory 
response of fibrocyte-like synoviocytes by activating the Wnt 
signaling pathway in rheumatoid arthritis, and its inhibition 
can reduce joint inflammation in this disease (Wang R. et al., 
2021). 

On the other hand, proinflammatory cytokines – tumor 
necrosis factor-alpha and IL1B – according to ANDSystem 
(Fig. 2), can activate the expression of the DKK1 gene, which 
encodes the Dickkopf-1 (DKK1) protein, an important inhibi-

tor of the canonical Wnt signaling pathway (Rabelo et al., 
2010). It has been shown that the serum level of DKK1 is 
elevated in patients with RA and correlates with the level of 
inflammation and the degree of bone destruction in the joints 
(Wang S.Y. et al., 2011). The activation of DKK1 expression 
by proinflammatory cytokines in rheumatoid arthritis may 
lead to the suppression of the Wnt signaling pathway and, 
consequently, the activation of the RANK/RANKL signaling 
pathway in osteoclasts, increasing their activity and causing 
the bone loss characteristic of RA (Miao et al., 2013). 

Thus, dysregulation of the Wnt signaling pathway may be 
the cause of changes in the biological processes of regulat-
ing osteoblast and osteoclast differentiation in RA, which, 
according to our study (Table  4), are potential targets for 
new antirheumatic drugs. Furthermore, DKK1 stimulates 
angiogenesis in the synovium and the formation of pannus – 
a pathologically altered synovial tissue that plays a crucial 
role in joint destruction in RA (Cici et al., 2019). 

Thus, the Wnt signaling pathway is a promising target for 
the development of new antirheumatic drugs; however, its 
regulation in RA is very complex and depends on the type of 
tissues and cells, so further research is needed to reconstruct 
the gene network of this pathway in RA and analyze its 
structural and functional features in various cells and tissues.

Prostaglandins, particularly prostaglandin E2, are known 
to play an important role in the development of both acute 
inflammatory reactions and chronic inflammation (Kawahara 
et al., 2015), enhancing inflammatory processes by activat-
ing the expression of cytokine receptors and NFKB family 
proteins, which are key triggers of inflammation (Yao, Na-
rumiya, 2019). Prostaglandin E2, an important mediator of 
inflammation in RA, is a target for a number of non-steroidal 
anti-inflammatory drugs (NSAIDs) for this disease (Park et 
al., 2006). The biosynthesis of prostaglandins (GO biologi-
cal process identifier GO:0001516) is partially modulated by 
NSAIDs, such as celecoxib, but the development of more 
specific inhibitors could improve therapeutic outcomes (Gong 
et al., 2012).

It is known that toll-like receptors (TLRs) make an impor-
tant contribution to the induction of inflammation, as their 
activation leads to increased activity of signaling pathways 
and a number of transcription factors such as nuclear factor κB 
(NF-κB), activator protein-1 (AP-1), and interferon regulatory 
factors (IRF), which induce the expression of proinflammatory 
cytokines – TNF, IL1β, IL6, and others (Kawasaki, Kawai, 
2024). It has been shown that the expression of toll-like re-
ceptor genes is increased in the synovium of RA patients, and 
TLRs contribute significantly to the development of inflam-
mation in RA, but therapeutic interventions targeting TLR 
signaling pathways have not yet been successfully introduced 
into clinical practice (Unterberger et al., 2021). 

Thus, all the biological processes listed above play a major 
role in the development of RA, yet they are not regulated by 
the disease-modifying antirheumatic drugs currently used in 
clinical practice. Therefore, these biological processes and 
their key regulators can serve as targets for the development 
of new drugs for the treatment of rheumatoid arthritis.

It should be noted that rheumatoid arthritis is characterized 
by significant comorbidity with other diseases, including 
cardiovascular and respiratory diseases (Figus et al., 2021), 
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anxiety-depressive disorders (Hill et al., 2022), and osteo-
porosis (Llorente et al., 2020). In this regard, further work 
is planned to analyze the identified biological processes as a 
basis for the comorbidity of RA with other diseases. 

Furthermore, this work did not identify targets at the gene 
level, which could be the subject of further research based on 
the analysis of the structural organization of gene networks.

Conclusion
In our work, we performed a computational reconstruction 
of associative gene networks for rheumatoid arthritis, as well 
as AGNs describing the interactions of synthetic and targeted 
anti-inflammatory drugs with human genes and proteins. 
Based on the analysis of these gene networks, a search for 
biological processes as new promising pharmacological tar-
gets for RA therapy was conducted. The proposed approach 
can also be used to search for new targets for therapy of other 
diseases where standard treatment methods show insufficient 
therapeutic effect.
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Abstract. Mathematical models represent a powerful theoretical tool for studying complex biological systems. They 
provide an opportunity to track non-obvious interactions and conduct in silico experiments to address practical prob-
lems. Iron plays a key role in oxygen transport in the mammals. However, a high concentration of this microelement 
can damage cellular structures through the production of reactive oxygen species and can also lead to ferroptosis 
(programmed cell death associated with iron-dependent lipid peroxidation). The immune system contributes greatly to 
the regulation of iron metabolism – hypoferritinemia (decreased ferritin concentration in the blood) during infection –
which is a result of the innate immune response. In the study of iron metabolism, many aspects of regulation remain 
insufficiently studied and require a deeper understanding of the structural-functional organization and dynamics of all 
components of this complex process in both normal and pathological conditions. Consequently, mathematical model-
ing becomes an important tool to identify key regulatory interactions and predict the behavior of the iron metabolism 
regulatory system in the human body under various conditions. This article presents a review of iron metabolism mod-
els applicable to humans presented in chronological order of their development to illustrate the evolution and priori-
ties in modeling iron metabolism. We focused on the formulation of numerical problems in the analyzed models, their 
structure and reproducibility, thereby highlighting their advantages and drawbacks. Advanced models can numerically 
simulate various experimental scenarios: blood transfusion, signaling pathway disruption, mutation in the ferroportin 
gene, and chronic inflammation. However, existing mathematical models of iron metabolism are difficult to scale and 
do not account for the functioning of other organs and systems, which severely limits their applicability. Therefore, to 
enhance the utility of computational models in solving practical problems related to iron metabolism in the human 
body, it is necessary to develop a scalable and verifiable mathematical model of iron metabolism that considers interac-
tions with other functional human systems (e. g., the immune system) and state-of-the-art standards for representing 
mathematical models of biological systems.
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Аннотация. Математические модели представляют собой мощный теоретический инструмент для изучения 
сложных биологических систем. Они позволяют прослеживать неочевидные взаимодействия и проводить вир-
туальные эксперименты для решения практических задач. Железо играет ключевую роль в транспорте кислоро-
да в организме млекопитающих. В то же время высокая концентрация этого микроэлемента может повреждать 
клеточные структуры за счет продукции активных форм кислорода, а также привести к ферроптозу (программи-
руемая клеточная гибель в связи с железо-зависимым перекисным окислением липидов). Большой вклад в регу-
ляцию метаболизма железа вносит иммунная система: гипоферритинемия (снижение концентрации ферритина 
в крови) на фоне инфекции является результатом врожденного ответа иммунной системы. В исследовании ме-
таболизма железа многие аспекты регуляции остаются недостаточно изученными; требуется более глубокое по-
нимание структурно-функциональной организации и динамики всех компонентов этого комплексного процесса 
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в норме и при патологии. Важным инструментом, позволяющим выявить наиболее существенные регуляторные 
взаимодействия и предсказать поведение метаболической системы регуляции железа в организме человека в 
разных условиях, становится математическое моделирование. Данная работа представляет обзор моделей ме-
таболизма железа, применимых к человеку, в порядке их создания, что позволяет оценить историю развития 
и приоритеты в моделировании метаболизма железа. Мы акцентировали внимание на постановке численных 
задач в анализируемых моделях, их структуре и воспроизводимости, на основе чего выделили их недостатки и 
преимущества. Современные модели способны численно воспроизвести множество экспериментов: гемотранс-
фузию, нарушение сигнального пути; мутацию в гене ферропортина; хроническое воспаление. Однако суще
ствующие математические модели метаболизма железа сложно масштабировать, и они не учитывают работу 
других органов и систем, в связи с чем их применение остается крайне ограниченным. Для расширения приме-
нимости компьютерных моделей в решении практических задач, связанных с метаболизмом железа в организ-
ме человека, необходимо создать масштабируемую и верифицируемую математическую модель метаболизма 
железа с учетом взаимодействия с другими функциональными системами человека (например, иммунной) и со-
временных стандартов представления математических моделей биологических систем. 
Ключевые слова: математическое моделирование; метаболизм железа; ферритин; гепсидин; обыкновенные 
дифференциальные уравнения

Introduction
Iron plays a key role in oxygen transport in vertebrate organ-
isms (Pantopoulos et al., 2012). In the human body, iron exists 
in multiple forms (Vogt et al., 2021). In blood plasma, iron 
is transported both in a free, transferrin-unbound form and 
in a transferrin-bound form, as part of hemoglobin. Iron is 
predominantly found in tissues either in a free form or bound 
to the iron storage protein ferritin. However, the majority of 
iron in the body is present in erythrocytes as hemoglobin.

Both iron excess and deficiency lead to adverse conse-
quences. Iron deficiency results in iron-deficiency anemia, 
while iron overload causes toxic effects of free iron and trig-
gers programmed cell death mediated by iron – ferroptosis 
(Xie et al., 2016). Therefore, vertebrates have a molecular 
genetic system orchestrating iron homeostasis. The main 
protein regulating iron metabolism is hepcidin. It binds to 
ferroportin  (FPN), a protein that functions as the sole iron 
exporter in vertebrates. Hepcidin binding leads to ubiquitina-
tion, internalization, and degradation of FPN, thereby inhibit-
ing iron export. Since FPN is highly expressed in duodenal 
enterocytes, iron-recycling macrophages, and hepatocytes, 
hepcidin-mediated inactivation and degradation of FPN reduce 
dietary iron absorption and limit the release of stored iron, thus 
lowering circulating iron levels (Xu et al., 2021). Hepcidin 
expression, in turn, is controlled by negative feedback from 
iron concentrations both in plasma and hepatocytes, as well 
as by the inflammatory response, predominantly mediated by 
IL-6 activity (Nemeth, Ganz, 2023).

Currently, many aspects of iron metabolism remain incom-
pletely understood – for example, non-heme iron transport into 
enterocytes, allosteric regulation of hemoglobin, and hepci-
din regulation (Ahmed et al., 2020; Nemeth, Ganz, 2023). 
Since experimental approaches cannot thoroughly uncover 
the complexity and hierarchical organization of the system 
of interacting components regulating iron metabolism in the 
human body, the reconstruction of a comprehensive model 
of iron metabolism that accounts for molecular interactions 
between various organs and systems will not only integrate 
these organizational levels of the molecular genetic iron me-
tabolism system within a unified conceptual framework but 
also serve as a theoretical basis for in silico studies aimed 
at investigating the structural-functional organization and 
dynamics of interactions among system components. This, 

in turn, will provide a foundation for the development and 
evaluation of drug efficacy targeting various therapeutic sites 
within the iron metabolism system, considering functional 
interactions with the immune system.

Herein, we review existing models, assessing their advan-
tages and disadvantages as well as their applicability in ad-
dressing fundamental and applied aspects of iron metabolism 
research.

Initial models of iron metabolism  
in the human body

Mathematical model of iron metabolism  
(Franzone et al., 1982)
The model developed by P.C. Franzone and colleagues was 
designed to numerically estimate the concentration of iron 
in various compartments of the body, as well as to study 
the effects of different treatment methods on patients with 
anemia of various origins. The metabolic processes in the 
model are distributed across the following compartments: 
intestinal mucosa, blood plasma, liver, reticuloendothelial 
cells, bone marrow, and erythrocytes. The model describes 
the intake of iron from food, its transport into plasma, storage 
in the liver, and participation in erythropoiesis. It takes into 
account the impact of erythropoietin on the proliferation and 
maturation of erythroid cells. The model also allows for the 
consideration of iron replenishment through donor blood and 
iron loss due to bleeding. To account for the process of iron 
return from erythrocytes to blood plasma, the model includes 
a component describing the destruction of erythrocytes by 
reticuloendothelial cells. Additionally, the model considers 
ineffective hematopoiesis, whereby some erythroid cells fail 
to complete differentiation (Fig. 1).

The model simulations were conducted on conditions such 
as blood donation in a healthy patient, blood transfusion af-
ter splenectomy in a patient with hemolytic anemia, as well 
as treatment of hypoplastic anemia using transfusions and 
androgens.

In the numerical experiment describing blood donation in 
healthy patients, the model shows complete recovery of hemo-
globin levels in approximately 25–30 days. In turn, complete 
restoration of iron levels in the bone marrow takes 60 days, 
while recovery of iron levels in the storage pool requires more 
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than two months, which corresponded to the literature data 
at the time of publication (Wadsworth, 1955; Liedén et al., 
1975) and also aligns with data from recent studies (Kiss et 
al., 2015; Ziegler et al., 2015).

The model was also used to numerically investigate blood 
transfusion after splenectomy (removal of the spleen). The 
resulting model more accurately describes iron dynamics 
for patients after splenectomy. However, data from only one 
patient were used to validate this condition.

The proposed model was also used to study the effect of 
treating hypoplastic anemia with transfusions and androgens. 
However, these results have lost their relevance since such 
therapy is no longer used today (Killick et al., 2016). The 
authors of the developed model note that the system’s equa-
tions can exhibit stiff behavior due to the large differences 
between the numerical values of transport rates when modeling 
anemic conditions. Considering the stiffness of the system, to 
achieve a compromise between accuracy and computational 
resources, the authors used the implicit trapezoidal method 
for the numerical solution of the system (Tavernini, 1973).

Given that Franzone and co-authors’ model is one of the first 
models describing iron metabolism, it is significantly inferior 
to modern models. This model lacks descriptions of key par-
ticipants in iron metabolism: hepcidin, ferritin, transferrin, and 
proteins regulating the expression of genes involved in iron 
metabolism (Iron Regulatory Proteins, IRP). The iron storage 
process is greatly simplified and represented by a linear coef-
ficient. Despite this, the authors managed to simulate complex 
conditions such as blood transfusion after splenectomy in a 
patient with hemolytic anemia and treatment of hypoplastic 
anemia using transfusions and androgens. However, consider-
ing that data from only one patient was used to validate the 

numerical calculations of the model for each of these condi-
tions, it is difficult to assess how applicable the numerical 
modeling results are to population data and how parameters 
might change when reproducing data on other patients.

Computational model of iron metabolism  
in the liver (Mitchell, Mendes, 2013)
The mathematical model proposed by S.  Mitchell and 
P. Mendes in 2013 allows the numerical evaluation of pro-
cesses related to iron transport into hepatocytes. The model 
enables quantitative prediction of the concentration of pro-
teins synthesized in the liver that regulate iron metabolism. 
The model consists of 21 ordinary differential equations and 
includes two compartments: hepatocyte and plasma (Fig. 2).

Using the model built, the authors numerically analyzed the 
following physiological conditions: hereditary hemochroma-
tosis types 1 and 3. To reproduce the state of type 1 hemochro-
matosis, a virtual knockdown of the human iron homeostasis 
regulator protein (HFE) was performed by reducing the syn-
thesis constant 100-fold. The model could not quantitatively 
reproduce the result that mice with this pathology have liver 
iron levels three times higher than normal. This was due to the 
fixed concentration of intercellular transferrin-bound iron in 
the model, unlike that in mice, which show increased transfer-
rin saturation as a result of increased intestinal iron absorption. 
Despite fixed extracellular conditions, the model predicts in-
tracellular iron overload in hepatocytes. The hemochromatosis 
model also reproduced the dynamics observed in experiments 
with changes in dietary iron content. Increased dietary iron 
doubled ferroportin expression in the liver in both healthy mice 
and those with hemochromatosis. To reproduce the state of 
type 3 hemochromatosis, a virtual knockdown of TfR2 was 

Fig. 1. Schematic representation (adapted from Franzone et al., 1982).
In the figure, the blocks represent the amount of iron in a specific organ or system, where 1  – blood plasma, 2  – maturing erythroid 
blood cells, 3 – mature erythroid blood cells, 4 – erythrocytes, 5 – macrophages, 6 – iron storage in macrophages, 7 – extravascular fluid,  
8 – iron storage in hepatocytes, 9 – intestinal epithelial cells, 10 – iron storage in intestinal epithelial cells. The arrows indicate iron transport 
between organs and systems, where k1, k2, k3… k16   are the rates of iron transport between the blocks, i1 – iron influx due to blood 
donation, i2 – iron influx from food, D0 – iron loss due to bleeding, D1 – transfer of iron to reticuloendothelial system cells as a result of 
phagocytosis, F(y1, E) – function describing the transfer of iron from plasma to erythroid cells, where y1 is the amount of iron in the blood 
plasma, and E is the amount of erythropoietin, p – function of erythropoietin synthesis.
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performed, also by reducing the synthesis constant 100-fold. 
Numerical analysis revealed an increase in hepcidin concen-
tration and a decrease in ferroportin concentration, which 
was consistent with experimental data (Chua et al., 2010).

The model describes the iron transport into hepatocytes 
well, considering iron storage, export, and utilization for heme 
synthesis. We also comprehensively reproduced the authors’ 
results both in the COPASI software (Hoops et al., 2006) and 
in the BioUML platform (Kolpakov et al., 2022). However, 
the model has some limitations: (1) the model lacks an im-
portant regulatory link in iron metabolism, namely the effect 
of hepcidin on iron absorption from the intestine; (2) fixed 
concentrations of heme and intercellular transferrin-bound 
iron are used; (3) due to limited availability of quantitative 
clinical data on human iron metabolism, various other data 
sources were integrated for parameterization, such as in vitro 
experiments and animal models; (4) the parameters reported 
in the study do not correspond to the model parameters in the 
supplementary material.

Modeling of the system iron regulation in various 
pathologies considering hepcidin-independent 
mechanisms (Enculescu et al., 2017)
The model by M. Enculescu and colleagues (2017) describes 
iron metabolism throughout the human body, taking into ac-
count intra- and extracellular regulatory mechanisms of iron 
metabolism. The authors focused primarily on the system 

regulation of iron metabolism via the hepcidin-ferroportin 
regulatory axis. The model describes iron content in seven 
compartments: serum, liver, spleen, bone marrow, eryth-
rocytes, duodenum, and “other organs,” representing iron 
distribution in the mouse body. Iron absorption and loss in 
the duodenum, as well as iron loss in the “other organs” 
compartment, are considered. The model explains inhibition 
of ferroportin transcription during inflammation and regulation 
of its translation by intracellular iron, as well as hepcidin-
mediated post-translational destabilization of ferroportin. 
Iron export from peripheral organs is controlled by the iron 
exporter ferroportin  (Fpn), which is predominantly local-
ized on the plasma membrane of three cell types: duodenal 
enterocytes, macrophages, and hepatocytes. Fpn expression 
is described separately for each organ and regulated by three 
mechanisms: (1) inflammatory signals decrease Fpn mRNA 
transcription; (2)  intracellular iron enhances Fpn mRNA 
translation; (3) Fpn protein turnover is increased by the soluble 
polypeptide hepcidin.

Hepcidin expression is activated by the iron-sensitive 
BMP6/SMAD pathway and an inflammatory signaling 
cascade involving cytokine production (primarily IL-6) and 
subsequent phosphorylation of the transcription factor STAT3 
in hepatocytes (Fig. 3).

The authors’ own data and previously published data were 
used for the model calibration. A total of 344 experimental 
measurements were obtained. The following assumptions were 

Fig. 2. Graphical representation of the model in the SBGN standard (Le Novère et al., 2009).
Arrows designate substance transport. Yellow compartment  – hepatocyte, red compartment  – plasma, LIP  – labile iron pool, FT  – ferritin,  
Fe – iron, HAMP – hepcidin, Heme – heme, HO-1 – heme oxygenase 1, IRP – iron regulatory proteins, FPN1 – ferroportin, TfR1 – transferrin 
receptor 1, TfR2 – transferrin receptor 2, Tf-Fe_intercell – plasma transferrin-bound iron (Mitchell, Mendes, 2013).
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made for model parameterization: in some cases, homologous 
reactions in different compartments proceed with identical 
kinetic rate constants. Additionally, kinetic parameters of the 
hepcidin gene promoter model were fixed at values previously 
determined by the authors in the HuH7 cell culture system.

The following conditions were numerically investigated 
using the constructed model: administration of lipopoly
saccharides  (LPS) under iron overload; disruption of the 
BMP6 signaling pathway; mutation in the ferroportin gene 
leading to loss of ferroportin’s ability to bind hepcidin; chronic 
inflammation.

The authors also used data from their own experiment to val-
idate the model in the numerical analysis of LPS administra
tion under iron overload. According to the experiment, male 
C57BL/6 mice were fed an iron-rich diet containing 100 times 
more iron than a normal diet for four weeks, followed by a single 
dose of LPS at 1 µg/kg. The experimental data corresponded 
to the model’s predictions for most variables: iron in serum, 
liver, and duodenum; hepcidin content in the liver; BMP6 
mRNA concentration; levels of pSTAT and pSMAD in the 
liver; mRNA and protein content of ferroportin in the liver. 
Deviations of the model approximation from experimental 
data were observed in the following indicators: iron content 
in the spleen and erythrocytes, ferroportin concentration in 
the spleen.

This study also provides a numerical analysis of the dy-
namic behavior of the iron regulation system when hepcidin 

feedback is blocked. Two situations were reproduced for this: 
(1) disruption of the BMP6 signaling pathway; (2) mutation in 
the ferroportin gene leading to the loss of ferroportin’s ability 
to bind hepcidin.

To reproduce the first condition, SMAD expression was 
set to zero, whereas to reproduce the second condition, the 
parameter values describing hepcidin’s effect on ferroportin 
degradation were also set to zero. Numerical simulations of the 
model in both cases showed an increase in iron concentration 
in the serum and liver and a decrease in iron concentration 
in the spleen, which was confirmed by experimental data. 
Moreover, as in the experiments, ferroportin resistance to 
hepcidin led to increased hepcidin expression, whereas the loss 
of SMAD signal transduction caused a significant decrease in 
hepcidin expression.

Then the authors hypothesized that hepcidin affects ferro-
portin in a tissue-specific manner. To model this situation, the 
authors sequentially set to zero the parameter values describ-
ing hepcidin’s effect on ferroportin degradation in different 
tissues. The results of the numerical analysis demonstrated 
that only the elimination of hepcidin-mediated regulation of 
ferroportin in the duodenum has a system effect, leading to 
an increase in iron concentration in other organs. Meanwhile, 
modeling ferroportin resistant to hepcidin in the liver or spleen 
leads only to a local effect with a decrease in iron stores in the 
corresponding organ and minimal changes in other organs. 
Mouse models with tissue-specific resistance to hepcidin have 

Fig. 3. Graphical representation of the model (Enculescu et al., 2017) in the SBGN standard (Le Novère et al., 2009).
LPS – lipopolysaccharides, Fpn – ferroportin, BMP6 – bone morphogenetic protein (regulatory protein), pSMAD, pSTAT – 
transcription factors. Black arrows indicate substance transport, green arrows designate substance input from outside the 
organism.
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not yet been described. However, tissue-specific deletion of 
FPN in intestinal cells has been studied in mice. This study 
showed that deletion of FPN in intestinal cells leads to severe 
iron deficiency in blood, liver, and spleen.

The research team of the proposed model also applied it 
to conduct an in silico experiment studying chronic inflam-
mation. Equations describing the kinetics of LPS and their 
effect on hepcidin were added to model the scenario. Numeri-
cal analysis of the model describing persistent inflammation 
showed an 85 % decrease in serum iron concentration; iron 
concentration in erythrocytes decreased over a longer period, 
stabilizing after two months at a value equal to 10 % of the 
normal level.

This investigation considers two mechanisms of ferroportin 
regulation: at the transcript level and regulation by hepcidin. 
To assess the contribution of each regulatory path, the authors 
modeled LPS responses when either the transcriptional or 
post-translational effect of LPS on ferroportin protein levels 
was eliminated. Numerical analysis indicated that the ab-
sence of hepcidin influence during inflammation resulted in 
a normal decrease in serum iron level (75 % of the original 
model version). In contrast, removal of transcriptional control 
of ferroportin during inflammation reduced hypoferriemia to 
50 %. The authors concluded that removal of transcriptional 
control of ferroportin causes greater deviations in serum iron 
values from normal than removal of hepcidin control. This 
concludes that hypoferriemia arises as a result of a combina-
tion of  hepcidin-dependent and independent mechanisms.

Among the limitations of the proposed model, the authors 
note varying degrees of parameter accuracy and the absence 
of description of iron binding to ferritin and its storage.

Erythropoiesis and iron metabolism model in humans 
(Schirm, Scholz, 2020)
A group of authors from the University of Leipzig developed a 
mathematical model (Schirm, Scholz, 2020) aimed at predic
ting the effects of treatments involving unproven therapeutic 
options, such as cytotoxic chemotherapy supported by iron and 
erythropoietin (EPO). The model is an extension of the authors’ 
previous study on erythropoiesis modeling (Schirm et al., 
2013), which was expanded by adding an extra module for iron 
metabolism. The original erythropoiesis module describes the 
dynamics of erythropoietic cell development, reflecting all the 
main stages of differentiation: stem cells, burst-forming units, 
colony-forming units, proliferating erythroblasts, maturing 
erythroblasts, and reticulocytes. This module also accounts 
for the effects of chemotherapy on erythropoiesis. The module 
describing iron metabolism includes the following compart-
ments: hepcidin, non-transferrin-bound iron (NTBI) in plasma, 
the hemoglobin catabolic system, iron stores, transferrin bound 
to iron, and free transferrin (Fig. 4).

Within the framework of computational modeling, some 
simplifications of the complex physiological system were em-
ployed to reduce the number of unknown model parameters or 
due to the lack of quantitative data for humans. The model does 
not consider separate pools of Fe2+ and Fe3+ concentrations 
due to the absence of data, nor does it specify concentrations 
of transferrin saturated with one or two iron ions.

The following conditions were studied via the numerical 
analysis of the proposed model: (1) oral iron administration 

in healthy individuals; (2) intravenous injection of EPO with 
oral iron administration in healthy individuals; (3) iron de-
ficiency; (4) intravenous iron administration in healthy indi-
viduals; (5) bleeding/phlebotomy; (6) chronic inflammation; 
(7) hemochromatosis.

To validated the model’s numerical calculations, the authors 
harnessed the data from several clinical studies with differ-
ent treatment modes (Rutherford et al., 1994; Souillard et al., 
1996; Kiss et al., 2015). The authors numerically investigate 
the experimental scenario of Souillard and colleagues (1996), 
in which healthy athletes received 200 IU/kg of EPO on days 
0, 2, 4, 7, and 10 without iron supplementation. The obtained 
in silico results for the quantity or concentration of reticu-
locytes, hemoglobin, erythrocytes, hematocrit, and ferritin 
generally differ from the clinical study data by no more than 
one standard deviation.

To validate the numerical results describing EPO adminis-
tration with iron supplements, the authors used the data from 
by Rutherford and coauthors’ study (1994). In this clinical 
trial, patients received EPO at a dose of 1,200 IU/kg per week 
with different dosing regimens and iron at a dose of 300 mg 
orally daily for 10 days. The modeling results for hematocrit, 
reticulocyte, ferritin concentrations, and transferrin saturation 
reflect the dynamics of these parameters in the clinical study 
very well. However, the numerical results for hemoglobin 
are underestimated.

S.  Schirm and M.  Scholz also conducted a numerical 
experiment on the donation of 500 mL of blood, both with 
and without iron supplementation. To validate the numeri-
cal results, the authors employed the clinical study by Kiss 
et al. (2015), which provided quantitative measurements of 
ferritin and hemoglobin dynamics. The numerical results for 
ferritin concentration calculated by the model differ from 
the clinical data by no more than one standard deviation in 
both scenarios, while the numerical results for hemoglobin 
dynamics in the iron supplementation scenario differ from the 
clinical data by more than one standard deviation over a large  
interval.

This study also included a virtual experiment aimed at a 
theoretical prediction for unused therapy. The Scholz group 
modeled the effect of CHOP-14 therapy supported by iron 
supplements and EPO on erythropoiesis and iron metabolism. 
CHOP-14 is a commonly accepted therapy for treating ag-
gressive non-Hodgkin lymphomas, including drugs such as 
doxorubicin, cyclophosphamide, vincristine, and predniso-
lone. Currently, the therapy has been extended to R-CHOP, 
which also includes rituximab (Phan et al., 2010). This therapy 
is hematotoxic, so the authors considered the possibility of 
supplementing it with iron and EPO. To validate the numerical 
results in the in silico experiment of chemotherapy without 
iron and EPO supplementation, the data from a German re-
search group on high-grade non-Hodgkin lymphoma (Pfreund-
schuh et al., 2004) were used. According to the numerical 
results of the in silico experiment, adding iron supplements 
together with EPO in patients undergoing CHOP-14 therapy 
slowed the decline in hemoglobin concentration. When iron 
supplements and EPO are administered on days 3, 7, and 21, 
the hemoglobin concentration on day  80 is approximately 
11.2  g/dL, whereas without supportive therapy it is about 
10.7 g/dL. With weekly administration of iron supplements 



Математические модели метаболизма железа:  
структура и функции

Н.И. Мельченко 
И.Р. Акбердин

2025
29 • 7

1037СИСТЕМНАЯ КОМПЬЮТЕРНАЯ БИОЛОГИЯ / SYSTEMS COMPUTATIONAL BIOLOGY

together with EPO starting from day 45, hemoglobin concen-
tration recovers to 12.5 g/dL by day 80, while without sup-
portive therapy hemoglobin concentration falls to 10.7 g/dL. 
It is important to note that EPO plays a significant role in 
hemoglobin recovery, as numerical results for supportive 
therapy with iron supplements alone practically did not differ 
from those without it.

The authors adhered to a modular approach and built the 
model upon their previous study by adding new components. 
A major advantage of this study is the validation using a large 
amount of data from various studies. The model demonstrated 
good agreement with clinical trials, as in most cases the differ-
ences between the model’s numerical data and clinical results 
did not exceed one standard deviation. One drawback is the 
lower hemoglobin level predicted by the model compared to 
experimental measurements.

Model of iron sequestration by ferritin  
(Masison, Mendes, 2023)
P. Mendes and J. Masison developed a model describing the 
binding of iron ions by the protein ferritin. Ferritin consists of 
24 subunits and is capable of binding about 4,300 iron atoms 
per ferritin molecule. Ferritin is an important participant in 
iron metabolism, so iron exchange models must include it. 
Such a model enables integrating the interaction of ferritin 
with iron ions into more complex models.

The model considered: (1) how iron bound to ferritin affects 
the dynamics of iron sequestration; (2) how the iron sequestra-
tion model with rate constants obtained experimentally in vitro 
can numerically reproduce experimental results obtained in 
cell lines; (3)  the influence of ferritin subunit composition 

on the rate of iron sequestration; (4) the dependence of iron 
release dynamics from ferritin on the concentration of free 
iron and ferritin in the cell.

The model accounted for four chemical species: LIP – la-
bile iron pool, soluble or readily soluble divalent iron in the 
cytoplasm; DFP – peroxo complex containing two iron atoms; 
core – iron incorporated into the mineralized ferrihydrite core; 
FT – 24 subunits of ferritin. The model included four reactions, 
three of which describe the process of iron sequestration by 
ferritin: oxidation converts two LIP into one DFP; nucleation 
converts two DFP into a new crystal core; mineralization adds 
one DFP to an existing core; and one reaction describes deg-
radation of the intermediate product: reduction converts one 
DFP back into two LIP. The sequestration process is shown 
schematically in Fig. 5. The authors simplify and combine 
several of its components to construct a system of differential 
equations that reflects this biochemical process with sufficient 
accuracy. At the same time, they avoid excessive details and 
do not overload the model with variables.

The first reaction describes the oxidation of LIP to DFP and 
is represented by a Hill function:

kcat × H + rO
24 + rO × FT × LIP n

Kmn + LIPn ,

kcat – catalytic turnover number, Km – Michaelis constant, 
n – Hill coefficient. The ferritin molecule consists of 24 sub-
units of two different types, H and L, and only the H subunits 
contain the active ferroxidase center. Therefore, molecules 
with different subunit compositions have different oxidation 
rates. To account for this, two additional parameters were 

Fig. 4. Graphical representation of the model (Schirm, Scholz, 2020) in the SBGN standard (Le Novère et al., 2009).
S  – stem cells, BE  – burst-forming unit, CE  – colony-forming unit, PEB  – proliferating erythroblasts, MEB  – maturing 
erythroblasts, RET – reticulocytes, ERY – erythrocytes, HB – hemoglobin, NTBI – non-transferrin-bound iron. Blue arrows 
indicate iron flow, green arrows represent transferrin flow, red arrows show the differentiation progression of erythroid 
lineage cells, and black arrows denote regulatory influences.
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used: H – the number of the H subunits (a value from 0 to 24); 
rO – a scaling factor representing the oxidation efficiency of 
the L homopolymer.

The parameter rO was included by the model authors 
because, despite the L subunits lacking a known ferroxidase, 
the L homopolymers still catalyze the formation of ferric iron 
(Fe3+) within ferritin according to experimental data, although 
at a rate reduced by more than a quarter (Carmona et al., 
2014). Since data on how oxidation occurs in the absence of 
the H subunit and the corresponding value of rO are limited, 
the value of rO was empirically set to two.

The second reaction, degradation of DFP, follows the law 
of mass action:

kdeg × DFP.
The third reaction is nucleation:

kcat × DFP2 × FT × L + rN
24 + rN  × Kin

Kin + coren.

It describes the process of forming a new crystal from two 
DFP molecules inside the ferritin molecule. New nuclei can 
also form within a ferritin molecule that already contains an 
existing core. The equation was empirically derived based 
on the law of mass action. The coefficients L and rN reflect 
how the ferritin subunit composition influences nucleation; 
due to limited information on this process, the coefficient rN 
was chosen to contribute significantly less to the nucleation 
rate range than the coefficient rO does to the oxidation rate 
range. The last factor included an inhibition constant and a 
Hill coefficient, allowing for the decrease in the probability of 
new crystal formation as the size of the existing core increases.

The fourth reaction is mineralization:
kcat × DFP × core

Km + DFP  × Kin
Kin + coren × 4300m – apcm

4300m .

The published data (Harrison et al., 1974) demonstrated 
that the rate of this reaction reaches a maximum at 1,500–
2,000  iron atoms per core and decreases with further core 
growth. The second factor is needed to account for this 
process, while the third factor drives the rate to zero as the 
number of iron atoms per core (apc) approaches the maximum 
allowable value of 4,300.

To validate the model simulations, experimental data from 
different laboratories under various conditions were used. The 
model exhibited some differences compared to experimental 
data within the first 20 seconds: a stronger cooperative ef-
fect in the DFP mineralization rate and a faster attainment of 
steady-state concentration. Since the model’s target context 
is cellular models, where the relevant time scale is minutes 
or longer, such differences from experimental data are not 
considered significant.

The authors conducted a virtual experiment investigating 
the influence of iron atoms in the core on the mineralization 
rate. The simulation revealed that the mineralization rate 
over time depends on the initial number of iron atoms per 
core (apc). Typically, the curves showing mineralization rate 
fall into three groups based on the initial apc. In the first group 
(<1,000 apc), the mineralization rate starts low, then increases 
as iron accumulates inside ferritin, and later decreases as 
the iron concentration in the solution drops. In the second 
group (1,000–3,000 apc), the mineralization rate starts high 
but rapidly declines due to decreasing iron concentration in 
the solution. Eventually, in the third group (>3,000 apc), the 
mineralization rate decreases throughout the simulation, as 
iron accumulation in the ferritin core slows down further 
mineralization.

Then the authors investigated the model behavior at ferritin 
and iron concentrations corresponding to those found in mam-
malian cells. The research team led by Mendes incorporated 
this model as a modular component into their previously de-
veloped model of iron metabolism in hepatocytes. The authors 
reported that the system’s qualitative behavior remains similar 
to the original model before extension. However, the expanded 
model provided a deeper understanding and better assessment 
of iron storage mechanisms. Due to the increased detail of the 
new model, it becomes clear that the peak in ferritin-bound 
iron is driven by an increase in the concentration of DFP 
rather than the mineralized core – an important distinction 
since DFP is more readily released back into the cytoplasm. 
The numerical results of the models differed both over the 
time course and at equilibrium. The greatest differences ap-
pear after 1,000 seconds of simulation. In the original model, 
ferritin-bound iron content gradually increased, whereas in 
the new model, its concentration decreased. The authors of 
the original study hypothesized that this discrepancy may be 
related to new iron storage kinetics, which promotes a reduc-
tion in available iron through ferritin buffering, whereas in 
the original model, other mechanisms primarily influenced 
the kinetics of available iron.

Conclusion
The analysis of the presented mathematical models of iron 
metabolism reveals a tendency toward a progressive increase 
in their structural complexity over time (Supplementary 
Table S1)1. With the advancement of research, both the num-
ber of equations and the number of parameters in the models 
grow, indicating a pursuit of a more accurate and detailed 
description of biological processes. More recent models pro-
vide the simulation of a broader range of physiological and 
pathological states, expanding the possibilities for conduc
1 Supplementary Table S1 is available at: 
https://vavilovj-icg.ru/download/pict-2025-29/appx38.pdf

Ferroxidase

Ferritin

Mineral iron (core)

Fig. 5. Adapted graphical representation of the iron sequestration model 
(Masison, Mendes, 2023) in the SBGN standard (Le Novère et al., 2009).
The following reactions are shown: 1  – transport of Fe2+ into ferritin,  
2 – binding of Fe2+ with ferroxidase, formation of DFP, 3, 4 – oxidation of Fe2+, 
5 – nucleation, 6 – mineralization.

https://vavilovj-icg.ru/download/pict-2025-29/appx38.pdf
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ting in silico experiments. An exception is the latest model 
of iron sequestration by ferritin (Masison, Mendes, 2023), 
which is implemented according to a modular principle and 
was developed with the aim of integration into more complex 
systems. This approach ensures the flexibility and scalability 
of the model, which is important for further development and 
incorporation into multifactorial models of iron metabolism.

To deeper understand the iron metabolism, it is necessary to 
consider its interaction with the immune system, as it plays a 
key role in regulating iron homeostasis (Vogt et al., 2021). At 
the same time, the reduction of iron availability to pathogens 
and the production of reactive oxygen species can significantly 
affect the dynamics of infectious diseases (Weinberg, 2009). 
Inclusion of these factors in mathematical models will enable 
virtual experiments analyzing the impact of various infections 
on iron metabolism and assessing the long-term consequences 
of such interactions. This knowledge may be critically impor-
tant for developing new approaches to treat diseases associated 
with iron metabolism disorders, as well as for understanding 
the pathogenesis of conditions such as anemia under chronic 
diseases, hemochromatosis, or post-viral syndromes, such as 
post-COVID syndrome.

Thus, integrating data on the interactions between the im-
mune system and iron metabolism will not only deepen our 
understanding of these processes but may also pave the way for 
new opportunities for clinical research and therapeutic strate-
gies. In this regard, the construction of a detailed model of iron 
metabolism that takes into account its interactions with the 
immune system represents a timely task, the solution of which 
will enable better understanding of the interplay between these 
two complex systems and allow the identification of key links 
in the pathology of iron metabolism in various diseases. 
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Abstract. Identification of the connections between the various functional components of the immune system is 
a crucial task in modern immunology. It is key to implementing the systems biology approach to understand the 
mechanisms of dynamic changes and outcomes of infectious and oncological diseases. The data characterizing an 
individual’s immune status typically have a high-dimensional state space and a small sample size. To study the net-
work topology of the immune system, we utilized previously published original data from Toptygina et al. (2023), 
which included measurements of the immune status in 19 healthy individuals (children, 9 boys and 10 girls, aged 1 to 
2 years), i. e., the immune cells (42 subpopulations) obtained by flow cytometry; cytokine levels (13 types) obtained 
by multiplex analysis; and antibody levels (4 types) determined by using enzyme immunoassay. To correctly identify 
statistically significant correlations between the measured variables and construct the respective network graph, it 
is necessary to use an approach that takes into account the small size of the dataset. In this study, we implemented 
and analyzed an approach based on the regularized debiased sparse partial correlation (DSPC) algorithm to evalu-
ate sparse partial correlations and identify the network structure of relationships in the immune system of healthy 
individuals (children) based on immune status data, which includes a set of indicators for subpopulations of immune 
cells, cytokine levels, and antibodies. For different levels of statistical significance, heatmaps of the partial correla-
tions were constructed. The graph visualization of the DSPC networks was performed, and their topological charac-
teristics were analyzed. It is found that with a limited measurements sample, the choice of a statistical significance 
threshold critically affects the structure of the partial correlations matrix. The final verification of the immunologically 
correct structure of the correlation-based network requires both an increase in the sample size and consideration 
of a priori mechanistic views and models of the functioning of the immune system components. The results of this 
analysis can be used to select the therapy targets and design combination therapies.
Key words: immune system; immune status; correlation analysis; partial correlations; network topology; graphs; 
DSPC algorithm

For citation: Grebennikov D.S., Toptygina A.P., Bocharov G.A. Identification and analysis of the connection network 
structure between the components of the immune system in children. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J 
Genet Breed. 2025;29(7):1041-1050. doi 10.18699/vjgb-25-109

Funding. The study was funded by the Russian Science Foundation (Grant Number 23-11-00116) (construction of 
correlation networks and analysis of the topology of connections graphs), and partially supported by the Moscow 
Center of Fundamental and Applied Mathematics at INM RAS (Agreement with the Ministry of Science and Higher 
Education of the Russian Federation No. 075-15-2025-347) (basic statistical data analysis in Section 2).

Идентификация и анализ сетевой структуры связей  
между компонентами иммунной системы у детей
Д.С. Гребенников 1, 2, 3, А.П. Топтыгина4, Г.А. Бочаров 1, 2, 3 

1 Институт вычислительной математики им. Г.И. Марчука Российской академии наук, Москва, Россия
2 Отделение Московского центра фундаментальной и прикладной математики в ИВМ РАН, Москва, Россия
3 Первый Московский государственный медицинский университет им. И.М. Сеченова Министерства здравоохранения Российской Федерации 

(Сеченовский университет), Москва, Россия
4 Московский научно-исследовательский институт эпидемиологии и микробиологии им. Г.Н. Габричевского Федеральной службы по надзору  

в сфере защиты прав потребителей и благополучия человека, Москва, Россия
 g.bocharov@inm.ras.ru

Аннотация. Идентификация связей между различными функциональными компонентами иммунной систе-
мы представляет собой чрезвычайно актуальную задачу современной иммунологии. Это необходимо для 
понимания механизмов динамики и исхода инфекционных и онкологических заболеваний при реализации 

© Grebennikov D.S., Toptygina A.P., Bocharov G.A., 2025

This work is licensed under a Creative Commons Attribution 4.0 License

SYSTEMS COMPUTATIONAL BIOLOGY
Original article

Vavilovskii Zhurnal Genetiki i Selektsii
Vavilov Journal of Genetics and Breeding. 2025;29(7):1041-1050

doi 10.18699/vjgb-25-109

https://orcid.org/0000-0002-7315-193X
https://orcid.org/0000-0002-5049-0656
https://orcid.org/0000-0002-7315-193X
https://orcid.org/0000-0002-5049-0656


D.S. Grebennikov 
A.P. Toptygina, G.A. Bocharov

1042 Vavilovskii Zhurnal Genetiki i Selektsii / Vavilov Journal of Genetics and Breeding • 2025 • 29 • 7

Identification and analysis of the connection network structure 
between the components of the immune system in children

системно-биологического подхода. Параметры, характеризующие иммунный статус человека, отличаются 
большой размерностью пространства состояний при малой мощности выборки. Для изучения сетевой то-
пологии иммунной системы нами использованы ранее опубликованные оригинальные данные (Toptygina 
et al, 2023) измерений показателей иммунного статуса у 19 здоровых индивидуумов – детей, 9 мальчиков и 
10 девочек, в возрасте от одного до двух лет: популяций иммунных клеток (42 субпопуляции), полученных 
с помощью проточной цитометрии; уровней цитокинов (13 типов), полученных методами мультиплексного 
анализа; уровня антител (4 типа), определенных с помощью иммуноферментного анализа. Для корректно-
го (статистически значимого) определения корреляционных связей между измеряемыми переменными и 
построения графа сетевой топологии может быть использован подход, который учитывает малый размер 
множества данных. В нашей работе был реализован и исследован подход, в основе которого лежит регу-
ляризированный алгоритм скорректированных разреженных частных корреляций (DSPC) оценивания раз-
реженных частных корреляций и идентификации сетевой структуры взаимосвязей в иммунной системе по 
данным иммунного статуса здоровых детей, включающего набор показателей субпопуляций клеток иммун-
ной системы, уровня цитокинов и антител. Для разных уровней статистической значимости были построены 
тепловые карты частных корреляций, выполнена визуализация сетей частных корреляций в виде графов и 
проведен анализ их топологических характеристик. Получено, что при ограниченной выборке измерений 
выбор порога для уровня статистической значимости имеет принципиальное значение для формирования 
матрицы частных корреляций. Окончательная верификация иммунологически корректной структуры свя-
зей требует как увеличения размера выборки, так и сопряжения с априорными механизменными представ-
лениями и моделями функционирования компонент иммунной системы. Результаты могут быть использова-
ны для выбора мишеней терапии и формирования комбинированных воздействий. 
Ключевые слова: иммунная система; иммунный статус; корреляционный анализ; частные корреляции; сете-
вая топология; графы; алгоритм DSPC

Introduction
The human immune system functions to maintain the antigenic 
homeostasis of the body’s internal environment. It is a system 
with distributed parameters reflecting the spatial organization, 
phenotypic and clonal structure of its constituent cell popula­
tions. The cells of the immune system continuously interact 
with each other, and the balance of processes increasing or 
decreasing their activity underlies the development of pro­
ductive or abortive reactions (Ng et al., 2013). Implemen­
tation of a systems biology approach to the investigation of 
the mechanisms determining the dynamics and outcome of 
infectious and oncological diseases requires identification 
of the structure of cellular interconnection networks in the 
immune system. An example of studying the connections 
network (network topology) between populations of cellular 
components of the immune system is provided in (Rieckmann 
et al., 2017), where the quantitative proteomics data were 
used for identification of the social architecture of immune 
cell interactions. The description of the network topology is 
associated with construction of a graph, with the vertices cor­
responding to specific cell populations of the immune system, 
and the edges representing connections of a diverse nature 
between the corresponding vertices.

To date, a large number (about 100 documented) of methods 
have been developed for analyzing the structural organization 
of intercellular interactions based on data of a diverse nature, 
including spatial and cellular transcriptomics, expression of 
ligand receptors, as well as intracellular signalling components 
(Armingol et al., 2024). They are used for the assessment of 
the connectivity indices or communication structures between 
cells, which provide the basis for building the graphs of con­
nectivity networks. Both the biophysical and biochemical 
principles, and statistical data analysis methods in combination 
with machine learning, can be used to assess the strength of 
the intercellular connections.

The construction of a quantitative interactome of immune 
cells based on receptor proteins expressed on their surface is 
presented in (Shilts et al., 2022). It implements a number of 
graphs based on a set of physical connections between cells 
of the immune system in major human organs identified using 
multiplex immune and transcriptomic analysis technologies, 
genetic databases and biochemical methods for screening 
interactions between cells. Visualization of the transcriptome 
analysis data as a graph reflecting the genes co-expression is 
an integrative part of modern systemic vaccinology studies 
(Cortese et al., 2025).

The aim of our study was to implement a new approach 
to identifying the network structure of relationships in the 
immune system of a healthy individual based on the results 
of a correlation analysis of previously published data on the 
immune status of children aged one to two years. The data set 
includes the measurements of the immune status parameters, 
i. e. the subpopulations of immune cells, cytokine concentra­
tions and antibody levels (Toptygina et al., 2023). The research 
objectives include the correlation analysis of children’s im­
mune status data to build heatmaps of partial correlations, 
visualization of the partial correlations networks as graphs, and 
analysis of the topological characteristics of the graph models.

The present work consists of four sections. The “Materials 
and methods” section describes the specific features of the 
source data, methods of correlation analysis, the correlation-
based approach to identifying a network structure of relation­
ships between the immune status parameters, and examines 
the topological properties of the corresponding graphs. 
Principal components analysis is performed. The “Results” 
section presents the results of network construction for various 
threshold levels of statistical significance of the correlations, 
an immunological interpretation of the corresponding network 
topologies, and a robustness analysis. The results of the work 
are discussed in the “Discussion” section.
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Materials and methods
Immune status data. To study the network topology of the 
immune system, we used previously published original data 
(Toptygina et al., 2023). The data are a set of measurements 
of immune status indicators in 19 healthy individuals, i. e., 
children aged one to two years: populations of immune cells 
(42  subpopulations) obtained by flow cytometry; cytokine 
levels (13  types) obtained by multiplex analysis; antibody 
levels (4  types) determined by enzyme immunoassay. The 
data samples are summarized in Figure 1 as individual mea­
surements, median values, and 25 and 75 % quartiles. The 
distribution of the indicators does not follow either the normal 
or the log-normal behavior.

The data on the immune status of children are characterized 
by a large dimensionality of the state space (59) and a small 
sample size (19 patients), which is typical for systems biology 
studies (Basu et al., 2017). If the sample size is large enough, 
one can use the approach based on partial correlations in order 
to determine the relationships between the immune status pa­
rameters. Otherwise, an approach that takes into account the 
small size of the data set has to be implemented to correctly 
determine statistically significantly correlations between the 
measured variables and construct a network topology graph. 
It should be noted that all the children belonged to the same 
age group from one to two years old, which in medical practice 
is not customary to subdivide further. Due to the small size of 
the group (19 people), additional division by gender (10 girls 
and 9 boys) would have reduced the statistical power below 
the critical level required for the method used in our study.

Principal component analyses. The principal component 
analysis (PCA) was performed using the prcomp function 
in the R language, the factoextra R package (version 1.0.7) 
was used for visualization. To perform the PCA, the data 
were standardized, and the variables TGF-β, IL-17, and 
CD3⁺CD45R0⁺CD4⁺CD161⁺ were excluded from the analysis 

due to missing data. The analysis of the principal components 
(PCs) did not reveal the possibility of explaining the variance 
of the data by a small number of the components (Fig. 2a), 
and no correlation-based clusters of immune status variables 
exist in the first two PCs (Fig. 2b).

Methods of partial correlation analyses and recon-
struction of the connection network. An alternative to the 
standard method of estimating partial correlations is an ap­
proach using regularization methods to estimate the matrix of 
partial correlations (Epskamp, Fried, 2018). The principle of 
regularization is based on the assumption that the number of 
connections in the constructed model network is significantly 
less than the number of observed variables, i. e. the real net­
work is sparse. Accordingly, the LASSO method (Epskamp, 
Fried, 2018) is used as a regularizing correction that allows 
zeroing out insignificant correlations between variables (the 
number of edges in the graph). To analyze our data, we used 
this approach for the estimation of debiased sparse partial 
correlations matrix implemented in algorithm DSPC (Basu et 
al., 2017), which provides additional correction of estimates 
of the elements of the inverse covariance matrix, i. e. the ele­
ments of the partial correlations matrix. The estimates of the 
correlation matrix elements were represented as heatmaps 
and visualized as weighted networks, where the vertices 
(nodes) represent the immune status variables and the edges 
show correlations between them. The results of estimating 
the correlation-based relationships depend significantly on 
the algorithm parameters: 1) the value of the parameter λ for 
the regularization term in the form of ℓ1 norm of the inverse 
covariance matrix; 2) the choice of the statistical significance 
level p for the predicted correlation relationship. Below, we 
study the effect of the p-value on the network topology of 
connections in the immune system.

To calculate the sparse partial correlations using the DSPC 
method, we used the Java application CorrelationCalculator 
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Fig. 1. Data on immune status in healthy individuals – children aged one to two years (adapted from Toptygina et al., 2023). 
Individual measurements, median sample values, and 25–75  % quartiles are presented. The abscissa shows the names of the immune status indicators.  
The ordinate shows the percentage of cells (%), the levels of cytokines (pg/ml) and immunoglobulins A, M, G (g/l), IgE (IU/ml).
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(version 1.0.1) developed in (Basu et al., 2017). The origi­
nal data were normalized, i. e. logarithmically transformed 
and standardized. A graphical representation of statistically 
significant correlations (for p < 0.01; 0.05; 0.1; 0.15) in the 
form of heatmaps and graphs of correlation networks was 
performed using the R packages igraph (version 1.6.0) and 
ggplot2 (version 3.5.2). The topological characteristics of the 
correlation networks graphs were calculated using the igraph 
package in R (version 1.6.0).

Results
In what follows, we study the effect of the p-value on the 
network topology of connections in the immune system. The 
conventionally considered statistical significance levels 0.01, 
0.05, 0.1, 0.15 are analyzed.

Heatmap and connection graph for p = 0.01
The heatmap of partial correlations between immune status 
parameters for healthy children at a statistical significance 
threshold p = 0.01 is presented in Figure 3a. The correspond­
ing graph of the network is shown in Figure 3b. This graph 
has 23 nodes and 12 edges (connections). In fact, connectivity 
in the network is missing. Figure 3c shows the distribution 
of immune response indicators with respect to the number of 
identified links between them. The node with the maximum 
number (2 in total) of correlations represents the CD4 T cell 
population (CD3⁺CD4⁺).

Heatmap and connection graph for p = 0.05
The heatmap of correlations between immune status pa­
rameters for healthy children at a statistical significance 
threshold p  =  0.05  is presented in Figure  4a. The corre­

sponding network graph is shown in Figure 4b. This graph 
has 53 nodes and 44 edges (connections). The cohesion of 
individual network components is strengthened, but overall, 
it is absent. Figure  4c shows the distribution of immune 
response indicators with respect to the number of identified 
links between them. The nodes with the maximum number 
of correlations (called hubs) represent the proinflamma­
tory cytokines IL-8, IL-12, and central memory T  cells 
(CD4⁺CD45RA⁺CD62L⁺, CD8⁺CD45R0⁺CD62L⁺), Th17 
(CD3⁺CD45R0⁺CD4⁺CD161⁺) and activated NK cells 
(CD3⁻CD8⁺CD122⁺). The maximum number of connections 
increases to three.

Heatmap and connection graph for p = 0.1 
The heatmap of correlations between immune status param­
eters for healthy children at a statistical significance threshold 
p = 0.1 is presented in Figure 5a. The corresponding network 
graph is shown in Figure 5b. This graph has 59 nodes and 
69  edges (connections). Figure  5c shows the distribution 
of immune response indicators with respect to the number 
of identified links between them. The nodes with the maxi­
mum number of correlations (four in this case) represent the 
cytokines IL-4, IL-12 inducing the cellular and humoral im­
munity, the terminally differentiated effector memory T cells 
(CD4⁺CD45RA⁺CD62L⁻, CD8⁺CD45RA⁺CD62L⁻), and 
Th17 cells (CD3⁺CD45R0⁺CD4⁺CD161⁺).

Heatmap and connection graph for p = 0.15
The heatmap of correlations between immune status param­
eters for healthy children at a statistical significance threshold 
p = 0.15 is presented in Figure 6a. The corresponding network 
graph is shown in Figure 6b. This graph has 59 nodes and 

Fig. 2. Principal component analysis: a – fraction of explained variance; b – composition of the first two principal components.
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106 edges (connections). Figure 6c shows the distribution of 
immune response indicators with respect to the number of 
identified links between them. The nodes with the maximum 
number of correlations (hubs) represent the immunoglobulins 
IgM, plasma cells (CD3⁻CD8⁻CD38⁺HLADR⁺), activated 
T cells (CD3⁺CD8⁻CD38⁺, CD8⁺CD122⁺), and the double-
positive activated cells (CD45RA⁺CD45R0⁺) reflecting the 
transition from naive to memory cells. The maximum number 
of connections increases to six.

Analysis of the robustness of correlation estimates
To assess the stability of the obtained DSPC correlation 
coefficients in relation to the sample size, a procedure was 
performed for generating ten different subsamples accor­

ding to the vfold10 scheme. In most cases, it corresponds to 
the selection of 17 out of 19 measurements. The coefficient 
of variation (the ratio of the standard deviation to the mean 
value) of the DSPC coefficients estimated from the generated 
subsamples was chosen as a measure of stability (robust­
ness). The estimated coefficients of variation are shown 
in Figure 7 for four levels of statistical significance in the 
form of heatmaps. Importantly, their absolute values do not  
exceed 0.1.

Comparative analysis of topological properties of graphs 
of correlations between indicators of immune status
The Table shows the results of calculating the topological cha­
racteristics of the constructed graphs of correlation networks 

Fig. 3. Heatmap and network graph of immunological parameters in healthy children at a statistical significance level of p = 0.01: 
a – heatmap of correlations between immune status indicators; b – graph of connections network at p = 0.01; c – characteristics of the complexity of 
the network of connections.
Here and in Figures  4–6: the node numbers correspond to the immune status parameters shown in c.  The ordinate names the immune status indicators.  
The abscissa shows the degrees of the graph nodes. Positive correlations (red lines), negative correlations (blue lines), the thickness of the edges is proportional 
to the absolute values of the DSPC coefficients. The color of the nodes corresponds to the node index, i. e. the number of significant correlations.
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Fig. 4. Heatmap and network graph of immunological parameters in healthy children at a statistical significance level of p = 0.05: 
a – heatmap of correlations between immune status indicators; b – graph of connections network at p = 0.05; c – characteristics of the complexity of the network 
of connections.

between immune status indicators for various thresholds of 
statistical significance. The following basic characteristics 
were considered: graph diameter, graph radius, girth of graph 
(the length of the smallest cycle contained in the graph), 
average path length, graph energy, spectral radius, edge 
density, clustering coefficient, average graph diversity (deter­
mined through entropy calculated by the weights of incident  
edges – the absolute values of the correlation coefficients 
DSPC), the number of separators, and the number of uncon­
nected subgraphs.

The number of nodes, edges, and maximum node degrees 
grows with increasing statistical significance threshold. Ho­
wever, the graph diameter, radius, girth and average path 
length exhibit a non-monotonic dependence, initially increa­
sing and then decreasing, which indicates a transformation 
of properties towards the “small world network” family. The 
graph energy and spectral radius increase monotonically 
with increasing threshold p. The clustering coefficient also 
increases, indicating that the graph nodes tend to cluster to­
gether. Interestingly, the number of cutting nodes and edges 
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decreases at p = 0.15, which may indicate an increase in the 
robustness of the connections graph. As expected, the number 
of disconnected subgraphs decreases.

Discussion
Identification of the connection structures between the 
various functional components of the immune system is an 
extremely urgent task of modern immunology. This is due to 
an extremely high number of measured characteristics, with 

a relatively small sample size, reflecting the situation in big 
data biomathematics, called the “curse of dimensionality”. 
To analyze the relationships between immune status param­
eters, we implemented and analyzed an approach based on a 
regularized method for estimating sparse partial correlations 
implemented in the DSPC algorithm (Basu et al., 2017), which 
minimizes the number of false correlations. It is noted that the 
results of applying the algorithm may depend on the sample 
size, imputation of missing data, the nature of the true network 

Fig. 5. Heatmap and network graph of immunological parameters in healthy children at a statistical significance level of p = 0.1:
a – heatmap of correlations between immune status indicators; b – graph of connections network at p = 0.1; c – characteristics of the complexity of the network 
of connections. Solid lines of the edges correspond to correlations with a significance level of p < 0.05, dashed lines, to p < 0.1.
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structure and other aspects. Our work demonstrates that, given 
a limited sample size of measurements, an a priori assignment 
of the level of statistical significance is of fundamental im­
portance for the formation of a matrix of partial correlations. 
Increasing the statistical significance threshold increases the 
complexity of the network topology generated by the DSPC-
based approach. Final verification of the immunologically 
correct structure of connections requires both an increase in 
the sample size and conjugation with a priori mechanistic 
views and models of the functioning of the immune system 

components, i. e. the participation of clinical immunologists 
(Qiao et al., 2025). An important step in this direction was the 
development of the ImmunoGlobe tool for constructing and 
analyzing the network of interactions in the immune system 
(Atallah et al., 2020) using phenomenological information 
from the fundamental textbook “Janeway’s Immunobiology” 
(Murphy, Weaver, 2017).

The aim of this work is to implement and introduce a new 
method for identifying relationships between cellular and 
humoral components of the immune systems. Identification 

Fig. 6. Heatmap and network graph of immunological parameters in healthy children at a statistical significance level of p = 0.15: 
a – heatmap of correlations between immune status indicators; b – graph of connections network at p = 0.15; c – characteristics of the complexity of the network 
of connections. Solid lines of the edges correspond to correlations with a significance level of p < 0.05, dashed lines, to p < 0.15.
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of the network relationships between elements of immune 
status is central to the systems immunology approach, but the 
relevant analytical tools remain undeveloped. All currently 
existing verified concepts of immune networks are limited to 
schemes with no more than three or four components (antigen 
presentation, differentiation pathways, paracrine and autocrine 
interactions). For this reason, it is not possible to uniquely 
select and verify one of the presented networks. If we adhere 
to the generally accepted level of significance (p = 0.05), then 
we should give preference to the network constructed in the 
section “Heatmap and graph of connections for p = 0.05”. 
Identifying the network structure of relationships between 
components of cellular and humoral immunity is a necessary 

 Fig. 7. Matrices of estimates of the variation coefficients for four significance levels: p < 0.01 (a); p < 0.05 (b); p < 0.1 (c); p < 0.15 (d).

element for the transition from a static description of immune 
status to a systems dynamics consideration of the maintenance 
of immune homeostasis. 

Conclusion
The development of combination therapies for chronic 
diseases associated with induction of several components of 
the immune system requires understanding of the topology 
and strength of the structural connections in the system. Our 
study demonstrates for the first time that DSPC-based methods 
can be used to obtain consistent estimates of significant partial 
correlations for similar problems in a typical situation with 
a large number of measured immune status parameters and 
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a small number of patients. Translation of the results into 
biomedical practice to address the challenges of personalized 
treatment and prevention of immune-dependent pathological 
processes requires an active participation of clinicians in 
order to determine therapy targets and quantitatively predict 
its effectiveness. 
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Abstract. Vision plays a key role in the lives of various organisms, enabling spatial orientation, foraging, predator 
avoidance and social interaction. In species with relatively simple visual systems, such as insects, effective behav-
ioral strategies are achieved through high neural specialization, adaptation to specific environmental conditions, 
and the use of additional sensory systems such as olfaction or hearing. Animals with more complex vision and 
nervous systems, such as mammals, have greater cognitive abilities and flexibility, but this comes with increased 
demands on the brain’s energy costs and computational resources. Modeling the features of such systems in a 
virtual environment could allow researchers to explore the fundamental principles of sensorimotor integration and 
the limits of cognitive complexity, as well as test hypotheses about the interaction between perception, memory 
and decision-making mechanisms. In this work, we implement and investigate a model of virtual organisms with a 
visual system operating in a three-dimensional physical environment using the Unity ML-Agents software – one of 
the most high-performance simulation platforms currently available. We propose a hierarchical control architecture 
that separates locomotion and navigation tasks between two modules: (1) visual perception and decision-making, 
and (2) coordinated control of limb movement for locomotion in the physical environment. A series of numerical 
experiments was conducted to examine the influence of visual system parameters (e. g, resolution of the “first-
person” view), environmental configuration and agent architectural features on the efficiency and outcomes of 
reinforcement learning (using the PPO algorithm). The results demonstrate the existence of an optimal range of 
resolutions that provide a trade-off between computational complexity and success in accomplishing the task, 
while excessive dimensionality of sensory inputs or action space leads to slower learning. We performed system 
performance profiling and identified key bottlenecks in large-scale simulations. The discussion considers biological 
parallels, highlighting cases of high behavioral efficiency in insects with relatively low-resolution visual systems, 
and the potential of neuroevolutionary approaches for adapting agent architectures. The proposed approach and 
the results obtained are of potential interest to researchers working on biologically inspired artificial agents, evolu-
tionary modeling, and the study of cognitive processes in artificial systems.
Key words: virtual organism; computational modeling; computational complexity; vision system; neural network; 
simulator; PPO; reinforcement learning; Unity ML-Agents
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Self-learning virtual organisms  
in a physics simulator

Аннотация. Зрение играет ключевую роль в жизни множества различных организмов, обеспечивая ориента-
цию в пространстве, поиск пищи, избегание хищников и социальное взаимодействие. У видов с относительно 
простой зрительной системой, таких как насекомые, эффективная поведенческая стратегия достигается за 
счет высокой специализации нейронов, адаптации к конкретным условиям среды, а также благодаря допол-
нительным сенсорным системам – обонянию или слуху. У животных с более сложным зрением и нервной си-
стемой, таких как млекопитающие, когнитивные возможности и способности к адаптации значительно выше, 
однако выше и энергозатраты на работу мозга. Моделирование особенностей таких систем в виртуальной 
среде позволило бы исследовать фундаментальные принципы функционирования и обучения когнитивных 
систем, включая механизмы восприятия, памяти, принятия решений и их взаимодействие. В данной работе 
объектом исследования являются виртуальные организмы, обладающие зрительной системой и функциони-
рующие в трехмерной физической среде на базе Unity ML-Agents – одного из наиболее высокопроизводи-
тельных современных симуляторов. Предложенная иерархическая архитектура управления, разделяющая 
когнитивные задачи между двумя модулями – зрительного восприятия/принятия решений и управления 
координированным движением конечностей для перемещения в физической среде – показала существенно 
большую скорость и эффективность обучения по сравнению с единой системой. Проведена серия числен-
ных экспериментов, направленных на выявление влияния параметров зрительной системы, конфигурации 
среды и архитектурных особенностей агентов на успешность их обучения с подкреплением (алгоритм PPO). 
Показано, что существует диапазон разрешений, обеспечивающий компромисс между вычислительной 
сложностью и успешностью выполнения задачи, а избыточная размерность сенсорных входных данных или 
пространства действий приводит к замедлению обучения. Должное внимание уделено также оценке вычис-
лительной сложности системы и профилированию производительности ее основных компонентов. Полу-
ченные результаты представляют потенциальный интерес в контексте исследований искусственных агентов, 
вдохновленных биологическими системами, эволюционного моделирования, включая нейроэволюционные 
подходы для создания более адаптивных и умных агентов, и изучения когнитивных процессов в них. 
Ключевые слова: виртуальный организм; компьютерное моделирование; вычислительная сложность; зри-
тельная система; нейронная сеть; симулятор; PPO; обучение с подкреплением; Unity ML-Agents

Introduction
Modeling cognitive activity, behavior, and evolutionary me­
chanisms in virtual environments constitutes an important 
step toward the development of artificial intelligence systems 
capable of learning, adaptation, and interaction with complex 
environments (Bongard, 2013; Stanley et al., 2019). The 
advancement of such systems has been facilitated by modern 
agent-based learning platforms, in particular Unity ML-Agents 
(Juliani et al., 2018), which allow the creation of fully featured 
three-dimensional simulations incorporating physics, vision, 
and multiple trainable agents.

Despite the relatively small number of neurons due to their 
small body size (compared, for instance, to mammals), the 
nervous systems of many invertebrates, including insects, 
exhibit remarkably complex, diverse, and adaptive behavior. 
For example, ants possess approximately 250,000 neurons, 
which is several orders of magnitude less than mammals 
(a mouse has about 7.1∙107), but these insects are capable of 
solving complex tasks of navigation, social interaction, co­
ordination of collective actions, and route memory (Chittka, 
Niven, 2009). Moreover, according to a number of studies, 
certain species of ants are capable of passing the mirror test, 
a behavioral indicator of self-awareness (Cammaerts M.- C.T., 
Cammaerts R., 2015). This makes them unique among insects 
and highlights the potential of minimal but efficiently orga­
nized nervous systems, which are of considerable interest to 
modern science.

Insect visual systems also serve as a source of inspiration 
for the design of artificial agents. In particular, compound eyes 
provide a wide field of view and high refresh rates, enabling 
efficient responses to rapidly changing stimuli (Land, Nils­
son, 2012). However, their angular resolution is significantly 
inferior to that of humans, but this limitation is compensated 

by high sensitivity to movement and the capacity for learning 
at the level of entire behavioral sequences.

These considerations give rise to several fundamental 
research questions: what are the minimal requirements for 
an agent’s visual system that enable successful adaptation to 
its environment? What control architecture ensures cognitive 
modularity under constrained computational resources? In 
other words, how to construct an “artificial organism” – an 
agent with simple but functional elements of perception and 
decision-making. The present study addresses these questions 
by investigating virtual organisms endowed with vision and 
operating in a 3D environment, with a focus on their ultimate 
cognitive efficiency, scalability, and capacity for learning in 
tasks of search and navigation. 

The interest in structures that enable movement with mini­
mal design complexity is also evident in engineering systems. 
For example, a recent study (Song et al., 2022) examines the 
control of hybrid soft limbs, reflecting the pursuit of struc­
turally simple but functionally efficient solutions for motion 
control. The body model of the virtual organism used in the 
present study, in terms of degrees of freedom and segment 
composition, is comparable to those employed in such con­
structions. This makes it possible to regard it as comparable 
in complexity to its physical counterparts.

In our previously published work (Devyaterikov, Palyanov, 
2022), we presented a simulator of the evolution of virtual or­
ganisms in a 3D environment, where each agent was equipped 
with a visual system and a neural network for processing 
sensory input. The system was based on a combination of 
neuroevolution and agent–environment interaction, enabling 
agents to perform elementary cognitive tasks that required 
the use of vision (such as searching for “food” necessary for 
“survival”) and allowing the assessment of agent survivability 
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within a population. The present work provides estimates 
of the computational complexity of calculations related to 
physics (agent bodies, the environment, and their interactions), 
first-person 3D rendering for each agent, and the operation of 
their neural networks. In addition, it introduces a new hierar­
chical agent model and presents the results of a quantitative 
analysis of training time, speed, and efficiency as a function of 
visual system resolution. The (Aksoy, Camlitepe, 2018) study 
provides data on the number of ommatidia (photosensitive 
sensors) for various ant species (from 100 to 3,000). Roughly 
approximating such vision with a square pixel matrix, this 
corresponds to a visual resolution from 10 × 10 to 55 × 55.

The present work combines reinforcement learning me­
thods (PPO (Schulman et al., 2017)), convolutional neural 
networks (O’Shea, Nash, 2015), approaches to hierarchical 
agent training (Vezhnevets et al., 2017), and practical analysis 
of resource-saving simulation schemes (Peng et al., 2018). 
We demonstrate that a hierarchical agent approach (e. g., a 
“Walker/Searcher” pair) enables more stable and interpretable 
behavior while reducing training time at a comparable level 
of task complexity.

Particular attention is given to investigating the impact of 
visual system resolution on agent learning rate, with an as­
sessment of the minimal input image size at which the ability 
to perform visual search and navigation tasks is preserved. 
Such investigations are relevant both for biologically inspired 
modeling and for the development of compact and efficient 
AI agent architectures capable of functioning under limited 
computational resources (Hassabis, Humaran, 2017; Zador, 
2019).

In addition, this study examines the effect of task decom­
position strategies (navigation and locomotion) on training 
efficiency. This approach provides deeper insights into the 
principles underlying cognitive modularity and distributed 
control in complex agent systems (Botvinick et al., 2020; 
Tschantz et al., 2020). The introduced Searcher agent, relying 
exclusively on visual perception, interacts with the Walker 
agent, responsible for physical movement. Such a scheme 
enhances the adaptability of the model and improves the 
interpretability of agent behavior.

Thus, the aim of the present work is to conduct a systematic 
investigation of the limits of cognitive complexity in agents 
equipped with visual systems, to develop optimal control 
architectures and perceptual parameters, and to evaluate the 
performance and scalability of the proposed system imple­
mented on the Unity ML-Agents platform.

Materials and methods
Problem statement. The problem under consideration is 
formulated in terms of a Markov decision process, where the 
agent interacts with a three-dimensional physical environment 
and learns to maximize cumulative reward. The task performed 
by the agent is described below:
Environment E: a square arena bounded by walls. Targets 

with radius r appear randomly within the arena and must be 
collected. Once a target is reached, a new one is generated.

Agent state st: consists of an RGB image from the first-person 
camera of size h × w × 3, long with a vector of control pa­
rameters (joint angles of the limbs and the corresponding 
torques).

Agent action at: a single scalar value representing a normal­
ized rotation angle in the interval [−1, 1]. This parameter 
determines the direction of the agent’s body movement. The 
actual rotation angle is defined as θ = at * θmax, where θmax 
is the maximum allowable rotation angle specified in the 
experimental parameters. In different experimental series, 
various values of this parameter were used, which allowed 
us to investigate its impact on policy efficiency (results are 
reported in Section “Results with varying rotation angles”). 
The restriction to a single control variable is due to the fact 
that low-level locomotion tasks (coordination of limbs and 
balance maintenance) are delegated to a separate Walker 
module, enabling the focus to remain on the cognitive 
aspects of the task, i. e., perception and decision-making.

Reward function R(st, at): an agent receives a positive reward 
for successfully reaching the target.

Objective: to maximize the cumulative reward over an epi­
sode of time T, i. e., to develop a policy that enables efficient 
navigation in the environment and target collection based 
on visual information.
One of the goals of our study is to identify the minimal 

input image resolution at which the agent can still successfully 
learn within a reasonable amount of time. The formal problem 
formulation is as follows:
Training success is defined as achieving an average reward of 

at least Rgoal = 5 per episode (where the reward is granted 
for target collection by the agent). The value of Rgoal was 
determined experimentally. As shown in the training results 
(see Section “Dependence of learnability on image resolu­
tion”), an untrained agent, due to random wandering, attains 
on average no more than 2.

Training time of the agent until reaching the threshold value: 
T(N ) ∈ ℝ+.

Average reward R(Res, T ) achieved by the agent after training 
with input resolution Res = h × w × 3 over time T.

Admissible set of resolutions Res ∈ ℕ, from 20 × 20 × 3 to 
100 × 100 × 3 with a step of 20 and with an additional case 
of 84 × 84 × 3, used as the default resolution in Unity ML-
Agents.

It is required to find minr ∈ ResT(N ), where R(Res, T ) ≥ Rgoal, 
that is, the minimal training time over admissible resolu­
tion for which the achieved reward meets or exceed the 
threshold Rgoal.
Simulator architecture. The proposed system employs 

a hierarchical control architecture for the agent, separating 
perception and motion functions across two levels. The lower-
level agent (Walker) is responsible for physical locomotion 
in the environment, relying on local sensors and a pre-trained 
locomotion model. The higher-level agent (Searcher) receives 
visual input from the camera and decides on the movement 
direction, transmitting a control signal to the Walker agent in 
the form of a normalized rotation angle. This approach makes 
it possible to isolate the complex problem of sensorimotor 
transformation (from image to action) from the tasks of motion 
stabilization and limb coordination. As a result, training of 
the Searcher becomes faster and more stable, since it controls 
only a single variable. The internal communication between 
agents is implemented within the Unity environment through 
the transmission of the direction parameter to the Walker 
controller. In the training mode, the Searcher agent processes 
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Fig. 1. Unity model of the Walker agent, with the first-person camera view shown in the bottom right corner. Two environments, 
the agents, and a number of targets are also presented.

Fig. 2. Walker agent model in Unity.

visual data and generates a rotation angle, which is used as 
the control parameter for selecting the body orientation at the 
next step. The Walker, in turn, executes the specified direction, 
ensuring movement in the intended direction.

During simulation, the environment is dynamically up­
dated: after a target (a unit of “food” required for survival) is 
collected by the Searcher agent, a new one is generated at a 
random position (to maintain the number of available “food” 
units at a constant level). When the agent falls or the maximum 
number of steps is reached, the episode is reset. The archi­
tecture supports parallel execution of multiple environments, 
each containing one Searcher and one Walker, which enables 
training to be scaled within the Unity ML-Agents framework.

Simulation environment. For the experiments, we selected 
the modern Unity ML-Agents platform, which demonstrates 
high performance and provides convenient tools for building 
complex three-dimensional simulations with reinforcement 
learning integration. Unity also offers built-in support for 
parallel environments, visual sensors, and integration with 
the PyTorch library.

Each environment represents a bounded square arena 
(DynamicPlatform) with walls, a floor, and randomly placed 
targets that the agent must collect. The platform size is fixed, 
and the target spawn coordinates are uniformly sampled across 
the available area. When the agent collides with a target, it 
disappears and is immediately replaced by a new one. The 
walls are impenetrable and serve as physical boundaries of 
the environment.

Simulation parameters are specified via the CrawlerSettings 
component and include the simulation tick rate of the physical 
world, gravity, episode duration (max_step – the number of 
simulation steps at which the agent receives observations and 
performs actions), and the number of parallel environments. 
If the agent falls (detected by body contact with the floor), the 
environment is automatically reset. Each parallel environment 
contains one Searcher agent, embedding a nested Walker, 
equipped with an individual camera mounted at the front of 
the head, which supplies the agent’s neural network with a 
stream of first-person visual information.

The number of simultaneously running environments 
(num_envs) depended on the agent type: for the Walker agent, 
which does not use visual input, 10 environments were em­
ployed, while for the Searcher agent, four environments were 
used. This configuration enabled efficient utilization of GPU 
resources and accelerated data collection through parallel in­
teraction with the environment. For each environment, actions 
data, observations, and rewards were collected independently 
and synchronized with the training strategy in Python via the 
Unity ML-Agents gRPC interface. Figure 1 presents a view of 
the simulation from the observer’s perspective, showing two 
environments, the agents, and a number of targets.

Walker agent model. The lower-level agent (Walker) is 
a complex articulated model with six limbs, implemented in 
the Unity engine using the Rigidbody and ConfigurableJoint 
components. Each limb consists of two segments: upper and 
lower – with three degrees of freedom (resulting in a total of 
18 degrees of freedom for all legs). This design enables the 
agent to perform realistic locomotion and maintain stability 
during movement. The agent model in the Unity environment 
is shown in Figure 2.

The control system is implemented through the JointDrive 
Controller module, which converts control signals into desired 
joint angles and forces. The control parameters are represented 
as a vector of dimension 30: 18 values control joint angles, 
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Fig. 3. Walker agent model in motion.

Fig. 4. Schematic representation of the Walker (a) and Searcher (b) agent’s neural network architecture.
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and 12 correspond to the torques applied to them. Specifically, 
for each of the six legs, the upper segment is controlled by 
two angles (rotation about the X and Y axes), and the lower 
segment by one angle (rotation about the X axis), yielding 
18 control parameters in total. In addition, for each of these 
12  segments, a control force is specified, determining the 
intensity of movement, which yields another 12 parameters. 
At each step, the agent receives observations that include 
information on current joint angles, velocities, surface con­
tacts, target direction vector, body orientation, and ground 
raycast data. The Walker agent model in motion is shown in  
Figure 3.

The neural network architecture of the Walker consists of 
three fully connected layers with LeakyReLU activation func­
tions and two outputs: an actor (30 action parameters) and a 
critic estimating the value function (Fig. 4a). The input layer 
has a dimensionality of 223 (vector features and joint param­

eters), while the hidden layers each contain 512 neurons. The 
total size of the model is 655,903 parameters and 1,567 neu­
rons, making it lightweight enough for real-time training. 

The reward function for the Walker agent is defined based 
on the deviation of the agent’s current body velocity from the 
target velocity and the alignment of its movement direction 
with the specified vector. This enables the agent to learn pur­
poseful locomotion in the desired direction while maintaining 
physical stability. After training, the Walker agent is used in 
inference mode as part of the Searcher agent, providing stable 
execution of movement.

During training, the critic block receives the same input 
as the actor – the state feature vector. Based on these data, 
it learns to approximate the expected cumulative reward the 
agent will obtain in the future if it continues to act according to 
the current policy. At the early stages of training, this estimate 
is inaccurate, but it is gradually refined through backpropa­
gation of the error, grounded in the actual rewards received 
by the agent. Thus, the critic does not initially “know” what 
is good or bad – it learns to distinguish this by comparing 
predicted rewards with the real rewards accumulated during  
simulations.

After training, the Walker agent is used in inference mode 
as part of the Searcher agent, ensuring stable motion execu­
tion based on the deviation of the current body velocity from 
the target and the alignment of the movement direction with 
the specified vector. This allows the agent to learn purpose­
ful locomotion in the desired direction while maintaining 
physical stability.

Searcher agent model. The higher-level agent (Searcher) 
is responsible for perceiving the environment and selecting 
the direction of body movement. Unlike the Walker agent, 
it does not interact directly with the physical components of 
the simulation but instead controls the Walker by transmit­
ting a normalized rotation angle in the interval [−1, 1]. Thus, 
the Searcher serves as a cognitive module that implements a 
target-search strategy based on visual information. The pri­
mary input source for the Searcher agent is the image obtained 
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from a camera mounted on the agent’s body (at the front of 
the head). The camera is oriented forward and positioned at 
a height corresponding to the head of the virtual organism. 
The image resolution varies across experiments from 20 × 20 
to 100 × 100 pixels, with increments of 20 in each dimension 
(three-channel RGB), allowing for analysis of the impact 
of visual load and frame resolution on the model’s learning 
performance.

For image processing, a convolutional neural network is 
employed, consisting of two convolutional layers (Conv2D), 
a flattening layer (Flatten), and subsequent fully connected 
layers. The output of the visual input processing is concate­
nated with vector observations and fed into two output layers: 
the actor (a single value representing the rotation angle) and 
the critic (value function estimate). The activation functions 
used are LeakyReLU and Swish. A schematic representation of 
the Searcher agent’s neural network architecture is presented 
in Figure 4b.

The Searcher agent is trained using the Proximal Policy 
Optimization (PPO) algorithm with a continuous action space. 
The objective function is to maximize the cumulative reward 
for collecting targets in the arena. Upon colliding with a target, 
the agent receives a positive reward; upon colliding with a 
wall or remaining inactive, it is penalized. When max_step is 
exceeded or the body falls, the simulation episode terminates 
and a new one begins.

Unlike the Walker agent, which is pre-trained once and then 
used only to execute the learned behavior (inference mode), 
the Searcher agent is trained from scratch, and its  neural 
network includes image processing, which increases com­
putational costs but enables the realization of biologically 
plausible behavior based solely on visual perception. This 
makes it possible to model cognitive constraints and analyze 
the impact of visual resolution on the speed and stability of 
learning.

Training algorithms and hyperparameters. The PPO 
algorithm is a gradient-based policy optimization method that 
belongs to the family of actor-critic approaches. Such methods 
combine the training of a policy and a value function. By 
avoiding abrupt policy updates, in contrast to classical me­
thods of this type, PPO is designed to improve the stability and 
reliability of training. The Actor, the component responsible 
for selecting an action in each state, implements the agent’s 
policy. The Critic, in turn, evaluates how good the chosen ac­
tion was by using the value function. This approach combines 
the advantages of stochastic action selection (important for 
exploration of the environment) with the evaluation of these 
actions based on accumulated experience.

The PPO algorithm operates within the framework of a 
Markov decision process (S, A, P, R, γ), where S – the set of 
states, A – the set of actions, P(s′ | s, a) – the state transition 
probability, R(s, a) – the reward function, γ ∈ [0, 1] – the 
discount factor.

The parameterized policy πθ(a | s) defines the probability of 
selecting action a in state s, where θ signifies the parameters of 
the actor neural network. The critic Vϕ(s) is an approximation 
of the value function V π(S) = E[Rt | st = s], with parameters ϕ, 
where Rt = rt + γrt+1 + γ2rt+2 + … is the discounted sum of 
future rewards. In PPO, instead of direct gradient updates, the 
so-called clipped objective function is used:

LCLIP(θ) = 
  ̭
Et[(rt (θ) · 

  ̭
At , clip(rt (θ), 1 – ε, 1 + ε) · 

  ̭
At)],

where: rt(θ) = 
πθ(at |st)

πθOld (at |st)
 – the probability ratio between the

new and the old policy, ε ∈ (0, 1) the clipping parameter, typi­
cally ε = 0.1 or 0.2, 

  ̭
At  – the advantage estimate.

If the new action deviates too strongly from the old one 
(i. e., rt falls outside the interval [1 – ε, 1 + ε]), the gradient is 
suppressed. This prevents abrupt changes in the policy.

To estimate 
  ̭
At, the generalized advantage estimation (GAE) 

is used:
  ̭
At = 

T – t
∑

l = 0  (γλ)lδt + l,   δt = rt + γV(st +1) – V(st),

where λ ∈ [0, 1] – is the smoothing parameter. This method 
improves training stability by reducing variance.

The loss function in PPO consists of:
 •  the policy loss LCLIP,
 •  the value critic loss (MSE between the predicted V(st) and 

the target value),
 •  an entropy bonus to encourage action diversity:

LCLIP + VF + S
   t  = Et [LCLIP(θ) – c1·(V(st) – V target

   t )2 + c2·H[πθ](st)],

where H [π] is the policy entropy and c1, c2 are the correspond­
ing coefficients. 

A schematic representation of the proximal policy optimiza­
tion algorithm is shown below:

Algorithm: PPO
1: for iteration = 1, 2, … do
2:     for actor = 1, 2, …, N do
3:         run policy πθOld in environment for T timesteps
4:         compute advantage estimates 1, … , T
5:     end for
6:     optimize surrogate L w.r.t. θ, with K epochs and  

     minibatch size M ≤ NT
7:     Lt

 = Et[LCLIP(θ) – c1·(V(st) – V target
   t )2 + c2·H [πθ](st)]

8:     θOld ← θ
9: end for

where N is the number of parallel actors collecting data over T 
time steps, and K is the number of epochs. Neural networks are 
used to approximate the target policy and the value function.

The choice of PPO in this work is motivated by several 
factors: the algorithm supports continuous action spaces, 
which is critical for the locomotion of virtual organisms with 
multi-joint limbs. The update constraint allows the agent’s 
policy to evolve incrementally without disrupting previously 
learned behaviors. PPO can also be effectively applied in 
architectures incorporating convolutional neural networks 
(CNNs) that process images from the agents’ cameras. In 
addition, the Unity ML-Agents environment provides a built-
in PPO implementation, which simplifies configuration and 
accelerates the cycle of computational experiments.

The actor network receives state features (velocities, joint 
positions, surface contacts, etc.) together with visual data 
processed through convolutional layers. The agent’s objective 
is to maximize the reward associated with locomotion and 
stability while moving in the chosen direction. PPO enables 
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smooth adaptation of the policy to complex dynamics and 
noisy feedback from the environment.

For the Walker agent, the action space is represented by 
a vector of 30  continuous values (18  for joint angles and 
12 for actuation forces/torques controlling joint movements), 
whereas the Searcher agent controls only a single parameter – 
the movement direction (a normalized rotation angle in the 
range [−1, 1]). Both models are trained asynchronously using 
multiple parallel environment simulations (from 4 to 10), 
which enables efficient data collection and accelerates the 
optimization process.

The main training parameters are (detailed in the documen­
tation (Juliani et al., 2018)):
 •  algorithm: PPO (proximal policy optimization);
 •  framework: Unity ML-Agents + PyTorch backend;
 •  learning_rate: 3 × 10–4. A coefficient that determines the step 

size when updating neural network parameters;
 •  batch_size – the size of the data batch used for one training 

step: Searcher: 1,024, Walker: 2,048;
 •  buffer_size: 10,240. The number of environment interac­

tions used for one training cycle. Configured as a multiple 
of batch_size × num_envs;

 •  num_epochs: 3. The number of optimizer passes (epochs) 
over one data buffer before it is updated;

 •  gamma (discount factor): Searcher: 0.99, Walker: 0.995;
 •  lambda (GAE): 0.95;
 •  clip_range: 0.2.

The Walker agent was trained separately in an isolated en­
vironment until stable and straight locomotion was achieved. 
The average number of steps to convergence was approxi­
mately 2–3 million. After this stage, the model weights were 
fixed, and the agent was used only in inference mode.

The Searcher agent was trained independently of the 
Walker. The average number of steps per experiment ranged 
from 5 to 10 million, depending on the environment configura­
tion (camera resolution, max_step, number of target objects 
in the environment, etc.).

Simulation parameters were specified through YAML con­
figurations of ML-Agents. To ensure stable and reproducible 
results, a fixed parameter was used to set the initial value for 
the random number generator applied in both the environment 
and training (random_seed), along with consistent settings: 
when the number of environments (num_envs) was changed, 
buffer_size was necessarily adjusted proportionally, as re­
quired by the ML-Agents framework.

All experiments were conducted on a computer equipped 
with a CUDA-compatible GPU (see Section “System perfor­
mance and profiling”). The software versions used were: Uni­
ty 2022.3, ML-Agents 21.0, PyTorch 2.0.1, and Python 3.10.

Experiments. The experimental part of the study (nu­
merical experiments) was aimed at investigating the influence 
of visual system parameters, environment configuration, 
and architectural constraints on the training efficiency of 
agents. All experiments were carried out in isolated envi­
ronments using a fixed Walker agent model and a trainable 
Searcher agent. The main directions of investigation were as  
follows:
1. Impact of camera image resolution on learnability. A range 

of resolutions was considered: 20 × 20, 40 × 40, 60 × 60, 
80 × 80, 84 × 84 (the default resolution for Unity ML-

Agents), and 100 × 100 pixels. For each of these, a separate 
training of the Searcher was conducted under otherwise 
identical parameters. The objective was to determine the 
minimal resolution at which the agent consistently achieves 
the target behavior (Reward ≥5).

2. Impact of speed control capability. In one of the experi­
ments, the Searcher agent was additionally given the ability 
to control the target movement speed (a second continuous 
output parameter). The objective was to determine whether 
this would lead to more flexible behavior or instead com­
plicate the learning task.

3. Variation of maximum rotation angle. The Searcher agent 
transmits a body rotation command. In different experi­
ments, the maximum allowable rotation angles were tested: 
90, 120, 180, and 270°. The hypothesis examined was that 
larger angles may simplify navigation but make the behavior 
less precise and stable.

4. Impact of episode length (max_step parameter). In the 
experiments, two values of the max_step parameter were 
considered: 5,000 and 20,000. The value max_step = 5,000 
was used as the baseline, as it allowed the agent to receive 
rewards quickly enough and provided timely feedback to 
the learning algorithm. The value 20,000 was considered 
as an alternative, applicable to tasks with longer action 
sequences and delayed rewards.

5. Verification with manual control. To validate the behavior 
of the trained Walker model, manual control of the agent 
was implemented (via the A/D keys, left/right). This made 
it possible, on the one hand, to confirm that the observed 
effects (e. g., halting of movement) were caused by body 
dynamics rather than the Searcher agent’s policy, and on the 
other hand, to test whether a human, using the same type 
of control, could successfully perform the target-search 
task (an assessment of controllability and environment 
perception).
All experiments were recorded using the Unity ML-Agents 

logging system and analyzed in TensorBoard, a visualization 
tool for monitoring the training process that allows real-time 
plotting of reward dynamics, loss functions, simulation speed, 
and other metrics. The success criteria are described in Section 
“Problem statement”.

Results

Dependence of learnability on image resolution
The results of the series of experiments with different input 
image resolutions showed that the minimal resolution at which 
the agent consistently achieved the target behavior (average 
reward ≥5) was 84 × 84 pixels. At resolutions of 20 × 20, 
40 × 40, and 60 × 60, training required substantially more 
time, although the trend toward improvement was preserved. 
The resolution of 100 × 100 also allowed the target reward to 
be reached, but training at 84 × 84 was slightly faster due to 
lower computational load. The results of this experiment are 
presented as TensorBoard plots in Figure 5.

Impact of speed control on training
The addition of a second control parameter (movement speed) 
increased the dimensionality of the action space and signifi­
cantly complicated training. The agent required more time to 
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Fig. 5. Training results of the Searcher agent at different input image resolutions. 
The upper panel shows the average reward curves for all investigated resolutions; the magenta curve corresponds to 84 × 84, 
and the orange curve to 100 × 100. The lower panel presents the same data with the dominant curves removed, allowing a more 
detailed view of the remaining variants (20 × 20, 40 × 40 и 60 × 60, 80 × 80).
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converge (approximately 33 % longer under otherwise identi­
cal conditions), and the resulting behavior was less stable – for 
the given task, speed control is largely a redundant parameter. 
This supports the simple hypothesis that increasing the number 
of degrees of freedom requires a more complex policy and 
hinders model training. The results of this experiment are 
shown as a TensorBoard plot in Figure 6.

Results with varying rotation angles
The best results were obtained with a maximum rotation angle 
of 90°. Increasing the angle to 120° led to a slight decrease in 
stability, while at 180 and 270°, the agent did not reach the 
target reward level, requiring longer and less efficient training. 
This indicates that an excessively wide action space hinders 
the development of a stable navigation policy.

Fig. 6. Training results of the Searcher agent with input image resolution 84 × 84 and the addition of a second control parameter (movement speed) 
alongside the primary one (rotation angle).
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Impact of episode length (max_step)
With max_step = 5,000, the agent demonstrated stable train­
ing, receiving timely feedback on goal achievement. Increas­
ing the episode length to 20,000 did not improve training 
quality, while simulation time and resource load increased. 
Therefore, max_step = 5,000 was used as the primary set­
ting, as it provided a balance between training efficiency and 
computational cost.

System performance and profiling
To evaluate the scalability and computational efficiency of 
the simulator, profiling of key system components was con­
ducted under varying visual sensor resolutions and numbers 
of parallel environments. All measurements were performed 
on a machine equipped with an NVIDIA GeForce RTX 3070 
GPU and an AMD Ryzen 5 7500F CPU (6 cores, 12 threads, 
3.7 GHz base clock, 5.0 GHz in turbo mode).

The contribution of main simulation components to com­
putational costs:
 •  Physics Engine – less than 1 ms per step, virtually inde­

pendent of resolution;
 •  graphics and sensors (Camera.Render, PostProcess) – 

from 3.2 to 9.5 ms depending on resolution (almost linear 
dependence);

 •  neural network (PyTorch Inference) – approximately 
35 ms per step when using convolutional architecture for  
Searcher;

 •  Unity–Python communication (gRPC, serialization) – 
from 45 to 60 ms. With an increasing number of agents, this 
component becomes one of the main system bottlenecks, 
since communication costs (serialization/deserialization, 
data exchange) grow proportionally to the number of  
agents;

 •  other (UI, garbage collection, VSync) – up to 20 % of 
runtime, may increase during active debugging.
At a resolution of 84 × 84 with four parallel agents, the 

average simulation step time was approximately 3.6  ms, 
corresponding to about 278 steps per second. At a resolution 
of 100 × 100, the step time increased to 3.8 ms, reducing per­
formance to roughly 263 steps per second. All measurements 
were conducted without scene visualization. In all experiments 
with the Searcher agent, the number of simultaneously running 
environments was set to 4.

Thus, the main limiting factor in scaling is not physics or 
rendering, but data exchange between Unity and Python. This 
should be considered when planning large-scale experiments 
or transitioning to population-level modeling. A working pro­
totype for reproducing the results is available in the repository 
at: https://github.com/DerpyFox/organism_simulator.

Discussion

Results interpretation
The obtained results demonstrate that the success of train­
ing agents with visual perception directly depends on the 
resolution of the input image. Too low a resolution (up to 
60 × 60) leads to a loss of spatial structure of the scene and 
the agent’s inability to develop a stable strategy. On the other 
hand, resolutions above 84 × 84 do not provide a noticeable 
gain in efficiency but increase the computational load. This 

confirms the existence of an optimal range of visual percep­
tion, comparable to that evolutionarily formed in insects: their 
vision developed to be sufficiently detailed for performing 
behavioral tasks (Chittka, Niven, 2009).

Despite the observed dependence between visual system 
resolution and the success of agent training, it should be noted 
that in nature there are organisms capable of effective behavior 
even with extremely low visual resolution. For example, in 
some ant species, as mentioned in the introduction, the visual 
system is comparable in scale to a resolution of about 10 × 10, 
yet this does not prevent them from confidently navigating, 
locating food, interacting with their environment, and even 
passing the mirror test (Cammaerts M.-C.T., Cammaerts R., 
2015). Such efficiency is determined not only by vision but 
also by the developed olfactory system, which plays a key 
role in perceiving the surrounding world. In addition, the 
neural systems of real insects may possess a range of pro­
perties that enhance their effectiveness. These systems were 
shaped through long evolutionary processes and are adapted 
to specific living conditions and the typical tasks of a living 
organism – for example, navigating in complex environments, 
searching for food, and interacting with conspecifics. They 
exhibit a high degree of neuronal specialization and mecha­
nisms of adaptation to changing stimuli. Such “tuning” to 
real-world conditions makes it possible to efficiently process 
even limited or fragmentary sensory signals, including visual, 
olfactory, and mechanosensory inputs.

The addition of speed control and the increase in rotation 
angle showed that even a slight expansion of the action space 
leads to slower learning. Thus, it is important to maintain 
a balance between the expressiveness of the model and its 
learnability. The division of perception and body control tasks 
between the Searcher and Walker agents proved to be critical 
for achieving stable behavior.

Biological parallels and cognitive efficiency
The results resonate with principles observed in insects: 
minimal but functionally redundant visual systems enable 
successful navigation and real-time decision-making. Simi­
larly, the proposed architecture allows the agent to achieve 
target strategies with limited resolution and a relatively small 
neural network.

When the obtained results are considered in the context 
of real biological systems, a parallel can be drawn with the 
evolutionary trade-offs that arise between sensory accuracy, 
computational cost, and behavioral adaptability. For example, 
the visual systems of insects such as fruit flies (~150,000 neu­
rons) or honeybees (~960,000 neurons) provide basic object 
recognition and spatial orientation with a minimal number of 
neurons and extremely limited bandwidth (Menzel, 2012). 
These organisms do not possess high-resolution visual sys­
tems, but they achieve high efficiency through a combination 
of rapid response, sensorimotor architecture, and decision-
making strategies (Chittka, Niven, 2009). Such considerations 
are well illustrated by insects with a high level of social or­
ganization. In ants, division of labor and communication are 
shaped not only as innate behavioral patterns but also as the 
result of flexible adaptation at the level of individual workers. 
The distribution of roles within a colony may vary depending 
on age, physiological state, and the current situation, while 

https://github.com/DerpyFox/organism_simulator
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Self-learning virtual organisms  
in a physics simulator

information transfer between ants is achieved through a wide 
range of signals (Chittka, Muller, 2009). Thus, even simple 
agents with limited cognitive capacities can achieve high ef­
ficiency through the organization of interactions and simple 
behavioral rules.

Agents in our simulator demonstrate the ability for adap­
tive behavior even at relatively low visual resolutions (e. g., 
84 × 84 pixels), which allows further analogies to be drawn 
with minimal cognitive systems in nature. Such models can be 
employed as artificial systems that reproduce key behavioral 
aspects of simple organisms and serve as a basis for generat­
ing hypotheses about the neurophysiological mechanisms of 
perception and behavior in invertebrates.

System limitations
The main limitation of the system lies in the communication 
overhead between the Unity environment and the PyTorch 
training framework. Even with high computational perfor­
mance of the processing units, serialization and data transfer 
via gRPC become the bottleneck. In addition, at this stage, the 
environment remains limited in complexity: it lacks obstacles, 
dynamic topography, and inter-agent interactions. Finally, the 
agent architectures are fixed and do not undergo evolution or 
temporal adaptation (only parameter weights change, while 
network topology remains unchanged).

Future directions
Further development is possible in several directions. The in­
troduction of neuroevolutionary mechanisms (e. g., the NEAT 
approach – NeuroEvolution of Augmenting Topologies) would 
make it possible to investigate not only changes in neural 
network weights but also the evolutionary optimization of 
network structure. This is particularly relevant in the context 
of energy costs: with excessive brain complexity, resource 
consumption increases, whereas in simpler environments it 
may be advantageous to reduce the number of neurons. In this 
way, agents could autonomously adapt the size and potentially 
the architecture of their neural networks, reducing redundancy 
under conditions of low cognitive load. In biological systems, 
even a slight increase in nervous system complexity can lead 
to a noticeable rise in energy expenditure. For example, in the 
fly Calliphora vicina, the retina alone consumes about 8 % of 
the organism’s resting metabolic rate (Niven, Laughlin, 2008). 
In humans, by contrast, the brain accounts for only about 2 % 
of body mass yet consumes up to 20 % of the body’s energy 
(Attwell, Laughlin, 2001). These data indicate that the benefit 
of reducing the number of neurons or decreasing the complex­
ity of the sensory system can be substantial.

Introducing environmental elements involving resource 
competition (multiple agents, a limited number of targets, and 
the ability of more advanced agents to select and solve more 
complex cognitive tasks from those available in the system, 
thereby gaining additional advantages) would make it pos­
sible to analyze behavioral strategies at the population level.

A promising direction is the addition of an olfactory model – 
a sensory channel based on short-term “traces” in the environ­
ment, analogous to pheromone markings in ants. Such traces 
may decay over time, differ in content (e. g., distinguishing 
between a satiated and a hungry ant), and influence an agent’s 
trajectories, thereby reinforcing elements of indirect communi­

cation and collective behavior. It would also be reasonable to 
incorporate memory and recurrent modules into the Searcher 
model to study navigation under partial observability.

Conclusion
This study was aimed at the quantitative and qualitative evalu­
ation of architectural and sensory parameters in the task of 
training visually guided agents in a three-dimensional simu­
lation. We proposed and implemented a hierarchical control 
model in which the locomotion agent (Walker) functions as 
a low-level executor of movements, while the perception and 
navigation agent (Searcher) makes strategic decisions based 
on visual information.

A systematic analysis demonstrated that even under lim­
ited sensory input (due to low resolution), agents are capable 
of developing stable behavioral strategies, provided that 
the model and environmental conditions are designed with 
cognitive load in mind. It was established that a resolution of 
84 × 84 pixels offers a compromise between computational ef­
ficiency and minimal cognitive adequacy, whereas increasing 
the dimensionality of the action space without a correspond­
ing increase in training resources leads to degraded per- 
formance.

Our results support the hypothesis that minimally complex 
neural network agents can realize sophisticated behavioral 
patterns under conditions of limited sensory perception, where 
the agent receives only partial information about the environ­
ment. These findings are consistent with observed examples 
of cognitive efficiency in invertebrates, such as ants and bees, 
and open up prospects for the use of such models in bio­
logical modeling, robotics, and research in the field of neuro- 
evolution.

In the future, the system may be extended toward popu­
lation-level simulations incorporating competition, inter-
agent communication, and strategy adaptation in a changing 
environment. The architecture can be further enhanced with 
memory modules, recurrent connections, or neuroevolutionary 
mechanisms, enabling the study of more complex cognitive 
phenomena in virtual populations.

It was also shown that the use of visual information, de­
spite its expressiveness, requires substantial computational 
resources and, in some cases, may be less efficient than simpler 
sensory models. These observations highlight the importance 
of sensory architecture choice when designing minimally suf­
ficient cognitive agents.

Another key finding was the recognition of the critical role 
of environment design and training structure in the success of 
modeling. Initial attempts to train behavior through a single 
neural network model that combined locomotion and strat­
egy did not lead to the emergence of the ability to detect and 
collect targets (“food” units), due to difficulties in balancing 
rewards and formulating the task. The introduction of a func­
tionally separated approach (search and locomotion) made it 
possible to achieve a substantial improvement in learnability 
and behavioral stability.

Thus, the obtained results demonstrate the potential of 
neuro-agent systems in biologically inspired modeling tasks 
and provide a foundation for further experiments aimed at 
exploring the limits of cognitive complexity under constrained 
perceptual and control resources.
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Abstract. The ABH2 enzyme belongs to the AlkB-like family of Fe(II)/α-ketoglutarate-dependent dioxygenases. Vari-
ous non-heme dioxygenases act on a wide range of substrates and have a complex catalytic mechanism involving 
α-ketoglutarate and an Fe(II) ion as a cofactor. Representatives of the AlkB family catalyze the direct oxidation of alkyl 
substituents in the nitrogenous bases of DNA and RNA, providing protection against the mutagenic effects of endo
genous and exogenous alkylating agents, and also participate in the regulation of the methylation level of some 
RNAs. DNA dioxygenase ABH2, localized predominantly in the cell nucleus, is specific for double-stranded DNA sub-
strates and, unlike most other human AlkB-like enzymes, has a fairly broad spectrum of substrate specificity, oxidizing 
alkyl groups of such modified nitrogenous bases as, for example, N 1-methyladenosine, N 3-methylcytidine, 1,N 6-ethe-
noadenosine and 3,N 4-ethenocytidine. To analyze the mechanism underlying the enzyme’s substrate specificity and 
to clarify the functional role of key active-site amino acid residues, we performed molecular dynamics simulations of 
complexes of the wild-type ABH2 enzyme and its mutant forms containing amino acid substitutions V99A, F124A and 
S125A with two types of DNA substrates carrying methylated bases N 1-methyladenine and N 3-methylcytosine, respec-
tively. It was found that the V99A substitution leads to an increase in the mobility of protein loops L1 and L2 involved 
in binding the DNA substrate and changes the distribution of π-π contacts between the side chain of residue F102 
and nitrogenous bases located near the damaged nucleotide. The F124A substitution leads to the loss of π-π stacking 
with the damaged base, which in turn destabilizes the architecture of the active site, disrupts the interaction with the 
iron ion and prevents optimal catalytic positioning of α-ketoglutarate in the active site. The S125A substitution leads 
to the loss of direct interaction of the L2 loop with the 5’-phosphate group of the damaged nucleotide, weakening 
the binding of the enzyme to the DNA substrate. Thus, the obtained data revealed the functional role of three amino 
acid residues of the active site and contributed to the understanding of the structural-functional relationships in the 
recognition of a damaged nucleotide and the formation of a catalytic complex by the human ABH2 enzyme.
Key words: DNA repair; base methylation; human DNA dioxygenase ABH2; MD modeling; functional role of amino 
acid residues
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Молекулярно-динамический анализ функциональной роли 
аминокислотных остатков V99, F124 и S125  
ДНК-диоксигеназы человека ABH2
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Аннотация. ДНК-диоксигеназа человека ABH2 относится к семейству AlkB-подобных негемовых диоксигеназ, 
которые действуют на широкий спектр субстратов и обладают сложным каталитическим механизмом с учас
тием α-кетоглутарата и иона Fe(II) в качестве кофактора. Представители семейства AlkB катализируют прямое 
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окисление алкильных заместителей в азотистых основаниях ДНК и РНК, обеспечивая защиту от мутагенного 
воздействия эндогенных и экзогенных алкилирующих агентов, а также участвуя в регуляции уровня метили-
рования некоторых РНК. Фермент ABH2, локализованный преимущественно в ядре клетки, проявляет специ
фичность к двуцепочечным ДНК-субстратам и, в отличие от большинства других AlkB-подобных ферментов 
человека, обладает довольно широким спектром субстратной специфичности, окисляя алкильные группы 
таких модифицированных азотистых оснований, как, например, N 1-метиладенозин, N 3-метилцитидин, 1,N 6-эте
ноаденозин и 3,N 4-этеноцитидин. В данной работе с целью анализа механизма, обеспечивающего субстратную 
специфичность фермента, и выяснения функциональной роли аминокислотных остатков в составе активно-
го центра нами выполнено молекулярно-динамическое моделирование комплексов фермента ABH2 дикого 
типа и его мутантных форм, содержащих аминокислотные замены V99A, F124A или S125A, с  двумя типами 
ДНК-субстратов, несущих метилированные основания N 1-метиладенин или N 3-метилцитозин. Установлено, 
что замена V99A приводит к увеличению подвижности белковых петель L1 и L2, участвующих в связывании 
ДНК-субстрата, и изменяет распределение π-π-контактов боковой цепи остатка F102 с азотистыми основани-
ями, расположенными рядом с поврежденным нуклеотидом. Замена F124A приводит к потере π-π-стэкинга с 
поврежденным основанием, что, в свою очередь, дестабилизирует архитектуру активного центра, вызывает 
нарушение взаимодействия с ионом железа и препятствует оптимальному каталитическому позиционирова-
нию α-кетоглутарата в активном центре. Замена S125A приводит к потере прямого взаимодействия петли L2 с 
5’-фосфатной группой поврежденного нуклеотида, ослабляя связывание фермента с ДНК-субстратом. Таким 
образом, полученные данные позволили установить функциональную роль трех аминокислотных остатков ак-
тивного центра и расширить понимание структурно-функциональных связей в процессах узнавания повреж-
денного нуклеотида и формирования каталитического комплекса ферментом ABH2 человека. 
Ключевые слова: репарация ДНК; метилирование оснований; ДНК-диоксигеназа человека ABH2; MД-модели
рование; функциональная роль аминокислотных остатков

Introduction
The stability of genetic information encoded in the form of 
nucleotide sequences in DNA is extremely important for nor-
mal functioning and survival of individual cells, organisms, 
and species as a whole (Travers, Muskhelishvili, 2015). At the 
same time, cellular DNA of all living organisms is regularly 
subjected to damaging effects of various endogenous and 
exogenous factors, such as chemically reactive reagents and 
metabolites, ionizing and UV radiation, and others (Ougland 
et al., 2015). Living organisms evolved multiple different re-
pair pathways for damage occurring in genomic DNA, some 
of which are represented by a single enzyme, while others 
involve sequential and coordinated work of entire enzymatic 
cascades (Yi et al., 2009; Li et al., 2013; Müller, Hausinger, 
2015; Ougland et al., 2015). 

So, among enzymes participating in recognition and 
removal of non-bulky individual damage to DNA nitro
genous bases, the following can be distinguished: 1) DNA 
glycosylases that remove damaged nitrogenous bases with 
the formation of apurinic/apyrimidinic sites in DNA, which 
are then processed with restoration of the original DNA 
structure by other enzymes of the base excision repair (BER) 
pathway (Ringvoll et al., 2006; Chen et al., 2010; Li et al., 
2013); 2) О6-alkylguanine-DNA-alkyltransferases (AGT) 
that transfer the alkyl adduct to their own cysteine residue 
(Ringvoll et al., 2006); 3)  photolyases responsible for the 
removal of UV-induced photodamage such as cyclobutane 
pyrimidine dimers and pyrimidine-pyrimidine photoproducts 
(Yi, He, 2013); 4) dioxygenases of the AlkB family, belonging 
to the superfamily of Fe(II)/α-ketoglutarate(αKG)-dependent 
dioxygenases that use non-heme iron as a cofactor and αKG as 
a cosubstrate for direct oxidation of alkyl groups in damaged 
DNA bases (Yang et al., 2009; Yi et al., 2009; Kuznetsov et al., 
2021). It should be noted that the diversity of repair pathways 
for non-bulky DNA lesions is related to the great diversity of 
possible chemical modifications of nitrogenous bases.

Representatives of the Fe(II)/αKG- dependent dioxygenase 
AlkB family found in humans have attracted particular interest 
in recent years due to their participation in the repair of alky
lated DNA bases. It is believed that enzymes of this family may 
play an important role in the progression of some oncological 
diseases since they are often overexpressed in tumor cells and 
neutralize the effect of alkylating drugs used in chemotherapy. 
ABH2 is one of the first identified human representatives of 
the AlkB-like dioxygenase family (Duncan et al., 2002; Aas 
et al., 2003). It is known that changes in ABH2 expression 
levels affect the efficiency of removal of certain toxic DNA 
damages in tumor cells, making this enzyme a potential marker 
for cancer diagnostics and a possible therapeutic target (Wilson 
et al., 2018).

To date, it is known that ABH2 exhibits activity against 
at least 8 different alkylated DNA bases, namely N 1-meth-
yladenosine (m1A), N 3-methylcytidine (m3C), N 3-methyl-
thymidine (m3T), N 3-ethylthymidine (N3-EtT), 1,N 6-etheno-
adenosine (εA), 3,N 4-ethenocytidine (εC), 1,N 2-ethenoguano-
sine (1,N 2-εG), and 5-methylcytidine (m5C) (Fig. 1) (Falnes, 
2004; Ringvoll et al., 2006, 2008; Bian et al., 2019). 

Methylation is the most common type of DNA base damage 
caused by exposure to alkylating agents (Sall et al., 2022), 
and m1A and m3C are substrates most effectively removed by 
ABH2 from double-stranded DNA (dsDNA) (Duncan et al., 
2002; Aas et al., 2003; Xu et al., 2021). D.H. Lee et al. showed 
that ABH2 oxidizes m1A and m3C in the context of dsDNA 
at least twice as efficiently compared to single-stranded DNA 
(ssDNA) (Lee et al., 2005).

Currently known structural data allow suggestion of specific 
features of ABH2 enzyme functioning and the mechanism 
providing its substrate specificity. ABH2 contains a highly 
conserved catalytic domain – a double-stranded β-helical 
domain (DSBH) of the Fe(II)/αKG-dependent dioxygenase 
superfamily. The unstructured N-terminal fragment of ABH2 
also includes a proliferating cell nuclear antigen (PCNA) 
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binding motif (Xu et al., 2021). A triplet consisting of two 
histidine amino acid residues and one aspartate (H171, H236, 
and D173) coordinates the Fe(II) cofactor in the enzyme’s 
active site (Giri et al., 2011; Xu et al., 2021). D173 amino 
acid residue, through interaction with R254 residue, also par-
ticipates in formation of a hydrogen bond network including 
N159, Y161, R248, T252, and R254 amino acid residues, that 
coordinate the αKG cosubstrate in the enzyme’s active site 
(Waheed et al., 2020).

The ABH2 active site is surrounded by four functional 
loops, L1-L4 (Fig. 2). These loops play a key role in stabili
zing the position of the DNA substrate in the enzyme’s active 
site (Xu et al., 2021). Loop L1, including amino acid residues 

98–107, contains a hydrophobic hairpin V101-F102-G103, 
through which “testing” of base pair stability in the substrate 
occurs. If a damaged base forms an unstable pair with its 
partner from the complementary strand, V101 and F102 
residues induce flipping of the damaged nucleotide into the 
active site. Herewith the vacated space in the DNA duplex is 
filled by F102 residue, stabilizing the flipped-out position of 
the nucleotide through π-π interaction with the surrounding 
bases (Chen et al., 2010, 2014; Yi et al., 2012; Xu et al., 2021).

Loop L2, including amino acid residues 122–129, together 
with loop L1 forms the so-called “nucleotide recognition lid” 
(NRL). Y122 amino acid residue participates in a hydrogen 
bond network forming the catalytically competent state of 
the enzyme’s active site (Davletgildeeva et al., 2023), S125 
residue forms a hydrogen bond with the 5′-phosphate of the 
flipped damaged nucleotide; F124 and H171 amino acid 
residues form π-π stacking with the flipped nitrogenous base 
(Chen et al., 2010, 2014; Lenz et al., 2020). S125 amino acid 
residue also participates in forming the wall of the damage-
binding pocket alongside V99, R110, and I168 residues 
(Davletgildeeva et al., 2023). 

It should be noted that V99 holds an important position in 
the network of hydrophobic residues formed by V101, V108, 
F124, and L127 (Monsen et al., 2010). Loop L3, including 
amino acid residues 198–213, and loop L4, including amino 
acid residues 237–247, play an important role in binding to the 
dsDNA substrate. R198, R203, and K205 amino acid residues 
in loop L3 and the RKK sequence (R241-K242-K243) in loop 
L4 form contacts with the DNA strand complementary to the 

Fig. 1. Alkylated nitrogenous bases that are substrates for human DNA 
dioxygenase ABH2.

m1A

N 3-EtT εA εC 1, N 2-εG

m3C m5C m3T

Fig. 2. Crystal structure of the ABH2 complex with dsDNA containing m1A (PDB ID 3BUC). 
Loops L1–L4 are marked, damaged nitrogenous base m1A, αKG and Mn2+ ion, as well as the amino acid residues considered 
in this work (V99, F124, and S125) are shown.
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L2

L4

S125 F124
V99

αKG



Функциональная роль остатков V99, F124 и S125  
ДНК-диоксигеназы человека ABH2

М. Чжао, Т.Е. Тюгашев 
А.Т. Давлетгильдеева, Н.А. Кузнецов

2025
29 • 7

1065СТРУКТУРНАЯ КОМПЬЮТЕРНАЯ БИОЛОГИЯ / STRUCTURAL COMPUTATIONAL BIOLOGY

damaged strand, thereby ensuring effective binding of the 
dsDNA substrate by the ABH2 enzyme (Yang et al., 2008; 
Yi et al., 2009; Waheed et al., 2020).

Molecular dynamic analysis of structural data and experi-
mental verification of activity of recombinant preparations of 
wild-type ABH2 and several of its mutant forms, conducted 
by our group previously, allowed establishment of the role 
of Y122, I168, and D173 amino acid residues, which form 
direct contacts with bases m1A, m3C, as well as m5C, in the 
active site pocket (Davletgildeeva et al., 2023). Comparative 
analysis of enzymes revealed the influence of substitutions of 
these amino acid residues on the enzyme’s catalytic activity, 
and only a slight decrease in DNA binding efficiency. The 
obtained data suggested that these residues are responsible 
for precision positioning of the flipped damaged nucleotide 
in the active site, which ensures effective catalytic reaction 
(Davletgildeeva et al., 2023).

It should be noted that the broad spectrum of substrate 
specificity of the ABH2 enzyme and the complex catalytic 
mechanism of action, including cofactor and cosubstrate 
for reaction implementation, complicate detailed studies of 
the molecular mechanism of damaged DNA recognition and 
catalytically competent complex formation as well as local 
conformational changes affecting catalytic reaction efficiency. 
Due to the above, in the present study, with the aim of further 
elucidating the mechanism of substrate specificity of human 
DNA dioxygenase ABH2 using molecular dynamics methods, 
analysis of the functional role of three amino acid residues, 
V99, F124, and S125, participating in the formation of the 
pocket where the flipped-out damaged nucleotide is located, 
was conducted.

Materials and methods
Complex models were built based on crystallographic struc-
tures of the ABH2-dsDNA complexes with metal ion (Mn2+) 
and αKG: 3BUC (for m1A), and 3RZJ (for m3C) (Yang et al., 
2008; Yi et al., 2012). DNA sequence changes, correction of 
unresolved amino acid residues and enzyme modifications 
were performed using Chimera and Modeller (Šali, Blundell, 
1993), protonation optimization of ionizable groups was done 
using the H++ server (Anandakrishnan et al., 2012). MD 
modeling was performed in GROMACS (Abraham et al., 
2015). The complex was placed in a dodecahedral cell with 
TIP3P water and 50 mM KCl (Jorgensen et al., 1983; Joung, 
Cheatham, 2008), the AMBER14SB/OL15 force field was 
used to describe the complex (Cornell et al., 1996; Zgarbová 
et al., 2011, 2015; Maier et al., 2015). 

Parameterization for m1A, m3С and αKG was performed 
using the Antechamber module (AMBER package), RESP 
charges were calculated on the REDD server, topologies of 
modified residues were converted to GROMACS format us-
ing ACPYPE (Bayly et al., 1993; Wang et al., 2004, 2006; 
Vanquelef et al., 2011; Sousa da Silva, Vranken, 2012). 

In order to preserve octahedral coordination geometry of 
Fe2+ ion under possible active site perturbations introduced by 
amino acid residue substitutions, a distributed charge model 
was used to describe the ion (Jiang et al., 2016). The follow-
ing parameters were used for MD calculations: system energy 
minimization by the steepest descent method, van der Waals 

interaction cutoff value set to 10 Å, long-range Coulomb in-
teractions accounted for by the PME (Particle Mesh Ewald) 
method (Essmann et al., 1995), hydrogen atom covalent bond 
vibration restriction by the LINCS method (Hess et al., 1997). 

After minimization, the system was heated to 310 K in NVT 
ensemble for 500 ps using a V-rescale thermostat (Bussi et al., 
2007). Then equilibration in NPT ensemble was performed for 
1 ns, pressure was maintained at 1 bar using a Parrinello–Rah-
man barostat (Parrinello, Rahman, 1981). 

Classical molecular dynamics calculations were performed 
for 250 ns duration at least three times. Trajectory analysis was 
performed using built-in GROMACS tools and the MDTraj 
library (McGibbon et al., 2015). Distribution changes between 
stable states of wild-type ABH2 enzyme complexes and its 
mutant forms with DNA substrates are shown in distance 
distribution graphs between key atoms during modeling. 
Interatomic distance distributions in MD trajectory are pre-
sented as histograms with 0.1 Å step and step height equal 
to the percentage of trajectory frames in which the distance 
falls within the corresponding range of values. For each tra-
jectory, the sum of fractions across the entire distance range 
equals 100 %.

Results and discussion

Model of the ABH2 V99A enzyme-substrate  
complex with damaged DNA
When modeling enzyme-substrate complexes both with the 
m1A-containing dsDNA substrate (hereafter m1A-DNA, 
Fig. 3a, b), and with the m3C-containing dsDNA substrate 
(hereafter m3C-DNA, Fig. 3c, d), the V99A substitution led 
to changes both in the region of loops L1 and L2 interacting 
with the nucleotide flipped into the enzyme’s active site and 
the adjacent dsDNA region, and in the cosubstrate binding 
region. Thus, in the model complex with m1A-DNA, the side 
chain of F124 amino acid residue lost π-π stacking interac-
tions with the base of the nucleotide flipped into the active site 
(Fig. 3a, b). This reduced the lifetime of the hydrogen bond 
between the hydroxyl group of Y122 and the exocyclic amino 
group of the damaged base (Fig. 4a). In the model complex 
with the m3C-containing dsDNA substrate, partial loss of 
contact between the hydroxyl group of the Y122 side chain 
and the carboxyl group of the E175 side chain also occurred 
(Fig. 4b), which also disrupted the contact network stabilizing 
the flipped-out base.

The V99A substitution induced a change in the position of 
F102 residue, which intercalates into DNA and is part of loop 
L1. Herewith, in the complex with m1A-DNA, redistribution 
of π-π contacts formed by F102 occurred from the nitrogenous 
base of the complementary strand in the wild-type enzyme 
(dG in Fig. 3a) to the nitrogenous base of the damaged strand 
in case of ABH2 V99A (dA in Fig. 3b). 

The values of the dihedral angle C-Cα-Cβ-Cγ at F102 
residue were 148.1  ±  55.3° for wild-type enzyme and 
127.2 ± 47.7° for the V99A mutant form, indicating stability 
of these positions during molecular dynamics. Meanwhile, in 
the complex with m3C-DNA, the V99A substitution induced a 
significant increase in the mobility of its side chain (dihedral 
angle C-Cα-Cβ-Cγ equals 135.6±58.6° and 100.2±100.3° for 
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the wild-type enzyme and V99A, respectively). Increased mo-
bility of F102 residue led to guanine complementary to m3C 
(dG in Fig. 3c, d) acquiring the opportunity to return inside the 
DNA structure in the mutant enzyme complex, entering into 
π-π contact with the side chain of F102, while this guanine 
was completely flipped out from the DNA double strand in 
the wild-type enzyme complex.

The V99A substitution also induced changes in interaction 
with the cosubstrate, which led to αKG adopting a catalytically 
unfavorable conformation for half of the total modeling trajec-
tory time. Changes in position of hydrophobic residues V108, 
F124, L127, and L129 in loops L1 and L2 lead to reorientation 
of amino acid residues Q112 and N159. In turn, in the wild-
type enzyme, the side chain of N159 is one of the elements 
of the contact network supporting catalytically competent 
orientation of the cosubstrate, forming a hydrogen bond with 
the α-carboxyl group of αKG. Convergence of side chains 
of Q112 and N159 residues in the ABH2 V99A mutant form 
(Fig. 4c) leads to transfer of the hydrogen bond of the amide 

group of N159 from the α-carboxyl group of αKG (Fig. 4d) 
to the ω-carboxyl group of αKG (Fig. 4e,  f), provoking its 
displacement from the optimal position for catalysis.

Thus, modeling results allow the suggestion that the V99A 
substitution, leading to disruptions in the binding of both 
substrate and cosubstrate in the enzyme’s active site, should 
cause significant activity reduction. These data are in a good 
agreement with experimental results obtained previously for 
the V99A mutant form, revealing significant reduction (Mon-
sen et al., 2010) or complete loss (Davletgildeeva et al., 2025) 
of ABH2 V99A catalytic activity toward dsDNA substrates 
containing m1A or m3C as damage.

Model of the ABH2 F124A enzyme-substrate  
complex with damaged DNA
To determine the functional role of F124 residue, modeling of 
complexes of the ABH2 F124A mutant form with m1A- and 
m3C-containing dsDNA was performed (Fig.  5). Detailed 
analysis of distribution changes of distances between key 

Fig. 3. Representative MD structures of ABH2 WT in complex with m1A-DNA (a) and m3C-DNA (c), and ABH2 V99A in complex with 
m1A-DNA (b) and m3C-DNA (d).
Key amino acid residues of the active site, damaged nitrogenous base, αKG and Mn2+ ion are shown. Loops L1 (blue) and L2 (pink) are 
highlighted with corresponding colors.
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atoms of the active site in case of F124A substitution revealed 
destabilization of both the flipped methylated nitrogenous base 
and αKG in the enzyme’s active site.

Thus, the F124A substitution, directly leading to loss of 
π-π stacking between the F124 side chain and the nitrog-
enous base, induces rotation and displacement of the flipped 
base from the enzyme’s active site, with concomitant loss of  
hydrogen bonds with side chains of Y122, D173, E175 resi-
dues (Fig. 6a, b). The hydrogen bond between the hydroxyl 
group of S125 residue and the corresponding phosphate group 
of the nucleotide backbone is also lost, reflecting deterioration 
of contact between loop L2 and DNA (Fig. 6c).

The cosubstrate also loses catalytically competent position 
as a result of restructuring of the hydrogen bond network 
involving amino acid residues coordinating it. The amide 

group of N159 maintains a hydrogen bond predominantly 
with the ω-carboxyl group of αKG instead of the α-carboxyl 
group (Fig. 6d). Destabilization of the cosubstrate position 
is reflected in changes in the nature of contacts between side 
chains of Y161 and R248 residues and the ω-carboxyl group 
of αKG. If in the wild-type enzyme complex, stable hydrogen 
bonds are maintained between the guanidinium group of R248 
and O2 atom of the ω-carboxyl group of αKG, and between 
the hydroxyl group of Y161 and O1 atom of the ω-carboxyl 
group, then in the ABH2 F124A mutant form complex, expan-
sion of these distance distributions occurs, indicating contact 
destabilization (Fig. 6d, e).

The results of modeling indicate that amino acid residue 
F124 plays an important role in the structure of the ABH2 
enzyme active site. This conclusion agrees with data (Chen et 
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al., 2010; Monsen et al., 2010), as well as with data obtained 
previously in our laboratory (Davletgildeeva et al., 2025), ac-
cording to which the ABH2 F124A mutant form completely 
lost catalytic activity toward m1A- and m3C-containing DNA 
substrates.

Model of the ABH2 S125A enzyme-substrate  
complex with damaged DNA
The S125A substitution in the ABH2 enzyme causes loss of 
the hydrogen bond between the hydroxyl group of the amino 
acid residue and the 5′-phosphate group of the damaged 
nucleotide, leading to loss of direct interaction of loop L2 
with m1A- (Fig. 7a, b) and m3C-DNA (Fig. 7c, d). Analysis 
of distance changes between key residues of the active site 
showed that in the enzyme complex with m1A-DNA, loss of 
loop L2 interaction with DNA causes loss of the hydrogen 
bond between the hydroxyl group of Y122 residue from 
L2 and the exocyclic amino group of m1A (Fig. 8a). At the 
same time, convergence of guanidinium groups of R110 and 
R172 residues with the O3′ atom of the nucleotide of the 
flipped nitrogenous base and the О5′ atom of the nucleotide 
located 5′ to the flipped nitrogenous base, respectively, occurs  
(Fig. 8b, c). Thus, in case of DNA substrate containing m1A, 
the S125A substitution leads to R110 and R172 amino acid 
residues binding more strongly to the DNA sugar-phosphate 
backbone.

Unlike the ABH2 S125A enzyme complex with m1A-
DNA, in the model complex with m3C-DNA, convergence 
of guanidinium groups of R110 and R172 residues with 
the sugar-phosphate backbone does not occur (Fig.  7c, d). 

Meanwhile, compared to the WT enzyme, in case of S125A 
substitution, stability of the hydrogen bond between the side 
chain of E175 residue and the exocyclic amino group of m3С 
decreases (Fig. 8d).

Deterioration of direct contact with the flipped base and 
possible compensatory restructuring in case of S125A substitu-
tion in the ABH2 active site agrees with the results obtained 
by B. Chen et al., since their work showed that the ABH2 
S125A mutant form retains catalytic activity toward dsDNA 
containing m1A as damage (Chen et al., 2010). However, in a 
later work (Davletgildeeva et al., 2025), it was shown that this 
substitution leads to loss of ABH2 catalytic activity toward 
both m3C- and m1A-containing DNA under the used reaction 
conditions. This suggests that compensatory restructuring 
that occurs according to modeling data in the ABH2 structure 
upon S125A substitution cannot fully preserve the enzyme’s 
catalytic activity on all types of DNA substrates.

Conclusion
Introduction of the V99A substitution into the ABH2 en
zyme affected other amino acid residues forming the 
hydrophobic network of which the substituted residue is a 
part. This led to negative influence on functional loops L1 
and L2, causing destabilization of their position, which, in 
turn, led to reorientation or displacement of key amino acid 
residues, Y122, E175, and F102, comprised in these loops. 
Additionally, the V99A substitution led to a catalytically 
unfavorable conformation of αKG in the enzyme’s active 
site. The obtained data confirm the role of V99 amino acid 
residue as an important participant in intraprotein coordination 
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d

Fig. 5. Representative MD structures of complexes ABH2 WT with m1A-DNA (a) and m3C-DNA (c), and ABH2 F124A with m1A-DNA 
(b) and with m3C-DNA (d). 
Key amino acid residues of the active site, damaged nitrogenous base, αKG and Mn2+ ion are shown. Loop L2 is highlighted with color 
(pink).
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necessary for effective oxidation of methyl groups in damaged 
DNA bases by the ABH2 enzyme.

Substitution of amino acid residue F124, localized in NRL, 
led to significant displacement of both L1 and L2 loops and 
the damaged base itself relative to each other due to loss of 
π-π stacking with the damaged nitrogenous base. This sub-
stitution also led to changes in Fe2+ ion coordination, both 
through changes in coordination type by the αKG molecule 
and through additional coordination by D173 amino acid 
residue. The obtained data suggest extreme importance of 
F124 amino acid residue in the catalytic process carried out 
by ABH2 DNA dioxygenase.

The S125A substitution led to loss of direct interaction 
of loop L2 with the 5′-phosphate group of the damaged 
nucleotide; however, according to MD modeling data, this 

contact can be partially compensated by formation of bonds 
between R110 and R172 amino acid residues and the DNA 
sugar-phosphate backbone. It should be noted that such 
contact compensation was found only in case of the ABH2 
S125A complex with m1A-containing DNA substrate, but not 
in case of m3C, which indirectly indicates a more complex 
mechanism responsible for recognition of different damages 
in the enzyme’s active site.

Thus, the MD modeling data obtained in the present work 
for complexes of human ABH2 DNA dioxygenase mutant 
forms containing V99A, F124A, or S125A amino acid sub-
stitutions with m1A- and m3C-containing DNA substrates 
indicate the important role of all three amino acid residues in 
ensuring formation of a catalytically competent state of the 
active site when interacting with damaged DNA.
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Fig. 7. Representative MD structures of complexes ABH2 WT with m1A-DNA (a) and m3C-DNA (c), and ABH2 S125A with 
m1A-DNA (b) and with m3C-DNA (d). 
Key amino acid residues of the active site, damaged nitrogenous base, αKG and Mn2+ ion are shown. Loop L2 is highlighted 
with color (pink).

Fig. 8. Distance distributions between key atoms when modeling complexes of the wild-type ABH2 enzyme and its 
S125A mutant form with DNA substrates.
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Structural basis of the phosphoramidate  
N-benzimidazole group’s influence on modified primer  
extension efficiency by Taq DNA polymerase 
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Abstract. We recently proposed a novel class of nucleic acid derivatives – phosphoramidate benzoazole oligonucleo­
tides (PABAOs). In these compounds, one of the non-bridging oxygen atoms is replaced by a phosphoramidate N-ben­
zoazole group, such as benzimidazole, dimethylbenzimidazole, benzoxazole, or benzothiazole. Studies of the proper­
ties of these derivatives have shown that their use in PCR enhances the specificity and selectivity of the analysis. The 
study investigates the effect of phosphoramide N-benzimidazole modification of DNA primers on their elongation by 
Taq DNA polymerase using molecular dynamics simulations. We examined perfectly matched primer-template com­
plexes with modifications at positions one through six from the 3’-end of the primer. Prior experimental work demon­
strated that the degree of elongation suppression depends on the modification position: the closer to the 3’-end, the 
stronger the inhibition, with maximal suppression observed for the first position, especially in mismatched complexes. 
Furthermore, incomplete elongation products were experimentally observed for primers modified at the fourth posi­
tion. Our molecular dynamics simulations and subsequent analysis revealed the molecular mechanisms underlying 
the interaction of modified primers with the enzyme. These include steric hindrance that impedes polymerase pro­
gression along the modified strand and local distortions in the DNA structure, which explain the experimentally ob­
served trends. We established that both different stereoisomers of the phosphoramidate groups and conformers of the 
phosphoramidate N-benzimidazole moiety differentially affect the structure of the enzyme-substrate complex and the 
efficiency of Taq DNA polymerase interaction with the modified DNA complex. Modification of the first and second in­
ternucleoside phosphate from the 3’-end of the primer causes the most significant perturbation to the structure of the 
protein-nucleic acid complex. When the modification is located at the fourth phosphate group, the N-benzimidazole 
moiety occupies a specific pocket of the enzyme. These findings provide a foundation for the rational design of specific 
DNA primers bearing modified N-benzimidazole moieties with tailored properties for use in PCR diagnostics.
Key words: N-benzimidazole oligonucleotides; PABAO; molecular dynamics; structure; Taq DNA polymerase; molecular 
diagnostics
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Структурные основы влияния фосфорамидной 
N-бензимидазольной группы на эффективность удлинения 
модифицированного праймера Taq ДНК-полимеразой 
А.А. Бердюгин 1, 2, В.М. Голышев 1, 2, А.А. Ломзов 1, 2 
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Аннотация. Недавно нами был предложен новый класс производных нуклеиновых кислот – фосфорамидные 
бензоазольные олигонуклеотиды. В них один из немостиковых атомов кислорода замещен на фосфорамид­
ную N-бензоазольную группу: бензимидазольную, диметилбензимидазольную, бензоксазольную или бензо­
тиазольную. Изучение свойств таких производных показало, что их применение в ПЦР увеличивает специ­
фичность и селективность анализа. Данное исследование посвящено изучению влияния фосфорамидной 
N-бензимидазольной модификации ДНК-праймеров на эффективность их удлинения Taq ДНК-полимеразой при 
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помощи метода молекулярной динамики. Мы рассматривали совершенные комплексы нуклеиновых кислот с 
модификациями в положениях с первого по шестое считая от 3’-конца праймера. Ранее было показано, что 
степень подавления элонгации зависит от положения модификации: чем ближе к 3’-концу, тем сильнее ингиби­
рование, а максимальное подавление наблюдается при модификации в первом положении, особенно в несо­
вершенных комплексах. Кроме того, в экспериментах наблюдались продукты неполного удлинения праймеров 
с модификацией в четвертом положении. Проведенные компьютерное моделирование и анализ позволили 
выявить молекулярные механизмы взаимодействия модифицированных праймеров с ферментом, включая 
стерические препятствия для продвижения полимеразы по модифицированной цепи и локальные нарушения 
структуры ДНК, которые объясняют наблюдаемые экспериментально закономерности. Установлено, что как 
различные стереоизомеры фосфорамидных групп, так и конформеры фосфорамидной N-бензимидазольной 
группы по-разному влияют на структуру фермент-субстратного комплекса и эффективность взаимодействия Taq 
ДНК-полимеразы с модифицированным ДНК комплексом. Модификация первого и второго межнуклеозидного 
фосфатного остатка с 3’-конца праймера в наибольшей степени возмущает структуру белково-нуклеинового 
комплекса, а при расположении модификации в четвертом фосфатном остатке N-бензимидазольная модифи­
кация располагается в кармане фермента. Полученные результаты открывают перспективы для рационального 
конструирования специфичных, обладающими заранее заданными свойствами ДНК праймеров с модифициро­
ванными N-бензимидазольными межнуклеотидными звеньями для использования в ПЦР диагностике.
Ключевые слова: N-бензимидазольные олигонуклеотиды; ФАО; молекулярная динамика; структура; Taq ДНК-
полимераза; молекулярная диагностика

Introduction 
DNA-dependent DNA polymerase I from the bacterium  
Thermus aquaticus (Taq DNA polymerase) is a widely used 
enzyme for nucleic acid amplification by the polymerase 
chain reaction (PCR) in various applications. It possesses 
DNA polymerase and 5′→3′ exonuclease activities but lacks 
proofreading 3′→5′ exonuclease activity (Terpe, 2013). This 
enzyme is widely used for the detection of nucleic acids 
(NA) and single-nucleotide variants (point mutations) in 
diagnostic applications for various diseases, using diverse 
PCR-based methods such as real-time PCR, allele-specific 
PCR, and digital PCR (Kalendar et al., 2022; Starza et al., 
2022). Allele-specific PCR is based on the inhibition of primer 
elongation when primers form duplexes with the template 
strand containing one or more mismatches at or near the 3′-end 
of the primer (Rejali et al., 2018). Often, a single nucleotide 
substitution that disrupts full complementarity between the 
primer and the DNA template does not provide sufficient 
specificity for polymorphism detection. To enhance specific-
ity, additional single-nucleotide mismatches and/or structural 
modifications are introduced into the primer. These modifica-
tions can be incorporated either into the nucleobase or into 
the ribose-phosphate backbone and are typically positioned 
near the 3′-end of the primer (Kutyavin, 2011; Ishige et al., 
2018; Chubarov et al., 2023). In particular, substitution of the 
non-bridging oxygen atom in the phosphodiester backbone 
affects both the thermodynamic stability of the primer–tem-
plate duplex and the coordination of the terminal 3′-OH group 
within the enzyme’s active site. For example, incorporation 
of a phosphorothioate modification at the terminal or penul-
timate internucleotide phosphate linkage from the 3′-end of 
the primer results in only a modest reduction in elongation 
efficiency (5–15 %) while simultaneously enhancing ampli-
fication specificity (Di Giusto, King, 2003). Introduction of 
phosphoryl guanidine modifications into primer structures 
likewise alters the efficiency and selectivity of target nucleic 
acid sequence detection (Chubarov et al., 2020).

Recently, a novel class of nucleic acid derivatives, phos-
phoramidate benzazole oligonucleotides (PABAOs), was 
developed at the Institute of Chemical Biology and Fundamen-

tal Medicine SB RAS (Vasilyeva et al., 2023). In PABAOs, 
the non-bridging oxygen atom of the phosphate moiety is 
substituted by an N-benzazole group (N-benzimidazole, N-
benzoxazole, or N-benzothiazole) (Fig. 1). PABAOs can be 
synthesized using standard automated solid-phase phosphora-
midite chemistry.

To date, the physicochemical properties of several  
N-benzazole derivatives of NA have been investigated (Goly-
shev et al., 2024; Yushin et al., 2024; Novgorodtseva et al., 
2025) and their potential use as primers in PCR, including 
allele-specific PCR, has been shown (Chubarov et al., 2024). 
We have examined the elongation efficiency of 13-mer prim-
ers containing an N-benzimidazole modification on a 22-mer 
DNA template using Taq DNA polymerase (Golyshev et 
al., 2025). When the modification is introduced at the first 
or second internucleotide phosphate from the 3′-end of the 
primer in perfectly matched duplexes, full-length extension 

Fig.  1. Structure of a dinucleotide step of phosphoramidate benzazole 
oligonucleotides containing an N-benzimidazole group and the model 
systems used in this study. 
The position of the phosphoramidate N-benzimidazole group is indicated by 
a red asterisk.
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occurs with an efficiency of approximately 50 %. In contrast, 
for duplexes containing a single-nucleotide mismatch at the 
penultimate base pair from the 3′-end of the primer, the yield 
of full-length product is markedly reduced. Incorporation 
of the modification at the third position typically results in 
the smallest decrease in full-length product yield among the 
studied positions. Furthermore, for all perfectly matched du-
plexes bearing the modification, a distinct aborted elongation 
product was consistently observed, corresponding to a partially 
elongated primer in which the modification was at the fourth 
position from the 3′-end.

In this work, we used molecular dynamics (MD) simula-
tions to elucidate the experimental patterns of PABAO primer 
elongation by Taq DNA polymerase. Our study focused on 
how the phosphoramidate N-benzimidazole group, positioned 
at various sites along the primer, affects the structure and 
dynamics of the enzyme–substrate complex. To this end, we 
constructed molecular models and carried out MD simulations 
of both the native (unmodified) and a series of modified nucleic 
acid substrates containing the N-benzimidazole modification at 
the 1st through 6th internucleotide phosphate positions from 
the 3′-end of the primer, as well as their complexes with Taq 
DNA polymerase. The simulation results correlate well with 
experimental data and provide a mechanistic explanation for 
the effects observed in vitro.

Methods
Model building. The structure of the Taq polymerase–DNA 
complex was constructed based on the experimentally de-
termined crystal structure with PDB ID: 1QTM as follows. 
The protein coordinates, including the bound nucleoside tri-
phosphate (dNTP) and magnesium ions, were retained from 
this structure. The DNA complex of the template strand with 
the primer was modeled by building a protein–nucleic acid 
complex using AlphaFold3 software (Abramson et al., 2024). 
As input for these calculations, we provided the amino acid 
sequence of Thermus aquaticus DNA polymerase I (UniProt 
ID: P19821), along with the nucleotide sequences of the DNA 
template and either the unextended or partially extended 
primers, an incoming deoxyribonucleoside triphosphate 
(dNTP), and two Mg2+ ions in catalytic site. The resulting 
AlphaFold3-predicted structure was then superimposed onto 
the experimentally determined structure 1QTM by aligning 
the protein backbone based on Cα atoms of equivalent 
residues. Subsequently, the native nucleic acid components 
in the 1QTM structure were replaced with the DNA duplexes 
generated by AlphaFold3. For each constructed model, the 
original dNTP was substituted with the nucleotide triphos-
phate complementary to the base in template at the active 
site, ensuring correct base pairing for the elongation step 
under investigation.

Since the N-benzimidazole modification generally requires 
additional space for proper geometric accommodation within 
the DNA/Taq polymerase complex, we employed amino acid 
side-chain rotamer libraries (Shapovalov, Dunbrack, 2011) 
implemented in UCSF Chimera (Pettersen et al., 2004) to 
minimize van der Waals clashes between protein atoms and 
bulky modification.

Partial atomic charges for amino acid residues in each 
complex were assigned using the pdb2pqr software (ver-

sion 3.7.1) (Unni et al., 2011). The pH was set to 8.3 to match 
the experimental primer extension conditions (Golyshev et al., 
2025). As a result, certain complexes exhibited differences in 
the protonation states of specific charged residues. Out of the 
36 modeled complexes, seven displayed distinct protonation 
patterns. In the complexes L0/X2/R1, L0/X2/R2, L0/X3/
R1, L0/X3/R2, and L1/X2/R2 (notation defined below), the 
residues LYS540, ASP610, LYS663, and ASP785 were found 
in their protonated forms. In the complexes L0/X4/R1 and  
L0/X4/R2, the residues LYS663, LYS762, and GLU786 were 
also protonated.

The primer/template complexes were obtained from the 
protein–nucleic acid complex by removing all residues except 
those belonging to the DNA strands.

Molecular dynamics simulation. Structural investiga-
tions of complexes formed between native or modified DNA 
and Taq DNA polymerase were carried out using molecular 
dynamics (MD) simulations and subsequent analysis with 
the AMBER20 software package (Case et al., 2020). Simu-
lations were performed using parallel computing on both 
central processing units (CPUs) and graphics processing 
units (GPUs) with CUDA architecture. All MD calculations 
employed the ff19SB force field (Tian et al., 2020) for Taq 
polymerase, the OL21 force field (Zgarbová et al., 2021) for 
native DNA, and gaff2 parameters for the N-benzimidazole-
modified phosphate residues. Parameters for magnesium and 
sodium ions were taken from (Li Z. et al., 2020). These force 
fields represent the most up-to-date and rigorously validated 
options currently recommended by the AMBER developers 
for reliable biomolecular simulations. Parameters for the 
deoxyribonucleoside triphosphates (dNTPs) were adopted 
from (Meagher et al., 2003), which remain the only published 
and widely accepted dNTP parameters compatible with the 
AMBER force field family.

MD simulation protocol. Initial models were first relaxed 
in implicit solvent (saltcon = 0.10 M, igb = 1, T = 1 K) using 
the conjugate gradient method for 2,500 steps. The systems 
were then solvated in an octahedral box of OPC water mole
cules (Izadi et al., 2014), with a minimum distance of 14 Å 
between any solute atom and the box boundary. Sodium ions 
(Na+) were added to neutralize the total charge of the periodic 
cell. Subsequently, the solvated systems underwent restrained 
energy minimization for 10,000 steps (with the first 200 steps 
performed using the steepest descent algorithm), applying po-
sitional restraints of 1.0 kcal/(mol·Å²) on all complex’ heavy 
atoms to prevent structural distortion during initial solvent re-
laxation. Following minimization, the systems were gradually 
heated from 0 to 300 K over 2 ns under constant volume (NVT 
ensemble), using Langevin dynamics for temperature control 
(ntt = 3, gamma_ln = 1.0). Pressure was then equilibrated to 
1 atm over an additional 1 ns using a Monte Carlo barostat 
(NPT ensemble). A final unrestrained energy minimization 
was performed for 10,000  steps (first 200  steps: steepest 
descent) to remove any residual clashes after equilibration. 
A time step of 2 fs was used throughout, with bonds involving 
hydrogen atoms constrained via the SHAKE algorithm. And 
at the final stage, MD simulation was carried out for 100 ns 
with parameters similar to the heating stage, but without 
imposing positional restrictions on the atoms of the model  
system.
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The MD simulation trajectories were analyzed using the 
cpptraj module from the AMBER20 package (Roe, Cheatham, 
2013). For each trajectory, the 10 most representative struc-
tures were identified through hierarchical clustering analysis, 
using the average-linkage algorithm and root-mean-square 
deviation (RMSD) of backbone atoms as the distance metric.

Molecular graphics were prepared using UCSF Chimera 
version 1.15 (Pettersen et al., 2004).

Results

Selection and construction of molecular models
The structural and dynamic properties of  PABAO complexes 
with Taq DNA polymerase were investigated using a com-
prehensive set of model systems. We employed the DNA 
complex formed by the primer 5′-GCTAACTAACTCC-3′ and 
the template strand 5′-GATATGATGGGAGTTAGTTAGC-3′, 
which was previously characterized in our experimental study 
of modified primer elongation efficiency (Golyshev et al., 
2025). It has been shown that the introduction of benzoazole 
modifications at various positions of the primer affects the 
efficiency and specificity of its extension. As part of this 
work, MD modeling of a set of protein-nucleic acid com-
plexes, as well as individual DNA complexes, was carried 
out. Both native DNA complexes and complexes containing 
N-benzimidazole modifications at the internucleotide phos-
phate groups from the 1st to the 6th position from the 3′-end 
of the primer were considered. To evaluate the effect of primer 
elongation and to obtain more reliable insights, we analyzed 
oligonucleotide complexes containing unextended primers 
with N-benzimidazole modifications positioned at 1 through 
4 internucleotide phosphate from the 3′-end of the primer. In 
addition, we examined systems in which the primer initially 
bearing the N-benzimidazole modification at the first position 
was extended by 1 to 5 nucleotides. Following such elonga-
tion, the modification was at positions 2 through 6 relative 
to the new 3′-end of the primer. The sequences of the model 
oligonucleotide complexes and their corresponding nomen-
clature are provided in Figure 1.

Model construction was carried out based on the crystal 
structure with Protein Data Bank identifier (PDB ID) 1QTM, 
as described in the Methods section. This structure represents 
a fragment of Thermus aquaticus DNA polymerase I in its 
closed conformation, bound to a dideoxyribonucleoside 
triphosphate (ddNTP) and Mg2+, and lacking exonuclease 
domain. The modification was introduced into the primer by 
replacing the native phosphate group with a phosphoramidate 
bearing an N-benzimidazole moiety (Fig.  1). Both stereo-
isomers of the phosphoramidate linkage (Sp and Rp) were 
considered in our study.

Analysis of the constructed molecular models of modified 
DNA in complex with Taq polymerase revealed that, for each 
phosphoramidate stereoisomer (Sp and Rp), the N-benzimi
dazole group can adopt two distinct orientations. These ori-
entations correspond to the dihedral angle OP–P–N–C (where 
OP is the bridging oxygen, P is the phosphorus atom, N is the 
benzimidazole nitrogen, and C is the adjacent carbon in the 
heterocycle) of approximately –100 or +100°. Preliminary 
molecular dynamics simulations of the protein–nucleic acid 
complexes indicated that no transitions occurred between these 

two orientations of the N-benzimidazole group during the 
simulation timescale. Therefore, we explicitly considered both 
conformers (rotamers). For the model DNA complexes, we 
adopted the following nomenclature: Li/Xj/Rk and Li/Xj/Sk, 
where i = 0–5 denotes the number of nucleotides by which 
the primer has been elongated, j = 1–6 indicates the position 
of the internucleotide phosphate (counting from the 3′-end 
of the primer) at which the N-benzimidazole modification is 
introduced, k = 1, 2 specifies the rotameric conformation of the 
benzimidazole group for each phosphoramidate stereoisomer. 
For the rotamers R1 and S2, the dihedral angle defined by 
the atoms OP2–P–N–C (for the Rp isomer) or OP1–P–N–C 
(for the Sp isomer) was approximately –100°. In contrast, for 
rotamers R2 and S1, the corresponding dihedral angle adopted 
a value of approximately +100°. In these configurations, the 
spatial orientation of the benzoazole ring in the R1 and S1 ro-
tamers directs the modified group away from the major groove 
of the DNA duplex, whereas in the R2 and S2 rotamers, the 
benzoazole ring is oriented toward the minor groove (Fig. 2). 
For modeling, 36 complexes were built with modified DNA 
and three with native DNA – non-extended and two extended 
by 3 and 5 nt (L0, L3 and L5). Simulations were also carried 
out for all DNA from these models.

During the construction of the protein–DNA complexes  
L3/X4/S2, L0/X4/S2, L0/X2/S2, and L4/X5/S2, significant 
steric clashes were observed between the N-benzimidazole–
modified DNA residue and the surrounding protein residues. 
In these cases, either the initial models were too distorted 
to proceed with stable MD simulations, or during the early 
stages of simulation (within the first few nanoseconds), the S2 
rotamer spontaneously converted to the S1 conformation to 
relieve the clashes. To enable simulations with the S2 rotamer, 
we started from the relaxed structure of the corresponding S1 
complex and performed 25 ns of restrained MD simulation 
in which a flat-bottom harmonic potential was applied to the 
dihedral angle OP1–P–N–C to gradually drive the system 
toward the S2 conformation (during the first 0.2 ns, the force 
constant of the restraint was linearly increased from 0 to 1, 
while the flat-bottom potential was defined with “walls” at 
–130.0 to –125.0° and –115.0 to –110.0°, the force constant 
for the restraining potential was set to 200.0 kcal/mol/rad). 
Following this restrained relaxation, the rotamer of the modi-
fied residue adopted the desired S2 conformation within the 
protein–DNA complex. Subsequently, a 100-ns unrestrained 
production MD trajectory was generated from this stabilized 
structure. This trajectory was analyzed using the same proto-
cols applied to all other simulated systems.

Conformational flexibility analysis

Stability of the protein–nucleic acid complex
During MD simulations, the protein structure in certain mo
dels underwent noticeable conformational rearrangements, 
as evidenced by a pronounced increase in root-mean-square 
deviation (RMSD) values for the protein backbone (Fig. S1)1. 
In these trajectories, the RMSD exhibited considerable fluctua-
tions during the first 50 ns, indicating incomplete equilibra-
tion. To ensure robust and reliable analysis, we extended the 
1 Supplementary Figures S1–S10 and Tables S1–S6 are available at: 
https://vavilov.elpub.ru/jour/manager/files/Suppl_Berdyugin_Engl_29_7.pdf

https://vavilov.elpub.ru/jour/manager/files/Suppl_Berdyugin_Engl_29_7.pdf
https://vavilov.elpub.ru/jour/manager/files/Suppl_Berdyugin_Engl_29_7.pdf
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simulations of these specific complexes by an additional 50 ns 
beyond the initial 100-ns run, allowing the systems to reach an 
equilibrium. The RMSD profiles for the full 150-ns trajecto-
ries are shown in Figure S1. For all subsequent structural and 
dynamic analyses, we used only the final 50 ns.

Analysis of the MD trajectories revealed that the single-
stranded region of the template strand exhibited high confor-
mational flexibility and, as expected, did not adopt any stable 
or preferred conformation during the simulations. Due to its 
intrinsic disorder and lack of defined structural features, this 
single-stranded segment was excluded from further struc-
tural analysis. Figure S2 shows the RMSD profiles along the 
trajectories for all studied complexes. It is evident that, over 
the 50-ns analysis segment, all structures remain stable, as 
indicated by the plateauing of RMSD values after an initial 
brief increase during the first 1–5 ns. The average RMSD 
value across all analyzed complexes is 2.63 ± 0.29 Å, with a 
mean standard deviation along the trajectory of 0.39 ± 0.11 Å.

Protein structural stability 
To assess structural changes in the protein during MD simu-
lations, RMSD time profiles were calculated for the protein 
Cα atoms over the last 50 ns of each trajectory, using the first 
frame of the respective analysis segment as the reference 
structure (Fig. S3). The presented data clearly indicate that, 
following initial relaxation during the first 50 ns, the protein 
structure remains highly stable in all modeled complexes.

The analysis of RMSD distributions across the trajectories, 
presented in Figure  S4, shows that RMSD values remain 
within a narrow range, below 3.5  Å, and the distributions 
themselves are relatively sharp, confirming the high confor-
mational stability of the protein throughout the simulations. 
The presence of multiple peaks in some RMSD distributions 
indicates that the system samples several distinct yet closely 
related conformational substates during the simulation. This 
observation is corroborated by the subsequent hierarchical 

cluster analysis (see below), which identifies multiple popu-
lated clusters corresponding to these substates. Importantly, 
the structural differences between these clusters are minor.

Stability of the DNA structure within the complex
To assess DNA structural changes during MD simulations, 
we calculated the RMSD over the last 50 ns of each trajec-
tory, using the first frame of this segment as the reference 
structure (Fig.  S5). For this analysis, we considered two 
distinct representations of the nucleic acid component: the 
duplex region only and the full DNA construct, including the 
single-stranded 5′-overhang of the template strand. This is 
attributed to the high conformational flexibility of the single-
stranded overhang. As shown in the data, the duplex region 
of the DNA remains highly stable in all trajectories after the 
initial 50 ns. The RMSD analysis along the trajectories for 
DNA in complex with the protein performed both including 
and excluding the single-stranded template overhang revealed 
a significant difference in the average RMSD values and their 
standard deviations (averaged across all models). When the 
single-stranded overhang was included, the mean RMSD 
was 3.46 ± 0.97 Å, with a trajectory-wise standard deviation 
of 0.84 ± 0.31 Å. In contrast, when only the duplex region 
(primer–template hybrid) was considered, the mean RMSD 
dropped significantly to 1.97 ± 0.77 Å, with a much lower 
standard deviation of 0.39 ± 0.12 Å. Thus, to ensure a reliable 
and meaningful structural analysis, we excluded the single-
stranded DNA segment from our evaluations, as it adopted 
highly variable conformations along the MD trajectories and 
did not exhibit a stable or functionally relevant orientation 
within the complex.

Stability of the structure for simulated free DNA
RMSD analysis of DNA trajectories in the absence of pro-
tein revealed significantly higher conformational mobility 
compared to the DNA within the Taq polymerase complex 

Fig. 2. Spatial structure of DNA dinucleotide steps: native (a) and modified for the studied stereoisomers and conformers 
(b) R1, (c) S1, (d) R2 and (e) S2.

а b

d

c

e



A.A. Berdugin, V.M. Golyshev 
A.A. Lomzov

1078 Vavilovskii Zhurnal Genetiki i Selektsii / Vavilov Journal of Genetics and Breeding • 2025 • 29 • 7

Structural basis of  Taq DNA polymerase elongation 
of N-benzimidazole-modified primers

(Fig. S6). For the full DNA construct (including the single-
stranded overhang), the average RMSD and its standard 
deviation (averaged across all models) were 5.11  ±  1.72 
and 1.29 ± 0.61 Å, respectively. When the single-stranded 
region was excluded, these values decreased to 2.45 ± 0.41 
and 0.50  ±  0.12  Å. These results clearly demonstrate that 
Taq polymerase substantially restricts the conformational 
flexibility of both the duplex and single-stranded regions of 
DNA upon complex formation. Moreover, the greater spread 
in RMSD values (evidenced by higher standard deviations) 
for free DNA indicates a broader ensemble of sampled con-
formations, whereas the protein-bound DNA adopts a more 
constrained and homogeneous structural state.

Analysis of protein, DNA, and protein–nucleic acid complex 
structures
To evaluate the impact of the N-benzimidazole modification 
on protein conformation, we calculated pairwise RMSD values 
between Cα atoms of the most representative structures (i. e., 
cluster centroids) extracted from the last 50 ns of each MD 
trajectory via hierarchical clustering. These RMSD values 
were used to construct a two-dimensional heatmap (Fig. S7), 
which visualizes structural similarities and differences across 
all simulated complexes. The analysis revealed that the ave
rage RMSD between native and modified complexes is very 
similar, with a mean value of ~2.60 Å, indicating that the 
overall protein fold is largely preserved regardless of the 
presence, position, or stereochemistry of the modification. 
However, when comparing individual modified systems, span-
ning different modification positions (X1–X6), stereoisomers 
(Rp/Sp), and rotamers (R1/R2, S1/S2), the pairwise RMSD 
values exhibit a broader range, from 1.31 to 4.37 Å. Notably, 
the average RMSD of each structure relative to all others falls 
within a relatively narrow interval of 2.33–3.26 Å (Table S1), 
confirming that all modeled complexes adopt globally similar 

conformations. The average RMSD values for each modifi-
cation position, averaged over both stereoisomers and rota
mers follow the trend: X1 < X2 < X6 < X4 < X3 < X5. This 
ordering indicates that modifications at positions X3 and X5 
induce the largest structural perturbations in Taq polymerase, 
whereas modifications near the 3′-terminus (X1, X2) are best 
accommodated with minimal impact on the protein conforma-
tion. Furthermore, when RMSD values are averaged across 
all modification positions for each rotamer/stereoisomer 
type, the following trend emerges: S1 > R1 > R2 > S2. This 
sequence correlates directly with the spatial orientation of 
the N-benzimidazole group relative to the DNA duplex, the 
benzimidazole moiety toward the major groove leading to 
greater steric interference with polymerase residues.

Comparison of the most representative structures from 
the MD trajectories across all model complexes reveals that 
structural differences are primarily localized to the fingers and 
thumb domains, while the palm domain remains remarkably 
stable in all systems (Fig.  3). Additionally, the N-terminal 
region of the protein exhibits high conformational flexibility. 
Such variations are associated both with the conformational 
mobility of the thumb and fingers domains and with the effect 
of modification on their arrangement.

Structure of DNA
It is well established that nucleic acid (NA) substrates 
undergo significant conformational rearrangements upon 
binding to DNA polymerases compared to their solution-
state structures (Vinogradova, Pyshnyi, 2010). Key structural 
changes commonly observed in experimentally determined 
polymerase–DNA complexes include: sugar pucker con
formational shifts, narrowing of the minor groove, and 
induction of a pronounced bend in the DNA duplex at the 
active site. To characterize these effects in our systems, we 
compared the structures of the DNA substrate in the free 
state (i. e., without protein) and in complex with Taq DNA 
polymerase, using the most representative conformations 
identified by hierarchical clustering of the MD trajectories. 
RMSDs between the duplex regions of the free and protein-
bound DNA structures were calculated for all combinations 
of stereoisomers (Rp and Sp), rotamers (R1/R2 and S1/S2), 
and extension states (elongated and nonelongated primers). 
These RMSD values are summarized in Table S2.

The average RMSD between the duplex regions of DNA in 
the free state and in complex with Taq polymerase across all 
modeled systems is approximately 2.4 Å. The largest structural 
deviation was observed for the L0/X4/S1 complex, with an 
RMSD of 3.3 Å. This pronounced difference is attributed to 
a marked widening of the minor groove in the protein-bound 
state. In this orientation, the modification effectively shields 
the nucleobases from solvent exposure and induces local 
stretching of the sugar–phosphate backbone. In contrast, the 
smallest RMSD values (i. e., the highest structural similarity 
between free and bound DNA) were found for modifications 
at positions X5 and X6 (Table S2). Furthermore, the RMSD 
between unmodified and modified DNA substrates – both in 
complex with Taq polymerase – averages ~1.75 Å. Notably, 
this deviation is smaller for modifications oriented toward the 
major groove, as these conformers minimize direct contacts 
with the protein.

Fig. 3. Superposition of the most representative protein structures from 
the MD trajectories of all studied complexes, obtained by hierarchical 
clustering. 
The palm domain is shown in gray, the thumb domain in blue, and the fingers 
domain in green. Protein structures were aligned based on the palm domain 
to highlight conformational differences in the mobile domains. The panel on 
the right shows the same superposition rotated by 90° around the vertical axis 
relative to the left panel, providing a side view of domain arrangements.
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The average RMSD which computed across all rotamers 
and stereoisomers for the DNA duplex in complex with Taq 
polymerase is approximately 2.0 Å. Lower RMSD values 
are observed for systems in which the N-benzimidazole 
modification adopts a consistent spatial orientation. Structural 
analysis further reveals that, even in cases of pronounced 
interactions between the modification and protein residues, 
the overall architecture of the duplex region remains largely 
unperturbed. In general, the structure of a substrate with a 
modification largely depends on which regions of the protein 
it interacts with, which is determined by both the isomer and 
the conformer of the N-benzimidazole residue.

The structural parameters of the investigated nucleic acid 
substrates are predominantly characteristic of B-form DNA. 
However, localized deviations from ideal B-form DNA are 
observed in the vicinity of the 3′-end of the primer and at 
the site of N-benzimidazole modification. In particular, for 
nonelongated model systems (L0), a pronounced increase 
in the Roll and Buckle parameters was detected for AT base 
pairs adjacent to the catalytic center. For both extended and 
unextended complexes, the propeller twist angle of these AT 
base pairs was consistently negative, a feature more typical 
for A-tract DNA than canonical B-DNA (Strahs, Schlick, 
2000). The Inclination of base pairs relative to the helical axis 
increased the closer the N-benzimidazole modification was 
positioned to the catalytic center. In contrast, this deviation 
markedly decreased in complexes with an elongated duplex 
region (L1–L5). Notably, the average Twist value across all 
systems remained approximately 34°, independent of duplex 
length or the presence and position of the modification. This 
constancy in Twist suggests that the helical packing density 
of the DNA duplex is largely preserved.

In all studied complexes, a significant widening of the DNA 
minor groove (defined as the distance between phosphorus 
atoms on opposite strands) was observed in the region ad-
jacent to the catalytic center, reaching 15–18 Å. In modified 
complexes, this widening increased further with the length of 
the duplex region (i. e., in L1–L5 systems), which corresponds 
to the progressive displacement of the modification away 
from the 3′-end of the primer. In contrast, native (unmodified) 
complexes exhibited a much smaller degree of minor groove 
width increase. No clear correlation was found between the 
structural parameters of the nucleic acid substrate and the 
specific spatial orientation of the modification. This suggests 
that the position of the modification relative to the 3′-primer 
terminus dominates its impact on global DNA conformation 
within the polymerase complex.

Analysis of sugar pucker conformations in the DNA duplex 
reveals that, in most cases, deoxyribose adopts the C2′-endo 
conformation which is characteristic of canonical B-form 
DNA. However, near the 3′-end of the primer, specific nucleo-
tides, particularly those adjacent to the catalytic site, exhibit 
C1′-exo or O4′-endo sugar puckers. These non-canonical sugar 
conformations are indicative of local structural strain and are 
commonly associated with the catalytically active state of 
DNA polymerases.

The presence of the modification in the DNA strand within 
the Taq polymerase complex caused significant deviation from 
canonical planar base pairing only in the case of terminal and 
penultimate base pairs when the modification was located at 

the first or second position of the primer. Structural analysis 
shows that the modification does not affect the nature of base 
pairing: Watson–Crick pairs with standard hydrogen bond 
lengths are formed, except for the terminal base pairs – a 
finding previously observed both experimentally and in MD 
simulations (Nonin et al., 1995; Zgarbová et al., 2014). Thus, 
the modification at the first internucleotide phosphate residue 
exerted the greatest influence on the local DNA structure 
within the polymerase complex. Overall, the presence of the 
modification does not significantly alter the DNA structure, 
either in free duplexes or in the enzyme–substrate complex.

An analysis of the N-benzimidazole group orientation 
within the DNA duplex was performed for both the free state 
and the protein-bound complex. This was done by examining 
the dihedral angle around the P–N bond, defined by the non-
bridging phosphate oxygen (OP1 for the Rp isomer and OP2 
for the Sp isomer), the phosphorus atom, the nitrogen atom, 
and the carbon atom of the benzoazole ring. The analysis 
revealed considerable flexibility of the modified residue and 
the possibility of interconversion between rotameric states 
(Fig. S8).

Population analysis of the dihedral angles along the MD 
trajectories shows that, for both elongated and nonelongated 
systems, free DNA exhibits generally similar conformational 
preferences (Fig. S8, S9). The data indicate that the Rp isomer 
of the modified residue is predominantly oriented toward the 
minor groove, whereas the Sp isomer preferentially points to-
ward the major groove, corresponding to a dihedral angle of ap-
proximately +100°. In some cases, the modification flips away 
from the duplex, corresponding to an angle of about –100° 
(rotamers R1 and S2). The lower population of this outward 
orientation is attributed to the hydrophobic nature of the 
benzimidazole group, which tends to minimize solvent ex-
posure by interacting with the DNA strands. In most cases, 
the distributions for the two stereoisomers are qualitatively 
similar: when two peaks are present for one isomer, they are 
typically also observed for the other. Differences in peak 
amplitudes suggest that the conformational space for the 
modification is not fully sampled within the 50-ns trajectory 
of each individual model. However, when the angular prob-
ability distributions are aggregated across all modification 
positions for each stereoisomer, the average dihedral angles 
for rotamers 1 and 2 of each isomer nearly coincide (Fig. 4), 
indicating consistent conformational preferences irrespective 
of modification position.

In the protein-bound complex, the orientation of the modi-
fication undergoes significant changes compared to free DNA 
(Fig. 4). The plots of dihedral angle values and their proba
bility distributions (Fig.  4, S9, and S10) show that, along 
the MD trajectories, angles are observed not only between 
the two main peaks characteristic of free DNA (+100° and 
–100°), but also shifted beyond these values to larger absolute 
magnitudes. This indicates substantial interactions between the 
modified residue and the protein, which constrain and redirect 
the conformational preferences of the N-benzimidazole group 
relative to its behavior in the unbound state.

Comparison of the average probability distributions for 
different stereoisomers in the complexes shows that they 
differ significantly both from each other across modification 
positions and from the distributions observed for free DNA 
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(Fig. 4, S8, and S10). Notably, the probability distributions 
for rotamers R1 and R2 are markedly distinct. The main peak 
for R1 is located around –80°, corresponding to an orienta-
tion of the modification toward the major groove (i. e., away 
from the DNA helix). This is attributed to the fact that, in the 
polymerase complex, the native phosphate backbone is tightly 
coordinated by specific amino acid residues; consequently, the 
bulkier phosphoramidate modification is sterically expelled 
from the minor groove. In contrast, the primary peak for R2 
appears near +100°, indicating that the modification is directed 
into the minor groove. For the S1 rotamer, the dominant angle 
is +100°, but the modification is oriented toward the major 
groove – a consequence of the opposite stereochemistry at the 
phosphorus center compared to the Rp series. The S2 rotamer 
exhibits a markedly different behavior: its probability distribu-
tion shows multiple peaks of comparable amplitude spread 
across nearly the entire angular range, indicating that the 
modification can adopt diverse spatial orientations depending 
on its position in the primer chain (Xj). This conformational 
heterogeneity is driven by specific, position-dependent intera
ctions with the protein environment.

It should be noted that, for all examined stereoisomers, a 
distinct peak appears around 0° (Fig. 4), corresponding to an 
orientation in which the modification points away from the 
DNA helix. In this conformation, one of the amino groups of 
the five-membered ring of the N-benzimidazole moiety forms 
a hydrogen bond with the non-bridging oxygen atom of the 
adjacent phosphate group. The absence of such orientations 
in free DNA indicates that this conformation is specifically 
stabilized by additional interactions with the protein, highligh
ting the role of the polymerase in shaping the conformational 
landscape of the modified backbone.

Analysis of interactions of modification with Taq polymerase
A hierarchical cluster analysis of the last 50 ns of each MD 
trajectory was performed to identify the most representative 
structures. The spatial arrangement of the N-benzoazole 
groups relative to the polymerase active site was examined, 
and the number of protein atoms in contact with the modifica-
tion was quantified. Contact maps between the modification 
and Taq polymerase were also generated. All amino acid resi-
dues with at least one atom located within 3 Å of the modified 

phosphate group were considered to be in direct interaction 
with the modification (Tables S3 and S4). The DNA duplex 
region that engages with Taq polymerase spans 5–8 base 
pairs, and approximately 40 amino acid residues participate 
in this interaction. These residues are involved in nucleic acid 
recognition, substrate stabilization, and catalysis (Eom et al., 
1996; Li Y. et al., 1998).

Analysis of contacts between the phosphoramidate  
N-benzimidazole moiety and Taq polymerase revealed several 
key patterns. First, in the complexes L0/X1/R1, L1/X2/R2,  
L0/X3/R2, L2/X3/R1, and L4/X5/R2, the N-benzimidazole 
group was accommodated within protein pockets. More-
over, for the fourth modification position (X4) with the R 
stereoisomer, both rotamers (X4/R1 and X4/R2) occupied a 
pocket, forming stable interactions between the modification’s 
electronegative atoms and the protein’s positively charged 
arginine residues (Fig. 5).

Overall, modifications at positions 1–5 form an extensive 
network of hydrogen bonds and van der Waals contacts with 
the protein, whereas interactions for the 6th position are con-
siderably weaker. Stereochemistry also strongly influences 
the binding mode: Sp stereoisomers preferentially interact 

Fig. 5. Structural comparison of the L0/X4 complexes: overall view (left) 
and close-up of the modification interaction region with the thumb 
domain of the enzyme (right). 
Taq DNA polymerase is shown in blue, the DNA template strand in blue, and 
the primer in red. The modified N-benzoazole groups are displayed as atomic 
models, with Sp isomers colored red and orange, and Rp isomers in light and 
dark green.
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Fig. 4. Dihedral angle values of the P–N bond in the phosphoramidate linkage for rotamers 1 and 2 along MD trajectories of free DNA (left) and DNA in 
complex with the protein (right), aggregated across all studied models.
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with positively charged residues, while Rp stereoisomers 
more frequently engage in contacts with hydrophobic amino 
acids. Sp isomers are often oriented toward the major groove, 
effectively shielding the heterocyclic bases of the duplex 
from solvent exposure. In contrast, Rp isomers are predomi-
nantly directed away from the DNA and toward the protein 
surface. The presence of the modification frequently disrupts 
the regular nucleic acid structure due to interactions of the 
N-benzimidazole group with protein pockets, which induce 
strain in the sugar–phosphate backbone. Introduction of the 
modification at the first or second position of the primer leads 
to significant distortion of the terminal and penultimate base 
pairs. Moreover, in the complexes L1/X2/S2, L0/X3/R1, and 
L0/X2/R1, disruption of Watson–Crick base pairing near the 
modification site is observed.

According to the literature data, residue Arg660 from the 
fingers domain coordinates the phosphate group at the first 
position of the primer from the 3′-end, Arg587 from the palm 
domain coordinates the second internucleotide phosphate, 
and Arg536 from the thumb domain interacts with the fourth 
phosphate (Vinogradova, Pyshnyi, 2010). The presence of 
the N-benzimidazole modification is expected to neutralize 
the negative charge of the phosphate group and introduce 
steric hindrance that impedes coordination of the phosphate 
by arginine residues, which should reduce the catalytic rate. 
However, structural analysis shows that, in the case of Sp 
isomers at positions 2 and 4, the non-bridging oxygen atom of 
the phosphate moiety is still coordinated by Arg536 for both 
rotamers. Similarly, for Rp isomers with the modification at 
positions 1 or 2, at least one rotamer retains coordination of 
the phosphate oxygen by the corresponding arginine residue.

Both rotamers of the Rp isomer at the fourth position are 
accommodated within a hydrophobic pocket of the thumb 
domain, whereas the Sp isomer shows minimal interaction 
with the protein. As a result, the Rp-modified phosphate group 
impedes translocation of the polymerase to the next position 
along the DNA strand, which is required for incorporation 
of the subsequent nucleotide onto the primer. This steric and 
dynamic blockage most likely explains the accumulation of 
incomplete elongation products observed experimentally when 
the modification is located at the fourth position.

We have previously shown (Golyshev et al., 2025) that in 
primer elongation experiments with Taq DNA polymerase 
using primers bearing the N-benzimidazole modification, in-
corporation of the modification at the second position results 
in the smallest reduction in elongation efficiency for perfectly 
matched complexes. This correlates with the lowest number 
of contacts observed between the modification and the protein 
among the first three internucleotide phosphate positions. 
Furthermore, in all perfectly matched modified complexes, 
a distinct band corresponding to a partially extended primer, 
with the modification located at the 4th position from the 3′-
end, was clearly observed. This effect is most pronounced for 
primers carrying modifications at the 1st and 3rd positions. 
These experimental observations correlate well with structural 
data showing that both rotamers of the R stereoisomer at posi-
tion 4 (X4/R1 and X4/R2) are accommodated within a protein 
pocket and form stable interactions with the enzyme (Fig. 5).

Thus, steric interactions of Rp isomers with protein pockets 
can slow down – or, as in the case of the fourth modification 

position, block – the translocation of Taq DNA polymerase 
along the substrate. This is experimentally confirmed by the 
reduced polymerization rate and the appearance of abortive 
elongation products of the modified primer containing the 
phosphoramidate N-benzimidazole group.

Substrate–polymerase interaction energy
The interactions described in the previous section are reflected 
in the binding energetics between the enzyme and its substrate. 
Therefore, we calculated the interaction energy between the 
nucleic acid substrate and Taq polymerase using the Molecu-
lar Mechanics/Generalized Born Surface Area (MM/GBSA) 
calculation method, based solely on the MD trajectory of 
the protein–DNA complex. To minimize fluctuations in the 
computed free energy arising from the high flexibility of the 
single-stranded template overhang, only the duplex region of 
the nucleic acid substrate was included in the energy calcula-
tions. The energies of the DNA, protein, their complex, and 
the resulting binding (complexation) energies are reported in 
Tables S5 and S6. Analysis of the interaction energies between 
the modified nucleic acid substrates and Taq polymerase 
revealed the following trends: 1) for native (unmodified) 
complexes, the binding energy (in absolute value) increased 
with duplex length, reflecting stronger stabilization of longer 
primer–template hybrids within the polymerase active site; 
2) in contrast, no clear correlation was observed between 
binding energy and duplex length for modified complexes; 
3) notably, modifications at the 5th and 6th internucleotide 
phosphate positions exhibited weaker binding compared to 
all other model systems, which correlates with the reduced 
number of contacts between DNA and the protein observed 
in these cases.

In the case of nonelongated model systems (L0), which have 
the shortest duplex region, the complexation energy was, on 
average, significantly lower (~ –200 kcal/mol) than that of 
extended complexes (~ –180 kcal/mol). For the majority of 
complexes, S stereoisomers exhibited more favorable (i. e., 
more negative) binding energies compared to their Rp coun-
terparts. This is likely due to the greater accessibility of the 
non-bridging oxygen atom of the modified phosphate group 
in the Sp configuration, facilitating its coordination by protein 
residues. Among the two rotamers, the S1 conformation – in 
which the N-benzimidazole group is oriented toward the major 
groove – consistently displayed the most favorable binding 
energy, as this orientation leaves the non-bridging phosphate 
oxygen exposed for interaction with amino acid side chains. 
It should be noted, no direct correlation was found between 
the number of protein atoms in proximity to the modification 
(Table S3) and the computed binding energy. However, the 
strongest enzyme–substrate binding was observed for the 
complexes L0/X4/R1 and L0/X4/R2, in which the modifica-
tion is buried within a protein pocket and engages with the 
largest number of amino acid residues (Table S4).

Conclusion
In this work, we employed molecular simulation and analy-
sis to investigate the structure, dynamics, and interaction 
energetics of DNA substrates containing a phosphoramidate 
N-benzimidazole group at various positions within the primer 
strand in complex with Taq DNA polymerase. We found that 
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both the position of the modification near the 3′-end of the 
primer and its stereochemistry significantly influence interac-
tions with the enzyme. Within the enzyme–substrate complex, 
two stable rotamers were identified for each phosphoramidate 
stereoisomer (Rp and Sp). Analysis of the stereochemical 
effects revealed that Rp isomers generally exhibit stronger 
interactions with the polymerase, with the most pronounced 
binding observed when the modification is located at the 
fourth internucleotide phosphate from the 3′-end of the 
primer. Structural analysis of both DNA and protein showed 
no major global rearrangements in either biopolymer upon 
modification. Structural perturbations induced by the N-
benzimidazole group were either minor or strictly localized. 
The greatest impact on local DNA conformation within the 
polymerase complex was observed for modifications at the 
first internucleotide phosphate position.

These computational findings correlate well with experi-
mental data on the processing of PABAO primers by Taq DNA 
polymerase. In particular, they explain: 1) the reduced rate 
of full-length product formation for modified primers, 2) the 
accumulation of incomplete elongation products when the 
modification is located at the fourth position from the 3′-end of 
the primer, and 3) the significant decrease in primer elongation 
efficiency upon modification at the first position (Chubarov 
et al., 2024; Golyshev et al., 2025).

The results of this study provide a molecular basis for un-
derstanding how the phosphoramidate N-benzimidazole group 
affects the elongation of PABAO primers. These insights will 
be instrumental in the rational design of PABAO structures 
for applications in molecular diagnostics using PCR-based 
methods. Furthermore, the pronounced differences in poly-
merase interaction efficiency between Rp and Sp isomers of 
PABAOs highlight the need to develop stereoselective syn-
thesis methods for these oligonucleotides. Such approaches 
would enable precise control over the stereochemistry of the 
phosphoramidate linkage, thereby allowing fine-tuning of the 
biochemical and biophysical properties of phosphoramidate 
benzazole oligonucleotides for optimized performance in 
diagnostic assays.
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Abstract. In recent years, artificial intelligence methods based on the analysis of heterogeneous graphs of biomedical 
networks have become widely used for predicting molecular interactions. In particular, graph neural networks (GNNs) 
effectively identify missing edges in gene networks – such as protein–protein interaction, gene–disease, drug–target, 
and other networks – thereby enabling the prediction of new biological relationships. To reconstruct gene networks, 
cognitive systems for automatic text mining of scientific publications and databases are often employed. One such 
AI-driven platform, ANDSystem, is designed for automatic knowledge extraction of molecular interactions and, on 
this basis, the reconstruction of associative gene networks. The ANDSystem knowledge base contains information 
on more than 100 million interactions among diverse molecular genetic entities (genes, proteins, metabolites, drugs, 
etc.). The interactions span a wide range of types: regulatory relationships, physical interactions (protein–protein, 
protein–ligand), catalytic and chemical reactions, and associations among genes, phenotypes, diseases, and more. 
In the present study, we applied attention-based graph neural networks trained on the ANDSystem knowledge graph 
to predict new edges between proteins and ligands and to identify potential ligands for the SARS-CoV-2 ORF3a 
protein. The accessory protein ORF3a plays an important role in viral pathogenesis through ion-channel activity, 
induction of apoptosis, and the ability to modulate endolysosomal processes and the host innate immune response. 
Despite this broad functional spectrum, ORF3a has been explored far less as a pharmacological target than other 
viral proteins. Using a graph neural network, we predicted five small molecules of different origins (metabolites and 
a drug) that potentially interact with ORF3a: N-acetyl-D-glucosamine, 4-(benzoylamino)benzoic acid, austocystin D, 
bictegravirum, and L-threonine. Molecular docking and MM/GBSA affinity estimation indicate the potential ability of 
these compounds to form complexes with ORF3a. Localization analysis showed that the binding sites of bictegravir 
and 4-(benzoylamino)benzoic acid lie in a cytosolic surface pocket of the protein that is solvent-exposed; L-threonine 
binds within the intersubunit cleft of the dimer; and austocystin D and N-acetyl-D-glucosamine are positioned at 
the boundary between the cytosolic surface and the transmembrane region. The accessibility of these binding sites 
may be reduced by the influence of the lipid bilayer. The binding energetics for bictegravirum were more favorable 
than for 4-(benzoylamino)benzoic acid (docking score −7.37 kcal/mol; MM/GBSA ΔG −14.71 ± 3.12 kcal/mol), making 
bictegravirum a promising candidate for repurposing as an ORF3a inhibitor.
Key words: ANDSystem; SARS-CoV-2; ORF3a; gene networks; graph neural networks; protein–ligand interaction 
prediction; bictegravirum; 4-(benzoylamino)benzoic acid; molecular docking; potential therapeutic agents
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Аннотация. В последние годы методы искусственного интеллекта, основанные на анализе гетерогенных графов 
биомедицинских сетей, получили широкое распространение для предсказания молекулярных взаимодействий. 
В частности, графовые нейронные сети (graph neural networks, GNN) позволяют эффективно выявлять 
отсутствующие ребра в генных сетях, таких как сети белок-белковых взаимодействий, ген–заболевание, 
лекарство–мишень и др., и тем самым предсказывать новые биологические связи. Для реконструкции 
генных сетей часто применяют когнитивные системы автоматического анализа текстов научных публикаций 
и баз данных. Одна из таких платформ, базирующаяся на методах искусственного интеллекта,– ANDSystem, 
предназначенная для автоматического извлечения знаний о молекулярных взаимодействиях и на этой 
основе – реконструкции ассоциативных генных сетей. База знаний ANDSystem содержит сведения о более чем 
100 млн взаимодействий между различными молекулярно-генетическими объектами (гены, белки, метаболиты, 
лекарства и др.). Взаимодействия представлены широким спектром типов: регуляторные связи, физические 
взаимодействия (белок–белок, белок–лиганд), каталитические и химические реакции, ассоциации между 
генами, фенотипами, заболеваниями и др. В настоящем исследовании мы применили графовые нейронные 
сети с механизмом внимания, обученные на графе знаний ANDSystem, для предсказания новых ребер между 
белками и лигандами и поиска потенциальных лигандов для белка ORF3a SARS-CoV-2. Вспомогательный белок 
ORF3a SARS-CoV-2 играет важную роль в патогенезе вируса за счет ион-канальной активности, индукции 
апоптоза и способности модулировать эндолизосомальные процессы и врожденный иммунитет хозяина. 
Несмотря на широкий спектр функций, ORF3a как фармакологическая мишень изучен значительно меньше, 
чем другие вирусные белки. Применение графовой нейронной сети позволило нам предсказать пять малых 
молекул разного происхождения (метаболиты и лекарство), потенциально взаимодействующих с ORF3a: 
N-ацетил-D-глюкозамин, 4-(бензоиламино)бензойная кислота, аустоцистин D, биктегравир и L-треонин. 
Молекулярный докинг и оценка аффинности методом MM/GBSA подтвердили потенциальную способность 
этих соединений образовывать комплексы с ORF3a. Анализ локализации показал, что сайты связывания 
биктегравира и 4-(бензоиламино)бензойной кислоты расположены в цитозольной поверхностной области 
белка, доступной растворителю; L-треонин связывается в межсубъединичной щели димера, а аустоцистин D 
и N-ацетил-D-глюкозамин – на границе между цитозольной поверхностью и трансмембранной областью. 
Доступность этих сайтов связывания может быть снижена из-за влияния липидного бислоя. Энергетические 
характеристики связывания у биктегравира по сравнению с 4-(бензоиламино)бензойной кислотой оказались 
более высокими (–7.37 ккал/моль в докинге; –14.71 ± 3.12 ккал/моль по MM/GBSA), что делает его перспективным 
кандидатом для репозиционирования как ингибитора ORF3a. Взаимодействие биктегравира с ORF3a может 
нарушать связывание ORF3а с белком хозяина VPS39 – субъединицей комплекса HOPS, участвующего в слиянии 
аутофагосом и поздних эндосом с лизосомами. Это, в свою очередь, может снимать индуцируемую ORF3a 
блокаду данного процесса и тем самым способствовать восстановлению аутофагического потока и лизосомной 
деградации вирусных компонентов.
Ключевые слова: ANDSystem; SARS-CoV-2; ORF3a; генные сети; графовые нейронные сети; предсказание 
белок–лиганд взаимодействий; биктегравир; 4-(бензоиламино)бензойная кислота; молекулярный докинг; 
потенциальные лекарства

Introduction
The development of antiviral drugs is a priority due to the 
risk of global pandemics and the emergence of new variants 
of pathogenic viruses during such events, as demonstrated by 
the COVID-19 pandemic caused by SARS-CoV-2 (Ng et al., 
2022). SARS-CoV-2 is an enveloped betacoronavirus with a 
positive-sense single-stranded RNA genome of approximately 
29.9 kb; the genome encodes structural (S, E, M, N) as well 
as several nonstructural proteins that ensure replication and 
virion assembly (Naqvi et al., 2020). Because these proteins 
determine key stages of the viral life cycle, drug develop-
ment efforts have focused primarily on three main targets: 
the main protease (3CLpro/Mpro), the RNA-dependent RNA 
polymerase (RdRp), and the S glycoprotein (Spike protein) 
(Boby et al., 2023). 

A combination of experimental and computational ap-
proaches has been used to discover and optimize inhibitors 
of these targets: de novo design, high-throughput screening, 
and repurposing of known drugs (von Delft et al., 2023). This 
approach has yielded compounds with confirmed antiviral 

activity in vitro and in vivo and has enabled clinical strategies 
for treating COVID-19, including protease and polymerase 
inhibition. In particular, the antiviral nirmatrelvir/ritonavir 
(Paxlovid), which targets the main protease Nsp5 (nonstruc-
tural protein 5) of SARS-CoV-2, received full FDA approval 
on May 25, 2023, for the treatment of adults with COVID-19 
(FDA, 2023). The drug remdesivir (Veklury), which targets 
the viral RNA-dependent RNA polymerase (RdRp, nsp12), 
was approved by the FDA in October 2020 (FDA, 2020). In 
parallel, alternative approaches are being developed to block 
fusion of the viral and cellular membranes during SARS-
CoV-2 entry. In particular, peptide inhibitors complementary 
to the HR1/HR2 domains of the S2 subunit of the Spike 
protein prevent formation of the six-helix bundle (6-HB) – a 
key structure that mediates membrane fusion – and thereby 
block viral entry (Dong et al., 2024).

Among the promising classes of pharmacological targets 
are accessory viral proteins that modulate the interactions of 
SARS-CoV-2 with host cellular systems. One such protein is 
ORF3a. It is predominantly localized to late endosomes and 
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lysosomes, where it co-localizes with the human lysosomal 
proteins LAMP1 and cathepsin D (Zhang J. et al., 2021; Hinkle 
et al., 2025). ORF3a forms ion channels (viroporin activity) 
(Zhang J. et al., 2022), induces apoptosis through oxidative 
stress and caspase activation (Zhang Y. et al., 2021), acti-
vates the NLRP3 inflammasome (the ORF3a–NLRP3–ASC 
cascade) (Zhang  J. et al., 2022), and suppresses interferon 
signaling pathways, thereby enhancing viral pathogenicity 
(Zhang J. et al., 2022). 

ORF3a is a dimeric membrane protein with three trans-
membrane helices and a large cytosolic C-terminal domain, 
as shown by cryo-EM (Kern et al., 2021). It interacts with 
the human protein VPS39 – a component of the HOPS com-
plex – and this interaction blocks fusion of autophagosomes 
with lysosomes. A short tyrosine-based sorting signal motif, 
YXXΦ (Y, tyrosine; X, any amino acid; Φ, a hydrophobic 
residue), present in ORF3a as the sequence YNSV (residues 
160–163), plays a key role in binding ORF3a to VPS39 (Ste-
phens et al., 2025). The point mutation Y160A, which disrupts 
this motif, abolishes co-immunoprecipitation with VPS39 and 
lifts the block on autophagosome-lysosome fusion (Zhang Y. 
et al., 2021).

In recent years, artificial intelligence methods capable 
of uncovering hidden patterns in large biomedical datasets 
have seen increasingly widespread use in pharmacology and 
related fields. Graph neural networks (GNNs) are regarded as 
a particularly promising direction, as they enable the integra-
tion of heterogeneous biological information and the predic-
tion of novel interactions in complex networks that have not 
previously been reported in the literature. An early study that 
played a notable role in shaping this approach was conducted 
by M. Zitnik et al. (2018), which showed that graph convolu-
tional neural networks can model drug–disease interactions 
and predict drug side effects. 

This approach has since advanced rapidly: studies have in-
tegrated diverse data sources (external databases, abstracts and 
full texts of scientific publications, patents, electronic medical 
records, etc.), predicted protein-ligand and protein–protein 
interactions, and identified targets for drug repurposing using 
GNNs (Stokes et al., 2020; Gaudelet et al., 2021). In particular, 
the compound halicin was identified as a candidate with anti-
bacterial activity against resistant strains; using a graph neural 
network, this molecule was shown to have bactericidal effects 
against Mycobacterium tuberculosis, carbapenem-resistant 
Enterobacteriaceae, as well as multidrug-resistant strains of 
Acinetobacter baumannii, Pseudomonas aeruginosa, and 
Clostridioides difficile (Stokes et al., 2020).

Methods for reconstructing and analyzing gene and associa-
tive networks are increasingly used to identify pharmacologi-
cal targets at the human genome scale (Ali, Alrashid, 2025). 
Against this backdrop, cognitive systems and knowledge-
engineering methods that automate the extraction of facts 
from the literature and specialized databases – and construct 
biomedical knowledge graphs – are being actively developed. 
In such graphs, nodes represent genes, proteins, metabolites, 
diseases, drugs, and other biomedical entities, while edges 
represent their interactions (regulatory relationships, pro-
tein–protein interactions, disease associations, etc.). Notable 
resources implementing this approach include STRING 

(Nicholson, Greene, 2020; Szklarczyk et al., 2023), QIAGEN 
Ingenuity Pathway Analysis (Krämer et al., 2014), GeneGo/
MetaCore (Clarivate), and others. 

We previously developed the cognitive platform AND-
System, designed for the reconstruction of associative gene 
networks. It brings together two strands: 1) automatic know­
ledge extraction from scientific publications and biological 
databases using semantic-linguistic templates and rules 
(Ivanisenko V.A. et al., 2015, 2019), and 2) integration of sta-
tistical and machine-learning methods, including graph neural 
networks, to predict and add new protein–protein interactions 
to the network (Ivanisenko N.V. et al., 2024). 

The ANDSystem knowledge base (KB) contains informa-
tion on more than 100  million interactions among various 
types of molecular genetic entities (genes, RNAs, proteins, 
metabolites, drugs), as well as cellular- and organism-level 
entities such as cells, biological processes, diseases, and 
phenotypic traits. Interactions are classified into 49  types, 
including regulatory relationships (regulation of expression, 
activity, stability, transport, etc.), physical interactions (pro-
tein–protein, protein–ligand), chemical interactions (catalytic 
reactions, post-translational modifications, etc.), and associa-
tive links (gene–disease, gene–phenotype, biological process–
disease, etc.). Of particular note are “marker” relationships, 
which indicate that a gene, biological process, or phenotypic 
trait serves as an indicator of an associated disease or pheno-
type. In addition, the KB includes “risk factor” interactions, 
in which a gene, process, disease, phenotypic trait, or other 
entity is considered a risk factor for the associated disease 
(Ivanisenko V.A. et al., 2019).

A distinctive feature of ANDSystem is its web-based 
module ANDDigest, designed for searching and analyzing 
PubMed publications using ontological dictionaries (Ivan-
isenko T.V. et al., 2020, 2022). The module supports complex 
queries that simultaneously take into account multiple types 
of entities from the ANDSystem dictionaries, as well as user-
specified refining keywords. Search results are presented in 
graphical form with in-text annotation of the detected enti-
ties, options for sorting and filtering (by date, source citation 
counts, and other parameters), visualization of the year-by-
year dynamics of mentions of the annotated entities, and links 
to external databases.

ANDSystem has been used to address a wide range of 
tasks based on the reconstruction and analysis of gene net-
works: reconstruction of the hepatitis  C virus interactome 
(Saik et al., 2016); prioritization of genes associated with 
susceptibility to tuberculosis (Bragina et al., 2016); systems 
studies of preeclampsia (Glotov et al., 2015); analysis of the 
comorbidity of asthma and tuberculosis (Bragina et al., 2014); 
investigation of endothelial apoptosis in lymphedema (Saik 
et al., 2019); analysis of gene expression and the proteomic 
profile of clinical Helicobacter pylori strains associated with 
early stages of gastric cancer (Momynaliev et al., 2010); pro-
teome stability in the Mars-500 project (Larina et al., 2015); 
interpretation of metabolomic data in studies of postoperative 
delirium (Ivanisenko V.A. et al., 2024); and the melanoma 
response to THz radiation (Butikova et al., 2025). Applying 
ANDSystem to the analysis of plasma metabolomic data from 
patients with COVID-19 made it possible to reconstruct gene 
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networks describing the molecular genetic pathways through 
which SARS-CoV-2 proteins influence metabolic disturbances 
during infection (Ivanisenko V.A. et al., 2022). It was shown 
that nonstructural coronavirus proteins play a particularly 
important role in such networks.

In the present study, we used graph neural networks with 
an attention mechanism (Veličković et al., 2017) to predict 
new ligands of the ORF3a protein among metabolites and 
drugs represented in the ANDSystem knowledge base. Using 
a model we trained on the ANDSystem knowledge graph, five 
small molecules of endogenous and exogenous origin were 
predicted to potentially interact with ORF3a:
1. N-acetyl-D-glucosamine  – a monomer of the natural 

polysaccharide chitin. According to molecular modeling 
data, it can form stable complexes with four SARS-CoV-2 
proteins: the Spike protein (PDB ID: 6M0J), the nucleo-
capsid phosphoprotein N (PDB ID: 6WKP), the S protein 
(PDB ID: 6X79), and the 3CLpro protease (PDB ID: 7JVZ), 
and may potentially elicit an immune response against the 
virus (Baysal et al., 2021; Tekin, 2023).

2. 4-(benzoylamino)benzoic acid  – an amide derivative of 
benzoic acid. This compound exhibits antiviral activity 
against and Rift Valley fever virus (Islam et al., 2018).

3. Austocystin D – a polyketide metabolite of fungi of the 
genus Aspergillus with cytotoxic and antineoplastic activity 
(Marks et al., 2011).

4. Bictegravir – a small-molecule integrase inhibitor used to 
treat HIV infection (Sax et al., 2023). Studies have shown 
its high binding affinity to the Spike protein (Ahsan, Sajib, 
2021; Sun et al., 2021) and to the main protease of SARS-
CoV-2 (Mpro, PDB ID: 6LU7) (Oner et al., 2023).

5. L-threonine – an essential amino acid involved in protein 
synthesis, glycosylation, and regulation of the immune re-
sponse. Evidence indicates that L-threonine levels change 
in various viral infections, including COVID-19, reflecting 
metabolic reprogramming in response to infection (Barberis 
et al., 2020). Several studies have shown that amino acid 
profiles, including threonine, can serve as biomarkers of 
COVID-19 severity and are involved in regulating inflam-
matory responses and mucosal barrier functions (Páez-
Franco et al., 2021).
Molecular docking and binding free energy calculations 

indicated that bictegravir and 4-(benzoylamino)benzoic acid 
are the most promising candidates for experimental validation. 
For bictegravir, binding energies of −7.37 kcal/mol (AutoDock 
Vina) and −14.71 ± 3.12 kcal/mol (MM/GBSA) were obtained, 
indicating higher affinity compared with 4-(benzoylamino)
benzoic acid (−5.68 kcal/mol and −11.01 ± 3.58 kcal/mol, 
respectively). Bictegravir is therefore of particular interest as 
a candidate for drug repurposing studies.

Materials and methods
The ANDSystem cognitive system. ANDSystem is a cogni-
tive platform for the automated extraction of facts and knowl-
edge from scientific publication texts and factual databases, 
their integration into a unified ontological model (a knowledge 
graph), and the reconstruction of associative gene networks 
(Ivanisenko V.A. et al., 2015, 2019). In the knowledge graph, 
vertices correspond to molecular genetic entities (genes, RNA 

transcripts, proteins, metabolites, drugs) as well as cellular- 
and organism-level objects (cell types, biological processes, 
diseases, phenotypic traits). Edges represent relationships 
between entities, including regulatory relationships (effects on 
expression, activity, stability, transport, etc.), physical contacts 
(protein–protein, protein–ligand interactions), chemical rela-
tionships (catalytic reactions, post-translational modifications, 
etc.), and associative links (gene–disease, gene–phenotype, 
process–disease, etc.). In its current version, the ANDSystem 
knowledge graph contains more than 1.5 million nodes and 
over 100 million edges.

For recognition of biomedical entity names and extraction 
of context-dependent relationships, ANDSystem uses more 
than 20,000 semantic linguistic templates and rules; in addi-
tion, large language models are employed, which improves 
the recall and precision of automated analysis of textual 
sources. To predict new interactions – particularly protein–
protein interactions – graph neural networks (GNNs) trained 
on the ANDSystem knowledge graph, which is built from 
the scientific literature and specialized databases, are used 
(Ivanisenko T.V. et al., 2024).

ANDSystem includes the ANDDigest module – a special-
ized web-based system for searching and analyzing PubMed 
publications grounded in the ANDSystem ontological model 
and using dictionaries covering 13 types of biomedical entities 
(Ivanisenko T.V. et al., 2020, 2022). The ANDDigest database 
contains indexed and annotated PubMed texts, as well as com-
puted characteristics and statistical co-occurrence measures 
for biomedical entities, which are used in subsequent stages 
of analysis and knowledge extraction.

Obtaining vector representations of nodes in the  
ANDSystem knowledge graph. To compute vector represen-
tations of nodes in the ANDSystem knowledge graph, we used 
a graph neural network with an attention mechanism (GAT) 
based on TransformerConv (the PyTorch Geometric package, 
version 2.5.3) (Fey, Lenssen, 2019). The network architecture 
comprised four hidden layers with 256 neurons each. Every 
node in the ANDSystem knowledge graph was described 
by a 13-dimensional binary vector in which a value of “1” 
indicated the object’s membership in one of the 13 dictionary 
types defined by the ANDSystem ontology. Each edge was 
encoded by a 50-dimensional vector: the first 49 components 
corresponded to different interaction types and took values 
of 0 or 1 depending on whether the given type of relationship 
was present between the node pair in the knowledge graph, 
and the last component contained a numerical estimate of 
their co-occurrence (the p-value). This measure reflects the 
statistical significance of the joint mention of the object pair 
in PubMed abstracts and was computed using the ANDDigest 
module. The final node vector representations produced by 
the neural network had a dimensionality of 256.

The attention mechanism in each hidden layer comprised 
four independent heads that computed the contribution of 
neighboring nodes, that is, nodes connected to the node under 
consideration by edges in the ANDSystem graph. In doing 
so, it took into account both the features of the neighboring 
nodes themselves and the features of the edges linking them 
(relationship types and the p-value). The loss function was the 
logistic loss (Mao et al., 2023) with a temperature parameter 
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τ = 0.2. Parameters were optimized using AdamW (Zhou et 
al., 2024).

Given the large size of the ANDSystem knowledge graph, 
to speed up training, the model was not trained on the entire 
graph at once but on subgraphs automatically generated from 
it. For each target node, a subgraph was constructed that in-
cluded the node itself and its neighbors within at most three 
hops. At each “neighborhood level” (i. e., at distances of 1, 2, 
or 3 hops), the number of neighboring nodes considered was 
limited: up to 15 at the first level, 10 at the second, and 5 at 
the third. These neighbors were selected at random.

The computations were performed on a workstation with 
six NVIDIA GeForce RTX 4090 GPUs (24 GB of memory 
each); all programs were written in Python version 3.12.11.

Fully connected neural network. To predict new interac-
tions (edges) between proteins and metabolites in the AND-
System knowledge graph, a fully connected neural network 
(multilayer perceptron) was used. The size of the input layer 
matched the dimensionality of the vector representation of a 
pair of nodes (512). The model architecture included three 
consecutive hidden layers with 512, 256, and 128 neurons. 
Each hidden layer used the Rectified Linear Unit activation 
function (ReLU) (Glorot et al., 2011):

f (x) = max(0, x).
The output layer contained a single neuron, the value of 

which reflected the probability of an edge existing between 
two nodes. For each protein–metabolite node pair, the neu-
ral network returned a value from 0 to 1, interpreted as the 
probability of an interaction between that pair. A standard 
threshold of 0.5 was used for classification: values above this 
threshold were interpreted as the presence of an interaction, 
and values below, as its absence (Harris, 2021).

From the ANDSystem knowledge graph, 250,000 object 
pairs were randomly selected, each consisting of one entity of 
type “protein” and the other of type “metabolite”; these pairs 
were treated as positive examples. As negative examples, 
an equal number of protein-metabolite pairs were randomly 
assembled from the set of all proteins and metabolites under 
the condition that the corresponding edge was absent from 
the original knowledge graph.

For each pair (u, v), we constructed a composite feature 
vector of length 512 (with node embedding dimensionality 
d = 256), comprising four blocks: 1) vector representation of 
the protein eu; 2) vector representation of the metabolite ev; 
3) element-wise absolute difference |eu – ev|; 4) element-wise 
product (Hadamard product) eu × ev.

The resulting array of vectors was split in an 80, 10, 10 % 
ratio into training, validation, and test subsets, respectively. 
The training subset was used to fit the model parameters du­
ring training; the test subset served for interim performance 
assessment and selection of the model’s optimal hyperparam-
eters; and the validation subset was used only to evaluate the 
accuracy of the final model after training. In each subset, the 
ratio of positive to negative examples was 1:1.

The model’s performance after each training epoch (i. e., 
after the model had processed the entire training set) was 
evaluated on the test dataset using the Matthews correlation 
coefficient (MCC) (Chicco, Jurman, 2020), given by the 
formula:

MCC =

 
where TP (true positives) – the number of object pairs cor-
rectly classified by the model as interacting; TN (true nega-
tives) – the number of object pairs correctly classified by the 
model as non-interacting; FP (false positive) – the number of 
object pairs incorrectly classified by the model as interacting; 
FN (false negative) – the number of object pairs incorrectly 
classified by the model as non-interacting.

Training was conducted over 83 epochs; the achieved MCC 
was 0.9542, indicating high model accuracy. The neural net-
work was implemented using PyTorch version 2.4.1.

Molecular docking was used for an initial assessment 
of affinity via the docking score (Vina score) and for build-
ing protein–ligand complex models. The Vina score used 
at this stage is an empirical estimate of the binding energy  
(kcal/mol); more negative values correspond to higher pre-
dicted affinity. Calculations were performed with AutoDock 
Vina 1.2.0 (Python API) (Trott, Olson, 2010; Eberhardt et 
al., 2021). Docking was carried out in a blind-docking mode, 
defining a search region that encompassed the entire surface 
of the ORF3a protein.

The most energetically favorable protein–ligand confor-
mations (minimum Vina scores) were used as the starting 
structures for estimating the binding free energy (ΔG) by the 
MM/GBSA method.

MM/GBSA evaluation. ΔG was calculated using the Am-
berTools package (Case et al., 2023). The method accounts for 
molecular mechanics energies and solvation contributions (the 
generalized Born model) with a nonpolar component propor-
tional to the solvent-accessible surface area, and provides an 
approximate thermodynamic descriptor of complex stability. 
The three-dimensional structure of the SARS-CoV-2 ORF3a 
protein was obtained from the Protein Data Bank (PDB ID: 
6XDC).

Results

Prediction of new protein–ligand interactions  
using graph neural networks
The analysis workflow employed in ANDSystem to predict 
new interactions with graph neural networks is shown in 
Figure 1.

An associative human gene network at the whole-genome 
scale was exported from the ANDSystem knowledge base. 
The network included all 13 object types (including genes, 
proteins, metabolites, diseases, and others) and 49  interac-
tion types (regulatory relationships: regulation of expression,  
activity, stability, transport, etc.; physical interactions: pro-
tein–protein, protein–ligand, etc.). In total, the graph con-
tained about 310,000 nodes connected by 48 million edges. 
To obtain vector representations of nodes in the knowledge 
graph, a graph neural network with an attention mechanism 
was trained; an F1 score of 0.8003 was reached by epoch 230.

Based on the obtained vector representations of proteins 
and metabolites in the ANDSystem knowledge graph, a mul-
tilayer perceptron was trained as a binary classifier to predict 
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edges missing from the graph. Training lasted 83 epochs; the 
achieved MCC was 0.9542. The trained model was then used 
to predict protein–metabolite edges for the ORF3a protein. In 
total, 38,172 potential links of this protein with small mol-
ecules of endogenous and exogenous origin were analyzed –  
including human metabolites and those of other organisms, as 
well as drugs, inorganic molecules, and ions – and five novel 
interactions not present in the ANDSystem knowledge base 
were identified.

In Figure 2, the ORF3a interaction network is shown: edges 
initially present in the ANDSystem knowledge base are de-
picted in black, and new links predicted by the graph neural 
network and the binary classification model are shown in red. 
The knowledge base contained 19 interactions extracted from 
scientific publications, including both direct physical contacts 
and associative links between ORF3a and small molecules. For 
example, physical interactions experimentally confirmed by 
fluorescence and UV-visible spectroscopy were reported for 
chlorin and cationic porphyrins; in the same study, molecular 
docking indicated complex formation for related porphyrins 
(bacteriochlorin, tetraphenylporphyrin, TPP) (Lebedeva et al., 
2021). As an example of an associative link, one can cite the 
ORF3a–bradykinin association discussed in the context of an 
intensified “bradykinin storm” via ORF3a/NS7b interaction 
in COVID-19 (Messina et al., 2021).

The group of predicted interactions comprised five can-
didates: N-acetyl-D-glucosamine (a chitin monomer and a 
precursor for glycosylation); 4-(benzoylamino)benzoic acid 
(a derivative of benzoic acid); austocystin D (a polyketide 
metabolite of Aspergillus fungi); bictegravir (an HIV integrase 
inhibitor; a medicinal drug); and L-threonine (an essential 
amino acid).

Molecular docking and binding energy evaluation 
To assess the ability of the five predicted small molecules 
to physically interact with ORF3a, we performed molecular 

docking using AutoDock Vina and, for the resulting 3D com-
plex models, recalculated the binding free energy (ΔG) by the 
MM/GBSA method (Table 1). The docking score (Vina score), 
which provides an empirical estimate of affinity, was used 
for the relative ranking of ligands, whereas the MM/GBSA 
ΔG values were considered an approximate thermodynamic 
descriptor of complex stability.

According to AutoDock Vina, the highest predicted affinity 
was shown by austocystin D (−8.296 kcal/mol) and bictegravir 
(−7.368  kcal/mol); intermediate affinities, by N-acetyl-D-
glucosamine (−6.242 kcal/mol) and 4-(benzoylamino)benzoic 
acid (−5.682 kcal/mol); and the lowest affinity, by L-threonine 
(−4.89 kcal/mol).

According to MM/GBSA, the most negative (i. e., lowest) 
ΔG was obtained for austocystin D (−21.67 ± 2.30 kcal/mol), 
followed by L-threonine (−19.04 ± 2.15) and N-acetyl-D-glu-
cosamine (−16.76 ± 2.58), whereas bictegravir (−14.71 ± 3.12) 
and 4-(benzoylamino)benzoic acid (−11.01 ± 3.58) had ΔG 
values of smaller magnitude.

Taken together, the docking scores (Vina score) and the 
ΔG estimates from the MM/GBSA method indicate the 
potential formation of ORF3a complexes with the analyzed 
small molecules, serving as complementary criteria for the 
computational assessment of affinity.

The 3D models of ORF3a complexes with the ligands under 
study, constructed based on the results of molecular docking, 
are shown in Figure 3. According to cryo-EM data, ORF3a 
forms a dimer; each subunit contains three transmembrane 
helices and a large cytosolic C-terminal domain (Kern et al., 
2021). ORF3a is predominantly localized to the membranes 
of the Golgi apparatus, endosomes, and lysosomes, partici-
pating in the regulation of vesicular transport and lysosomal 
exocytosis; it is also detected at the plasma membrane (Hinkle 
et al., 2025).

It is known that ORF3a interacts with VPS39 (the HOPS 
complex) and blocks the fusion of autophagosomes with 

     ANDSystem Knowledge

•	 Over 300 species
•	 More than 1.5 million  

bimedical entities (genes, 
proteins, metabolites, 
diseases, etc.)

•	 Over 100 million  
interactions

Gene network graph at the  
whole-genome scale in humans

•	 310 thousand entities (nodes)
•	 48 million interactions (edges)

Graph neural network 
with attention:  

vector representations of nodes

TransformerConv: 4 layers; resulting –  
256 dimensional node representations

Extended gene network,  
containing the original graph  

and the predicted  
new interactions

Prediction of new ORF3a-metabolite 
interactions (new edges in the graph)
•	 multilayer perceptron (MLP) 

(5122561281)
•	 threshold 0.5

Fig. 1. Schematic representation of the computational pipeline for predicting new interactions between human proteins and 
metabolites based on analysis of the ANDSystem knowledge graph.
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Table 1. Calculated ORF3a–ligand binding metrics from AutoDock Vina and MM/GBSA

No. Ligand AutoDock Vina (kcal/mol)* MM/GBSA (kcal/mol)**

1 Austocystin D –8.296 –21.67 ± 2.3

2 Bictegravirum –7.368 –14.71 ± 3.12

3 N-acetyl-D-glucosamine –6.242 –16.76 ± 2.58

4 4-(Benzoylamino)benzoic acid –5.682 –11.01 ± 3.58

5 L-threonin –4.89 –19.04 ± 2.15

* AutoDock Vina docking score (kcal/mol); ** binding free energy ΔG (kcal/mol) estimated by the MM/GBSA method.

Fig. 2. Interaction network of ORF3a with small molecules reconstructed using ANDSystem. 
Dark lines indicate interactions supported by scientific publications; red lines indicate interactions predicted by the graph 
neural network: N-acetyl-D-glucosamine, 4-(benzoylamino)benzoic acid, austocystin D, bictegravir, and L-threonine.

lysosomes, leading to the accumulation of unfused autophago-
somes and facilitating viral evasion of degradation (Zhang J. 
et al., 2021; Miller et al., 2023). For clarity, the corresponding 
region of the protein involved in the interaction with VPS39 
is highlighted with a box in the Figure 3.

According to the docking results, the binding sites of  
L-threonine, bictegravir, and 4-(benzoylamino)benzoic acid 
are located on the cytosolic surface of the dimer and partially 
overlap with the ORF3a–VPS39 binding region (Fig.  3a). 
L-threonine binds at the intersubunit interface (inter-subunit 
cleft) of ORF3a, is deeply buried there, and is essentially 
solvent-inaccessible. Bictegravir and 4-(benzoylamino)
benzoic acid occupy solvent-exposed surface regions of the 
protein (Fig. 4). Austocystin D and N-acetyl-D-glucosamine 
bind at the boundary between the cytosolic surface and the 
transmembrane domain (Fig. 3b).

Details of hydrogen (H-) and hydrophobic contacts between 
the ligands and ORF3a amino acid residues are given in 
Table 2 and illustrated in Figure 5. N-acetyl-D-glucosamine 
forms multiple H-bonds with residues Lys61, Ile63, Thr64, 

Arg126, and others. 4-(Benzoylamino)benzoic acid forms 
H-bonds with Ser165 and Asp226, as well as hydrophobic 
contacts with Val225 and Val228. Austocystin D forms H-
bonds with Ser165, Glu226, His227, and Asn234 and hydro-
phobic contacts with His227. Bictegravir forms three H-bonds 
(Ser165, Glu226, Asn234). L-threonine, located deep in the in-
tersubunit cleft at the dimer interface, forms multiple H-bonds 
(with six residues) and hydrophobic contacts with Ile186.

Discussion
Building on our previous work with GraphSAGE for pre-
dicting protein–protein interactions (Ivanisenko T.V. et al., 
2024), in this study, we applied a graph neural network 
with an attention mechanism to predict interactions of the 
SARS-CoV-2 ORF3a protein with small molecules on the 
ANDSystem knowledge graph and identified five candidate 
ligands: N-acetyl-D-glucosamine, 4-(benzoylamino)benzoic 
acid, austocystin D, bictegravir, and L-threonine.

Unlike the GraphSAGE architecture, attention-based mo­
dels update node representations by explicitly weighting the 
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Fig. 3. Spatial structures of ORF3a complexes with the analyzed ligands.
a – ORF3a complex with L-threonine, bictegravir, and 4-(benzoylamino)benzoic acid; b – ORF3a complex with austocystin D and N-acetyl-
D-glucosamine. The protein is shown in a ribbon representation; the two subunits of the dimer are colored differently. In panel (b), the 
protein structure is rotated to better display the ligands. Ligands are shown in a stick representation; their positions are indicated by 
arrows. L-threonine is shown in a space-filling (spheres) representation for clarity. Lines mark the regions of the protein corresponding 
to its position within the membrane (Kern et al., 2021): cytosolic side, transmembrane region, and luminal side (the lumen of the Golgi 
apparatus and endo-/lysosomes). The boxed area denotes the region involved in interaction with the VPS39 protein. Images were 
generated in ChimeraX.
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contributions of their neighbors: more informative relations 
receive higher weights, and less informative ones, lower 
weights. Multiple attention heads operate in parallel, and 
their outputs are then aggregated into the final node vector, 
enabling a more precise accounting of the local graph context 
(Wu et al., 2021).

To validate these predictions, we performed molecular 
docking and estimated the binding free energy (ΔG) of the 
protein–ligand complexes using the MM/GBSA method. 
The calculations showed that the predicted binding sites of 
austocystin D and N-acetyl-D-glucosamine are located at the 
boundary between the cytosolic surface and the transmem-
brane domain of ORF3a, whereas L-threonine, bictegravir, 
and 4-(benzoylamino)benzoic acid bind on the cytosolic side 
of the dimer; moreover, the binding regions of bictegravir 
and 4-(benzoylamino)benzoic acid partially overlap with the 
ORF3a–VPS39 interaction region.

The interaction of ORF3a with the host protein VPS39, a 
subunit of the homotypic fusion and protein sorting (HOPS) 
complex that regulates the late stages of endosome–lysosome 
compartment fusion, is well characterized (Zhang J. et al., 
2021; Miller et al., 2023). It hinders the fusion of autopha-
gosomes and late endosomes with lysosomes, thereby sup-
pressing autophagic flux – a key pathway for the degradation 
of viral components.

The functional significance of the interaction interface be-
tween ORF3a and VPS39 is supported by the presence of an 
YXXΦ motif in the cytosolic domain of ORF3a (Y, tyrosine; 
X, any amino acid; Φ, a hydrophobic residue).

In ORF3a, this motif is present as the sequence YNSV 
(residues 160–163). Studies (Zhang J. et al., 2021; Miller et 
al., 2023) have shown that the point mutation Y160A disrupts 
co-immunoprecipitation of ORF3a with VPS39 and lifts 
the blockade of HOPS-dependent fusion, partially restoring 
autophagic flux.

It can be hypothesized that the predicted locations of the 
binding sites for bictegravir and 4-(benzoylamino)benzoic 
acid could influence the formation and/or stability of the 
ORF3a–VPS39 complex, making them promising candidates 
for functional intervention at the HOPS-dependent stage of 
autophagosome–lysosome fusion.

Taken together across metrics (Vina score and MM/
GBSA ΔG), bictegravir shows more negative values – in-
dicating higher predicted affinity  – than 4-(benzoylamino)
benzoic acid (Vina score −7.37  kcal/mol and MM/GBSA 
ΔG −14.71  ±  3.12  kcal/mol vs. −5.68  kcal/mol and 
−11.01 ± 3.58 kcal/mol, respectively). In addition, bictegra-
vir is a licensed HIV integrase inhibitor (the drug Biktarvy) 
(Gallant et al., 2017), making it a promising repurposing 
candidate. A potential mechanism of action for bictegravir as 
a therapeutic for COVID-19 could be inhibition of the ORF3a 
interaction with the host protein VPS39, which in turn would 
neutralize ORF3a’s ability to block fusion of endosome–
lysosome compartments and promote degradation of viral 
components in lysosomes. In turn, 4-(benzoylamino)benzoic 
acid may be of interest as an aromatic carboxamide fragment 
for targeting protein–protein interaction interfaces within the 
ORF3a structure (Marks et al., 2011).



T.V. Ivanisenko, P.S. Demenkov 
M.A. Kleshchev, V.A. Ivanisenko

1092 Vavilovskii Zhurnal Genetiki i Selektsii / Vavilov Journal of Genetics and Breeding • 2025 • 29 • 7

Prediction of ligand interactions with the SARS-CoV-2 ORF3a protein: 
ANDSystem, graph neural networks, and modeling

Fig. 4. Surface of ORF3a bound to bictegravir (a) and 4-(benzoylamino)benzoic acid (b).
Images were generated in ChimeraX.

a b

4-(Benzoylamino)benzoic  
acid

Bictegravir

Conclusion
Our approach – predicting new protein–ligand interactions 
on the ANDSystem knowledge graph followed by molecular 
docking and estimation of binding ΔG via the MM/GBSA 
method – enabled us to identify promising small-molecule 
ligand candidates for the SARS-CoV-2 ORF3a protein. 
Among the selected compounds, bictegravir and 4-(benzo-
ylamino)benzoic acid are of greatest interest: their predicted 
sites lie on the cytosolic surface of ORF3a and partially 
overlap with the ORF3a–VPS39 interaction region. Based 
on energetic estimates, bictegravir shows more negative 
Vina score and ΔG values: AutoDock Vina, −7.37 kcal/mol;  
MM/GBSA, −14.71 ± 3.12 kcal/mol. For 4-(benzoylamino)

benzoic acid, comparable but smaller-magnitude values 
were obtained: −5.68 kcal/mol and −11.01 ± 3.58 kcal/mol, 
respectively.

A limitation of this study is the lack of explicit consideration 
of the lipid bilayer: the calculations were performed without 
embedding the protein in a membrane, which may affect 
the conformation of ORF3a and the energetic contributions 
associated with ligand penetration into the hydrophobic 
environment. As a next step, molecular dynamics in a 
membrane model with recalculation of binding energies 
could be performed, followed by experimental validation of 
the results.

Fig.5. Detailed representation of the interactions of the analyzed ligands with ORF3a amino acid residues.
a – N-acetyl-D-glucosamine; b – 4-(benzoylamino)benzoic acid; c –austocystin D; d – ictegravir; L-threonine. The ligand is shown in yellow and amino acid residues 
in blue. Hydrogen bonds are shown as solid lines; hydrophobic interactions are shown as dashed lines. Images were generated in PyMOL.
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Table 2. Molecular interactions of the ORF3a protein with ligands, obtained from analysis  
of the reconstructed ORF3a–ligand complexes using the PLIP (Protein-Ligand Interaction Profiler) web server

Ligand Amino acid residue numbe* Amino acid residue** Distance, Å Interaction type

Austocystin D 165B SER 2.45 H-bond

226A GLU 3.70

227A HIS 2.83

234B ASN 2.85

227A HIS 3.59 Hydrophobic

Bictegravir 165A SER 2.44 H-bond

226B GLU 2.20

234A ASN 2.35

N-acetyl- 
D-glucosamine

61B LYS 2.07 H-bond

63B ILE 2.17

63B ILE 2.69

64B THR 3.15

122A ARG 2.07

122A ARG 2.52

126A ARG 2.36

142A ASP 2.45

143A ALA 3.03

206A TYR 2.87

206A TYR 3.69 Hydrophobic

4-(Benzoylamino)
benzoic acid

165B SER 2.53 H-bond

226A GLU 3.36

225A VAL 3.93 Hydrophobic

226A GLU 3.69

228A VAL 3.55

L-threonine 166B SER 3.28 H-bond

168B VAL 2.25

170A THR 2.08

185A GLN 2.34

187A GLY 2.36

188A GLY 2.85

186B ILE 3.69 Hydrophobic

* Amino acid residue numbering follows the ORF3a sequence; the chain identifier is given according to the PDB structure 6XDC. 
** The amino acid involved in the interaction is indicated.
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Taken together, the in  silico results identify bictegravir 
as a priority candidate for experimental studies of its 
interaction with ORF3a – including within a drug-repurposing 
framework – and provide a foundation for further optimization 
of small molecules targeting this protein.
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Abstract. Oncological diseases remain a leading cause of pathological mortality worldwide, making the development 
of anticancer drugs a critical focus in medicinal chemistry. A promising strategy to enhance therapeutic efficacy and 
reduce chemotherapy-induced toxicity involves the combined inhibition of DNA repair enzymes and topoisomerases. 
Of particular interest are minor-groove DNA ligands, which exhibit potent inhibition of DNA-dependent enzymes 
while having low toxicity and mutagenicity. A number of research groups, including ours, are developing inhibitors 
of DNA repair enzymes that act simultaneously on several targets: tyrosyl-DNA phosphodiesterase 1/2 (TDP1/TDP2), 
poly(ADP-ribose) polymerase 1 (PARP1)/TDP1, topoisomerase 1 (TOP1)/TDP1. Such bifunctional inhibitors are designed 
to resolve the problem of tumor cell resistance to known chemotherapy drugs and increase the effectiveness of the 
latter. In this study, we evaluated the inhibitory activity of 22 minor-groove DNA ligands – bis- and trisbenzimidazoles 
against four key repair enzymes: TDP1, TDP2, PARP1, and PARP2. Four series of dimeric compounds and their 
monomeric units were studied. The difference in inhibitory activity of dimeric bisbenzimidazoles depending on the 
structure of the compound and the enzyme is shown. Our findings reveal distinct structure-activity relationships, with 
monomeric and dimeric ligands exhibiting potent TDP1 inhibition at micromolar to submicromolar IC50 values (half-
maximal inhibitory concentration). Notably, dimeric compounds from the DB2Py(n) and DB3P(n) series demonstrated 
superior TDP1 inhibition compared to their monomers. In contrast, all tested compounds showed negligible activity 
against the other three repair enzymes; so, the compounds demonstrate specificity to TDP1. It should be noted that 
in this work, in the experiments with TDP1 and TDP2, the effect of the tested compounds as narrow-groove ligands 
binding to DNA was excluded, and their direct effect on the enzyme was investigated. The results of molecular docking 
suggest the possibility of direct interaction of active compounds with the active center of TDP1. According to the 
results of modeling, the inhibitors are located in the binding region of the 3’-end of DNA in the active site of TDP1 
and could form stable bonds with the catalytically significant TDP1 residues His263 and His493. These interactions 
probably provide the high inhibitory activity of the compounds observed in biochemical experiments.
Key words: tyrosyl-DNA phosphodiesterase 1 (TDP1); TDP1 inhibitor; inhibitory activity; TDP2; PARP1; PARP2; DNA-
ligands; bisbenzimidazole derivatives

For citation: Dyrkheeva N.S., Chernyshova I.A., Arutyunyan A.F., Zakharenko A.L., Kutuzov M.M., Naumenko K.N., 
Venzel A.S., Ivanisenko V.A., Deyev S.M., Zhuze A.L., Lavrik O.I. The effect of dimeric bisbenzimidazoles on the activity 
of DNA repair enzymes TDP1, TDP2, PARP1 and PARP2. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 
2025;29(7):1097-1108. doi 10.18699/vjgb-25-114

Funding. The work was supported by the Russian Science Foundation, grant 25-74-30006 (enzymes purification and 
activity) and state-funded project for ICBFM SB RAS, grant number 125012300658-9 (oligonucleotide synthesis and 
infrastructure).

Acknowledgements. The authors express their gratitude to the Center for Collective Use (CCU) “Bioinformatics” for 
the computational resources and their software. The authors thank Rashid O. Anarbaev (Institute of Chemical Biology 
and Fundamental Medicine SB RAS) for providing the TDP2 enzyme preparation.

Влияние димерных бисбензимидазолов на активность 
ферментов репарации ДНК тирозил-ДНК-фосфодиэстераз 1 и 2 
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Dimeric bisbenzimidazoles as inhibitors  
of DNA repair enzymes TDP1, TDP2, PARP1 and PARP2

Introduction
Nowadays, DNA repair enzymes are actively studied by  
various researchers to understand the mechanisms of main­
taining genetic stability and preventing the development of 
various diseases. Disruptions in DNA repair systems lead to 
the accumulation of modified bases, DNA breaks, and other 
damages, which increase the risk of developing oncological 
and other diseases. The study of DNA repair system fun­
ctioning helps to identify the causes of hereditary diseases, 
neurodegenerative dysfunctions associated with repair defects, 
and develop new methods for the therapy and prevention of 
oncological diseases.

In recent years, considerable attention has been paid to DNA 
repair enzymes as targets for drug development. Researchers 
are actively searching for new compounds that suppress the 
activity of DNA repair enzymes to enhance the efficacy of 
anticancer therapy. Inhibition of enzymes involved in repair 
increases the effectiveness of antitumor therapy, as this leads 
to cancer cell death due to the accumulation of DNA damage 
caused by chemotherapy or radiation therapy. Currently, such 

repair enzymes as tyrosyl-DNA phosphodiesterases 1 and 2 
(TDP1 and TDP2) and poly(ADP-ribose) polymerases 1 
and 2 (PARP1 and PARP2) are considered promising targets 
for drug development (Pommier et al., 2014; Curtin, Szabo, 
2020; Zakharenko et al., 2023).

TDP1 is a DNA repair enzyme that participates in the re­
moval of covalent adducts of topoisomerase 1 (TOP1) from 
DNA, catalyzing the hydrolysis of the phosphodiester bond 
between the Tyr723 residue of TOP1 and the 3′-phosphate 
group in the single-strand DNA break generated by TOP1. 
TDP1 is also capable of removing other DNA-protein adducts 
located at the 3′-end of DNA and various other damage at the 
3′-end of DNA (Comeaux, van Waardenburg, 2014; Kawale, 
Povirk, 2018). TDP2 catalyzes the hydrolysis of covalent ad­
ducts between DNA and the Tyr804 residue of the active center 
of topoisomerase  2  (TOP2) (Pommier et al., 2010). TDP2 
removes covalent adducts from DNA located at the 5′- end 
of DNA through hydrolysis of the 5′-phosphodiester bond, 
resulting in the formation of DNA with a free 5′-phosphate 
(Pommier et al., 2014). TDP1 and TDP2 are capable of taking 

1 Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
2 Институт молекулярной биологии им. В.А. Энгельгардта Российской академии наук, Москва, Россия
3 Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук, Новосибирск, Россия
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Аннотация. Онкологические заболевания остаются одной из главных причин патологической смертности в 
мире, что определяет дизайн противораковых препаратов как ключевое направление медицинской химии. 
Комбинация ингибиторов ферментов репарации ДНК с ингибиторами топоизомераз  – перспективный 
подход для усиления противоракового действия и снижения токсичности химиотерапии. Особый интерес 
представляют узкобороздочные ДНК-лиганды, способные эффективно ингибировать ДНК-зависимые 
ферменты, обладая при этом низкой токсичностью и мутагенностью. Ряд исследовательских групп, включая 
нашу, разрабатывает ингибиторы ферментов репарации ДНК, действующие одновременно на несколько 
взаимосвязанных мишеней {тирозил-ДНК-фосфодиэстеразы 1/2 (TDP1/TDP2), поли(АДФ-рибоза)полимераза 1 
(PARP1)/TDP1, топоизомераза 1 (ТОР1)/TDP1}. Такие бифункциональные ингибиторы призваны решить проблему 
резистентности опухолевых клеток к известным химиопрепаратам и повысить эффективность последних. 
В настоящем исследовании представлены данные скрининга ингибирующей активности 22 узкобороздочных 
лигандов, взаимодействующих с ДНК,  – бис- и трисбензимидазолов  – в отношении четырех ферментов 
репарации: TDP1, TDP2, PARP1 и PARP2. Изучены четыре серии димерных соединений и их мономерных единиц. 
Показана разница в ингибирующей активности димерных бисбензимидазолов в зависимости от структуры 
соединения и фермента. Мономерные и димерные бисбензимидазолы эффективно ингибируют активность TDP1 
в микромолярном и субмикромолярном диапазоне IC50 (концентрация полумаксимального ингибирования).  
Димерные  соединения  групп DB2Pу(n)  и  DB3P(n)  проявили  более  значительную  ингибирующую  активность 
в отношении ферментативной реакции с участием TDP1 по сравнению с мономерами, входящими в их 
состав. Для всех исследованных соединений была показана низкая ингибирующая способность в отношении 
остальных трех ферментов репарации ДНК, т. е. наблюдается их специфическое воздействие именно на TDP1. 
Следует отметить, что в данной работе в экспериментах с TDP1 и TDP2 было исключено действие исследуемых 
соединений как узкобороздочных лигандов, связывающихся с ДНК, и исследовано их непосредственное 
воздействие на фермент. По результатам молекулярного докинга можно предположить возможность прямого 
взаимодействия изучаемых соединений с активным центром TDP1. Согласно результатам моделирования, 
ингибиторы располагаются в области связывания 3’-конца ДНК с активным центром TDP1 и могут образовывать 
устойчивые связи с каталитически значимыми остатками активного центра His263 и His493. Эти взаимодействия, 
вероятно, обеспечивают высокую ингибирующую активность соединений, наблюдаемую в биохимических 
экспериментах. 
Ключевые слова: тирозил-ДНК фосфодиэстераза 1 (TDP1); ингибитор TDP1; ингибирующая активность; TDP2; 
PARP1; PARP2; ДНК-лиганды; производные бисбензимидазола
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over each other’s functions to some extent, since TDP1 has 
low activity in the cleavage of 5′-phosphotyrosyl bonds, while 
TDP2 has low activity in the cleavage of 3′-phosphotyrosyl 
bonds (Zeng et al., 2012; Pommier et al., 2014).

Today, topoisomerase inhibitors are widely used in clinical 
practice as anticancer drugs. The most widely used topoiso­
merase inhibitors are topotecan and irinotecan, which sup­
press the activity of topoisomerase 1, as well as etoposide, 
targeting topoisomerase  2 (Pommier et al., 2010). Their 
mechanism of action consists in the formation of covalent 
adducts of topoisomerases with DNA, replication arrest, 
which ultimately leads to the suppression of cell proliferation. 
Various researchers have expressed the opinion (Pommier 
et al., 2014; Zakharenko et al., 2015) that the use of TDP1 
and TDP2 inhibitors, which enhance the efficacy of topoiso
merase inhibitors, may allow reduction of the dose of these 
rather toxic drugs and, consequently, the toxicity of therapy. 
Today, the search for TDP1 inhibitors is actively underway 
(Zakharenko et al., 2023; Zhang M. et al., 2025). As TDP1 
inhibitors, derivatives of natural compounds such as usnic 
acid, berberines, coumarins, nucleosides, and steroids are 
particularly notable (Zakharenko et al., 2023), which are ef­
fective inhibitors of the purified TDP1 enzyme and topotecan 
sensitizers in experiments conducted on cellular and mouse 
cancer models (Zakharenko et al., 2023; Kornienko et al., 
2024). Among TDP2 inhibitors, deazaflavins are worth noting, 
being among the most active inhibitors found to date for this 
enzyme (Marchand et al., 2016).

The enzymes PARP1 and PARP2 are key regulators of 
DNA repair and other cellular processes. These enzymes cata­
lyze the DNA-dependent synthesis of the branched polymer 
poly(ADP-ribose) (PAR) and subsequent ADP-ribosylation of 
proteins. ADP-ribosylation of proteins is a post-translational 
modification that is induced in response to DNA damage. 
PARP1 participates in various DNA repair pathways (Ray 
Chaudhuri, Nussenzweig, 2017; Lavrik, 2020). PARP2 is 
also a DNA-dependent PARylation agent and can partially 
replace PARP1 (Lavrik, 2020; Szanto et al., 2024); therefore, 
the search for PARP1 and PARP2 inhibitors is an urgent task 
of modern medicinal chemistry. In clinical practice, such 
PARP1 and PARP2 inhibitors as olaparib, rucaparib, niraparib, 
veliparib, and talazoparib are currently approved for use in 
the treatment of ovarian, fallopian tube, breast, and peritoneal 
cancer (Kim D.-S. et al., 2021). The inhibitors used today work 
on the principle of synthetic lethality to destroy cancer cells 
with defects in the homologous recombination system (for 
example, with BRCA1/2 mutations), converting single-strand 
DNA breaks into double-strand breaks that cannot be effec­
tively repaired, leading to cancer cell death. The active sites 
of PARP1 and PARP2 are very similar (Schreiber et al., 2006; 
Hoch, Polo, 2019); therefore, the currently known inhibitors 
most often act on both enzymes, as well as on other enzymes 
of the PARP family, due to the similarity of their active center 
that binds nicotinamide adenine dinucleotide (NAD+) and ini­
tiates the synthesis of poly(ADP-ribose), therefore the search 
for selective inhibitors of each of these enzymes is actively 
conducted (Johannes et al., 2024). PARP inhibitors approved 
for clinical use are quite toxic and cause severe side effects, 
so the search for new inhibitors actively continues (Murai et 
al., 2014; Kim D.-S. et al., 2021; Johannes et al., 2024).

Small-molecule DNA-binding agents are an extremely 
promising class of compounds for the search of new inhibi­
tors of repair enzymes. Of particular interest are minor-groove 
DNA ligands capable of inhibiting DNA-dependent enzymes, 
while not possessing high toxicity and mutagenicity, and being 
well soluble in water. Such DNA ligands have a low level of 
DNA geometry alteration and absence of covalent crosslink 
formation when forming a complex with DNA (Arutyunyan 
et al., 2023a).

Our research group has significant experience both in 
experimental investigation of potential inhibitors at the 
level of individual protein targets, cells, and animal models 
(Zakharenko et al., 2023), and in the application of molecular 
docking and modeling methods to study the mechanisms of 
interaction of small molecules with target proteins. Effective 
TDP1 inhibitors have been found that inhibit the recombinant 
TDP1 enzyme in the submicromolar concentration range. The 
lead compounds were topotecan sensitizers in experiments 
conducted on cell cultures and mouse tumor models (Zakha­
renko et al., 2023; Kornienko et al., 2024). We have developed 
and investigated inhibitors of PARP1, PARP2, and PARP3 
based on conjugates of ADP and morpholino nucleosides us­
ing structural modeling of the active sites of these enzymes 
(Sherstyuk et al., 2019; Chernyshova et al., 2024).

This work presents screening data of twenty-two minor-
groove ligands as inhibitors of TDP1, TDP2, PARP1, and 
PARP2. The studied compounds are bis- and trisbenzimidazole 
derivatives. Four monomeric compounds – MB2, MB2(Ac), 
MB2Py(Ac), MB3 – as well as four series of dimeric deriva­
tives were investigated. The dimeric derivatives were obtained 
by condensation of monomeric subunits with dicarboxylic 
acids DB2P(n), DB2Py(n), and DB3P(n), where (n) is the 
number of methylene units in the linker (Fig. 1).

It was shown that the activity of the compounds varies 
depending on their structure and the type of enzymatic target. 
The studied compounds exhibited pronounced inhibitory 
activity against TDP1, and the observed correlation indicates 
an  increase in inhibitor activity upon introduction of addi- 
tional binding blocks into its structure, such as a pyrrole
carboxamide fragment for the DB2Py(n) series, or when using 
a combination of three benzimidazole blocks in the monome
ric subunit. Despite the fact that extremely high IC50 values 
were observed for the DB3(n) series, this phenomenon can be 
explained by the high propensity of members of this series 
of compounds to aggregation, since the introduction of a pi­
perazine fragment into the linker in the DB3P(n) series led to 
the obtaining of inhibitors with the lowest IC50 values, which 
indirectly confirms our assumption. In order to elucidate the 
possible mechanism of their inhibitory action for this enzyme, 
molecular docking was performed, the results of which suggest 
the presence of direct interaction between the active com­
pounds and the TDP1 enzyme. According to the constructed 
binding model, the inhibitors are located in the region of the 
DNA-binding pocket of TDP1 and are capable of forming 
stable contacts with the catalytically important amino acid 
residues His263 and His493. The efficacy of these compounds 
as TDP1 inhibitors was confirmed by experimental data. The 
results of the work can be used for the rational design of new, 
even more effective TDP1 inhibitors.



N.S. Dyrkheeva, I.A. Chernyshova, A.F. Arutyunyan … 
S.M. Deyev, A.L. Zhuze, O.I. Lavrik

1100 Vavilovskii Zhurnal Genetiki i Selektsii / Vavilov Journal of Genetics and Breeding • 2025 • 29 • 7

Dimeric bisbenzimidazoles as inhibitors  
of DNA repair enzymes TDP1, TDP2, PARP1 and PARP2

Materials and methods
Materials and reagents. The studied compounds were synthe­
sized at the Engelhardt Institute of Molecular Biology in the 
Laboratory of DNA-Protein Interactions according to previ­
ously developed methods (Ivanov et al., 2015; Arutyunyan et 
al., 2023a, b; Susova et al., 2024). The list of IUPAC names of 
the compounds is provided in the Supplementary Materials1.

Recombinant human proteins tyrosyl-DNA phosphodieste­
rase 1 (TDP1) and tyrosyl-DNA phosphodiesterase 2 (TDP2) 
were expressed in the E.  coli system, poly(ADP-ribose) 
polymerase 1 (PARP1) and poly(ADP-ribose) polymerase 2 
(PARP2) were expressed in insect cells using a baculovirus 
expression system and purified as described in (Sukhanova et 
al., 2004; Sherstyuk et al., 2019; Dyrkheeva et al., 2020, 2021).

The oligonucleotide 5′-FAM-AAC GTC AGG GTC TTC 
C-BHQ1-3′ was synthesized at the Laboratory of Nucleic Acid 
Chemistry, Institute of Chemical Biology and Fundamental 
Medicine (Novosibirsk, Russia), according to (Zakharenko 
et al., 2015).
1 Supplementary Tables S1, S2 and Figs S1–S4 are available at: 
https://vavilov.elpub.ru/jour/manager/files/Suppl_Dyrkheeva_Engl_29_7.pdf

Determination of TDP1 activity. The reaction mixture 
(200 μl) for real-time fluorescent detection of TDP1 enzyme 
activity (Zakharenko et al., 2015) contained TDP1 reaction 
buffer (50 mM Tris-HCl, pH 8.0, 50 mM NaCl, and 7 mM 
β-mercaptoethanol), 50  nM oligonucleotide 5′-FAM-AAC 
GTC AGG GTC TTC C-BHQ1-3′, the test compound at 
various concentrations, and TDP1 at a final concentration of 
1.5 nM. The reaction mixtures were incubated at a constant 
temperature of 26 °C in a POLARstar OPTIMA microplate 
fluorometer (BMG LABTECH, GmbH, Ortenberg, Germany). 
Fluorescence intensity (Ex485/Em520  nm) was measured 
every minute for 10  min. Mean values of half-maximal 
inhibitory concentration (IC50  – the concentration of the 
compound that inhibited 50 % of enzyme activity compared 
to the untreated control well containing only enzyme and 
substrate) were determined using a dose-response curve of the 
fluorescence signal level versus inhibitor concentration and 
calculated using MARS Data Analysis 2.0 (BMG LABTECH). 
Kinetic curves were obtained in at least three independent 
experiments and statistically processed in OriginPro  8.6.0 
(OriginLab, Northampton, Massachusetts, USA).

Fig. 1. Structures of bisbenzimidazole derivatives studied in this work.

MB2

MB3

MB2(Ac)

MB2Py(Ac)

DB2P(n), n=1, 2, 3, 4

DB3P(n), n=1, 2, 3, 4

DB2Py(n), n=1, 3, 4, 5, 7, 9, 11

DB3(n), n=1, 5, 9
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Determination of TDP2 activity. For determination of 
TDP2 enzyme activity, an oligonucleotide 5′-tyrosine-AAC 
GTC AGG GTC TTC C-FAM-3′ containing a 6-FAM label at 
the 3′-end and an L-tyrosine residue attached via the phenolic 
OH group to the 5′-terminal phosphate was used as substrate, 
synthesized at the Russian-French-Japanese Laboratory 
of Bionanotechnology of Novosibirsk State University as 
described in (Dyrkheeva et al., 2021). The substrate at a 
concentration of 100 nM was incubated with TDP2 at a con­
centration of 200 nM in the absence or presence of inhibitor 
(500 μM) for 10 min at 37 °C in buffer containing 50 mM 
Tris-HCl, pH 8.0, 50 mM NaCl, 7 mM β-mercaptoethanol 
(Dyrkheeva et al., 2021). The reaction was stopped by addition 
of PAGE loading buffer (TBE, 10 % formamide, 7 M urea, 
20 mM EDTA, 0.1 % xylene cyanol, and 0.1 % bromophenol 
blue). The samples were then heated at 90 °C for 5 min. The 
enzymatic reaction products were separated by electrophoresis 
in 20 % denaturing PAGE with 7 M urea at an acrylamide 
to bisacrylamide ratio of 19:1. A  high-resolution Typhoon 
FLA 9500 laser scanner (GE Healthcare, Chicago, Illinois, 
USA) was used for gel scanning and visualization, and the 
data were analyzed using QuantityOne 4.6.7 software (Bio-
Rad Laboratories, Inc., Hercules, California, USA). At least 
three independent experiments were performed, and statistical 
processing was carried out using OriginPro 8.6.0 (OriginLab, 
Northampton, Massachusetts, USA).

Determination of PARP1 and PARP2 activity. For 
determination of PARP1 and PARP2 enzyme activity in 
the presence and absence of test compounds, radiolabeled  
[32P]-NAD⁺ was synthesized from α-[32P]-ATP according to 
the protocol (Sherstyuk et al., 2019). The auto-poly(ADP-
ribosyl)ation reaction was performed in buffer for PARP1: 
50  mM Tris-HCl, pH  8.0, 10  mM MgCl2, 150  mM NaCl, 
and 7  mM β-mercaptoethanol, as well as 2 A260  units/ml 
activated DNA, 0.3 mM [32P]-NAD⁺ at 37 °C. The reaction 
was initiated by addition of PARP1 to 200 nM and carried out  
for 2 min.

The buffer for PARP2 contained: 50 mM Tris-HCl, pH 8.0, 
3 mM spermine, 150 mM NaCl, and 7 mM β-mercaptoethanol, 
2 A260 units/ml activated DNA, 0.6 mM [32P]-NAD⁺ at 37 °C. 
The reaction was initiated by addition of PARP2 to 600 nM, 
and the reaction mixtures were incubated for 5 min. The reac­
tion was stopped by placing 5 μl aliquots on Whatman 1 paper 
filters impregnated with 5 % trichloroacetic acid (TCA). The 
filters were washed with 5 % TCA four times and air-dried 
after removal of  TCA with 90 % ethanol. The incorporation of 
the radioactive label into the reaction product was calculated 
using a Typhoon FLA 9500 scanner (GE Healthcare, Chicago, 
Illinois, USA). At least three independent experiments were 
performed.

Molecular modeling. To evaluate the interaction of the 
studied compounds with the TDP1 enzyme, we performed 
molecular docking followed by analysis of the resulting com­
plexes. The study included preparation of protein and ligand 
structures, molecular docking, energy minimization of com­
pounds in the binding site, and assessment of inhibitor affinity 
using the Vinardo, X-Score, and REF2015 scoring functions.

The crystal structure of TDP1 (PDB ID: 8V0B) was used as 
the target protein structure. Missing loops in the model were 
reconstructed based on AlphaFold2 prediction (Jumper et al., 

2021) performed in ColabFold (Mirdita et al., 2022) without 
using multiple sequence alignment (MSA) and using 8V0B 
as a template.

Hydrogen atoms were then added to the resulting model and 
charges were calculated using the DockPrep utility in UCSF 
Chimera (Pettersen et al., 2004). The inhibitor structures were 
prepared in OpenBabel (O’Boyle et al., 2011): hydrogens 
were added, partial charges were calculated, and geometry 
minimization was performed.

Molecular docking was performed using the UCSF 
DOCK  6.11 software package (Allen et al., 2015). Full-
atom flexible docking over the entire protein surface was 
used. At the first stage of docking, the core fragments of the 
inhibitors (MB2(Ac), MB2Py(Ac)) were positioned, after 
which full-length molecules were docked with subsequent 
minimization of their energy in the binding site. Up to nine 
best conformations by GridScore were requested for each 
compound. From the nine conformations obtained for each 
ligand, the structure with the minimum RMSD relative to 
the optimal conformation of the core fragment was selected. 
In cases where DOCK6 returned fewer than nine unique 
conformations (due to clustering, energy filtering, or failure 
to generate additional conformers), selection was performed 
from all available conformations (Table S1).

Final assessment of the inhibitors’ binding ability to the 
protein was performed using several independent scor­
ing functions: ContinuousScore from DOCK  6, Vinardo 
(Quiroga, Villarreal, 2016), X-Score (Wang R. et al., 2002), 
and REF2015 in the PyRosetta4 environment (Chaudhury 
et al., 2010; Alford et al., 2017) according to the protocol of 
Moretti et al. (2016). ContinuousScore is a scoring function 
in DOCK  6 that accounts for van der Waals interactions, 
electrostatic interactions, internal ligand energy, and penalties 
for steric clashes through direct calculation of interatomic 
distances. Vinardo is a scoring function for docking that ac­
counts for the contribution of hydrogen bonds, hydrophobic 
and van der Waals interactions, as well as corrections for 
non-optimal ligand positioning. The X-Score scoring func­
tion consists of three components: HPScore, HMScore, and 
HSScore, based on different empirical principles for assessing 
ligand-protein affinity. In this study, the averaged X-Score 
was used, reflecting the influence of  hydrophobic, polar, and 
electrostatic contacts. The full-atom REF2015 scoring func­
tion implemented in PyRosetta includes contributions from 
van der Waals, electrostatic, hydrogen bonding, solvation, and 
additional atom pair interactions and allows correct ranking 
of inhibitor positions close in energy.

To validate the molecular docking results and assess the 
stability of the predicted complex over time, molecular 
dynamics simulation of the TDP1 complex with the lead 
compound DB2Py(1), which had shown the best inhibitory 
activity, was performed. The simulation was carried out using 
the OpenMM 8 package (Eastman et al., 2017). A detailed 
protocol of the molecular dynamics simulation is presented 
in the Supplementary Materials.

Results
In this work, the ability of four series of small-molecule 
dimeric DNA ligands DB2P(n), DB2Py(n), DB3(n), DB3P(n) 
as well as their monomeric units MB2, MB2(Ac), MB2Py(Ac), 
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and MB3 (Fig. 1) to inhibit the activity of recombinant DNA 
repair enzymes TDP1 and TDP2, PARP1 and PARP2 was 
studied for the first time (see the Table).

The first group of studied compounds represents dimeric 
derivatives of the monomeric bisbenzimidazole ligand MB2, 
a derivative of the widely studied minor-groove DNA ligand 
Hoechst 33258, in which the hydroxyphenyl group is replaced 
by a more hydrophilic aminomethylene fragment – DB2P(n). 
As a linker for compounds of this group, 1,4-piperazine-
dialkyldicarboxylic acids containing a methylene, ethylene, 
propylene, or butylene spacer were used (Fig. 1). This series 
was also supplemented with the monomeric derivative 
MB2(Ac), acylated at the aminomethylene fragment, which 
structurally brings this compound, compared to MB2, closer 
to half of the dimeric compound DB2P(n) and makes it a 
more appropriate reference for comparison. The DB2P(n) 
series differs from other ligand series by the presence of a 
positively charged 1,4-piperazine introduced into the linker, 

which improves ligand solubility and may increase ligand 
affinity for the enzyme.

The next group of compounds are derivatives of the 
monomeric trisbenzimidazole compound MB3, which can be 
considered as a derivative of MB2 containing one additional 
benzimidazole fragment, which increases the number of 
potentially possible hydrogen bonds in the inhibitor-TDP1 
complex. Dimeric derivatives of MB3 are represented by 
two series of compounds  – DB3P(n), also dimerized with 
1,4-piperazinedialkyldicarboxylic acids, and DB3(n), where 
n-alkyldicarboxylic acids are used as linkers. The DB3(n) 
and DB3P(n) series are characterized by the presence of 
trisbenzimidazoles in the structure, and DB3P(n), also by the 
presence of 1,4-piperazine in the linker.

The third group of compounds includes derivatives of the 
monomeric compound MB2Py(Ac), which is an isosteric 
analog of MB3, due to the fact that the pyrrolecarboxamide 
fragment contained in its structure can act as a hydrogen 

Inhibitory activity of test compounds against TDP1, TDP2, PARP1, and PARP2

No. Compounds IC50 TDP1, μM TDP2 PARP1 PARP2

% of residual activity (500 μM)

   1 MB2 2 ± 1 ~100 ~100 ~100

   2 MB2(Ac) 1.5 ± 0.5 ~100 ~100 ~100

   3 DB2P(1) 6 ± 4 66 ± 7 57 ± 16 ~100

   4 DB2P(2) 9 ± 3 44 ± 11 51 ± 15 80 ± 20

   5 DB2P(3) 4.1 ± 0.6 36 ± 7 37 ± 10 64 ± 16

   6 DB2P(4) 2.3 ± 0.3 44 ± 11 33 ± 13 85 ± 13

   7 MB2Py(Ac) 5 ± 2 ~100 ~100 ~100

   8 DB2Pу(1) 0.25 ± 0.05 55 ± 3 ~100 ~100

   9 DB2Pу(3) 0.41 ± 0.09 70 ± 11 ~100 ~100

10 DB2Pу(4) 0.4 ± 0.15 ~100 ~100 ~100

11 DB2Pу(5) 0.35 ± 0.13 ~100 ~100 ~100

12 DB2Pу(7) 0.28 ± 0.01 ~100 ~100 ~100

13 DB2Pу(9) 0.30 ± 0.08 ~100 ~100 ~100

14 DB2Pу(11) 0.9 ± 0.1 ~100 ~100 ~100

15 MB3 0.70 ± 0.05 ~100 65 ± 15 ~100

16 DB3(1) >50 70 ± 6 55 ± 13 ~100

17 DB3(5) >50 65 ± 10 62 ± 16 ~100

18 DB3(9) >50 ~100 ~100 ~100

19 DB3P(1) 0.10 ± 0.05 ~100 70 ± 12 ~100

20 DB3P(2) 0.11 ± 0.01 ~100 40 ± 5 ~100

21 DB3P(3) 0.20 ± 0.05 ~100 47 ± 14 ~100

22 DB3P(4) 0.15 ± 0.03 ~100 48 ± 15 ~100

Note.  For IC50 values and percentage of residual enzyme activity in the presence of inhibitor, the Table shows mean values ± standard deviation (at least three 
replicates).
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atom donor at the carboxamide nitrogen for hydrogen 
bond formation, in a position analogous to benzimidazole. 
Dimeric derivatives are represented by the DB2Py(n) series 
containing n-alkyldicarboxylic acids as a linker. This series 
is represented by a set of compounds containing 1, 3, 4, 5, 7, 
9, and 11 methylene units, which allowed for a more accurate 
assessment of the dependence of the inhibitory activity of 
compounds on spacer length. The DB2Py(n) series differs 
from the DB3(n) series by the presence, in addition to the 
bisbenzimidazole structure, of a pyrrolecarboxamide structure, 
which is a fragment of the AT-specific antibiotic netropsin.

Using the real-time fluorescence analysis method, half-
maximal inhibitory concentration (IC50) values of the studied 
compounds (see the Table) were obtained in the reaction of 
BHQ1 cleavage from the 3′-end of the oligonucleotide by 
TDP1, which led to an increase in FAM fluorescence at the 
5′-end of the chain (Zakharenko et al., 2015). It should also 
be noted that a single-stranded oligonucleotide was used as 
substrate to exclude the binding of dimeric bisbenzimidazoles 
as minor-groove ligands to the DNA substrate and direct their 
action toward the enzymatic target.

From the data obtained for the monomeric compounds 
MB2 and MB2(Ac) and their dimeric derivatives DB2P(n), at 
n = 1, 2, 3, 4, the IC50 values were in the micromolar range, 
and dimerization did not lead to an increase in the inhibitory 
activity of the studied compounds. At the same time, for di­
mers of the monomeric MB2Py(Ac), which has an IC50 value 
of 5 ± 2  μM, the half-inhibitory concentration parameter 
value decreased significantly, ranging from 0.25 to 0.90 μM. 
Similarly, the transition from monomeric MB3 to the dimeric 
DB3P(n) series led to an increase in the inhibitory activity of 
the compounds, although not as pronounced; however, dimeric 
derivatives of MB3 that do not contain a piperazine fragment 
in the linker – DB3(n) compounds – showed the lowest level 
of activity among all the inhibitors tested in this work. The 
fact that the IC50 values for these compounds (see the Table) 
deviate so strongly from the overall data set is most likely 
due to the fact that DB3(n) compounds possess an extended 
and planar geometry, as well as a rigid linker, which prevents 
optimal positioning of compounds of this type in the enzyme 
active site (Fig. 1).

Thus, according to the experimental data, all compounds 
studied in this work, except for the DB3(n) group, effectively 
inhibit TDP1 activity at micromolar and submicromolar 
concentrations. A structure-activity correlation is observed, 
consisting of a decrease in concentration to achieve the half-
maximal inhibition effect with an increase in the number of 
blocks containing hydrogen bond donors in the compound. 
In particular, dimerization is one of the simple approaches 
to increasing such structures in one molecule, which leads 
to a nonlinear increase in the binding constant (Neudachina, 
Lakiza, 2014). A decrease in IC50 is also observed upon in­
troduction of a piperazine fragment into the linker structure, 
which may be due to an increase in the hydrophilicity of the 
molecules. The results obtained allowed us to establish a 
structure-activity correlation, as well as to assess the contribu­
tion of dimerization to the increase of the inhibitory capacity 
of the studied compounds.

To study the effect of the studied compounds on TDP2 acti
vity, we tested the ability of this enzyme to remove the tyrosine 

residue from the 5′-end of the oligonucleotide substrate in the 
absence and presence of inhibitors, as described in (Dyrkheeva 
et al., 2021). All compounds of the DB2P(n) group, as well as 
DB2Py(n), at n = 1, 3 and DB3(n), at n = 1, 5 at a concentration 
of 500 μM inhibited enzyme activity by approximately 50 %, 
while all other compounds showed no inhibitory activity (see 
the Table). Thus, all tested compounds showed a significantly 
lower propensity to inhibit TDP2 compared to TDP1. Inter­
estingly, the DB2P(n) group inhibited TDP1 less effectively 
and TDP2 more effectively than compounds of other groups.

The next step of our work was to test the ability of the 
studied compounds to inhibit PARP1 and PARP2, that is, their 
enzymatic activity in the poly(ADP-ribose) (PAR) synthesis 
reaction, at a rather high concentration range of compounds. 
All studied compounds showed low efficiency in inhibiting 
these two enzymes. The most active compounds were those of 
the DB2P(n) group, representatives of which with n = 2, 3, 4 
reduced the activity of PARP1 and PARP2 at a concentration of 
500 μM. Inhibitory action was also observed for compounds of 
the DB3(n) and DB3P(n) series at a concentration of 500 μM, 
while these compounds exhibited inhibitory activity only 
in the PAR synthesis reaction catalyzed by PARP1, but not 
PARP2 (see the Table).

Since, according to the experimental data, all studied 
compounds, with the exception of the DB3(n) group, 
effectively inhibit TDP1 activity, we further performed an 
in silico evaluation of the ability of compounds of the DB2P(n) 
and DB2Py(n) groups to bind to the TDP1 enzyme in order to 
elucidate the possible molecular mechanism of their inhibitory 
action. For this purpose, full-atom flexible molecular docking 
over the entire surface of the TDP1 protein (PDB ID: 8V0B) 
was performed for DB2P(n) and DB2Py(n) compounds.

According to the docking results obtained, it can be assumed 
that conformations with minimum calculated energy for 
each inhibitor form interactions in the TDP1 active site, near 
His263 and His493 residues (Fig. 2a), similarly to compound 
MB2(Ac) (Fig.  S1). An additional analysis of the binding 
ability of dimeric compounds to TDP1 was performed using 
the Vinardo, X-Score, and REF2015 scoring functions in the 
PyRosetta environment (Table  S2). The obtained scoring 
function values suggest high affinity of the studied inhibitors 
of the DB2P(n) and DB2Py(n) groups for TDP1. It should be 
noted that complete correlation of the parameters obtained by 
docking (Table S2) with the IC50 values found experimentally 
(see the Table) is not observed, which can be explained by 
the contribution of hydrophobic linkers, which are difficult to 
account for in energy calculations.

According to molecular modeling data, compound MB2(Ac) 
(Fig. 2b), which is the monomeric unit for dimeric deriva­
tives DB2P(n), may form a hydrogen bond with His263 and 
a π-cation interaction with His493, which could potentially 
lead to blocking of the TDP1 catalytic act. In addition to 
interactions with catalytically active residues, MB2(Ac) may 
form hydrophobic contacts with Tyr204 and Ala520, as well 
as a hydrogen bond with Phe259, which could enhance the 
inhibitory action of this compound. In contrast to MB2(Ac), 
compound MB2Py(Ac) (Fig. 2c) appears to interact with only 
one catalytic residue – His493 – through hydrogen bond for­
mation. Such a difference in interactions could be the reason 
for the higher inhibitory activity of MB2(Ac) compared to 
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MB2Py(Ac), which is consistent with experimental data (see 
the Table).

Analysis of interactions using PLIP (Protein–Ligand In­
teraction Profiler) (Salentin et al., 2015) for predicted TDP1 
complexes with dimeric compounds of the DB2Py(n) group 
(Fig. S2) showed that these compounds form a greater number 
of protein-ligand contacts (hydrogen bonds and hydropho­
bic interactions) compared to the MB2Py(Ac) monomer. In 
particular, compound DB2Py(1) forms hydrogen bonds with 
Ser400 and Ser403, as well as hydrophobic interactions with 
Pro463 – the residues of these amino acids are located in the 
ligand binding site with the TDP1 active center, which likely 
contributes to stabilization of the interacting dimer fragment 
in the enzyme active site. The data obtained from docking 
analysis, characterizing the larger contact surface area of 
dimeric DB2Py(n) compounds with TDP1 compared to the 
MB2Py(Ac) monomer, correlate with the decrease in IC50  
values for dimers, which indicates an increase in the affinity 
of these compounds for the enzyme active site (see the Table). 
According to the data obtained, hydrophobic interactions with 
Pro461 and/or Tyr204 residues localized in the TDP1 active 
site may also contribute to increasing the inhibitory activity 
of DB2Py(n) group compounds.

Analysis of interactions of compounds from the DB2P(n) 
group with TDP1 showed that analogous amino acid resi­
dues participate in complex formation, with the exception of 
Tyr204, with which DB2P(n) compounds, unlike DB2Py(n), 
apparently do not interact (Fig. S3). In addition, possible dif­

ferences in the nature of interactions with the same amino acids 
were noted. For example, for the Lys519 residue in the case 
of DB2P(n) compounds, formation of hydrogen bonds with 
nitrogen atoms of the piperazine fragment through the N1 atom 
of the side chain can be assumed. At the same time, two types 
of interactions with Lys519 are predicted in DB2Py(n) com­
pounds: a hydrogen bond between the backbone nitrogen atom 
of Lys519 and the oxygen atom in the pyrrolecarboxamide 
group (in DB2Py(1), DB2Py(4), DB2Py(7), DB2Py(9)), as well 
as a π-cation interaction between pyrrole and the Lys519 side 
chain (in DB2Py(3) and DB2Py(5)) (Fig. S2).

For compound DB2Py(1), which demonstrated the highest 
inhibitory activity (lowest IC50  value) among the studied 
derivatives, additional molecular dynamics modeling in the 
predicted complex with TDP1 was performed. Analysis of 
the MD trajectory showed that the TDP1-DB2Py(1) complex 
maintains stability throughout the simulation time. RMSD 
values of the ligand were in the range of 1.5–3.0 Å (Fig. S4), 
which indicates stable binding of DB2Py(1) in the protein 
active site without signs of dissociation or significant con­
formational rearrangements. The data obtained confirm the 
strength of the formed complex and are consistent with the 
high biological activity of this compound.

It should be noted that our analysis of molecular contacts, 
as well as the scoring function values obtained according to 
molecular docking results, indicate the ability of compounds 
of both analyzed groups – DB2P(n) with an aliphatic linker 
and DB2Py(n) with a piperazine fragment in the linker – to 

Fig. 2. a, Structure of TDP1 (PDB ID: 8V0B) with inhibitor MB2(Ac) located in the positively charged region of the TDP1 active site. 
The protein surface is colored according to the electrostatic potential distribution calculated using APBS (Jurrus et al., 2018). The 
DNA-binding region of TDP1 is highlighted by a rectangular frame. Below is a scale of TDP1 surface electrostatic potential values 
(in units of kT/e, where kT/e ≈ 25.7 mV at 298 K). Color scale: red indicates negative potential (−5 kT/e), white indicates neutral 
(0 kT/e), blue indicates positive potential (+5 kT/e). b, c,  Predicted conformations of inhibitors MB2(Ac) and MB2Py(Ac) (green) in 
complex with TDP1 with contacting residues (cyan).

b

c
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form a stable complex with TDP1. Nevertheless, experimental 
data show differences in their inhibitory activity: compounds 
with an aliphatic linker demonstrate higher inhibition effi­
ciency compared to compounds containing a piperazine ring.  
This difference cannot be fully explained based on contact 
analysis, which suggests a possible difference in the confor­
mational mobility of these groups of compounds. In particular, 
the inclusion of a piperazine fragment in the central part of 
the linker apparently restricts its flexibility, which affects the 
dynamics of inhibitor interaction with the active site, prevents 
optimal positioning of the inhibitor in the enzyme active site 
and, consequently, reduces its inhibitory activity.

Discussion
TDP1 plays a key role in eliminating DNA damage located 
at the 3′-end of DNA, stabilized by anticancer drugs used in 
clinical practice, such as topotecan and irinotecan, which are 
derivatives of the natural compound camptothecin (Comeaux, 
van Waardenburg, 2014; Kawale, Povirk, 2018). Consequen
tly, TDP1 activity may be a possible cause of tumor resistance 
to TOP1 inhibitors used in the clinic. Currently, searches for 
combined TOP1 and TDP1 inhibitors are actively underway 
(Conda-Sheridan et al., 2013; Nguyen et al., 2015; Zhang X.-R. 
et al., 2018; Hu et al., 2021;Yang et al., 2023).

Furthermore, since it is known that the activities of TDP1 
and TDP2 overlap, albeit to a minor extent (Pommier et al., 
2014), the ability of these enzymes to perform each other’s 
functions makes the combined use of inhibitors of these two 
enzymes or the creation of agents capable of simultaneously 
inhibiting both TDP1 and TDP2 quite promising. Simulta
neous suppression of the activity of these two enzymes can 
be used to enhance the efficacy of a large set of clinically 
important anticancer drugs, TOP1 and TOP2 inhibitors. Triple 
TOP1/TDP1/TDP2 inhibitors have also been discovered, 
which exhibit moderate activity against TDP1 and weak 
activity against TDP2 (Wang P. et al., 2017). The most effec­
tive TDP2 inhibitors to date are deazaflavins, which exhibit 
synergy with etoposide in vitro at non-toxic concentrations 
(Marchand et al., 2016), and some effective TDP2 inhibitors 
from other compound classes have also been found (Yang et 
al., 2021; Zhang Y. et al., 2021).

It is known that the N-terminal domain of TDP1 directly 
binds to the C-terminal domain of PARP1, and TDP1 under­
goes PARylation by PARP1 in order to be recruited to the 
TOP1-DNA adduct (Das et al., 2014; Lebedeva et al., 2015). 
PARylation of TDP1 stimulates its recruitment to sites with 
damaged DNA without affecting the catalytic activity of this 
enzyme (Chowdhuri, Das, 2021). It has also been shown 
that PARP1 can interact with TDP1, forming protein-protein 
contacts (Moor et al., 2015). It was established that the combi­
nation of TDP1 knockdown and inhibition of PARP1 activity 
with rucaparib reduces cell proliferation more significantly 
than these methods of enzyme function suppression separately 
(Fam et al., 2013). Therefore, there is a suggestion in the 
literature that the anticancer effect of TOP1 inhibitors can be 
significantly enhanced by simultaneous inhibition of PARP1 
and TDP1 (Smith et al., 2005; Alagoz et al., 2014; Das et 
al., 2014; Murai et al., 2014; Elsayed et al., 2016; Matsuno 
et al., 2018; Jing et al., 2020; Kim J.W. et al., 2020; Chow­
dhuri, Das, 2021; Flörkemeier et al., 2022). The interaction 

between PARP1 and TDP1 enzymes has been demonstrated 
in a number of publications (Das et al., 2014; Moor et al., 
2015), which makes the search for dual TDP1 and PARP1 
inhibitors relevant.

Previously, we discovered dual TDP1 and TDP2 inhibitors, 
as well as triple TDP1, TDP2, and PARP1 inhibitors (Dyr­
kheeva et al., 2021) – usnic acid thioethers that weakly inhibit 
TDP2 and PARP1; therefore, the search for new compounds 
capable of acting on two or three functionally interacting tar­
gets simultaneously is relevant. In this work, the ability of a 
series of minor-groove DNA ligands to inhibit TDP1, TDP2, 
PARP1, and PARP2 enzymes was tested. Effective inhibitors 
acting on all four enzymes simultaneously were not found, 
but it was shown that these compounds inhibit TDP1. The 
DNA ligands studied in this work are capable of inhibiting 
DNA-dependent enzymes through binding to double-stranded 
DNA. However, in the present work we showed that they are 
capable of selectively inhibiting TDP1, since the experiments 
were conducted in the absence of double-stranded DNA as 
an alternative target.

The results of molecular docking and analysis of inter­
molecular interactions suggest that most of the studied com­
pounds of the DB2P(n) and DB2Py(n) groups may possess high 
affinity for the TDP1 enzyme and form stable complexes with 
its catalytic center. Interactions with key catalytic residues of 
the TDP1 protein active site were predicted for all compounds. 

Conclusion
In this work, a study of the effect of dimeric bis- & tris-benzi
midazoles on the activity of DNA repair enzymes – TDP1, 
TDP2, PARP1, and PARP2 – was conducted. The main results 
showed that all studied inhibitors, except compounds of the 
DB3(n) series, effectively inhibit TDP1. The most active were 
compounds DB2Py(n) and DB3P(n), capable of inhibiting 
TDP1 in the submicromolar concentration range. The studied 
compounds demonstrate high selectivity, with minimal effect 
on the activity of other tested enzymes.

Based on the results of molecular docking, it is proposed 
that the studied active inhibitors are localized in the region 
of the DNA-binding pocket of TDP1 and may form stable 
interactions with the catalytically important residues His263 
and His493. These interactions likely underlie the observed 
high inhibitory activity.

An important result is also the establishment of the struc­
ture-activity relationship. Dimerization had a mixed effect on 
the inhibitory effect: compounds of the DB2Py(n) and DB3P(n) 
series were significantly (by an order of magnitude) more ac­
tive than the corresponding monomers; in the DB2P(n) series, 
the inhibitory activity was influenced not only by dimerization, 
but also by linker length and the introduction of 1,4-pipera­
zine bearing two positive charges into the linker. The DB3(n) 
series was inactive, unlike the monomer. Introduction of the 
piperazine fragment into the linker in the DB3P(n) series led 
to pronounced inhibitory activity compared to DB3(n) without 
such a fragment. We propose that the enhancement of the 
inhibitory effect is related to the introduction of two positive 
charges into the linker and to the increase in the number of 
possible contacts of ligands with the enzyme active site.

Overall, based on the results of this work, new strategies 
for the development of cancer therapy may be proposed. The 
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obtained data also highlight the potential of dimeric bis- & 
tris-benzimidazoles as safe and effective tools for targeted 
regulation of DNA repair enzymes.
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Abstract. One of the main goals of modern evolutionary biology is to understand the mechanisms that lead to the 
initial differentiation (primary divergence) of populations into groups with genetic traits. This divergence requires 
reproductive isolation, which prevents or hinders contact and the exchange of genetic material between populations. 
This study explores the potential for isolation based not on obvious geographical barriers, population distance, or 
ecological specialization, but rather on hereditary mechanisms, such as gene drift and flow and selection against 
heterozygous individuals. To this end, we propose and investigate a dynamic discrete-time model that describes 
the dynamics of frequencies and numbers in a system of limited populations coupled by migrations. We consider a 
panmictic population with Mendelian inheritance rules, one-locus selection, and density-dependent factors limiting 
population growth. Individuals freely mate and randomly move around a one-dimensional ring-shaped habitat. 
The model was verified using data from an experiment on the box population system of Drosophila melanogaster 
performed by Yu.P. Altukhov et al. With rather simple assumptions, the model explains some mechanisms for the 
emergence and preservation of significant genetic differences between subpopulations (primary genetic divergence), 
accompanied by heterogeneity in allele frequencies and abundances within a homogeneous area. In this scenario, 
several large groups of genetically homogeneous subpopulations form and independently develop. Hybridization 
occurs at contact sites, and polymorphism is maintained through migration from genetically homogeneous nearby 
sites. It was found that only disruptive selection, directed against heterozygous individuals, can sustainably maintain 
such a spatial distribution. Under directional selection, divergence may occur for a short time as part of the transitional 
evolutionary process towards the best-adapted genotype. Because of the reduced adaptability of heterozygous 
(hybrid) individuals and low growth rates in these sites (hybrid zones), gene flow between adjacent sites with opposite 
genotypes (phenotypes) is significantly impeded. As a result, the hybrid zones can become effective geographical 
barriers that prevent the genetic flow between coupled subpopulations.
Key words: metapopulation; migration; spatiotemporal dynamics; mathematical modeling; genetic divergence; gene 
flow; hybrid zones; isolation
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Компьютерное моделирование пространственной динамики 
и первичной генетической дивергенции  
в системе популяций на кольцевом ареале 
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Аннотация. Одна из ключевых задач современной эволюционной биологии – изучение процессов, приводящих 
к первичному разделению (дивергенции) популяций на различающиеся генотипами группы особей. Для 
дивергенции очевидно необходима репродуктивная изоляция, которая делает невозможным контакт особей 
или существенно затрудняет обмен генетической информацией между популяциями. Настоящее исследование 
изучает возможность изоляции, в основе которой лежат не очевидные географические барьеры, удаленность 
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Computer modeling of spatial dynamics  
and primary genetic divergence for a population system

популяций или экологическая специализация, а лишь наследственные механизмы, дрейф и поток генов, а также 
отбор против гетерозигот. Для этого предложена и исследована динамическая модель с дискретным временем, 
которая описывает динамику частот и численностей в системе миграционно связанных лимитированных 
популяций. Рассматривается панмиктичная популяция с менделевскими правилами наследования, 
монолокусным отбором, действием плотностно-зависимых факторов, лимитирующих рост численности. Особи 
свободно скрещиваются и перемещаются вдоль одномерного кольцевого ареала. Модель верифицирована с 
использованием данных эксперимента над ящичной системой популяций дрозофил Drosophila melanogaster, 
проведенного под руководством Ю.П. Алтухова. При достаточно простых предположениях модель описывает 
некоторые механизмы возникновения и сохранения на однородном ареале существенных генетических 
различий (первичной генетической дивергенции), сопровождаемых неоднородностью в частотах аллелей и 
численностях. В этом случае формируется несколько больших групп генетически однородных субпопуляций, 
развивающихся независимо. В местах их контакта активно идет гибридизация, а полиморфизм сохраняется 
за счет миграции с сопредельных однородных участков. Обнаружено, что устойчиво поддерживать такое 
пространственное распределение может только дизруптивный (разрывающий) отбор, направленный против 
гетерозигот. При движущем отборе дивергенция существует непродолжительное время, как часть переходного 
процесса. За счет пониженной приспособленности гетерозигот (гибридов) и низкой скорости роста на этих 
участках (зонах гибридизации) существенно затрудняется обмен генами между смежными участками с 
противоположными гомозиготными генотипами (фенотипами). В результате зоны гибридизации выполняют 
функцию географического барьера, который фактически останавливает обмен генов между разными группами 
в случае смежной симпатрии.
Ключевые слова: метапопуляция; миграция; пространственно-временная динамика; математическое 
моделирование; генетическая дивергенция; поток генов; гибридные зоны; изоляция

Introduction
Genetic divergence cannot occur without effective mecha­
nisms of reproductive isolation and stopping the gene flow 
between populations. This can be caused by large distances 
between populations (allopatry), which cannot be overcome 
during the lifetime of individuals, or by geographical barriers 
that prevent the transfer of genes. However, even if popula­
tions of the same species live in the same or adjacent areas 
(sympatry or parapatry) they can differ significantly in their 
traits. Although individuals from these populations can inter­
act and produce viable, fertile hybrids, there is no blurring of 
parental traits. Several mechanisms support the reproductive 
isolation and the divergence between different forms, includ­
ing selection against hybrids, which often have lower fitness 
than parental populations.

There are sufficient examples of reproductive isolation, 
where different subpopulations have accumulated sufficient 
differences even when they live sympatrically and have 
developed effective measures to prevent hybridization. For 
instance, recognition signals related to phonetic features 
and used in mating behavior contribute to the stabilization 
of extreme forms of a characteristic. Thus, the mating calls 
of certain frog species (such as Microhyla carolinensis and 
M. olivacea, Litoria verreauxii and L. v. alpina) differ greatly 
in the contact zone where their ranges overlap, but do not differ 
significantly in areas where they do not occur together (Blair, 
1955a; Littlejohn, 1965; Smith et al., 2003). In addition, the 
body sizes of different frog forms differ greatly in the contact 
zone, which complicates the mating process (Blair, 1955b).

Prezygotic isolation of sympatric forms of the same species 
or subspecies is often followed by ecological specialization, 
which does not prevent copulatory behavior between indivi­
duals with different traits and their hybridization, but only 
makes it unlikely. For example, the periods of sexual activity 
for two species of Rhagoletis pomonella are determined by 

the time of fruiting of the trees they were born on and lay their 
eggs on – hawthorn and apple (Filchak et al., 2000). These two 
races of flies of R. pomonella differ in their sensory process­
ing of key fruit odors: while some individuals are attracted 
to apple and avoid hawthorns, others choose hawthorn and 
avoid apples, which significantly hinders their contact (Tait et 
al., 2021). The mating preferences of hybrids are not entirely 
clear. However, when two races of R. pomonella are interbred 
in the laboratory, a lower conception rate is recorded (Yee, 
Goughnour, 2011), which signals some selection against 
hybrids and persistent divergence in nature caused by spe­
cialization of flies.

There are a few examples of hybridization where it does 
not have obvious negative effects, such as reduced fitness or 
a catastrophic decline in the reproductive success of hybrids 
(heterozygotes). For example, intraspecific variability in some 
birds is often expressed as differences in plumage coloration. 
At the same time, there is a clear divergence in traits between 
different parts of a large range, and stable hybrid zones exist 
over long periods of time in areas where the ranges overlap. 
The populations of the carrion crow and hooded crow (Corvus 
corone and C. cornix) are well known in Siberian (between 
the Ob and Yenisei rivers) and European hybrid zones (Ha­
ring et al., 2012; Poelstra et al., 2014; Kryukov, 2019; Blinov, 
Zheleznova, 2020), or northern flicker hybrid zone (Colaptes 
auratus cafer and C. a. auratus) in USA (Aguillon, Rohwer, 
2022). Another example is the hybridization of the great tit 
(Parus major) and Japanese tit (P. minor) in the Amur region 
(Kapitonova et al., 2012).

A genetic mechanism supporting isolation based on innate 
mating preferences has been identified in crows: they prefer 
to choose partners who are similar to themselves rather than 
exotic individuals. The process of forming phenotypes in car­
rion and hooded crows is linked to chromosomal inversion, 
which affects both feather coloration and the visual perception 
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of feather colors, as well as certain aspects of reproductive 
behavior (Poelstra et al., 2014). However, in areas where 
hybridization occurs, which apparently arises simultaneously 
with different colorations, mating preferences turn out to be 
more diverse and complete isolation does not occur. This is 
because the inverted chromosome region of the hooded crow 
is inherited in its entirety and does not recombine with the 
homologous regions of the carrion crow.

One simple model for studying genetic divergence is a 
linear chain or ring of partially isolated subpopulations that 
exchange genes. The studies on such models show that gene 
flow between subpopulations coupled by migration can lead to 
stable geographic variability of a trait and the maintenance of 
hybrid zones only with disruptive selection. With directional 
selection, stable divergence is impossible and can only occur 
as part of a transition process under special initial conditions 
(Bazykin, 1972; Frisman, 1986; Yeaman, Otto, 2011; Láru­
son, Reed, 2016). For chains of connected populations with 
different topologies, it has been found that divergence occurs 
more often in linear chains and rings, and less often in fully 
connected networks (with global connectivity) (Láruson, 
Reed, 2016; Sundqvist et al., 2016).

At the same time, for many natural populations with signifi­
cant divergence in characteristics and sometimes with known 
isolating mechanisms, it can be difficult to identify a specific 
adaptive trait that disruptive selection acts upon. This may be 
due to hidden traits, such as innate immune factors or the major 
histocompatibility complex, which are not directly related 
to an external trait that we currently observe in individuals, 
such as feather coloration in birds, skin or coat patterns, beak 
shape and size, or behavioral characteristics. The observed 
spatial distribution of a trait does not directly indicate the 
causes or type of selection that led to this divergence in the 
past. However, it can be successfully linked to the observed 
trait and serve as an indicator or marker of fitness, particularly 
for species with wide ranges, heterogeneous environmental 
conditions, significant divergence, and a high degree of poly­
morphism (Orsini et al., 2008; Murphy et al., 2010).

This work is part of a series of studies investigating the 
basic mechanisms of primary genetic divergence in systems 
of panmictic populations of diploid organisms coupled by 
migration and selection directed against heterozygotes (Zhda­
nova, Frisman, 2023; Kulakov, Frisman, 2025). We propose 
a dynamic discrete-time model that takes into account the 
action of density-dependent factors limiting population 
growth, genetic drift (through certain perturbations of initial 
conditions), natural selection, and migration of individuals  
between adjacent sites. The model is verified based on data 
from laboratory experiments with box populations of Dro­
sophila (Drosophila melanogaster) conducted under the 
supervision of Yu.P. Altukhov, which showed significant 
divergence in allele structure at the α-glycerophosphate de­
hydrogenase  (α-Gdph) locus between groups of adjacent 
boxes (Altukhov et al., 1979; Altukhov, Bernashevskaya, 
1981; Altukhov, 2003).

In this article, we analyze the processes of selection and 
migration (gene flow) that form and maintain the hetero­
geneous spatial distribution of allele frequencies, based on 

multiple computer simulations of a model. We investigate the 
role of hybrid zones with high proportions of heterozygous 
individuals in the α-Gdph gene and demonstrate that these 
zones separate monomorphic groups of boxes apart and do 
not allow the most adapted genotype to spread throughout 
the entire ring area.

Material and methods
The study is based on an original mathematical model – a sys­
tem of coupled nonlinear maps (discrete-time equations) that 
describes the dynamics of genotype frequencies and sub­
population abundances. The migration of individuals and gene 
flow between subpopulations are described using a migration 
matrix with random coefficients. We use the MT19937 random 
number generator (Matsumoto et al., 1998), available in the 
GSL numerical computation library. This generator has an 
extremely long period (~106,000) and low correlation, passing 
most statistical tests for randomness in its pseudo-random 
number sequences.

To validate the model, we use data from an experiment on 
the D. melanogaster ring system, conducted by a team led by 
Yu.P. Altukhov. The data consist of allele frequencies at the 
locus encoding the α-Gdph enzyme, as well as the numbers 
of flies in each box at different stages of the experiment (Al­
tukhov, 2003). We estimate model parameters using the least 
squares method.

Numerical experiments are conducted with the author’s 
software package, including the computer implementation of a 
mathematical model, visualization of the results, and analysis 
of dynamic regimes.

Model of local population
We consider a population of diploid organisms where be­
tween two adjacent generations, the following sequence of 
elementary population processes occurs: zygote formation 
from gametes, natural selection on zygotes (individuals), 
migration (dispersal) between adjacent subpopulations, and 
production of new gametes. We focus on populations in which 
the adaptive diversity is determined by a single locus with 
two alleles (A and  a), which are inherited co-dominantly. 
The phenotype of individuals is strictly determined by their 
genotype. The population is panmictic, and Mendelian in­
heritance rules apply. This means that the population contains 
individuals with genotypes AA, Aa, and aa. At time t, these 
genotypes have abundances N1(t), N2(t), and N3(t), respec­
tively, and frequencies q1(t) = N1(t) / N(t), q2(t) = N2(t) / N(t), 
and q3(t) = N3(t) / N(t) (where N(t) = N1(t) + N2(t) + N3(t) is the 
total population size).

Let us assume that the genotypes differ in their reproduc­
tive  abilities, which is expressed by differences in gamete 
production rates or individual survival rates. Denote the in­
tensity of gamete production for individuals with genotypes 
AA, Aa, and aa as gAA, gAa and gaa, respectively, taking into 
account the death of some gametes before they combine into 
zygotes in the next generation. Additionally, let WAA, WAa and 
Waa represent the proportion of zygotes (or individuals) with 
the corresponding genotype that survive the natural selection 
and have the ability to migrate (disperse).
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In cases where gamete production intensity does not depend 
on parental genotypes, i. e., gAA = gAa = gaa = g, the equations 
for genotype frequencies in a local panmictic population can 
be expressed as:

                        	

     (1)

where    *q1(t) = (q1(t) + q2(t)/2)2, 
               *q2(t) = 2(q1(t) + q2(t)/2)(q3(t) + q2(t)/2), 
               *q3(t) = (q3(t) + q2(t)/2)2 are the genotype frequencies 
immediately after gametes combine into zygotes, but before 
selection and migration of individuals (Zhdanova, Frisman, 
2023; Kulakov, Frisman, 2025). The parameter sk is the selec­
tion coefficient for zygotes with the corresponding genotype, 
which links the fitness Wk of each genotype and the gamete 
production rate gk as follows: 1 + sk = gWk (k =AA, Aa, aa). 
In system (1), the normalization factor
	       (t) = 1 + s1

   *q1(t) + s2
   *q2(t) + s3

   *q3(t)    	      (2)

is equal to the average (generalized) fitness, and its value 
determines the population growth rate. If there are no factors 
limiting the growth, the population size changes according to 
the following equation:

		       N(t + 1) = (t)N(t).		       (3)

The number of individuals with each genotype is determined 
by ratios: Nk(t + 1) = qk(t + 1)N(t + 1) = (1 + sk)

   *qk(t)N(t + 1)  
(k=AA, Aa, aa).

Of all the types of genetic selection determined by values s1, 
s2, and s3, disruptive selection is the most interesting (s2 < s1 
and s2  <  s3), as system  (1) demonstrates bistability. Early 
studies show that this type of selection is responsible for the 
emergence and fixation of genetic differences in different parts 
of a homogeneous area, even when environmental and other 
factors are not considered.

At the same time, on a large temporal scale, the growth of 
actual evolving populations is limited by environmental fac­
tors. This growth limitation can be described by a nonlinear 
dependence of selection and gamete production parameters 
on the abundance of genotypes or the total population density 
in model (1)–(3). It is easy to show that if the rates of gamete 
production are equal for all genotypes, then there is no dif­
ference between the limiting gamete production rate (g) and 
the intensity of selection (Wij) in case of competition for a 
common resource. Therefore, without loss of generality, we 
can assume that:

		           Wij = wij F(N ),    		       (4)

where wij is the maximum proportion of individuals with 
genotype ij (AA, Aa, or aa) that survive after natural selection 
under minimal competition (at low density), F is the function 
that describes the effect of density-dependent growth limita­
tion, and N is the total population size. Considering (4), the 
frequency dynamics equations (1) will not change their form, 

except for replacing Wij with wij and gWij with 1 + sk , while 
the population equations (3) will have a nonlinear dependency 
on density:
		  N(t + 1) = (t)N(t)F(N (t)).		       (5)

In populations of diploid organisms, exchange of gametes 
often requires contact between individuals. The probability 
of this decreases significantly at low densities, i. e., there is 
a direct correlation between the average individual fitness 
and the population density – the Allee effect (Allee, 1958). 
As a result, when the population size falls below a certain 
critical value N0, population growth becomes impossible and 
effective natural selection ceases to operate. Instead, only 
genetic drift determines the evolutionary trajectory of the 
population. Therefore, to describe these density-dependent 
limiting factors, we can use a function of the following form:

		  F(N ) = aφ(N )exp(–N/K ),   	      (6)
where φ(N ) is a sigmoid function equal to:

		     φ(N ) = 1
1 + e–h(N – N0)

 , 		       (7)

with parameter h ≥ 2, which defines the slope angle of the 
sigmoid at point N0. The value of N0 determines the minimum 
population size required for simple reproduction (1:1). The 
parameter K defines the ecological capacity of the habitat, 
and a defines the average number of offspring per individual 
with an average fitness of 1. These two parameters determine 
the steady-state (equilibrium) population size N  ≈ K ln(a   ). 
Using  (7), we can rewrite the equation  (5) for population 
dynamics as follows:

	      N(t + 1) = rN(t)φ(N (t))exp(–N(t)/K),	      (8)

where r = a  (t) is the total reproductive capacity of all 
genotypes.

When r > 1, equation (8) has three fixed points [N (t + 1) = 
= N (t)]: 0, N0 and N  ≈ K ln(a   ). If N < N0, the number of 
surviving offspring N (t + 1) is less than the number of their 
ancestors N (t), and the population inevitably declines, which 
corresponds to a strong Allee effect. If N0 < N < N  and r > 1, 
there are enough breeders and the population size increases. 
With N > N , the population size exceeds the carrying capac­
ity of the habitat, and the population abundance falls to a 
steady-state of N .

Let us now consider populations that are coupled by migra­
tion and evolve in the way described above.

Dynamic model with gene flow
One method for studying the dynamics and evolution of 
dispersed population systems (metapopulations) is to con­
duct laboratory experiments using populations in boxes that 
are connected by narrow corridors. In these experiments, 
environmental conditions, growth parameters, selection, and 
migration can be carefully controlled. Typically, the con­
nected boxes (chambers) form closed chains of subpopula­
tions that exchange a small number of individuals (Fig. 1a). 
These population systems are often constructed in laboratory 
settings, for example, for D. melanogaster (Altukhov et al., 
1979; Altukhov, Bernashevskaya, 1981; Dey, Joshi, 2006), or 
Escherichia coli (Keymer et al., 2006).
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Fig. 1. a, Scheme of the population system – boxes coupled by narrow migration corridors. b, Illustration showing that gene flow between populations 
of different sizes can significantly change the genotype in a small population, but has no effect on a large population. c, The probability density of an 
exponentially distributed random value of the migration coefficient mi, j .

Consider a system of n boxes, or subpopulations, and each  
box is numbered from 1 to n (Fig. 1a). Let 0 ≤ mi, j < 1 denote 
the proportion of individuals from the total population size that 
move from box j to box i (mi, j is the migration coefficient). 
The emigrants consist of individuals with three studied geno­
types, so it is true that mi, j N ( j) = mi, j q( j)

   AA N ( j) + mi, j q( j)
   Aa  N ( j) + 

+ mi, j q( j)
   aa  N ( j).

Then, for a system of subpopulations coupled by migra­
tion, the equations for frequency dynamics (1) and abundance 
dynamics (8) take the following forms:

  

(9)

where k = 1, 2, 3 are the numbers of the groups of indi­
viduals with the genotypes AA, Aa, and aa, respectively, 
q(i)*

   k  are the frequencies before migration, and N (i)*(t + 1) = 

= a  (i)(t) N (i)(t) F(N (i)(t)) is the abundance of the ith sub­
population after selection but before migration. The nor­
malization coefficient G is equal to:

    
(10)

where  (i)(t) = 1 + s1q
(i)*

   1 (t) + s2q
(i)*

   2 (t) + s3q
(i)*

   3 (t). To close 
the chain of subpopulations into a ring, we assume that the 
1st box is connected to the 2nd and nth, the nth to the (n–1)th 
and 1st, i. e., the following mapping applies to the site number: 
i→i mod n. In system (9), the factor (1 – mi–1,i – mi+1,i) is the 
proportion of individuals that stayed in the ith box after mi­
grating to the two neighboring boxes; mi,i–1 and mi,i+1 are the 
proportions of individuals from (i–1) and (i+1)-subpopulations 
that migrated to the ith box.

Equations (9) demonstrate that the intensity of gene flow 
from each subpopulation is not only dependent on the fre­
quencies of genotypes within the native site, as was the case 
for the local population, but also on the absolute number of 

individuals. This is clearly evident from the assumption that 
migrants consist of individuals with all three possible geno­
types. Therefore, the flow of migrants from a small popula­
tion consisting, for example, solely of aa homozygotes, has 
a minimal impact on a larger population consisting mainly 
of AA homozygotes (Fig. 1b). Conversely, the flow from a 
larger population can quickly change the frequencies even at 
a low migration rate. Note that, in some cases, this mecha­
nism clearly violates the assumption of panmixia at the scale 
of the entire metapopulation, as changes in the frequency 
of non-comparable subpopulations are determined more by 
the genetic structure of immigrants than by random mating, 
genetic drift, or natural selection.

The flow of genes and individuals between subpopulations 
can be either completely deterministic or random. In the first 
case, the number and genetic structure of migrants depend on 
factors such as population density at the source and sink sites, 
or external environmental factors like food (taxis) and energy 
flows (phototaxis). In the second case, both the direction and 
proportion of migrants vary randomly from generation to 
generation, without any clear pattern.

Below, we will only consider random migration. To de­
scribe this, we do the following. For each season number t, 
we randomly select two migration coefficients mi–1,i and mi+1,i , 
which are equal to the proportions of individuals that leave the 
ith site and migrate to adjacent sites. We ignore the possibil­
ity of more distant dispersal. Each pair of values mi–1,i  and  
mi+1,i will be generated independently using an exponentially 
distributed random variable generator with an expected value 
of m/2 and a median of mln(2).

Figure 1c shows a histogram of the distribution of  200 rep­
licates, each consisting of 30 pairs of independent random 
values for migration coefficients (n = 30 and m = 0.05), along 
with the graph of the theoretical probability density function. 
Both curves are scaled to the same distribution parameter 
λ = 2m–1. This value corresponds to a situation where ap­
proximately half of all migration coefficients are less than or 
equal to mln(2) ≈ 0.035, and their average is m = m/2 = 0.025.

Next, we consider the dynamic regimes in the system (9)–
(10) with random migration, using parameter values obtained 
from experimental data.
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Values of parameters for model (9)

n m  s1 s2 s3 a h N0 K

30 0.025 0.244 0.069 0.227 3.6 5 5 90

Model verification
There are two ways to verify the model and search for condi­
tions of primary genetic divergence. First, we can perform a 
series of simulations to ensure that the system (9) generates 
regimes corresponding to genetic divergence with only re­
duced heterozygote fitness. Secondly, we need to compare the 
results of simulations with the empirical data. However, this 
can be challenging, as despite all the available research and 
data, most natural populations with clear divergence in traits 
across space are initially highly heterogeneous.

The ideal solution may involve using data from a carefully 
designed animal experiment. In the mentioned experiment, 
conducted under the supervision of  Yu.P. Altukhov, evolution­
ary processes were studied in a system consisting of 30 boxes 
connected by narrow tubes and inhabited by D. melanogaster 
flies (Altukhov et al., 1979; Altukhov, Bernashevskaya, 1981). 
The randomness of migration was provided by uniform envi­
ronmental conditions (lighting and food) and random rotation 
of the ring system of connected boxes. During the experiment, 
the spatial distribution and abundance dynamics, as well as 
the frequency of alleles at the autosomal esterase-6 (Est-6) 
and α-glycerophosphate dehydrogenase (α-Gdph) loci, were 
analyzed. By the 60th generation, a clear and stable differentia­
tion of allele distribution at the α-Gdph locus formed between 
groups of adjacent boxes.

Some parameters are immediately known from the de­
scription of the original experiment, such as the migration 
coefficient (m ≈ 0.03) and the number of boxes (n = 30). 
Initially, a few heterozygous individuals for the considered 
loci (150 pairs, from 1 to 37 in each box) were placed in the 
boxes, i. e. q(i)

   2 (0) = 1. At the same time, a large panmictic 
population was established, which was similar in size and 
initial frequency to the system of connected boxes. Based on 
the frequency dynamics of the A allele at the α-Gdph locus in 
a large population, we can easily estimate the selection para­
meters sk (see the Table). As a basis for our study, we used the 
values of sk derived from earlier work (Zhdanova, Frisman, 
2023), where they were obtained using a one-dimensional 
equation for the frequency of allele A of the α-Gdph locus. The 
pattern of change in the frequency of allele A in the experi­
ment closely matches the typical solution of model (1), with 
disruptive selection (s2 < s1 and s2 < s3) rather than directional 
selection (s1 > s2 > s3 or s3 > s2 > s1).

Based on the initial conditions (N(i)(0) = 1…37, ∑ N (i)(0) = 
= 300), the population growth pattern, and the limiting number 
of individuals in each box (N (i) ≈ 135), as well as in the local 
panmictic population, we can easily calculate the parameters 
for population growth, including values of a, h, N0 and K, 
which are shown in the Table.

The average migration coefficient  m = 0.025 in the Table 
and the median value of mln(2) ≈ 0.035 indicate that in most 

cases, the number of migrants does not exceed 4–5 individuals, 
which is similar to the results of the original experiment.

The greatest difficulty in verifying the model (9) involves 
selecting initial distributions of allele frequencies and abun­
dances that yield final distributions similar to those presented 
in Chapter 4 of the book (Altukhov, 2003). In order to select 
initial conditions, we generate a set of initial frequencies and 
abundances using a feature of the experiment: individuals 
of the same sex are randomly included in some boxes and 
do not produce offspring. To describe this, let us create a 
vector of random numbers as follows: N (i)(0) ~ U [0, 37], so 
that ∑ N (i) (0) ≈ 300, and let some boxes be initially empty  
(N (i)(0) = 0). As a result, since 0 ≤ N (i)(0) < N0 (lower than 
the effective number of breeders), in subsequent generations, 
the boxes will still remain empty and will be recolonized by 
migrants from neighboring boxes, the genetic structure of 
which may already differ significantly from the original one 
due to random genetic drift and selection. However, there may 
not be enough migrants to effectively sustain the subpopula­
tion, and the box may remain empty for several generations.

Because the initial numbers in all boxes are below the effec­
tive population size (Ne), the natural selection is not effective, 
and we cannot ignore the effect of random genetic drift. The 
authors of the outlined experiment assumed Ne ≈  50. This 
means that after the 2nd or 3rd generation, the effect of deter­
ministic selection processes begins to dominate over random 
processes that change allele frequencies. It would be difficult 
to directly describe genetic drift in the model (9) without sig­
nificant modification or transitioning to a simulation model. 
Instead, we “simulate” the result of genetic drift by using the 
most likely initial frequency distribution, which is typically 
formed in model (1). With disruptive selection (sk values from 
the Table), system (1) predicts that the frequencies of offspring 
genotypes in the 2nd and 3rd generations from completely 
heterozygous ancestors (with q2(0) = 1) will be approximately 
q1 ≈ 0.27, q2 ≈ 0.46 and q3 ≈ 0.27. We can assume that, for 
the first few generations, genetic drift will randomly shift the 
frequencies away from their initial values while the popula­
tion sizes remain below the effective population size Ne. As 
a result, the observed genetic divergence in the system of 
coupled populations can be equally explained by the initial 
differences in both population sizes and frequencies, caused 
by the initial genetic drift prior to reaching the effective size 
in each subpopulation.

To fit the initial frequencies, we generate two inde-
pendent vectors of random numbers: q(i)

   1 (0) ~ U [0,1] and

 q(i)
   2 (0) ~ U [0,1] (q(i)

   3 (0) = 1 – (q(i)
   1 (0) + q(i)

   2 (0))), and estimate
how much the “true” initial frequencies may vary from the 
theoretical values of 0.27, 0.46, and 0.27 due to drift, so that 
after 50–60 generations, model (9) approximately describes 
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the real distribution of allele A frequencies at the α-Gdph locus. 
After examining 300,000 randomly selected initial frequencies 
and abundances, we found that only about 100 replicas most 
accurately describe the actual distribution, with the following 
distribution of initial frequencies:

                                

q(i)
   1 (0) = 0.25 ± 0.1,

q(i)
   2 (0) = 0.41 ± 0.1, 

   q(i)
   3 (0) = 0.33 ± 0.16.                          

(11)

This shows that we obtain a slightly lower frequency of 
heterozygotes and a shift towards homozygosity with the 
aa genotype than those predicted by model (1). Note that the 
experimental data also showed a slight shift in the average 
frequency of allele A towards allele a in the 5th generation, 
despite the lower fitness of s3. Therefore, it would be reason­
able to choose initial frequencies within these ranges. From 
a new set of 300,000  initial conditions of type  (11), about 
3,000 describe the actual frequency distribution quite well 
(Fig. 2). To assess the quality of the approximation, we used 
the correlation coefficient R between the actual and model 
frequency distributions of allele  A at the α-Gdph locus in 
generation t, as well as the squared error SE:

SE(t) = 
n
∑

i = 1
(Q(i)(t) – (q(i)

   1 (t) + 0.5q(i)
   2 (t)))2.

Simulation results
We now consider the verification of equations (9) and analyze 
the mechanisms leading to stable genetic divergence.

Figure 3a shows two diagrams of the spatiotemporal dy­
namics in system (9) for the parameter values from the Table, 
using the most favorable initial conditions (Fig. 2b).

In the first diagram, the pixel color encodes the predominant 
genotype at site i and time t; in the second diagram, it encodes 
the population size. Figure 3a shows that at the initial stages, 
all subpopulations are polymorphic and contain all three 
genotypes (shown in green). Over time, driven by selection 
and the dispersal of individuals within the distributed system, 
an equilibrium state is established. This state corresponds to a 
stable genetic divergence that persists for a long time (includ­
ing for t >>  200). In one part of the boxes, only individuals with 

the AA genotype (red) are present; in another, only those with 
the aa genotype (blue) are found; polymorphic subpopulations 
with a high frequency of heterozygotes (green) are located 
between them. In the diagram, the subpopulation numbered 
i = 16, along with its neighbors, maintains polymorphism for 
t >>  200. The second diagram shows changes in population 
size, where pink corresponds to the maximum values (~135) 
and black to the minimum ones. This diagram reveals several 
boxes that were initially empty, demonstrating that their loca­
tion does not correlate with the final distribution of genotypes.

As can be seen from Figure 3b, model (9) describes the 
observed frequency distribution quite well. However, in all 
simulation runs (i. e., replicas with varied migration coef­
ficients, mi, j), the distribution similar to that observed in the 
Drosophila experiments emerges slightly earlier – around the 
50th generation rather than the 60th. This discrepancy could be 
attributed to inaccurately estimated growth parameters since 
the equations (9) seem to describe a slightly faster population 
growth and evolutionary rate than is observed in reality. Alter­
natively, genetic drift processes, which were simulated using 
random initial frequencies, may have prevailed over selection 
for a longer period in the real experiment than we assumed 
(e. g., for 2–3 generations until the population size reached an 
effective Ne ≈ 50). However, there is another probable expla­
nation. In the experiments with D. melanogaster, the sex and 
age composition of all subpopulations was artificially main­
tained to prevent generation overlap. Specifically, all adult 
individuals were removed from the boxes after the females 
laid eggs. However, the sex ratio varied considerably between 
boxes throughout the experiment. Some boxes exhibited a 
significant deficit of females, while others had a pronounced 
shortage of males. Consequently, not all females were able to 
produce offspring before the removal time, and some males 
fertilized multiple females. This violation of panmixia likely 
skewed the data, as each complete removal event set back the 
evolutionary process slightly. These complex processes are 
not fully captured by the relatively simple model (9), which 
is why it predicts a slightly faster rate of evolution.

In Figure 3c, the final 100 distributions (for t = 100…200) of 
the total population size for each genotype are superimposed. 
The figure shows that, due to fluctuations in the number of 
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migrants, the population size in different boxes undergoes 
irregular, non-synchronous oscillations. Furthermore, it is 
evident that the polymorphic subpopulations (i = 6 and 16) 
have a lower average abundance (N (i)) than the surround­
ing monomorphic subpopulations, which is consistent with 
the significant frequency of heterozygotes in these popula- 
tions.

As shown in the first diagram of Figure 3a, the subpopula­
tions evolve at different rates. This rate is determined by how 
close the initial population size of a subpopulation is to the 
effective size (Ne) and how close its initial allele frequency is 
to its final state (q = 1 or 0). For instance, the diagram high­
lights box i = 27, where the frequency of allele A was among 
the first to reach fixation (q = 1). Notably, this subpopulation 
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evolves similarly to a large panmictic population (the first 
graph in Fig. 4a). Other subpopulations, as a rule, evolve more  
slowly.

Figure 4 demonstrates the correlation between the dynam­
ics of allele frequencies and population sizes predicted by 
model (9) and the actual experimental data. Figure 4a shows 
that the modeled and experimentally observed average fre­
quency of allele A across all 30 boxes follow a similar trend, 
stabilizing at a value of q ≈ 0.65. The discrepancy between the 
modeled and observed average frequency at time point t = 5 
can be explained by the fact that model (9) does not directly 
account for genetic drift, which occurred in the experimental 
population; instead, its effect is simulated solely through 
random perturbations of the frequency in the polymorphic 
population.

The third graph, Figure 4a, shows the observed and model­
ed total population sizes for the system of 30 subpopulations. 
The fourth graph (Fig. 4a) shows that the transition to the 
maximum population size proceeds through three stages: 
explosive growth over 2–3 generations from a small number 
of founders; reaching a quasi-stationary level with a total size 
of approximately ∑ N (i) ~ 3800  individuals, at which point 
there is already a distinct differentiation of genotypes by box 
groups, but the system still remains sufficiently polymorphic 
(Fig. 3b at t = 50); and a transition to the final distribution 
(Fig. 3b at t = 100) and the maximum total population size of 
approximately 4,000 individuals. As can be seen, model (9) 

describes only the general trends of population growth, which 
is explained by the fact that its behavior is, in principle, the 
only possible type of dynamics at r = a  < e2 ≈ 7.38. Further­
more, equation (8), which describes the dynamics of a local 
population, does not account for sex and age structure or many 
other factors that undoubtedly caused irregular fluctuations 
in the experimental populations. More importantly, model (9) 
describes only the reproductive core of the population sys­
tem – females and an equal number of males – and does not 
consider the fact that some males could have remained single 
and constituted the majority of migrants. As a result, the mo­
deled population size is lower than the actual observed size.

At the same time, the modeled dynamics of the total popula­
tion size, ∑ N (i), result from non-synchronous fluctuations of 
each subpopulation around a stationary value of approximately 
135 individuals per box (Fig. 4c, d). Summing these values 
smooths out all differences in the sizes of the subpopulations. 
Despite heterogeneities in the initial distributions of individu­
als, population growth in the first 5 generations – driven by 
increased fitness – occurs synchronously in almost all boxes 
(the first and second panels in Fig. 4d). The exception are 
boxes that were initially empty or had an insufficient number 
of breeders (the third and fourth in Fig. 4d). For these boxes, 
a non-zero population size of approximately 3–5 individuals is 
maintained solely by migrants. In all other boxes, the numbers 
slowly reach their maximum values and fluctuate around them 
(dark dots in Fig. 4d).
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We now consider the mechanisms that could generate and 
maintain the observed spatial divergence in allelic composition 
within this experimental population system.

Analysis of migration flows
One of the reasons for the observed differentiation between 
the subpopulations is revealed by the small declines in popula­
tion size in boxes i = 6 and i = 16, where polymorphism was 
maintained (boxes designated as Aa in Fig. 3). These declines 
become apparent only in the final distribution, as these boxes 
are surrounded by subpopulations with opposite genotypes 
and have a large population number. However, the presence 
of such subpopulations indicates only the possible mecha­
nisms for maintaining divergence, rather than the reasons of 
its initial occurrence. These boxes can be considered as the 
hybrid zones, the allelic composition of which is maintained 
solely through migration and gene flow from sites inhabited 
by individuals with fixed opposite genotypes.

To study the mechanisms of the formation and maintenance 
of divergence, we will consider changes in the average fitness 
in each box   (i) (Fig. 5a), the numbers of individuals of each 

genotype N (i)
    k  (Fig. 5b), and allele frequencies q(i)

   k  (Fig. 5c) 
over time. We will also assess the contribution of migration to 
the process of natural selection and the transition to the final 
frequency distribution. The migration balance of individuals 
with genotype k (k = AA, Aa, or aa) in the subpopulation i will 
be calculated using the following formula:
       S (i)   k  = mi,i+1q

(i+1)
   k N (i+1)* + mi,i–1q

(i–1)
   k N (i–1)* –						            (12)

	                               – (mi–1,i + mi+1,i) q
(i)

   k N (i)*,   
where q(i)

   k N (i)* represents the number of individuals with geno­
type k after selection, but before migration. This value is equal 
to the difference between the number of arrivals (the first two 
terms) at the site with index i and the number of departures (the 
third term) of individuals. The value of S indicates whether the 
size of the subpopulation with index i has increased (S > 0) or 
decreased (S < 0) due to migration (Fig. 5d). By comparing 
these three values, we can easily determine the directions of 
migration (arrows in Fig. 5d).

When selecting the initial conditions, it was found that the 
experimentally observed frequency distribution in model (9) 
occurs when the initial frequencies are shifted toward the 
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prevalence of homozygotes with the aa genotype. Note that 
the AA and aa genotypes differ in fitness by approximately 
11 %. This means that for the most adapted AA genotype to 
become fixed, it must overcome this fitness threshold for a 
small proportion of subpopulations. However, a rarer set of 
circumstances is required for the less adapted aa genotype 
to avoid complete displacement, allowing both traits to be 
maintained.

Figure 5a shows that after a period of rapid growth until the 
5th generation, two sites are distinguished, numbered i = 12 
and i = 28, in which the frequency distribution yields the high­
est values of both average fitness (i) and total reproductive 
potential a  (i) among all others. Although this difference is 
small (1 % for aa and 0.7 % for AA), it proves sufficient to 
initiate the separation of individuals of the same genotype 
near these boxes. This likely required a frequency shift in 
more than one site. Figures 5b and 5c show the distributions 
of population sizes and genotype frequencies, respectively. 
It can be observed that near site i = 12 at t = 5, there are at 
least six boxes with an increased number of aa homozygotes 
(and q < 0.5) relative to their surroundings. This implies that 
the flow of migrants from this region for any random mi, j is 
primarily represented by this genotype, which promotes its 
fixation. Site i = 28 has only one neighboring box with a high 
number of AA homozygotes (and q > 0.5), but this proves suf­
ficient to fix the best-adapted genotype. Until approximately 
generation 50, sites i = 12 and i = 28 maintain the highest rates 
of fitness increase, exhibit frequencies closer to their final 
values (q = 1 or q = 0), and clearly support larger numbers of 
the corresponding genotype compared to their surroundings. 
As a result, migrants from these boxes are more genetically 
homogeneous than those from other boxes, and even the 
stochastic migration does not alter the overall evolutionary 
trend – homozygotes displace the less adapted heterozygotes.

On the migration balance S (i)   k  graphs (Fig. 5d), it can be 
observed that at the initial stages (t = 5), the distribution of 
both the direction and intensity of individual flows between 
sites appeared largely random and comparable across different 
genotypes. As spatial differentiation progresses and better-
adapted individuals displace less adapted ones, homogeneous 
areas with the largest population sizes (i = 12 and i = 28) be­
gin to contribute more significantly to migration than highly 
polymorphic areas. By the 60th generation, two monomorphic 
groups with opposite traits, AA and aa, reach their largest 
sizes (AA – 17 boxes, aa – 8 boxes) and come into contact. 
However, since they have by then accumulated a sufficient 
number of individuals and their population sizes prove to be 
comparable, the resulting migrant flows also become compa­
rable, despite the 11 % difference in fitness. As a result, in the 
hybrid zones near sites numbered i = 6 and i = 16, two equally 
large streams of individuals with opposite genotypes converge, 
ensuring a non-zero number of heterozygotes in these boxes. 
The outflow from these boxes is much weaker and is barely 
sufficient to maintain a low level of polymorphism in their 
vicinity. However, it is these hybrid zones that slow down the 
flows of homozygous individuals of different forms, prevent­
ing the better-adapted AA genotype from achieving complete 
fixation throughout its range.

Discussion
The verification of model (9) against the experimental data 
from Yu.P. Altukhov’s study on box populations of D. mela-
nogaster, along with the analysis of scenarios underlying the 
formation of heterogeneous distributions of allele frequencies 
and population sizes, requires further clarification.

First, it is necessary to discuss the reason for the pronounced 
differences in fitness observed among genotypes with different 
allele combinations of the α-Gdph enzyme, as revealed by 
estimates of the selection coefficients sk. It is quite plausible 
that the α-Gdph locus serves as a marker of disruptive selec­
tion operating within the system, acting not directly on the 
α-Gdph gene itself, but on closely linked adaptive genes. This 
may explain certain discrepancies between the observed and 
modeled distributions and frequency dynamics, since the 
overall adaptive effect and direction of selection – even for 
genes strongly linked to α-Gdph – are not simply additive. 
Instead, they result from more complex interactions, such as 
polygenic or complementary gene effects, epistasis, or multi-
gene interaction.

Note that a significant difference in fitness is not a neces­
sary condition for genetic divergence in model (1). It has been 
previously demonstrated that spatial differentiation can occur 
even with small differences in fitness. The degree of difference 
between genotypes, as well as the migration coefficient, deter­
mines the rate at which stable divergence is achieved, and the 
size of the resulting monomorphic subpopulations and hybrid 
zones (Kulakov, Frisman, 2025).

Despite the limitations noted above, the proposed model 
allows to analyze the processes that led to the primary genetic 
divergence observed in the experiment. It was found that the 
combined effect of genetic drift, density-dependent limitation, 
and gene flow – before the effective population size Ne and the 
minimum number of breeders N0 were reached – resulted in 
some boxes accidentally containing a higher number of less 
adapted aa individuals than the more adapted AA ones. As a 
result, subpopulations with even a slight deviation in allele fre­
quencies from the theoretically expected values (typical for a 
local panmictic population) reached the highest average fitness 
and population growth rate earlier than others. As emigrants 
carry the allelic composition of their source subpopulation, 
clusters of boxes with either AA or aa genotypes form around 
these rapidly growing groups. Gradually, these genotypes dis­
place the less-adapted heterozygous Aa individuals and occupy 
the largest number of sites. The interaction between the two 
migrant streams, carrying AA and aa genotypes, maintains 
a non-zero number of heterozygous individuals in certain 
boxes, creating hybrid zones. On the one hand, their presence 
preserves the genetic diversity of the entire metapopulation. 
On the other hand, these zones prevent the fittest individuals 
from occupying the entire range.

This evolutionary scenario can be considered universal 
for several reasons. The divergence of natural populations is 
always preceded by the emergence of mutants with a new trait 
in certain areas. For such a trait to become fixed, especially if it 
confers no significant immediate advantage, strong reproduc­
tive isolation from the parental population is required. This 
may be a case of disruptive selection, which is manifested 
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not only in the reduced fitness of heterozygotes (hybrids) but 
also in positive assortative mating, which further diminishes 
the reproductive success of small hybrid populations. For in­
stance, in the case of the hooded and carrion crow mentioned 
in the Introduction, the primary isolating mechanism appears 
to be based on mating preferences. For crows, plumage color 
is significantly associated with innate perception of potential 
partners, which substantially reduces the likelihood of mat­
ing between dissimilar morphs but allows for crossbreeding 
between already hybrid individuals or between hybrid and 
“pure” forms (Poelstra et al., 2014; Kryukov, 2019).

Unlike seasonal migration, the dispersal of individuals and 
colonization of new sites is a slow process that unfolds over 
multiple generations. Consequently, the remote parts of a 
new area will be inhabited only by the descendants of the 
original migrants. During this gradual expansion, individuals 
will inevitably interbreed with local populations. The model 
proposed in this paper demonstrates that such dispersal will 
inevitably cease if the recipient site is inhabited by individuals 
possessing a different trait than the migrants, due to potential 
selection against hybrids. In the case of crows, assortative 
mating will restrict interbreeding between the different morphs 
in newly colonized areas, thereby significantly reducing the 
likelihood of further expansion. In the ring populations’ system 
of Drosophila, the reduced fitness of heterozygotes decreases 
hybrid fertility and prevents their descendants from dispersing 
further. Consequently, for species where dispersal is a multi-
generational process, hybrid zones act as significant barriers. 
They effectively impede the movement of individuals possess­
ing one trait into areas occupied by individuals with another 
trait, without the need for those areas to be permanently settled, 
and with a high probability of producing hybrid offspring. If 
a more rapid dispersal mechanism is possible, this dynamic 
can change dramatically.

Conclusion
The dynamic model proposed in this paper enables a detailed 
investigation of the mechanisms underlying primary genetic 
divergence. These mechanisms are attributed to differences 
in genotype fitness, settlement patterns, migration, and the 
formation of stable hybrid zones. The model demonstrates the 
possibility of reproductive isolation between different forms 
of diploid organisms, which arises not only from geographical 
isolation, habitat remoteness, or ecological specialization but 
also from hereditary mechanisms, genetic drift, gene flow, 
and selection against heterozygotes. This type of selection 
results in stable spatial genotype differentiation, maintained 
by hybrid zones that act as effective barriers to the introgres­
sion of divergent traits.

Thus, disruptive selection is demonstrated to play a crucial 
role – an effect that can be detected through certain marker 
genes but is not always apparent from external morphology. 
Consequently, it may be far more widespread in nature than 
previously believed.
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Abstract. The nature of the last universal common ancestor (LUCA) of all living organisms remains a controversial issue 
in biology. There is evidence of both thermophilic and mesophilic LUCA origin. The increasing complexity of the cellular 
apparatus during the evolution from early life forms to modern organisms could have manifested itself in long-term 
evolutionary changes in the nucleotide composition of genetic sequences. This work is devoted to the identification 
of such trends in tRNA sequences. The results of an evolutionary analysis of single-nucleotide substitutions in tRNAs 
of 123 species from three domains – Bacteria, Archaea and Eukaryota – are presented. A universal vector of directed 
evolutionary change in tRNA sequences has been discovered, in which substitutions of guanine (G) to adenine  (A) 
and cytosine (C) to uracil (U) occur more frequently than the reverse. The most striking asymmetry in the number of 
substitutions is observed in the following transitions: a) purine-to-purine, where G→A outnumbers A→G, b) pyrimidine-
to-pyrimidine, where C→U outnumbers U→C, and c) purine-to-pyrimidine and vice versa, where G→U outnumbers 
U→G. As a result, tRNAs could lose “strong” three-hydrogen-bond complementary pairs formed by guanine and cytosine 
and fix “weak” two-hydrogen-bond complementary pairs formed by adenine and uracil. 16 out of 20 tRNA families are 
susceptible to the detected change in sequence composition, which corresponds to the significance level p = 0.006 
according to the one-sided binomial test. The identified pattern indicates a high GC content in the common ancestor of 
modern tRNAs, supporting the hypothesis that the last universal common ancestor (LUCA) lived in a hotter environment 
than do most contemporary organisms.
Key words: evolution; thermophile; mutations; tRNA; transition matrix; last universal common ancestor
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Асимметрия нуклеотидных замен в тРНК  
свидетельствует об общем происхождении  
современных организмов от термофильного предка
И.И. Титов 1, 2 

1 Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук, Новосибирск, Россия
2 Курчатовский геномный центр ИЦиГ СО РАН, Новосибирск, Россия

 titov@bionet.nsc.ru

Аннотация. Природа последнего универсального общего предка (last universal common ancestor, LUCA) всех 
ныне живущих организмов до сих пор остается актуальной проблемой биологии. Существуют свидетельства в 
пользу того, что LUCA был как термофилом, так и мезофилом. Усложнение клеточного аппарата в ходе эволюции 
от ранних форм жизни к современным организмам могло проявиться в долговременных эволюционных 
изменениях нуклеотидного состава генетических последовательностей. Выявлению подобных тенденций в 
последовательностях тРНК посвящена эта работа. Представлены результаты эволюционного анализа точечных 
нуклеотидных замен в тРНК 123 видов трех доменов: Bacteria, Archaea и Eukaryota. Обнаружен универсальный 
вектор направленного эволюционного изменения последовательностей тРНК, при котором замены гуанина (G) 
и цитозина (С) на аденин (А) и урацил (U) суммарно происходят чаще обратных. Наиболее ярко асимметрия 
числа замен наблюдается в следующих переходах: а) между пуринами в преобладании числа замен G→A над 
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числом замен A→G; б) между пиримидинами в преобладании C→U над U→C, а также в) при переходе из пурина 
в пиримидин и наоборот – в преобладании G→U над U→G. В результате эволюционного процесса тРНК могли 
терять «сильные» комплементарные пары с тремя водородными связями, формируемые гуанином и цитозином, 
и фиксировать «слабые» комплементарные пары с двумя водородными связями, образуемые аденином и 
урацилом. Обнаруженному изменению состава последовательностей были подвержены 16 из 20 семейств тРНК, 
что соответствует уровню статистической значимости p = 0.006 согласно одностороннему биномиальному тесту. 
Выявленная закономерность свидетельствует о высоком GC-содержании в последовательности общего предка 
современных тРНК и, следовательно, подтверждает предположение о том, что самая молодая из гипотетических 
общих предковых клеток, от которой произошли все ныне живущие организмы (последний универсальный 
общий предок, LUCA), обитала в более горячей среде, нежели ныне живущие организмы. 
Ключевые слова: эволюция; термофил; мутации; тРНК; матрица перехода; последний универсальный общий 
предок

Introduction
Despite extensive research, the nature of the last universal 
common ancestor (LUCA) of all living organisms remains 
a pressing problem in biology. According to recent studies 
(Moody et al., 2024), LUCA arose approximately 4.2  bil-
lion years ago and possessed the basic elements of the cel-
lular apparatus of modern prokaryotes (genes and molecular 
genetic systems for transcription and translation, including 
tRNAs). There is a debate about whether LUCA was a ther-
mophile (Di Giulio, 2000; Weiss et al., 2016; Moody et al., 
2024) or a mesophile (Galtier et al., 1999; Cantine, Fournier,  
2017). 

The increase in cellular complexity during the evolution 
from early life forms to modern organisms could have mani-
fested itself in long-term evolutionary changes in the nucleo-
tide composition of genetic sequences. Thus, in the work 
(Jordan et al., 2005), using the method of unrooted parsimony 
(Rickert et al., 2025), patterns of systematic unidirectional 
changes in the amino acid composition of proteins during their 
evolution from ancestral forms were identified: an increase 
in the content of the amino acids Cys, Met, His, Ser and Phe 
due to a decrease in the content of the amino acids Pro, Ala, 
Glu and Gly. In the work (Galtier et al., 1999), a comparison 
of LUCA ribosomal RNAs and those of modern species based 
on GC content was conducted, the results of which were sub-
sequently criticized (Di Giulio, 2000). Of interest is the work 
(Men et al., 2022), in which fragments of LUCA ribosomal 
RNAs (16S, 5S, and 23S rRNA) that are evolutionarily con-
served in modern sequences and correspond to sites of rRNA 
interaction with ribosome proteins were reconstructed. Ho
wever, this study examined rRNA nucleotide sequences in the 
binary purine-pyrimidine code and, therefore, did not assess 
the G/C content of the RNA. Therefore, evolutionary changes 
in the RNA nucleotide composition from LUCA to modern 
species have not been definitively established.

In this regard, it seemed interesting to study long-term 
trends in changes in the nucleotide composition of RNA 
sequences, namely tRNA molecules, which are the most 
important element of translation systems in all organisms.

In our study, we examined the molecular evolution of 
20  isoacceptor tRNA families, each of which mediates the 
transfer of a specific amino acid during translation. These 
tRNA families were analyzed for 123 organisms from three 
domains: Bacteria, Archaea and Eukaryota. 

Phylogenetic analysis was performed using the unrooted 
parsimony method (Jordan et al., 2005). Single nucleotide 

substitutions were identified that became fixed in tRNAs 
during their evolution from ancestral sequences to modern 
ones, and it was shown that substitutions of guanine (G)  
or cytosine (C) for adenine (A) or uracil (U) are fixed more 
often than substitutions of A or U for G or C. This shapes a 
view of predominantly unidirectional evolutionary change 
of tRNA sequences, during which they lost “strong” comple-
mentary pairs with three hydrogen bonds formed by guanine 
and cytosine, and fixed “weak” complementary pairs with 
two hydrogen bonds formed by adenine and uracil. This fea-
ture was characteristic of 16 of the 20 tRNA families, with 
a significance level of p < 0.006 according to the one-sided 
binomial test.

The obtained results indicate a high content of G/C in the 
nucleotide sequences of tRNAs of the common ancestor of 
modern Bacteria, Archaea and Eukaryota and, therefore, sup-
port the assumption that the last universal common ancestor, 
LUCA, lived in a hotter environment than living organisms, 
i. e., was a thermophile or heat-loving mesophile (moderate 
thermophile). This conclusion is based on the fact that the 
content of G and C nucleotides in nucleotide sequences is 
associated with the optimal temperature of the organisms’ 
habitat, in connection with which genetic macromolecules 
(DNA, RNA) can be considered as a kind of molecular ther-
mometers, and the content of G/C in them as an indicator of 
the temperature of the habitat.

Materials and methods
The tRNA nucleotide sequences of three domains (Bacteria, 
Archaea and Eukaryota) were taken from a curated database 
presented in the paper (Sprinzl et al., 1998, Supplementary 
Material S1)1. The database contained an alignment of tRNA 
sequences “most compatible with the tRNA phylogeny and 
known three-dimensional structures of tRNA” (Sprinzl et 
al., 1998). Each tRNA was assigned to its amino acid by the 
database authors. 

The procedure for generating a sample of nucleotide se-
quences for evolutionary analysis was as follows. 1) For each 
of the 123 organisms, 20 tRNA groups were considered. Each 
group included a tRNA interacting with one of the 20 amino 
acids. Possible horizontal transfer (Soucy et al., 2015), as 
well as transitions between groups as a result of remodeling 
(a change in the isoacceptor group as a result of an anticodon 
change, for which only about 20 cases are currently known 
1 Supplementary Materials S1 and S2 are available at: 
https://vavilovj-icg.ru/download/pict-2025-29/appx41.zip

https://vavilovj-icg.ru/download/pict-2025-29/appx41.zip
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(Bermudez-Santana et al., 2010; Velandia-Huerto et al., 2016; 
Romanova et al., 2020)) were not considered. 2) For each 
position of the nucleotide sequences of this group correspon
ding to a specific organism and amino acid, the frequencies 
of four nucleotides were calculated, and the nucleotide with 
the highest frequency was assigned to the position in ques-
tion; considering all positions of the sequences of the group, a 
consensus sequence of the tRNA group was constructed. 3) For 
a consensus sequence corresponding to a particular group of 
tRNAs, its similarity to each of the nucleotide sequences of the 
multiple alignment included in the group under consideration 
was assessed, and the sequence closest to the consensus was 
selected from this group.

Thus, a sample of tRNA nucleotide sequences for evolutio
nary analysis was formed, containing 20 × 123 = 2,460 typical 
tRNA sequences (Fig. 1). Each sequence in this sample was 
most typical for one of the isofunctional tRNA families of a 
given organism (out of 123).

Following (Jordan et al., 2005), identification of nucleotide 
substitutions recorded during the evolution of the nucleotide 
sequences of each isofunctional tRNA family was carried out 
based on the unrooted maximum parsimony method on phy-
logenetic trees with three vertices (Fig. 2) using the Dnapars 
program (Phylip package, Phylip, https://phylip web.github.
io/phylip).

When analyzing a specific family of isoacceptor tRNAs, the 
following procedure was performed. For each S1 nucleotide 
sequence of 123 tRNA sequences in the family, the closest 
(in terms of similarity) S2 nucleotide sequence was identified, 
followed by the closest S3 sequence to S2 (Fig. 2), so that 
S2 and S3 formed a pair of closest relatives. This resulted in 
the formation of a phylogenetic triad in which S1 was the 
“outgroup” relative to the pair S2 and S3. 

The unrooted maximum parsimony method assumes that if 
a nucleotide is found at a certain position in the sequence that 
is identical in S1, S2 and S3, then this nucleotide was present 
at the same position in the tRNA in the common ancestor of 
S1, S2 and S3. If, however, a different nucleotide is observed 
in S3, then a single nucleotide substitution occurred along 
the branch leading to S3. If all three nucleotides were differ-
ent, then, following (Jordan et al., 2005), this position was 
considered uninformative and excluded from consideration. 
This method does not require stationarity and reversibility of 
the evolutionary process (Klopfstein et al., 2015).

Results
Following the approach of (Jordan et al., 2005) and conside
ring nucleotide changes between the sequences of the closest 
ancestors and descendants, we constructed a mutational transi-
tion matrix for each of the 20 aligned tRNA families. Table 1 
shows an example of such a matrix for the tRNACys family. 
Off-diagonal elements Mi, k (i, k = 1,…,4) characterize the 
total number of single substitutions in the tRNACys sequences 
of nucleotide i to nucleotide k. Diagonal elements Mi, k cor-
respond to conserved positions. Rows and columns with gaps 
in the alignments (–) mainly corresponded to the variable loop 
region and were omitted for quantitative assessments.

Table  1 shows that among the nucleotide substitutions 
identified for the tRNACys family, the most frequently ob-
served were transitions, i.  e. substitutions between purines 
(NG→A  =  139 and NА→G  =  113) and between pyrimidines 
(NC→U = 177 and NU→C = 138).

It is noteworthy that the number of substitutions of “strong” 
nucleotides with “weak” ones (G→A, G→U, C→A, C→U), 
which is 417, exceeds the number of substitutions of “weak” 
nucleotides with “strong” ones (A→G, A→C, U→C, U→G), 
which is 340. This indicates an evolutionary trend toward a 
decrease in the G/C content of tRNAs in favor of an increase 
in the A/U content. The effect we identified, described above, 
was termed nucleotide substitution asymmetry.

We arrive at qualitatively similar conclusions by examining 
mutational transitions in the tRNAGlu family (Table 2). In this 
family, the number of substitutions of “strong” nucleotides 
with “weak” ones is 454, and the number of substitutions of 
“weak” nucleotides with “strong” ones is 302.

A similar analysis was performed for all 20  isoacceptor 
tRNA families (Supplementary Material S2). Next, we esti-
mated the asymmetry effect for all isoacceptor tRNA families. 
For this purpose, we calculated a general substitution matrix 
by summing the corresponding elements of all 20 isoaccep-
tor tRNA family matrices (Supplementary Material S2). For 
all tRNAs, the number of identified single substitutions was 
24,653, and the number of uninformative substitutions was 
2,083.

The diagonal elements of the resulting matrix (Table  3) 
characterize the average nucleotide composition of tRNAs 
from the studied species: 32.9 % (G), 27.8 % (C), 21.0 % 
(U), 18.3 % (A), as well as the content of “strong” G + C 
nucleotides (60.7 %) and “weak” ones (39.3 %). Transitions 
are represented by four out of the twelve off-diagonal ele-

Common 
ancestor

Common 
ancestor

А

А G A A G U

S3 S2 S1 S3 S2 S1

?

А G

Fig. 2. Search for nucleotide substitutions using the unrooted maximum 
parsimony method on the simplest trees of three closest tRNAs. 
The identified A→G substitution in the group of two closest relatives, S2 and 
S3, is shown on the left, and the uninformative substitution is shown on the 
right.Fig. 1. Scheme of building the sample from the tRNA sequence database. 
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ments. The proportion of transitions in the total number of 
substitutions was 56 %.

As in most partial matrices for individual families of isoac-
ceptor tRNAs (see, for example, Tables 1 and 2), in Table 3, the 
number of substitutions of “strong” nucleotides with “weak” 
ones (shown in green) exceeds the number of substitutions of 
“weak” nucleotides with “strong” ones (marked in yellow): cf. 
NG→A = 3451 and NА→G = 2949, NC→U = 3963 and NU→C =  
3468, NG→U = 1421 and NU→G = 1261, NC→A = 963 and 
NА→C = 952.

To quantitatively assess the asymmetry of substitutions 
AF→Z, the relative difference was calculated, defined as the 
doubled difference of two values divided by their sum – the 
number of substitutions between nucleotides F and Z, where 
F, Z∈(A, U, G, C):

AF→Z = 2(NF→Z – NZ→F) 
NF→Z + NZ→F

.   	 (1)

Table 4 presents the results of AF→Z calculations based on 
(1) and Table 3. The asymmetry in the number of substitutions 
was: 0.16 for G→A and A→G; 0.14 for C→U and U→C; 0.12 
for G→U and U→G. The remaining transitions were slightly 
asymmetric: from 0.008 to 0.028 (Table 4).

Based on Table 3, we can also calculate the balance of losses 
and gains of ВF for the F-type nucleotide:

		   BF = ∑Z(NZ→F – AF→Z).  		       (2)

Table 5 shows the total decrease in the number of “strong” 
G/C nucleotides in the studied nucleotide sequences of all 
analyzed tRNA families by 1,198 (714 G + 484 C) due to the 
evolutionary gain of the same number of weak A/G nucleotides 
(512 A + 686 U). Considering the total number of G, C, A, 
and U nucleotides in the studied tRNA sequences, the changes 
in the number of these nucleotides during the evolution of 
tRNA families, normalized by their number, were –0.014, 
–0.011, +0.018, and +0.021 for G, C, A, and U, respectively  
(Table 5).

The nucleotide substitution matrices for all 20 isoaccep-
tor tRNA families are given in Supplementary Material S2. 
Table 6, obtained from these 20 matrices, shows the arithmetic 
differences NF→Z – NZ→F (F, Z ∈(А, U, G, C)) between the 
numbers of all possible types of nucleotide substitutions fixed 
in the evolution of 20 isoacceptor families of tRNAs. Each 
variant of the arithmetic difference in the number of F→Z 
and Z→F substitutions corresponds to a specific column in 
Table 6. Each row in this table corresponds to a specific isoac-
ceptor family of tRNAs. The last column shows the relative 
difference in the number of substitutions, AS→W, of “strong” 
nucleotides, S∈(G, C) with “weak” nucleotides, W∈(A, U), 
determined by equation (1).

Table 6 shows that 16 tRNA families are characterized by 
a positive value of the relative difference in the number of 
substitutions, AS→W > 0. At the same time, four families of 
tRNAs (bottom lines) are characterized by a negative differ-
ence,  < 0. Of these four families of tRNAs, for three tRNAs 
(tRNAGly, tRNAThr and tRNAVal), the observed negative trend, 
i. e. the predominance of W→S substitutions over S→W, is 
insignificant (–0.06 ≤ AS→W ≤ –0.03), and only for tRNALys, 
the predominance of W→S substitutions over S→W is pro-
nounced (AS→W = –0.34).

A one-sided binomial test was used to assess the significance 
of the predominance of positive values AS→W characterizing 
the relative difference between a) the number of substitutions 
of “strong” nucleotides with “weak” nucleotides (S→W) and 
b) the number of substitutions of “weak” nucleotides with 

Table 1. Matrix of the number of single-nucleotide substitutions 
in tRNACys sequences 

From\to A C G  U    –

A 1,526    38 113    44    27

C    43 2,292    74 177    25

G 139    91 2,469    58      6

U    45 138    51 1,492    23

–    20    27      0    39 3,131

Note.  Here and in Tables 2 and 3: green indicates the number of substitutions 
of “strong” nucleotides (G and C, which form complementary pairs with 
three hydrogen bonds) with “weak” nucleotides (A and U, which form 
complementary pairs with two hydrogen bonds). Yellow indicates the number 
of substitutions of “weak” nucleotides A and U with “strong” nucleotides G and C. 
The column marked with a “–” sign indicates the number of substitutions at 
alignment positions corresponding to deletions.

Table 2. Matrix of the number of single-nucleotide substitutions 
in tRNAGlu sequences 

From\to A   C G   U   –

A 1,353    40 101    57    37

C    52 2,526 105 184    35

G 167 105 2,389    51      9

U    58 124    37 1,608    27

–    30    35      0    23 2,956

Table 3. Matrix of the number of nucleotide substitutions  
identified by the unrooted parsimony method for tRNAs,  
summarized for all isoacceptor families

From\to A C G U –

A 28,841    952 2,949 1,273    853

C    963 43,778 1,829 3,963    951

G 3,451 1881 51,756 1,421    330

U 1,272 3,438 1,261 32,994    715

–    666    862    210      867 53,981

Table 4. Asymmetry of nucleotide substitutions in tRNAs

AG  А AC  U AG  U AG  C AA  U AC  А

0.16 0.14 0.12 0.028 0.008 0.011
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Table 5. Characteristics of the composition and evolutionary dynamics of the studied nucleotide sequences  
of all analyzed tRNA families

Characteristics of the composition and evolutionary dynamics G C A U

Total number of conserved nucleotides of four types in trees  
of unrooted parsimony for the studied tRNA sequences

51,756 43,778 28,841 32,994

Average content of nucleotides of four types in the studied  
tRNA sequences 

32,9 27.8 18.3 21.0

Changes in the number of nucleotides of four types  
during the evolution of tRNA families

–714 –484 +512 +686

Changes in the number of nucleotides of four types during  
the evolution of tRNA families, normalized by their number

–0,014 –0,011 +0,018 +0,021

“strong” nucleotides (W→S) fixed during the evolution of 
20 tRNA families (Lehmann, 2012). In our case, the level of 
significance was calculated as the probability p of random 
observation of 16 matrices out of 20 with substitutions in fa-
vor of a decrease in the number of “strong” G/C nucleotides: 

see expression (3). At the same time, it was assumed that the 
number of recorded substitutions of types S→W and W→S 
was the same on average.

          p = ∑l = 20
    l = 16 C20

    l  0.520 = 0.0059.   	 (3) 

Table 6. Arithmetic differences NF→Z – NZ→F (F, Z∈(А, U, G, C)) between the numbers of nucleotide substitutions  
of all possible types fixed in the process of evolution of 20 isoacceptor families of tRNAs

tRNA NG→А – NA→G NC→U  – NU→C NG→U – NU→G NG→C – NC→G NA→U – NU→A NC→A – NA→C AS→W*

Ala –5 36 21 0 –20 –4 0.13

Arg 20 41 4 6 21 21 0.14

Asn 45 30 10 4 –10 –11 0.19

Asp 32 4 20 2 –2 13 0.21

Cys 26 39 7 17 –1 5 0.20

Gln –4 –2 21 –3 10 31 0.11

Glu 66 60 14 0 –1 12 0.40

His 52 2 –18 10 –4 –17 0.04

Ile 25 –2 5 16 13 8 0.12

Leu 62 89 25 6 –13 25 0.14

Met 34 45 –11 14 7 –9 0.12

Phe 20 44 7 4 19 8 0.24

Pro 29 21 24 –9 2 14 0.20

Ser 50 105 61 –5 –12 –32 0.19

Trp 44 13 6 0 3 –4 0.16

Tyr 44 48 7 –3 –23 5 0.24

Gly –11 4 –7 9 5 6 –0.04

Thr –21 –26 –17 –14 –5 0 –0.06

Val 12 12 –23 –5 7 –19 –0.03

Lys –18 –58 –31 3 5 –41 –0.34

* The last column shows the value of the relative difference in the number of substitutions between “strong” and “weak” nucleotides, AS→W = 2(NS→W – NW→S)/
(NS→W + NW→S), where S∈(G, C), W∈(А, U).
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Асимметрия замен в тРНК свидетельствует об общем происхождении  
современных организмов от термофильного предка

Using (3), the statistical hypothesis of the asymmetry of 
evolutionary substitution matrices in the direction of G and 
C nucleotide loss and A and U nucleotide gain was accepted 
with a significance level of p < 0.006. 

Discussion 
Our analysis of the evolution of 20 isoacceptor tRNA families 
of 123 species of the three domains (Bacteria, Archaea and 
Eukaryota) from their ancestral forms revealed a tendency 
to decrease the G/C composition of tRNAs in favor of an 
increase in the A/U composition. This effect was called the 
asymmetry of nucleotide substitutions. It consisted in the 
evolutionary loss of “strong” nucleotides G and C, capable 
of forming energy-advantageous complementary pairs with 
three hydrogen bonds, and the gain of “weak” nucleotides A 
and U, which form less stable complementary pairs with two 
hydrogen bonds. 16 out of the 20 tRNA families were affected 
by the detected change in sequence composition, which cor-
responds to the significance level of p < 0.006 according to 
the one-sided binomial test.

The results suggest that the last universal common ancestor, 
LUCA, lived in a hotter environment than currently living or-
ganisms; i. e. it was a thermophile or a thermophilic mesophile 
(moderate thermophile). This conclusion is substantiated by 
the fact that the content of nucleotides G and C in nucleotide 
sequences is associated with the optimal temperature of or-
ganisms (Dutta, Chaudhuri, 2010), in connection with which 
genetic macromolecules (DNA, RNA) can be considered as a 
kind of molecular thermometers, and their G/C content is an 
indicator of the temperature of the environment.

Early Earth conditions must have determined the energetic, 
metabolic, biochemical, and environmental features of LUCA. 
According to (Di Giulio, 2000; Weiss et al., 2016), LUCA 
lived in hot springs, the high temperature of which facilitates 
the course of biochemical reactions and molecular genetic 
processes, but requires thermodynamic and kinetic stability 
of biomolecular structures, the thermodynamic fluctuations 
of which are more pronounced the higher the temperature of 
the environment. Modern thermophiles are adapted to high 
temperatures due to the high content of nucleotides G and C 
in the genome (Dutta, Chaudhuri, 2010), which form stronger 
complementary bonds with each other. And this is especially 
important for the thermal stability of structural RNAs, inclu
ding tRNAs.

It should be noted that four out of the 20 families of tRNAs 
studied in our work do not follow the general trend of los-
ing “strong” nucleotides. The reasons that determined the 
peculiarities of the evolution of these tRNAs could vary. For 
example, two families, tRNAGly and tRNAVal, correspond to 
chemically simple, so-called “Miller” amino acids. Presu- 
mably, these amino acids were part of the most ancient proteins 
and the nucleotide composition of their tRNAs could have had 
time to reach their individual evolutionary equilibrium, albeit 
different from the average for all tRNAs. However, overall, 
comparing the G/C composition of tRNAs in organisms li
ving at different temperatures, our results suggest that modern  
organisms, on average, live in colder environments than 
LUCA.

Conclusion
A universal vector of directed evolutionary change in tRNA 
sequences has been discovered, in which the substitution of 
guanine (G) and cytosine (C) with adenine (A) and uracil (U) 
in total occurs more often than the reverse. As a result of the 
evolutionary process, tRNAs could lose “strong” comple-
mentary pairs with three hydrogen bonds, formed by guanine 
and cytosine, and fix “weak” complementary pairs with two 
hydrogen bonds, formed by adenine and uracil. 16 out of 
the 20 tRNA families were affected by the detected change 
in sequence composition, which corresponds to the level of 
statistical significance p = 0.006 according to the one-sided 
binomial test. This pattern suggests high G/C content in the 
sequence of the common ancestor of modern tRNAs and, 
therefore, supports the assumption that the youngest of the 
hypothetical common ancestral cells, from which all currently 
living organisms descended (the last universal common an-
cestor, LUCA), lived in a hotter environment than currently 
living organisms.
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Abstract. Major depressive disorder (MDD) is one of the most widespread mental illnesses, which necessitates the search 
for factors of increased predisposition to this disorder. Single nucleotide polymorphisms in genes of the brain’s neurotrans-
mitter systems are often considered as molecular genetic markers of MDD. Indicators of individual single nucleotide vari-
ability in neurotransmitter genes are used to assess the risk of MDD before its symptomatology at the behavioral level. 
However, the predictive capabilities of analyzing genomic variations to assess the risk of depression are not yet sufficiently 
reliable and are complemented by behavioral and neurophysiological information about patients. Neurophysiological 
markers of MDD provide the most reliable estimates of the severity of pathological symptoms, but they reflect a person’s 
state at the time of examination, and not a predisposition to the occurrence of this pathological state and do not allow 
assessing the risk of its appearance in the future. Major depressive disorder is often accompanied by abnormalities in a 
person’s ability to control motor responses, including the ability to voluntary suppress inappropriate behavior. The “stop-
signal paradigm” (SSP) is an experimental method for assessing the functional balance between the inhibitory and activa-
tion systems of the brain during targeted movements. Combined with EEG recording, this experimental method allows 
for the consideration of not only participants’ behavioral characteristics, such as speed or accuracy of responses, but also 
the brain’s neurophysiological features associated with behavior control. The objective of this study was to evaluate the 
relationship between EEG responses in the stop-signal paradigm and individual single nucleotide variability in candidate 
genes for MDD detection. Dimensionality in the original genetic and neurophysiological experimental data was reduced 
by principal component analysis (PCA) to subsequently detect an association between EEG response components recorded 
during the control of random motor responses and single nucleotide variations in genes, the variability of which is asso- 
ciated with MDD risk. Variability in these genes has been shown to be associated with the amplitude of brain responses 
under the conditions of test subjects using the PCA method. The results obtained can be used to develop systems for the 
early diagnosis of depression, identify individual patterns of impairment in the brain, select methods for correcting the 
disease and control the effectiveness of therapy.
Key words: stop-signal paradigm; EEG; event related potentials; single nucleotide polymorphisms (SNPs); major depressive 
disorder; principal component analysis; regression analysis
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The SNV of genes-candidate for depressive disorder 
depends on EEG reactions in the stop-signal paradigm

Аннотация. Большое депрессивное расстройство (БДР) относится к наиболее широко распространенным психи-
ческим заболеваниям, что обусловливает необходимость поиска факторов повышенной предрасположенности к 
этому нарушению. В качестве молекулярно-генетических маркеров БДР часто рассматривают однонуклеотидные 
полиморфизмы генов нейромедиаторных систем мозга. Показатели индивидуальной однонуклеотидной вариа-
бельности в генах нейромедиаторов применяются для оценки риска появления БДР до проявления его симпто-
матики на поведенческом уровне. Однако прогностические возможности анализа геномных вариаций для оценки 
риска депрессии до настоящего времени недостаточно надежны и дополняются поведенческой и нейрофизиоло-
гической информацией о пациентах. Нейрофизиологические маркеры БДР дают наиболее надежные оценки выра-
женности патологической симптоматики, но они отражают состояние человека в момент обследования, а не пред-
расположенность к возникновению этого патологического состояния и не позволяют выполнить оценку риска его 
появления в будущем. Большое депрессивное расстройство часто сопровождается отклонениями в способности 
человека контролировать двигательные реакции, включая возможность произвольно подавлять неадекватное по-
ведение. «Стоп-сигнал парадигма» (ССП) – экспериментальный метод для оценки функционального баланса между 
тормозными и активационными системами головного мозга в условиях выполнения целенаправленных движений. 
Объединенный с регистрацией ЭЭГ, этот экспериментальный метод позволяет учитывать не только поведенческие 
характеристики участников, такие как скорость или точность ответов, но и нейрофизиологические особенности 
головного мозга, ассоциированные с контролем над поведением. Цель настоящего исследования заключалась в 
оценке зависимости между особенностями ЭЭГ реакций в условиях парадигмы стоп-сигнал и индивидуальной одно-
нуклеотидной вариабельностью в генах-кандидатах для выявления БДР. Размерность в исходных генетических и 
нейрофизиологических экспериментальных данных была снижена при помощи анализа главных компонент (РСA) 
для последующего выявления ассоциации между компонентами ЭЭГ реакций, регистрируемыми в условиях контро-
ля произвольных двигательных реакций, и однонуклеотидными вариациями в генах, изменчивость которых ассо-
циирована с риском БДР. Установлено, что изменчивость в этих генах ассоциирована с амплитудными показателями 
мозговых ответов в условиях тестирования испытуемых методом ССП. Полученные результаты могут быть исполь-
зованы для разработки систем ранней диагностики депрессии, выявления индивидуальных паттернов нарушения в 
работе головного мозга, подбора методов коррекции заболевания и контроля над эффективностью терапии.
Ключевые слова: стоп-сигнал парадигма; ЭЭГ; вызванные потенциалы; однонуклеотидные полиморфизмы; большое 
депрессивное расстройство; метод главных компонент; регрессионный анализ

Introduction
Major depressive disorder (MDD), also known as clinical 
depression, is a psychiatric disorder characterized by sym­
ptoms including depressed mood, loss of interest or pleasure 
in previously enjoyable activities, fatigue or loss of energy, 
alterations in sleep and appetite, difficulties with concentration 
and memory, as well as feelings of guilt and low self-esteem 
(DSM-5, 2013). MDD ranks among the most prevalent psy­
chiatric disorders (Wong, Licinio, 2001). Susceptibility to 
various forms of depressive disorders is known to depend on 
both genetic factors and individual life experiences, particu­
larly during the period preceding the onset of MDD symptoms 
(Cross-Disorder Group, 2013; Northoff, 2013; Haase, Brown, 
2015; Ivanov et al., 2019; Whitney et al., 2019). For many 
years, the monoamine theory of depression was considered the 
most plausible, and allelic polymorphisms in genes encoding 
components of the brain’s monoaminergic neurotransmit­
ter systems have frequently been investigated as molecular 
markers of depression susceptibility (Willner et al., 2013). 
However, attempts to predict depression risk based solely on 
genetic data have generally proven unsatisfactory (Duncan 
et al., 2014; Halldorsdottir, Binder, 2017), as depression is a 
multifactorial disorder arising from the interplay of multiple 
genetic and environmental factors (Ivanov et al., 2019; Wang 
et al., 2025). Consequently, the identification of reliable bio­
markers for depression necessitates the concurrent use of not 
only genetic but also neurophysiological indicators reflecting 
the functional state of the human brain.

Neurophysiological markers of depression may include the 
amplitude and latency of event-related potentials (ERPs) de­
rived from electroencephalography (EEG) (Stone et al., 2025). 
It is well established that depression is frequently associated 

with impairments in inhibitory control, manifesting at both 
behavioral and neurophysiological levels (Shetty et al., 2025). 
An example of a method used to assess individual capacity 
for behavioral self-control is the stop-signal paradigm (SSP) 
(Band et al., 2003). This experimental paradigm provides an 
objective measure of the functional balance between brain acti­
vation systems that govern goal-directed actions and inhibitory 
systems responsible for suppressing inappropriate behavior.

A major challenge in the comprehensive investigation of 
depression lies in the need to account for a large number of 
variables, the interrelationships of which are not initially 
evident to the researcher. This challenge can be addressed 
through the application of dimensionality reduction techniques 
designed to uncover latent dependencies among factors. In 
particular, principal component analysis (PCA) is widely 
employed to reduce the dimensionality of original datasets 
and to identify the most informative features (Gewers et al., 
2021). PCA transforms the original variables into a lower-
dimensional space, thereby reducing the number of parameters 
under analysis and mitigating redundancy inherent in high-
dimensional data (Subasi, Gursoy, 2010).

The aim of the present study was to investigate the associa­
tion between neurophysiological measures recorded during 
the stop-signal paradigm and individual single-nucleotide 
variability in genes linked to an elevated risk of depression.

In this work, we analyzed genetic and neurophysiological 
data obtained from the publicly available ICBrainDB, deve
loped by researchers at the Institute of Cytology and Genetics, 
Siberian Branch of the Russian Academy of Sciences (ICG 
SB RAS), and the Institute of Neuroscience and Medicine, 
and hosted on the ICG SB RAS website (Ivanov et al., 2022). 
Candidate genes for MDD had been previously selected 
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through a bioinformatic analysis of scientific publications 
retrieved from open-access databases containing information 
on depressive spectrum disorders diagnosed in the studied 
individuals (Ivanov et al., 2019). 

Materials and methods
Participant sample. The sample comprised 212 individuals 
for whom both genomic and EEG data were analyzed. Among 
them, 47 participants residing in Novosibirsk had a clinically 
diagnosed major depressive disorder, while 165 participants 
had no diagnosed depression; of these, 67 resided in Novo­
sibirsk, 50 in Yakutsk, and 48 in Khandyga, Sakha Republic.

Experimental design. Participants performed a series of 
tasks in a stop-signal paradigm modified by A.N. Savostyanov 
and colleagues (2009). During the task, one of two visual 
stimuli was presented on the screen; upon the appearance 
of the target stimulus, participants were required to press a 
button on the keyboard. On a subset of trials, a stop-signal 
appeared shortly after the target stimulus, instructing the par­
ticipant to abort the already initiated motor response. Across 
the experiment, each participant completed 135 trials, 35 of 
which included a stop-signal. EEG was recorded using a 
128-channel NVX-132 amplifier. Electrodes were positioned 
according to the international 10-5 system, with AFz serving 
as the ground electrode and Cz as the reference. The signal 
bandwidth was set between 0.3 and 100 Hz, and the sampling 
rate was 1,000 Hz.

EEG signal processing. Raw EEG recordings contained 
non-neural noise, including ocular movement artifacts, facial 
muscle activity, cardiac electrical activity, and vascular arti­
facts. All non-neural artifacts were removed using independent 
component analysis (ICA), implemented in the EEGLAB 
toolbox (Delorme, Makeig, 2004). ICA is a computational 
algorithm that decomposes multichannel data into statistically 
independent components. In contrast, PCA identifies compo­
nents characterized by high mutual dependence.

From the preprocessed EEG data, two types of epochs were 
extracted: go-epochs (intervals of brain activity time-locked to 
the participant’s button press following the target visual stimu­
lus) and stop-epochs (intervals corresponding to successful 
inhibition of the motor response after stop-signal presentation). 
Epoching for go-trials was performed relative to the onset of 
the target stimulus, whereas for stop-trials it was aligned to the 
onset of the stop-signal. Within go-epochs, two distinct EEG 
peaks were identified: a premotor peak (400–600 ms post-
stimulus) and a postmotor peak (700–800 ms post-stimulus). 
The premotor peak reflects brain activity associated with 
motor preparation, whereas the postmotor peak corresponds 
to neural processes occurring during movement execution. 

In stop-epochs, two additional peaks were identified, either 
preceding or following the suppression of the motor response. 
These peaks and their corresponding time windows were de­
termined based on visual inspection of event-related potential 
(ERP) waveforms recorded at electrode C3, which overlies the 
motor cortex of the left hemisphere. Using the ERPLAB tool­
box (Lopez-Calderon, Luck, 2014), for each of these peaks, 
the following quantitative measures were computed separately 
for each participant and each EEG channel: peak maximum 
amplitude, mean amplitude within the peak window, and peak 
latency. Since each participant completed 100 go-trials and 

35  stop-trials during the experiment, brain responses were 
averaged across trials for each participant. EEG channels were 
grouped into 12 spatially defined regions: left frontal, medial 
frontal, right frontal, left temporal, left central, medial central, 
right central, right frontal, left parietal, medial parietal, right 
parietal, and a combined occipital group. Consequently, the 
initial EEG dataset comprised 144 parameters: 12 (electrode 
groups) × 2 (ERP peaks) × 3 (quantitative measures: maxi­
mum amplitude, mean amplitude, latency) × 2 (experimental 
conditions: go or stop).

Genetic data. Genetic material, collected as either whole 
blood or buccal epithelial cells, was obtained from all par­
ticipants. Targeted sequencing of 164 genes was performed 
using this material. These genes were selected based on prior 
reconstruction and analysis of a gene network associated 
with susceptibility to MDD (Ivanov et al., 2019). Targeted 
sequencing libraries were prepared for these 164 genes, and 
high-coverage next-generation sequencing (NGS) was 
conducted for all participants. For each allele of every gene 
in the list, a binary variability index was assigned for each 
participant relative to the reference genome (Ivanov et al., 
2022). If a participant’s allele sequence matched the reference 
genome exactly, the variability index was set to 0; if one or 
more nucleotide substitutions were present, the index was 
set to 1 (regardless of the number of substitutions within the 
allele). Across all participants, 799  single-nucleotide poly­
morphisms were identified in 121 of the 164 sequenced genes. 
No nucleotide substitutions were detected in any participant 
for the remaining 43 genes. Thus, the total number of input 
genetic parameters was 242 (121 genes × 2 alleles per gene).

Results
As previously stated, the aim of this study was to assess the 
association between EEG responses recorded during the stop-
signal paradigm and individual single-nucleotide variability in 
candidate genes linked to MDD risk. To achieve this objective, 
a multi-stage analysis of the experimental data was conducted, 
and the results are presented below.

Task 1. Identification of MDD candidate genes exhibiting 
significant associations between single-nucleotide 
variability and EEG measures
To address Task 1, a series of linear models was constructed, 
wherein each EEG parameter served as a dependent variable 
and the binary indicator of the presence or absence of single-
nucleotide variants (SNVs) in a specific gene served as the 
independent variable. The term “linear model series” refers 
to separate linear regression analyses performed for each 
unique pair of “EEG parameter – single-nucleotide variabi
lity” (Table 1). Given 144 EEG parameters and 242 genetic 
parameters, the initial number of parameter pairs subjected to 
linear regression totaled 34,848. An individual linear regres­
sion model was formulated as follows:

EEG_parameter = В0 + В1 + e.
Here, В1 represents the binary predictor coded as 0 (no nuc­
leotide substitution in the allele) or 1 (at least one substitution 
present).

The dependent variable was a quantitative EEG measure, 
while the predictor was the binary indicator of nucleotide 
substitution presence in a given gene allele. If at least one 
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substitution was present in one allele, the binary indicator 
was assigned a value of 1. The two alleles of the same gene 
were treated as two distinct binary predictors. This approach 
enabled testing whether single-nucleotide variability in each 
candidate gene was associated with alterations in a given 
EEG parameter.

In addressing Task 1, multiple comparisons were corrected 
using the Benjamini–Hochberg procedure (False discovery 
rate, FDR) to control the expected proportion of false rejec­
tions of the null hypothesis (Benjamini, Hochberg, 1995). 
The FDR method is more statistically powerful than the 
Bonferroni correction and is particularly advantageous when 
the number of tested hypotheses is large or when minimizing 
false positives is prioritized over strict per-hypothesis control 
of Type I error.

Associations were tested between all 144 EEG measures 
and variability in each of the 121 genes in which at least one 
SNV was detected in at least one participant. This analysis 
revealed statistically significant associations (FDR-corrected 
significance threshold q < 0.05) for only five genes – ADRA2B, 
TF, HCRTR2, WFS1, and PENK – and four EEG measures 
recorded during go-epochs in the medial frontal, right parietal, 
left parietal, and combined occipital cortical regions (Table 2). 
Notably, significant associations for three genes (ADRA2B, TF, 
HCRTR2) were observed across three cortical regions (right 
parietal, left parietal, and occipital), whereas for the remaining 
two genes (WFS1 and PENK), significant associations were 
confined to the medial frontal cortex. These five genes were 
subsequently included in further analyses.

Table 2  summarizes the linear regression results linking 
EEG measures to polymorphisms in MDD candidate genes. It 
lists 11 most significant “gene–EEG measure” pairs with the 
lowest FDR-corrected p-values (q-values), along with their 
uncorrected p-values. All reported associations are significant 
at FDR < 0.05.

The average frequency of single-nucleotide variants for 
each of the five selected genes across the entire participant 
sample is presented in Table 3. The prevalence of variant car­
riers for these genes ranged from approximately one-third to 
two-thirds of participants, ensuring sufficient variability for 
robust statistical analysis.

Task 2. Dimensionality reduction  
of neurophysiological data using principal  
component analysis
In addressing Task 2, PCA with prior feature standardization 
was applied to reduce the dimensionality of the EEG dataset 
(Rokhlin et al., 2010). From the original set of 144  EEG 
variables, 15  principal components were extracted. The 

Figure demonstrates that these 15 components collectively 
account for approximately 80 % of the total variance in the 
original EEG parameters, thereby capturing the majority of 
inter-individual variability.

Task 3. Assessment of the influence of variability  
in MDD candidate genes on integrated measures 
of brain activity derived from PCA
In Task 3, for each of the five selected genes showing statis­
tically significant associations with specific EEG measures 
(Table 2), a regression analysis was performed between the 
principal components (PCs) and the binary indicators of poly­
morphism presence. Unlike in Task 1, where regression was 
conducted on individual EEG parameters, here the analysis 
was performed on integrated composite measures (the prin­
cipal components) that collectively explain 80 % of the total 
inter-individual variance in the EEG data (see the Figure).

Among the 15 PCA-derived components of brain activity, 
only the third principal component (PC3) exhibited a statisti­
cally significant association with genetic variability in the 
MDD candidate genes. This finding is summarized in Table 4, 
which presents the results of statistical significance testing for 
the effects of genetic variability in the five candidate genes on 
the three most informative PCA components. 

To provide a neurophysiological interpretation of the 
observed associations, factor loadings for the third principal 
component (PC3) were computed for each of the original EEG 
measures. In the context of PCA, a factor loading represents 
the correlation coefficient between an original variable and a 
principal component, indicating the strength and direction of 
their association. The factor loadings of the original EEG mea­
sures for PC3 are presented in Table 5. As evident from these 
results, PC3 is most strongly associated with brain activity in 
occipito-parietal cortical regions and, to a somewhat lesser 
extent, with frontal cortical activity. This cortical topography 
is characteristic of functional processes involved in attentional 
control during visual stimulus recognition. Furthermore, it is 
apparent that both premotor and postmotor ERP peaks-across 
both go- and stop-episodes contributed most substantially to 
this component.

Task 4. Prediction of candidate gene variability based on 
composite EEG measures (solving the inverse problem)
To address this task, logistic regression with L1 regularization 
(Flach, 2016) was employed to predict the presence or absence 
of single-nucleotide variants in MDD candidate genes using 
the first 15 EEG-derived principal components (PC1–PC15). 
Unlike linear regression, which models continuous dependent 
variables, logistic regression is designed for binary outcomes. 

Table 1. Example of a parameter pair used in linear regression analysis.
The first parameter is individual variability in the ADRA2B gene; the second is the amplitude  
of the premotor ERP peak in the right parietal cortex

Participant ID ADRA2B gene 
(0 – no variability;  
1 – variability present)

Amplitude of the postmotor EEG peak in the “go” 
condition in the right parietal cortex, uV

D_Nov_001 0 1.68 

D_Yak_2016_001 1 8.05
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In our case, the logistic model aimed to estimate the pro­
bability of genetic variability in MDD candidate genes based 
solely on EEG-derived features, thus constituting the inverse 
problem. The input features consisted of the first 15 princi­
pal components extracted from the original EEG parameter 
space, while the target variables were binary indicators of 

deviation from the human reference genome in the five genes 
previously shown to exhibit significant associations with EEG 
components: ADRA2B, WFS1, PENK, TF, and HCRTR2. 
Model performance was evaluated using the area under the 
receiver operating characteristic curve (AUC), computed 
via 5-fold stratified cross-validation. The accuracy estimates 

Table 2. Results of the association analysis between the amplitude of the postmotor ERP peak in go-episodes  
of the stop-signal paradigm and binary variability in MDD candidate genes

Gene with identified 
variability

Cortical region in which EEG responses 
depended on gene variability

Significance level
(p-value)

FDR-corrected significance 
level (q-value)

ADRA2B right parietal 7.35E-34 1.15E-29

left parietal 9.88E-26 1.03E-22

occipital 2.65E-28 5.91E-25

TF right parietal 1.48E-32 7.70E-29

left parietal 1.66E-26 1.85E-23

occipital 1.34E-29 4.17E-26

HCRTR2 right parietal 1.48E-32 7.70E-29

left parietal 1.66E-26 1.85E-23

occipital 1.34E-29 4.17E-26

WFS1 medial frontal 4.93E-27 8.53E-24

PENK medial frontal 5.44E-28 1.06E-24

Table 3. Mean number of single-nucleotide variants in selected MDD* candidate genes

MDD candidate gene Mean variability** Standard deviation (Std) Percentage of individuals with no substitutions  
in this gene

ADRA2B 0.29 0.45 70.54

TF 0.34 0.47 65.75

HCRTR2 0.34 0.47 65.75

WFS1 0.65 0.48 34.93

PENK 0.63 0.48 36.98

* Data are shown only for genes exhibiting significant associations between genetic variability and EEG measures. ** In this context, mean values represent the 
proportion of participants in the sample who carried at least one nucleotide substitution in the respective gene.

Cumulative variance explained by principal component analysis of EEG data.
The red dashed line indicates the 80 % variance threshold.
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(AUC values) and their standard deviations across the five 
cross-validation folds are presented in Table 6. As shown in 
Table 6, prediction accuracy for binary genetic variability in 
three of the five candidate genes ranged from 0.73 to 0.78, 
with standard deviations between 0.13 and 0.18. These results 
indicate that the presence of binary variability in MDD candi­
date genes can be predicted from EEG data recorded during 
the stop-signal paradigm with 70–80  % accuracy, thereby 
providing convergent evidence for a robust link between 
genetic susceptibility and neurophysiological phenotypes.

Thus, the sequential accomplishment of the four objectives 
of our study enabled us to: (1) identify a list of candidate genes 
for MDD, the variability of which is associated with measures 
of brain activity during behavioral control; (2) determine com­
posite characteristics of brain activity accounting for 80 % of 
the variance in EEG data; (3) identify an integrated measure of 
brain activity most robustly associated with single-nucleotide 
variability in MDD candidate genes; and (4) solve the inverse 
problem by predicting variability in MDD candidate genes 
based on EEG-derived measures.

Discussion
A fundamental challenge in identifying candidate genes for 
most psychiatric disorders is that the behavioral effects of 
single-nucleotide variations in any individual selected gene are 
relatively weak (Duncan et al., 2014). Depression exemplifies 
a disorder for which no direct and unambiguous associations 
with specific g‑enes have been established (Halldorsdottir, 
Binder, 2017). This suggests that the genetic underpin­
nings of depression are highly heterogeneous across indivi- 
duals and cannot be reduced to a small set of genes and their 
mutations.

This has motivated a shift in focus from analyzing the con­
tribution of individual genes or mutations toward investigating 
interconnected complexes of genes, their protein products, 
and metabolites. Such gene complexes are referred to as 
“gene networks” (Kolchanov et al., 2013). A gene network 
may encompass dozens to hundreds of genes, along with the 
multitude of proteins and metabolites they encode. Previously, 
using bioinformatic approaches, fragments of a gene network 
implicated in susceptibility to major depressive disorder 

Table 4. Results of linear regression between the first three EEG 
principal components (PC1–PC3) and variability in the five MDD 
candidate genes*

Gene, the variability of which 
influenced brain activity 

Significance level (p-value)

PC3

WFS1 0.0055

TF 0.0065

HCRTR2 0.0065

PENK 0.0065

ADRA2B 0.0258

PC1

ADRA2B 0.3297

TF 0.2844

HCRTR2 0.2844

WFS1 0.2876

PENK 0.2844

PC2

TF 0.3109

HCRTR2 0.3109

WFS1 0.3028

PENK 0.3109

ADRA2B 0.3933

* Results are ordered by the significance level of the linear regression.

Table 5. Factor loadings of original brain activity measures for PC3

EEG parameter Factor loading* for PC3 (p < 0.05)

Occipital cortex, postmotor peak, stop-episodes 0.24

Right parietal cortex, premotor peak, stop-episodes 0.22

Left parietal cortex, premotor peak, stop-episodes 0.21

Right frontal cortex, postmotor peak, stop-episodes 0.19

Occipital cortex, postmotor peak, go-episodes 0.19

Right parietal cortex, postmotor peak, go-episodes 0.18

Medial parietal cortex, postmotor peak, go-episodes 0.17

Medial parietal cortex, premotor peak, stop-episodes 0.17

Left frontal cortex, postmotor peak, stop-episodes 0.17

Left parietal cortex, postmotor peak, go-episodes 0.16

* Factor loading denotes the correlation coefficient between an EEG measure and the integrated score of PC3.

(MDD) were reconstructed (Ivanov et al., 2019). In the same 
study, a comprehensive dataset was assembled, integrating 
psychometric, neurophysiological, and genetic data reflecting 
the analysis of SNPs across 164 genetic loci incorporated into 
the depression-related gene network (Ivanov et al., 2022). The 
aim of the present study was to identify genes associated not 
only with psychometric traits but also with neurophysiolo­
gical characteristics of brain activity, which may likewise be 
considered as manifestations of depression.
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Behavioral control is one of the core cognitive functions 
in humans, and its impairment constitutes a symptom of 
numerous neuropsychiatric disorders. In the present study, 
we analyzed the relationship between parameters of human 
ERPs and the presence of single-nucleotide variations in 
candidate genes for MDD within a combined sample com­
prising both healthy individuals and those diagnosed with 
depressive disorder. Our results demonstrate that the ampli­
tude of the postmotor positivity in go-trials of the stop-signal 
paradigm is associated with binary variability in five MDD 
candidate genes: ADRA2B, TF, HCRTR2, WFS1, and PENK  
(Table 2).

Associations with genetic variability were observed not 
only for several localized EEG measures reflecting cortical 
activity in specific brain regions during brief phases of task 
performance but also for an integrated measure of global brain 
activity derived via PCA, which captures more general fea­
tures of the nervous system’s functional state (Table 4). This 
integrated brain activity measure significantly influenced by 
genetic variability reflects the engagement of cortical regions 
involved in visual signal perception and voluntary attentional 
control (Table 5). Furthermore, we demonstrated that these 
integrated EEG measures can serve as predictors of single-
nucleotide variability in MDD candidate genes with 70–80 % 
accuracy when applying logistic regression (Table 6), thereby 
indicating the feasibility of solving the inverse problem: 
predicting genetic variability from neurophysiological data.

Additional findings from our prior work indicate that ERP 
amplitudes during performance of the stop-signal paradigm 
are positively correlated with the severity of depressive 
symptoms (Zorina et al., 2025). Thus, a coherent link emerges 
between specific genes, the variability of which is associated 
both with depression at the behavioral level and with a neuro­
physiological marker of elevated depressive symptomatology. 
Information from Ivanov et al. (2019) further clarifies the 
biological roles of these genes: (a) ADRA2B encodes the alpha-
2B adrenergic receptor, a member of the G protein-coupled 
receptor family; (b) TF encodes transferrin; (c) HCRTR2 
encodes hypocretin (orexin) receptor type 2; (d) WFS1 en­
codes wolframin; and (e) PENK encodes the proenkephalin 
precursor protein. Our new findings indicate that variability in 
these MDD candidate genes is associated with brain activity 
parameters reflecting an individual’s capacity for behavioral 
self-control – a function impaired in MDD – thereby support­
ing the existence of a composite genetic-neurophysiological 
marker linked to depression risk. 

Conclusion
The present analysis revealed statistically significant associa­
tions between polymorphisms in the ADRA2B, TF, HCRTR2, 
WFS1, and PENK genes and EEG signal characteristics 
recorded during performance of the stop-signal paradigm. 
Principal component analysis effectively reduced data dimen­
sionality and enabled the identification of the most informative 
indices of integrated brain activity. Logistic regression models 
demonstrated that EEG-derived parameters can predict, with 
moderate accuracy, the presence of single-nucleotide substitu­
tions in MDD candidate genes. These results may facilitate 
the assessment of complex interdependencies between genetic 
and neurophysiological markers associated with depression.

Limitations. This study did not specifically evaluate differ­
ences between clinically diagnosed patients with depression 
and healthy participants. A more detailed comparison of the 
identified associations between neurophysiological and mo­
lecular biological markers of depression remains an objective 
for future, more granular analyses currently planned in our 
ongoing research.
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Abstract. Organismal aging is accompanied by the accumulation of senescent cells – damaged, non-functional 
cells that exhibit cell cycle arrest, resistance to apoptosis, metabolic dysfunction, and production of a wide range 
of pro-inflammatory substances. The age-related accumulation of these cells is associated with impaired tissue 
function, contributes to chronic inflammation (inflammaging), and promotes the development of various age-
associated diseases. Conversely, the elimination of senescent cells restores tissue functions and positively affects 
overall metabolism. Under normal conditions, senescent cells are removed by the innate immune system; however, 
the efficiency of this process declines with age. The involvement of adaptive immunity and the role of T cells in 
the clearance of senescent cells remain poorly understood. The aim of this study was to identify alterations in local 
T cell immunity associated with the accumulation of senescent cells in human skin. The analysis was performed on 
publicly available single-cell RNA-sequencing data from skin biopsies, and the senescent status was assessed using 
the SenePy algorithm with Gaussian mixture models. It was found that the emergence of senescent cells occurs 
heterogeneously across cell types within the tissue. The accumulation of these cells is associated with alterations in 
the CD4+ to CD8+ T cell ratio, as well as with an increased abundance of regulatory T cells. Functional analysis revealed 
that these quantitative age-related shifts were accompanied by more pronounced activation of regulatory T cells 
together with features of anergy and exhaustion in CD8+ T cells, whereas functional changes in CD4+ T cells were 
heterogeneous. These findings underscore the importance of adaptive immunity in maintaining tissue homeostasis 
and suggest potential age-related dysfunction of tissue-resident T cells. Understanding the mechanisms underlying 
the interaction between adaptive immunity and senescent cells is crucial for the development of senolytic vaccines 
and other immunological approaches aimed at enhancing endogenous elimination of senescent cells.
Key words: senescence; adaptive immunity; regulatory T cells; single-cell transcriptome; aging; genetic signatures; 
tissue-resident T cells; senescent cell elimination; skin

For citation: Matveeva K.S., Kolmykov S.K., Sokolova T.S., Salimov D.R., Shevyrev D.V. Senescent cell accumulation is 
associated with T-cell imbalance in the skin. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2025;29(7): 
1137-1144. doi 10.18699/vjgb-25-118

Funding. This work was supported by Russian Scientific Foundation, project No.  24-15-20003, https://rscf.ru/
project/24-15-20003/

Старение кожи связано с локальным дисбалансом  
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Аннотация. Старение организма сопровождается накоплением поврежденных нефункциональных клеток, 
которые называют сенесцентными. Эти клетки находятся в состоянии ареста клеточного цикла, устойчивы 
к апоптозу, имеют нарушенный метаболизм, а также продуцируют широкий спектр провоспалительных 
факторов – цитокинов, хемокинов, протеаз, молекул адгезии и продуктов арахидонового каскада. 
Накопление таких клеток с возрастом связано с нарушением функций тканей, способствует хроническому 
воспалению (inflammaging) и развитию различных возраст-ассоциированных заболеваний. В свою очередь, 
элиминация сенесцентных клеток восстанавливает тканевые функции и позитивно сказывается на общем 
метаболизме. В норме сенесцентные клетки удаляются системой врожденного иммунитета, однако с 
возрастом эффективность этого процесса падает. При этом участие адаптивного иммунитета и роль 
T-лимфоцитов в удалении сенесцентных клеток остаются неизученными. Целью исследования был поиск 
изменений в локальном T-клеточном иммунитете, которые связаны с накоплением сенесцентных клеток в 
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коже человека. Анализ проводился на открытых данных РНК секвенирования единичных клеток биоптатов 
кожи. Сенесцентный статус клеток оценивали при помощи алгоритма SenePy с применением смешанных 
гауссовских моделей. Было выявлено, что появление клеток с выраженными признаками сенесцентности в 
пределах ткани происходит неравномерно среди клеточных типов. Накопление этих клеток ассоциировано с 
изменением соотношения популяций CD4+ и CD8+ лимфоцитов, а также сопряжено с увеличением содержания 
регуляторных Т-лимфоцитов. В ходе функционального анализа обнаружено, что данные количественные 
изменения с возрастом сопровождаются более выраженной активацией регуляторных Т-лимфоцитов 
совместно с анергией и истощением CD8+ лимфоцитов, тогда как функциональные изменения CD4+ 
лимфоцитов имеют гетерогенный характер. Полученные результаты подчеркивают значение адаптивного 
иммунитета в поддержании тканевого гомеостаза и указывают на потенциальную дисфункцию эффекторных 
тканевых T-лимфоцитов, которая возникает с возрастом. Понимание механизмов взаимодействия адаптивного 
иммунитета с сенесцентными клетками важно в контексте разработки сенолитических вакцин и других 
иммунологических подходов, направленных на усиление эндогенной элиминации сенесцентных клеток.
Ключевые слова: сенесцентность; адаптивный иммунитет; регуляторные T-лимфоциты; транскриптом 
единичных клеток; старение; генетические сигнатуры; тканерезидентные T-лимфоциты; элиминация 
сенесцентных клеток; кожа

Introduction
Cellular senescence is a state of irreversible cell cycle arrest 
triggered by diverse stressors, including replicative exhaus-
tion, DNA damage, telomere shortening, oxidative stress, and 
oncogene activation (Regulski, 2017; Di Micco et al., 2021). 
Senescent cells exhibit resistance to apoptosis, diminished 
cellular function, metabolic dysregulation, and multiple 
aberrations in protein quality control machinery. A hallmark 
feature of these cells is their sustained secretion of a broad 
array of pro-inflammatory mediators, collectively termed 
the senescence-associated secretory phenotype (SASP). The 
SASP is widely regarded as a primary driver of chronic, 
low-grade inflammation associated with aging, commonly 
referred to as inflammaging. Although senescence serves as 
an important tumor-suppressive mechanism, the prolonged 
persistence and accumulation of senescent cells in tissues  
disrupt tissue homeostasis, impair organ function, and 
contribute to the pathogenesis of age-related and degenera- 
tive diseases (Di Micco et al., 2021; Liao et al., 2021; Witham 
et al., 2023).

Preclinical studies in animal models have demonstrated 
that targeted elimination of senescent cells improves tissue 
function and metabolism, extends healthspan and lifespan, 
and attenuates the progression of age-associated pathologies 
(Yousefzadeh et al., 2019; Yang et al., 2023). Under physio
logical conditions, senescent cells are efficiently cleared by 
the immune system, with innate immune mechanisms being 
the most extensively characterized in this context. Natural 
killer (NK) cells recognize senescent cells primarily via the 
activating receptor NKG2D and eliminate them through per-
forin–granzyme-mediated cytotoxicity and interferon-gamma 
(IFN-γ) secretion (Antonangeli et al., 2019). Invariant natural 
killer T (iNKT) cells can also target senescent cells upon 
activation by glycolipid antigens (Arora et al., 2021). Fur-
thermore, SASP-derived factors recruit macrophages, which 
contribute to the clearance of senescent cells during tissue 
remodeling (Song P. et al., 2020). However, with advancing 
age, the immune system’s capacity to eliminate senescent 
cells declines – likely due to immunosenescence – resulting 
in increased senescent cell burden, chronic inflammation,  
tissue dysfunction, and heightened susceptibility to age-related 
diseases (Song S. et al., 2020; Hense et al., 2024).

Despite extensive research into the physiological clearance 
of senescent cells, the role of adaptive immunity in their elimi-
nation remains poorly understood (Matveeva et al., 2024). 
Conventional experimental approaches often inadequately 
reproduce the complex three-dimensional tissue architecture 
essential for critical interactions between adaptive immune 
system and senescent cells. A substantial proportion of T lym-
phocytes resides in peripheral tissues, does not recirculate, and 
exhibits functional properties distinct from those of circulating 
peripheral T cells (Li et al., 2025). Conversely, senescent cells 
are predominantly localized within the parenchyma and stroma 
of organs, where they can shape a unique microenvironment 
that modulates the efficacy of immune surveillance (Zhang W. 
et al., 2024). In this context, single-cell RNA sequencing 
(scRNA-seq) data derived directly from tissues hold particular 
significance. Such data enable the identification of senescent 
cells across diverse cell types and facilitate the assessment of 
key features of adaptive immunity, including the composition 
of specific T-cell subsets and their functional competence. 
By preserving the native tissue context, scRNA-seq datasets 
from multiple organs allow for the correlation of senescent 
cell burden with both quantitative and qualitative alterations 
in T-lymphocyte populations – the principal effectors of adap-
tive immunity (Kim S., Kim C., 2021).

In this study, we utilized publicly available scRNA-seq data 
to evaluate whether age-related accumulation of senescent 
cells in tissues is associated with alterations in the tissue-
resident T-cell pool. It is currently accepted that cellular senes-
cence manifests differently across distinct cell types (Cohn et 
al., 2023). Moreover, robust and universal molecular markers 
of senescence applicable to all senescent cell types remain 
elusive. Consequently, we employed the SenePy algorithm 
to infer cellular senescence status. Unlike conventional dif-
ferential expression analyses, SenePy identifies co-expression 
gene network clusters associated with aging (Sanborn et 
al., 2025). Skin aging is a multifaceted process driven by 
cumulative exposure to diverse damaging factors throughout 
life. Key hallmarks of skin aging include the accumulation 
of senescent cells, disruption of dermal extracellular matrix 
architecture, degradation of elastic fibers, and impairment of 
barrier function (Shin et al., 2025). In the present study, the 
identification of senescent cells within each human skin cell 
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type, combined with quantification of various T-lymphocyte 
subpopulations, revealed significant age-related alterations in 
tissue-resident T cells that were associated with the accumula-
tion of senescent cells.

Materials and methods
For this analysis, we used publicly available single-cell RNA 
sequencing (scRNA-seq) datasets deposited in the NCBI Gene 
Expression Omnibus (GEO) and the Genome Sequence Ar-
chive for Human (GSA-Human). Skin biopsy samples from 
healthy donors (n = 32; age range: 18–76 years) were auto-
matically retrieved from these repositories (see Supplementary 
Materials, Table S1)1.

Unique Molecular Identifier (UMI) count matrices were 
generated from raw sequencing reads using the 10x Genomics 
Cell Ranger pipeline (v9.0.1). Subsequent processing of count 
matrices and associated metadata was primarily performed 
using the Scanpy toolkit (Wolf et al., 2018). Prior to down-
stream analysis, low-quality cells were filtered out based on 
the following criteria: (i) total UMI counts <500 or >5 median 
absolute deviations  (MAD); (ii)  number of detected genes 
>5  MAD; and (iii)  mitochondrial gene expression >15  % 
or >4 MAD from the median. Doublets were identified and 
removed using the Scrublet package (Wolock et al., 2019).

Following quality control, samples were integrated into a 
unified dataset and prepared for clustering. This preprocessing 
pipeline included: (i) library-size normalization to a target sum 
of 10,000 UMIs per cell (scanpy.pp.normalize_total(target_
sum=1e4)); (ii) log-transformation; (iii) scaling; (iv) dimen-
sionality reduction via principal component analysis (PCA); 
and (v) batch-effect correction using the Harmony algorithm 
(Korsunsky et al., 2019). Cell-type annotation was performed 
on log-normalized data using CellTypist (Domínguez et al., 
2022), which employs pre-trained logistic regression models. 
Specifically, we applied the “Adult_Human_Skin” model 
(Reynolds et al., 2021), which encompasses annotations for 
diverse dermal, epidermal, and immune cell populations in 
human skin. To validate and refine automated annotations, 
cells were further clustered using the Leiden algorithm. Cluster 
identities were cross-referenced with CellTypist predictions, 
and manual curation of annotations was performed where 
necessary. The full data processing workflow is illustrated 
in Figure 1. Particular attention was devoted to the accurate 
annotation of T-lymphocyte subpopulations. To this end, the 
T-cell cluster was isolated from the integrated dataset and 
reprocessed starting from the original UMI count matrix to 
ensure a more precise representation of T-cell heterogeneity 
in reduced-dimensional space. Annotations were refined as 
needed based on this focused re-analysis. Samples exhibiting 
insufficient representation of specific cell types were excluded 
from relevant downstream analyses at corresponding stages 
of the study.

Canonical markers of cellular senescence are highly cell 
type-specific and poorly reflect the true senescent state in vivo. 
Therefore, cellular senescence status was assessed using the 
SenePy algorithm, published in 2025 (Sanborn et al., 2025), 
which enables discrimination between bona fide senescence-
associated markers and genes, the expression of which is 
1 Supplementary Tables S1–S4 and Fig. S1 are available at: 
https://vavilovj-icg.ru/download/pict-2025-29/appx42.zip

elevated for reasons unrelated to senescence. Within this 
algorithm, the identification of genes potentially associated 
with age-related accumulation of senescent cells is performed 
under the following criteria: the gene must be expressed in 
fewer than 5 % of cells from young donors, and in more than 
1 % but fewer than 20 % of cells from older donors. Ad-
ditionally, either the proportion of cells expressing the gene 
in aged individuals must be at least 2.5-fold higher than in 
young individuals, or the absolute increase in the proportion 
of expressing cells (i. e., the difference between old and young 
donors) must exceed 5 %. This strategy enables the identifi-
cation of cell type-specific genetic signatures of senescence 
within a given tissue, thereby allowing more accurate detection 
of senescent cells in ex vivo samples compared to conventional 
approaches. Each cell is assigned a continuous numerical 
metric – the “SenePy score” – reflecting the degree to which 
its gene expression profile aligns with the corresponding cell 
type-specific senescence signature.

Following SenePy scoring, Gaussian Mixture Models 
(GMMs) were fitted to the distribution of SenePy scores within 
each annotated cell type. Depending on the shape of the score 
distribution, models comprised either two or three compo-
nents. The threshold for classifying a cell as senescent was 
defined as the value lying between the two rightmost GMM 
components. This approach enabled a quantitative estimation 
of the fraction of cells exhibiting robust senescence features 
within each cell population.

Correlation analyses were performed using the spearmanr() 
function from the scipy.stats module to compute Spearman’s 
rank correlation coefficient and associated p-values. To ac-
count for multiple comparisons, Bonferroni correction was 
applied.

Differentially expressed genes (DEGs) in T-lymphocyte 
populations from young and old donors were identified using 
the rank_genes_groups() function from the Scanpy package, 
employing the Mann–Whitney U test. Genes were considered 
differentially expressed if they met the following criteria: false 
discovery rate (FDR) < 0.01, presence in more than 10 % 
of cells within the target group, and detection in fewer than 
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Fig. 1. Schematic representation of the data processing workflow.
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50 % of cells in the comparison group. Functional enrich-
ment analysis of the identified DEGs was performed in the 
R programming language using the enricher() function from 
the clusterProfiler package (Yu et al., 2021). Gene sets from 
the C5 (ontology gene sets) and C7 (immunologic signature 

gene sets) collections of the Molecular Signatures Database 
(MSigDB; Subramanian et al., 2005) were used as reference 
annotations. Significantly enriched gene sets were manually 
grouped into functional categories.

Results
To identify senescent cells in human skin tissues, we adapted 
and applied the recently published SenePy algorithm (Sanborn 
et al., 2025), followed by Gaussian Mixture Modeling (GMM). 
The analysis was performed on the major skin cell populations 
previously annotated (Fig. 2).

As a result, we observed a significant age-associated in-
crease in the proportion of senescent cells across multiple 
cell types in human skin samples (Fig. 3). Specifically, the 
fraction of senescent cells rose with age in tissue-resident 
dendritic cells, macrophages, T lymphocytes, keratinocytes, 
melanocytes, fibroblasts, pericytes, and endothelial cells. 
Notably, the rate of accumulation varied between cell types, 
reflecting the heterogeneity of aging processes among distinct 
cellular populations within the same tissue.

Our analysis revealed a significant age-related accumulation 
of cells exhibiting senescence features in the skin, consistent 
with prior evidence implicating cellular senescence as a key 
hallmark of tissue aging (Childs et al., 2015). The overall 
proportion of senescent cells across all cell types also showed 

DC
Differentiated KC
Fibroblast
LE
Macrophage
Mast cell
Melanocyte
Pericyte
Tc
Th
Treg
VE

Fig. 2. Cell type annotation of human skin using the CellTypist tool.
DC  – dendritic cells; KC  – keratinocytes; LE  – lymphoid epithelial cells;  
Tc – cytotoxic T lymphocytes (classical phenotype: CD3+CD8+); Th – T helper 
cells (classical phenotype: CD3+CD4+); Treg  – regulatory T  cells (classical 
phenotype: CD3+CD4+FoxP3+); VE – vascular endothelial cells.

DC
ρ = 0.58, p = 0.03

Melanocyte
ρ = 0.64, p = 0.0247

Th
ρ = 0.71, p = 0.00136

LE
ρ = 0.44, p = 0.15

Fibroblast
ρ = 0.61, p = 0.00532

Tc
ρ = 0.69, p = 0.00462

VE
ρ = 0.61, p = 0.0157

Mast cell
ρ = 0.71, p = 0.0465

GSE_id/group size

Age, years

Se
ne

sc
en

t f
ra

ct
io

n
Se

ne
sc

en
t f

ra
ct

io
n

Se
ne

sc
en

t f
ra

ct
io

n
Se

ne
sc

en
t f

ra
ct

io
n

Age, years Age, years

Differentiated KC
ρ = 0.37, p = 0.125

Pericyte
ρ = 0.63, p = 0.0115

Treg
ρ = 0.71, p = 0.0713

Macrophage
ρ = 0.77, p = 0.002

Fig. 3. Correlations between the accumulation of senescent cells in distinct human skin cell types and donor age.
For each cell type, samples with cell counts below 2SD (standard deviations) from the mean across all donors were excluded from the 
analysis. Statistically significant correlations are highlighted with red boxes. DC – dendritic cells; KC – keratinocytes; LE – lymphoid epithelial 
cells; Tc – cytotoxic T lymphocytes; Th – T helper cells; Treg – regulatory T cells; VE – vascular endothelial cells.
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a positive correlation with donor age (Fig.  4), indicating 
a progressive disruption of tissue homeostasis. Given that 
senescent cells are characterized by a stable cell cycle arrest 
and thus lack proliferative capacity, their age-dependent ac-
cumulation is likely attributable to a decline in the efficiency 
of mechanisms responsible for their clearance.

Therefore, in the next step, we sought to investigate how 
the proportions of major T-lymphocyte subpopulations in 
the skin change with age. Correlation analysis did not reveal 
statistically significant age-related changes in the proportions 
of the three T-lymphocyte subpopulations examined, nor in 
key immunological indices (Fig.  5). Given the absence of 
detectable age-associated alterations among tissue-resident 
T lymphocytes, we next sought to explore potential associa-
tions between T-lymphocyte populations and the accumulation 
of senescent cells independent of chronological age.

Different cell types may exhibit varying rates of aging or dif-
fering immunogenicity of their senescent counterparts, which 
could account for the observed heterogeneity in age-related 
accumulation of senescent cells. Therefore, we first sought 
to determine whether any alterations in skin T-lymphocyte 
populations were associated with the burden of senescent cells. 
Specifically, we assessed the relationship between the accumu-
lation of senescent cells within each cell type and the relative 
abundance of T-lymphocyte subpopulations (Fig.  S1). We 
found a significant increase in total T-lymphocyte frequency 
associated with the accumulation of senescent pericytes, as 
well as modest trends (p < 0.07) toward elevated regulatory  
T-cell (Treg) proportions correlating with senescent cell bur-
den in certain cell types.

In the next step, we examined how the proportions of dif-
ferent T-lymphocyte populations vary with the total burden of 
senescent cells across all cell types. We observed a significant 
increase in the relative abundance of both T helper (Th) cells 
and regulatory T (Treg) cells as the cumulative number of 
senescent cells rose (Fig. 6). Moreover, we noted a statisti-
cally significant elevation in the “tissue immunoregulatory 

index” – defined as the Th/Tc ratio – which reflects a shift 
toward T helper dominance over cytotoxic T lymphocytes.

Thus, we identified a significant association between the ac-
cumulation of senescent cells in human skin and an imbalance 
in T-cell immunity. This imbalance was characterized by an 
increased proportion of regulatory T cells and T helper cells, 
accompanied by a relative decrease in cytotoxic T lympho-
cytes. Notably, these alterations were not directly correlated 
with chronological age, underscoring the specific role of 
interactions between T-cell immunity and senescent cells, 
independent of aging per se.

The age-independent shifts in the tissue-resident T-lym
phocyte pool observed in earlier analyses highlight the in-
volvement of adaptive immunity in tissue aging processes. 
However, these findings do not provide insight into the func-
tional states of Treg cells, Th, or cytotoxic T lymphocytes. 
To further characterize the functional implications of these 
changes, we performed differential gene expression analysis 
followed by functional enrichment profiling of T-lymphocyte 
populations (see Materials and methods), comparing cells from 
older versus younger donors (Fig. 7).

Fig.  4.  Proportion of senescent cells across all cell types as a function  
of donor age.
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Fig. 5. Age-related changes in the proportions of major T-lymphocyte populations (a) and their ratios (b).
The immunological indices shown – Th/Tc, Treg/Tc, and Treg/Th ratios – are widely used to assess immune status with greater precision and sensitivity 
in various pathological or compromised conditions. In this figure, the proportion of each T-lymphocyte subset is expressed relative to the total number 
of T  lymphocytes, thereby reflecting the balance among subpopulations within the entire pool of skin-resident T  cells. Treg  – regulatory T  cells;  
Th – T helper cells; Tc – cytotoxic T lymphocytes.
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Functional enrichment analysis revealed statistically signi
ficant overrepresentation of  biological pathways associated 
with  enhanced functional activity of T  helper (Th) cells, 
including tissue adaptation, differentiation, and response to 
cytokines involved in their homeostasis. Additionally, en-
richment of pathways characteristic of quiescent and anergic 
states was observed in this population (highlighted with blue 
boxes). Notably, however, these Th cells did not exhibit clear 
molecular signatures of exhaustion. In contrast, age-related 
alterations in cytotoxic T lymphocytes were associated with 
enrichment of pathways typical of quiescence, anergy, and 
exhaustion. Intriguingly, this Tc  population also displayed 
significant downregulation of pathways directly linked to 
their effector function – particularly cytotoxicity. Conversely, 
regulatory T cells showed no evidence of quiescence, anergy, 
or exhaustion. Instead, similar to Th cells, Treg cells exhibited 
heightened functional and proliferative activity. Moreover, 
this population demonstrated significant enrichment of genes 
involved in differentiation and response to homeostatic cyto-

kines – specifically IL-2, IL-7, and IL-15 – which are essential 
for the maintenance and survival of tissue-resident regulatory 
T cells (Table S2).

Thus, functional enrichment analysis of differentially 
expressed genes (DEGs) identified from scRNA-seq data 
revealed distinct functional states across T-lymphocyte 
subsets. Cytotoxic T lymphocytes exhibited clear signatures 
of exhaustion and reduced functional activity. In contrast, 
regulatory T  cells displayed heightened functional activity 
and showed no evidence of exhaustion or anergy. Changes 
in the Th  population were more heterogeneous: alongside 
increased functional activity, these cells also exhibited features 
characteristic of anergy and quiescence.

Discussion
The accumulation of senescent cells is a hallmark of tissue 
aging and is closely linked to the development of chronic, 
low-grade systemic inflammation  – termed “inflammag
ing” – which constitutes a major risk factor for age-related 
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Fig. 6. Proportions of major T-lymphocyte populations relative to the total number of senescent cells.
In this figure, the abundance of each T-lymphocyte subset is expressed as a fraction of the total cell count across all cell 
types, rather than as a proportion of the total T-cell pool. This approach captures age-independent shifts in T-lympho-
cyte representation within the entire skin cellular landscape and more accurately reflects biologically relevant changes 
associated with the accumulation of senescent cells. Th – T helper cells; Tc – cytotoxic T lymphocytes; Treg – regulatory 
T cells.

Fig.  7.  Results of functional enrichment analysis of differentially expressed genes (DEGs) in tissue-resident 
T-lymphocyte populations from older versus younger donors.
Red bars represent enrichment of functional pathways by upregulated genes, while gray bars indicate enrichment 
by downregulated genes. The X-axis shows the –log10-transformed FDR-corrected p-value, such that higher values 
correspond to stronger enrichment. Tc – cytotoxic T lymphocytes; Th – T helper cells; Treg – regulatory T cells.

Anergy
Epigenetic regulation

Other
Cytotoxicity

T cell activation
Quiescence

Regulation of immune response
Differentiation

Survival and homeostasis
Proliferation

Migration and tissue localization
Cytokine function

Exhaustion

Tc Th

–log10(p.adjust)

Treg



Старение кожи связано с локальным дисбалансом  
в T-клеточном иммунитете

К.С. Матвеева, С.К. Колмыков 
Т.С. Соколова, Д.Р. Салимов, Д.В. Шевырев

2025
29 • 7

1143МЕДИЦИНСКАЯ БИОИНФОРМАТИКА / MEDICAL BIOINFORMATICS

diseases (Franceschi et al., 2018). Using a modern algorithm 
for identifying senescence-associated gene signatures, we 
demonstrated that the proportion of cells exhibiting senescence 
features increases with age in human skin. Importantly, this 
accumulation is not uniform across all cell types, underscoring 
the heterogeneity of aging trajectories among distinct cellular 
populations and highlighting the multifaceted nature of tissue 
aging (Ge et al., 2022).

The immune system plays a central role in the surveil-
lance and clearance of senescent cells. The pro-inflammatory 
secretome of senescent cells – commonly referred to as the 
senescence-associated secretory phenotype (SASP) – recruits 
innate immune effectors such as macrophages, neutrophils, 
natural killer (NK) cells, and NKT cells, which contribute to 
the recognition and elimination of senescent cells (Song P. 
et al., 2020). Although emerging evidence implicates T lym-
phocytes in these processes, the role of adaptive immunity 
in senescent cell clearance remains incompletely understood 
(Matveeva et al., 2024). Our findings reveal that the burden 
of senescent cells in human skin is associated with a local 
imbalance in T-cell immunity, suggesting that T lymphocytes 
actively participate in regulating senescent cell homeosta-
sis. Notably, higher senescent cell loads correlated with an 
increased proportion of regulatory T  cells and an elevated 
Th/Tc ratio. This shift points toward the establishment of an 
immunosuppressive microenvironment that may facilitate im-
mune evasion by senescent cells (Zhang W. et al., 2024). This 
interpretation is further supported by functional profiling of 
T-cell populations in older donors. Cytotoxic T lymphocytes 
exhibited molecular signatures of exhaustion and diminished 
effector potential, whereas both Treg and Th cells displayed 
heightened functional activity and signs of tissue adaptation. 
Collectively, these quantitative and qualitative alterations 
in the skin-resident T-cell compartment in aged individuals 
may promote peripheral tolerance to senescence-associated 
antigens. This aligns with the hypothesis that aging impairs 
the immune system’s capacity to recognize and efficiently 
eliminate senescent cells, thereby contributing to their pro-
gressive accumulation (Song P. et al., 2020).

It is well established that senescent cells not only generate a 
pro-inflammatory milieu but also can actively suppress effec-
tor T-cell functions and evade immune surveillance (Lorenzo 
et al., 2022). For instance, certain SASP-derived chemokines 
selectively recruit Treg-cells, while senescence-driven pola
rization of monocytes toward an M2-like macrophage pheno-
type suppresses cytotoxic T-cell activation (Zhang X. et al., 
2024). Moreover, aging-associated activation of endogenous 
retroelements  – particularly LINE-1  – triggers an IFN-γ-
mediated response (Zhang X. et al., 2020). This antiviral-like 
response may fuel chronic inflammation and drive T-cell ex-
haustion, a phenotype strikingly reminiscent of the cytotoxic 
T-cell dysfunction observed in our cohort of older donors.

In summary, our data indicate that the skin T-cell compart-
ment undergoes substantial functional remodeling with age. 
The decline in cytotoxic activity coupled with enhanced 
regulatory T-cell function may foster immunological tole
rance, thereby enabling the persistence and accumulation of 
senescent cells and contributing to inflammaging. We propose 
that this represents an active process of peripheral tolerance 
to senescence-associated antigens, wherein the aging immune 

system progressively loses its ability to detect and eliminate 
senescent cells. The identified imbalance in tissue-resident 
T-lymphocyte populations thus constitutes a promising 
therapeutic target for interventions aimed at restoring immune 
surveillance and promoting the clearance of senescent cells.

Conclusion
In this study, we employed bioinformatic analyses of pub-
licly available scRNA-seq data derived from skin biopsies 
of healthy donors to identify aging-associated alterations in 
tissue-resident adaptive immunity. We demonstrated that skin 
aging  – manifested as the accumulation of senescent cells 
across multiple cell types – is associated with a shift in the 
balance between Th and cytotoxic T lymphocytes, as well as 
an increased proportion of Treg cells. Functional enrichment 
analysis further revealed a general decline in cytotoxic poten-
tial among tissue T cells, concurrent with enhanced regulatory 
activity. These changes likely reflect compensatory adapta-
tions within the tissue T-cell compartment in response to the 
persistent accumulation of senescent cells and the resulting 
chronic inflammatory microenvironment. In this context, the 
observed T-cell remodeling appears to promote an immuno-
suppressive milieu, potentially contributing to the age-related 
decline in the efficiency of senescent cell clearance.

scRNA-seq data provide a powerful tool for investigating 
immune-senescence interactions at the tissue level. Preserva-
tion of the tissue cellular context enables the identification of 
physiologically relevant aging signatures and facilitates the 
analysis of gene programs associated with activation or sup-
pression of specific immune components. Nevertheless, this 
approach has inherent limitations. The loss of spatial tissue 
architecture precludes direct assessment of cell-to-cell interac-
tions, while technical artifacts introduced during sample prepa-
ration and data integration from multiple sources necessitate 
rigorous preprocessing, batch-effect correction, and norma
lization – steps that may introduce substantial uncertainty into 
the results. Therefore, to gain a deeper understanding of the role 
of adaptive immunity in the surveillance and elimination of se-
nescent cells, future studies should integrate scRNA-seq with 
spatial transcriptomics, histological validation, and methods 
capable of defining the antigen specificity of T and B cells. 
Additionally, longitudinal analyses of T- and B-cell receptor 
repertoires will be essential to elucidate dynamic changes in 
antigen recognition during aging and their functional conse-
quences for immune-mediated clearance of senescent cells.
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Abstract. In recent years, the rapid growth of sequencing data has exacerbated the problem of functional annota-
tion of protein sequences, as traditional homology-based methods face limitations when working with distant homo-
logs, making it difficult to accurately determine protein functions. This paper introduces the OrthoML2GO method for 
protein function prediction, which integrates homology searches using the USEARCH algorithm, orthogroup analysis 
based on OrthoDB version 12.0, and a machine learning algorithm (gradient boosting). A key feature of our approach 
is the use of orthogroup information to account for the evolutionary and functional similarity of proteins and the ap-
plication of machine learning to refine the assigned GO terms for the target sequence. To select the optimal algorithm 
for protein annotation, the following approaches were applied sequentially: the k-nearest neighbors (KNN) method; 
a method based on the annotation of the orthogroup most represented in the k-nearest homologs (OG); a method 
of verifying the GO terms identified in the previous stage using machine learning algorithms. A comparison of the 
prediction accuracy of GO terms using the OrthoML2GO method with the Blast2GO and PANNZER2 annotation pro-
grams was performed on sequence samples from both individual organisms (humans, Arabidopsis) and a combined 
sample represented by different taxa. Our results demonstrate that the proposed method is comparable to, and by 
some evaluation metrics outperforms, these existing methods in terms of the quality of protein function prediction, 
especially on large and heterogeneous samples of organisms. The greatest performance improvement is achieved 
by combining information about the closest homologs and orthogroups with verification of terms using machine 
learning methods. Our approach demonstrates high performance for large-scale automatic protein annotation, and 
prospects for further development include optimizing machine learning model parameters for specific biological tasks 
and integrating additional sources of structural and functional information, which will further improve the method’s 
accuracy and versatility. In addition, the introduction of new bioinformatics tools and the expansion of the annotated 
protein database will contribute to the further improvement of the proposed approach.
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Аннотация. В последние годы быстрый рост объемов данных секвенирования обострил проблему функцио-
нальной аннотации белковых последовательностей, поскольку традиционные методы, основанные на гомоло-
гии, сталкиваются с ограничениями при работе с отдаленными гомологами, что затрудняет наиболее точное 
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определение функций белков. В нашей работе представлен метод предсказания функций белков OrthoML2GO, 
который интегрирует поиск гомологичных последовательностей с помощью алгоритма USEARCH, анализ орто-
групп на базе OrthoDB 12-й версии и алгоритм машинного обучения (градиентный бустинг). Ключевая особен-
ность подхода заключается в использовании информации об ортогруппах для учета эволюционного и функ
ционального сходства белков и применения машинного обучения для дальнейшего уточнения терминов Gene 
Ontology (GO) для анализируемой последовательности. Для выбора оптимального алгоритма аннотации белков 
были поэтапно применены следующие подходы: метод k ближайших соседей (KNN); метод на основе аннота-
ции ортогруппы, наиболее представленной у k ближайших гомологов (OG); метод верификации выявленных на 
предыдущем этапе терминов GO с помощью алгоритмов машинного обучения. Проведено сравнение точности 
предсказания терминов GO методом OrthoML2GO с программами аннотации Blast2GO и PANNZER2 на выборках 
последовательностей как отдельных организмов (человек, арабидопсис), так и на комбинированной выборке 
последовательностей, представленных разными таксонами. Результаты показали, что предложенный метод не 
уступает, а по некоторым показателям превосходит их по качеству предсказания функций белков, особенно 
на больших и разнородных выборках организмов, а наибольший прирост точности достигается за счет комби-
нации информации о ближайших гомологах и ортогруппах в сочетании с верификацией терминов методами 
машинного обучения. Разработанный подход демонстрирует высокую эффективность для крупномасштабной 
автоматической аннотации белков. Перспективы дальнейшего развития включают оптимизацию параметров 
моделей машинного обучения под конкретные биологические задачи и интеграцию дополнительных источни-
ков структурно-функциональной информации, что позволит еще больше повысить точность и универсальность 
метода. Кроме того, внедрение новых инструментов биоинформатики и расширение базы данных аннотиро-
ванных белков будут способствовать дальнейшему совершенствованию предложенного подхода.
Ключевые слова: предсказание функций белка; генная онтология; гомология; ортогруппа; машинное обучение 

Introduction
The introduction of next-generation sequencing (NGS) tech-
nologies has led to exponential growth in the volume of data 
on DNA, RNA, and protein sequences (Goodwin et al., 2016). 
The primary sources of these data are large-scale and numer-
ous projects in genomics, transcriptomics, and proteomics 
(Cheng et al., 2018; Lewin et al., 2018). However, the function 
of a significant proportion of the sequences identified in such 
projects remains unknown (Galperin, Koonin, 2010).

Expert gene annotation requires substantial time to search 
for gene function information in the literature, and although 
it is the most reliable method, it is impractical to apply it to 
the vast number of newly predicted genes. Therefore, for most 
new amino acid sequences (hereafter referred to as sequences 
for brevity), the development of effective automatic annotation 
methods is necessary to determine their molecular functions, 
roles in cellular processes, and cellular localization. Given 
the widespread use of the Gene Ontology (GO) database for 
functional annotation (Ashburner et al., 2000; Du Plessis et 
al., 2011; Gene Ontology Consortium, 2023), the task reduces 
to automatically assigning these terms to sequences.

Most methods for predicting protein function, based on 
sequence or three-dimensional structure analysis, rely on a 
fundamental principle: function can be predicted by estab-
lishing reliable structural or evolutionary similarity with a 
protein, the function of which is already known (Benso et 
al., 2013). A crucial task here is deciphering the relationship 
between the detected structural or sequence similarity and the 
actual level of functional relatedness (Pearson, 2013). Among 
these methods, homology-based function prediction methods 
are widely regarded for their broad applicability and relative 
simplicity. Homology-based methods assign GO terms to 
the analyzed protein based on the similarity of its amino acid 
sequence to the primary structures of proteins with known 
functions. In other words, the function of a protein can be 

deciphered by analyzing its similarity to other proteins for 
which the function has been reliably determined (Eisenberg 
et al., 2000; Pearson, 2013).

The BLAST method (Altschul et al., 1990) is widely used 
for comparing the amino acid sequences and identifying 
homologous regions. However, new tools for searching ho-
mologous sequences in databases have recently emerged, such 
as GHOSTX (Suzuki et al., 2014), DIAMOND (Buchfink et 
al., 2015), MMseqs2 (Steinegger, Söding, 2017), and others. 
Their characteristic feature is high processing speed, orders 
of magnitude faster than BLAST, achieved primarily through 
more efficient processing of matched sequence fragments.

The concept of homology is fundamental for drawing con-
clusions about the evolutionary processes of gene formation 
and function. In the early 1970s, Walter Fitch (Fitch, 1970) 
proposed classifying homologous proteins into orthologs 
and paralogs according to their origin. Orthologs originate 
from the evolutionary divergence of genes in different taxa 
during speciation. Paralogs are formed through gene duplica-
tions. It is assumed that orthologs retain the function of the 
ancestral gene from the ancestral species, while paralogs may 
acquire new functions after duplication events (Fitch, 2000; 
Kuzniar et al., 2008; Altenhoff et al., 2019). Given the im-
mense importance of orthologs for comparative genomics and 
functional annotation, information on orthologous genes and 
their families is accumulated in several specialized databases, 
which are crucial for identifying and analyzing orthologous 
groups of genes (orthogroups) (Jensen et al., 2008; Kriven
tseva et al., 2008). It should be noted that methods involving 
machine learning algorithms are successfully used to solve 
gene function prediction problems, allowing for increased 
accuracy compared to earlier approaches (Sanderson et al., 
2023; Yuan et al., 2023).

This work investigates the possibility of predicting protein 
functions based on searching for homologous sequences, 
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Table 1. List of organisms included in the study 

Species name Number of sequences Annotation source

Arabidopsis thaliana 27,655 TAIR (Reiser et al., 2024)

Homo sapiens 19,763 EBI Gene Ontology Annotation Database (Huntley et al., 2015)

Drosophila melanogaster 28,543 (includes isoforms) FlyBase (Öztürk-Çolak et al., 2024)

Solanum tuberosum 40,722 (includes isoforms) SpudDB (Hamilton et al., 2025a)

Danio rerio 33,428 (includes isoforms) ZFIN (Bradford et al., 2022)

Chlamydomonas reinhardtii 16,090 PhycoCosm (Grigoriev et al., 2021)

Oryza sativa 34,226 (includes isoforms) RGAP (Hamilton et al., 2025b)

considering their orthologs, and employing machine learning 
methods. A step-by-step analysis of the influence of these 
three factors on the accuracy of GO term prediction was per-
formed. It is shown that among machine learning methods, 
the gradient boosting algorithm demonstrates the highest 
prediction accuracy. Based on this, the OrthoML2GO predic-
tion algorithm was implemented. Its accuracy was compared 
with the Blast2GO and PANNZER2 methods. It is shown that 
the proposed method provides higher accuracy, especially on 
large and heterogeneous datasets.

Materials and methods
Amino acid sequence data. The lists of organism species 
and amino acid sequences used in the work are presented 
in Table 1. They include organisms with varying degrees of 
genome annotation completeness (Table S1)1, representing 
different taxa of both plants and animals: dicots, monocots, 
unicellular algae, vertebrates, arthropods (Table 1).

OrthoDB as a source of homologous sequences, anno-
tations, and orthology information. The OrthoDB v 12.0 
database (https://www.orthodb.org/) (Tegenfeldt et al., 2025) 
was used as a source of homologous sequences, their GO 
term annotations, and orthology data. The database includes 
information on 5,827  eukaryotic species, 17,551  bacteria, 
607 archaea, and 7,962 viruses. It contains over 162 million 
sequences classified into over 10 million orthogroups. The 
database also includes GO annotation for part of the sequences 
and thus represents a convenient source for their classification 
into orthologs and GO annotation. Furthermore, this database 
provides classification of protein sequences into orthologous 
families, for which generalized functional annotations of 
proteins in GO terms are also provided.

Search for homologous sequences. The search for homo-
logs was performed using the USEARCH v 11.0.667 algo
rithm (https://drive5.com/usearch/) (Edgar, 2010) with the 
usearch_local command. It performs searches for high-identity 
matches orders of magnitude faster than BLAST. During the 
search for homologous sequences, it was inevitable that the 
list of homologs included the query sequence itself. For an 
objective evaluation, identical sequences were excluded from 
the search results.
1 Supplementary Tables S1–S12 are available at: 
https://vavilov.elpub.ru/jour/manager/files/Suppl_Malugin_Engl_29_7.pdf

General sequence annotation scheme. The GO term an-
notation pipeline was implemented using Linux bash scripts 
and the R programming language using the computational 
resources of the “Bioinformatics” collective use center at ICG 
SB RAS. Three algorithms for annotating protein functions 
based on the OrthoDB database were developed (Fig. 1).

On the left (Fig. 1a), the OrthoDB v 12.0 database (Tegen-
feldt et al., 2025) is schematically shown in a large oval 
with representatives of orthologous groups (orthogroups) 
OG1... OG3 (Sequences of orthologous families are shown as 
rectangles of the same color). The first, basic sequence predic-
tion algorithm is based on the search for k-nearest homologs 
and is denoted as KNN. Using the USEARCH program, ho-
mologous sequences are searched for the analyzed sequence in 
the OrthoDB database and ranked by similarity level. They can 
include representatives of both the same orthogroup and others 
(shown in different colors). The analyzed sequence is assigned 
the GO terms of the k most similar sequences (Fig. 1b).

The second method is based on the principle of orthology 
and is denoted as OG. For each of the k-nearest homologs of 
the analyzed sequence, its orthogroup in the OrthoDB database 
is determined. The orthogroup to which the analyzed sequence 
belongs is determined by a voting method: it is the orthogroup 
with the highest frequency of occurrence among all k-nearest 
homologs (Fig. 1c). GO terms for sequences from this ortho-
group are assigned to the analyzed sequence (Fig. 1d).

The third approach, denoted as KNN+OG (Fig.  1e), in-
volves combining the GO terms obtained from the KNN and 
OG algorithms for the query sequence (Fig. 1f ). This list of 
GO terms is compared with the reference (true) annotation 
using measures such as: precision, recall (sensitivity), ac-
curacy, and F-score (F-measure), which was the resulting 
measure (Fig. 1g and “Verification of terms using machine 
learning methods” section).

Methods for annotating the analyzed sequence with GO 
terms. K-nearest homologs method (KNN ). The k-nearest 
homologs by similarity level are determined as a result of 
searching the OrthoDB database with the USEARCH program 
with the following parameters: identity (amino acid sequence 
identity) = 50 %, coverage (coverage of the analyzed sequence 
by the found homolog) = 70 %, e-value (statistical signifi-
cance of the found match) = 10–6, which is justified by the 
goal of reducing false positives at the homolog search stage. 

https://www.orthodb.org/
https://drive5.com/usearch/
https://vavilov.elpub.ru/jour/manager/files/Suppl_Malugin_Engl_29_7.pdf
https://vavilov.elpub.ru/jour/manager/files/Suppl_Malugin_Engl_29_7.pdf
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Fig. 1. General scheme of sequence annotation and its evaluation. Sequences belonging to the same orthogroup are represented by different shades 
of the same color: blue, green, or red. 
а – OrthoDB database with orthogroups; b – assignment of GO terms from the k-nearest homologs (KNN method); c – determination of the most frequent 
orthogroup by voting; d – assignment of GO terms associated with the selected orthogroup (OG method); e – combination of GO terms obtained by the KNN 
and OG methods (KNN+OG method); f – verification of the combined term list using machine learning; g – comparison of predicted terms with the reference 
annotation and calculation of metrics.

The analyzed sequence was assigned the GO terms of the 
k most similar sequences available in the OrthoDB database. 
The value of parameter k can vary (Kharsikar et al., 2007; 
Dongardive, Abraham, 2016). Therefore, the optimal value 
within the interval k = 1–30 with a step of 5 was determined 
based on the highest accuracy in term identification using the 
OrthoDB annotation (Tables S4–S9).

Using orthologous groups (OG). In this method, for each 
of the k-nearest homologs identified by the KNN method, 
the orthologous group corresponding to the most ancient 
ancestral taxon was selected using the OrthoDB annotation. 
Then, the orthogroup with the highest frequency among 
the k-nearest homologs was determined and assigned to the 
analyzed sequence. GO annotation terms for sequences from 
this orthogroup in the OrthoDB database were assigned to 
the analyzed sequence. The KNN+OG method combines GO 
terms (excluding duplicates) obtained separately by the KNN 
and OG methods described above.

Verification of terms using machine learning methods. 
To refine the list of predicted GO terms at the third stage of 
analysis (Fig. 1f ), three machine learning (ML) algorithms 
were employed: logistic regression (LR), gradient boosting 
(XGB), and random forest (RF). Note that this stage does not 
allow adding new terms to the annotation. Instead, it filters 
out terms for which the similarity parameters between the 

analyzed sequence and its homologs do not meet the speci-
fied criteria.

The logistic regression method (LR) is implemented in the 
built-in stats package (R Core Team, 2013) via the function 
glm (family  =  binomial). Logistic regression predicts the 
probability of an object belonging to a class (e. g., “spam” or 
“not spam”). It predicts the probability of an object belonging 
to a class based on a weighted sum of features and passes it 
through a logistic (sigmoid) function, which normalizes the 
result to a number (probability) between 0 and 1. Gradient 
boosting (XGB – eXtreme Gradient Boosting) was used in the 
variant implemented in the xgboost package (Chen, Guestrin, 
2016), function xgb.train. The random forest method (RF) 
was applied in the version from the randomForest package 
(Liaw, Wiener, 2002), function randomForest. Both gradient 
boosting and random forest are ensemble algorithms based 
on decision trees. This means that the final prediction is the 
result of the collective work of many individual decision trees. 
The parameters of the gradient boosting and random forest 
algorithms are specified in the Table S12.

Parameters for the models were selected during training, 
and in each method, their set was the same for all GO terms, 
analyzed sequences, and their homologs. These are terms 
reflecting the level of similarity, amino acid composition, and 
frequency of GO terms (Table S2). If a GO term in a homolog 
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was present in the annotation of the analyzed sequence in 
the training set, the prediction function value in the machine 
learning method was 1, otherwise, 0.

To evaluate the accuracy of machine learning methods, 
amino acid sequences of Arabidopsis thaliana and Homo 
sapiens proteins were used (Table 1). The set of sequences 
for each of these two species was divided into two parts: 80 % 
for training and 20 % for testing. Additionally, a combined 
sample of proteins from the organisms listed in Table 1 was 
formed: from the combined sample, 50,000 sequences were 
randomly selected for training, and 20,000 non-overlapping 
sequences were selected for testing the machine learning 
models (Table S3).

Evaluation metrics. Annotation accuracy evaluation was 
performed in R using the dplyr package (Wickham et al., 
2025). For this, two lists were formed: (a) a reference list 
with amino acid sequences annotated with GO terms from 
databases for model organisms (more details in Table  S1) 
and (b) a list obtained through functional annotation using 
various annotation methods (Fig. 1). To assess the accuracy 
of the annotation obtained by each of the methods described 
above, they were compared with the reference annotation. 
Hereafter, True Positive (TP) refers to GO terms present in 
both lists; False Positive (FP) refers to terms present in the 
predicted annotation list but absent in the reference (true) list; 
False Negative (FN) refers to terms present in the reference 
list but absent in the predicted annotation list.

The following metrics were used to evaluate protein annota-
tion: Precision (PR), Recall (RC), Accuracy (AC), as well as 
the F-score metric, which was the resulting measure (Note. 
Here, “Accuracy (AC)” is a defined metric, distinct from the 
general concept of prediction accuracy):

Precision (PR) – the proportion of true positive predictions 
among all positive predictions of the method:

		     PR = TP
TP + FP × 100. 		       (1)

Recall (RC) – the proportion of true positive predictions 
among all true terms in the reference annotation:

		     RC = TP
TP + FN × 100. 		       (2)

Accuracy (AC) is defined as the arithmetic mean of Preci-
sion and Recall:

		     AC = PR + RC
2  × 100. 		       (3)

F-score (F-measure) represents the harmonic mean between 
Precision and Recall. This metric approaches zero if either 
Precision or Recall approaches zero:

		    F1 = 2 PR × RC
PR + RC × 100. 		       (4)

Since machine learning algorithms (LR, XGB, RF) esti-
mate the probability of a GO term belonging to the analyzed 
sequence, and not a binary decision, it is necessary to choose 
a cutoff threshold (t) above which the term will be considered 
predicted. To account for data imbalance and to choose an 
optimal threshold independent of its specific value, the Fmax 
metric was calculated for the cutoff threshold t ∈ (0; 1) with 

a step of 0.1. A GO term was considered correctly predicted 
(positive class) if its predicted probability exceeded thresh-
old  t. Fmax is defined as the maximum value of F-score(t) 
across all thresholds:

	        Fmax = max 2PR(t) × RC(t)
PR(t) + RC(t)  × 100.	       (5)

In GO term prediction tasks, where the distribution of terms 
by frequency of occurrence is extremely imbalanced (some 
terms are very common, others are extremely rare), and clas-
sification is multi-label (one protein can correspond to many 
terms), the Fmax metric is often used. It is calculated for the 
entire set of predictions by varying the cutoff threshold (t), 
above which a term predicted by the ML model is considered 
positive. Fmax shows the maximum quality that the model 
can achieve in the ideal case of threshold selection. Unlike 
the F1- score, which is calculated for a fixed threshold, Fmax 
evaluates the quality of ranking terms by probability.

Comparison with other methods. To validate the de-
veloped OrthoML2GO method, it was compared with the 
Blast2GO (Conesa et al., 2005) and PANNZER2 (Törönen et 
al., 2018) methods. BLAST homology searches were launched 
on the computational complex of the “Bioinformatics” col-
lective use center at ICG SB RAS. The launch parameters 
for Blast2GO and PANNZER2 were run with default para- 
meters.

Results and discussion

Impact of orthogroup information  
on GO term prediction performance
To assess the influence of orthogroup information on function 
prediction performance, a comparison of the F1-score was 
conducted for three annotation methods with three algorithms 
(KNN, OG, and KNN+OG) depending on the number of near-
est homologs for A. thaliana sequences (Fig. 2).

As shown in Figure 2, the F1-score depends on the para
meter k for all three annotation variants. However, the nature 
of these dependencies is different: OG demonstrates the low-
est performance (F1 < 41 %). For the OG method, as for the 
other methods, a maximum is observed at k = 15. Moreover, 
increasing the parameter k results in a gradual, albeit slight, 
decrease in the F1-score. For the most accurate prediction, 
determining the correct orthologous group of the protein, 
which can be identified even at small values of k, is sufficient. 
A further increase in k only adds noise to the prediction due 
to an increase in false positive GO terms from orthogroups to 
which the protein in question does not actually belong.

The KNN method shows a pronounced dependence of 
performance on the parameter k. At small values (k = 5), the 
F1-score is the lowest (~40 %) and lower than the OG and 
KNN+OG methods, which is probably due to an insufficient 
number of homologs for reliable statistical inference and 
high sensitivity to noise and potential annotation errors of 
individual sequences. When k increases to 15, F1 grows to 
a maximum value (~52 %); however, a further increase in k 
leads to a gradual decrease in performance, as distant homo-
logs which may carry functionally irrelevant information for 
the target sequence (false positive GO terms) begin to enter 
the sample.
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Fig. 2. Dependence of the F1-score in A. thaliana proteins on the parameter k (number of nearest homologs) for three 
annotation variants. 
The X-axis shows the values of k. The Y-axis shows the values of the F1-score (in percent). Lines of different colors correspond to 
different annotation algorithms of our method: KNN – blue line; OG – green line; KNN+OG – red line.

Note that combining the KNN and OG methods (KNN+OG) 
leads to an increase in the F1-score for all values of the pa-
rameter k, and the greatest increase (more than 3 % in absolute 
value) is observed precisely at k = 5. This can be explained by 
the fact that with small k, the list of homologs may be unstable 
and statistically unreliable. Incorporating orthogroup informa-
tion, which aggregates data on the function of a whole group 
of evolutionarily related genes, stabilizes the prediction and 
compensates for the insufficiency of data from a small number 
of nearest neighbors.

It is worth noting that the F1-score value in the range of 
40–52 % represents a competitive result for the task of protein 
function prediction, as confirmed by comparison with other 
popular methods (see section “Comparison of the performance 
of KNN, KNN+OG, and OrthoML2GO with the Blast2GO 
and PANNZER2 tools”). This is due to the rather complex 
nature of the task: firstly, as mentioned earlier, GO annotation 
is multiple, i. e., one protein corresponds to many terms, and 
the prediction is considered correct only if all correct terms are 
found and no extra ones are added. Secondly, the distribution 
of GO terms is extremely imbalanced: some terms are very 
common, others are extremely rare, which further compli-
cates achieving high accuracy. Thus, the absolute value of 
the F1-score should be interpreted in the context of the task’s 
complexity and in comparison, to alternative approaches.

Results for other organisms are shown in the Supplemen-
tary materials (Tables  S4–S9). Combining the KNN and 
OG methods (KNN+OG) allows us to obtain an integrated 
prediction that demonstrates the greatest gain in accuracy 
at small values of the parameter k for all organisms except 
Chlamydomonas reinhardtii. For example, for Danio rerio 
proteins at k = 5, the KNN+OG method surpasses the basic 
KNN by more than 13 % in absolute value of the F1-score 
(74.66 vs. 61.37 %). This is explained by the fact that with 
small k, the list of homologs may be statistically unreliable and 
sensitive to noise in the annotations of individual sequences. 

Integrating orthogroup data mitigates the statistical unreli-
ability associated with a small number of nearest homologs. 
Thus, the hybrid KNN+OG approach not only demonstrates 
the best performance at the peak (at k = 15) but also signifi-
cantly reduces the dependence of prediction accuracy on the 
parameter k, making the method more robust.

Thus, combining the KNN and OG variants (KNN+OG) 
allows obtaining an integrated prediction, giving a better es-
timate compared to each of them individually for all values 
of the parameter k for most organisms, and it will be used for 
machine learning.

Verification of GO terms  
by various machine learning algorithms
To verify false positive GO terms obtained at the previous 
stage, machine learning algorithms such as logistic regres-
sion (LR), gradient boosting (XGB), and random forest (RF) 
were used (see section “Verification of terms using machine 
learning methods”). A comparison of the accuracy of ma-
chine learning methods using the Fmax measure (see section 
“Evaluation metrics”) on test data of A. thaliana, H. sapiens, 
and a combined sample of 20,000 sequences from different 
organisms is presented in Table 2.

Logistic regression demonstrates significantly lower Fmax 
values compared to gradient boosting and random forest me
thods, with the difference reaching over 25 %. This is likely 
due to the fact that ensemble methods (XGB and RF), un-
like the linear LR model, are capable of capturing complex 
nonlinear relationships between features. Furthermore, these 
methods are more robust to noise in the data due to bagging 
(RF) and boosting (XGB) procedures, which average the 
predictions of many individual decision trees, reducing the 
influence of outliers and incorrect annotations of individual 
proteins. Gradient boosting (XGB) demonstrates the best re-
sults on Arabidopsis sequences and the general sample of all 
organisms, but it only slightly trails the random forest method 
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Table 3. Comparison of the methods KNN, KNN+OG, OrthoML2GO (XGB), PANNZER2 and Blast2GO on three datasets, %

Dataset KNN* KNN+OG* OrthoML2GO (XGB) PANNZER2 Blast2GO*

Arabidopsis thaliana 51.54 51.68 68.95 50.74 54.30

Homo sapiens 71.72 72.18 83.92 75.14 54.95

Combined sample 47.29 47.35 79.55 49.14 42.11

Note. For methods marked with an asterisk *, the F1-score is reported; for OrthoML2GO and PANNZER2, the Fmax metric is used.

Table 2. Comparison of the Fmax measure on test data  
for different machine learning algorithms, % 

Dataset LR XGB RF

Arabidopsis thaliana 53.20 68.95 66.86

Homo sapiens 71.92 83.92 84.02

Combined sample 52.25 79.55 78.32

on human proteins (with an Fmax difference of only 0.1 %). 
Thus, for the final version of the OrthoML2GO method, the 
gradient boosting (XGB) machine learning method was cho-
sen, as it showed the best results on the test samples.

Comparison of the performance of KNN, KNN+OG,  
and OrthoML2GO with the Blast2GO and PANNZER2 tools
For a comprehensive assessment of the developed method’s 
effectiveness, its performance was compared with two widely 
used automatic functional annotation tools – Blast2GO and 
PANNZER2. The comparison was performed on three test 
datasets: individual proteomes of A.  thaliana and H.  sa
piens, as well as a combined sample including sequences 
of all organisms listed in Table  1. As the resulting metric 
for methods not using machine learning (KNN, KNN+OG, 
Blast2GO), the F1- score was applied, while for OrthoML2GO 
and PANNZER2, which output a probabilistic estimate, the 
Fmax metric was used, allowing us to evaluate the maximum 
achievable quality of the model with an ideal choice of cutoff 
threshold (Table 3).

Analysis of the results demonstrates that the developed 
OrthoML2GO method, integrating homology search, ortho-
group analysis, and verification of GO terms using gradient 
boosting, shows a statistically significant advantage in perfor-
mance over all compared methods on all test samples. Thus, 
for A. thaliana, OrthoML2GO achieved an Fmax of 68.95 %. 
This represents an 18.21  % increase over PANNZER2 
(Fmax = 50.74 %) and a 14.65 % increase over the F1-score 
of Blast2GO (54.30  %). On human proteins, compared to 
PANNZER2, OrthoML2GO performed significantly bet-
ter – 83.92 vs. 75.14 %, while for the Blast2GO method, the 
F1 value was 54.95 %. On the combined sample of all orga
nisms, an improvement in the F-measure indicator of more 
than 30 % was observed compared to all other methods.

Notably, the hybrid KNN+OG approach, which underlies 
OrthoML2GO, demonstrates a small but consistent improve-
ment compared to the basic KNN on all samples, confirming 

the usefulness of integrating orthogroup information. How-
ever, the main gain in accuracy is provided by gradient boost-
ing (XGB), which effectively verifies false positive predictions 
arising from annotation noise.

A key factor contributing to the success of the OrthoML2GO 
method is its integration of evolutionary information from 
homologs and orthogroups within the OrthoDB database, 
combined with subsequent verification of GO terms using 
gradient boosting. In contrast to PANNZER2 and Blast2GO, 
our method incorporates orthogroup information and verifies 
GO terms using decision tree ensembles, adaptively selecting 
the most informative features. Ultimately, this allowed reduc-
ing the proportion of false positive annotations and increasing 
accuracy from 8 % (on human protein sequences) to 30 % (on 
the combined sample) compared to analogues.

It is important to note a potential limitation in the compari-
son: our machine learning models were trained on a sample of 
sequences from OrthoDB, while Blast2GO and PANNZER2 
rely on broader datasets derived from UniProt. This differ-
ence in training data may introduce a bias in the comparative 
accuracy estimates.

Assessment of prediction performance  
for different GO aspects
For a more detailed analysis of the method’s performance, a 
comparative analysis of the prediction accuracy of GO terms 
for the three main aspects (ontologies) of Gene Ontology 
was performed: Biological Process (BP), Molecular Function 
(MF), and Cellular Component (CC). The evaluation results on 
the combined sample for various machine learning algorithms 
used at the verification stage are presented in Table 4.

The results show that all machine learning algorithms 
demonstrate a similar trend: the highest prediction accuracy 
is achieved for the Cellular Component (CC) aspect, followed 
by Molecular Function (MF), and the accuracy is somewhat 
lower for Biological Process (BP). This is consistent with the 
generally accepted view in bioinformatics: predicting cel-
lular localization (CC) is often the easiest task, as it strongly 
correlates with the presence of specific signal peptides and 
domains. Prediction of molecular function (MF) also largely 
depends on conserved functional domains. At the same time, 
prediction of involvement in biological processes (BP) is the 
most complex, as the same protein can participate in several 
processes, and the processes themselves are defined by com-
plex interactions of many proteins, which is more difficult to 
deduce solely from homology and orthology data.

The XGB method, chosen for OrthoML2GO, demonstrated 
the best results among all tested algorithms across all three 
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Table 4. Comparison of prediction performance for Gene Ontology aspects on the combined sample, %

Algorithm BP 
Biological Process

MF 
Molecular Function

CC 
Cellular Component

LR 50.9 48.5 56.8

RF 78.4 77.0 82.9

XGB (OrthoML2GO) 78.8 79.8 83.6

Table 5. Estimates of GO term annotation accuracy for different aspects by various methods  
according to literature data, %

Method BP MF CC Reference

PANNZER2 78.4 85.8 85.3 Törönen et al., 2018

DeepGOPlus 58.5 47.4 69.9 Kulmanov, Hoehndorf, 2020

GOLabeler 58.6 37.2 69.1 You et al., 2018

NetGO 2.0 66.6 36.6 66.3 Yao et al., 2021

TALE+ 66.7 45.9 67.7 Cao, Shen, 2021

aspects, further confirming its suitability as the final classi-
fier. The performance of our method is competitive with the 
accuracy estimates of other methods reported in the literature 
(Table  5). The comparison was performed using the Fmax 
metric for individual Gene Ontology aspects: BP – biological 
processes, MF – molecular functions, CC – cellular com- 
ponents.

It can be noted that the OrthoML2GO method (Table 4) 
demonstrated competitive results: 78.8 % (BP), 79.8 % (MF), 
and 83.6 % (CC) on a sample of 20,000 sequences from seven 
heterogeneous organisms – both plants and animals. Upon 
comparison, it is evident that OrthoML2GO surpasses most 
of the studied methods in all aspects. However, PANNZER2 
showed higher values for MF (85.8  %) and CC (85.3  %), 
albeit on a smaller and less diverse sample (5,000 sequences 
from Swiss-Prot).

It is worth noting that direct quantitative comparison 
with other methods may be complicated by methodological 
differences. Firstly, test samples differ significantly: most 
methods use the UniProt/Swiss-Prot database, while our 
combined sample includes both plants and animals, which 
may affect the comparability of results. Secondly, the ver-
sion of Gene Ontology is critically important: OrthoML2GO 
relies on the latest version of OrthoDB v12 annotation  
(GO 2025), which may lead to difficulties in comparing qual-
ity metrics.

To demonstrate the applicability of the OrthoML2GO 
method to poorly studied organisms, the proteome of the green 
alga Ostreococcus lucimarinus was annotated (Tables  S10 
and S11). The method predicted functions for 5,273 out 
of 7,603 protein sequences. The analysis revealed a pre-
dominance of such biological processes as phosphorylation 
(GO:0016310) and translation (GO:0006412). Among mo-
lecular functions, ATP binding (GO:0005524) and nucleotide 

binding (GO:0000166) were the most frequent, and among 
cellular components, membrane (GO:0016020) and nucleus 
(GO:0005634). These results demonstrate the method’s ability 
to annotate poorly studied proteomes and identify functional 
profiles characteristic of non-model organisms.

Conclusion
The developed method, OrthoML2GO, which integrates ho-
mology searches and orthogroup analysis from the OrthoDB 
database with gradient boosting, demonstrated high efficiency 
on test samples. One of the main results is a significant im-
provement in annotation accuracy due to the combined 
approach, which combines the k-nearest neighbors method 
and information about orthologous groups (KNN+OG). 
This hybrid method surpassed the individual KNN and OG 
approaches, especially at small values of the parameter k. 
Verification of GO terms using machine learning algorithms, 
particularly gradient boosting (XGB), allowed for a further 
increase in accuracy through effective filtering of false po
sitive predictions arising from distant homologs and ortho- 
groups.

The obtained results confirm that the use of evolutionary 
information contained in the OrthoDB orthogroups, combined 
with machine learning algorithms, is an effective strategy 
for automatic prediction of protein sequence functions. The 
proposed OrthoML2GO method can be a good alternative 
to existing methods. It is worth noting that further improve-
ment in accuracy is possible by optimizing machine learning 
parameters, as well as by including additional sources of 
biological information. As prospects for further research, the 
following directions are outlined: evaluation of the model’s 
transferability to poorly annotated proteomes and comparative 
analysis with other methods using machine learning, including 
neural network-based ones.
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