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Ba)kaeMble KOJUIETH, JIOPOTUE YH-

Tarenu!

IIpencrasinssem Bamemy BHHMAa-
HHUIO ouepeqHOM BbINyCcK «BaBuiios-
CKOTO )ypHaJla TeHeTHKHU 1 CEJIEKIII»,
MOCBSIICHHBIN Bompocam OHouHpOpP-
MAaTUKA U CUCTEMHOW KOMIIBIOTEPHOU
o6uonorun. C TMOSIBICHHEM MacCOBOTO
CEKBEHHPOBAHUS T€HOMOB Hadaslach
pa3paboTka OOIIMPHOTO apceHana Me-
TOZOB OMOWMH(OPMATHKH Ul aHAIHM3a
CTPYKTYpPHO-(DYHKIIMOHAIILHOW OpraHu-
3aI[ TEHOMOB, T€HOB M KOJIUPYEMbIX
nmu PHK 1 GenkoB, a Takke I0X0I0B
CUCTEMHOI KOMIIBIOTEPHOI OMOJIOTHH,
OPHEHTHUPOBAHHBIX HA PEKOHCTPYKIIHIO,
aHaJIM3 U MOJEIMPOBAHNE TEeHHBIX Ce-
TeH, KOHTPOJIHMPYIOLIMX POPMHUPOBAHHE
(heHOTUTTNYIECKHUX MPU3HAKOB OPTaHN3-
MOB Ha OCHOBE HH(OPMALIHH, 3aKOIHPO-
BaHHOMW B TeHOMax, 1 ()YHKIIHOHHUPYIO-
WX Ha PA3INIHBIX MEPAPXUUECKHUX
YPOBHSIX OpTaHU3aINHU KHUBBIX CHCTEM
(HauMHAas C TCHOMOB, TCHOB, OCITKOB, Me-
Ta0OIMYECKUX MTyTEH M TeHHBIX CeTeH,
BKJIFOYAs! KJICTKU ¥ TKaHH, 1 3aKaH4MBast
L[EJIOCTHBIMHM OPTaHU3MaMH).

Mertonb 6monHPOPMATHKH U CHCTEM-
HON KOMIBIOTEPHOH OHOJIOTHH TIPOYHO
BOIIUIM B apCEeHAaJl UCCIIEA0BATEIbCKUX
MHCTPYMEHTOB, HCIIOJIb3yEMBIX BO BCEX
obnactsax Hayk o >knu3HH. OJTHAKO B T10-
cleqHee JeCATHICTHE UX 3HAYMMOCTh
eme Oosee BO3pocia: B CBSI3H CO CTpe-

BaBnnoBcKuUi XXypHan reHeTUKK 1 cenekummn. 2024;28(8):807
doi 10.18699/vjgb-24-109

MUTEJIBHBIM Pa3BUTHEM OMHUKCHBIX TEXHOJIOTHH (TEHOMUKH,
TPAHCKPUIITOMHKH, TIPOTCOMUKH, METAOOJIOMUKH) ¥ IPYTHX
BBICOKOIIPOU3BOANTEIBHBIX METOJOB AKCIIEPUMEHTAILHOTO
UCCIIEZIOBAHUST MOJIEKYSIPHO-TEHETUIECKUX CHCTEM U TIPO-
[IECCOB B T€HETHKE MPOMU30IIET HH(POPMAIIMOHHBINH B3PHIB.
Ona craJia I1aBHbIM HCTOYHUKOM OOJIBILINX JIAHHBIX, IEPETHAB
10 TEMIIaM POCTa HE TOJIBKO BCE APYTHE HAYKH M TEXHOJIO-
THH, HO U MUPOBBIE COIMANbHBIE ceTH. OTpOMHBIC 0OBEMBI
U CIIOKHOCTb HaKaIUIMBAaEMBbIX B HACTOSIILIEE BPEMsI OOJIBIINX
TEHETUYECKUX AaHHBIX TPEOYIOT CO3AaHMs HH(POPMAIIIOHHO-
MIPOTPAaMMHBIX KOMIUIEKCOB, OCHOBaHHBIX Ha HOBOM IOKOJIE-
HHUH METOJI0B OMOMH(OPMATHKY 1 CUCTEMHOI KOMITBIOTEPHOI
OMOJIOTHH, NCIONB3YIOIUX BBIUYUCIUTEIbHBIE KOHBEHEPHI,
peaNM3yIONINX CIOXKHBIE CIIEHAPHH aHAIN3a U HHTETPUPYIO-
KX OOJBIIOE KOJMYECTBO Pa3HOOOPa3HBIX MPOrPaMMHBIX
MPOAYKTOB U 0a3 JaHHBIX, MOJTyYEHHBIX B TOM 4HCIE C TO-
MOIIIBIO0 METO/IOB NCKYCCTBEHHOTO HHTEJICKTA.

HoBgast 5pa GosbIINX JIaHHBIX, B KOTOPYIO BXOAAT HAyKH O
JKU3HH, TpeOyeT TpaHchopManni 6a30BBIX ITOIX00B OMOMH-
(hopMaTHKN ¥ CHCTEMHOM KOMITBIOTEpHOI Onosorun. B uem
9TO MposiBisieTcsi? Bo-nepBbIX, B MIMPOKOM NMPUMEHEHUHU
METOJIOB MCKYCCTBEHHOT'O MHTEIUIEKTa W UX MHTErpaluy ¢
KJIACCHYECKMMHU METOAaMHU OMOMH(OPMATHKH M CUCTEMHOM
KOMIIBIOTEPHOM Oroioruu. Bo-BTOpBIX, B pa3pabOTKe Ha 3TOU
OCHOBE HOBOTO MOKOJIEHHsI HH()OPMAITMOHHO-TTPOTPAMMHBIX
CUCTEM JUIsl TUTAaHWPOBAHMSI SKCIIEPUMEHTOB IO NPOBEPKE
Pe3yJIbTaTOB KOMIIBIOTEPHBIX MPEACKa3aHUil, MMOTYyYSHHBIX
MIPU aHaNIN3€ OOJIBIINX TeHETHUECKUX JIaHHBIX. J[BIKEHNE B
9TOM HaIpaBJICHUHU OyleT o3HayaTh (PAKTHIECCKH CMEHY Oa-
30BOM IIapaJUIrMbl UCCIIEIOBAaHUMI: OT HAyKHU, HAllpaBJIsieMOU
TUIIOTE3aMH, K HayKe, HalpaBIsieMol OOMBIINMHI JaHHBIMH.
Buonndopmarrnka 1 cucTeMHasi KOMIBIOTEpHAs! Onosorus,
KOTOPBIM TIOCBSIILIEH JaHHbBIM BBIITYCK JKYpHaJa, HAXOASATCS
Ha OCTPHE 3TOTO JABMXEHUS K HOBOH OHOJIOTHH.

Hayunwuii peoaxmop sevinycka
axaoemux H.A. Konuanos,
Hayunbvil pykogooumenv ULl Ulul” CO PAH
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Candidate SNP markers of changes in the expression levels
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Abstract. In this work, we for the first time performed a comprehensive bioinformatics analysis of 568 human genes
that, according to the NCBI Gene database as on September 15, 2024, were associated with pain generation, per-
ception and anesthesia. The SCN9A gene encoding the sodium voltage-gated channel a subunit 9 and expressed
in sensory neurons for transferring signals to the central nervous system about tissue damage was the only one
involved in all the processes of interest at once as a hub gene. First, with our tool called OrthoWeb, we estimated
the phylostratigraphic age indices (PAls) for each of the genes, that is, identified the taxon of the most recent com-
mon ancestor of the organisms for which that gene has been sequenced. The mean PAl for all genes under study,
including SCN9A as a hub gene for pain generation, perception, response and anesthesia, was ‘4. On the evolu-
tionary scale by the Kyoto Encyclopedia of Genes and Genomes (KEGG), the ancestor is the phylum Chordata, some
of the most ancient of which evolved the central and the peripheral nervous system. Next, with our tool called
ANDSystem, we found that phosphorylation of ion channels is a centerpiece in pain generation, perception, re-
sponse and anesthesia, on which the efficiency of signal transduction from the peripheral to the central system
depends. This conclusion was consistent with literature data on a key role an efficient signal transduction from the
peripheral to the central system from the peripheral to the central system for adjusting the human circadian rhythm
through detection of a change from the dark of night to the light of day and for identification of the direction of the
source of sound by auditory brainstem nuclei, for generating the response to cold stress and for physical coordina-
tion. 21 candidate SNP marker of significant SCN9A over- and underexpression. Finally, the ratio of SCN9A upregu-
lating to downregulating SNPs was compared to that for all known human genes estimated by the 1000 Genomes
Project Consortium. It was found that SCN9A as a hub gene for pain generation, perception, pain response and
anesthesia is acted on by natural selection against its downregulation, to keep the nervous system highly informed
on the status of the organism and the environment.

Key words: human; TBP; SNP; promoter; hub gene; SCN9A; expression change; pain generation; pain perception;
pain response; anesthesia.
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KaHanpatHble SNP-mapKepbl MHTerpaLum 4yBcTea 6onu,
oTBeTa Ha 60nb 1 aHecTe3nm

T DepepanbHbIit ccneaoBaTeNnbCKMiA LEHTP VIHCTUTYT LMTONOTMM 1 reHeTukn CUBUPCKOro oTaeneHns Poccuiickoit akagemum Hayk, Hosocu6upck, Poccus
2 HoBocnbmpcKmit HauMoHanbHbIN NCCNeAoBaTeNbCKNIA FOCYAaPCTBEHHDI YHMBepcuTeT, HoBocnbrpck, Poccua

3 KypuaToBCcKui1 reHoMHbIN LeHTp UL CO PAH, HoBocnbumpck, Poccus

4 WVHCTWTYT BbIUNCAUTENbHOM MaTeMaTUKM U MaTeMaTuyeckon reodpusnku Cnbupckoro otaenenmna Poccuinickon akaaemnu Hayk, HoBocnbnpck, Poccua
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AHHOTaUuA. B HacTosAweln paboTe Brepsble MpoBefeH KOMMIEKCHbIN 6MOMHPOPMATUUYECKUIA aHANN3 FreHOB YenioBe-
Ka, CBA3aHHbIX C reHepaLuen, YyBCTBOM 1 OTBETOM Ha 6011b HapAay ¢ 06e36o0nmBaHMeM, KOTOpble Gbln NpeacTaB-
neHbl 568 reHaMu YesnioBeka cornacHo 6ase gaHHbIx NCBI Gene (paTa obpalyeHma 15.09.2024). Ten SCN9A venoBeka
(sodium voltage-gated channel a subunit 9) nepegaun cMrHanoB o NOBPEXAEHMN TKAHEN OT CEHCOPHbIX Henpo-
HOB B LIEHTPasIbHYI0 HEPBHYIO CUCTEMY OblNl €ANHCTBEHHBIM CPEAUN UCCNefyeMbIX 568 reHOB, KOTOPbI BOBMEYEH
BO BCe aHanu3upyemble NpoLecchl Kak reH-mHterpatop ana Hux. CHayana c MCnonb3oBaHMEM CO34aHHOMO Hamwu
paHee nHcTpymeHTa OrthoWeb ana Kakgoro reHa OoLEHUNM TakCoH Gnuxaiiiiero obLero npefka BCeX opraHums-
MOB, y KoToporo paclndposaHa [HK 3Toro reHa (1. e. nHaekc dpunoctpaturpadpuryeckoro Bospacta, PAl). CpegHe-
apudmeTnyeckas oueHka PAl ansa Bcex aHann3npyembix reHOB, a Takxe ero 3HaueHre anda reHa SCN9A, Hterpatopa
reHepaLuu, 4YyBCTBa 1 OTBETa Ha 60Nb HapALy C aHecTe3uel, OKasanncb paBHbIMK 4. Ha 3BOMIOLMOHHON LWKane
Knotckon sHumKknonegmm reHos 1 reHomoB (KEGG) aTo cooTtBeTcTByeT TakcoHy Chordata, y ogHux 13 cambix ApeB-
HUX NpeAcTaBUTeNelt KOTOPOro NPoun3oLLa crneynanvsaumna LeHTPanbHON 1 nepudepmnyeckon HepBHOM CUCTEMbI.
[Janee c nomoLbto co3gaHHol Hamu cuctembl ANDSystem Mbl BbIABUNN GOCPOpUNMpoBaHME NOHHBIX KaHaNIOB Kak
KpaeyronbHOro KaMHA B reHepaLmm, YyBCTBE, OTBETE Ha 60/1b 1 06e360n1BaHKe, KOTOpoe onpeaensaeT SGHeKTnB-
HOCTb Nepefaun CUrHanoB 13 nepudepryeckon B LeHTPanbHYy HEPBHYIO CMCTEMY. DTOT BbIBOJ COrNacyeTca C nu-
TepaTypPHbIMU JaHHBIMU O KNto4eBOl ponu 3GPeKTMBHONM Nepeaayn CUrHanoB nepudepryeckon HePBHOM CUCTEMbI
B LIEHTPanbHyi0 NpU KOppeKLnn LMpKagHOro putma yenoBeka yepes gpakTtnyeckyio getekymio dotopeLentopamu
CMeHbl HOYHOW TEMHOTbI Ha IHEBHOE OCBELLEeHMe, a TakKe Npu onpefeneHnn HanpasieHNa Ha UCTOYHMK 3BYKa Ciy-
XOBbIMY AZPaMu Mo3ra, GOPMUPOBaHUM OTBETa Ha XONOJOBON CTPECC U NPY KOOpAMHALMMN ABUXKEHWI Y YeNloBeKa.
3aTem C MCMONb30BaHNEM paHee co3haHHON Hamu 6a3bl AaHHbIX Human_SNP_TATAdb 6bin npeanoxeH 21 KaHau-
JatHbil SNP-mapKep 3HauMMOro yBenMyeHua n ymeHblueHuA sKcnpeccumr reHa SCN9A yenoseka. HakoHel, OTHO-
LWeHre BCTpeyaeMocTn 3Tx SNP-MapKepoB CpaBHWAM C NMOMHOTEHOMHbBIM OTHOLLEHNEM, KOTOPOE OblIo OLIEHEHO
KoHcopLmymom «1000 reHOMOB». B pesynbTate 06HapyxeHo, uTo SCN9A KaK reH-uHTerpaTop reHepauuu, 4yBCTBa,
oTBeTa Ha 60sb HapAdy C aHecTe3nel NoABePKEH eCTECTBEHHOMY OTOOPY NPOTMB CHUXKEHWA €ro SKCnpeccun ans
NoAAepPKaHNA BbICOKOIO YPOBHSA KOHTPOMA COCTOAHNA OpraHn3ma 1 napaMeTpoB BHELLHER cpeabl.

KnioueBbie cnoBa: yenoek; TBP; SNP; npomotop; reH-uHTerpatop; SCN9A; nameHeHne sKCnpeccuu; reHepauus

6OJ'WI; 4yBCTBO 60nu; OTBET Ha 60ﬂb; aHecTe3nA.

Introduction
In 2020, the Council of the International Association for the
Study of Pain (IASP) unanimously accepted the definition
of pain as “An unpleasant sensory and emotional experience
associated with, or resembling that associated with, actual or
potential tissue damage” (Raja et al., 2020). Six accompanying
notes were accepted to ensure the proper use of the term pain
depending on the context (Raja et al., 2020). It was recom-
mended that pain be conceived as an individual’s unpleasant
emotional experience enhanced by biological, psychological
and social factors. In addition, pain is not the same as the puls-
ing activity of the peripheral and the central nervous system’s
sensitive nervous fibers excited by diverse stimuli and called
“nociception”, “nociperception” or — in a narrower sense —
physiological pain. The individuals develop the concept of
pain as part of their personal experience. The IASP Council
also recommended that the patients’ opinion about the pain
they sense be considered. Although pain serves an adaptive
role, it may have an adverse effect on social and psychological
well-being as well as on the function of the human organism.
Finally, the verbal description of pain is one of the many ways
the individual can express this feeling and if he fails, chances
are he may be is experiencing it nonetheless.

Considering the above, we focused on physiological pain,
to be termed just “pain” throughout for brevity and because
the term pain is used in this narrow sense by such renowned
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sources of scientific data as NCBI Gene (Brown et al., 2015)
and Gene Ontology (Gene Ontology Consortium, 2015), on
which we rely in this work.

Here we are for the first time conducting a comprehensive
bioinformatics study of pain and anesthesia as a practical
service in applied medicine, when patient treatment requires
that both self-consciousness and awareness of the environment
be reduced or eliminated by use of anesthetic drugs essential
for organismic homeostasis, according to recommendations
from the Association of Anaesthetists’ (Klein et al., 2021,
Lucas et al., 2021). The need to explore further is so high
that 49,305 and 3,782 original scientific papers related to
pain and anesthesia, respectively, were collected in PubMed
(Lu, 2011) as on September 15, 2024. With this in mind, we
used our freely available web services OrthoWeb (Mustafin
et al., 2020) and ANDSystem (Ivanisenko et al., 2015), and
the Human SNP TATAdb database (Filonov etal., 2023) and
analyzed 568 human genes associated with pain generation,
perception, response and anesthesia, according to NCBI Gene
(Brown et al., 2015) as on September 15, 2024. We verified
our results against data from the independent web services
PANTHER (Mi et al., 2021), DAVID (Sherman et al., 2022),
STRING (Szklarczyk et al., 2023), Metascape (Zhou et al.,
2019) and GeneMania (Warde-Farley et al., 2010), the ClinVar
database (Landrum et al., 2014) and similar whole-genome
results coming from the 1000 Genomes Project Consortium
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(1000 Genomes Project Consortium et al., 2012), with Hal-
dane’s dilemma (Haldane, 1957) and the neutral theory of
molecular evolution (Kimura, 1968) factored in.

Materials and methods

The human genes. A total of 568 human genes (n = 568)
were studied. The list of the genes was generated by query-
ing “Homo sapiens” AND “[gene key word]” in NCBI Gene
(Brown et al., 2015) accessed on September 15, 2024. The
activated filters were Protein-coding genes, Genomic, Anno-
tated genes, Ensembl and Current, to return the most com-
pletely annotated protein-coding human genes.

The Phylostratigraphic Age Index (PAI) of the human
genes. With OrthoWeb (Mustafin et al., 2020), we identified
for each of the 568 genes all the biological species that had
freely available orthologs to this gene and thus identified the
most recent common ancestor of these species (Samet, 1985;
Sun et al., 2008; Morozova et al., 2020), whose age served as
the phylostratigraphic age indices (PAI) of the gene according
to KEGG, the Kyoto Encyclopedia of Genes and Genomes
(Kanehisa, Goto, 2000).

The associative network for pain generation, percep-
tion, response and anesthesia was reconstructed using
ANDSystem (Ivanisenko et al., 2015). The results obtained
were verified against the independent web services PANTHER
(Mi et al., 2021), DAVID (Sherman et al., 2022), STRING
(Szklarczyk et al., 2023), Metascape (Zhou et al., 2019) and
GeneMania (Warde-Farley et al., 2010). The amount of con-
sistency between the results coming from these web service
and ANDSystem (Ivanisenko et al., 2015) was inferred by
searching for the corresponding publications in PubMed
(Lu, 2011).

Supervised annotation of the effects of changes in hu-
man gene expression levels on pain generation, perception,
response and anesthesia. The effects of changes in SCN9A
expression levels on pain generation, perception, response and
anesthesia were explored by searching for the corresponding
publications in PubMed (Lu, 2011).

The effects of single-nucleotide polymorphism (SNP)
variants in the human gene promoters on the expression
levels of these genes. The estimates of the statistical signifi-
cance of the decrease or increase in the expression levels of
the human genes for the minor vs. reference alleles of the
SNP in the promoters of these genes were taken from the
Human SNP TATAdb knowledge base (Filonov et al., 2023).

Verification of the estimations of the effects of SNPs
in the human gene promoters on the expression levels of
these genes. Selective verification of the in silico estimates
of the effects of SNPs in the human gene promoters on the
expression levels of these genes was performed using ClinVar
(Landrum et al., 2014), PubMed (Lu, 2011) and literature data
by the 1000 Genomes Project Consortium (Lowy-Gallego et
al., 2019) for assessing the prevalence of such SNPs in the
entire reference human genome, with Haldane’s dilemma
(Haldane, 1957) and the neutral theory of molecular evolution
(Kimura, 1968) factored in.

Statistical analysis. The statistical criteria for the Kol-
mogorov—-Smirnov test and the binomial distribution were
tested using STATISTICA (Statsoft™, USA).
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Results

SCN9A as a hub gene for pain generation, perception,
response and anesthesia

We have herein worked on 568 human genes selected with
NCBI Gene (Brown et al., 2015) (see Materials and methods).
Of'them, 553 were associated with pain; 231, with pain genera-
tion; 84, with pain perception; 39, with pain response; and 28,
with anesthesia (Fig. 14). The gene that is in red color font
on the Venn diagram showing all possible overlaps between
the gene groups (Fig. 14) is SCN9A, the only gene shared
by these groups. SCN9A encodes the sodium voltage-gated
channel o subunit 9 and is expressed in sensory neurons for
transferring signals to the central nervous system about tissue
damage. Thus it was decided to consider SCN9A to be a hub
gene for pain generation, perception, response and anesthesia.

The differences in PAl between the pain-generation-
specific, perception-specific, response-specific

and anesthesia-specific groups of genes

do not reach statistical significance

We estimated the phylostratigraphic age index (PAI) for each
of the 568 human genes. The histogram with the number of the
genes being worked with within each of the 16 time intervals
on the PAl scale according to the Kyoto Encyclopedia of Genes
and Genomes (KEGG) (Kanehisa, Goto, 2000) is shown in
the Figure 1B. The evolutionary estimates of the PAIs of the
human genes associated with pain generation, perception, re-
sponse and anesthesia, statistically significantly meet a normal
distribution (Kolmogorov—Smirnov test: K =1.03, p <0.05).
In line with the Central Limit Theorem (Kwak, Kim, 2017),
which may imply that the PAI estimates reflect an integration
of a great diversity of critical pain criteria. Considering this,
we focused on SCN9A as a human hub gene for pain genera-
tion, perception, response and anesthesia.

The hypothetical link between the PAIs of the human
genes associated with either pain generation or perception
or response or anesthesia was verified using a box-and-whis-
ker diagram for the overlaps between these groups of genes
(Fig. 1C). The difference in PAI between the overlapped por-
tions of the gene groups does not reach statistical significance,
nor does it the difference between them and SCN9A as a hub
gene for pain criteria in humans (Fig. 14). That fact reinforced
our confidence that SCN9A is worthy of our commitment.

The associative network for pain generation,

perception, response and anesthesia

The associative network for SCN9A (Fig. 2) was constructed
with ANDSystem (Ivanisenko et al., 2015). In the upper central
part is the human gene SCN9A,; in the lower central part, its
encoded protein; in the middle central part, phosphorylation
as a molecular-genetic process that is most mentioned in re-
lation to this gene, as ANDSystem (Ivanisenko et al., 2015)
suggests.

In the left-hand central part of the Figure 2 is DPYSL2, the
only human gene associated with SCN9A itself, its encoded
protein and phosphorylation. Additionally, in the left-hand
bottom corner are four genes and their encoded proteins
that interact with SCN9A, and in the left-hand upper corner
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Fig. 1. The human genes returned by querying “Homo sapiens” AND “[gene key word]”in NCBI Gene (Brown et al., 2015) with Protein-coding, Genomic,
Annotated genes, Ensembl and Current as activated filters.

A - Venn diagram for the 568 human genes: “[gene key word]” ="Pain” returned 553; “Generation of pain”- 231;“Perception of pain” - 84; “Response to pain”- 39;
and “Anesthesia” — 28. SCN9A, the only human hub gene for pain generation, perception, response and anesthesia, is in red color font. B — the genes’ phylostrati-
graphic age index (PAl) meeting a normal distribution (the Kolmogorov-Smirnov test K= 1.03, p < 0.05). C - the box-and-whisker diagram, where its height is its
range from the 25 to the 75 % quartile, IQR; the line is the median, the 50 % quartile; the cross is the mean; the error bar “I" is the 95 % confidence interval; the
circles are the genes. The PAl scale: 1 = Cellular organism, 4,100 Ma (Bell et al., 2015), 2 = Eukaryota, 1,850 Ma (Leander, 2020), 3 = Metazoa, 665 Ma (Maloof et al.,
2010a), 4 = Chordata, 541 Ma (Maloof et al., 2010b), 5 = Craniata, 535 Ma (Maloof et al., 2010b), 6 = Vertebrata, 525 Ma (Shu et al., 1999), 7 = Euteleostomi, 420 Ma
(Diogo, 2007), 8 = Mammalia, 225 Ma (Datta, 2005), 9 = Eutheria, 160 Ma (Luo et al., 2011), 10 = Euarchontoglires, 65 Ma(Kumar et al., 2013), 11 = Primates, 55 Ma
(Chatterjee et al., 2009), 12 = Haplorrhini, 50 Ma (Dunn et al., 2016), 13 = Catarrhini, 44 Ma (Harrison, 2013), 14 = Hominidae, 17 Ma (Hey, 2005), 15 = Homo, 2.8 Ma

(Schrenk et al., 2014), 16 = Homo sapiens, 0.35 Ma (Scerry et al., 2018).

are 11 human genes and their encoded proteins that interact
with SCN9A and are involved in phosphorylation. The other
25 genes and their proteins interact with SCN9A and are
involved in phosphorylation, too (Fig. 2, right). In total,
Figure 2 shows 42 human genes, of which 14 were among
the 568 genes associated with pain generation, perception,
response and anesthesia (Fig. 1).

FTEHOMUKA N TPAHCKPUNTOMUKA / GENOMICS AND TRANSCRIPTOMICS

The overlap between the lists of 42 and 568 genes is sta-
tistically significant in terms of the reference human genome,
which contains 19,424 annotated protein-coding genes, as sug-
gested by NCBI Gene (Brown et al., 2015) as on August 20,
2024, with Ensembl, Current, Protein-coding genes, Genomic
and Annotated genes as the activated filters: the binomial
distribution at p < 109,
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phosphorylation
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of pain perception, pain response and anesthesia

Fig. 2. The associative network of SCN9A, its encoded protein and their closest partners in the human organism. The network was
constructed with ANDSystem (Ivanisenko et al., 2015) by automated analysis of freely available texts and database entries returned
by querying “[list of genes] [immediate associations only] Genes Proteins Pathway” for [list of genes] ="SCN9A".

Legend: - gene; ® — protein;

- phosphorylation as the most statistically significant biological process involving all the genes and

proteins found (Ppp; < 10713, Fisher’s Z with the Bonferroni correction for multiple comparisons). Arrows: sharp-headed - activation; blunt-
headed - inhibition; head-free - involvement; yellow — activity; dark-blue — transport; black — contact; purple - function; red - regulation;

turquoise — expression.

This implies that ANDSystem (Ivanisenko et al., 2015)
fed with SCN9A alone as a hub gene for pain generation,
perception, response and anesthesia (Fig. 1) statistically
significantly reconstructed the list of human genes (Fig. 2)
that are associated with these processes in NCBI Gene (Brown
etal., 2015).

Verification of the ANDSystem result against those

on Gene Ontology term enrichment for the groups

of genes by independent web services

A comparison between the result by ANDSystem (Ivanisenko
et al., 2015) suggesting that phosphorylation is the most sta-
tistically significant biological process for pain generation,

perception, response and anesthesia (Fig. 2) and the results by
independent web services on Gene Ontology term enrichment
for the groups of genes (Gene Ontology Consortium, 2015)
is given in Table 1.

For example, as the upper row of that table suggests, for
42 human genes in the Figure 2, the web service PANTHER
(Mi et al., 2021) revealed “G0O:0086002 ~ cardiac muscle
cell action potential involved in contraction” as the most
statistically significant biological process involving these
42 genes (Popy < 1079, statistical significance with a correction
for multiple comparisons). The rightmost cell of this row
contains a citation from an overview by V. Iyer et al. (2007):
“Phosphorylation of the calcium channel augments Ca2*
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influx, which triggers a corresponding increase in Ca2* release
from the sarcoplasmic reticulum, thereby enhancing the force
of contraction”. In its sense, the results from ANDSystem
(Ivanisenko et al., 2015) and PANTHER (Mi et al., 2021) for

2024
288

KaHanpatHble SNP-mapKepbl MHTerpaLum 4yBcTea 6onu,
oTBeTa Ha 60nb 1 aHecTe3nm

In total, Table 1 shows 11 similar consistencies between
the results coming from ANDSystem and five independent
web services (PANTHER, DAVID, STRING, Metascape and
GeneMania) about GO term enrichment for the groups of gene

the 42 genes in Figure 2 are consistent.

(Gene Ontology Consortium, 2015).

Table 1. A comparison between the result by ANDSystem (lvanisenko et al., 2015) and the results by other web services
on Gene Ontology term enrichment for the groups of genes (Gene Ontology Consortium, 2015)

The most enriched GO term

The association between phosphorylation found by ANDSystem
(Ivanisenko et al., 2015) and the best GO term found independently

Biological process

Web service GO: 1D ADJ
1 PANTHER GO0:0086002 ~ cardiac  107°
(Mi et al., 2021) muscle cell action
potential involved
in contraction
2 DAVID G0:0086010 ~ 107
(Sherman et al., 2022) membrane
depolarization during
action potential
3 STRING GO0:0043269 ~ 10"
(Szklarczyk et al., 2023) regulation of ion
transport
4 Metascape GO:0044057 ~ 107°
(Zhou et al., 2019) regulation of system
process
5 GeneMania G0:0034706 ~ sodium 10718

(Warde-Farley et al., 2010) channel complex

According to a comprehensive overview by V. lyer et al. (2007), “phospho-
rylation of the calcium channel augments Ca?* influx, which triggers a
corresponding increase in Ca?* release from the sarcoplasmic reticulum,
thereby enhancing the force of contraction”

In a cellular model of pain using the human cell line HEK293T (Kerth et al.,
2021): the 1848T substitution in SCN9A creates a novel phosphorylation
site, improving neuronal sensitivity and excitability due to an increased
range (potential) of depolarization of the nerons’membrane

In a biomedical tissue model of pain using a rat DRG culture (Stamboulian
etal., 2010): Scn9A phosphorylation regulates ion transport by varying
the activation threshold and the duration of inactivation of voltage-gated
potassium channel

Meta-analysis of freely available information resources and databases
for traditional Chinese medicine (Shuyuan, Haoyu, 2023) pointed at
“G0:0042327 ~ positive regulation of phosphorylation” and “GO:0044057
~ regulation of system process”among the best GO terms characterizing
the treatment of premature ventricular contractions by use of
Nardostachys jatamansi radix and rhizoma

In a biomedical tissue model of pain using cerebellar Purkinje neurons
acutely isolated from two-week-old mice (Grieco et al., 2002):
constitutive phosphorylation of the sodium channel complex is required
for making the blocking element functional for producing resurgent
sodium current

Molecular function

6 PANTHER G0:0005248 ~ 10710
(Mietal., 2021) voltage-gated sodium
channel activity
7 DAVID 107°
(Sherman et al., 2022)
8 STRING 10°°

(Szklarczyk et al., 2023)

In a subcellular model of pain using the human cell line HEK293T
(Sokolov et al., 2018): SCN9A phosphorylation increases the conductance
of this voltage-gated sodium channels for Na* ions

Cellular component

9 PANTHER G0:0001518 ~ 10712
(Mietal.,, 2021) voltage-gated sodium
channel complex
10 DAVID 10710
(Sherman et al., 2022)
11 STRING 10710

(Szklarczyk et al., 2023)

In a subcellular model of pain using the human cell line HEK293T
(Sokolov et al., 2018): SCN9A phosphorylation promotes the association
of the B3 subunit shifting the steady-state inactivation of the voltage-
gated sodium channel to a more rapid recovery from inactivation within
their complexes

Note. P,p; is the statistical significance of GO term enrichment for the groups of genes, with a correction for multiple comparisons used in the web service

as indicated.
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Table 2. Clinical implications of SCN9A downregulation and upregulation
for pain generation, perception, response and anesthesia according to PubMed (Lu, 2011)

Candidate SNP markers for integration
of pain perception, pain response and anesthesia

# Process

1 Pain generation

2 Pain perception

Change in SCN9A expression levels
Downregulation

In a model of neuropathic pain using C57BL/6
mice (Palomes-Borrajo et al., 2021): treatment of
an injured nerve with drug JQ1 reduced the pain
generation frequency by downregulating SCN9A,
which reduced the excitability of sensory neurons

In a biomedical model of pain using Scn9a KO mice
(Shields et al., 2018): a reduction in the excitability
of small- to medium-diameter sensory neurons
due to a decrease in sodium TTX-sensitive channels

Upregulation

According to a comprehensive overview by M.D. Baker
and M.A. Nassar (2020): the mutation-induced growth
in SCN9A activity increases the pain generation
frequency due to an increased excitability of sensory
neurons

According to a comprehensive overview by S.D. Dib-Hajj
et al. (2007): the mutation-induced growth in SCN9A
activity reduces the activation threshold and slows down
deactivation of voltage-gated sodium channels, which

in them

3 Pain response

control with underexpressed SCN9A

4 Anesthesia

proteins may have a painkilling effect

The effects of changes in the expression levels of SCN9A

as a hub gene on pain generation, perception,

response and anesthesia

At this stage of our work, we sent text-based queries to
PubMed (Lu, 2011) and thus performed a supervised an-
notation of SCN9A down- and upregulation by comparing
them with literature data on the clinical manifestations of
the changes in pain generation, perception, response and
anesthesia (Table 2).

In Human SNP_TATAdb (Filonov et al., 2023), we found
21 candidate SNP marker of a significant change in TBP affin-
ity for the promoters of this gene and, consequently, a change
in the expression levels of this gene (Table 3). Four of the
21 SNP marker of the significant change in SCN9OA expression
levels have known clinical implications (Table 3), as ClinVar
(Landrum et al., 2014) suggests. It was demonstrated, with
one of the four clinical SNP markers of pain, rs201905758:T
as an example, (Fig. 3), how this SNP marker was detected
by the web service SNP_TATA Comparator (Ponomarenko
et al., 2015) run in automated mode using the BioPerl library
(Stajich et al., 2002) for access to Ensembl (Zerbino et al.,
2015) and dbSNP (Day, 2010), the official repository of the
reference human genome and the reference human variome,
respectively. According to ClinVar (Landrum et al., 2014), four
ofthe 21 SNPs were clinically proven markers of paroxysmal
extreme pain disorder (PEPD), small fiber neuropathy (SEN),
primary erythromelalgia (PE) and channelopathy-associated
congenital insensitivity to pain (CIP) (Table 3).

As can be seen from the rightmost column “A” of Table 3,
any of these four clinically proven markers of the SCN9A
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In a model of neuropathic pain using C57BL/6
mice (Palomes-Borrajo et al.,, 2021): treatment
of an injured nerve with drug JQ1 increased the
response time to painful stimulus against the

In a biomedical model of pain using Scn9a KO
mice (Shields et al., 2018): a reduction in SCN9A
expression levels and inhibition of its encoded

increases the excitability of sensory neurons and leads to
erythromelalgia and paroxysmal extreme pain disorder

In a model of spontaneous pain using transgenic
CRISPR/Cas9 mice with the R185H mutation as a clinical
marker of small fiber neuropathy (Xue et al., 2022):

less time elapsed between exposure of the paw or tail to
noxious heat and the animal’s response to it

In a meta-analysis of tumor transcriptomes compared to
adjacent non-tumor tissues (Garate et al., 2021):

SCN9A overexpression is a clinical marker of tumor
reflecting a specific type of tumor pain and suggesting
the need for analgesic therapy alongside traditional
antitumor therapy (Cui et al., 2011)

gene increases its expression levels as a hub gene for pain
generation, perception, response and anesthesia. This encour-
aged us to perform a supervised PubMed-based annotation
of the effects of SCN9YA overexpression on pain generation,
perception, response and anesthesia (Table 4). According
to the many clinical overviews that have been written, for
example (Dabby, 2012; Bennett, Woods, 2014; Shields et al.,
2018; Taub, Woolf, 2024), SCNIA excess in PEPD, SFN and
PE increases pain generation, perception and response, while
low-molecular-weight inhibitors of SCN9A are anesthetics.

As far as CIP is concerned, according to clinical obser-
vations (Kim et al., 2015), secondary insensitivity to pain
alternates with episodes of hypersensitivity to pain in PEPD,
SFN and PE due to excessive SCN9A, this hypersensitivity
being primary to insensitivity. It looks as if, because there
were too many voltage-gated sodium channels in SCN9A,
neural hyperexcitability depleted their battery now it needs to
be recharged — to recover the previous levels of pain genera-
tion, perception and response. In this sense, all the in silico
estimates of SCN9A overexpression with all clinically proven
SNP markers of pain in PEPD, SFN, PE and CIP are consistent
with the manifestation of excessive SCN9A in patients with
these pathologies.

Comparison of the prevalence of the candidate

SNP markers of changes in SCN9A expression levels
against the whole-genome frequency of such SNPs

In conclusion, we compared the prevalence of the candidate
SNP markers of changes in SCN9A expression levels (Table 3)
with the frequency of such SNPs across the human genome
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Table 3. Candidate SNP markers in the 90-bp proximal regions of the promoters before the transcription start sites of SCN9A,
a human gene for pain integration, generation, perception, response and anesthesia, according to our in silico analysis
as shown in the Figure 3 and documented in the Human_SNP_TATAdb database (Filonov et al., 2023)
# Candidate SNP marker Ko, nM, in silico Significance
dbSNP ID:min 5’ flanking WT —min 3 flanking WT min
(Day, 2010) region region
M+ SEM M+ SEM z p o A
1 rs1341944281:G gttttctaat A—-G gttgatttcec 3.32+£0.34 6.41+£0.52 10.04 10° A
2 rs1470018720:C cegggegege  T—C gogotgggga 86.89+6.63  104.57+8.03 342 103 B
3 1s1477103793:C gcgegetggg  A—C tggggacceg  86.89+6.63  120.27+8.57 623 106 A |
4 rs1559004384:G atttecctgtt T-G tecattgtgtt 3.32+0.34 3.86+0.42 2.01 0.05 D
5 rs933017443:C geggggetge  T—C ccctegggga  56.13+£520  12027+857  13.04 100 A
6  r151028575943:A cgcgetggga  G—A ggggacccgg  86.89+6.63 66.72+4.61 513 10° A
7 rs1038516207:A gagtggagga G—A cgcgetggga  86.89+6.63 69.11+4.82 443 103 B
8 rs1282480960:G ctaatattaa C—G tttectottt 3.32+£0.34 2.67+0.27 3.03 102 C
9 rs1284056769:A gagggagcaa G—A agggagggag  86.89+6.63 75.42+£5.45 270 102 C
10 rs1343738748:T gogageaagg GoT ggagggaggy  86.89+6.63 63.02+5.10 578 10° A
11 rs1410144156:A gctgggagga G—A gaccegggeg  86.89+6.63 71324453 398 102 B
12 rs1697331114:A tgattattat C—A taagcaaaca 3.32+£0.34 2.37+0.26 4.45 102 B
13 rs1700681124:T gggectgetac C—oT tcggggagge  56.13+5.20 35.36+3.15 720  10° A
14 rs1700681309:A gogaggeggg  G—A agctgcccte  86.89+6.63 4086+384 1247 10° A
15 rs1700683197:A agtggaggag G—A gegetgggag  86.89+6.63 30324229 1964 10 A !
16 rs1700683375:A gggaggagty G—A ccgggegege  86.89+6.63 60.80+4.59 665 106 A
17 rs890040570:A cggecgecaget G—A aggaggcaaa 86.89+6.63 64.68+7.23 4.36 102 B
ClinVar (Landrum et al., 2014):
clinical SNP markers of paroxysmal extreme pain disorder, small fiber neuropathy,
primary erythromelalgia and channelopathy-associated congenital insensitivity to pain
18 rs148362057:A gecagtctget T—A gcaggagogg  91.71+6.30 4182+393 1350 10° A
19  rs1881440:T geectggeag G—oT teccacgggeg 91.71+6.30 41.75+3.64 1419 10°% A
20 rs201905758:A gctacctcca C—A gaggegagge  56.13+5.20 47.62+4.43 251 005 D
21 rs201905758:T gctacctcca C—T gaggegggge  56.13+5.20 43.97+4.65 348 103 B

Note. WT and min are the ancestral (norm) and the minor (pathology) alleles of the SNP, respectively; Ky is the equilibrium dissociation constant of the
TBP-promoter complex expressed in nanomoles per liter (nM); My and SEN are the context-dependent in silico estimate and its standard error, respec-
tively; Z, p and p are the Fisher Z value and the level of its statistical significance as well as the heuristic prioritization of the in silico estimates from the
best (A) to the worst (D) in alphabetic order; A — increase (1) or decrease (]) in SCN9A expression levels.

according to 1000 Genomes Project (Table 5). Individual
human genomes possess an average of 1,000 SNPs each, of
which 200 and 800 correspond, respectively, to an increase
and a decrease in TBP-promoter affinity and eventually u to
an increase and a decrease in the expression levels of human
genes with these SNPs (Kasowski et al., 2010; 1000 Genomes
Project Consortium et al., 2012).

In terms of Haldane’s dilemma (Haldane, 1957) and the
neutral theory of molecular evolution (Kimura, 1968), this
prevalence of deleterious over beneficial regulatory SNPs
signifies a neutral drift event, whish is statistically significantly

FTEHOMUKA N TPAHCKPUNTOMUKA / GENOMICS AND TRANSCRIPTOMICS

different from the prevalence of 21 candidate SNP marker
of changes in SCN9A expression levels (p < 1076, hinomial
distribution) (Table 5). This result implies that SCN9A is
under natural selection against its downregulation, to keep the
nervous system highly informed on the status of the organism
and the environment.

Discussion

In this work, we for the first time performed a comprehensive
bioinformatics analysis of 568 human genes that, according
to the NCBI Gene database as on September 15, 2024, were
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90 bp

(f)

BioPerl

(b)

Empirical model
of TBP-promoter binding
by three steps, such as:

TBP slides along DNA —
—> co-recognizing —
— DNA helix bending

Fisher’s Z-score

R
standard bioinformatical
statistical package

(d) (e)

Fig. 3. An example: analysis of the candidate SNP marker rs201905758:T in the 90-bp proximal region (a two-headed dash-and-dot arrow in pane (a)
before the start site of transcript SCN9A-203 from SCN9A, according to Ensembl (Zerbino et al., 2015), using SNP_TATA_Comparator (Ponomarenko et

al., 2015).

Legend: (a) - visualization of the promoter being analyzed with the web service UCSC Genome Browser (Raney et al., 2024); (b) - the Ensembl database (Zerbino
etal., 2015); (c) — description of SNP rs201905758 in the dbSNP database (Day, 2010); (d) and (e) — the use of SNP_TATA_Comparator and the principle of its op-
eration, respectively (Ponomarenko et al., 2015); (f) - description of rs201905758:G—t, a clinically proven SNP marker for pain sensing pathology, according to

ClinVar (Landrum et al., 2014).

associated with pain generation, perception and anesthesia.
Our effort was strongly enabled by our freely available devel-
opments OrthoWeb (Mustafin et al., 2020), ANDSystem (Iva-
nisenko et al., 2015) and Human SNP_TATAdb (Filonov et
al., 2023). As aresult, we identified SCN9A as being a hub gene
for these biological processes (Fig. 1). Its Phylostratigraphic
Age Index PAI =4, according to the KEGG scale (Kanehisa,
Goto, 2000), was not statistically different from the PAIs of
the human genes associated with any of the combinations of
the pain-related conditions in question and corresponded to the

phylum Chordata, some of the most ancient of which evolved
the central and the peripheral nervous system (Holland L.Z.,
Holland N.D., 1999).

Phosphorylation was found to be a key molecular genetic
process in pain generation, response and anesthesia (Fig. 2).
This result is consistent, first of all, with experimental data
for a biomedical model of pain using the human cell line
HEK293T (Kerthetal., 2021). C.M. Kerth and the co-workers
found that the I — T substitution at position 848 of human
protein SCNYA creates a novel phosphorylation site of this
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Table 4. The effect of SCN9A overexpression on pain generation, perception and anesthesia
in paroxysmal extreme pain disorder, primary erythromelalgia, small-fiber neuropathy
and channelopathy-associated congenital insensitivity to pain, according to PubMed (Lu, 2011)

Pain

Pain
response

Anesthesia

Process Paroxysmal extreme
pain disorder

(PEPD)

According to a compre-
hensive overview
(Drenth, Waxman, 2007):
mutations leading to
SCN9A gain-of-function
in PEPD patients induce
prolonged action
potentials and repetitive
neuron firing in response
to exposure to cold

or stretching

generation

Pain
perception

According to a com-
prehensive overview
(Dabby, 2012): one of the
most prevalent forms

of clinical manifestation
with mutations leading
the SCN9A gain-of-
function is a growth of
pain perception in PEPD
patients

According to a compre-
hensive overview
(Stephenson, 2013):
infants with PEPD are
observed to be myotonic
and have skin flushing
with harlequin color
change

According to an over-
view (Hisama et al.,
2020): the most efficient
treatment in PEPD is
with carbamazepine,

a sodium channel
blocker

Small-fiber neuropathy
(SFN)

According to a comprehensive
overview (Hoeijmakers et al.,
2012), mutations leading to
SCN9A gain-of-function in SFN
patients have peripheral small-
diameter axons generate pain
and end up degenerated

According to a comprehensive
overview (Taub, Woolf, 2024):
with mutations leading to
SCN9A gain-of-function,

SFN patients feel ardor, tingling,
heat and allodynia in the extre-
mities. The prevalence grows
with each year (Dabby, 2012)

In a biomedical model of SFN
using transgenic fish Danio
rerio with the artificial muta-
tion 1228M or G856D for Scn9A
overexpression (Eijkenboom et
al., 2019): larval activity grows
with a rise in the environmental
temperature

In a comprehensive experimen-
tal and bioinformatics study

of SFN (Shao et al,, 2016),

a context analysis of miRNA-30b
showed that SCN9A mRNA may
be its target, and the use of

rats confirmed that miRNA-30b
overproduction in an injured
nerve decreases pain

Primary erythromelalgia
(PE)

Analysis of the pedigree
of a Chinese family with PE
(Wu et al.,, 2017) revealed
the F826Y substitution
leading to SCN9A gain-of-
function and eventually to
pain hypergeneration and
insensitivity to painkillers

According to a comprehen-
sive overview (Dabby, 2012):
with mutations leading to
SCN9A gain-of-function,

PE patients experience en-
hanced pain sensation as one
of the most frequent forms of
clinical manifestation of such
mutations

According to an overview
(Renthal, 2020): ardor, body
temperature rising, physi-

cal loading, tight cloths and
footwear, hot and spicy food
provoke episodes of ardor,
heat and erythema in the

PE patients’ extremities and
faces. The more severe PE, the
more frequent the events

In a pharmaceutical model
of PE using human cell line
HEK293A (Cregg et al., 2014):
in low doses, mexiletine as a
sodium channel blocker can
normalize pain generation,
perception and response

Channelopathy-associated
congenital insensitivity to pain
(CIP)

According to a clinical case at
Centre Hospitalier Universitaire
Sainte-Justine (Montreal),

a 6-year-old girl born to healthy
non-consanguineous French
Canadian parents was found

to have the 1234T mutation
enhancing the SCN9A function,
of which the primary
manifestation were PEPD and
PE with multiple daily episodes
of pain erythema affecting
extremities and hidrosis

and secondary CIP between
these episodes because

the voltage-gated sodium
channels exceed the threshold
polarization number in neuronal
hyperexcitability, as if their
“battery ran out of charge”

(Kim et al., 2015), while all these
symptoms were successfully
managed by anesthesia against
PEPD and PE. Such a paradoxical
comorbidity of secondary CIP,
on the one hand, and, on the
other hand, PEPD, PE and SFN,
primary to it, may have an
extremely dangerous clinical
manifestation in myotonia,

such as paralysis following
muscle hypercontraction

(Kim et al., 2015). Asto CIP as a
primary pathology, it is clinically
observed in patients with total
loss of function in sodium ion
channels, including this channel
in SCN9A (Dabby, 2012; Bennett,
Woods, 2014; Shields et al., 2018)

protein, which is accompanied by an increase in neuronal sen-
sitivity and excitability due to an increased range (potential)
of depolarization of the neurons’ membrane.

Additionally, the conclusion made about the importance of
ion channel phosphorylation for pain generation, response and
anesthesia is consistent to (Table 1) literature data about the
importance of calcium channel phosphorylation in the myo-
cardial cells (Iyer et al., 2007) and the importance of sodium
channel phosphorylation in the cerebellar Purkinje neurons
for physical coordination (Grieco et al., 2002).

FTEHOMUKA N TPAHCKPUNTOMUKA / GENOMICS AND TRANSCRIPTOMICS

Another example was found in PubMed (Lu, 2011): a cel-
lular model of circadian rhythm using chick photoreceptors;
under this model, increased phosphorylation of the ion chan-
nels in retinal cones in response to increased illumination
the day offers after the dark of the night was the main event
of the circadian rhythm in this model animal (Chae et al.,
2007). The study of ophthalmic pathologies in rats revealed
that phosphorylation of the ion channels in the optic nerve
regulates visual system pathways (Ogata et al., 2022). Addi-
tionally, phosphorylation of the potassium channel in auditory
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Candidate SNP markers for integration
of pain perception, pain response and anesthesia

Table 5. A comparison between the prevalence of the identified candidate SNP markers
of increased and decreased affinity of TBP to the SCN9A promoters (Fig. 3, Table 3)
against whole-genome estimates according to the 1000 Genomes Project

Reference human genome:
assembly GRCh38/hg38 (Lowy-Gallego et al., 2019),
dbSNP build 155 (Day, 2010)

Number of objects in focus

Neutral drift
(Haldane, 1957; Kimura, 1968)

Ngene  None Na Ny Ny Ho hypothesis: N > 4N,
(Kasowski et al., 2010)
binomial distribution, p
Prevalence of SNP markers ~ Whole-genome estimate for all 30,000 100,000 1,000 800 200 >0.50
of significant increase human genes (1000 Genomes
or decrease in TBP-promoter Project Consortium et al., 2012)
affinit
Y Partial estimate for SCN9A alone 1 37# 1% 5* 16 <107

(this work)

Note. Nggng — number of genes being worked with; Ngyp ~ number of SNPs being worked with; N5 - number of SNPs with ability to increase (N ) and to decrease

(N;) TBP affinity to human gene promoters. # - see Figure 3, A; * - see Table 2.

neurons is basic to the ability to identify the direction of the
source of sound due to microsecond delays in registering sig-
nals from it by auditory brainstem nuclei (Song et al., 2005).
The phosphorylation levels of the SNAP-25 channel in the
amygdala, cortex and hippocampus increased with the growth
in the intensity of cold stress in mouse studies (Yamamori et
al., 2014). Together, this provides a solid piece of evidence
about a key role that ion channel phosphorylation has in the
specialization into the central and the peripheral nervous
system in general and during pain generation, perception,
response and anesthesia.

At the final step, we used the Human_SNP_TATAdb data-
base (Filonov et al., 2023) and proposed 21 candidate SNP
marker of a significant change in the expression levels of
SCN9A which encodes the sodium voltage-gated channel a
subunit 9 and is expressed in sensory neurons for transfer-
ring signals to the central nervous system about tissue dam-
age (Table 3). In ClinVar (Landrum et al., 2014), we found
the descriptions of clinical in vivo manifestations for four
of the 21 predicted SNP markers that were consistent with
our in silico estimates (Table 4). A comparison between the
prevalence of the SNPs identified in the SCN9A promoters and
the whole-genome estimates according to the 1000 Genomes
Project Consortium in 2012 leads to the conclusion that natural
selection acts against SCN9A downregulation (Table 5), which
indicates an adaptive role of pain and its perception as well as
response to pain and anesthesia (Raja et al., 2020).

Overall, the results obtained are consistent with the inde-
pendent authors’, and in some cases refine and summarize
them.

Conclusion

We have for the first time performed a comprehensive bioin-
formatics analysis of 568 human genes, which according to
the NCBI Gene database (Brown et al., 2015) were associated
with pain and anesthesia. From among them, we singled out
SCNOA, the gene encoding the sodium voltage-gated channel o
subunit 9 and expressed in sensory neurons for transferring
signals to the central nervous system about tissue damage was
the only one involved in all the processes of interest at once
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as a hub gene. With OrthoWeb (Mustafin et al., 2020), we
estimated the phylostratigraphic age index (PAI) for SCN9A.
It was “4”, which corresponds to the phylum Chordata, some
of the most ancient of which evolved the central and the pe-
ripheral nervous system (Holland L.Z., Holland N.D., 1999).
The associative network of SCN9A was reconstructed using
ANDSystem (Ivanisenko et al., 2015), where ion channel
phosphorylation in SCN9A is a factor on which the efficiency
of signal transduction from the peripheral to the central
nervous system depends and which is a centerpiece in pain
generation, perception, response and anesthesia. Finally, the
search of the Human SNP TATAdb database (Filonov et
al., 2023) revealed 21 candidate SNP marker of a significant
change in SCN9A expression levels. The ratio of SCN9A up-
regulating to downregulating SNPs was compared to that for
all known human genes (1000 Genomes Project Consortium
etal.,2012). As aresult, we for the first time obtained in silico
whole-genome evidence that pain generation, perception,
response and anesthesia (Raja et al., 2020) have an adaptive
role, and their efficiency is controlled by natural selection.
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Abstract. ChIP-seq technology, which is based on chromatin immunoprecipitation (ChIP), allows mapping a set of
genomic loci (peaks) containing binding sites (BS) for the investigated (target) transcription factor (TF). A TF may re-
cognize several structurally different BS motifs. The multiprotein complex mapped in a ChIP-seq experiment includes
target and other “partner” TFs linked by protein-protein interactions. Not all these TFs bind to DNA directly. Therefore,
both target and partner TFs recognize enriched BS motifs in peaks. A de novo search approach is used to search for
enriched TF BS motifs in ChIP-seq data. For a pair of enriched BS motifs of TFs, the co-occurrence or mutually exclusive
occurrence can be detected from a set of peaks: the co-occurrence reflects a more frequent occurrence of two motifs
in the same peaks, while the mutually exclusive means their more frequent detection in different peaks. We propose
the MetArea software package to identify pairs of TF BS motifs with the mutually exclusive occurrence in ChIP-seq
data. MetArea was designed to predict the structural diversity of BS motifs of the same TFs, and the functional relation
of BS motifs of different TFs. The functional relation of the motifs of the two distinct TFs presumes that they are inter-
changeable as part of a multiprotein complex that uses the BS of these TFs to bind directly to DNA in different peaks.
MetArea calculates the estimates of recognition performance pAUPRC (partial area under the Precision—Recall curve)
for each of the two input single motifs, identifies the “joint” motif, and computes the performance for it too. The goal
of the analysis is to find pairs of single motifs A and B for which the accuracy of the joint A&B motif is higher than those
of both single motifs.
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[IporpaMMHBI KOMILJIEKC MetArea [jig aHa/In3a
B3aMMOMCKJ/IIOUalollell BCTpeuaeMOCTH B Iapax MOTUBOB CaiiTOB
CBSI3bIBAHIIS TPAHCKPUIIILIMOHHBIX (PAaKTOPOB M0 JaHHBIM ChIP-seq
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AHHoTauusA. TexHonorna ChIP-seq, ocHoBaHHaA Ha UMMyHonpeuvnuTaumm xpomatuHa (ChiIP), nossonseT KapTupo-
BaTb HabOp reHOMHbIX JIOKYCOB (NMMKOB), copepaLLmx canTbl cBasbiBaHuA (CC) ana nccnegyemoro (LeneBoro) TpaHc-
KpunumnoHHoro dakTopa (T®). TO moXKeT pacno3HaBaTb HECKOSIbKO CTPYKTYPHO pasnnuHbix moTtmBos CC. Mynbtu-
6enKOBbIN KOMMNEKC, KapTupyembll B sKkcnepumeHTe ChIP-seq, BKnlouaeT LeneBon 1 apyrue «napTHepckue» TO,
cBfi3aHHble 6enok-6enkoBbIMY B3aumMopencTBmamm. He Bce u3 atux TO ceasbiBatotca ¢ [JHK Hanpamyio. Moatomy u
LeneBol, 1 napTHepckre T pacnosHatoT oborauieHHble MoTvBbl CC B NUKax. [Ins novncka o6oralleHHbIX MOTUBOB MO
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B3avmouckouaioLan BCTpeuyaemMoCTb B Mapax MOTMBOB
CalTOB CBA3bIBaHWA TPAHCKPUMLMOHHbIX GaKTOpoB

naHHbIM ChIP-seq npumeHseTca noaxop de novo novcka. na napbl o6orateHHbix MoTrBoB CC TO B Habope NMKOB Mo-
XKeT ObITb O6HApPY>KeEHa COBMECTHas WM B3aVIMOVCKITIOYaloLLas BCTPEYaeMOCTb: COBMECTHAsA OTpakaeT bonee yactoe
HaxoxaeHue aByx motnso CC TO B ofHMX NMKax, a B3aVIMOUCKJ/IIOYaloLWan — B pa3HbIX N1Kax. Mbl npeanaraem npo-
rpammHbIz komnnekc (MK) MetArea gna Bbiaieneruna nap moTtreos CC TO co B3avmouncKovatoLLen BCTPe4aeMoCTbio Mo
faHHbIM ChiP-seq. MK MetArea npeaHa3HayeH Ansa npefckasaHna CTPYKTYpHOro pasHoobpasua motnsos CC ogHoro
TO 1 dyHKUMoHanbHoM cBA3n MoTnBoB CC pasHbix TO. DyHKLUMOHaNbHaA CBA3b MOTMBOB ABYX pa3Hbix TO npeanona-
raet, YTo OHM B3aVIMO3aMeHsAEMbl B COCTaBe MyNIbTUOENIKOBOrO KOMIIeKca, KoTopblii ncnonb3yet CC atnx TO ana nps-
moro ceasbiBaHUA ¢ [IHK B pa3nuuHbix nukax. MK MetArea paccumTbiBaeT OLEHKM TOYHOCTU pacnosHaBaHua pAUPRC
(4acTnyHas nnowagb nog Kpusoi Precision—-Recall) ona Kaxkaoro 13 AByx BXOAHbIX OANUHOYHbBIX MOTUBOB, ONpeaenseT
NX «06bEAUHEHHbIN» MOTVB 1 OL€HMBAET TOYHOCTb AnA Hero. Llenblo aHanu3a ABnAeTCA NOWCK Nap OANHOYHbBIX MOTU-
BOB A 11 B, ins KOTOpbIX TOYHOCTb 06beArHEHHOIO MoTVBa A&B BbliLLe TOUHOCTEN 060MX OAVUHOUYHBIX MOTBOB.
KnioueBble cnosa: de novo Nnonck MoTMBOB; KprBas PR; niowwaab nof KpUBOI; CTPYKTYPHbIe BapuaHTbl MOTMBOB Cali-
TOB CBA3bIBaHWA TPAHCKPUMLMOHHbIX $akTOPOB; KOOMEepaTUBHOE AENCTBME TPAHCKPUMLMOHHbIX GakTOpOB.

Introduction

Transcription factors (TFs) are proteins that have the ability
to specifically bind DNA and thereby regulate gene transcrip-
tion. About 1,600 human proteins are TFs (Lambert et al.,
2018). TF binding sites (BSs) in eukaryotic genomic DNA
are short regions, typically 6 to 20 base pairs (bp) in length
(Vorontsov et al., 2024). TFs are usually able to bind not to
a single DNA sequence, but to many similar ones. The TF
BS motif in DNA is a general representation of the available
diversity of such similar sequences (D’haeseleer, 2006). It is
very difficult to establish clear patterns that determine the af-
finity of nucleotide sequences of genomic DNA to TFs. Only
a few nucleotide positions are at least moderately conserved
in TF BS motifs, i. e. they are unchanged in most natural BSs.
Typically, the number of such positions is much less than a
half of a motif length. The diversity of TF BS motifs in vivo
is still very poorly studied because of the great variety of
TF binding mechanisms to DNA. They include, in addition
to direct binding, binding by other TFs or through them as
intermediaries, use of the spatial structure of DNA within
the nucleosome for binding, etc. (Morgunova, Taipale, 2017;
Levitsky et al., 2020; Zeitlinger, 2020).

The most popular model of TF BS motifs is the traditio-
nal positional weight matrix (PWM) (Wasserman, Sandelin,
2004; Tognon et al., 2023). The PWM estimates the affinity
of a site as the sum of the contributions (weights) of all its
positions, where the weight of each position is defined by its
nucleotide type. Alternative motif models are able to comple-
ment the predictions of the PWM model (Levitsky et al., 2007;
Siebert, S6ding, 2016; Tsukanov et al., 2022), i.e. to predict
TF BSs in such genomic loci where the PWM model does
not. The common difference between all alternative motif
models and the traditional PWM model is the assessment of
site affinity through the contribution of nucleotide frequency
dependences between different motif positions.

DNA-binding domains (DBDs) provide TFs the ability to
interact with DNA. The structure of a TF’s DBD determines
the variants of its BS motifs (Wingender, 2013; Lambert et
al., 2018; Nagy G., Nagy L., 2020). Hierarchical classification
of TFs based on the DBD structure in the TFClass database
(Wingender, 2013; Wingender et al., 2013, 2015, 2018) defines
classes of TFs based on their DBD structure. For example,
the Hocomoco database (Vorontsov et al., 2024) annotates
the BS motifs of 949 different human TFs. These TFs belong
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to 34 classes, but ten classes with at least ten TFs account for
858 TFs (more than 90 % of all 949 TFs), and the three largest
classes, C2H2 zinc finger factors {2.3}, Homeo domain fac-
tors {3.1}, and Basic helix-loop-helix factors (hpHLH) {1.2}
include 373, 184, and 76 TFs, respectively. The alignment of
TF DBD sequences defines families and subfamilies of TFs
below the classes in the hierarchy.

TFs of eukaryotes interact with DNA in vivo as part of mul-
tiprotein complexes including several TFs. TFs in such com-
plexes are called “partner TFs”, as there are protein-protein
interactions between them. The common (cooperative) action
of several TFs on the regulatory region of a gene is able to
change the local environment of chromatin and regulate gene
transcription (Morgunova, Taipale, 2017; Zeitlinger, 2020;
Georgakopoulos-Soares et al., 2023). Many classes of TFs
are characterized by the ability of TFs to bind to completely
structurally different BSs (Rogers et al., 2019; Vorontsov et
al., 2024). For example, TFs of the “Nuclear receptors with C4
zinc fingers {2.1}” class can bind as monomers and dimers.
In the dimer case, the BS includes two half-sites; the spacer
between them and the DNA strands of half-sites can vary. TFs
of the “Basic leucine zipper factors (bZIP) {1.1}” class bind
only as dimers, two half-sites are always located in the same
DNA strand and the spacer is almost unchanged (Nagy G.,
Nagy L., 2020). Hereinafter, indices in curly brackets are
labelled according to the TFClass database (Wingender et
al., 2013, 2015, 2018). There are several types of DBDs of
eukaryotic TFs that can function as dimers including pairs of
closely related TFs (Amoutzias et al., 2008). TFs similar in
DBD structure often recognize similar TF BS motifs (Lambert
etal., 2018; Ambrosini et al., 2020), with the only clear excep-
tion to this rule being the BS motifs of TFs from the “C2H2
zinc finger factors {2.3}” class.

The identification of TF BSs in genomes has advanced
significantly in the last 15 years with the advent of high-
throughput massive sequencing methods, in particular, the
experimental ChIP-seq technology. This technology gives for
the target TF a set of genomic loci (peaks), usually several
hundred bp in length, where the binding of the multiprotein
complex of many TFs, including the target TF, has been
experimentally mapped. Therefore, two types of peaks are
responsible for direct and indirect binding of the target TF
to genomic DNA. Direct binding means that the target TF is
bound to DNA directly, and indirect binding means that the
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Motif 2

Motif 2

Uniform distribution of motifs

Mutually exclusive occurrence in pairs of motifs
of transcription factor binding sites

Co-occurrence of motifs

Motif 2

Mutually exclusive occurrence

Motif 2

Fig. 1. Schema of the distinction between the terms of co-occurrence and mutually exclusive occurrence of

TF BS motifs.

Let the frequency of occurrence of each of the two motifs in a peak be 50 %. a - the two motifs appear in the peaks inde-
pendently of each other, there are four equally likely cases of motif mapping in the peaks; b - co-occurrence means that
both motifs are in the same peak or neither of them is present; ¢ — mutually exclusive occurrence denotes that only one
of two motifs can be found in a peak. The arrows from panel a to panels b and c indicate that the four cases of panel a

are exactly separated into two groups of two cases in panels b and c.

target TF is bound only by protein-protein interactions with
one or more partner TFs, which in turn are bound to DNA
directly. The presence of direct/indirect binding implies that
the BS motifs of the target/partner TFs are enriched in the
peaks, and the motifs of the target TFs are present only in
part of the peaks. The term “enrichment” is used to reflect the
increased content of TF BS motifs in genomic loci obtained
from ChIP-seq massive sequencing data, i.e. increased content
of TF BS motifs compared to their expected content due to
random reasons. The negative set of DNA sequences is applied
to estimate this expected motif content. We have shown that for
ChIP-seq peaks, it is more efficient to select random genome
loci matching the peaks in G/C-content into the negative set
than to use synthetic sequences obtained from the peaks by
nucleotide shuffling (Raditsa et al., 2024).

Once enriched BS motifs have been identified for a given
ChIP-seq dataset of peaks, the analysis of statistical patterns of
motif occurrences in pairs can identify the mechanisms of ac-
tion of TFs. The concepts of synergy and antagonism of motifs
within composite elements (CEs), as stable pairs of motifs,
have been previously proposed (Kel et al., 1995). Synergy
means that the result of the action of a pair of TFs is notably
superior to that of each of them separately. Antagonism, on the
contrary, implies that TFs impede each other. For example, one
of two TFs is an activator and the other is a repressor, so that
one displaces the other. Unfortunately, the concepts of synergy
and antagonism refer to a stable pair of two motifs occurring
in DNA, and these two cases cannot be distinguished by the
frequencies of co-occurrence in the pair of motifs.

More than 15 years have passed since the era of massive
sequencing of TF BS began (Jonhson et al., 2007); today,
the role of bioinformatics analysis of whole-genome data in
understanding the mechanisms of TF’s action cannot be over-
estimated. In the case of ChIP-seq data, bioinformatics analy-
sis does not deal with individual loci in the genome, but with
a set of hundreds or even thousands of such loci where both
direct and indirect binding of the target TFs can be observed.
In moving from separate consideration of the frequencies of
two TF BS motifs in a set of ChIP-seq peaks to observation
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of statistical patterns in their pairs, it is reasonable to consider
two possibilities for these two motifs:

* they co-occur more frequently in the same peaks than it is
expected by chance and less frequently occur separately
in different peaks;

* they occur more often in different peaks and less often co-
occur in the same peaks.

Therefore, we propose the terms of co-occurrence and
mutually exclusive occurrence for the pair of TF BS motifs
(Fig. 1).

Co-occurrence in a pair of motifs reflects the presence of a
CE, a pair of closely located TF BS motifs in DNA, a small
spacer between them, or they overlap (Kel et al., 1995; Le-
vitsky et al., 2019). Mutually exclusive occurrence in a pair
can have two explanations. Either it represents two structural
types of the BS of the same TF (it binds differently in various
peaks), or these two BSs belong two distinct TFs. Assuming
that the two BS motifs correspond to two distinct TFs within
the same multiprotein complex, we can propose that one TF
interacting directly with DNA is replaced by another TF.
Therefore, the trend of divergence of BS motifs of two TFs into
different peaks may indicate a functional relationship of these
motifs, in the simplest case representing the aforementioned
substitution. For a co-occurrence, in the case of both synergy
and antagonism, the two TFs bind to DNA in close proximity
to each other (at least for some time they may be in contact
even in antagonism), most likely they are within the same
multiprotein complex. In the case of mutually exclusive oc-
currence, on the contrary, the BS motifs and the corresponding
TFs are in distant DNA regions (different peaks). Therefore,
we assume that the two motifs represent alternative traces of
one common molecular function of TFs:

* the same TF recognizes two BS motifs of different struc-
ture, or

* binding to DNA occurs through distinct TFs and their BS
motifs; these TFs are in the same multiprotein complex.
Figure 2 shows both these possibilities.

The AUC ROC (Area Under Curve) is the traditional
quantitative measure of the accuracy of a binary classifier.
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The term ROC stands for Receiver Operating Characteristic
curve. For the TF BS motif, the ROC curve is defined as
the dependence of the fraction of predicted sequences from
the positive set (TPR, True Positive Rate) on the fraction of
predicted sequences from the negative set (FPR, False Posi-
tive Rate). However, for TF BS motif recognition models in
ChIP-seq data, it is more efficient to measure FPR as the
expected frequency of a motif in the negative sequence set,
but not as the fraction of predicted sequences for this set.
This provides higher accuracy of assessment of motif model
predictions at stringent and even medium recognition thresh-
olds (Tsukanov et al., 2022). For the TF BS motif recogni-
tion model, the recognition accuracy can be calculated as the
partial area under the ROC curve (pAUC ROC) (Tsukanov et
al., 2022). The pAUC ROC value is equal to the fraction of
the area under the curve bounded by the maximum allowable
expected frequency of a motif. The area under the ROC curve
integrates the fraction of peaks having the predicted TF BSs
(the fraction of correctly predicted peaks, Y axis) over a wide
range of recognition thresholds, calculated as the frequency
of the motif in the negative set (X axis).

In this study, we propose the MetArea approach, which
considers two separate “single” motifs as well as a “joint”
motif, meaning the occurrence of either of the two single
motifs. To predict a joint motif in a DNA sequence, it is suf-
ficient to predict at least one of the two single motifs in it at
a given threshold of expected motif frequency. Calculating
the frequency of such a joint motif exactly even for a single
DNA sequence poses an obstacle due to the huge variety of
possible overlaps between single motifs. Therefore, to assess
the accuracy of a motif model, we developed and applied
the measure of accuracy “Partial area under the PR curve
(Precision—Recall)”. To calculate it we need only to track the
number of recognized sequences in the positive and nega-
tive sets.

The PR curve is the dependence of the Precision measure
(the ratio of the number of predicted sequences in the positive
set to the number of predicted sequences in the positive and
negative sets) on the Recall measure (the ratio of the number
of predicted sequences in the positive set to the total number
of sequence in this set). The PR curve is an alternative to the
more popular ROC curve (Davis, Goadrich, 2006; Keilwagen
et al., 2019). The advantage of the area under the PR curve
measure over the area under the ROC curve measure is the
ratio between the contributions of the mild and stringent
recognition thresholds corresponding to the predicted sites
of low and high affinity. Compared to the ROC curve, the
PR curve provides greater contributions from high-affinity
sites than from low-affinity sites. The ROC curve does the
opposite. According to the PR curve, the contributions from
sites with a low affinity may even tend to zero if such sites do
not contain a specific nucleotide context. This is due to equal
probabilities of site recognition in the positive and negative
sets (Saito, Rehmsmeier, 2015).

We developed the MetArea software package (SP) to iden-
tify pairs of TF BS motifs with mutually exclusive occurrence.
The MetArea SP calculates the partial area under the PR curve
(pAUPRC) accuracy estimates for each of the two input single
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One peak Another peak
Two motifs
refer to BSs TF1 TF1
of the same TF Motif 2
Two motifs TF2 TF1
. refer.to.BSs TF1 TF2
of two distinct TFs Motif 2

Fig. 2. Presumed origin of the mutually exclusive occurrence of two TF BS
motifs in a set of ChIP-seq peaks.

The two columns represent two different peaks. Mutually exclusive occurrence
in a pair of motifs could mean that either the pair of motifs represents two
structurally distinct motifs of the same TF (this TF recognize these two motifs
in different peaks), or the pair of motifs corresponds to BSs of different TFs.
In this case, we assume that one TF interacting directly with DNA is replaced
by another TF in some multiprotein complex (TF1 by TF2).

motifs as well as for their combination, the “joint motif”. This
allows the detection of mutually exclusive occurrence of these
two input motifs.

Materials and methods

ChIP-seq data from the GTRD database were used in the
analysis (Kolmykov et al., 2021). For each ChIP-seq experi-
ment, a set of 1,000 best quality peaks was analyzed according
to preprocessing with the MACS?2 tool (Zhang et al., 2008).
In this study, enriched motifs obtained from the results of
de novo motif search and mouse Mus musculus TF BS motifs
from the Hocomoco database (https://hocomoco12.autosome.
org/) (Vorontsov et al., 2024) were used in the analyses.
De novo search for motifs of the traditional PWM and alter-
native SiteGA models of TF BS motifs was performed using
STREME https://meme-suite.org/meme/tools/streme (Bailey,
2021) and https://github.com/parthian-sterlet/sitega (Tsukanov
et al., 2022). The significance of similarity of the enriched
motifs from the results of de novo search (STREME motifs)
with the motifs of known TFs from the Hocomoco, Cis-BP
(Weirauch et al., 2014) and JASPAR (Rauluseviciute et al.,
2024) databases was assessed by the TomTom tool https://
meme-suite.org/meme/tools/tomtom (Gupta et al., 2007).
The MetArea SP also allows motifs from the Hocomoco and
JASPAR databases to be selected for analysis according to the
previously used approach (MCOT SP) (Levitsky et al.,2019).
The best hit of a motif model has an expected frequency of at
least 2E-5 in the set of promoters of all protein-coding genes
of the genome. The best hit is given by the predicted site
with the highest possible value of the recognition function
of a motif model.

In total, the MetArea SP includes 1,420/1,142 motifs for
942/713 human/mouse TFs from the Hocomoco database, and
556/151 motifs for 555/148 plant/insect TFs from the JASPAR
database. The MetArea SP is available at https://github.com/
parthian-sterlet/metarea. For a detailed description of the
MetArea SP algorithm, see the Results section below. The
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MetArea SP implements the approach from the MCOT SP
(Levitsky et al., 2019) to assess the similarity of the analyzed
motifs of the PWM model (nucleotide frequency matrices).

Results

General description of the MetArea SP
The MetArea SP allows analyzing both pairs of motifs of the
traditional PWM model and pairs of motives of the traditional
PWM and alternative SiteGA models (Levitsky et al., 2007;
Tsukanov et al., 2022). Figure 3 presents the general scheme
of the MetArea SP pipeline.

The input data and parameters of the MetArea SP are listed
below:

» Two motifs: (1) a combination of two motifs of the PWM
model given by two nucleotide frequency matrices (NFMs),
or (2) a combination of a motif of the PWM model given
by an NFM and a motif of the SiteGA model given by its
weight matrix, see https://github.com/parthian-sterlet/sitega
(Tsukanov et al., 2022).

* Positive set in FASTA format (the set of ChIP-seq peaks,
NF sequences, Number of Foreground sequences).

* Negative set in FASTA format (NB sequences, Number of
Background sequences); it is recommended to prepare it
in advance from the positive set and the whole genome by
the AntiNoise SP (Raditsa et al., 2024), https://github.com/
parthian-sterlet/antinoise. For each sequence of the positive
set, several sequences of the negative set are selected ran-
domly in the whole genome by its length and G/C-content.
Further in the analysis, NF/NB = 5.

* The set of promoters of all genes of the genome is required
to determine recognition thresholds based on the calculation
of the Table ‘Threshold vs. ERR’ (“Recognition function
threshold vs. Motif frequency in the set of all genome
promoters”) for each of the input motifs.

Mutually exclusive occurrence in pairs of motifs
of transcription factor binding sites

* The ERRyjsx threshold for the maximum expected motif
frequency (Expected Recognition Rate, ERR) for each
input motif.

* Tables ‘Threshold vs. ERR’ for each input motif.

The maximum motif frequency of 0.01 means that BS
specificity corresponds to one site per one hundred nucleo-
tide positions. The recommended range for the threshold
of expected motif frequency ERRy5x is 0.001 to 0.01. The
ERRyax value of 0.002 is used below. We have previously
used the ‘“Threshold vs. ERR’ tables to set recognition thresh-
olds across motifs (Levitsky et al., 2019; Tsukanov et al.,
2021, 2022). Each motif and its ‘Threshold vs. ERR’ table are
presented in a binary-format file generated by the MetArea
SP components to calculate the expected motif frequencies
for the PWM and SiteGA motif models.

The outputs of the MetArea SP are:

* A text file with PR curves for each of the input motifs as
well as their joint motif.

* Atext file with the values of pAUPRC recognition accuracy
estimates for each of the input motifs, as well as for their
joint motif, the value of the ratio of areas under the curves
(see below), and the estimate of motifs’ similarity (for pairs
of PWM motifs only).

Definition of recognition thresholds for different motifs
The recognition function thresholds of each of the two input
motifs, according to pre-calculated ‘Threshold vs. ERR’
tables, are transformed into a common scale of expected motif
frequency, ERR (Levitsky et al., 2019; Tsukanov et al., 2021,
2022). This is necessary to construct the PR curve of the joint
motif. The expected motif frequency ERR for the input motifs
is calculated up to the threshold ERRy;5x, so that all expected
frequencies satisfy the criterion: ERR < ERRyjax.

The expected motif frequency in the promoter set was calcu-
lated as follows. The values of the motif recognition function

Fig. 3. General scheme of the MetArea SP pipeline.

Set Threshold of expected i . .
of all promoters frequency of motifs, Motifs Positive Negative Input data
from the genome ERRyax 1and 2 sequence cet sequence cet and parameters
Y y
Calculation Recognition . .
of the Table of motifs 1 and 2 Calculation of PR curve Calculation of PR curve
"Threshold vs expected in the positive and recognition accuracy and recognition accuracy Steps
frequency of motif” and negative estimates pAUPRC estimate pAUPRC of work
o e 1 e 2 sequence sets for motifs 1 and 2 for joint motif
A /
PR curves, PR curves,
recognition accuracy recognition accuracy Output
estimates pAUPRC estimate pAUPRC data
for motifs 1 and 2 for joint motif
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for each predicted site in the set at each position and DNA
strand were determined. Then, for each recognition threshold,
the expected motif frequency was calculated as the ratio of
the number of predicted BSs with the recognition function
values equal to or higher than the recognition threshold to the
total number of positions available for such BSs in the set in
both DNA strands.

Statistical metrics and the PR curve

The PR curve (Davis, Goadrich, 2006) for the TF BS motif
model can be defined as follows: the X axis means the ratio
of the number of sequences from the positive set (peaks) with
predicted sites to the number of all peaks (TPR, True Positive
Rate, Recall, REC):

TP

Here, TP/FN (True Positives/False Negatives) is the number
of correctly/incorrectly predicted sequences from the positive
set (TP + FN = NF).

The Y axis of the PR curve implies the ratio of the number
of predicted sequences in the positive set to the number of all
predicted sequences in positive and negative sets (Precision,
PREC), according to (Davis, Goadrich, 2006):

TP
TP+FP" @)

Here, FP (False Positives) is the number of predicted se-
quences in the negative set. Taking into account the difference
in the number of sequences between the positive (NF) and ne-
gative (NB) sets, we corrected the calculation of the Precision
value as follows:

PREC =

 TPR _ TP/NF
PREC = TpRTFPR ~ TP/NF+FP/NB _
3)
_ TP
TP+ (NE/NB)xFP

Here, TPR and FPR are the fractions of predicted sequences
in the positive and negative sets. The NF/NB coefficient takes
into account the difference between the sizes of negative (NB)
and positive (NF) sets. The expected numbers of predicted
sequences of positive (TP) and negative (FP) sets due to
random reasons are proportional to the set sizes, NF and NB,
respectively. Hence, we introduce the NF/NB coefficient to
unify the behavior of the PR curve for different ratios of posi-
tive and negative set sizes.

Partial area under the PR curve

and the ratio of areas under curves

The MetArea algorithm uses the tables “Recognition func-
tion threshold vs. Motif frequency in the set of all genome
promoters” described above, and performs recognition of two
input single motifs in the positive and negative sets. Next, the
pAUPRC measure is calculated for the single motifs as well
as for the joint motif. The calculation of the partial area under
the curve PR (pAUPRC) is limited by the criteria imposed
on the Recall (X axis) and Precision (Y axis) measures, that
is, the area is partial on both the X axis and the Y axis. The
example in Figure 4 explains the choice of the partial area in
both axes.
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The criterion for the partial area under the PR curve on the
X axis is the participation in the calculation of the pAUPRC
measure of a part of the whole range of the Recall measure
from O to 1. This criterion means that not all peaks with pre-
dicted sites are involved, but only those peaks, the best hits
of which have an expected frequency below the threshold,
ERR < ERRyax (Fig. 4). Here, we chose the milder thresh-
old of the expected frequency (ERRypx = 0.002) than the
one previously used to analyze the motifs of target TFs
(ERRyax = 0.001) (Tsukanov et al., 2022). We previously
analyzed the motifs of target TFs of ChIP-seq experiments,
and the MetArea SP analyzes the BS motifs of both target TFs
and less conservative ones of partner TFs.

The criterion for the partial area under the PR curve on the
Y axis subtracts from each value of the Precision measure its
expected value PRECgyp (Fig. 4) (Saito, Rehmsmeier, 2015).
For a model that is equally likely to recognize sequences
from the positive and negative set, the PR curve is a horizon-
tal line:

NF
PRECgxp = —=———==0.5. 4
1.0
Area of Recall values
09 corresponding to
too low specificity
08 of predictions,
’ ERR > ERRyjax
0.7
§ 06
@
o
& 05
04
0.3 Area of Precision values worse
than those for ‘no skill’ motif model,
0.2 Precision < 0.5
0.1
0 01 02 03 04 05 06 07 08 09 10
Recall

Fig. 4. Scheme of calculation of the partial area under the PR curve.

The X axis is the Recall measure (the probability of predicting the positive set
sequence, Recall = TPR = TP/NF), formula (1). The Y axis is the Precision mea-
sure, the ratio of the probability of predicting the positive set sequence to the
sum of the probabilities of predicting the positive and negative set sequences,
Precision = TPR / (TPR + FPR), formula (3). The pink area marks Precision < 0.5
values corresponding to predictions worse than those of a “no skill” model
equally likely to predict sequences in the positive and negative sets. The crite-
ria Precision > 0.5/Precision < 0.5 mark areas of selection towards the positive/
negative sets. The blue area shows the area of predicted sequences of the po-
sitive set with very low specificity. They correspond to the expected frequency
of the motif greater than the threshold, ERR > ERRy,5x. The normal distribution
with the mean and standard deviation (u, oy) = (5, 2.5) was taken to gener-
ate the data of the negative set example, and the positive set was a mixture
of 50 %/50 % normal distributions (Wp, Opq) = (10, 1) and (upy, Opy) = (5.5, 4).
These distributions model sites passing and failing to pass the threshold
ERRmax of the expected motif frequency. The shading denotes the area de-
termining the metric pAUPRC as the partial area under the curve.
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This ratio is constant and equal to 0.5 because the FP value
was normalized above, so the set sizes in this formula can
already be considered equal. Hence, the partial area under the
PR curve in the MetArea SP is calculated as the following sum:

{PREC(i)+PREC(i ) _pREcEXP}x
2

PAUPRC = 1&:x X},

x {REC(i) _REC(i- 1)H. (5)

Here, NI is the mildest threshold, determined as described
above from the expected frequencies and the input parameter
ERRy1ax- The 2/NF factor is required to normalize the value of
pAUPRC to the maximum value of 1. The maximum value of
the first multiplier under the sum, {(PREC(i)+PREC(i—1))/2 —
— PRECgxp}, is 0.5 since the maximum Precision value is 1;
and the maximum value of the sums of the second multipliers,
{REC(i/)-REC(i—1)}, is NF, the size of the positive set.
The criterion for predicting the functional relation of
motifs reflects the increase in the accuracy estimate of the
joint motif compared to the accuracy estimates of single
motifs. This criterion quantitatively assesses mutually ex-
clusive occurrence in pairs of motifs. For a pair of motifs A
and B, the criterion requires a higher value of the accuracy
estimate pAUPRC(A&B) of the joint motif A&B compared
to the values of the accuracy estimates of both single motifs,
pAUPRC(A) and pAUPRC(B). Calculated as follows, the
Ratio of Areas Under Curves (RAUC) should exceed one:

pAUPRC(A&B) L 6
AUPRC(A), pAUPRC@B)T =+ ©

RAUC(A, B) = g

Application options of the MetArea SP

MetArea SP inputs can be TF BS motifs with expected enrich-

ment in the positive VS negative set, e. g., such motifs are the

results of a de novo motif search (Bailey, 2021). Separate ap-
plications of SP implement massive analyses of the collections
of TF BS motifs from the Hocomoco and JASPAR databases.

Analysis of multiple pairs of motifs allows identification of

pairs that reveal a larger increase in pAUPRC recognition ac-

curacy estimates when motifs are combined. The MetArea SP
allows several application options, implemented as separate
programs. The following application options consider the

PWM motif model:

* two given motifs;

* several given motifs, for K motifs all possible {K x (K—1)/2}
pairs are checked;

* a given motif'vs all M motifs of BS of known TFs from the
database. For a given motif, all its M pairs with the motifs
from the Hocomoco (human, mouse) or JASPAR (plants,
insects) collections are checked;

« all BS motifs of known TFs from the database are checked.
From all M motifs of known TFs from the Hocomoco or
JASPAR collection, K motifs with the highest pAUPRC
accuracy scores are selected and all {K % (K—1)/2} possible
pairs of these motifs are tested.

The application options for the PWM and SiteGA motif
models:

* motif PWM and motif SiteGA.

Next, we provide examples of the results of ChIP-seq data
analysis for different application options of the MetArea SP.
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Mutually exclusive occurrence in pairs of motifs
of transcription factor binding sites

Analysis of several given motifs of the PWM model
Consider the ChlP-seq dataset for the BHLHA1S5 TF (Hess
et al., 2016) (GTRD PEAKS039234, GEO GSE86289) for
mouse pancreas. Application of a de novo search (STREME
tool) (Bailey, 2021) showed that among the five motifs with the
highest enrichment, four had significant similarity (p <0.001)
(Gupta et al., 2007) to known BHLHA15 TF BS motifs from
the Hocomoco. The motifs #1/#5 and #2/#4 are similar to
BHA15.H12CORE.0.P.B and BHA15.HI2CORE.1.SM.B,
respectively (Fig. 5a). These motifs correspond to the con-
sensus E-box CAnnTG with spacers GC and AT, so they
are labelled BHLHA15 GC 1/BHLHA15 GC 2, and
BHLHA15 AT 1/BHLHAL1S AT 2, respectively. Motif #3
has significant similarity (p < 0.001) to the BS motif of the
CTCF TF (CTCF.H12CORE.0.P.B) (Fig. 5a).

Analysis of the values of the pAUPRC recognition accuracy
estimates for single motifs and their pairwise joint motifs
(Fig. 5b) is based on the corresponding RAUC values for
pairs of motifs (Fig. 5¢), the similarity assessment of pairs of
motifs is required to control for significantly similar motifs
(Fig. 5d). High RAUCs are found for the pairs of motifs
BHLHA15 GC 1/BHLHAI15 TA2 and BHLHA15 GC 1/
BHLHA15 TAIl, the PR curves for them are shown in
Figure 5e, f. The CTCF motif has high RAUCs with
BHLHA15 GCI and BHLHA15 TA2 motifs (Fig. 5¢). The
pair of BHLHA15 TA2 and CTCF motifs was found to have
the maximum RAUC of 1.48 (Fig. 5¢). Overall, our results
are consistent with the ability of the TF BHLHA1S5 to bind to
DNA only as part of the dimer of two bHLH TFs (Amoutzias
et al., 2008). The trend towards divergence of BSs of vari-
ous structure of the BHLHAT1S5 TF into different peaks could
mean that (1) the dimer may comprise different TFs from the
bHLH class (including BHLHA 15 TF), and (2) the binding of
the dimer is influenced by other partner TFs, that form multi-
protein complexes with the BHLHA1S5 TF. Hence, the DBD
of the BHLHA15 TF adopts various conformations, e.g.,
TF CTCEF, the BS motif of which is also enriched (Fig. 5a),
may be a partner TF. According to experimental data:
(1) several TFs from the bHLH class have protein-protein
interactions with the CTCF TF (BIOGRID database, https://
thebiogrid.org/); (2) analysis of partner TFs by genomic co-
localization (Hu et al., 2020) confirms that several TFs from
the bHLH class are co-localized with CTCF TFs at the same
genomic loci in vivo.

Analysis of all BS motifs of known TFs from the database

Consider the ChlP-seq dataset for TF AR (Androgene Re-
ceptor) for the mouse prostate (Chen et al., 2013) (GTRD
PEAKS035588, GEO GSM1145307). Figure 6 for this
ChIP-seq dataset shows the matrix of the pairwise RAUC va-
lues for the 15 most enriched TF BS motifs according to the
pAUPRC measure out of all 1,142 mouse TF BS motifs from
the Hocomoco database. Among these 15 motifs, seven motifs
belong to the TF AR BS and its homologues from the same
subfamily GR-like (NR3C) {2.1.1.1.1} of the Steroid hormone
receptors {2.1.1} family of the Nuclear receptors with C4 zinc
fingers {2.1} class. This family defines the target TF AR, and
the likely motifs of its BS. The other eight motifs out of 15
belong to BS of TFs from the subfamilies FOXA {3.3.1.1},
FOXJ {3.3.1.10}, FOXM {3.3.1.13} and FOXP {3.3.1.16}.
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Fig. 5. Analysis of the five most enriched motifs from the de novo motif search results (STREME) (Bailey, 2021) for the ChIP-seq
dataset for mouse BHLHA15 TF (Hess et al., 2016) (GTRD PEAKS039234, GEO GSM2299654/GSM2299655).

a - sequence logos for five motifs, sorted by enrichment significance obtained from the STREME tool; BHLHA15 TF BS motifs are labelled
according to the dinucleotide in their spacer in the CAnnTG consensus; b — table of pairwise values of pAUPRC accuracy estimates of the
joint motifs constructed from pairwise combinations of motifs, headers indicate pAUPRC values for single motifs, shades of red mark the
maximum pAUPRC values of the joint motifs; ¢ — table of pAUPRC values in pairs of motifs, shades of red and blue mark values greater than
and less than one; d - table of significances of motifs similarity, -Logg[p-value]; e, f — PR curves for single motifs and their pairwise joint
motifs BHLHA15_GC_1/BHLHA15_TA1 and BHLHA15_GC_1/BHLHA15_TA2.

They comprise the same FOX family {3.3.1} from the class
Fork head/winged helix factors {3.3}. TFs of this family are
putative partner TFs for AR TFs, e. g. Foxal TF is known for
the same prostate tissue (Yang, Yu, 2015).

The pAUPRC values are greater than 1 for almost all pairs
of GR-like/FOX motifs. For example, the RAUC value of
1.03 for the ANDR.HI2CORE.0.P.B (pAUPRC rank 1) and
FOXA2.H12CORE.0.PSM.A (rank 5) pair corresponds to the
maximum value pAUPRC = 0.853 among all pairs of GR-like/
FOX motifs. The pAUPRC values for pairs of GR-like/
GR-like motifs exceed the value of 1 only for some pairs
of motifs. The ANDR.HI2CORE.2.P.B motif (rank 7) has a
distinct consensus among all other GR-like motifs (AAACA
instead of GNACA, see the Logo column, Figure 6); it has
high RAUC values, and this is the only motif with RAUC va-
lues above 1 in all pairs with other GR-like and FOX motifs.
In particular, among pairs of GR-like/GR-like motifs, the
maximum pAUPRC value of 0.876 with a RAUC of 1.06
is achieved for the pair of motifs ANDR.HI2CORE.0.P.B
(rank 1) and ANDR.HI12CORE.2.P.B (rank 7). Also, high
RAUC values in pairs of GR-like/GR-like motifs were found
for the MCR.H12CORE.1.SM.B motif, but it has the lowest
pAUPRC rank of 15. This motif is a monomer-binding motif,
not a dimer. Among the FOX/FOX motif pairs, there are almost
no RAUC values greater than 1.

Overall, the high RAUC values of many pairs of GR-like/
GR-like motifs suggest that the AR TF binds in different peaks

FTEHOMUKA N TPAHCKPUNTOMUKA / GENOMICS AND TRANSCRIPTOMICS

using distinct structural types of GR-like motifs. A similar as-
sumption can be made on the binding of a TF dimer consisting
of AR and a TF from the FOX family according to the high
RAUC values for pairs of GR-like/FOX motifs. The results
obtained for ChIP-seq data for the AR TF imply the following.
(1) Binding of AR TF to DNA occurs in the AR/AR and AR/
Foxal dimers (if it is the Foxal TF that binds to FOX motifs
under experimental conditions), and (2) both TFs allow a large
variety of different structural types of BSs, so various pairs of
motifs diverge in different peaks.

Analysis of the pair of motifs

of the PWM and SiteGA models

Consider the ChIP-seq dataset for the E2F4 TF for primary
innate immunity dendritic cells derived from mouse bone
marrow stimulated with the pathogenic component lipo-
polysaccharide for 120 minutes (Garber et al., 2012) (GTRD
PEAKSO035857, GEO GSM881061). Figure 7 shows the
PR curves for the PWM, SiteGA, and their joint PWM &
SiteGA motifs calculated by the MetArea SP. The pAUPRC
values for the PWM, SiteGA, and the joint PWM & SiteGA
motifs are 0.457, 0.358, and 0.47, respectively; the pAUPRC
value of the joint motif is 1.028.

The PWM and SiteGA motif models are based on very dif-
ferent methodological principles (Levitsky et al., 2007). The
PWM model represents high-affinity sites defined by the most
conserved positions and the most frequent nucleotides in them.
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GR-like/FOX

Mutually exclusive occurrence in pairs of motifs
of transcription factor binding sites

Fork head/winged helix factors

FOX
FOXA FOXJ FOXM  FOXP
Foxal  Foxa2 Foxa3 Foxj3 Foxm1Foxp1Foxp2

Logo

Pairs of motifs
FOX/FOX

Fig. 6. Results of the analysis of BS motifs of known TFs from the Hocomoco database for the ChIP-seq dataset for AR TF in mouse prostate (Chen

etal., 2013).

The 15 most enriched motifs according to the pAUPRC accuracy estimates are included in the analysis, headers of rows and columns show values and ranks of
the pAUPRC metrics and the names of TFs from the Hocomoco database. Row headers indicate motif identifiers from Hocomoco, and column headers indicate
the names of the TF class, family, and subfamily. In the table, shades of red/blue indicate changes in RAUC up/down from the neutral value of 1. The rightmost
column shows the sequence logos of the motifs from the Hocomoco database. Black rectangles mark GR-like and FOX motifs in row and column headers, and in

the table, pairs of BS TF motifs GR-like/GR-like, GR-like/FOX and FOX/FOX.

The SiteGA model comprises sites containing dependencies of
different positions that presumably originate from the common
actions of at least two TFs in cooperative binding to DNA
(Morgunova, Taipale, 2017; Levitsky et al., 2020). Predicted
sites of the SiteGA model are markedly less conserved than
those of the PWM model; the SiteGA model is able to predict
low affinity sites better than the PWM model (Tsukanov et
al., 2022). Combining the PWM and SiteGA models improves
recognition of low-affinity sites, as reflected by the greater
extent of the PR curve of the joint PWM & SiteGA motif on
the X axis (Recall), compared to each of the single PWM and
SiteGA motifs. Although the joint motif has smaller Preci-
sion values (Fig. 7, Y axis) than the PWM model, the wider
range of Recall values (X axis) determines the increase in
the pAUPRC measure of the joint motif. Single motifs up to
the threshold of expected motif frequency ERRy;px = 0.002
recognize 73.2 % (PWM) and 63.3 % (SiteGA) of peaks, the
joint motif recognizes 79.9 %.

The hypothesis that the PWM and SiteGA models represent
different structural types of the E2F4 TF BS is confirmed by
the TomTom motif comparison tool ( p-value < 0.05) (Gupta
et al., 2007). To prove this, for the PWM model, we used its
nucleotide frequency matrix, and for the SiteGA model, as
previously (Tsukanov et al., 2022), the nucleotide frequency
matrix constructed from the predicted sites. The ability of the
E2F4 TF to bind to different structural types of BSs is also
indicated by the experiment of M. Garber et al. (2012), where
the genomic binding loci of 25 TFs were determined under the
same conditions. The loci of E2F4 TFs were shown to overlap

1.00
PWM

SiteGA

095 PWM & SiteGA

0.90

0.85

0.80

0.75

Precision

0.70
0.65

0.60

0 0.2 0.4 0.6 0.8 1.0
Recall

Fig. 7. Results of analysis of the motif pair of the PWM and SiteGA models
by the MetArea SP.

Red, blue, and black represent PR curves for the PWM, SiteGA motifs, and
the joint motif PWM & SiteGA. The ChlIP-seq dataset for TF E2F4 (GTRD
PEAKS035857, GEO GSM881061) was used in the analysis.

significantly with the loci of five TFs: EGR2, EGR1, IRF2,
ETS2 and E2F 1. Consequently, it can be assumed that the TF
E2F4 is part of the same multiprotein complexes with these
TFs. Therefore, in different TF loci, E2F4 has to change its BSs
to a greater or lesser extent to adapt to the BSs of partner TFs.
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Discussion

In our study, we propose the novel MetArea approach for
detecting mutually exclusive occurrence in pairs of TF BS
motifs based on analyses of single ChIP-seq datasets. If two
motifs are structurally distinct BS motifs of the same TF in
various peaks, then the mutually exclusive occurrence is due
to the preferences of this TF to bind to either one or the other
structural type of BS in the peaks, but it is less common to
observe two BSs of different structures in the same peaks. If
the BS motifs belong to two different TFs, mutually exclusive
occurrence can result from the participation of both TFs in
the same multiprotein complexes, but in different peaks one
or another TF binds to DNA directly, but it is less common
to observe BSs of both TFs in the same peak.

During the development of the MetArea SP, we abandoned
the use of the metric of the partial area under the ROC curve
(pAUC ROC) (Levitsky, Tsukanov, 2024) and used the metric
of the area under the PR curve (Davis, Goadrich, 2006) to
determine the metric of the partial area under the PR curve. It
had been previously proposed (Davis, Goadrich, 2006) that the
application of the area under the AUC ROC curve cannot be
correct if the actual recognition thresholds of a binary classi-
fier should be quite stringent. Therefore, we should take note
if the advantage of one motif relative to another is recruited
in the interval of mild recognition thresholds (at the right tail
of the ROC curve). To correctly compare two motifs in this
case, instead of the metric of the area under the AUC ROC
curve, we previously used the metric “Partial Area Under
the ROC Curve, pAUC”. Instead of the full-size range of the
False Positive Rate (FPR, the fraction of recognized objects
from the negative set, X axis of the ROC curve) from 0 to 1,
this metric uses only a certain left part of it, discarding the
range of too large FPR values. We implemented this approach
to compare the recognition accuracy of TF BS motifs of the
PWM, BaMM and SiteGA models (Tsukanov et al., 2022).
There, we used the criterion on the Expected Recognition
Rate, ERR < 0.001, to restrict the recognition thresholds of
motifs in order to compute the pAUC ROC accuracy estimates.

Unfortunately, this approach is not suitable to compute the
accuracy of the joint motif required in the implementation of
the MetArea approach. The rationale for this is the necessity
to count the frequency of the joint motif, i.e. the number of
its hits. It is possible for non-overlapping single motifs, and in
the case of their overlapping, the frequency of the joint motif
should be reduced in some way. An alternative way to get rid
of the overestimation of accuracy given by the AUC ROC
measure is to switch from the ROC curve to the PR curve
and calculate the area under the PR curve (Davis, Goadrich,
2006; Keilwagen, et al., 2019).

Several approaches have been previously proposed to iden-
tify the occurrence of different TF BS motifs or different sets
of motifs in various peak fractions of a single set of ChIP-seq
peaks. The DIVERSITY tool (Mitra et al., 2018) partitions a
set of ChIP-seq peaks into several non-overlapping groups,
so that each group is represented by its enriched motif from
de novo search results. Later, the authors allowed that each
group of peaks is not represented by a single motif, but by a
combination of several motifs. The cisDIVERSITY tool (Bis-
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was, Narlikar, 2021) for the set of peaks performs a de novo
search for enriched motifs using the PWM model, and then
distributes the found motifs into several non-overlapping
groups of peaks so that all groups make up the entire set of
peaks. Each of the motifs has different frequencies across
groups, €. g., some groups have higher frequencies than other
groups, while other groups may not have a motif. The tasks of
the DIVERSITY/cisDIVERSITY and MetArea tools are simi-
lar in that different motifs are separated into certain fractions
of peaks. However, the DIVERSITY/cisDIVERSITY tools:
(1) identify the entire variety of motifs and divide all peaks
into groups in order to find distinct motifs or combinations
of them for different groups; (2) consider only the traditional
PWM motif model. The MetArea SP (1) considers only pairs
of motifs, to find pairs of motifs that better complement each
other by maximizing the accuracy measure pAUPRC for the
joint motif; (2) considers both the traditional PWM model and
alternative models of the TF BS motif.

Conclusion

We have developed the MetArea SP. It uses a single set of
ChIP-seq peaks to calculate the “Partial Area Under the PR
Curve” (pAUPRC) accuracy measure for the two input single
TF BS motifs, determines the joint motif from them, and also
calculates the pAUPRC measure for it. Creating a joint motif
from the two single motifs and calculating a pAUPRC accu-
racy estimate for it allows comparing two single motifs and
their overall effect on a uniform scale. The excess of accuracy
estimates of the joint motif over those of both single motifs
indicates their mutually exclusive occurrence. The results of
the MetArea analysis allow predicting the functional relation-
ship of the two motifs, and hence their corresponding TFs.
In particular, the MetArea SP can offer substantial arguments
for or against the hypothesis that the two motifs are structural
types of the BS of a single TF. Similarly, support or rejection
are proposed for the hypothesis that the BS motifs represent
two TFs together involved in the regulation of gene transcrip-
tion as part of a single multiprotein complex. In summary, the
MetArea SP predicts for a given ChIP-seq dataset (1) structural
diversity of BSs of a single TF and (2) pairs of BS motifs of
different TFs acting to regulate gene transcription as part of
single multiprotein complexes of many TFs.
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between mitochondrial miRNAs and other miRNAs
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Abstract. A subclass of miRNAs with as yet unknown specific functions is mitomiRs — mitochondrial miRNAs that
are mainly derived from nuclear DNA and are imported into mitochondria; moreover, changes in the expression
levels of mitomiRs are associated with some diseases. To identify the most pronounced characteristics of mitochon-
drial miRNAs that distinguish them from other miRNAs, we classified mitomiR sequences using the Random Forest
algorithm. The analysis revealed, for the first time, a significant difference between mitomiRs and other micro-
RNAs by the following criteria (in descending order of importance in the classification): mitomiRs are evolution-
arily older (have a lower phylostratigraphic age index, PAI); have more targets and disease associations, including
mitochondrial ones (two-sided Fisher’s exact test, average p-values 1.82x 1078%/1.13 x 107% for all mRNA/diseases
and 6.01x10722/1.09%x 10~° for mitochondria, respectively); and are in the class of “circulating” miRNAs (average
p-value 1.20x 107%6). The identified differences between mitomiRs and other miRNAs may help uncover the mode
of miRNA delivery into mitochondria, indicate the evolutionary conservation and importance of mitomiRs in the
regulation of mitochondrial function and metabolism, and generally show that mitomiRs are not randomly en-
countered miRNAs. Information on 1,312 experimentally validated mitomiR sequences for three organisms (Homo
sapiens, Mus musculus and Rattus norvegicus) is collected in the mitomiRdb database (https://mitomiRdb.org).
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KOMIIbIOTEepHBIN aHa/IM3 [TOKAa3bIBAET OTINYUMSI
MUTOXOHAPpMaIbHbIX MUKPOPHK OT ocTasibHbIX MUKPOPHK
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AHHoTauuA. OgHUM 13 nogknaccoB MUKPOPHK ¢ o cux nop HeM3BECTHbIMM CeLnanbHbIMK GYHKLUAMM ABAAOTCA
MUTOMUPBI (MitomiRs) — mutToxoHapranbHble MUKPOPHK, KoTopble B OCHOBHOM Nponcxogar n3 agepHon JHK v um-
NopTUPYIOTCA B MUTOXOHAPWN, NPU 3TOM U3MEHEHWE YPOBHSA MX IKCMPeCcCcMmn acCoLummnpoBaHo ¢ pagom 3abonesa-
HUIA. NA BbIABNEHMSA XapakTEPHbIX 0COOEHHOCTEN MAUTOXOHAPWANbHBIX MUKPOPHK, oTnnyatowwmx nx ot octanbHbIX
MUKPOPHK, Mbl npoBenu KnaccnoumKaLmio STux NociefoBaTeNIbHOCTE C MOMOLLbIO MeToAa cilyyaliHoro neca. MNpo-
Be[leHHbIV aHann3 BNepBble BbIABW JOCTOBEPHbIE pa3nnuna mexay mutommPammn n mukpoPHK no cneaytowmum
XapaKTePUCTUKaM (Mo yObIBaHNIO CTEMNEHUN MX BaXXHOCTUN B KnaccudurKkaLmm): MUTOMUPbI MMeloT 4OCTOBEPHO 605b-
LN SBOMIOLMOHHDBIN BO3PacT (HU3KUA UHAEKC dunocTpaTurpaduryeckoro Bospacta, PAl), bonbluee Konmyectso
MULLEHEN 1 accoumalnii ¢ 6onesHAMU, B TOM YMCSIe MUTOXOHAPUANbHLIMU (ABYCTOPOHHUIA TOUHbIN TecT Duilepa,
cpenHue p-3HaveHnsn 1.82x 10789/1.13 x 107°¢ ana scex MPHK/60one3Hein 1 6.01 x 10722/1.09 X 10~° ans MUTOXoHAPY-
anbHbIX); NPUHAAMEXAT K KNaccy «LUpKympyowwmx» (cpeaHee p-3HaueHrie 1.20 x 107°6), O6Hapy»keHHble pa3nnums
mMeXxay MUToMMPamm 1 ocTanbHbIMU MUKPOPHK MoryT nomoub packpbiTb cnocob focTaBku MUKPOPHK B MATOXOH-
LpuUn, CBUOETENbCTBYIOT 06 3BOMIOLMOHHON KOHCEPBATUBHOCTU U BaXKHOCTU MUTOMUPOB B perynnpoBaHny GpyHk-
UniA 1 MeTabonmnsma MUTOXOHAPUIA, @ B LLIeSTOM FOBOPAT O TOM, YTO MUTOMUPbI He ABAAIOTCA CyYaHbIMU MUKPOPHK.
NHdopmaums o 1312 skcneprMeHTanbHO NOATBEPKAEHHbIX MOC/Ie0BATENIbHOCTAX MUTOMUPOB ANA TPeX OpraHn3-
moB (Homo sapiens, Mus musculus v Rattus norvegicus) cobpaHa B 6a3ze mitomiRdb (https://mitomiRdb.org).
KntoueBble cnoBa: MuTomMuP; mutoxoHapus; MuKpoPHK; aBontouns; 6a3a gaHHbIX.
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Introduction

Mitochondria engage in extensive bidirectional inter-compart-
mental crosstalk to regulate their proteome, overall cellular
fitness and organismal health. To date, it is well known that
the fundamental pathways of the miRNA biogenesis start in
the nucleus and end in the cytoplasm (Bartel, 2018; Salim et
al.,2022; Zietara et al., 2023). However, there is evidence that
these short non-coding RNA sequences are also present in or-
ganelles, in particular, in mitochondria (Lung et al., 2006; Kren
et al., 2009). In many cases, mitochondrial microRNAs (the
so-called mitomiRs) are more abundant in the mitochondria
than in the cytoplasm. These observations suggest a nucleus
miRNA translocation into mitochondria and/or the existen-
ce of a complete miRNA maturation process within mito-
chondria.

The existence of a transport mechanism is supported by
the detection of the so-called circulating miRNAs (Pozniak
et al., 2022). There are also arguments in favor of the second
option: first, the miRNA machinery proteins AGO2 and Dicer,
which are involved in the canonical pathway of microRNA
biogenesis, have been found in mitochondria (Bandiera et al.,
2011; Wang W.-X. et al., 2015); second, mitochondrial gene
expression can be regulated by mitochondrial miRNAs and
this regulation inevitably manifests itself in mitochondria-
related diseases (Li et al., 2012; Tomasetti et al., 2014; Zhang
etal., 2014; Lin, Chu, 2021; Erturk et al., 2022; Gohel, Singh,
2022). Since the composition of miRISC (miRNA-induced
silencing complex) varies at different development stages,
this suggests the possibility of a mitochondria-specific miRNA
origin and biogenesis, as well as potentially unknown func-
tions of nuclear miRNAs within mitochondria. This highlights
mitochondrial miRNAs as a new subclass of miRNAs with
significant implications for scientific research. Nevertheless,
the specific functions and biogenesis pathways of mitomiRs
remain unexplored, and it is still unclear whether mitomiRs
are merely typical microRNAs that happen to be observed in
mitochondria by chance.

To reveal specific features of this new miRNA class, we
analyzed all miRNA sequences using the Random Forest algo-
rithm and determined the most important criteria for miRNA
classification (listed in descending order of their importance):
the phylostratigraphic age index (PAI) of the miRNA; the
presence of miRNA targets, and whether the miRNA belongs
to the “circulating” class of miRNAs. Based on the obtained
data, we drew conclusions regarding the age of mitomiRs, their
possible appearance in mitochondria, and their significance
for the organism functioning.

The explored mitomiRs have been collected in the mito-
miRdb database (https://mitomiRdb.org) — a manually cu-
rated repository of experimentally discovered mitochondrial
miRNAs. This database stores information about mitomiRs
for three mammals: Homo sapiens, Mus musculus and Rattus
norvegicus. There are 1,312 annotated sequences with details
such as identifiers, nucleotide sequences, and secondary
structures of precursors. Additionally, the database provides
references to publications with supporting experiments and
evidences of experimentally validated miRNA-mRNA and
miRNA-disease associations, including those related to mi-
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tochondria. All collected data are available online and can be
freely downloaded for further computational analysis.

Materials and methods

Mature miRNA sequences were downloaded from the
miRBase database (https://miRBase.org, releases 10-22.1)
(Kozomara et al., 2019). The latest release of the database con-
tains 48,885 annotated miRNA sequences from 285 species.
The total number of H. sapiens, M. musculus and R. norvegi-
cus miRNAs — 5,398 sequences, of which 2,274 were marked
as “high confidence” by database curators (those miRNAs, the
reads of which align with the canonical pre-miRNA processing
patterns by Drosha/Dicer complexes).

To study the relationship of mitomiRs with mRNA, we used
the miRTarBase database (https://mirtarbase.cuhk.edu.cn,
release 8.0) (Huang et al., 2020) — a manually curated reposi-
tory of experimentally validated microRNA-target interactions
from scientific publications with experimental evidence of
direct interactions. The total number of annotated entries of
microRNA-mRNA interactions for human, mouse and rat
miRNAs is equal to 553,118. Among these, 13,311 entries are
noted as “supported by strong experimental evidence”, while
the remaining 539,807 entries are based on “weak” proof.

Data on experimentally validated microRNA-disease asso-
ciations were obtained from the RNADisease database (http://
www.rnadisease.org, release 4.0, “Experimental data” section,
miRNA-disease information entries) (Chen et al., 2022). Each
association was manually curated from publications, with
particular attention being paid to experimental evidence of
the miRNA role in regulation and pathogenesis of diseases as
well as the analysis of miIRNA-mRNA complementary binding
and its involvement in disease progression. The total number
of annotated entries for the three considered species (human,
mouse and rat) amounts to 211,150.

The following mtDNA reference sequences were used to
determine the localization of mitochondrial miRNAs and the
mitochondrial genes: H. sapiens (NC_012920.1), M. musculus
(NC _005089.1), and R. norvegicus (NC _001665.2) (Sayers
et al., 2022). To explore the evolution of the let-7a-5p bind-
ing site, the following mitochondrial genomes of primates
were used: Gorilla gorilla (NC _001645.1), Pan paniscus
(NC _001644.1), Pongo pygmaues (NC 001646.1), Pan
troglodytes (NC _001643.1), and Symphalangus syndactylus
(NC _014047.1) (Sayers et al., 2022).

To calculate the phylogenetic age index (PAI) of miRNAs,
we took the taxonomic lineages from the NCBI server (https://
ftp.ncbi.nlm.nih.gov/pub/taxonomy/new_taxdump, data as of
July 12,2022) (Sayers et al., 2022). For each miRNA sequence
from 285 organisms, all its homologous sequences were
identified to determine the distribution of similar microRNAs
across the species. Two nucleotide sequences were considered
homologous (phylogenetically related) if the Hamming dis-
tance of their globally aligned sequences was less than 10 %
ofthe alignment length. Alignment parameters: a match score
of 5.0, a mismatch penalty of —4.0, an initial insertion/deletion
penalty of —10.0, and an extending insertion/deletion penalty
of—0.5. To calculate the PAI of the miRNA sequence, we used
a set of organisms in which miRNA homologues appeared.
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Manual curation of articles
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(553,118 entries for human, mouse, rat)
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(211,150 entries for human, mouse, rat)
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(74 KEGG ID, 185 DO ID)

Mitochondrial genes
(111 entries)

mitomiRdb

Fig. 1. A schematic workflow for collecting information about mitomiRs to form the mitomiRdb database.

According to taxonomic lineages, the PAI value represents the
serial number of the most common taxon of this set (number-
ing from zero) (Mustafin et al., 2019).

DO- and KEGG-identifiers and names of diseases were ob-
tained from the Disease Ontology Project (Schriml et al., 2022)
and the Kyoto Encyclopedia of Genes and Genomes (Kanehisa
et al., 2017). With that information, we have compiled a list
of mitochondria-associated diseases. For this purpose, we
took names and identifiers of diseases that are included in the
supergroup (and its subgroups) KEGG H01427 (Mitochondrial
diseases) and those explicitly mentioning mitochondria in their
names. Furthermore, a list of mitochondria-associated diseases
with the total number of 74 KEGG and 185 DO ID entries was
made (data provided in Supplementary Material 1)'.

Information on “circulating” miRNAs was retrieved
from the miRandola database (release on February 2017,
606 miRNAs) and the plasmiR database (release on June 17,
2021, 251 miRNAs) (Russo et al., 2018; Tastsoglou et al.,
2021). These extracellular miRNAs are detected in traceable
quantities in blood and other body fluids. The total number of
circulating miRNAs from two databases is 628 (590 human,
18 mouse, and 20 rat miRNAs).

Figure 1 presents a schematic workflow outlining the pro-
cess of gathering information about mitomiRs and establish-
ing connections between mitomiRs and their targets or asso-
ciated diseases. First, we selected the papers, which explore
mitochondria-located miRNAs or contain references to the
term “mitomiR”. Out of them, we took 14 articles (published
between 2006 and 2021) that reported the experimentally
verified presence of miRNA sequences within mitochondria
isolated from three mammal species (H. sapiens, M. muscu-
lus, R. norvegicus) for different cell types and tissues (Lung
et al., 2006; Kren et al., 2009; Bian et al., 2010; Bandiera et
al., 2011; Barrey et al., 2011; Mercer et al., 2011; Das et al.,

T Supplementary Materials 1-4 are available at:
https://vavilovj-icg.ru/download/pict-2024-28/appx27 xIsx

2012; Sripada et al., 2012; Dasgupta et al., 2015; Jagannathan
et al., 2015; Wang W.-X. et al., 2015; Wang X. et al., 2017;
Fanetal.,2019; Zheng et al., 2021). In these studies, miRNAs
are mentioned by their names (e. g., hsa-miR-1), which may
have changed over time in the miRBase database. To ensure
consistency, based on the miRBase annotation history, we
matched each miRNA name with its corresponding unique
accession number (MIMAT number) from the miRBase. The
accession number allows the unambiguous identification of
a mitomiR sequence across database releases.

During the matching process, we found that some previ-
ously annotated mitomiRs had been excluded from the recent
miRBase releases. To ensure comprehensive coverage, we
extended our dataset of mitomiRs to include 40 additional
miRNAs and their 41 precursors that had been previously
annotated in the miRBase database (Supplementary Mate-
rial 2). As a result, we compiled accession numbers, sequences,
secondary structures of precursors, and other additional
information for 1,312 mitomiRs that were enriched in mito-
chondria.

To characterize mitochondria-associated miRNAs, in ad-
dition to the mitomiRs sample, we compiled a dataset of
4,126 sequences (referred to as non-mitomiRs), which
contains human, mouse and rat miRNAs from the miRBase
database (release 22.1) except all identified mitomiRs.

Then, using the naming history of the miRBase sequences,
for each miRTarBase and RNADisease entry, its miRNA
identifier (ID) was matched to the unique miRBase accession
number for further possibility of unambiguous association
of microRNAs with targeted genes and related diseases. For
some entries it was not possible to clearly identify an accession
number of miRNA due to incomplete or inconsistent database
information (e.g., hsa-miR-b5539 and hsa-miRPlus-C1100
are not identifiable miRBase IDs; the database entry contains
pre-miRNA name hsa-let-7a-1, which cannot be unequivocally
matched to a single miRNA in the miRNA-miRNA duplex).
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By removing these ambiguous entries, we established reliable
references between identified mitomiRs and their respective
targets and diseases.

Finally, having the set of mitomiR-target and mitomiR-
disease associations, we compared how mitomiRs are related
to known mitochondrial genes and diseases. We have included
in the database the information on relationships between mi-
tomiRs and 111 known mitochondrial genes (which encode
for rRNAs, tRNAs, and protein subunits) for three (human,
mouse, rat) examined mtDNAs. Each entry in the RNADisease
database provides the name of disease and one or several
disease identifiers: Disease Ontology (DO) ID (Schriml et al.,
2022), MeSH ID (Sayers et al., 2022), and KEGG ID (Kane-
hisa et al., 2017; Schriml et al., 2022). Therefore, for each
mitomiR sequence, we additionally indicated its connection
(or a lack of connection) to the prepared list of mitochon-
drial diseases (Supplementary Material 3) as well as to all
diseases.

To identify and rank the most powerful characteristics of
mitomiRs in comparison to other miRNAs (non-mitomiRs),
we analyzed miRNA sequences using the Random Forest algo-
rithm (Breiman, 2001). Four binary and one numerical criteria
were chosen for classification. Binary criteria: (1) whether the
miRNA sequence is “circulating”; (2) whether the miRNA is
“confident” according to the miRBase declaration; (3) whether
the miRNA has a validated target; and (4) whether the miRNA
is associated with a disease. The numerical criterion was the
PAI value of the miRNA sequence.

The Random Forest algorithm was carried out 100 times
on specific datasets: each dataset consists of all mitomiRs
and non-mitomiRs except all homologous sequences but one
(randomly selected) member from each homologue group.
In each iteration, a randomly generated subset (one third of
the total dataset) serves as a test dataset, while the remaining
part is used for model training. Statistical estimates and sig-
nificance levels for the criteria were averaged over all tests.

Results
Statistics. Considering the papers with the data on mito-
chondria-located miRNAs for three mammal species (Homo
sapiens, Mus musculus, and Rattus norvegicus), we obtained
information on 1,312 accession numbers of the mitomiR
sequences. Among them, there were sequences that had been
excluded from the miRBase database for various reasons.
For example, miRNAs hsa-miR-1974, hsa-miR-1977 and
hsa-miR-1978 overlap with mitochondrial tRNAs; hsa-miR-
6723-5p has a reads pattern from RNA-seq experiments
that does not support its annotation as a miRNA in the
miRBase; mmu-miR-2145 is a fragment of 5S rRNA; and
other entries are suspected of being transcriptional noise
or products of non-canonical maturation process. Approxi-
mately 66.6 % (874) of the discovered mitomiRs correspond
to human miRNAs, while the rest belong to mouse (30.6 %,
401) and rat (2.8 %, 37).

By comparing mitomiR sequences and names, we found
16 (out of possible 37, based on the number of mitomiRs in
R. norvegicus) conserved mitomiRs, i.e. those detected in
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mitochondria across all of the three considered species. Ad-
ditionally, 30.6 % of all mitomiRs have been described in more
than one publication, which may represent their higher cred-
ibility as mitochondrial. Only nine of the mitomiR sequences
(hsa-miR-1973, hsa-miR-1974, hsa-miR-1977, hsa-miR-1978,
hsa-miR-4461, hsa-miR-4463, hsa-miR-4284, hsa-miR-
4485-3p, mmu-miR-805) are fully mapped to mitochondrial
DNA (three to tRNAs and rRNAs, two to protein-coding
regions, and one to the D-loop). Notably, among them, only
five mitomiRs (hsa-miR-1973, hsa-miR-1974, hsa-miR-1977,
hsa-miR-1978, hsa-miR-4485-3p) have been additionally vali-
dated by RT-PCR/RT-qPCR/qRT-PCR analysis or observed
in mitochondria in greater abundance than in the cytoplasm.

Criteria. The selected characteristics of mitomiRs (in
comparison with the rest of miRNAs) do not allow clas-
sifying mitomiRs by one of the chosen criteria (Fig. 2a).
However, the Random Forest classification algorithm ranks
criteria by their influence, highlighting the most important
characteristics of mitomiRs. With the considered criteria, the
Random Forest model achieved average prediction errors (the
fraction of incorrectly classified samples) of 0.20+0.003 for
the training dataset, and 0.22+0.006, for the test dataset. The
most influential criteria for the classification were: (1) the PAI
value of the miRNA, (2) the presence of miRNA targets, and
(3) whether the miRNA is classified as circulating (Fig. 2b).
In contrast, the least important criteria were the miRNA’s
association with disease and its confidence level (as defined
by miRBase); miRNA confidence plays the minimal role in
the classification.

The evolutionary characteristic PAI (phylostratigraphic age
index, describes the age of a mitomiR) appeared to be the most
significant criterion for mitomiR classification. PAI denotes
the serial number of a taxon (node of the phylostratigraphic
tree) furthest from its root and occurring in taxonomic lineages
of'the microRNA sequence and its homologues. According to
the PAI values, mitomiR sequences generally show, on aver-
age, greater evolutionary conservation than non-mitomiRs.
The minimum value of mitomiRs’ PAI is 4 (Fig. 3). Only
four mitomiRs (hsa-miR-99a-5p, mmu-miR-99a-5p, hsa-
miR-100-5p, and mmu-miR-100-5p) and two non-mitomiRs
(rno-miR-99a-5p, rno-miR-100-5p) have this PAI due to their
homologs being found in Nematostella vectensis, which testi-
fies to an ancient history of these miRNAs’ origin (Grimson
et al., 2008).

However, in the evolutionarily distant species, miRNA
sequence homology, even with the presence of a hairpin
structure, does not guarantee the existence of a real miRNA
(Grimson et al., 2008). All the aforementioned mitomiRs
belong to the abundant miRBase family mir-10. This family
also contains a set of human and mouse mitomiRs (miR-10a,
miR-10b, miR-125b from the Sp-branch of precursors) with
the PAI of 5. In contrast, the rat miRNAs from this family
correspond to non-mitomiRs, which is probably due to the
limited number of mitomiRs found in the rat. It is known
that abundant miRNA families, such as mir-10, tend to be
older, more efficient, target more genes, and are more likely
to be associated with diseases. All of these factors point out
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Fig. 3. Cumulative distribution of mitomiR and non-mitomiR sequences by PAl values. The fraction of mitomiRs with a PAl value less
than 16 exceeds the corresponding fraction of non-mitomiRs, with the significance level of 1.10x 1041 +5.97 x 1071

The minimum PAl value is 4, which corresponds to four mitomiRs (hsa-miR-99a-5p, mmu-miR-99a-5p, hsa-miR-100-5p, mmu-miR-100-5p)
and two non-mitomiRs (rno-miR-99a-5p, rno-miR-100-5p) from the abundant miRNA family mir-10.

the importance of mitomiRs in mitochondrial function and
metabolism.

The next important criteria for the mitomiR classification
are the presence of miRNA-target associations and whether
the miRNA is classified as circulating. The total number of
the mitomiR-mRNA interactions is 23,151, which includes
3,318 entries with “strong” evidence of interactions and
19,833 entries with “weak” evidence (Supplementary Ma-

terial 4). It should be noted that the considered subset of
miRTarBase does not contain entries with interspecies
interactions, meaning there are no observations where the
species of the miRNA does not match the species of the
targeted mRNA. Notably, a significantly fewer number of
mitomiRs (in contrast to the number of non-mitomiRs)
are associated with approximately the same number of
mRNAs. Two-sided Fisher’s exact test (average p-value
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Characteristics, for which significant differences between mitomiRs and other miRNAs are observed

Characteristic

Total number of sequences

Fraction of miRNAs that target mRNA (miRTarBase)

Fraction of miRNAs that target mitochondrial MRNA (miRTarBase)
Fraction of miRNAs that are associated with diseases (RNADisease)

Fraction of miRNAs that are associated with mitochondrial diseases
(RNADisease)

Fraction of miRNAs that are circulating

Fraction of miRNAs with PAl less than 16

mitomiRs non-mitomiRs  p-value (100 tests)

1,312 4,126 -

0.94 0.60 1.82x10789+7.73%x1078°
0.05 0.0002 1.20x 1070 £7.44x 107°°
0.99 0.77 1.13x107%6+3.89%x 107
0.03 0.002 1.09%107°+2.14x107°
0.29 0.06 1.20x 1070 £7.44x107%°
0.26 0.01 1.10x 1041 £5.97x 1074

Note. The significance of differences between the characteristics was evaluated by averaging results over 100 iterations, each involving the random selection of

one miRNA sequence from each group of homologous.

1.82x10789+£7.73x107%%) demonstrates a significant connec-
tion between the type of miRNA (mitomiR or non-mitomiR)
and its association with mRNA (see the Table). All of this
may indicate the important regulatory role of mitochondrial
miRNAs.

Further, having a set of mitomiR-mRNA associations, we
considered only mitochondrial genes and their connections to
mitomiRs. The total number of such genes (which encode for
rRNAs, tRNAs, and protein subunits) across the three exam-
ined mtDNAs is 111. A notable feature of the miRTarBase
database is that it provides information only on protein-coding
mitochondrial genes and does not cover RNA-coding genes.
Additionally, we found that 65 mitomiRs target mitochondrial
mRNA, while 1,247 do not. Moreover, sequences of all target-
ing mitomiRs are not mapped to the mtDNA, meaning that
these mitomiRs are external to mitochondria. The mitomiRs
target 12 mitochondrial mRNAs: ND1, ND2, ND3, ND4,
NDA4L, ND5, ND6, COX1, COX2, COX3, CYTB, ATP6. The
largest number of mitomiRs (more than 15) target only two
human mRNAs (ATP6 and COX1), while the lowest number of
mitomiRs (fewer than 5) is associated with the human mRNAs
ND3 and NDA4L, as well as the mouse and rat mRNAs COX1.
Furthermore, among 4,126 non-mitomiRs, only one (hsa-miR-
15a-3p) targets mitochondrial mRNA (ND4L). Two-sided
Fisher’s exact test (average p-value 6.01x1022£2.30x10-21)
demonstrates a significant association between the type of
microRNA (mitomiR or non-mitomiR) and its interaction
with mitochondrial mRNA.

The significance of the “circulating” miRNA criterion may
reflect a specific mode of mitomiR transportation into mito-
chondria. Comparison between mitomiRs and non-mitomiRs
(Fig. 2a) shows that mitomiRs are more prevalent among
circulating miRNAs than non-mitomiRs (377 mitomiRs Vs
251 non-mitomiRs). Two-sided Fisher’s exact test (carried out
on miRNA sets purified from homologous sequences) yielded
an average p-value of 1.20x1075+ 7.44x10-°,

Although association with diseases demonstrates lower
significance for classification than the previously mentioned

FTEHOMUKA N TPAHCKPUNTOMUKA / GENOMICS AND TRANSCRIPTOMICS

criteria (due to its similarity with the “presence of targets”
criterion, see the Table and Supplementary Material 4), it
remains essential for understanding mitomiR functions. For
each mitomiR and non-mitomiR entry, we indicated its con-
nection (or a lack of connection) to mitochondrial diseases.
Using entries from the RNADisease database, we discovered
36 mitomiRs (out of 1,312) associated with mitochondrial
diseases based on their names or identifiers. On the other hand,
only 9 out of 4,126 non-mitomiRs had the same association,
which may be due to the targeting of nuclear mRNAs pro-
ducing mitochondria-localized product. Both mitomiRs and
non-mitomiRs showed associations with the disease group
“Mitochondrial disease” and MNGIE-syndrome (Supple-
mentary Material 3). Two-sided Fisher’s exact test (average
p-values 1.13x107%0+3.89x109/1.09x10+2.14x10° for
all and for mitochondrial diseases, respectively) confirmed
that mitomiRs are more closely related to diseases (including
mitochondrial) than non-mitomiRs. The associations with
mitochondrial mRNA and diseases suggest an important role
of mitomiRs in mitochondria activity.

Data. The mitomiRdb database (https://mitomiRdb.org)
offers a web-based user interface for accessing mitomiR data
and for performing information extraction. The database
includes the following data (according to miRBase): unique
identifier (MIMAT), name, nucleotide sequence, and the
organism in which the mitochondrial miRNA was observed.
In addition, a mitomiR’s confidence flag highlights entries
which are associated with mitochondrial mRNA or diseases
and those mapped to the mitochondrial genome. The database
provides additional information about the secondary structure
of miRNA precursors, references to the supporting publica-
tions, and the list of associated diseases and genes. For entries
classified as “confident” mitomiRs, a list of associated mito-
chondrial genes and diseases is provided, along with a note
indicating the presence of the mitomiR sequence in mtDNA.
All the data presented are available for download in SQLite
format for further computational analysis (doi.org/10.6084/
m9.figshare.22592380).
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Discussion

To date, numerous microRNAs have been detected in mito-
chondria. It is still unknown whether the presence of these
miRNAs is due to their functional roles or it is simply a co-
incidence that random miRNAs have been observed in these
organelles. If the former is true, mitochondrial miRNAs may
have special features of biogenesis and specific regulation of
the expression of genes, including mitochondrial ones. In this
study, we analyzed the characteristics of miRNAs to identify
the factors that distinguish mitomiRs from other microRNAs
and to confirm the fact that the observation of this miRNA
class is not by chance.

The most significant feature of mitomiRs is the phylostrati-
graphic age index (PAI), which characterizes the evolutionary
age of miRNA sequences. A smaller PAI for mitomiRs indi-
cates that, on average, mitomiRs are older than non-mitomiRs.
Like most old miRNAs, they are more frequently involved in
a greater number of important regulatory processes, including
those related to mitochondrial functions.

A significant association of mitomiRs with mRNAs (in-
cluding mitochondrial ones) has been revealed based on
experimentally determined interactions of microRNAs with
targets. This suggests that the presence of mitomiRs within
mitochondria is not by chance, and underscores the importance
of mitomiRs for the functioning of the entire organism and
the mitochondria in particular. Importantly, miRNA-mRNA
interactions do not necessarily result in gene silencing. Ap-
proximately half of the Argonaute mRNA crosslinks involve
miRNA-mRNA bindings that lack a contiguous match to
miRNA seed nucleotides (Grosswendt et al., 2014), which
are most critical for target association (Chandradoss et al.,
2015; Salomon et al., 2015). These non-canonical binding
sites, although identified by crosslinking (CLIP-methods), do
not always mediate gene expression (Agarwal et al., 2015).
Therefore, evolutionary conservation may serve as useful
evidence of site functionality. To test this hypothesis for a
single mitomiR example, we selected the only site where
the crosslinking study aligned with the computer prediction
(Khorsandi et al., 2018). This site is responsible for targeting
mt-ND5 by miRNA hsa-let-7a, it resides between positions
13,418-13,439 of human mtDNA and in roughly the same
position (1,081 bp from the ND5 start) in other primates.
However, the site appears in the human due to a synonymous
nucleotide substitution (C>T) in the site position that corre-
sponds to the second seed nucleotide of let-7a. Meanwhile, in
this position, there is a backward SNP (T>C) (rs386829181,
7x10* allele frequency) (Sherry, 2001), which has been as-
sociated with cranial meningiomas in Chinese patients.

The next factor that distinguishes mitomiRs from other
microRNAs is their assignment as circulating miRNAs.
Circulating miRNAs are a type of extracellular RNAs that
are observed in sufficient quantities in various body fluids.
The importance of this factor for the mitomiR classification
suggests a potential similarity between the mechanisms of
free miRNA transfer out of the cell and the translocation of
mitomiRs within mitochondria.
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The criterion based on mitomiR-disease associations ap-
pears less important for classification, possibly due to the
overlapping associations of both mitomiRs and non-mitomiRs
with targets and diseases (Supplementary Material 4). De-
spite this, the criterion demonstrates a significant connection
between diseases and mitomiRs, which may imply that mito-
miRs play an important role in regulating various biological
processes, including those related to mitochondria.

The least important factor is the “confidence” of miRNA,
as defined by miRBase standards. This may indicate the exis-
tence of an unknown maturation pathway for mitomiRs, which
forms a microRNA-microRNA duplex with non-canonical
overhanging ends, rather than the canonical 2-nucleotide
overhangs that arise from Dicer and Drosha cleavage of pre-
miRNA.

Despite the presence of mitochondria in all cell types of
the studied mammals, the contribution of tissue specificity
factor and miRNA expression levels to the difference be-
tween mitomiRs and non-mitomiRs cannot yet be assessed.
This limitation arises from the fact that existing experimental
observations of mitomiRs cover a small number of tissues
and provide insufficient information about the expression of
mitomiRs.

Conclusion

The following characteristics of mitochondrial miRNAs allow
to separate mitomiRs from other microRNAs (in descending
order of importance): phylostratigraphic age index (PAI),
the presence of microRNA targets, and the classification of
microRNAs as “circulating”. These identified characteristics
may help to shed light on the origin, processing and function
of mitomiRs.

All experimentally investigated mitomiRs have been col-
lected in the mitomiRdb database (https://mitomiRdb.org).
The database may be useful for a more comprehensive study
of microRNAs and their subclass of mitomiRs.
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Abstract. SARS-CoV-2 is a virus for which an outstanding number of genome variants were collected, sequenced and
stored from sources all around the world. Raw data in FASTA format include 16.8 million genomes, each =29,900 nt (nu-
cleotides), with a total size of =500- 10° nt, or 465 Gb. We suggest an approach to data representation and organization,
with which all this can be stored losslessly in the operative memory (RAM) of a common PC. Moreover, just =330 Mb will
be enough. Aligning all genomes versus the initial Wuhan-Hu-1 reference sequence allows each to be represented as a
data structure containing lists of point mutations, deletions and insertions. Our implementation of such data represen-
tation resulted in a 1:1500 compression ratio (for comparison, compression of the same data with the popular WinRAR
archiver gives only 1:62) and fast access to genomes (and their metadata) and comparisons between different genome
variants. With this approach implemented as a C++ program, we performed an analysis of various properties of the
set of SARS-CoV-2 genomes available in NCBI Genbank (within a period from 24.12.2019 to 24.06.2024). We calculated
the distribution of the number of genomes with undetermined nucleotides, ‘N’s, vs the number of such nucleotides in
them, the number of unique genomes and clusters of identical genomes, and the distribution of clusters by size (the
number of identical genomes) and duration (the time interval between each cluster’s first and last genome). Finally, the
evolution of distributions of the number of changes (editing distance between each genome and reference sequence)
caused by substitutions, deletions and insertions was visualized as 3D surfaces, which clearly show the process of viral
evolution over 4.5 years, with a time step = 1 week. It is in good correspondence with phylogenetic trees (usually based
on 3-4 thousand of genome variant representatives), but is built over millions of genomes, shows more details and is
independent of the type of lineage/clade classification.
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HOBBIN 110AXO0M K aHa/In3y 3BoaIinn SARS-CoV-2,
OCHOBAHHLIN Ha BMU3VaJIN3alM U KJIacTepur3alnumn
O00/IBLINX 0OBEMOB reHeTMUYEeCKNX JaHHbIX,
KOMIIAKTHO IIpeCTaBJI€HHbBIX B OIIepaTUBHON IIaMATIU

A IO. TTaabsaHOB 1’2’3@, H.B. [Maabsauosa (2?2

! NHCTUTYT cnctem nupopmatunku nm. AT, Epwosa Cnbrpckoro otaeneHnsa Poccuinckolt akagemmnm Hayk, HoBocnbnpck, Poccms

2 HayuHo-1CCre10BaTeNbCKNI HCTUTYT BUpyconorn, DefepanbHbli NCCneaoBaTeNbCkuii LEeHTP GyHaMEeHTaNbHOM 1 TPAHCAALMOHHON MeALIMHI,
HoBocnbupck, Poccus

3 HoBocnbrpcKmii HaLoHanbHbI NCCefoBaTeNbCKUIA FOCYAAPCTBEHHbIN YHUBepcuTeT, HoBOCM6MpCK, Poccna

@ palyanov@iis.nsk.su

AHHoTauusA. KopoHaBupyc SARS-CoV-2 — 3To BUPYC, AN KOTOPOro 6bifio co6paHo, CEKBEHPOBAHO 1N COXPaHEHO pe-
KOPAHOE KOMMYeCTBO BapraHTOB reHOMa 13 MCTOYHMKOB NO BceMy Mupy. HykneoTnaHble nocnefoBatesisHoCcTv B Gop-
mate FASTA BKtoualoT 16.8 MITH FeHOMOB, Kaablii ANMHOMN =29 900 HT (HyKNeoTnAoB), 0bwum pasmepom =500+ 10° Hr,
unm 466 6. Mbl npepnaraem cnocob nNpeacTaBneHNs AaHHbIX, MO3BONAWNI Pa3mMecTUTb 6e3 noTepb BCIO 3TY WH-
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dopmauuto B onepatneHoi namatn (RAM) obbiyHOro nepcoHanbHOro Komnblotepa. bonee Toro, Gyaet poctaTtouHo
Bcero =330 M6. BbipaBHMBaHME UX BCEX OTHOCUTENIBHO UCXOLHOW pedepeHcHol nocnegosatenbHoctn Wunah-Hu-1
No3BONAET NPEACTAaBUTb KaXKAbI TEHOM Kak CTPYKTYPY AaHHbIX, COAepaLlyto CMMCKN TOYeYHbIX MyTaLluii, Aeneumni n
BCTaBOK. Halua peanu3auuna Takoro npeacTaBneHnsa faHHbIX npmeena K koadouumeHty cxatua 1:1500 (ansa cpaBHeHMs,
ynakoBKa [aHHbIX C noMoLbto nonynsapHoro apxmsatopa WinRAR paeT cteneHb cxatua Tonbko 1:62) n obecneunna
BO3MOXHOCTb 6bICTPOro BblYMC/IEHUA PEAAKLMOHHOIO PAacCTOAHMA MeXAy PasMyHbIMU BapuaHTamu reHoma. C no-
MOLLbIO 3TOTO MOAXOAa, Peanv30BaHHOro B BuAe nporpammbl Ha C++, Mbl NPOBeNV aHanm3 pasnyHbIX CBONCTB Habopa
reHomoB SARS-CoV-2, copepxatumxca B NCBI Genbank, cobpaHHbIx 3a 4.5 roga (¢ 24.12.2019 no 24.06.2024). bbinu
paccumTaHbl pacnpegeneHe Yyncna reHoOMOB OT YMCa HeonpeaeneHHbIX Hykneotnaos “N” B HUX, YACNO YHUKANbHbIX
reHOMOB 1 KNacTepoB 13 UAEHTUYHbIX FeHOMOB, a TaKKe pacrnpeferneHe KnactepoB no pasmepy (Yncny NaeHTUYHbIX
reHOMOB) 1 MPOLOIKUTENIbHOCTY (ANMHE BPEMEHHOIO MHTEPBana MeXay NnepBbiM U NOCNeLHUM FeHOMOM KaXoro
KnacTepa). HakoHel, 3Bonouma pacnpefeneHuin yncna nsmeHeHuin (pefakuMoHHOe paccToAHME MEXAY KaxXAbIM re-
HOMOM 1 pedepeHCHON NOC/IeA0BaTEeNIbHOCTbLIO), BbI3BaHHbIX 3aMeHaMK, AeNeLMAMA 1 BCTaBKaMu, Obina BU3yanunsu-
poBaHa B Brae 3D NoBepXHOCTEN, HarNAAHO N306parkaloLnX NPOLECC BUPYCHOW 3BOMOLUMMN B TeueHue 4.5 feT, C NH-
TepBasiom B OfHy Hefento. Takaa BM3yanu3aunsa XOPOLO COOTHOCUTCA € GUIOreHeTUYeCKMIN AepeBbaMU (06bIYHO
paccunTbiBaeMbiMy M0 3-4 TbiC. NPeACTaBUTENEN BaPUAHTOB reHOMa), HO CTPOUTCA Ha OCHOBE MUJIIOHOB FrEHOMOB,
oTobpaxkaeT bosnblue AeTanel 1 He 3aBUCKT OT TUMa KnaccudurKkauum NMHWR/Knag,.

KnioueBble cnoBa: KopoHaBupyc; SARS-CoV-2; reHOM; BapMaHTbl; SBONIOLMA; MPOrpaMmHan cuctema; 6onblune fan-

Hbl€; KOMMaKT3auunA; aHanus; Busyannsaumns.

Introduction

SARS-CoV-2 coronavirus, the very first sample of which,
named Wuhan/Hu-1/2019, was collected on 24 December
2019 (Wu et al., 2020), caused the largest pandemic in the
last 100 years (since the Spanish flu of 1918-1920). 4.5 years
later, it is still persisting, evolving and being detected in people
around the world, albeit in much smaller numbers than during
the peak of the pandemic and with less severe consequences.
However, usually infection rates rise again with the arrival
of autumn, and 2024 is no exception. According to the World
Health Association (https://data.who.int/dashboards/covid19/
cases, section “COVID-19 cases, country level trends”), by
mid-September 2024 many countries have already started to
experience an increase in the incidence of the disease. For ex-
ample, in Russia, 26.7 thousand cases of SARS-CoV-2 infec-
tion were registered in July 2024, 24.7 thousand — in August,
and already 62.2 thousand in the first half of September. In
different countries there are certain features of the dynamics
of the number of infections, depending on many factors, the
analysis of interrelationships between which, in particular, we
studied in (Palyanova et al., 2022, 2023).

SARS-CoV-2 virus samples obtained worldwide are se-
quenced and uploaded to databases, the largest of which are
GISAID (gisaid.org) and NCBI Genbank (www.ncbi.nlm.
nih.gov/sars-cov-2/) — as of 06.2024 they contain more than
16.7 - 10 and more than 8.6 - 10° SARS-CoV-2 genome
samples, respectively. In comparison, human influenza virus,
the earliest samples of which date back to 1905 in GISAID,
has been represented by approximately 5.22 - 10° genomes
over more than a century. Given that the typical genome size
of SARS-CoV-2 is 29.9 kb, the total volume of the genomes
of this virus represented in GISAID is about 500 - 10° nt (or
465 Gb), and in Genbank, about 258 - 10° nt (241 Gb). All
these data will not fit into the RAM of an average modern
PC (16...64 Gb), while working with them directly from
files located on a hard disc (HDD) or solid-state drive (SSD)
will be much slower than from RAM. Read speeds from
modern HDD/SDD/RAM have typical values of about 0.2,
3 and 50 Gb/s, respectively, so for significant data volumes
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and computational loads, working specifically with RAM is
highly desirable.

Despite vaccination and drug treatment, there is currently
no way to completely eliminate SARS-CoV-2 (Cui et al.,
2023), so it is likely to remain with mankind for a long time,
adding to the numerous list of more than 200 acute respiratory
infections, including influenza, respiratory syncytial virus,
rhinovirus, coronavirus, adenovirus, and other infections that
cause catarrhal inflammation of the respiratory tract.

The longer a virus exists, the more changes accumulate
in its genome — each new generation is obtained as a result
of replication of viruses of the previous generation, in the
process of which errors/changes may occur. Gene mutations
can result in substitutions, deletions and insertions of one or
more nucleotides, as well as in translocations, duplications and
inversions of different parts of the gene. For example, point
mutations occur spontaneously with frequencies of 10-8-10-°
for DNA viruses, and 10°-10-4, for RNA viruses (Sanjuan,
Domingo-Calap, 2016), the molecular machinery for replica-
tion of which (RNA polymerase) lacks an error-correcting
mechanism (exonuclease). Coronaviruses and toroviruses,
which do have it (Campagnola et al., 2022), are exceptions,
as they have some of the largest genomes for RNA viruses,
and too rapid accumulation of errors in them is apparently not
desirable and does not favour virus survival.

According to (Amicone et al., 2022), the error rate during
SARS-CoV-2 replicationis 1.3 - 100+ 0.2 - 106 substitutions
per position per infectious cycle of cell infection (i. e. from
virus entry into the cell to the exit of new virions from the
cell). At the same time, the rate of evolutionary changes in the
SARS-CoV-2 genome is estimated to be 8.9 - 104 substitutions
per position per year (Sonnleitner et al., 2022).

In addition to the above-mentioned mechanisms that can
affect a single genome, there are also those that can create
new combinations based on the genetic material of different
genome variants. When two different variants of the same
virus infect the same organism simultaneously (e. g., Delta and
Omicron infection in the case of SARS-CoV-2 (Bolze et al.,
2022)), they may interact during replication (Simon-Loriere,
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Holmes, 2011), resulting in recombinants or reassortants (in
the case of viruses with a segmented genome).

Regardless of which mechanism caused a particular change,
the Levenshtein distance (also called edit distance) can be
calculated for any pair of genomes of the considered virus,
defined as the minimum number of single-character operations
(substitutions, deletions, insertions) that need to be performed
in the first genome to produce the second genome (or in the
second genome to produce the first one — the result is the
same). In other words, the Levenshtein distance sets a metric
that defines the difference between two sequences of symbols.
Thus, each variant of the SARS-CoV-2 genome out of the mil-
lions available can be compared to the original Wuhan-Hu-1
reference genome. For this purpose, it is necessary to perform
a global alignment of all available sequences with respect
to the reference, which we performed using the NextAlign/
NextClade software (https://github.com/nextstrain/nextclade)
(Aksamentov et al., 2021). As a result, for each considered
viral genome sequence, we calculated a list of changes (dele-
tions, insertions, or point substitutions) that distinguish it from
the reference genome sequence.

For a virus with a genome size of 30,000 nt, a single point
substitution could occur at each of 30,000 positions and result
in a change of an existing nucleotide (A, T, G, or C) to one
of the three others, giving rise to 30,000 - 3 = 90,000 dif-
ferent variants. A single insertion can be made at 30,001 posi-
tions —added either at the beginning or end of the sequence, or
in any of the 29,999 spaces between the available nucleotides.
It may contain any of the four letters of the alphabet, i. e. there
are 120,004 different variations of such insertions. Finally,
a deletion can occur in any of 30,000 positions, resulting in
a number of variants equal to the number of positions. Ho-
wever, the deletions and insertions that leave the virus viable
most often occur in blocks that are multiples of three, because
otherwise such a change would result in a shift in the rea-
ding frame, which in the vast majority of cases makes the
genome non-viable. Thus, even one single change can be
carried out in more than 240,000 different ways, although
a significant part of them (especially those correspon-
ding to deletions and insertions) will make the genome non-
viable.

The combination of two arbitrary point substitutions is al-
ready (240,000)2= 5.8 - 1010 and three — (240,000)> = 1.4 - 101°
variants, and this time among them there will be those with no
reading frame shift (the result of changes — deletion or inser-
tion of one triplet, i. e. three subsequent nucleotides). At the
same time, the number of differences between some modern
variants of SARS-CoV-2 and the reference genome already
exceeds 200, and, for scale, the editorial distance between
SARS-CoV-2 and the nearest genome of another virus —
bat coronavirus, RaTG13 —is 1,136 (96.1 % of nucleotides
match) (Zhou et al., 2020; Temmam et al., 2022). A number
of questions about the space of variants of SARS-CoV-2
genetic sequences are discussed in more detail in (Palyanov,
Palyanova, 2023), where, in particular, it is shown that thenu-
mber of already realized variants of the virus is a negligible
fraction of those that are potentially possible. Thus, both the
continued monitoring of new SARS-CoV-2 variants and the
analysis of the millions of genomes already accumulated over
the past 4.5 years are of interest both from a practical point
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of view and for obtaining new fundamental knowledge in
virology and epidemiology.

Materials and methods

The results presented in this paper were obtained using a
software package that we created to analyze the evolution of
viruses. The C++ programming language and the development
environment “Microsoft Visual Studio Community 2019 were
used. One third-party software module required to perform
global alignment of viral genomes was used — NextAlign by
NextClade (https://github.com/nextstrain/nextclade/releases).
Workstation based on Intel Core 17-10700K, 3.8 GHz, 8 cores,
32 Gb DDR4 operative memory was used for all computations.

The data for the analysis — the genetic sequences
of SARS-CoV-2. The data used in this paper are the complete
set of SARS-CoV-2 genomes contained in the Genbank data-
base (www.ncbi.nlm.nih.gov/sars-cov-2/) on day 24.06.2024
(4.5 years since the collection of the first sample of this vi-
rus, Wuhan-Hu-1, 24.12.2019). The number of genomes is
8,641,740 and their total size is 242 Gb. The SARS-CoV-2
reference genome, which is 29,903 nt long, consists of a
5" UTR (265 nt long), a CDS (which is 29,409 nt long and
encodes 29 proteins (Bai et al., 2022)), and a 3' UTR (229 nt
long) (UTR is the untranslated region, CDS is the coding se-
quence). This dataset, which continues to grow over time, was
analyzed to investigate evolutionary changes in SARS-CoV-2.
Another source of data is the GISAID database, which includes
a significant amount of the Genbank data; other genomes from
it have yet to be analyzed and compared with the results for
the Genbank genomes.

Data quality, preliminary data analysis and filtering.
One of the first issues that arise when working with a set of
nucleotide sequences of viral genomes is their quality. In par-
ticular, the sequences may contain not only letters encoding
nucleotides (A, T, G, C), but also “N”’s indicating unidentified,
unknown nucleotides in the corresponding positions. The
larger the number of “N”s, the greater the uncertainty, and
the worse for the results of the analysis and their validity. In
this regard, it is of course helpful to know how many such
sequences there are in the dataset under study, and how many
“N”s are present in them.

Our calculations showed that out of the full sequence set
(8,641,740), unidentified “N” nucleotides occur in 6,609,933
genomes (76.5 %) and are missing only in the remaining
2,031,807 (23.5 %). However, if we consider only CDS, the
number of genomes without “N” almost doubles, reaching
3,742,117 (43.3 %). In addition, we plotted the dependence of
the frequency of “N” occurrence on the position in the genome
on the basis of the full set of sequences for which the global
alignment was performed (Fig. 1).

As can be seen, there are two most significant peaks, at the
beginning and at the end of the genome, corresponding to the
non-coding regions of 5' UTR and 3’ UTR, the total length of
which is 1.65 % of the length of the whole genome. It is also
known that in the genetic sequences of SARS-CoV-2 from
GISAID and Genbank, the non-translational regions have a
high variation in their lengths (Palyanov, Palyanova, 2023).
Considering that the number of genomes in which “N” occurs
in UTRs and does not occur in CDS is 22.5 % of all genomes,
excluding UTR regions from consideration will almost double
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Fig. 1. Frequency dependence of “N” occurrence rate as a function of position in the genome (abscissa axis), obtained by
summarization over the full set of SARS-CoV-2 genetic sequences from Genbank in the interval from 24.12.2019 to 24.06.2024

the set of data suitable for analysis (23.5 % of sequences in
which “N” does not occur at all, neither in CDS nor in UTRs,
will be supplemented with another 22.5 % in which “N” is
present only in UTRs).

Depending on what is the distribution of genomes by the
number of “N”s contained in their CDS, we can either use
those genomes with only a few “N”s (in comparison with
editing distance values of the order of 100 point substitutions,
this is an insignificant value, although their presence intro-
duces some uncertainty), or use only those genomes with no
“N”s in the CDS. Having plotted the mentioned distribution
(Fig. 2), we found that exactly one “N” is present in 1.8 %
of genomes, two and three — in 0.8 and 0.9 %, respectively,
and the number of “N”’s between 1 and 10 per genome — in
5.4 %. As a result, at this stage it was decided to work only
with genomes in which “N” is absent in CDS, and to use only
CDS in calculations, excluding 5 UTRs and 3" UTRs.

Methods, algorithms and data structures. To construct
global alignments of all genomes (using the Wuhan-Hu-1
genome as a reference), we used the console version of
NextAlign (running in multithreaded mode), called with the
necessary parameters being passed from our software system.
This happens during the first run or when the alignments need
to be recalculated (e. g., if a different genome dataset is used).
On the full dataset mentioned above, consisting of 8.6 mil-
lion SARS-CoV-2 genomes, the calculation of alignments
takes about one day on a workstation with an Intel Core i7-
10700K @ 3.8 GHz processor (8 cores, 16 threads) and 32 Gb
of RAM (DDR4, 3,600 GHz). The output of NextAling for
all calculated alignments is stored in files on the hard drive
in the working directory of the program, which are then used
by our system as input data used for analysis. The files are
composed as tables with several dozen columns, including
various genome characteristics and metadata, as well as lists
of mutations, deletions and insertions that distinguish the
considered genome from the reference genome.

As the data are read, a list of structures is dynamically
generated in the computer’s RAM, each of which includes the
virus name, collection date, geographical data, and a complete
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set of changes that distinguish the current variant from the

reference genome:

+ a list of point mutations (single position substitutions), each
element of which contains the position number in the ge-
nome corresponding to the mutation and a letter encoding
the nucleotide that appears at that position as a result of
the substitution (the previous nucleotide that was present
before the mutation is not stored — it can always be read
from the corresponding position in the reference genome
if necessary);

« alist of deletions, each of which is defined by two numbers —
the positions of the beginning and the end of the deletion;

* a list of insertions, each of which is defined by the position
in the genome immediately after which the insertion took
place, as well as by the inserted sequence.

This organization of the data allows two arbitrary genomes
to be compared quickly and easily. It is especially quick to de-
termine whether they are identical or not. Instead of comparing
each of the 29,409 positions of the first and second genomes,
it is enough to simply compare the number of elements in
their lists of point mutations, deletions and insertions — at
least one difference makes it clear that the genomes are dif-
ferent. However, in this way it is possible to obtain not only
the result of genome comparison, but also to calculate the
editorial distance between them. Matching elements of the
difference lists do not contribute to the difference between
the genomes, whereas each element of difference from the
reference, present in one genome and absent in the other, adds
a corresponding amount of difference. Each substitution that
occurred at the same position in both genomes but resulted in
substitutions to different nucleotides also, of course, adds +1
to the edit distance. Given that the list sizes are quite small,
the comparison is much faster than comparing two genomes
without prior alignment.

Our proposed method of compact representation of nucleo-
tide sequences of related genomes in computer memory has
much in common with the compression method that represents
sequences in the form of a phylogenetic tree with substitutions
on edges. Moreover, the very representation of each genome
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Fig. 2. Distribution of genomes by the number of unidentified “N” nucleotides in them.

Calculated over the full set of SARS-CoV-2 genetic sequences from Genbank between 24.12.2019 and 24.06.2024.
The inset shows the same relationship, but with higher resolution, for the number of “N"s in the genome between 0 and 500.

as a set of changes that need to be made to go from the refer-
ence to the genome under consideration is based on the same
data representing the structure of the phylogenetic tree built
on the basis of multiple alignments of the sequences under
consideration.

The peculiarity of our implementation is that the data
structure in a PC operative memory, representing the set of
sequences under consideration, is not a phylogenetic tree, but
instead is a list of its “leaves” sorted in chronological order, by
the date of obtaining samples. For such tasks as analyzing not
just the available spectrum of virus variants, but its evolution-
ary changes taking into account the time of their emergence,
our approach provides a significant advantage in the speed of
data access. The point is that it allows us to move along the
time axis simply by increasing or decreasing the index of an
array element consisting of time-ordered genomes. And in the
tree representation, the search for all genomes corresponding
to a certain year, month and day, in general case, may require
traversing the whole tree, and so for each genome variant be-
ing processed. At the same time, each “leaf” in our approach
contains all the information about its “branch” of the tree,
which allows one to easily and quickly calculate the editing
distance for any pair of genome variants.

Results

Cluster structure of the genomes dataset

In the course of the study, we noticed that among the genomes
under consideration, there are quite often genomes with CDSs
that are 100 % identical to each other, while the date of sample
collection, geographical data, and other metadata most often
are different. By adding a function to our software system to

identify all genomes with identical CDSs (and combine them
into “clusters”), we have divided the entire set of genomes
into such groups. The statistics on them turned out to be as
follows from the Table.

Also, we calculated the relationship between cluster size
and the number of clusters of a particular size (Fig. 3). At the
same time, there is no obvious dependence between cluster
sizes and their lifetime; the distribution is a cloud of points,
most of which is concentrated in the region from 1 to 1,000
on the “cluster size” axis and from 1 to 500 on the “cluster
lifetime” axis (Fig. 4).

We also plotted (Fig. 5) all clusters of size > 200 on the time
axis and represented them as lines, with the beginning and end
corresponding to the clusters’ existence intervals. In addition,
we added all clusters of size 100—-199, the end of the existence
interval of which has a value > 1,000 days since the first SARS-
CoV-2 genome was obtained. This set of clusters covers the
entire timeline, although there are clearly other clusters in the
interval between 3 and 3.5 years, but all of them are smaller
than those shown in the Figure 5. The individual line “19A”,
the longest in the Figure 5, corresponds to the cluster with the
longest lifetime (1,539 days or 4.2 years) mentioned in Table.
In this regard, the genetic line 19A, which has survived for
such a long time, appears to be quite interesting. This genome
variant was detected quite stably both at the beginning of the
pandemic and in 2023-2024.

A novel approach to visualizing

evolutionary changes in SARS-CoV-2

Having obtained the ability to quickly calculate the editorial
distance between a pair of any nucleotide sequence variants,
we did it for the whole set of SARS-CoV-2 genomes from
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Statistical data on clusters composed of genomes with completely identical CDSs,

including size and extent in time

The total number of SARS-CoV-2 genomes from Genbank in the interval from 24.12.2019 to 24.06.2024
The number of genomes from the full dataset, the CDS of which doesn’t contain unidentified/unknown nucleotides “N”

The number of genomes (in the set of genomes with CDS without “N”s) with a unique nucleotide sequence found nowhere

else in other genomes

The number of genomes composing clusters with a size = 2 or larger (in the set of genomes with CDS without “N"s)

The number of clusters with a size > 2

The number of clusters for which the time of existence (the interval between the earliest and latest date

8,641,740
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461,511
366,427

of genome sample collection dates among the cluster members) is more than 1 day

Maximal size of the cluster (the number of genomes which compose it)
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Fig. 3. The dependence between the number of clusters and their size for the set of SARS-CoV-2 genomes from Genbank

in the interval from 24.12.2019 to 24.06.2024.

In the interval of cluster size values from 20 to 200, it is well approximated by an exponent with the parameters indicated

in the Figure.

Genbank for 4.5 years. Thus, for each genome, there is a pair
of numbers — the collection date of the genome sample and
the editing distance between it and the reference. Sometimes
different variants of genomes appear to possess the same
pair of values “date + editorial distance”, because the same
value of the editing distance can be a result of, for example,
a deletion of length 30, an insertion of the same length, or
30 point mutations scattered throughout the genome. If we
introduce a third value — the number of cases in which the
genome variant has a certain editing distance between it and
the reference and a certain date of sample collection — then
we can calculate triples of these values on the basis of the
complete set of SARS-CoV-2 genomes and display them as
a surface, which we did (Fig. 6).

In Figure 6, we have marked a number of interesting
landscape elements with blue dots, for each of which the
corresponding spectrum of variants has been calculated. For
many of them, it was possible to place this information in the
figure. The landscape shows regions with different features —
narrow extended “mountain ranges” with a beginning, an end
and a characteristic slope angle (which has close values for
most of them), apparently related to the rate of accumulation
of changes in the genome appearing due to point nucleotide
substitutions.

There are also regions in which the editing distance for the
entire set of variants existing at a given point in time changes
rapidly and significantly in the mean value or experiences
branching, splitting into several parallel, visually distinguis-
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Fig. 4. Dot cloud representing the set of SARS-CoV-2 genomes from Genbank
(between 24.12.2019 and 24.06.2024) using their “cluster size” and “cluster lifetime” features.

hable paths. Assuming that such abrupt and significant changes could be due to
deletions, insertions, or recombination events, we constructed three more figures
similar to Figure 6, for which we used not the full value of the editing distance,
but its three separate contributions — from a set of point substitutions (Fig. 7),
deletions (Fig. 8), and insertions (Fig. 9). Of the total number of genomes (with
no “N” in CDS), 3,742,117, the number of genomes with mutations relative

to the reference was 3,741,518, the number
of genomes with deletions was 3,520,077,
and the number of genomes with insertions
was 528,414,

As can be seen in Figures 7-9, the dy-
namics of evolutionary changes introduced
into SARS-CoV-2 genomes by different
evolutionary mechanisms differ quite sig-
nificantly for substitutions, deletions, and
insertions. From Figure 7 we can conclude
that the accumulation of the number of point
mutations (substitutions) increases linearly
on a large time scale (especially in the case
of following the upper boundary of the
evolutionary pathway region). In 4.5 years,
about 130 point mutations were accumu-
lated, i. e., the growth rate was about 29 nt
per year (=2.4 per month or ~0.08 per day).
The impact of deletions is also significant,
and their number also grows near linearly
with time, but at a slower rate of about
50 ntin 4.5 years, i. e., about 11 per year or
slightly less than one per month. And finally,
insertions, as can be seen from Figure §,
make a noticeably smaller contribution than
substitutions and deletions, which, with the
exception of the first year, practically does
not grow with time — it stays at the level
of +20 nt relative to the reference genome
(although the content of these insertions,
in principle, can change over time, from
year to year).

1,000
All other
clusters 22B (BA.5)
with size 200 (Omicron)
100
&
S 19A
g
3
O
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Fig. 5. The largest clusters (size >200) and their existence intervals (lines connecting the day of the first appearance of the
genome variant representing this cluster and the day when the last sample with the same genome was taken).

All clusters of size =200 depicted in the same colour belong to the same genetic lineage, the name of which is also displayed with that
colour. All genomes belonging to the same line are equal, and genomes of different lines differ between each other. The exceptions are
“all other clusters with size 200" depicted in black, which represent a collection of different genetic lineages (19A, 20A, 20B, 20C, 20E
and 20F), and clusters of size 100-199 depicted in magenta (which have an end-of-life date =1,000 days from the date of collection of

the first SARS-CoV-2 genome, 24.12.2019).
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Fig. 6. The landscape of the space of SARS-CoV-2 variants “visited” by the virus variants during the period from
24.12.2019 to 24.06.2024, projected on three axes: OX - time (sampled at 1 week), OY - difference (editing distance)
between a point on the landscape and a reference genome, OZ - fraction of genomes corresponding to a point
with certain Xand Y values, referred to the total number of genomes collected in week X. Such normalization is nec-
essary due to the fact that the dependence of the number of genome samples collected in one or another week all
over the world has significant changes over time, and without the proposed normalization the weekly distribution
in case of, for example, 100 genomes will be completely invisible in comparison with some other week represented
by 10,000 genomes, whereas even for 100 genomes distributions are quite informative.
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Fig. 7. The landscape of evolutionary changes based on contributions from point substitutions only.
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Fig. 9. The landscape of evolutionary changes based on contributions from point deletions only.

Discussion

We performed a number of evaluations and calculations,
mainly using software tools developed by us, to improve
our understanding of which features and trends related to the
evolution of SARS-CoV-2 coronavirus genetic sequences can
be found and effectively used. The proposed method of visual-

izing landscapes of evolutionary changes allowed us to display
many details and features that are not visible, for example, on
a phylogenetic tree. At the same time, rapid changes in the
evolutionary trajectory accompanied by stepwise changes in
the value of the editing distance, as can be seen from Figure 6,
are usually accompanied by a change of the dominant virus
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variant in the population. Thus, for example, for one of such
“jumps” on the evolutionary landscape, we were able to see
the genetic lineages “lota”, “Epsilon”, and “Kappa” in the
corresponding spectrum of variants (approximately in the
first quarter of 2022).

The observed non-growing contribution to the editing dis-
tance of inserts, previously mentioned for the results related
to Figure 8, may be due to the fact that too many inserts may
compromise the stability of the virus. Increasing the number
of inserts increases the physical size of the genome and thus
may impair its ability to fit inside the protein envelope, which
is presumably designed to contain an object of a certain size.
Thus, in the course of evolution, the number of insertions
relative to the reference genome may increase, but not exce-
eding 20-30 nt. If some of the new variants turn out to be
more adapted than their predecessors, they may soon displace
them. It can be seen that only at the beginning of 2024, vari-
ants with no insertions at all are disappearing — apparently,
due to the fact that during 4 years of evolution, such inser-
tions were found, which turned out to be noticeably more
adaptable than variants with no insertions at all and became
established in the population. It can also be seen in Figures 8
and 9 that the values of contributions to the editing distance
from deletions and insertions in most cases have a length
multiple of three, which has an obvious explanation — other
length variants will lead to a shift of the reading frame during
the synthesis of proteins encoded in the genome and, in most
cases, to non-viable copies of genomes, the virions of which
cannot be assembled.

Conclusion

As aresult of this work we have obtained the following main

results:

» a method of representing nucleotide sequences of virus
genomes, which provides their extremely compact
representation in computer memory, has been proposed
and implemented as a computer program. On the example
of SARS-CoV-2 coronavirus it is has been shown that
compression of ~1,500 times is provided. Using it for
transmission of genetic data over the internet could reduce
the load on servers and network traffic by a corresponding
number of times (especially when transmitting large
datasets);

« for the complete set of SARS-CoV-2 genomes (without “N”’s
in CDS), the presence of clusters of completely identical
genomes has been investigated. It has been found that their
size can exceed 10,000, and their lifetime can cover up to
several hundred days;

 anew way of displaying the evolutionary dynamics of viruses
in the form of a landscape visualizing the projection of
the space of virus genome variants on three axes — time
(T), editing distance to the reference genome (D), and
the fraction of genomes (P) at each point (T, D) in the
total number of genomes corresponding to a given T is
proposed;

* it is also shown that the landscape constructed for D
(calculated as the sum of contributions from point
mutations, deletions and insertions) can be divided into
three separate landscapes calculated separately for each of
the contributions. Each of them has a different character,
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allowing the contribution and impact of each of the

mentioned mechanisms on virus evolution to be estimated.

The constants characterizing each of the mechanisms

and the rate of changes acquired due to it have been

calculated;

« the fact that the lineage 19A has existed for the longest time
compared to the other clusters, covering the entire pandemic
period, allows us to propose to create new vaccines against
SARS-CoV-2 on the basis of this lineage, as it retains the
greatest competitiveness compared to the other variants, and
thus contains the most characteristic features of this virus
that can be recognized by the immune system.

Our further plans include investigation of the possibilities
of the proposed method of evolution visualization in more
detail, but we can already state that it seems to be useful, has
the potential for further use and development, and can be
applied not only to SARS-CoV-2, but also to other viruses.
The same can be said about the proposed method of compact
representation of viral genomes, the application of which in all
areas related to the storage, network transmission, processing
and analysis of a large number of variants of related genomes
(both viruses and living organisms) will provide significant
advantages.
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Abstract. The phospholipase A2 (PLA2) is a superfamily of hydrolases that catalyze the hydrolysis of phospholipids
and play a key role in many molecular processes in the cells and the organism as a whole. This family consists of
16 groups divided into six main types. PLA2 were first isolated from venom toxins and porcine pancreatic juice. The
study of these enzymes is currently of great interest, since it has been shown that a number of PLA2 are involved
in the processes of carcinogenesis. PLA2 enzymes were characterized in detail in model organisms and humans.
However, their presence and functional role in non-model organisms is poorly understood. Such poorly studied taxa
include flatworms, a number of species of which are human parasites. Several PLA2 genes have previously been cha-
racterized in parasitic flatworms and their possible role in parasite-host interaction has been shown. However, no
systematic identification of the PLA2 genes in this taxon has been carried out. The paper provides a search forand a
comparative analysis of PLA2 sequences encoded in the genomes of flatworms. 44 species represented by two free-
living and 42 parasitic organisms were studied. The analysis was based on identification of orthologous groups of
protein-coding genes, taking into account the domain structure of proteins. In flatworms, 12 of the 13 known types
of animal A2 phospholipases were found, represented by 11 orthologous groups. Some phospholipases of several
types fell into one orthologous group, some types split into several orthogroups in accordance with their domain
structure. It has been shown that phospholipases A2 of the calcium-independent type, platelet-activating phospho-
lipases from group G8 and lysosomal phospholipases from group G15 are represented in all large taxa of flatworms
and the vast majority of the species studied by us. In free-living flatworms PLA2 genes have multiple copies. In
parasitic flatworms, on the contrary, loss of genes occur specifically in individual taxa specifically for groups or sub-
families of PLAs. An orthologous group of secreted phospholipases has been identified, which is represented only
in Digenea and this family has undergone duplications in the genomes of opisthorchids. Interestingly, a number
of experimental studies have previously shown the effect of Clonorchis sinensis proteins of this orthogroup on the
cancer transformation of host cells. Our results made it possible for the first time to systematically identify PLA2
sequences in flatworms, and demonstrated that their evolution is subject to gene loss processes characteristic of
parasite genomes in general. In addition, our analysis allowed us to identify taxon-specific processes of duplication
and loss of PLA2 genes in parasitic organisms, which may be associated with the processes of their interaction with
the host organism.
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Mouck n dyHKLUMOHaNbHasA aHHOTaUWs
MHOro[JOMeHHbIX 6enkos cemeiicTBa A2 y NNOCKMX YepBseit

Bniepsble A2 6binv BbiaeneHbl Kak LUTOTOKCMHBI Afia Y 3Mel 1 GepMeHTbI NMaHKpeaTnyecKoro coka y cBuHen. /3y-
yeHue 3TX pepPMeHTOB B HACTOALLEE BPEMA Bbi3blBAET OOJIbLLON UHTEPEC, MOCKONbKY Obl10 MoKasaHo, uTto pag GA2
y4yacTByeT B npoLeccax KaHueporeHesa. Hanbonee xopowo n3sydeHsl depmeHTol DA2 y MOAENbHbIX OPraHM3MOB
1 yenoseka. OfHaKo Mx Hanuune n GyHKUMOHaNbHaA Posib Y HEMOAENbHbIX OPraHU3MOB M3yyeHbl cnabo. K Takum
MaJiou3yYeHHbIM TaKCOHaM OTHOCATCA MAOCKUE YepBu, PAL BUAOB KOTOPbIX ABNAETCA Napa3utamm yenoseka. Y na-
pasnTMYECKMX NMIOCKMX YepBeli paHee OGblIo OXapaKTepn3oBaHO HeCKoNbKo reHoB MA2 1 nokasaHa X BO3MOXKHasA
ponb BO B3aMMOAENCTBIN «Mapa3nT-Xo3amnH». Ho cuctematnyeckon ngeHtndurkaumny reHos ®A2 y 3Toro TakcoHa He
npoBefeHo. B paboTe ocyLieCcTBNEHbI MOVCK U CPAaBHUTENbHBIN aHanu3 nocnefosatenbHocTen OA2, Kogrpyembix B
reHomMax NnyIocKmx Yepseit. iccnegosaHo 44 Braa, NpeacTaBneHHbIX 2 CBOOGOLHOXKMBYLLMMUN 1 42 Napa3uTUYeCKUMmM
opraHv3mMamMu. AHanun3 BbIMOSIHEH HAa OCHOBE MOMCKA OPTONOrMYECKMX FPYNM 6eNoK-KOAMPYIOLWNX FEHOB C YY4eTOM
[OMEHHOW CTPYKTYpbl 6e/KOB. Y NIoCcKMx YepBei obHapyxeHo 12 13 13 usBecTtHbix TMNoB ¢ocdonunas A2, ume-
owmxca B 11 optonornyeckmx rpynnax. Yacte pocdonmnas HeCKoNbKMX TUMOB Momnana B OAHY OPTONOrMYecKyto
rpynmny, 4acTb TUMOB pacrnanacb Ha HECKONIbKO OPTOrPYIM B COOTBETCTBUN C OCOBEHHOCTAMMN AOMEHHON CTPYKTYPbI.
MokasaHo, uto MA2 Kanbuuii-HesaBucumoro Trna, A2 TpomboLUTapPHO-aKTBMPYIOLLero Tuna rpynn G8 1 nn3oco-
ManbHble ®A2 rpynnbl G15 npeacTaBieHbl BO BCEX KPYMHbIX TAKCOHAX MAOCKUX YepBeln 1 B GOMbLIMHCTBE N3YyYeH-
HbIX HaMW BUZOB. [1NA reHOB, KoanpyoLWmnx GepMeHTbl Y CBOOGOLHOXKMBYLLMX YepBel, HabnoaaeTca MHOXeCTBEHHOe
YMCNIO KOMUI. Y NapasnTUYecKmnx NIoCcKrx Yepseil, Ha060pPOT, NPOVNCXOANT MOTEPA OCHOBHOW YacTy reHoB cneundu-
YeCKM Mo OTHOLLEHMIO Kak K OTAeNbHbIM TaKCOHaM, Tak ¥ K oTAeNbHbIM rpynnam/noacemencream ®A2. O6HapyxeHa
opTonornyeckas rpynna cekpetmpyembix pocdonmnas, Kotopasa cpean napasmToB MMEeTCA TONbKO Y AnreHeTuve-
CKMX cocCanbunKoB, Npn 3TOM B reHOMax onnucTtopxmg sto cemencTso noaseprnocb gynnmkaynam. MHTepECHO, yTo
paHee B pAfe SKCNeprMMeHTanbHbIX paboT NokasaHo BnnaHue 6enkos Clonorchis sinensis 3To opTOrpynbl Ha PaKo-
Byt0 TpaHCcHOpPMaLMIO KNETOK OpraHM3Ma-xo3amHa. Halm pesynbTaTbl Aann BO3MOXHOCTb BEPBble CUCTEMATAYECKM
naeHTMdnLUMpoBaTh nocnefosatenbHOCTU A2 y NNOCKMX YepBel U NPOAEMOHCTPUPOBANN, YTO NX SBOIIOLNA NOA-
BepXKeHa npoLieccam NoTepb reHOB, XapakTePHbIX B LIeSIOM AJ19 FeHOMOB Napa3nToB. Kpome TOro, Hall aHanv3 No3Bo-
NN BbIABUTb TaKCOH-CNeumdmnyeckre npoLeccsl Aynankauuin u notepb reHoB MA2 y napasmTMyeCKnx OpraHn3mosB,
KOTOpble MOTyT 6blTb CBA3aHbI C NPOLIeCCaMM UX B3aMOLENCTBUA C OPFraHU3MOM XO3AMHa.

KnioueBble cnoBa: pocdonmnasza A2; nnockue Yepsu; MHOrOJOMEHHbIE 6eiKK; MapasnTam; GunoreHns; CTpyKTypa
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AOMEHOB.

Introduction

The protein family of phospholipases A2 (PLA2) is a group
of hydrolases that catalyze the hydrolysis of phospholipids,
playing a key role in the functioning of cells and the organ-
ism as a whole (Filkin et al., 2020; Murakami et al., 2020).
Phospholipases A2 are known to be the main components of
venom toxins in snakes (Bitar et al., 2021), insects (Bitar et
al., 2021), predatory invertebrates, for example, arachnids
(Salabi, Jafari, 2024) or mollusks (Mclntosh et al., 1995).
Phospholipases A2 from snake venom hydrolyze phospho-
lipids of cell membranes, which leads to cell destruction,
release of arachidonic acid and activation of inflammatory
processes. Their effects can also lead to more serious patho-
genic effects, including damage to the nervous system (Bitar
et al., 2021), which demonstrates the multiplicity of their
functions (Gutiérrez, Lomonte, 2013).

The PLA2 family is divided into 16 groups (Dennis et
al., 2011), united into six main types: secreted, cytosolic,
calcium-independent, platelet-activating factors, lysosomal
and adipospecific (Murakami et al., 2020). The main mo-
lecular functions of PLAZ2 include lipid cleavage, fatty acid
remodeling, and interaction with phospholipids of lysosomes
and adipose tissue (Mouchlis, Dennis, 2022). In animals,
these enzymes are involved in a large number of important
processes related to antibacterial, antiviral, immune and anti-
inflammatory activities (Dennis et al., 2011).

The antiparasitic properties of phospholipases A2 are
also known (Teixeira et al., 2022). Currently, these proteins

are of great interest due to the fact that the impairment of
lipid metabolism regulated by PLA2 often leads to various
diseases, including carcinogenesis (Turnaev et al., 2022).
Secreted PLA2 have increased expression in malignant
tumors of organs such as the stomach (Scott et al., 2010),
lungs (Park et al., 2012), intestines (Murase et al., 2017)
and liver (Shang et al., 2017).

PLAZ2 are ancient genes and are found in all taxa of living
organisms — bacteria, protists, archaea, animals, fungi and
plants (Nevalainen et al., 2012). Their evolutionary analysis
allows to consider in more detail the functional features of
these proteins, to clarify their role in the most important
biological processes (Murakami et al., 2020; Turnaev et al.,
2022). PLA2 enzymes have been most well studied in model
organisms and humans. However, their presence and func-
tional role in non-model organisms have been poorly studied.
Such poorly studied taxa include flatworms, a number of
species of which are human parasites.

Flatworms (Platyhelminthes) are one of the oldest groups
of multicellular animals. Their origin goes back to the early
stages of the evolution of multicellular organisms. Studies
by B. Egger etal. (2015) show that flatworms appeared more
than 500 million years ago, during the Cambrian period,
making them one of the first animals with an organized tis-
sue structure. Along with mollusks (Mollusca) and annelids,
they belong to a broader group, Lophotrochozoa (Egger et al.,
2015; Laumer et al., 2015). At the same time, flatworms are
often considered as a sister group to mollusks (Laumer et al.,
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2015), which emphasizes their close evolutionary relation-
ship. The importance of studying the biology of flatworms
is due to the fact that most of their species are parasites —
the main agents of helminthic diseases transmitted through
infected fish, affecting a significant number of people®. Nu-
merous studies have shown that long-term infections such
as opisthorchiasis, schistosomiasis and similar helminthiasis
can lead to serious consequences for the health of the host
organism (Carbonell et al., 2021; Ogorodova et al., 2015;
Pakharukova et al., 2019a), including the development of
cancer (Pakharukova et al., 2019b; Mordvinov et al., 2021).

In parasitic flatworms, phospholipase A2 is widely present
in excretory secretory products (ESP), which are secreted to
affect the host (Wang et al., 2014), indicating the potential
pathogenic effects of these enzymes on the host body. For
example, a number of studies have experimentally shown
that phospholipases A, C, and D of the parasitic flatworm
Clonorchis sinensis are associated with fibrosis in the host
(Hu et al., 2009). It has also been shown that phospholi-
pases A2 of group 3 of C. sinensis are involved in the pro-
cesses of carcinogenesis in host cells (Shang et al., 2017).
However, currently there is only scattered information about
phospholipases A2 in flatworms and their representation in
genomes. Their functions in parasites are poorly described.
This highlights the need for a deeper analysis and annotation
of the functions of phospholipases A2 in flatworms, includ-
ing parasitic worms, in order to better understand their role
in pathogenesis and develop effective methods to combat
helminthic infections.

In this work the structure, functions and evolution of
phospholipases A2 in flatworms were studied. Identification
of the phospholipase A2 protein sequences in flatworms
was performed, and they were divided into orthogroups.
Phylogenetic analysis of sequences from the orthogroups
was carried out. Domain strictures and putative functions
of PLA2 enzymes were analyzed.

Materials and methods

The OrthoDom computational pipeline for the identifica-
tion of orthologous groups of proteins taking into account
the domain structure. To identify PLA2 orthologous groups
in flatworms, taking into account the domain structure, we
used information on reference sequences of well-annotated
PLAZ2 in model animals and the OrthoDom computational
pipeline. The scheme is shown in Figure 1.

The OrthoDom pipeline allows to search for sequences
of families of multidomain proteins in protein sequences
encoded in the genomes of organisms under study based on
orthology and domain analysis. As input data (marker 1 in
Figure 1), sequences of the family of multidomain proteins
with high-quality annotation (as a rule, identified and anno-
tated in model organisms) are used (reference sequences).
For reference sequences, lists of functional domains that they
include are specified. For these domains, the corresponding
HMM profiles (marker 2) are extracted from the Pfam 33.1

T On the state of sanitary and epidemiological welfare of the population in the
Russian Federation in 2014: a state report. Moscow: Rospotrebnadzor, 2015,
vol. 206.
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database (Mistry et al., 2021). Further, using the hmmsearch
program of the HMMer 3.3.2 package (Eddy, 2011), valida-
tion of reference proteins is carried out for the presence of
these domains (marker 3), since for some of them domains
may be fragmented or absent.

Another set of input data is the amino acid sequences
(proteomes) of the studied organisms (usually non-model
ones), in which it is required to determine the orthologs of
the reference proteins (marker 4). Orthologous groups for
amino acid sequences of reference proteins and proteins of
the studied organisms were determined by the OrthoFinder
v. 2.5.4 program (Emms, Kelly, 2019). The orthologous
groups of interest are identified (marker 5) by the presence
of reference sequences. Sequences were additionally checked
for the presence of specified domains. The sequences of or-
thologs of reference proteins identified in this way (marker 6)
were further processed for phylogeny reconstruction by the
IQ-TREE program (Nguyen et al., 2015). Phylogenetic trees
were visualized using the web version of the iTOL program
(Letunic, Bork, 2024).

Reference sequences of phospholipases A2 and their
functional domains. To identify phospholipases A2 in
flatworms, we used well annotated sequences of vertebrate
phospholipases classified by type in a number of previous
works. These proteins were considered as reference and were
used to determine the type of phospholipases in orthologous
groups of flatworm proteins. The sample of reference proteins
is based on the PLA2 sequences from the work (Huang et al.,
2015) (9 types of phospholipases in humans and some verte-
brates). These sequences were supplemented with sequences
from the NCBI database identified on the basis of homology
using BLASTP (Turnaev et al., 2022). According to the clas-
sification of phospholipases A2 proposed by M. Murakami
etal. (2020), out of a total of 16 groups of phospholipases of
living organisms, the reference sample included phospholi-
pases of 13 groups, since groups of phospholipases A2 11,
13 and 14 are present only in plants (Murakami et al., 2020).
As a result, the reference sample of phospholipases A2 in-
cluded 13 groups of PLA2 from 15 vertebrate taxa. The list
of reference sequences from the articles by I.1. Turnaev et al.
(2022) and Q. Huang et al. (2015), the type of phospholipase,
the species name of the organism, and the identifier used in
this work are given in Supplementary Material 12. The list
of key domains of these proteins and their HMM models is
given in Supplementary Material 2.

Since phospholipases A2 contain not only PLA2 domains,
but also other characteristic domains (Dennis et al., 2011),
they were also identified after the identification of ortho-
logs. The list of protein domains considered is provided in
Supplementary Material 3.

Sources of genomic data. We studied the sequences of
protein-coding genes from the genomes of flatworms of
44 species represented by two free-living and 42 parasitic
organisms. The amino acid sequences encoded by mRNAs
of the corresponding genes presented in the Wormbase

2 Supplementary Materials 1-6 are available at:
http://vavilov.elpub.ru/jour/manager/files/Suppl_Bocharnikova_Engl_28_8.pdf
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IE, Conditions
) Sequence from .
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analysis orthogroups with present? sequence o
annotated domain ’ procedures

Fig. 1. Block diagram of the OrthoDom computing pipeline.

Block designations are shown in a dotted rectangle on the right.

Parasite 18.0 database (Howe et al., 2017) were analyzed.
These species include the main taxa of flatworms: the class of
digenetic flukes (Digenea), the class of tapeworms (Cestoda),
the class of monogenetic flukes (Monogenea) and the class
of ciliated worms (Turbellaria) (Brusa et al., 2020). Among
the listed classes, the latter is a class of free-living worms,
representatives of all other classes are obligate parasites, and
monogenetic flukes are entoparasites, and digenetic flukes
and cestodes are endoparasites. As an external group in the
analysis, we used mollusk sequences from the genomes of
the Pacific oyster (Crassostrea gigas), the sea saucer (Lot-
tia gigantea) and the Philippine mussel (Modiolus philip-
pinarum), since it is known that mollusks are a sister group
to flatworms (Bernhard et al., 2015; Laumer et al., 2015).
The amino acid sequences of mollusks were taken from
the MolluskDB 2.0 database (Caurcel et al., 2021). The ge-
nome identifiers of flatworms and mollusks, species names
of organisms and their types, and lifestyle are presented in
Supplementary Material 4.

Statistical processing of the results. To assess the pres-
ence of phospholipases of various orthologous groups in
flatworms, for large taxa (Digenea, Cestoda, Monogenea
and Turbellaria), we estimated the average number of phos-
pholipase sequences for the orthogroup in the genome (n)
and the standard deviation (o). The average number n of
sequences in each orthogroup by taxa shows how common
phospholipase sequences are in the studied organisms. The
standard deviations ¢ show a variation in the values of the
number of sequences around the average. The greater the
standard deviation, the greater the diversity in the number
of sequences across taxa. Additionally, we evaluated the

parameter f (representation, %), the fraction of organisms
in a large taxon that contain at least one of the orthogroup
sequences. If it is equal to 100 %, then all organisms of the
taxon contain at least one sequence from the orthogroup.
If some organisms do not contain any sequence from the
phospholipase orthogroup, then the f value is less than 100 %.

Results

As a result of the analysis carried out using the OrthoDom
pipeline, 11 orthogroups were identified in flatworms, which
contain reference sequences of phospholipases A2. Note
that of all the groups of phospholipases A2, the sequences
of which were used as a reference, only the sequences of
group 9 did not show homology in the proteomes of mol-
lusks and flatworms (they were not included in any of the
orthogroups defined for these organisms). Thus, according
to the classification of M. Murakami et al. (2020), 12 out of
the 13 known groups of animal phospholipases A2 fell into
the PLA2 orthogroups of mollusks and flatworms.

The Table shows the distribution of the identified ortho-
groups containing phospholipase sequences of flatworms
and mollusks, and a number of statistical characteristics for
them in terms of representation in the five main taxa. It can
be seen that the correspondence between orthogroups and
known types of phospholipases is non-exclusive. The Table
shows that some orthogroups include several types of phos-
pholipases. For example, the OG0003047 orthogroup con-
tains sequences of phospholipase groups 1, 2, 5, 10. On the
other hand, some types of phospholipases were represented
by several orthogroups. For example, the sequences of phos-
pholipase A2 group 6 split into orthogroups OG0000019,
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Characteristics of the occurrence of phospholipase A2 orthogroup genes in mollusks and large flatworm taxa

Orthogroup ID PLA2 type PLA2 Mollusca (3) Tricladida (2) Monogenea (1)  Digenea (22) Cestoda (19)
group o % n (o] L% n o % n (o] f,% n o f, %

0G0003047 Secreted G1,2,510 20 10 100 50 28 100 10 00 100 00 00 O 00 00 O

0G0003722 Secreted G3 47 38 100 30 14 100 00 00 O 1.0 19 41 00 00 O

0G0007610 Secreted G12 1.0 00 100 05 07 50 00 00 O 00 00 O 00 00 O

0G0000019*  Calcium- G6 23 06 100 20 14 100 20 00 100 10 04 91 1.3 09 95
independent

0G0000217*  Calcium- G6 1.0 00 100 65 78 100 20 0.0 100 11 04 95 1.2 06 95
independent

0G0000961*  Calcium- G6 1.3 06 100 15 07 100 1.0 00 100 1.0 0.0 100 05 06 47
independent

0G0007914 PAF G7 1.0 00 100 45 64 50 00 00 O 00 00 O 00 00 O

0G0004972*  PAF G8 1.0 00 100 1.0 00 100 1.0 00 100 1.0 05 86 1.1 07 95

0G0000127  Cytosolic G4 27 21 100 05 07 50 00 00 O 00 00 O 00 00 O

0G0000135*  Lysosomal G15 .7 12 100 85 07 100 3.0 00 100 47 20 100 21 25 89

0G0007915  Adipo-specific G16 30 1.0 100 10 14 50 00 00 O 00 00 O 00 00 O

Note. The rows correspond to different orthogroups of phospholipases. The columns include: the orthogroup ID, the type and groups of phospholipases
represented in it; statistics for the studied large taxa (average values (n), standard deviations (o) of the number of sequences in orthogroups by taxa, the repre-
sentation (f) of sequences in different species). The number of species is given in parentheses next to the name of the taxon. The maximum average values of the
n number of sequences in orthogroups by taxa are shown in bold, the minimum values are underlined. The largest n values for ortogroups are highlighted by gray

background. The complete table is presented in Supplementary Material 5.

*Orthogroups, the sequences of which are represented in all large taxa of flatworms.

0G0000217, OG0000961. In other cases, each orthogroup
corresponded to one type and group of PLA2.

First, it should be noted that orthogroups differ in the
number of sequences they are represented by. Thus, in the
orthogroup OG0000135, which represents the only group
of lysosomal phospholipases group G15, the average num-
ber of orthologs per proteome in each taxon of flatworms
is the largest, compared with other orthogroups (from 2.1
in cestodes to 8.5 in triclads). Note that in mollusks, this
group of phospholipases is not the largest one: the average
number of sequences per proteome is 1.7. This taxon has the
most numerous OG00003722 group: the average number of
sequences is 4.7 (secreted PLA2 G3).

The Table also shows that a high average number of
proteome sequences assigned to different phospholipases is
characteristic of Tricladida, which are free-living, in contrast
to the other taxa, which are parasitic. Only in the case of
orthogroup OG00004972 (type PAF, group G8), the average
number of sequences per proteome in free-living worms (1)
is less than in cestodes (1.11), but this number is not less
than in the other taxa.

The Table also demonstrates that the orthogroups we have
identified are unevenly represented in various taxa. First, the
PLA2 groups, which are found in all large taxa of flatworms.
These are calcium-independent type PLA2, namely ortho-
groups OG0000019, OG0000217, OG0000961 (the sixth
group of PLA2). At the same time, proteins of the first two

858

orthogroups are represented by the vast majority of species
from large taxa (more than 90 %). Orthogroup OG0000961
is characterized by the absence of orthologs for half of the
cestode species. For one of these groups (OG0000217), the
average number of proteins in free-living worms (6.5) is
several times higher than that in parasitic worms (1.1-2).
Proteins of this group in cestodes are represented in only
half of the studied species (the average number of PLA2 per
proteome is 0.5, the standard deviation is 0.6).

Another orthogroup, the representatives of which are found
in all taxa of flatworms, is OG0004972 (the eighth group
of platelet-activating type PLA2). In all major taxa, these
proteins are present in more than 95 % of species, except for
the digenetic flukes, in which this proportion is 87 %. These
genes have 1-2 copies per proteome.

Another orthogroup represented in all major taxa is
0G0000135, which includes lysosomal PLA?2 of group G15.
The sequences of this group are represented by more than
one copy per proteome, and are characterized by the largest
number of copies compared to others (see above).

Secondly, in the Table, orthogroups specific to free-living
worms can be distinguished, the genes of which are complete-
ly absent in parasitic worms. These orthogroups were divided
into four types: secreted, PAF, cytosolic and adipo-specific
(0G0007610, OG0007914, OG0000127, OG0007915,
respectively). Proteins in all these orthogroups are present
in at least one of the two free-living species studied by us.
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Thirdly, the Table demonstrates the presence of ortho-
groups specific to individual parasitic taxa. For example,
orthogroup OG0003047 (phospholipases of groups G1, G2,
G5, G10) is found only in Monogenea (in all species). Or-
thogroup OG0003722 is found only in Digenea (about half
of the species). At the same time, cestodes have the small-
est number of phospholipase orthogroups, in particular, all
secreted phospholipases are missing.

Thus, the results allow us to conclude that most of the
animal PLA2 groups (12 out of 13) are found in free-living
worms, and most of them have a large number of copies. The
number of genes in orthogroups and the number of ortho-
groups in parasitic worms is reduced in comparison with the
free-living ones. Monogenea have one orthogroup including
secreted proteins, all calcium-independent, one orthogroup
including PAF, and one including lysosomal phospholipas-
es A2. In Digenea, proteins from an orthogroup other than
Monogenea and orthogroups including PAF and lysosomal
phospholipases are present. All calcium-independent PLA2,
PAF, and lysosomal phospholipases A2 are present in ces-
todes, but the secreted ones are completely absent. Various
taxa of parasitic worms have phospholipases common to all
of them, as well as specific ones.

The structural diversity of phospholipases

The domain organization for a number of phospholipases is
shown in Figures 2 and 3. Figure 2 shows the domain struc-
ture of phospholipases from the OG0003047 orthogroup,
which includes the reference proteins of the PLA2 groups
G1, G2, G5 and G10.

Figure 2 shows that the sequences of secreted phospholi-
pase A2 orthogroup OG0003047 have a length of approxi-
mately 200-250 amino acids. The phospholipase domain
occupies more than 80 % of the total protein. Thus, the
primary structure of secreted PLA?2 in flatworms shows high
similarity with human PLAZ2 structures of the corresponding
types (Turnaev et al., 2022). Note that this orthogroup is
represented only in free-living organisms.

The domain organization of the sequences of orthogroups
0G0000019, 0G0000217 and OG0000961 is shown in Figu-
re 3. These are enzymes that belong to group 6. Despite the
fact that group 6 PLA2 has been divided into three specified
orthogroups, all of them contain a patatin domain key to this
group (Fig. 3). The domain structure of the sequences of the
0G0000019 orthogroup corresponds to the subgroup A typi-
cal for group 6 PLA2, which is characterized by a patatin
domain and seven ankyrin domains. The composition of the
domains of the OG0000217 orthogroup proteins corresponds
to the typical group 6 subgroup C PLA2, which in addition to
the patatin domain has three cNMP domains. The composi-
tion of the sequence domains of the OG0000961 orthogroup
is similar to subgroups D and E typical for group 6 PLA2,
which are characterized only by a patatin-like phospholipase
domain located at the N-end of the sequence (Turnaev et
al., 2022).

Thus, the analysis of the functional domains of phospho-
lipases shows that proteins belonging to phospholipases of
different types, but having a similar domain composition,
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0G0003047 | PLA2G1, 2, 5, 10 (secreted)

ModPhi_0.11
CraGig_7483
ModPhi_40.7
MacLig_739g1
MacLig_17g1
Maclig_73g2
SchMed_15.1
SchMed_27.1
SchMed_25.1
SchMed_30.1

100 AA

Mollusks

Phospholipase A2

Turbellaria

Fig. 2. Domain structure of sequences of orthogroup OG0003047,
phospholipase A2 of the secreted type.

The scale corresponding to 100 amino acids is shown on the right, the
phospholipase domain is marked in red. The figure shows 10 sequences
randomly selected among all the sequences of the 0G0003047 orthogroup.

form a common orthogroup, and sequences with different
domain compositions of phospholipases of even the same
type break down into different orthogroups.

Phylogenetic analysis of flatworm phospholipases
For orthogroups, the domain structure of which is presented
in Figures 2 and 3, we reconstructed phylogenetic trees.

Sequences of the 0G0003047 orthogroup were found in
free-living flatworms and one representative of Monoge-
nea (Fig. 4). In species of free-living flatworms, the
number of sequences belonging to this orthogroup is high
(see the Table), in a representative of Monogenea species,
Protopolystoma xenopodis (short designation ProXen),
only one gene encoding a phospholipase of this type is
observed.

Phylogenetic trees of orthogroups containing PLA2 of
group 6 are presented in Supplementary Material 6. In the
figures of calcium-independent PLA2 of group 6 (Supple-
mentary Material 6, Fig. 1-3), similar patterns can be seen. It
is worth noting that protein sequences of parasitic flatworms
are highly conservative. In Figure 3, it can be seen that the
domain structure of the sequences is similar among represen-
tatives of different parasitic taxa. This allows us to conclude
that group 6 PLAZ is a conservative protein that plays a key
role in the basic processes of life of parasitic flatworms.

Secreted phospholipases A2, which belong to orthogroup
0G0003722, are worth noting. This orthogroup is charac-
terized by the fact that in parasitic worms only the Digenea
contains sequences of this orthogroup. The phylogenetic
tree of sequences belonging to this orthogroup is shown in
Figure 5.

Figure 5 shows that several copies of the PLA2 gene of this
orthogroup are found in free-living worms. Digenetic flukes
also have several copies of this gene, which are distributed in
different clades. This suggests that duplications of the PLA2
gene of the G3 group are characteristic of these organisms.
Asarule, the molecular evolution of parasites proceeds much
faster compared to representatives of free-living organisms
(Trouvé et al., 1998). The analysis of phylogenetic trees
confirms this statement for phospholipase A2, where longer
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Patatin-like phospholipase
Cyclic nucleotide-binding domain
Ankyrin repeats (many copies)

Fig. 3. Domain structure of sequences of orthogroups OG0000019, 0G0000217, 0G0000961, calcium-independent phospholipase A2.

The scale corresponding to 100 amino acids is shown on the right, the patatin-like phospholipase domain is marked in green, the cNMP domain is blue, and
ankyrin repeats are orange. The figure shows 10 sequences (from 30 in total) randomly selected among all the sequences of orthogroups 0G0000019, 0G0000217,

0G0000961.

Tree scale: 1

100 L
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Fig. 4. Phylogenetic tree of phospholipase A2 orthogroup OG0003047 (PLA2GT1, 2, 5, 10, secreted).
In the figure, the sequences of mollusks (Mollusca) are highlighted in green, free-living worms (Turbellaria), in blue, and monogenea

(Monogenea), in orange.

branches are observed in parasites, which indicates a high
rate of evolution of these molecules.

Discussion

Despite the fact that phospholipases of various types, PLA2
among them, are components of ESP of parasitic flatworms
(Wang et al., 2014) and that an association with carcino-

genesis in the host has been demonstrated for a number
of them (Hu et al., 2009; Shang et al., 2017), they are still
insufficiently studied for the Platyhelminthes taxon (Dennis
et al., 2011). Here, almost all known groups of phospholi-
pases in flatworms were identified. The OrthoDom pipeline
allowed to split them into orthogroups, taking into account
the domain structure. These results are consistent with the
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Fig. 5. Phylogenetic tree of sequences of phospholipases A2 of orthogroup 0G0003722 (PLA2 G3, secreted).

In the Figure, mollusks (Mollusca) are highlighted in green, free-living flatworms (Turbellaria), in blue, and digenetic flukes

(Digenea), in red.

classification of phospholipases A2 and their domain orga-
nization, presented in the works of E.A. Dennis et al. (2011).
The method of identifying orthologs based on the domain
structure has demonstrated its effectiveness in isolating or-
thogroups of proteins, taking into account the differences in
the composition of their domains.

Our analysis made it possible to identify them and showed
that in the evolution of A2 phospholipases in flatworms,
peculiarities can be identified that are characteristic of the
evolution of parasite genomes, for example, gene loss due to
a parasitic lifestyle (Langleib et al., 2024). Indeed, our study
demonstrated that some PLA2 groups are reduced in parasitic
flatworms, and most genes are represented by a single copy.
There are groups of phospholipases lost in some large taxa.

Comparative analysis of orthogroups of PLA2 genes
shows that a relatively high degree of duplication is ob-
served among PLA2 in free-living worms, with an aver-
age number of paralogs per species reaching five. This
phenomenon implies the presence of significant adaptive
capabilities, which may be due to a variety of environ-
mental factors. Free-living organisms exposed to higher
levels of environmental competition can use this diversity of
PLAZ2 genes to increase viability and resistance to environ-
mental changes. However, in orthogroup OG0000135 con-
taining lysosomal type PLAZ2, genes are duplicated even in

parasitic flatworms. What caused this anomaly remains to
be seen.

A number of experimental studies have shown that some
phospholipases A2 can participate in carcinogenesis, contrib-
uting to the activation of a number of cellular signaling path-
ways and interaction with the host body’s immune system.
For example, chronic infection caused by C. sinensis leads
to liver fibrosis and cholangiocarcinoma (Shang et al., 2016).
Moreover, C. sinensis uses group 3 phospholipases A2 as an
ESP, which plays an important role in host kidney pathogen-
esis (Wu et al., 2021). As a result of the study, it was found
that among the secreted phospholipases of digenetic flukes,
only phospholipase A2 of group 3 is present, whereas in
cestodes there are no secreted phospholipases A2. Given that
parasitic flatworms are able to manipulate the metabolism of
their hosts by using phospholipases to extract the necessary
resources, it can be assumed that similar mechanisms may
work in cancer cells.

Conclusion

Phospholipases A2 are a family of hydrolases that catalyze
the hydrolysis of phospholipids, playing a key role in many
molecular processes in the functioning of cells and the body
as a whole. Their diversity in flatworms has been poorly
studied, and in our work, we conducted such an analysis for
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the first time. We found that 12 out of the 13 known types
of phospholipases A2 are present in free-living worms.
These organisms have an increased number of gene cop-
ies compared to parasitic worms. Unique features of some
orthogroups have been identified, which may probably
be associated with carcinogenesis in the host caused by a
parasitic infection.
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Abstract. Cholesterol is an essential structural component of cell membranes and a precursor of vitamin D, as well
as steroid hormones. Humans and other animal species can absorb cholesterol from food. Cholesterol is also syn-
thesized de novo in the cells of many tissues. We have previously reconstructed the gene network regulating intra-
cellular cholesterol levels, which included regulatory circuits involving transcription factors from the SREBP (Sterol
Regulatory Element-Binding Proteins) subfamily. The activity of SREBP transcription factors is regulated inversely
depending on the intracellular cholesterol level. This mechanism is implemented with the participation of proteins
SCAP, INSIG1, INSIG2, MBTPS1/S1P and MBTPS2/S2P. This group of proteins, together with the SREBP factors, is
designated as “cholesterol sensor”. An elevated cholesterol level is a risk factor for the development of cardiovas-
cular diseases and may also be observed in obesity, diabetes and other pathological conditions. Systematization
of information about the molecular mechanisms controlling the activity of SREBP factors and cholesterol biosyn-
thesis in the form of a gene network and building new knowledge about the gene network as a single object is
extremely important for understanding the molecular mechanisms underlying the predisposition to diseases. With
a computer tool, ANDSystem, we have built a gene network regulating cholesterol biosynthesis. The gene network
included data on: (1) the complete set of enzymes involved in cholesterol biosynthesis; (2) proteins that function as
part of the “cholesterol sensor”; (3) proteins that regulate the activity of the “cholesterol sensor”; (4) genes encod-
ing proteins of these groups; (5) genes whose transcription is regulated by SREBP factors (SREBP target genes). The
gene network was analyzed and feedback loops that control the activity of SREBP factors were identified. These
feedback loops involved the PPARG, NROB2/SHP1, LPINT, and AR genes and the proteins they encode. Analysis of the
phylostratigraphic age of the genes showed that the ancestral forms of most human genes encoding the enzymes
of cholesterol biosynthesis and the proteins of the “cholesterol sensor” may have arisen at early evolutionary stages
(Cellular organisms (the root of the phylostratigraphic tree) and the stages of Eukaryota and Metazoa divergence).
However, the mechanism of gene transcription regulation in response to changes in cholesterol levels may only
have formed at later evolutionary stages, since the phylostratigraphic age of the genes encoding the transcription
factors SREBP1 and SREBP2 corresponds to the stage of Vertebrata divergence.

Key words: cholesterol biosynthesis; transcription factors; SREBP; gene networks; feedback loops; evolution;
phylostratigraphy; gene age.
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AHHOTauuA. XonecTeprH — 3TO He3aMeHVMas CTPYKTYpHas KOMMOHEHTa KNeTOUYHbIX MeMOpaH, npeilecTBeHHUK
BUTaMmMHa D 1 cTeponaHbIX FOPMOHOB. Y YenoBeKa 1 ApYrux BUAOB »KMBOTHbIX XONeCTEPUH MOCTYNaeT B OpraHn3m
C NULLEl, a TaKXKe CUHTE3MPYeTCA B KNleTKax MHOIMX TKaHel de novo. PaHee Hamu 6bina peKoHCTpyrpoBaHa reHHas
ceTb perynaumny BHyTPUKIIETOUHOTO YPOBHA XONeCTepUHa, BKIIOYaBLUAA PerynaTopHble KOHTYpPbl, QyHKLMOHMpPYIoLL /e
NPy y4acTun TPaHCKPUNUMOHHBIX dpakTopoB nopcemeinctea SREBP (sterol regulatory element-binding proteins). Ak-
TUBHOCTb TPAHCKPUMLMOHHBIX PpakTopoB nopcemenctsa SREBP perynupyetca B 06paTHON 3aBUCUMOCTY OT YPOBHSA
XONleCTepyrHa B KfeTKe. DTOT MexXaHW3M peanusyeTca Npu yuyacTun GeNikoB «XOnecTeprHOBOr0 CEHCOpa», BKIOYato-
wero 6enkn SCAP, INSIG1, INSIG2, MBTPS1/S1P, MBTPS2/S2P 1 TpaHcKpunuuoHHble dakTopbl noagcemeinctea SREBP.
MoBbILWEHHDBIV YpOBEHb XonecTepuHa AsnAeTca ¢akTOpoM prcKa cepaeyHO-COCYANCTbIX 3a60neBaHNI, a Tak»Ke ConyT-
CTBYIOLMM GaKTOPOM MHOTMX NMATONOMMYeCKNX CocToAHNA. CcTemaTnsaumna cBefieHNn 0 MONeKyYIAPHbIX MeXaH13max,
KOHTPONMPYIOLNX aKTUBHOCTb GpakTopoB nogcemeictea SREBP 1 6rocrHTes xonectepuHa, B dopmate reHHON CeTn 1
nosyYeHre HOBbIX 3HAHUI O FEHHOW CETU KaK eANHOM OOBEKTE Upe3BblYaiHO BaXKHbl B KOHTEKCTE MOHVMaHWA Mone-
KYNAPHbIX MeXaH3MOB pa3BuTMA 3aboneBaHuin. Cpeacteamy KomnbioTepHo cuctembl ANDSystem Hamm nocTpoeHa
reHHas ceTb perynauum 6rocrnHTesa xonecTepurHa B KneTke. [eHHan ceTb BKIlOYaeT AaHHble: (1) 0 pepmeHTax, ocyLyecT-
BAALNX BUOCUHTE3 XOMecTeprHa; (2) 6enkax, GyHKLMOHUPYIOLWMX B COCTaBE «XOS1eCTEPUHOBOrO ceHcopay; (3) ben-
Kax, Perynvpyiowmnx akTMBHOCTb GENKOB «XONeCcTePUHOBOrO CeHCopax; (4) reHax, KoaMpywWwmx 6enKkn 3Tnx rpynn;
(5) reHax, TPaHCKPUNUUA KOTOPbIX PerynmpyeTca npu yyacTum TPaHCKPUNLUMOHHBIX dakTopoB nogcemerictea SREBP
(reHax-muLeHsx). [poBefeH aHann3 reHHOW CeTU U BbIABNIEHbI 3aMKHYTble PeryiATOpHbIE KOHTYPbI, KOHTPONMpYoLime
AKTUBHOCTb TPAHCKPUMLMOHHbIX GakTopoB nofcemeinctaa SREBP. 3Tn KOHTYpbl peanmsytotca ¢ yuactuem reHos PPARG,
NROB2/SHP1, LPINT, AR n kogupyembix nmu 6enkoB. MiccnegosaHune punoctpaturpadpryeckoro BospacTa reHoB nokasa-
N0, YTo NpeAKoBble GopPMbl OONBLUMHCTBA FEHOB YeI0BEKa, KOAMPYILLNX GepMeHTbl G1OCHHTE3a XoNecTeprHa 1 6enKku
«XON1eCTEPVMHOBOrO CEHCOPay, MO BO3HVKHYTb Ha AOCTaTOYHO PaHHUX 3BOMOLMOHHBIX 3Tanax (Cellular organisms
(kopeHb punocTpaTmrpaduyeckoro aepea) v atanax aveepreHunn Eukaryota n Metazoa). OpHako MexaHu3m peryns-
LW TPAHCKPUMLUN FeHOB B OTBET Ha M3MEHEHUE YPOBHA XonecTepuHa Mor chopMmpoBaThCaA TONbKO Ha 6onee no3g-
HUX 3BOJTOLMOHHbIX 3Tamnax, MOCKOMbKy GunocTpaTurpadryeckunin BO3pacT reHoB TPaHCKPUMLMOHHbIX paKTOPOB Noj-
cemelictBa SREBP cooTBeTcTBYeT H0s1€e no3gHemy 3Tany 3Bonoumn (Ctagum gusepreHuumn Vertebrata).

KnioueBble cnoBa: 6MOCUHTE3 XONecTepuHa; TPaHCKPUMNLMOHHbIe dpakTopbl; SREBP; reHHble ceTn; perynaTopble obpat-
Hble CBA3W; 3BONOUMA; prunocTpaTurpadus; BO3pacT reHa.

Introduction

Cholesterol is an important substance in the animal body. It
is present in all tissues as part of cell membranes, stabilizing
the membrane structure (Koolman, Roehm, 2005). With an
increase in cholesterol content, the membrane becomes more
densely packed, contains fewer cavities, due to which its per-
meability to small molecules, including oxygen, decreases.
This mechanism contributed to the adaptation of organisms
to an oxygen-rich atmosphere, and, as a result, the protection
of cells from oxidative stress (Zuniga-Hertz, Patel, 2019). It
is noteworthy that cholesterol is not synthesized in fungi and
plants, and the cell membrane of these organisms contains
compounds similar in structure — ergosterol (in fungi) and
[-sitosterol and stigmasterol (in plants) (Desmond, Gribaldo,
2009; Ferrer et al., 2017; Choy et al., 2023).

In animals, cholesterol has other important functions. This
substance is a precursor of bile acids and steroid hormones
(progesterone, estradiol, testosterone, calcitriol, cortisol) (Luo
et al., 2020; Schade et al., 2020).

In humans and other animal species, cholesterol enters the
body with food, and is also synthesized in the cells of many
tissues de novo (Luo et al., 2020). The initial metabolites for
cholesterol synthesis are acetyl-CoA and acetoacetyl-CoA,
and more than 20 enzymes are involved in the biosynthesis
process (Desmond, Gribaldo, 2009; Nes, 2011). Intermediate
metabolites of the cholesterol biosynthesis pathway, such as
geranylgeranyl pyrophosphate and farnesyl pyrophosphate,
can also play an important role in animal cells. These me-
tabolites are substrates in prenylation reactions. Prenylation
is a common covalent post-translational modification of vari-
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Gene network regulating cholesterol biosynthesis in humans.
Evolutionary characteristics of genes
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PAl = 0 (Cellular organisms, the root of the phylostratigraphic tree)

Fig. 1. The functioning of the “cholesterol sensor”.

Yellow hexagons represent cholesterol molecules; INSIG1/2 - endoplasmic reticulum anchor proteins INSIG1 and INSIG2; SREBP1/2 -
transcription factors SREBP1 and SREBP2; preSREBP1/2 — preSREBP1 and preSREBP2, which are inactive precursor proteins of SREBP1
and SREBP2; SCAP - SREBF chaperone protein interacting with preSREBP1 and preSREBP2; S1P and S2P proteins are proteases that are
encoded by the MBTPST and MBTPS2 genes (respectively). The colors of the objects correspond to the phylostratigraphic age of the genes,
which was estimated based on the PAI (the procedure for calculating PAl is described in the “Materials and methods” section). At high
cholesterol levels (the left part of the Figure), cholesterol stabilizes the structure of INSIG1 and INSIG2 (designated as INSIG1/2), increasing
its affinity for SCAP. The anchor proteins INSIGT and INSIG2 help the SCAP-preSREBP1/2 complex to be preserved on the ER membrane.
In cholesterol-deprived cells (the right part of the Figure), the reduction of sterol leads to ubiquitination and rapid degradation of INSIG1/2.
The binding of SCAP to INSIG1/2 is destabilized. This gives the SCAP-preSREBP1/2 complex an opportunity to escape ER. The SCAP-
preSREBP1/2 complex is transported to the Golgi apparatus, where the preSREBP1/2 proteins are cleaved by the S1P and S2P proteases.
As a result of cleavage of the preSREBP1 and preSREBP2 proteins, active transcription factors SREBP1 and SREBP2 (designated as SREBP1/2)

are formed. The description of the scheme is based on publications (DeBose-Boyd, Ye, 2018; Jiang et al., 2020).

ous proteins. Proteins that undergo prenylation include, for
example, Ras and small GTP-binding proteins (GTPases).
Such post-translational prenylation is important for the proper
localization and activation of proteins (Waller et al., 2019).

Earlier, a gene network regulating intracellular cholesterol
level was built, and four feedback loops involving transcrip-
tion factors from the sterol regulatory element-binding protein
subfamily (SREBP1 and SREBP2) were identified (Kolchanov
et al., 2013; Merkulova et al., 2013). In the cells of animal
organisms, there is a mechanism regulating the activity of
transcription factors from the SREBP subfamily depending on
cholesterol level (DeBose-Boyd, Ye, 2018; Jiang et al., 2020).
This mechanism involves a number of proteins, which, in
combination with transcription factors from the SREBP sub-
family, will be further referred to as the “cholesterol sensor”.
A diagram showing how the “cholesterol sensor” functions
is given in Figure 1.

The fuctioning of SREBPs can also be regulated in re-
sponse to external signals affecting the cell, for example,
insulin and growth factors (Sundgvist et al., 2005; Arito et al.,
2008; Peterson et al., 2011). Due to regulation of this kind,
fine-tuning of the SREBPs activity is carried out depending
on the state of the cell and the organism as a whole. In turn,

866

SREBPs control the expression of proteins involved in the
regulation of a large number of cellular functions, integrating
local gene networks that control various biological processes
(Jeon, Osborne, 2012).

Elevated cholesterol levels are a risk factor for the develo-
pment of cardiovascular diseases (atherosclerosis, coronary
heart disease) (VargasAlarcon et al., 2019; Macvanin et al.,
2024), and can also act as a concomitant factor in obesity (Kim
et al., 2010), diabetes (Zhang F. et al., 2018), non-alcoholic
fatty liver disease, non-alcoholic steatohepatitis (Li et al.,
2023), hepatocarcinoma (Paul et al., 2022), tumor processes
(Jiang et al., 2020) and inflammation (Shimano, Sato, 2017).
Obtaining new knowledge about the gene network regula-
ting cholesterol biosynthesis, as a single object, is extremely
important in the context of understanding the connection of
this system with diseases.

The aim of this study is to systematize data on the molecular
mechanisms controlling the activity of transcription factors
of SREBP subfamily and mechanisms controlling cholesterol
biosynthesis using the format of a gene network and sub-
sequent analysis of the structural and functional organization
of the network and analysis of the evolutionary characteristics
of the genes involved in it.
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Materials and methods

Lists of genes used for building the gene network. The list
comprising 24 human genes encoding enzymes of cholesterol
biosynthesis (Supplementary Material 1)* was compiled based
on data from WikiPathways (Agrawal et al., 2024).

The list, which included seven genes encoding proteins
of the “cholesterol sensor” (Supplementary Material 2) was
formed based on the description of the mechanism regulating
activity of SREBP1 and SREBP2 according to data given in
publications (DeBoseBoyd, Ye, 2018; Jiang et al., 2020).

The list containing 31 human genes, the transcription
of which is regulated by factors of the SREBP subfamily
(SREBP1 or SREBP2 target genes), was formed based on
data from TRRD (Kolchanov et al., 2002) and TRRUST
(https://www.grnpedia.org/trrust/) (Han et al., 2018). The final
version of the list of SREBP target genes (Supplementary
Material 3) included genes for which data on associations with
SREBP1 or SREBP2 were found in ANDSystem (Ivanisenko
etal., 2019).

The list of genes encoding proteins regulating the activity
of proteins and genes of the “cholesterol sensor” (“regulatory
proteins™) (Supplementary Material 4) was formed using
ANDSystem (Ivanisenko et al., 2019). “Regulatory proteins”
were found using ANDVisio (ANDSystem software compo-
nent) with the help of the built-in Pathway wizard tool. The
associations between the “regulatory proteins” and proteins
or genes of the “cholesterol sensor” obtained in this way were
verified manually.

Building the gene network regulating cholesterol bio-
synthesis. The construction of the gene network was carried
out using ANDSystem (Ivanisenko et al., 2019). In the first
step, we built gene networks that included small groups of
genes (hereinafter referred to as “small gene networks™).
The procedures for building “small networks” are described
in Supplementary Material 5. The number of objects in the
networks is given in Supplementary Material 6. These “small
networks” were then merged together in the ANDVisio
tool applying the “Union of graphs” command. We merged
“small networks” that included the following associations:
(1) between the “regulatory proteins” and genes and proteins
of the “cholesterol sensor”; (2) between SREBPs and target
genes, and between target genes and the encoded proteins; (3)
between proteins encoded by SREBP target genes, and genes
and proteins of the “cholesterol sensor”; (4) between genes
or proteins of the “cholesterol sensor” (with the exception of
SREBPs) and the SREBF1, SREBF2 genes and the encoded
proteins; (5) between enzymes of cholesterol biosynthesis
and cholesterol.

Search for feedback loops. The feedback loops that includ-
ed 3, 4 or 5 objects, among which were factors SREBP1 and
SREBP2, were found with the help of the ANDVisio built-in
Pathway wizard tool. The search was performed based on the
templates presented in Supplementary Material 7. According
to the length of the template (which was equal to the number
of objects involved in feedback loops), the number and types
of intermediate objects were specified. The pathways found in

1 Supplementary Materials 1-9 are available at:
https://vavilov.elpub.ru/jour/manager/files/Suppl_Mikhailova_Engl_28_8.pdf
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this way were expanded by adding interactions between genes
and the encoded proteins (“expression” type interactions), thus
obtaining closed regulatory circuits.

Identification of tissues where the functioning of feed-
back loops may be observed. We used data from the GTEx
project (GTEx Consortium, 2020) extracted from the Ex-
pression atlas (https://www.ebi.ac.uk/gxa’home). Examples
of tissues or organs where the expression level of each gene
involved in a particular feedback loop was at least 10 TPM
were selected.

Analysis of the evolutionary characteristics of genes.
The evolutionary characteristics of genes were evaluated
using phylostratigraphic age index (PAI). PAI values were
calculated for 19,556 human protein-coding genes using
the Orthoscape software tool (Mustafin et al., 2017) as was
described in (Mustafin et al., 2021).

Results and discussion

The gene network regulating cholesterol biosynthesis
Atthe first step, the so-called “small gene networks” were built
using the ANDVisio program (as was described in “Materials
and methods” and Supplementary Material 5). Next, the “small
gene networks” were merged using the ANDVisio program.
Thus, a gene network regulating cholesterol biosynthesis was
constructed (Fig. 2). This network included: (1) the SREBF1
and SREBF2 genes and the proteins encoded by them; (2)
five proteins regulating the activity of the SREBP1 and
SREBP2 factors (INSIG1, INSIG2, SCAP, MBTPSI1/SIP
MBTPS2/S2P), and the genes encoding them (“cholesterol
sensor™); (3) 62 proteins regulating the activity of genes and
proteins of the “cholesterol sensor” (“regulatory proteins™);
(4) 31 SREBP target genes (including SREBF2 itself) and
the proteins encoded by them; (5) 243 interactions between
objects (Fig. 2).

Feedback loops involving transcription

factors from the SREBP subfamily

Feedback loops involving transcription factors from the
SREBP subfamily with length 2, 3, and 4. These feedback
loops are shown in Figure 3. The factors from the SREBP
subfamily are indicated in Figure 3 as SRBP1 and SRBP2.
One of the three feedback loops shown in Figure 3 is positive
and two feedbacks are negative.

SREBP2 (protein) — SREBF2 (gene) — SREBP2 (protein).

The shortest feedback loop, which included two objects
(Fig. 3a), was revealed when examining the list of SREBP
target genes (Supplementary Material 3). According to R. Sato
and co-authors, the promoter of the human SREBF2 contains
SREBP?2 binding site (Sato et al., 1996), mediating positive
autoregulation of SREBF2 gene expression.

The search for feedback loops involving SREBPs was based
on templates No. 1-4 presented in Supplementary Material 7.
As a result, two feedbacks involving SREBP1 were found
(Fig. 3b, ¢). No loops involving SREBP2 were found.

SREBP1 (protein) — LPIN1 (gene) — LPINI (protein) —
SREBP1 (protein) (Fig. 3b). This is a negative feedback
loop involving the LPIN1 gene (lipin 1) and the encoded
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Fig. 2. The gene network regulating cholesterol biosynthesis, visualized by ANDVisio. The ANDVisio program designates SREBP1 and SREBP2 as SRBP1

and SRBP2.

Lists of genes from each functional group are presented in Supplementary Materials 1-4. Supplementary Material 3 contains one more target gene (i. e. 31 genes),
in the Figure this 31st gene (SREBF2) is placed in the group of objects designated as the “cholesterol sensor”.

protein. The promoter of the human LPIN1 contains the sterol
regulatory element, and this element is responsible for the
transcription activation of LPIN1, mediated by SREBP1 (in the
Figure it is indicated as SRBP1) (Ishimoto et al., 2009). The
LPIN1 protein suppresses the activity of SREBP1, preventing
SREBP1 from binding to regulatory regions of its target genes,
including the LPIN1 gene itself (Mateus et al., 2021). This
mechanism is realized by regulating the SREBP1 transport
inside the nucleus by the LPINI protein. LPIN1 promotes
SREBP1 translocation to the nuclear lamina, where SREBP1
is inactivated (Peterson et al., 2011). The activity of LPIN1
is controlled by the mTOR kinase, which is involved in the
response to growth factors (Peterson et al., 2011). Thus, the
existence of a feedback loop involving LPIN1 indicates that
the amplitude of transcriptional response to SREBP1 may be
affected by growth factors.

SREBPI (protein) — NROB2/SHP1 (gene) — NROB2/
SHP1 (protein) — SREBFI (gene) — SREBP1 (protein)
(Fig. 3c). This feedback loop involves the NROB2/SHP1 gene
and the encoded protein (SHP1, small heterodimer partner).
The human NROB2/SHP1 gene transcription is activated
by SREBPL1 (in the Figure it is indicated as SRBP1) (Kim
et al., 2004). According to the UniProt Knowledge base
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(UniProt ID = NROB2 HUMAN), SHP1 is a transcription
corepressor, it interacts with a number of transcription
factors, preventing their activation by ligands. Thus, ligand-
dependent transcription factors LRH-1, LXR and RXR may
activate SREBF1 gene transcription, but the SHP1 protein
prevents this activatory effect (Watanabe et al., 2004). Thus,
the existence of a regulatory loop involving NROB2/SHP1 and
the encoded protein indicates that the transcriptional response
to decreased cholesterol levels may be affected by other low
molecular weight hydrophaobic substances, which are ligands
of transcription factors LRH-1, LXR, RXR and corepressor
NROB2/SHPI.

Feedback loops with length 5 involving factors from the
SREBP subfamily, as well as proteins functioning within
the “cholesterol sensor”. We identified three regulatory
circuits involving proteins functioning within the “cholesterol
sensor”’, which, in turn, affect the activity of SREBPs (Fig. 4).
These feedback loops matched templates No. 7 and No. 8
presented in Supplementary Material 7. Two feedbacks included
SREBP1 (indicated as SRBP1) (Fig. 4a, c) and one feedback
loop included SREBP2 (indicated as SRBP2) (Fig. 4b).
Two of the three regulatory loops are negative, and one is
positive.
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Fig. 3. Feedback loops involving factors from the SREBP subfamily (indicated as SRBP1 and SRBP2).

a - positive autoregulation of SREBF2 gene expression; b — a feedback loop involving the LPINT gene and the encoded protein; ¢ - a feedback loop involving the

NROB2/SHP1 gene and the encoded protein.

SREBP1 (protein) — PPARG (gene) — PPARG (protein) —
INSIG1 (gene) — INSIGI (protein) — SREBPI (protein)
(Fig. 4a).

SREBP2 (protein) — PPARG (gene) — PPARG (protein) —
INSIG1 (gene) — INSIGI (protein) — SREBP2 (protein)
(Fig. 4b).

Two regulatory loops were found involving factors from the
SREBP subfamily, as well as the PPARG and INSIG1 genes
and encoded proteins. SREBP1 and SREBP2 (in Figures 4a
and b these proteins are designated as SRBP1 and SRBP2)
can interact with binding sites in the human PPARG promoter
increasing transcriptional activity of PPARG (Fajas et al.,
1999). PPARG is a transcription factor that can interact with
the binding site (PPREL) in the human INSIG1 promoter and
activate transcription of the INSIG1 gene (Kast-Woelbern et
al., 2004). This leads to increased expression of the INSIG1
protein, which retains preSREBP1 and preSREBP2 on the
membrane of the endoplasmic reticulum, thereby suppressing
translocation of preSREBPs to the Golgi apparatus, where
SREBPs are activated by proteolytic processing (Roth et al.,
2008).

SREBPI (protein) — AR (gene) — ANDR (protein) —
SCAP (gene) — SCAP (protein) — SREBPI1 (protein)
(Fig. 4c).

The promoter region of the human AR gene encoding the
androgen receptor (in the Figure this protein is designated as
ANDR) contains SREBP1 binding site. SREBP1 (in Figure 4
this protein is designated as SRBP1) binds to this regulatory

element and activates the transcription of AR (Huang et al.,
2010). The ANDR protein binds to the androgen response
element in intron 8 of the human SCAP gene. This interaction
leads to increased expression of SCAP (Heemers et al., 2004).
Inturn, SCAP escorts preSREBPs from endoplasmic reticulum
to the Golgi apparatus where the SREBPs are activated (Guo
et al., 2019). Thus, this is a positive feedback loop.

An examination of gene expression data from the GTEx
project (GTEx Consortium, 2020) showed that the regulatory
loops we found (Fig. 3 and 4) can function in a wide range of
tissues. Examples of such tissues are given in Supplementary
Materials 8 and 9.

The phylostratigraphic age of genes encoding enzymes

of cholesterol biosynthesis and proteins functioning
within the “cholesterol sensor”

The phylostratigraphic age index (PAI) was used to estimate
the phylostratigraphic age of the genes. The PAI value indi-
cates the evolutionary stage corresponding to the divergence
stage of certain taxa. The PAI index takes values from 1 to 15
(Mustafin et al., 2021). The greater the PAI value of the studied
gene, the younger the gene is.

Genes encoding enzymes of cholesterol biosynthesis.
Figure 5 shows distributions by PAI values for all human
protein-coding genes (black columns, control group) and
24 genes encoding enzymes of the cholesterol biosynthesis
pathway (green columns). PAI values for genes encoding
enzymes of the cholesterol biosynthesis pathway are presented

Gene

Protein

Upregulation
Downregulation

Expression

Fig. 4. Feedback loops involving factors from the SREBP subfamily (designated as SRBP1 and SRBP2) and other genes and proteins functioning within

the “cholesterol sensor”.

a - feedback involving the SREBP1, PPARG and INSIG1 genes, as well as the encoded proteins; b - feedback involving the SREBP2, PPARG and INSIG1 genes, as well
as the encoded proteins; ¢ - feedback involving the SREBP1, AR and SCAP genes, as well as the encoded proteins.
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Fig. 5. Phylostratigraphic age of human genes encoding enzymes of the
cholesterol biosynthesis.

a - distribution of PAl values (indicated on the X axis) for all human protein-
coding genes (control group of genes, designated as all_CDS_19,556, black
columns) and genes encoding enzymes of the cholesterol biosynthesis (this
group of genes is designated as Enzymes_24, green columns); b — according to
the Chi-square criterion, the observed numbers of genes encoding enzymes
and having PAI < 2 differ from the expected numbers (p < 0.001).

in Supplementary Material 1. PAI values for the genes of the
control group (designated as all_CDS_19,556) are unevenly
distributed (Fig. 5a, black columns). Approximately one
third of the genes (~33 %) had a PAI equal to zero (Cellular
organisms, the root of the phytostratigraphic tree). And almost
one fifth (17 %) of all protein-coding genes had a PAI value
equal to 5 (the stage of Vertebrata divergence).

When considering the distribution of PAI values for a set of
human genes encoding enzymes of cholesterol biosynthesis
(Supplementary Material 1), it was found that 22 genes out of
24 (i. e. 92 %) had a PAI value <2 (Cellular organisms (the
root of the phylostratigraphic tree) and the stages of Eukaryota
and Metazoa divergence) (Fig. 5a, green columns). This
number was different (p < 0.001) from the expected number
(7.85) calculated based on the distribution obtained for a set
of all human protein-coding genes containing 19,556 genes
(Fig. 5b).

Thus, it turned out that the genes encoding enzymes of
cholesterol biosynthesis are characterized by lower values
of the PAI index compared to the set of all human protein-
coding genes, that is, they are on average more “ancient”.
This is in good agreement with the already known concepts.
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Firstly, cholesterol is found in ancient sedimentary rocks, and
its derivatives are used as biological markers of past life on
Earth (Simoneit, 2002). Secondly, it was found that the genes
encoding enzymes of cholesterol biosynthesis were inherited
by multicellular organisms from their last common eukaryotic
ancestor (Zhang T. et al., 2019). In addition, it has been
shown that enzymes involved in amino acid, carbohydrate
and energy metabolism (including lipid metabolism) are
highly conservative (Peregrin-Alvarez et al., 2009). This
is due to the fact that the role of the enzyme is to interact
with the substrate molecule, that is, the three-dimensional
structures of the enzyme and the substrate must spatially fit
each other. Therefore, as a rule, it is not the protein-coding,
but the regulatory region of the gene encoding the enzyme
that undergoes evolutionary changes.

Genes encoding proteins functioning within the
“cholesterol sensor”. As mentioned above and shown
in Figure 1, the “cholesterol sensor” is a set of proteins
providing the regulation of the transcription of genes
depending on the intracellular cholesterol level. The set
of genes encoding proteins of this group includes: (1) the
SREBF1 and SREBF2 genes encoding transcription factors;
(2) the SCAP, INSIGL1, and INSIG2 genes encoding proteins
that change their conformational properties in response to
changes in cholesterol levels, thereby regulating the rate of
formation of active SREBPs; (3) the MBTPS1 and MBTPS2
genes encoding S1P and S2P proteases that cleave precursor
proteins preSREBP1 and preSREBP2 (DeBose-Boyd, Ye,
2018; Jiang et al., 2020). The phylostratigraphic age of these
genes indicates the ancient origin of their ancestral forms
(see the color designations of objects in Figure 1, as well as
Supplementary Material 2).

Four genes (SCAP, INSIG1, MBTPS1/S1P and MBTPS2/
S2P) have a PAI value equal to zero (Cellular organisms, the
root of the phylostratigraphic tree). INSIG2 has a PAI value
equal to 2 (the stage of Metazoa divergence). However, the
SREBF1 u SREBF2 genes are younger. They have PAI values
equal to 5 (the stage of Vertebrata divergence). Thus, although
cholesterol was synthesized even in the most ancient orga-
nisms (Simoneit, 2002; Zhang T. et al., 2019), the molecu-
lar mechanism controlling intracellular cholesterol level
could have been formed at a later stage of evolution. This
could have happened no earlier than the first vertebrates
appeared.

The stage of Vertebrata divergence is characterized by a
more complex organization of a number of physiological
systems (Fig. 6). The formation of the backbone was
accompanied by musculoskeletal system development and
made it possible to move faster. As a result, the oxygen
demand of muscles and other tissues increased. A two-
chamber heart was formed in vertebrates, which provided
more efficient blood pumping and oxygen supply (Stephenson
etal., 2017). At this stage of evolution, the respiratory system
was being improved, and specialized oxygen-carrying blood
cells (erythrocytes) arose (Snyder, Sheafor, 1999; Svoboda,
Bartunek, 2015). The increased oxygen supply, on the one
hand, contributed to the intensification of metabolic processes;
on the other hand, it could cause oxidative stress.
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Fig. 6. Characteristic features of the musculoskeletal, circulatory and
respiratory systems, formed in animals at the evolutionary stage of
Vertebrata divergence (shown in italics), and the significant role of cho-
lesterol as a factor reducing oxygen permeability of the cell membrane.

The cell membrane cholesterol content affects the per-
meability of the membrane to oxygen: when cholesterol
content is high, the membrane becomes more solid leading
to reduced oxygen permeability (Zuniga-Hertz, Patel, 2019).
This, on the one hand, protects cells from oxidative stress, but,
on the other hand, inhibits the transport of oxygen to red blood
cells and negatively affects the biochemical processes occur-
ring with oxygen consumption. Thus, it became necessary to
maintain the intracellular cholesterol level in an appropriate
range. Since a certain evolutionary stage, this control was car-
ried out by transcription factors from the SREBP subfamily.

Conclusion

This paper presents a gene network regulating cholesterol
biosynthesis in human cells. The gene network systematizes
data on: (1) the set of enzymes that carry out cholesterol
biosynthesis; (2) proteins functioning within the “cholesterol
sensor” (including transcription factors from the SREBP
subfamily), this sensor is involved in the regulation of gene
expression depending on the intracellular cholesterol level;
(3) proteins regulating the activity of proteins functioning
within the “cholesterol sensor”; (4) genes encoding proteins
of these groups; (5) SREBP target genes. Feedback loops have
been identified that control the activity of transcription factors
from the SREBP subfamily, indicating the complex nature of
the molecular genetic mechanisms that regulate cholesterol
biosynthesis. In the future, we plan to expand the network
by including higher-level regulatory effects (“regulators of
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regulators”). Such an extension will help to identify additional
feedback loops controlling cholesterol biosynthesis.

The analysis of the phylostratigraphic age of genes has
shown that the ancestral forms of most human genes encoding
enzymes of cholesterol biosynthesis and proteins of the “cho-
lesterol sensor” could have been formed at early evolutionary
stages (Cellular organisms (the root of the phylostratigraphic
tree), as well as the stages of Eukaryota and Metazoa diver-
gence). However, the phytostratigraphic age of genes encoding
transcription factors of the SREBP subfamily corresponds to
the stage of Vertebrata divergence. This fact indicates that
the mechanism of gene transcription regulation in accordance
with changes in cholesterol levels could have been formed at
later evolutionary stages, that is, not earlier than the stage of
Vertebrata divergence.
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Abstract. This article introduces Orthoweb (https://orthoweb.sysbio.cytogen.ru/), a software package developed for
the calculation of evolutionary indices, including phylostratigraphic indices and divergence indices (K,/K;) for indivi-
dual genes as well as for gene networks. The phylostratigraphic age index (PAI) allows the evolutionary stage of a
gene’s emergence (and thus indirectly the approximate time of its origin, known as “evolutionary age”) to be assessed
based on the analysis of orthologous genes across closely and distantly related taxa. Additionally, Orthoweb supports
the calculation of the transcriptome age index (TAl) and the transcriptome divergence index (TDI). These indices are
important for understanding the dynamics of gene expression and its impact on the development and adaptation
of organisms. Orthoweb also includes optional analytical features, such as the ability to explore Gene Ontology (GO)
terms associated with genes, facilitating functional enrichment analyses that link evolutionary origins of genes to
biological processes. Furthermore, it offers tools for SNP enrichment analysis, enabling the users to assess the evolu-
tionary significance of genetic variants within specific genomic regions. A key feature of Orthoweb is its ability to
integrate these indices with gene network analysis. The software offers advanced visualization tools, such as gene
network mapping and graphical representations of phylostratigraphic index distributions of network elements, ensur-
ing intuitive interpretation of complex evolutionary relationships. To further streamline research workflows, Orthoweb
includes a database of pre-calculated indices for numerous taxa, accessible via an application programming inter-
face (API). This feature allows the users to retrieve pre-computed phylostratigraphic and divergence data efficiently,
significantly reducing computational time and effort.

Key words: gene networks; evolution; phylostratigraphy.

For citation: Ivanov R.A., Mukhin A.M., Kazantsev FV. Mustafin Z.S., Afonnikov D.A., Matushkin Y.G., Lashin S.A.
Orthoweb: a software package for evolutionary analysis of gene networks. Vavilovskii Zhurnal Genetiki i Selektsii =
Vavilov Journal of Genetics and Breeding. 2024;28(8):874-881. doi 10.18699/vjgb-24-95

Funding. This work was supported by State Budgetary Project No. FWNR-2022-0020.

Orthoweb: nmporpaMMHbIii KOMILJIEKC
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AHHoTauusA. B paHHon ctatbe onucbiBaetca Orthoweb (https://orthoweb.sysbio.cytogen.ru/) — nporpammHbIi KOM-
NneKc, pa3paboTaHHbIV AS1A BbIUMCIEHWS SBOSIOLMOHHbIX MHAEKCOB, BKtoYaa dunoctpaturpaduyeckmne nHAEKCh 1
nHaekcbl gusepreHumm (K,/K;) Kak oTaenbHbIX reHOB, TaK 1 reHHbIx ceTell. IHaekc ¢punoctpaturpaduyeckoro Bospac-
Ta (PAl) no3BonsaeT oLeHUTb SBONIOLMOHHYIO CTafMI0 NOABMIEHUA reHa (MPY 3TOM KOCBEHHO OLeHVB NpubnnsntenbHoe
BpPeMsA ero BO3HUKHOBEHUA — TaK Ha3blBaeMblil SBOJIIOLMOHHbIA BO3PACT) Ha OCHOBE aHasv3a OPTONOrMYHbIX FeHOB Y
6/11M3KOPOACTBEHHBIX 1 JalIbHOPOACTBEHHbIX TaKCOHOB. Kpome Toro, Orthoweb nopaepusaet pacyeT MHAEKCOB BO3-
pacTa TpaHckpuntoma (TAI) n grueepreHumn TpaHckpunToma (TDI). 3T nHAEKCbI BaXHbl ANA NOHMMaHUA AUHAMUKN
SKCMPEeCcu FeHOB 1 ee MOCNEACTBUI ANA Pa3BUTWA 1 aganTtaumm opraHmamos. Orthoweb copepxunT TakKe 4ONOMHN-
TenbHble aHanuTnyeckme GyHKLMK, Takre Kak BO3MOXKHOCTb aHanm3a TepmMmHoB Gene Ontology (GO), uto no3sonset
npoBoanTb GyHKLMOHaNbHOe oboralleHne 1 CBA3bIBaTb IBOMIIOLMOHHOE MPOVNCXOXKAEHNE FEHOB C 6G1ONOrMyecKnmm
npoueccamu. [oMMMO 3TOro, JOCTYNHA BO3MOXHOCTb aHanm3a oboralleHna no OAHOHYKNEOTUAHBIM NOAUMOPPU3-
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Mam (SNP), KoTopblii MOMOraeT UccnefoBaTb 3BOMIOLMOHHOE 3HaUeHMe TeHEeTNYECKX BapaHTOB B KOHKPETHBIX re-
HOMHbIX perrioHax. OgHoM 13 Kntouesbix ocobeHHocTeln Orthoweb siBnAeTcs MHTerpaUya NepeuncieHHbIX MHAEKCOB
C aHanM30M reHeTnyeckrx ceteil. MporpamMmMHbI NMakeT npefnaraeT paclmpeHHble CPeACTBA Br3yanm3aLmm, Takue
KaK KapTvpoBaHMe reHeTuYecknx ceTen u rpaduyeckoe npeacraBnieHne pacnpegeneHms eunoctpaturpadbuyeckmx
VNHAEKCOB 3/IEMEHTOB CeTell, UTo 06/eryaeT NHTYUTUBHYIO UHTEPMNPETALMIO CNIOXKHbIX 3BOJSIIOLMOHHbIX CBA3el. [na
ynpolyeHus paboumnx npoueccos B Orthoweb BknioueHa 6a3a AaHHbIX C NpefBapUTENBHO PACCUMTAHHBIMU UHAEKCA-
MW AJ1S MHOXKECTBa TakCOHOB, AOCTYMHas yepe3 API. 3Ta pyHKLMA No3BoNsAeT 3PpHEKTUBHO NOJTyyaTb rOTOBbIE faHHble
no ¢unocTpaTurpaduUeckum NHAEKCam v MHAEKCaM AMBEPreHUMI, 3HaUUTeIbHO COKPALLas BPeMs BblYNCIEHNI.
KnioueBble cfioBa: reHHble ceTy; 3BosiioLus; dunoctpaturpadus.

Introduction

The evolutionary analysis of gene networks allows the study
of the origin and development of biological systems in the
context of evolution. One of the key aspects of this analysis
is the study of gene age indices, which allows us to determine
the temporal framework for the emergence and diversification
of genes across different phylogenetic lineages. Phylostratigra-
phy, a methodology based on estimating the evolutionary age
of genes, provides an opportunity to identify ancient and re-
cently emerged genes as well as to understand their functional
significance in biological processes (Domazet-LoSo, Tautz,
2008; Tautz, Domazet-Lo%o, 2011; Sestak et al., 2013; Xie et
al., 2017). The aim of phylostratigraphic analysis is to deter-
mine the age of a founder gene by assessing the distribution of
its homologous genes in the genomes of organisms belonging
to different taxonomic groups. The Phylostratigraphic Age
Index (PAI) is used in phylostratigraphy to estimate the time
of origin of genes and corresponds to the oldest phylostratum
that includes homologous sequences of the target gene.

The search for genes with homology restricted to specific
taxa is particularly interesting from an evolutionary biology
perspective, as several studies have shown that novel genes
can play an important role in the emergence of new evolu-
tionary traits and may be associated with the appearance of
new morphological features in land plants (Bowles et al.,
2020) and multicellular animals (Paps, Holland, 2018). It
has also been shown that evolutionarily novel genes are in-
volved in organ development cascades, particularly in brain
tissue development (An et al., 2023), and that taxon-specific
genes are overrepresented in stress response systems and the
immune system (Dornburg, Yoder, 2022). Some researchers
have also suggested that taxon-specific genes are associated
with ecological specialisation in various taxa (Baalsrud et
al., 2018).

However, the classical approach to phylostratigraphy faces
several limitations due to the increasing volume of genomic
data and the insufficient accuracy of the BLASTP algorithm
in identifying homologs. These factors, together with high
computational complexity, result in phylostratigraphic analy-
ses of whole genome data using BLASTP taking up to several
weeks (Buchfink et al., 2021). Consequently, there is a grow-
ing need for the development of new software solutions for
phylostratigraphic analysis.

Modern software tools such as fagin (Arendsee et al., 2019),
GenEra (Barrera-Redondo et al., 2023) and oggmap (Ullrich,
Glytnasi, 2023) offer alternative approaches to phylostrati-
graphic analysis, allowing researchers to overcome some
of the limitations of classical methods. The fagin program,

written in R, uses a homology search approach based on
identifying syntenic regions in the target genome and then
searching for homology in both amino acid and nucleotide
sequences. The developers of the GenEra software package
have introduced several modifications to the classical method
of homology detection in phylostratigraphy by replacing the
traditional BLASTP search method with the DIAMOND v2
algorithm. This substitution improves the identification of
distant homologs by removing restrictions on the number of
top sequence matches during alignment. In addition, GenEra’s
developers have incorporated features to assess homology
detection error and taxonomic representativeness — a metric
that considers the presence of gene homologs in at least one
representative species at each intermediate taxonomic level
between the most distantly related genus and the target species.
The oggmap program (Ullrich, Glytnasi, 2023), implemented
as a Python package, is designed to generate orthology maps
(orthomaps), or, in other words, phylostratigraphic index
values for the age of specified ortholog groups, based on the
results of tools such as OrthoFinder (Emms, Kelly, 2019)
and eggNOG (Huerta-Cepas et al., 2019). Unlike classical
phylostratigraphy, this approach does not include a step for
ortholog detection using alignment tools. Instead, it relies
on precomputed orthology search results in the form of or-
thomaps, which are then used to estimate gene age. These
orthomaps contain information about the ages of genes within
each ortholog group.

However, for comprehensive evolutionary analysis, these
tools and approaches require knowledge of programming
languages. In addition, most of these software solutions rely
on alignment algorithms such as BLAST, the runtime of which
can significantly slow down the analysis in certain cases.
Finally, the existing implementations for calculating phylos-
tratigraphic indices are currently unable to perform a com-
prehensive and rapid evolutionary analysis of gene network
components. In this article, we present Orthoweb — a software
package for the evolutionary analysis of gene networks and
individual genes — implemented as a web application and
available at https://orthoweb.syshio.cytogen.ru.

Materials and methods

Orthoweb has been developed in Java using the Spring frame-
work to implement server-side functionality and the Vue.JS
and webix frameworks for the client side. A set of cytoscape.js
libraries is used for network visualization. MongoDB is
used as the database management system (DBMS) to store
data from the KEGG database (taxa, list of orthologs, cod-
ing sequences, etc.) and intermediate analysis results, which
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significantly increases the speed of subsequent work with
these data.

A database based on the PostgreSQL DBMS is used to
store the calculated indices. Access to the data is pro-
vided through REST API technology implemented with the
FLASK library (flask.palletsprojects.com). This program-
matic interface allows data retrieval from various engineering
modelling environments (e.g. Matlab, Octave, Statistica)
or standard libraries of scripting programming languages
(e.g. R, Python).

Results

Functionality of Orthoweb

Calculation of evolutionary age indices of single genes.
The primary function of Orthoweb is the estimation of phy-
lostratigraphic age indices (PAI) of genes.

Orthoweb implements two methods to determine PAI:
1) based on the analysis of homology sequence identity met-
rics and 2) using the classification of proteins into orthologous
groups from the KEGG database (KEGG Orthology — KO).
Using the KO information from the KEGG database (Kanehisa
et al., 2016), Orthoweb allows the identification of orthologs
for each protein sequence and determines the species in the
genomes of which these orthologs have been found. The
taxonomic lineages of the identified species are sequentially
compared to the lineage of the studied species to determine
their evolutionary ancestry and to determine the most recent
common ancestor for a given gene. The position of this ances-
tor, measured as its distance from the root of the taxonomic

PAI a

1 Cellular Organisms Cellular Organisms

2 Eukariotes

8 Mammalia

14 Hominidae Hominidae

15 Homo
16 Homo sapiens

Homo sapiens

hsa:1029

Fig. 1. Example of a PAl calculation for two Homo sapiens genes.

Pan paniscus

pps:100975

Orthoweb: a software package
for evolutionary analysis of gene networks

tree, is calculated as the PAI (Fig. 1). The taxonomic lineages
of orthologs have already been curated in the KEGG data-
base, requiring minimal additional configuration by the user.
The calculated PAI indices are stored in a regularly updated
database, which is discussed in more detail in the chapter
“Database for storing results”. As KEGG orthogroup data is
frequently updated, Orthoweb also allows to calculate PAI
indices directly from KEGG orthogroups to ensure access to
the most up-to-date information. However, such data are not
available for all genes. For example, in humans, only about
two-thirds of the genes represented in KEGG are associated
with KO groups.

The second method for calculating PAI involves using the
Best Similarity Table, which is available for the vast majority
of genes represented in KEGG (Kanehisa et al., 2016). This
method allows users to select homologous genes based on
parameters such as the amino acid sequence identity of the
proteins encoded by the genes and the results of the Smith—
Waterman local sequence alignment algorithm.

Calculation of divergence indices. Orthoweb also supports
the calculation of the ratio of nonsynonymous to synonymous
substitutions (the dy/ds ratio) between the sequence of the
gene under study and each of its homologs in closely related
species, reflected in the Divergence Index (DI). This index
allows researchers to determine the type of selection acting on
a gene. The index is calculated based on the dy/ds ratio (also
referred to as K, /K in the literature), where dy represents the
proportion of nonsynonymous substitutions in the sequences
of the gene under study and its homologs (i. e. substitutions
that result in a change in the amino acid encoded by the codon)

Cellular Organisms

Mammalia

Monodelphis

Homo sapiens -
domestica

hsa:1030 mdo:100021947

a - example of an evolutionarily younger gene hsa:1029 (CDKN2A), where the most distantly related organism with an identified ortholog of this gene is Pan
paniscus (bonobo chimpanzee); b - example of an evolutionarily older gene hsa:1030 (CDKN2B), where the most distantly related organism with an identified
ortholog of this gene is Monodelphis domestica (grey short-tailed opossum). It can be concluded that the gene in example (a) is evolutionarily younger than the
genein example (b). The scale on the left indicates the PAl index, which corresponds to the depth of the taxonomic tree node. Adapted from (Mustafin et al., 2021).
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and ds represents the proportion of synonymous substitutions
(i.e. those that do not result in a change in the encoded amino
acid). It is generally accepted that DI values less than 1 indicate
that the gene is under purifying selection, values close to 1
suggest neutral evolution, and values greater than 1 imply
positive selection (Yang, Nielsen, 2000).

When comparing a single homologous sequence, DI is
equivalent to dy/ds. In cases where multiple homologs are
present, DI is equal to the average dy/ds value across all
comparisons. When calculating the DI index, Orthoweb users
can select the taxonomic depth of analysis to account for the
evolutionary variability of the gene between organisms with
varying evolutionary distances. The calculation of the dy/ds
ratio is performed using the PAML software package (Yang,
2007).

Calculation of gene enrichment with single nucleotide
polymorphisms and Gene Ontology term analysis. Or-
thoweb also integrates information on Gene Ontology (GO)
terms associated with genes and the enrichment of the studied
genes with single nucleotide polymorphisms (SNPs). To re-
trieve information on Gene Ontology terms, Orthoweb uses
the resource available at http://geneontology.org/ (Ashburner
et al., 2000; Carbon et al., 2021). Data retrieval is performed
using the API (application programming interface) provided.
For example, a query for the TBP gene is constructed as
follows: http://api.geneontology.org/api/bioentity/gene/
NCBIGene:6908/function, specifying the database and the
gene identifier within it. Orthoweb provides this information
autonomously, relying on associated databases for most model
organisms (e.g. TAIR for Arabidopsis thaliana, FlyBase for
Drosophila melanogaster, etc.), while for other organisms,
it uses the UniProt database. If Gene Ontology contains data
for the gene under study and KEGG provides the required
identifier — which is true for nearly all well-characterised
genes — then identifiers and names of GO terms associated
with the gene will be retrieved.

To obtain data on the enrichment of target genes with single
nucleotide polymorphisms, an automated query system for
the NCBI SNP database (Sayers et al., 2022) is implemented.
The query is constructed based on the gene identifier. For
example, for the TBP gene with the identifier hsa:6908, the
query would take the following form: https://www.ncbi.nlm.
nih.gov/snp/?term=6908. As a result of this query, the user
will be provided with the number of SNPs found. It should be
noted that in the current version of Orthoweb, the SNP search
is only implemented for human genes.

Calculation of evolutionary indices of a group of genes.
Orthoweb also supports the input of gene expression data
for the calculation of phylotranscriptomic indices. Phylo-
transcriptomic index analysis is an approach that integrates
information on the evolutionary age of genes with data on
their expression levels. This analysis enables the study of the
relationship between the PAI index of genes and changes in
their activity in the context of different physiological states,
adaptive responses or developmental stages of organisms.
Using phylotranscriptomic analysis, it is possible to uncover
how the evolutionary features of the genome relate to the
transcriptional regulation and functional dynamics of genes
in different biological contexts. Phylotranscriptomic indices
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include two evolutionary indices: Transcriptome Age Index
(Domazet-LoSo, Tautz, 2010) and Transcriptome Divergence
Index (Quint et al., 2012)

The Transcriptome Age Index (TAI) represents the weighted
average age of the transcriptome in a given biological process.
Expression data serve as an additional multiplier and are used
to normalise the result so that the higher the final TAI/TDI
value, the greater the contribution of evolutionarily younger/
more variable genes. The formulas used to calculate these
indices are as follows:

3 pse
TAl=—S——,
i=1Ci
where ps; is an integer representing the PAI for gene i, €; is the
expression level derived from transcriptomic data for gene i,
and n is the total number of genes.

The Transcriptome Divergence Index (TDI) measures
transcriptome divergence and reflects the degree of conser-
vation of a transcriptome in a particular process. This can be
used to identify biological processes or development stages
in which more conserved, or younger, genes are more highly
expressed.

>" Dl
TDI == ——.
28
where DJ; is the divergence index for gene i, e; is the expres-
sion level for gene i, n is the total number of genes.

Orthoweb usage examples

To illustrate how Orthoweb works, we will describe its
workflow and give examples of its use in phylostratigraphic
analysis.

Analysis of individual gene characteristics. When analys-
ing evolutionary indices for single genes, Orthoweb accepts
several input file formats: a list of genes entered via a web
form, a list of genes uploaded from a file, or a file containing
interactions between elements of a gene network in .txt or .tsv
format. Users can select the desired input data format in the
corresponding form labelled Choose the type of input data
(Fig. 2). For accurate analysis in Orthoweb, KEGG gene
identifiers must be provided.

The next step involves selecting the analysis mode in the
form titled The type of orthology. In this form, you can choose
one of two options: calculating phylostratigraphic indices
using ortholog family and KO group analysis (the KEGG
Orthology groups option) or using homologous sequence
analysis (the Best Similarity Table option).

When selecting the KEGG Orthology groups mode, it is
also necessary to decide whether to include paralogous genes
in the analysis by configuring the KO groups filtering option.

When selecting the mode for calculating phylostratigraphic
indices of genes based on homologous sequence analysis, it is
necessary to specify the thresholds for amino acid sequence
identity (set to 0.5 by default) and for the Smith—Waterman
algorithm score used to filter homologous genes in the The
thresholds to filter orthologous genes option.

In the Additional parameters section, several additional
analysis options can be selected: calculation of the divergence
index (DI) in the DI analysis option, assessment of enrichment
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Fig. 2. The Start Page of the Orthoweb Web Service.

with single nucleotide polymorphisms (SNPs) and identifica-
tion of Gene Ontology terms. For DI calculation, it is also pos-
sible to configure the groups of organisms for which the index
is calculated in the dy/dg setup window. This option provides
two configurations for the analysis. The first parameter, dy/dg
level, defines the taxonomic level at which the dy/dg analysis is
performed. This type of analysis is primarily used to compare
sequences of closely related organisms. A value of 1 limits
the analysis to organisms within a single genus. For example,
when analysing human genes, a value of 2 indicates that the
dy/ds will be calculated relative to other organisms in the
Hominidae family. The second field, Organisms, allows you
to enter specific species codes from the KEGG database. For
example, to compare the sequence of a studied human gene
not with all hominids but only with gorillas, the code “ggo”
should be entered in this field.

The output of Orthoweb for these analysis modes will be
an archive file containing a tabular text file with the following
data columns: Gene — KEGG gene identifiers, Label — Entrez
gene identifiers, PAI — phylostratigraphic age index values;
additional columns with values from supplementary analysis
modes: DI, SNP and GO label.

Analysis of gene group characteristics. To calculate the
Transcriptome Age Index (TAI) and the Transcriptome Di-
vergence Index (TDI), it is necessary to select the input data
format option Network file — Use expression. In this mode,
the user must provide a tab-delimited text file containing one
column of gene names and several columns of normalised
expression values, labelled according to the experimental con-
ditions under which the expression analysis was performed.
The input file can be either a gene network file or simply a
list of genes.

As output, the Orthoweb program generates a tab-delimited
text file with three columns: Data — with the names of the
conditions specified in the input file, TAI — with the tran-
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scriptome age index values for the selected set of genes, and
TDI — with the transcriptome divergence index values under
the given conditions.

Gene network analysis. In addition to the analysis of
indices for individual genes and gene lists, Orthoweb imple-
ments phylostratigraphic analysis and visualization of gene
networks. Users can analyse networks imported from the
KEGG Pathway (Kanehisa et al., 2017) and WikiPathways
databases, as well as networks uploaded from text files. Ac-
cess to network analysis from these databases is provided
via the following link: https://orthoweb.sysbio.cytogen.ru/
pathway.html.

Orthoweb supports import and analysis of networks from
two major databases. The first supported database, KEGG
Pathway, contains numerous gene networks and pathways
classified according to various criteria such as metabolism,
organismal system functions and human diseases. To start
the analysis, the user must specify the pathway code and the
organism for which the network is to be imported. As an out-
put of network analysis from KEGG Pathway, Orthoweb will
generate a gene network where the nodes display PAI values
determined based on the KO groups present in the network.
Since all elements in KEGG networks are described in the
KEGG database itself, importing and analysing such networks
is very convenient for Orthoweb, which retrieves most of the
information needed for analysis directly from KEGG.

As an example of this mode in Orthoweb, we analysed
the Wnt/B-catenin signalling cascade network (Fig. 3). The
Whnt/B-catenin signalling pathway is involved in the regula-
tion of the cell cycle, adhesion, migration and differentiation.
Activation of the pathway begins with the binding of WNT
ligands to Frizzled and LRP receptors on the cell surface. This
leads to the stabilisation and accumulation of B-catenin in the
cytoplasm and its subsequent translocation to the nucleus,
where it interacts with transcription factors and stimulates the
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MAPK signaling pathway Adherens junction

Cellcycle

TGF-beta signaling pathway

Ubiquitin mediated proteolysis

Color PAI
Focal adhesion
00_Cellular Organisms
01_Eukaryota
02_Metazoa
05_Vertebrata

06_Euteleostomi

Fig. 3. Example of network visualization from the KEGG Pathway database for the “Wnt signalling pathway” (https://www.kegg.jp/pathway/hsa04310),

analysed using Orthoweb.

The color of each node corresponds to the PAl index of the gene (white elements represent pathways and chemical compounds). By default, the standard network
structure is imported with preserved element coordinates, but the network scale can be adjusted by the user and each element can be interacted with.

expression of target genes (Davidson et al., 2009). Dysregula-
tion of this pathway has been implicated in the development
of several cancer types (Zhan et al., 2017). This signalling
cascade is one of the most ancient signalling pathways
and predominantly involves genes that originated during
the emergence of multicellular organisms and eukaryotes
(PAI=1, 2).

The second database available for network import is
WikiPathways. The networks presented in WikiPathways con-
tain more details, entities and interaction variants compared
to KEGG, which makes their complete import more difficult
and requires the consideration of identifiers from several dif-
ferent databases.

Orthoweb provides a step-by-step process for importing
and analysing user-generated gene networks. Users can first
import a network in TSV format (a tab-delimited text file) and
then interact with it, e.g. rearrange elements, before starting
the analysis. This format is compatible with the widely used
STRING tool (von Mering et al., 2005), ensuring seamless
integration of STRING data into Orthoweb without addi-
tional processing. For networks imported from STRING, the
combined score column contains the reliability of identified
interactions, with weights ranging from 0 to 1. Upon comple-
tion of the analysis, the gene colours are updated to reflect their

PAI values (Fig. 4). If additional analysis modes described
earlier in the text are enabled, they will also be reflected in
the visualization.

Database for storing results

To speed up index calculations and avoid redundant recal-
culations, Orthoweb includes a database containing tables
for organisms, genes, pre-calculated PAI indices, DI indices,
Gene Ontology terms (identifiers and names), SNPs and PAI
indices determined based on KO groups. In addition to its
use in interactive mode, this database can also be accessed
via an API (Application Programming Interface) for inte-
gration with modelling environments or common scripting
languages (Matlab, Octave, R, Python, etc.). This provides
access to all available information on calculated PAI and DI
indices for genes of specific organisms, allowing users to build
data selection and visualization workflows. The API allows
database queries to be made via specially structured URLs.
Query results are returned as a structured text file in JSON
format. A description of the API query keys and an example
query to the database can be found in the Supplementary
Material'.

1 Supplementary Material is available at:
https://vavilov.elpub.ru/jour/manager/files/Suppl_Ivanov_Engl_28_8.pdf
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Screen

choose expressions
homology

Source: CACNA1C
Target: CACNA1D
Score: 0.976

Info: Show

ID: hsa:5602
Label: MAPK10
PAI: 01_Eukaryota
SNP: 199597
DI:0.173

Info: Show

00_Cellular Organisms
01_Eukaryota
02_Metazoa
05_Vertebrata
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Screen
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coexpression
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Fig. 4. Example of a network imported from the STRING tool, where the color of each node corresponds to its PAl index and the thickness of the edges
represents the combined_score value from STRING. By selecting a specific interaction within the network, information about the confidence levels of

that interaction in STRING is provided.

Conclusion
In this article, we present Orthoweb — a software platform
designed for the analysis of phylostratigraphic and diver-
gence indices for both individual genes and gene networks.
Orthoweb also allows the integration of evolutionary index
values with gene expression data under different conditions.
One of the key features of Orthoweb is its advanced data
visualization capabilities. The tools for mapping evolutionary
indices onto gene networks greatly simplify the interpretation
of complex evolutionary relationships, making the results of
analysis accessible to a wide range of researchers.
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Abstract. The metabolomic profiles of glioblastoma and surrounding brain tissue, comprising 17 glioblastoma
samples and 15 peritumoral tissue samples, were thoroughly analyzed in this investigation. The LC-MS/MS method
was used to analyze over 400 metabolites, revealing significant variations in metabolite content between tumor
and peritumoral tissues. Statistical analyses, including the Mann-Whitney and Cucconi tests, identified several
metabolites, particularly ceramides, that showed significant differences between glioblastoma and peritumoral
tissues. Pathway analysis using the KEGG database, conducted with MetaboAnalyst 6.0, revealed a statistically sig-
nificant overrepresentation of sphingolipid metabolism, suggesting a critical role of these lipid molecules in glio-
blastoma pathogenesis. Using computational systems biology and artificial intelligence methods implemented in
a cognitive platform, ANDSystem, molecular genetic regulatory pathways were reconstructed to describe potential
mechanisms underlying the dysfunction of sphingolipid metabolism enzymes. These reconstructed pathways were
integrated into a regulatory gene network comprising 15 genes, 329 proteins, and 389 interactions. Notably, 119
out of the 294 proteins regulating the key enzymes of sphingolipid metabolism were associated with glioblastoma.
Analysis of the overrepresentation of Gene Ontology biological processes revealed the statistical significance of
184 processes, including apoptosis, the NF-kB signaling pathway, proliferation, migration, angiogenesis, and py-
roptosis, many of which play an important role in oncogenesis. The findings of this study emphasize the pivotal
role of sphingolipid metabolism in glioblastoma development and open new prospects for therapeutic approaches
modulating this metabolism.

Key words: glioblastoma; peritumoral tissue; markers; metabolomics; LC-MS/MS; sphingolipids; metabolic
pathways; gene networks; cognitive system ANDSystem.
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3 DepfepanbHbIn NCCNEAOBATENbCKNIA LeHTP VIHCTUTYT uuTonorum n reHetrnkn Cubrnpckoro otaeneHnsa Poccrinckon akagemmn Hayk, Hosocnbupck, Poccus

4 HoBocnGMPCKNit HayYHO-UCCIA0BATENBCKIM MHCTUTYT TPaBMATONOrK 1 opToneann um. 171, LinBbaHa MUHMCTEPCTBa 3apaBOOXpPaHeHNS
Poccuitckoinn ®egepaunm, HoBocnbupck, Poccun

5 HayuHo-nccnefoBaTenbCKmin MIHCTUTYT KIIMHUYECKO 1 SKCnepuMeHTanbHoi numdonorumn — punman OefepanbHOro NccinefoBaTenbCckoro LieHTpa
WHCTUTYT umTonorum n reHetnkn Cnbupckoro otaeneHna Poccuiickoi akaaemmnm Hayk, Hosocnbrpck, Poccua

6 DepepanbHblii NCccnefoBaTenbCKuin LeHTp MHCTUTYT Katanusa um. K. bopeckoBa Cnbupckoro otaeneHnsa Poccuinckon akagemmm Hayk,
HoBocnbupck, Poccus

7 DepepanbHblii NCCnenoBaTeNnbCKUin LeHTp «MpKyTCKni MHCTUTYT Xumnum um. A.E. ®aBopckoro Cnbrnpckoro otaeneHns Poccninckoi akaaeMmmnm Hayk»,
NpkyTck, Poccna

8 KypuaTtoBcKuin reHoMHbIN LeHTp UL CO PAH, HoBocnbumpck, Poccua
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AHHoTauuA. B xope nccnefoBaHnA NpoBeAeH KOMMIEKCHbIM aHann3 MeTabonoMHbIx npodunen rnnobnactombl
1 NpWeraLLein TKaH1 rofloBHOTO MO3ra, BKJoYaBwuid 17 obpasuos rnnobnactomsl 1 15 06pasLoB neputymo-
panbHo TKaHW. C ucnonb3oBaHvem metoaa BOXKX-MC/MC 6b1510 NnpoaHanusnpoBaHo 6onee 400 MeTabonnTOB, UTO
NO3BOJINIIO BbIABUTb 3HAUYMMbIE Pa3INUMA B UX COAEPKAHUN MEXIY OMYyXONeBOWN 1 NEPUTYMOPANbHON TKaHAMU.
CTaTUCTUYECKNIA aHanNM3, BKOYaBLLNA TecTbl MaHHa-YUTHM 1 KyKKOHW, MoKa3an, YTo CyLecTBEHHOEe KONNYeCcTBO
MeTabonnTOB, B YaCTHOCTY LiepaMufibl, 3HAUMMO Pa3INYaeTCcA B TKaHAX FM06nacToMbl M NEPUTYMOPaNbHOMO MPo-
cTpaHcTBa. AHanm3 metabonuyeckux nyten n3 6asbl AaHHbIX KEGG, BbINONHEHHbI ¢ nomolybto MetaboAnalyst 6.0,
BbIABW/ CTAaTUCTNYECKM 3HAUMMYIO NepPenpeacTaBeEHHOCTb MeTabonnama cOUHroNMNMAOB, UTO YKa3biBAET HA BaX-
HYI0 POJib 3TUX NUNNAHDbIX MOJIEKYST B MaTtoreHese rnno6nactombl. C UCMONb30BaHNEM mMeToaoB KOMI'IblOTepHOIh
CUCTEMHOW BMONOMMM N UCKYCCTBEHHOIO MHTENNEKTA, Peann3oBaHHbIX B KOrHUTUBHON cucteme ANDSystem, pe-
KOHCTPYMPOBaHbl MONEKYIAPHO-TEHETNYECKNE PeryNATOPHbIE NYTKU, ONUCHIBAIOLWME NOTEHLMANbHbIE MEXaHN3MbI
HapylweHua ¢yHKUunn pepmeHToB MeTabonnama cCOUHroNMNUAOB. PeKOHCTPYpoBaHHbIe MyTH Obiv 06beAnHEHbI
B PErynsTOpHyI0 reHHyto ceTb. [laHHas ceTb BKMovana 15 reHoB, 329 6enkoB 1 389 B3avMOZENCTBUIA, NpY STOM
119 13 294 6eNKOB, PerynmpyoLmx Knodyesble pepmeHTbl COUHFONNNMAHOO MeTaboM3Ma, OKasanncb accoumm-
poBaHbI ¢ rMMobnacTomoil. AHanu3 nepenpencTaBieHHOCTY Gronornyecknx npoueccos Gene Ontology nokasan
CTaTUCTMYECKYIO 3HaUMMOCTb 184 nMpoLeccos, B TOM Yncsie anonTo3a, curHanbHoro nyt NF-kB, nponudepaumn,
MUFPaLMK, aHFMOreHe3a 1 MMPOMNTO3a, MHOTME 13 KOTOPbIX UTPAtoT BaXKHYI0 POsb B OHKOreHe3e. Pe3ynbTaTbl Uccie-
[0BaHVA NOAYEPKMBAIOT KIIOYEBYIO POsb MeTabonn3ma CGUHronUnMAoB B Pa3BUTHM MM06IacTOMbI 1 OTKPbIBAIOT
HOBbIE NepCneKTVBbI AJ1A Pa3paboTKM TepaneBTUUECKUX MOLXOLO0B, HaNpPaBNEHHbIX Ha €0 MOAYNALNIO.

KnioueBble cfioBa: rmnobnactoma; neputyMmopanbHas TKaHb; MapKepbl; metabonommka; BIMX-MC/MC; chuHronu-

nnabl; mMeTabonunyeckune nyTu; reHHble CeTU; KOTHUTUBHaA CUCTEMa ANDSystem.

Introduction

Glioblastoma (GBM) is the most prevalent primary brain
tumor in adults, with its aggressiveness primarily dictated
by its invasive nature — active infiltration of individual or
clustered malignant cells into the brain parenchyma sur-
rounding the tumor (Mollmann-Zwerenz et al., 2020). The
World Health Organization (WHO) classifies gliomas based
on cell type and aggressiveness: grade | includes benign
tumors, while grade IV encompasses the most aggressive
tumor types, including glioblastomas (Louis et al., 2021).
Poor survival rates among GBM patients, even after the most
radical surgeries to remove the primary tumor accompanied
by multimodal chemoradiotherapy (Omuro, DeAngelis,
2013), are linked to the reappearance of malignant growths.

CUCTEMHAA KOMIMbIOTEPHAA BUOJTIOTUA / SYSTEMS COMPUTATIONAL BIOLOGY

These often occur directly within the postoperative cavity, in
its 2-cm marginal zone, or as distant and multiple recurrent
tumor foci. Such recurrent tumors are believed to form from
GBM cells in the peritumoral zone that re-migrate back into
the primary tumor cavity or to distant areas of the brain.
Despite established approaches to disease verification,
the challenge of predicting tumor growth and sensitivity to
treatment remains unresolved. In 2016, the WHO introduced
a new classification system for brain tumors, incorporating
genetic markers such as IDH1/IDH2, O-6-methylguanine
DNA methyltransferase (MGMT), and epidermal growth
factor receptors (EGFR) (Louis et al., 2021). This system
enables clinicians to differentiate tumors not only by cell type
and aggressiveness, as was possible with previous methods,
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but also by the genetic phenotype of neoplastic cells, offer-
ing a stronger correlation with tumor prognosis (Jaroch et
al., 2021). Molecular biomarkers have become an essential
component of glial tumor evaluation, influencing clinical
decisions in various glioma subtypes, including treatment
strategies. The potential for glioma classification based on
molecular markers continues to be explored, promising bet-
ter implementation of personalized therapeutic approaches
(Siegal, 2015). Additionally, the use of omics technologies,
such as metabolomic screening, represents an exciting
avenue of contemporary research aimed at identifying dis-
ease biomarkers.

Like most malignancies, glioblastoma exhibits a unique
bioenergetic state of aerobic glycolysis, known as the War-
burg effect (Siegal, 2015), in which aerobic glycolysis serves
as the primary source of ATP for cancer cells (Warburg,
1956). Although the understanding of cancer cell metabolism
is continually evolving, the specific advantages that cancer
cells gain from metabolic transformation remain unclear
(Koppenol et al., 2011). Additionally, the mechanisms by
which hypoxia influences the metabolic reprogramming of
tumor cells are not yet fully understood. Recent discover-
ies of the connections between oncogenes and metabolic
processes have reignited interest in Warburg’s findings
(Poteet et al., 2013). A growing body of evidence suggests
that the adaptation of aerobic glycolysis in cancer cells may
contribute to biomass accumulation, thereby promoting the
proliferation of malignant cells (Heiden et al., 2009). The
study of tumor cell metabolism is essential for developing
models that accurately reflect the composition of the tumor
microenvironment (Liberti, Locasale, 2016) and for identify-
ing new, effective therapeutic strategies. The metabolomic
approach to studying glioblastoma has gained significant
attention, not only as a diagnostic tool but also as a means
to investigate GBM metabolism. Insights from such studies
can aid in the development of novel therapeutic interventions
(Pandey et al., 2017; Zhou, Wahl, 2019). In some respects,
metabolomic analysis surpasses gene expression analysis, as
gene function can be influenced by epigenetic modifications
and post-translational changes. In contrast, metabolites act
as direct indicators of enzymatic activity and biochemical
processes within the cell (Pandey et al., 2017).

The analysis of metabolic differences between various
regions of glioblastoma, particularly between the central
region of the tumor and the peritumoral zone, is considered
one of the most reliable methods for studying the tumor’s
metabolic characteristics (Wolf et al., 2010; Chinnaiyan et
al., 2012). These metabolic differences can be assessed using
samples obtained intraoperatively during tumor resection
(Youngblood et al., 2021). However, only few such studies
have been reported in the literature.

Various methods based on the analysis of metabolic path-
ways and gene networks are employed to identify molecular
genetic mechanisms underlying the observed metabolomic
data. Gene networks provide valuable insights into the
genetic regulation of the identified metabolic pathways,
forming a foundation for integrating metabolomic and ge-
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nomic data (Kolchanov et al., 2013). We have previously
developed ANDSystem, a software and information system
designed for automated extraction of biological and medical
knowledge from scientific publications using artificial intel-
ligence methods (Demenkov et al., 2011; Ivanisenko V.A.
et al., 2015, 2019; Ivanisenko T.V. et al., 2020, 2022).
This software enables users to reconstruct, expand, and
graphically visualize gene networks, apply data filtering, and
search for regulatory pathways in the global gene network
using templates. ANDSystem has been utilized to analyze
molecular genetic mechanisms across a wide range of dis-
eases, including comorbid conditions, organismal responses
to stress, identification of pharmacological targets, and
other research objectives (Bragina et al., 2014, 2016, 2023;
Popik et al., 2016; Saik et al., 2016, 2018a, b, 2019; Zolo-
tareva et al., 2019; Antropova et al., 2022; Demenkov et
al., 2023).

Metabolomic and proteomic data have been analyzed
using ANDSystem (Pastushkova et al., 2013, 2019; Binder
etal.,2014; Larinaetal., 2015; Rogachev etal., 2021; Ivani-
senko V.A. et al., 2022, 2023). For instance, metabolomic
analysis of blood plasma from COVID-19 patients identi-
fied the role of non-structural viral proteins in metabolic
disorders associated with the disease, which contributed
to changes in the metabolomic profile (Ivanisenko V.A. et
al., 2022). Additionally, analysis of metabolomic profiles
from patients with postoperative delirium, conducted using
ANDSystem, helped identify potential markers represented
by several sphingolipids and revealed molecular genetic
mechanisms underlying their metabolic disruptions (lvani-
senko V.A. et al., 2023).

In this study, a targeted screening of a broad spectrum of
metabolites was conducted in glioblastoma and peritumoral
tissue. Statistical analysis of the screening data identified
metabolites involved in sphingolipid metabolism, with sig-
nificantly different levels observed between tumor and peri-
tumoral tissue. Using gene network reconstruction, genes
with the greatest regulatory influence on the function and
expression of key enzymes in sphingolipid metabolism were
identified. These included both established tumor markers
(p53, TNF-0, VEGF, etc.) and promising candidate markers
(KLF4, E2F4, etc.). Disruption of these genes’ functions in
glioblastoma may explain the observed alterations in the
metabolomic profile.

Materials and methods
Reagents and materials. Methanol and acetonitrile used
for sample preparation and analysis were of gradient HPLC
grade and were purchased from Khimmed (Moscow, Rus-
sia). Purified water was prepared using a Sartorius arium
611DI system (Géttingen, Germany). Eluent A was prepared
according to the protocol described by Li et al. (2017).
Patients —study participants. Tumor tissue was obtained
from patients who underwent surgical treatment in the
neurosurgical department of the Ya.L. Tsivyan Novosibirsk
Research Institute of Traumatology and Orthopedics (Novo-
sibirsk, Russia) for first-diagnosed GBM between 2019 and
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2022. The cohort included patients with grade IV gliomas
hospitalized for surgical tumor resection. Diagnoses were
confirmed by MRI and histopathological examination of
excisional biopsy specimens. The final diagnosis was estab-
lished based on histological analysis and the consensus of
two pathomorphologists, following the WHO classification.
Tumor samples were collected intraoperatively and anony-
mized for the investigators. The clinical study identifier was
NCT03865355. A total of 17 patients were included in the
study. Below is their gender and age distribution:

Sex Age, years old
(M/F)  |Min | Max
8/9 28.2 69.6

Median
63.22

Std. deviation
15.9

Average
54.9

Collection of tumor tissue samples from patients.
Tumor tissue samples were obtained during cytoreductive
surgical interventions. After collection, the samples were
immediately placed in RPMI 1640 cell culture medium
without additives and stored at +4 °C until processing.
Tumor sections from different regions (tumor center and
peritumoral tissue) were separated using surgical instru-
ments into fragments ranging in size from 2x2x2 mm to
5x5x5 mm. These fragments were wrapped in sterile foil
bags, frozen in liquid nitrogen, and subsequently stored in
a low-temperature freezer at —80 °C. In total, glioblastoma
samples from 17 patients and peritumoral tissue samples
from 15 patients were included in the study.

Compliance with ethical standards. The study was
reviewed and approved by the Ethics Committee of the Zel-
man Institute of Medicine and Psychology at Novosibirsk
State University (meeting minutes dated January 4, 2018).
All experimental protocols were approved, and all proce-
dures involving human participants adhered to the ethical
standards of the institutional research committee, the 1964
Declaration of Helsinki, and its subsequent amendments or
equivalent ethical standards. Written informed consent was
obtained from each participant prior to inclusion in the study.
Additionally, the study was approved by the Local Ethical
Committee of the Ya.L. Tsivyan Novosibirsk Research In-
stitute of Traumatology and Orthopedics (meeting minutes
dated September 11, 2017, No. 050/17), and informed vol-
untary consent was obtained from all participants.

Sample preparation of glioblastoma and peritumoral
tissue samples. Metabolite extraction from glioblastoma
and peritumoral tissue samples was carried out simulta-
neously using a modified protocol based on (Yuan et al.,
2012; Li et al., 2017). In a 1.5 mL tube, 250 uL of chilled
80 % methanol (vol/vol) was added per 10 mg of tissue to a
sample weighing between 9 and 33 mg. The samples were
homogenized for 2 minutes using a Bertin Minilys tissue
homogenizer (Rockville, Maryland, USA), with granite
chips added to enhance sample disintegration. This was
followed by incubation at —70 °C for 24 hours. After incu-
bation, the samples were vortexed and centrifuged at +4 °C
and 16,000 g for 15 minutes. The resulting supernatant was
carefully transferred to a new polypropylene tube. An equal
volume of chilled 80 % methanol (vol/vol) was then added to
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the remaining precipitate, vortexed for 1 minute, incubated
at =70 °C for 30 minutes, and centrifuged under the same
conditions. The supernatants from both extractions were
combined, and a 500 pL aliquot was taken and evaporated
to dryness using a SpeedVac concentrator vacuum centrifuge
(Thermo Fisher Scientific/Savant, Waltham, USA). The
dried samples were reconstituted in 20 pL of MilliQ water
and subjected to analysis.

High-performance liquid chromatography with
mass spectrometric detection. Samples were analyzed
by high-performance liquid chromatography with tandem
mass spectrometric detection (LC-MS/MS), following the
procedure described by Basov, Rogachev et al. (2024). Chro-
matographic separation was performed using an LC-20AD
Prominence chromatograph (Shimadzu, Japan) equipped
with a SIL 20AC autosampler (Shimadzu, Japan) main-
tained at 10 °C. The injection volume was 2 pL. Eluent A
consisted of 5 % acetonitrile in 20 mM ammonium carbonate
(NH,),C0O5 aqueous solution, adjusted to pH 9.8 with aque-
ous ammonia solution, and eluent B was 100 % acetonitrile.
Each sample was analyzed twice, in hydrophilic interaction
liquid chromatography (HILIC) and reversed-phase chro-
matography (RP LC) modes. The HILIC gradient was as
follows: 0 min — 98 % B, 2 min — 98 % B, 6 min — 0 % B,
10 min—0 % B, followed by column equilibration for 4 min.
The RP LC gradient was 0 min — 0 % B, 1 min — 0 % B,
6 min—98 % B, 16 min— 98 % B, with column equilibration
for 3 min. The flow rate for both analyses was 300 pL/min.
Chromatographic analyses were performed using a mono-
lithic column based on 1-vinyl-1,2,4-triazole (2 x 60 mm),
synthesized as described by Patrushev et al. (2018) through
copolymerization of styrene, divinylbenzene, and 1-vinyl-
1,2,4-triazole in a volume ratio of 10:50:40, respectively,
within a glass tube with an inner diameter of 2 mm.

Mass spectrometric detection. Detection of 489 metabo-
lites was performed in multiple reaction monitoring (MRM)
mode as positive and negative ions using an API 6500
QTRAP mass spectrometer (AB SCIEX, USA) equipped
with an electrospray ionization source operating in the posi-
tive/negative switch mode. The primary mass spectrometric
parameters were as follows: ion spray voltage (IS) was set
at 5500 V for positive ionization mode and —4500 V for
negative ionization mode; the ion source temperature was
at 475 °C; CAD gas was set as “Medium”; GS1, GS2 and
curtain gas were 33, 33 and 30 psi, respectively. The declus-
tering potential (DP) was £91 V, the entrance potential (EP)
was =10 V, and the collision cell exit potential (CXP)
was +9 V. In addition, the polarity switching (settling) time
was set at 5 ms, and dwell time was 3 ms for each MRM
transition. Precursor and fragment ion transitions, metabolite
names, dwell times, and the appropriate collision energies
for both positive and negative ion modes were adapted from
the studies: Yuan et al. (2012) and Li et al. (2017) (Supple-
mentary Material 1)1. Device control and data acquisition
were collected using Analyst 1.6.3 software (AB SCIEX),

T Supplementary Materials 1-5 are available at:
https://vavilovj-icg.ru/download/pict-2024-28/appx31.xlsx
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Table 1. Templates of molecular genetic pathways regulating enzymes in metabolic pathways by human proteins

No. Template name

P1 Protein-protein interactions
P2 Regulation of protein function
P3 Regulation of expression

Scheme of regulatory pathway template
Hp - protein-protein interactions — Kp
Hp - regulation of activity/degradation/proteolysis/transportation — Kp

Hp - regulation of expression — Kg — expression — Kp

Note. Hp - human proteins; Kg - genes encoding enzymes of the KEGG metabolic pathway; Kp — enzymes of the KEGG metabolic pathway.

while chromatograms were processed using Skyline 24.0
software (Adams et al., 2020).

Pre-processing and statistical analysis of the data.
Statistical analysis of the metabolomic screening re-
sults for glioblastoma and peritumoral tissue was conducted
using the Mann—Whitney and Cucconi tests, implemented
in Python packages (SciPy and Nonparstat). The Mann—
Whitney test was employed to identify significant differ-
ences between groups, while the Cucconi test provided
additional validation of the identified differences under
conditions of sample heterogeneity. Outlier correction was
performed as follows: an outlier was defined as any value
outside the 1.5 interquartile range (IQR). Identified out-
liers were replaced with adjusted values calculated as
1.5 x IQR £ 1073 (subtracted for upper outliers and added
for lower outliers).

The online platform MetaboAnalyst 6.0 (http://www.
metaboanalyst.ca/) (Pang et al., 2021) and its Enrichment
Analysis tool were used to identify overrepresented me-
tabolic pathways based on highly significant metabolites.

Reconstruction of gene networks. Gene network
reconstruction was performed using the ANDVisio graphical
user interface within the ANDSystem software and
information system (http://www-bionet.sscc.ru/andvisio/).
In the Pathway Wizard module of ANDVisio, templates
of regulatory pathways for enzymes involved in the
identified metabolic pathways were created using human
protein data (Table 1). The list of human protein identifiers
was obtained from the SwissProt database (https://www.
uniprot.org/).

The list of proteins associated with glioblastoma was
retrieved from the ANDSystem knowledge base. Overre-
presentation analysis of Gene Ontology biological processes
was performed using the DAVID web service (https://david.
nciferf.gov/) with default settings.

Results

Samples of glioblastoma and brain tissue adjacent to the
tumor (17 glioblastoma and 15 peritumoral tissue samples)
were collected and analyzed as part of the study. Metabolo-
mic analysis was performed using the LC-MS/MS approach
developed previously (Basov et al., 2024). The chromato-
grams were processed by integrating the peak area of
each metabolite, and the resulting signals were compared
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between glioblastoma and peritumoral tissue samples.
Peak area values for 446 metabolites were obtained from
the analysis.

The Mann—Whitney test, with a critical value of p <0.05,
was used as the primary method for statistical analysis of
the metabolomic screening results. The nonparametric Cuc-
coni test was employed as an additional method for group
comparisons. Metabolite lists satisfying each test at p < 0.05
were compared, resulting in a subset of metabolites that met
the criteria for both tests (Table 2).

The overrepresentation of KEGG metabolic pathways was
analyzed for the identified set of metabolites using Metabo-
Analyst 6.0 (Table 3). This analysis revealed sphingolipid
metabolism as a statistically significant overrepresented
metabolic pathway. Another marker-enriched pathway,
the KEGG metabolic pathway “Pantothenic acid and CoA
biosynthesis”, had a p-value of 0.012; however, after cor-
rection for multiple comparisons, the p-value exceeded
the significance threshold of 0.05, resulting in a corrected
p-value of 0.46.

Among the metabolites identified as potential markers
(Table 2), 5 out of 22 (~23 %) belonged to ceramides, a class
of lipid molecules that are key components of cell mem-
branes. Additionally, 3 metabolites — 4-phosphopantothenic
acid, malonyl-CoA, and coenzyme A — were identified as
major precursors in de novo lipid biosynthesis. The ceramide
content was at least twofold higher in tumor tissue compared
to peritumoral tissue. Furthermore, the variance was signifi-
cantly greater in the glioblastoma samples, indicating higher
heterogeneity within this group (Fig. 1).

The levels of metabolites in the pantothenic acid and
CoA synthesis pathway were significantly lower in tumor
tissues (Fig. 2), suggesting their active utilization in lipid
biosynthesis.

In the next phase of our study, we investigated potential
mechanisms underlying the dysfunction of sphingolipid
metabolism enzymes. To achieve this, molecular genetic
regulatory pathways were reconstructed using ANDSystem
with the templates presented in Table 1. These templates
represent the potential regulation of enzymes involved in
sphingolipid metabolism by human proteins (Supplemen-
tary Materials 2—4). The starting point of the reconstructed
regulatory pathways included all human proteins, while
the endpoint comprised sphingolipid metabolism enzymes
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Table 2. Metabolites with significant differences (p < 0.05) between glioblastoma and peritumoral samples

No. Metabolite p-value (Cucconi test) p-value (Mann-Whitney test)
1 Malonyl-CoA 9.99x 107 1.17x107*

2 SM (d18:1/22:0 OH) 3.00x 1073 2.52x1073

3 Octanoylcarnitine 8.99x1073 4.10x1073

4 Pyroglutamic acid 2.00x1073 462x1073

5 Ceramide (d18:1/16:0 OH)* 3.00x1073 4.62x1073

6 3-Phosphoglyceric acid 1.20x 1072 5.20%x1073

7 THC 18:1/20:0 1.60x 1072 7.33%x1073

8 Hexose Disaccharide Pool 1.30x 1072 8.20x1073

9 4-Phosphopantothenate 2.80x 1072 8.20x 1073

10 2-Octenoylcarnitine 2.80x 1072 4.10x 1073

11 Ceramide (d18:1/16:0)* 4.00x1073 9.17x1073

12 Ceramide (d18:1/22:0)* 8.99x1073 1.14x1072

13 Coenzyme A 4.00% 1072 1.27x1072

14 Pyridoxal 3.10x1072 1.41x1072

15 N-carbamoyl-L-aspartate 4.40%x1072 1.74%x1072

16 Citrulline 2.50%1072 1.92x 1072

17 Decanoylcarnitine 4.70%x 1072 2.12x1072

18 GC (18:2/16:0) 2.40x1072 235%x1072

19 Purine 2.00x 1072 3.45x1072

20 Ceramide (d18:1/16:2)* 3.20x1072 4.14x1072

21 Ceramide (d18:1/16:1 OH)* 2.50% 1072 4.53x1072

22 Glycerophosphocholine 3.00x 1072 4.95x%1072
* Metabolites belonging to the ceramide class.
Table 3. Overrepresented KEGG metabolic pathways for a set of metabolomic markers

Metabolic pathway (KEGG) p-value FDR*
Metabolism of sphingolipids 7.95x 10 6.36x 1073
Biosynthesis of pantothenic acid and CoA 11.5x1073 46x107"

* FDR (False Discovery Rate) represents correction for multiple comparisons.

from the KEGG database involved in the metabolism of
ceramide, sphingomyelin (SM), glucosylceramide (GC), and
trihexosylceramide (THC). For the purposes of this study,
these enzymes are referred to as key enzymes of sphingolipid
metabolism. The regulatory pathways considered included
interactions such as protein-protein interactions, regulation
of gene expression, and regulation of protein activity, deg-
radation, or transport.

The reconstructed regulatory pathways were integrated
into a unified gene network (Fig. 3). This regulatory gene
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network comprised 15 genes, 329 proteins (including
35 enzymes involved in sphingolipid metabolism), and
389 interactions among them.

According to the ANDSystem knowledge base, evidence
from the literature indicates dysfunction in glioblastoma
for 119 out of 294 gene network proteins regulating key
enzymes of sphingolipid metabolism. A subnetwork of the
regulatory gene network, illustrating the interactions of these
proteins with key enzymes of sphingolipid metabolism, is
presented in Figure 4.
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Fig. 2. Levels of CoA and related metabolites in tumor and peritumoral tissues.

In total, the ANDSystem knowledge base contains asso-
ciation information for 2,393 human glioblastoma-related
proteins, 119 of which were included in the regulatory gene
network. Based on a hypergeometric test, the reconstructed
gene network is statistically significantly associated with
glioblastoma (p-value < 10-39).

Gene Ontology overrepresentation analysis of biological
processes for genes in the resulting gene network identified
184 statistically significant processes. These include apopto-
sis, the NF-«xB signaling pathway, proliferation, migration,
and angiogenesis, which are commonly dysregulated in
many cancers, as well as pyroptosis — a process, the role of
which in glioblastoma is currently under active investigation
(Supplementary Material 5).

Discussion

Susceptibility of glioblastoma cells

to changes in coenzyme A metabolite levels

Our study identified reduced levels of CoA and malonyl-
CoA in glioblastoma tissues compared to peritumoral tissues
(Fig. 2). For de novo fatty acid synthesis, glioblastoma cells
must produce cytosolic acetyl-CoA, which can be generated
either from citrate via ATP-citrate lyase or from acetate via
acetyl-CoA synthetase (Santos, Schulze, 2012). Mashimo
et al. (2014) demonstrated that brain tumors of various cel-

lular origins have the ability to oxidize injected acetate. The
authors suggest that acetate oxidation is facilitated by the ac-
tivation of acetyl-CoA synthetase isoform ACSS2, achieved
through upregulated expression. The higher expression of
ACSS2 in glioblastoma compared to lower-grade gliomas
supports the hypothesis that enzyme activation is associated
with increased acetate oxidation by the tumor. Furthermore,
ACSS2 deficiency in mouse models of hepatocellular car-
cinoma has been shown to reduce tumor burden and inhibit
tumor growth (Comerford et al., 2014).

Malonyl-CoA level determines the direction of fatty acid
metabolism, specifically whether it supports triglyceride
synthesis or oxidation (Clarke S.D., Nakamura, 2004). Previ-
ous studies reported that inhibition of f-oxidation in human
glioblastoma cells by etomoxir, a carnitine palmitoyltrans-
ferase-1 inhibitor, significantly reduces ATP, NADPH, and
reduced glutathione levels, thereby impairing cell viability
(Pike et al., 2011). These findings suggest that B-oxidation
contributes to oxidative stress resistance in glioblastoma
cells, and our results support this hypothesis. Addition-
ally, malonyl-CoA level has been shown to influence the
response to various chemotherapeutic agents. For instance,
in a study on a breast cancer cell model, malonyl-CoA
levels significantly increased following fatty acid synthase
inhibition and decreased upon inhibition of acetyl-CoA
carboxylase (Pizer et al., 2000). Key metabolic pathways,
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Fig. 3. Gene regulatory network of key enzymes in sphingolipid metabolism, reconstructed by integrating regulatory
pathways based on three types of templates.

Fig. 4. Subnetwork of the gene regulatory network for key enzymes of sphingolipid metabolism regulated by glioblastoma
genetic markers.
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such as glycolysis and the tricarboxylic acid (TCA) cycle, are
regulated by multiple microRNAs that control specific steps
within these pathways. Cancer cells predominantly rely on
aerobic glycolysis instead of the TCA cycle, enabling them
to sustain high ATP levels to meet biosynthetic demands
(Chan et al., 2015).

Our study revealed an increase in the level of 4-phospho-
pantothenate, consistent with the observed changes in the
lipid profile. The synthesis of this metabolite is catalyzed
by pantothenate kinase, the first enzyme in the CoA bio-
synthetic pathway. The role of pantothenate kinase in
glioblastoma has been extensively discussed in the litera-
ture. For instance, Poli et al. (2010) reported that silencing
pantothenate kinase-2 significantly reduced the growth of
the U373 glioma cell line. Acetyl-CoA and lipid levels may
also be regulated by the microRNAs miR-103 and miR-107
(Wilfred et al., 2007). Additionally, evidence suggests that
miR-103 suppresses glioblastoma cell proliferation and
migration (Chen L.P. et al., 2018), while miR-107 inhibits
glioblastoma angiogenesis by upregulating its expression
(Chen L. et al., 2016).

Linking ceramide biosynthesis to tumor growth
Ceramides, lipid mediators of the sphingolipid class, play
arole in signaling pathways that regulate cell proliferation,
differentiation, and cell death (Riboni et al., 2002). Our study
demonstrates that the levels of ceramides (16:0), (16:0 OH),
(16:2), (16:1 OH), and (22:0) — derivatives of sphingomyelin
(18:1) —are elevated in tumor tissue compared to peritumoral
tissue (Fig. 1). Peritumoral tissue was used as a control
because its collection during surgery does not compromise
the treatment prognosis for patients. The observed increase
in ceramide levels in tumor tissue suggests alterations in the
enzymatic systems responsible for ceramide biosynthesis
and degradation, potentially contributing to tumor growth
and the evasion of apoptosis by tumor cells.

Ceramide formation occurs via three main pathways.
The sphingomyelinase pathway involves the action of
sphingomyelinase, an enzyme that cleaves sphingomyelin
in the cell membrane to release ceramides. In the de novo
synthesis pathway, ceramides are produced from simpler
precursor molecules through a series of enzymatic reactions.
The salvage pathway reutilizes sphingolipids by cleaving
them into sphingosine, which is subsequently realkylated
to form ceramide.

The key enzyme in the sphingomyelinase pathway is
sphingomyelinase (SMase), which catalyzes the hydro-
lysis of sphingomyelin. As sphingomyelin is one of the
most abundant phospholipids in the cell membrane, this
pathway’s significance lies in its role in targeting the cell
membrane for extracellular signals that trigger programmed
cell death and cellular stress (Haimovitz-Friedman et al.,
1994). SMase exists in three main types: acidic (aSMase),
neutral (nSMase), and alkaline (alk-SMase). Stimulation of
SMase activity can be induced by various factors, includ-
ing antitumor drugs. Sphingomyelinase inhibitors, such as
perphenazine and fluphenazine — classified as functional
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inhibitors of acidic sphingomyelinase (FIASMA) — show
potential in cancer therapy, though further studies are needed
to validate their efficacy (Kornhuber et al., 2010). Recent
research has identified an inhibitor, Arc39, that blocks lyso-
somal and secretory aSMase in vitro in L929, HepG2, and
B16 cells (Naser et al., 2020), as well as a light-inducible
PCALI inhibitor capable of inhibiting aSMase (Prause et al.,
2020). Additionally, sphingomyelinase plays a critical role
in sphingolipid metabolism, which may influence cancer
development (Clarke C.J. et al., 2011). Its inhibition and
subsequent effects on exosomes are of growing interest
for oncology and the development of therapeutic strategies
(Lin M. et al., 2018).

The sphingomyelin synthase (SMS) family, comprising
three members — SMS1, SMS2, and SMS-related protein
(SMSr) (Chen Y., Cao, 2017) — catalyzes the synthesis of
sphingomyelins from ceramides (Cer) and phosphatidyl-
choline, releasing diacylglycerol as a byproduct. Selective
inhibition of SMS has been shown to increase ceramide
concentration in the endoplasmic reticulum, triggering
autophagy in hippocampal neurons (Gulbins et al., 2018).
In glioblastoma, treatment with 2-hydroxyoleic acid, an
antitumor drug, was observed to enhance SMS activity. Acti-
vation of SMS2 decreases ceramide levels and promotes cell
proliferation via the transforming growth factor-§ (TGF-B)/
Smad signaling pathway. Conversely, inhibition of SMS2
by specific miRNAs led to ceramide accumulation and ac-
celerated cell death (Zheng et al., 2019). Recent research
has shown that SMS2 is activated in breast cancer, inducing
macrophage polarization and promoting tumor progression
(Dengetal., 2021). Notably, SMS2 knockdown reduced the
release of cytokines that drive macrophage polarization into
M2 macrophages, thereby suppressing tumor growth (Deng
et al., 2021). Furthermore, downregulation of SMS1 has
been reported in patients with metastatic melanoma, where
it is associated with worse prognosis due to an imbalance
between sphingomyelin and glucosylceramide levels (Bilal
et al., 2019).

Serine palmitoyltransferase (SPT) is a three subunits
heteromeric enzyme that catalyzes the first step of de novo
ceramide synthesis by condensing L-serine and palmitoyl-
coenzyme A to form 3-ketosfinganine. Increased SPT
activity has been observed in response to chemotherapy
and radiotherapy across various cancers. Several SPT
inhibitors that block tumor growth have been identified.
For instance, myriocin (ISP-1), a potent SPT inhibitor
(Glaros et al., 2007), has been shown to suppress the growth
of breast cancer cells (Ogretmen, 2018) and B16F10 mela-
noma cells by arresting the G2/M phase (Lee et al., 2011).
Similar effects have been observed in human lung adenocar-
cinoma (HCC4006) cells, where SPT inhibition correlates
with growth suppression (Sano et al., 2017). Furthermore,
SPT inhibition by myriocin or specific miRNAs reduced
U87MG glioblastoma cell proliferation by suppressing
intracellular S1P levels (Bernhart et al., 2015). This anti-
tumor activity is believed to result from increased levels
of pro-apoptotic ceramides. In some cases, SPT activation
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contributes to therapeutic efficacy; for example, fenretinide,
a synthetic retinoid, elevates desaturated ceramide levels,
inducing apoptosis in neuroblastoma cells (Maurer et al.,
1999).

Ceramide synthase (CerS) plays a role in both de novo
ceramide synthesis and the salvage pathway. The CerS
family comprises six isoforms, each synthesizing ceramides
with specific fatty acyl-CoA chain lengths, which determine
their biological activity. For instance, CerS1 produces cera-
mides (18:0), which inhibit tumor growth (Wang Z. et al.,
2017), while CerS5 and CerS6 generate ceramides (16:0),
which are associated with anti-apoptotic effects in head
and neck squamous cell carcinoma (Moro et al., 2019).
The CerS1-specific inhibitor PO53 reduces ceramide (18:0)
levels in HEK 293 cells (Turner et al., 2018). Fingolimod-
derived analogues (FTY720) selectively inhibit specific
CersS isoforms, with inhibitors such as ST1058 and ST1074
targeting CerS2 and CerS4, while ST1072 blocks CerS4 and
CerS6 activity, and ST1060 inhibits CerS2 (Schiffmann et
al., 2012).

Dihydroceramide desaturase (Des1, DEGS1) is the final
enzyme in de novo ceramide synthesis, converting dihydro-
ceramide into ceramide by introducing a trans double bond
at the C4-Cj position. Knockdown of Desl by miRNAs
results in cell cycle arrest in neuroblastoma cells (Kraveka
et al., 2007). Resveratrol, a polyphenol with antioxidant
properties, inhibits Des1 and induces autophagy in HGC27
gastric cancer cells (Signorelli et al., 2009). Other Desl
inhibitors, such as y-tocotrienol, phenoxodiol, and cele-
coxib, promote autophagy by causing dihydroceramide
accumulation in glioblastoma cell lines (T98G and US7MG)
through Desl inhibition (Signorelli et al., 2009). A specific
Desl inhibitor, N-[(1R,2S)-2-hydroxy-1-hydroxymethyl-
2-(2-tridecyl-1-cyclopropenyl)ethylJoctanamide, effectively
activates autophagy and apoptosis in US7MG glioblastoma
cells. Additionally, treatment with tetrahydrocannabinol
alters the lipid composition of the endoplasmic reticulum,
leading to dihydroceramide accumulation and stimulating
autophagy and apoptosis in U87MG cells through reduced
Desl expression (Hernandez-Tiedra et al., 2016).

Glucosylceramide synthase (GCS) is a lysosomal enzyme
that glycosylates ceramides to form glycosylceramides.
Elevated GCS levels have been observed in various cancers
and are associated with resistance to antitumor therapies
(Madigan et al., 2020).

Ceramidase is an enzyme that hydrolyzes ceramides, re-
moving fatty acid residues to produce sphingosines. Overex-
pression of acidic ceramidase (ASAH1) has been detected in
melanomas and is likely linked to chemotherapy resistance.
ASAHI1 has also been implicated in mitochondrial function
and cellular autophagy in melanoma cells (Lai M. et al.,
2021). Alk-SMase has been reported to play a significant
role in tumor cell growth, migration, and invasion (Zhang
etal., 2020). Structural analogues of ceramides have shown
efficacy as selective ceramide synthase inhibitors, inhibit-
ing cell growth and emerging as promising candidates for
antitumor treatments (Steiner et al., 2016).
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Disruption of genetic regulation

of sphingolipid metabolism in glioblastoma

The application of ANDSystem enabled the reconstruction
of a gene network describing the regulation of key enzymes
involved in sphingolipid metabolism (Fig. 3). Analysis of
this regulatory network revealed that 119 of its proteins are
associated with glioblastoma, confirming the significant
connection between the reconstructed network and this dis-
ease (p-value < 10-3%). Among the most extensively studied
glioblastoma-associated proteins included in the network are
p53, TNF-a, TGF-B, VEGF, KLF4, and E2F4.

It is well-established that p53 is involved in numerous
intracellular processes, and its dysfunction is commonly
observed in various cancers. Notably, p53 plays a critical
role in sphingolipid metabolism, regulating the activity of
five key enzymes (CerS5, CerS6, SMPD3, ACER2, SPHK1)
out of the 35 enzymes represented in the reconstructed gene
network. According to Lacroix et al. (2020), p53 in tumor
cells increases the expression of ceramide synthases 5
(CerS5) and 6 (CerS6) and neutral sphingomyelinase 2
(SMPD3), which are ceramide-synthesizing enzymes. Ad-
ditionally, the induction of alk-SMase-2 transcription by
pS3 was investigated in studies by Wang Y. et al. (2017)
and Xu et al. (2018).

According to the regulatory gene network, tumor necro-
sis factor-alpha (TNF-a) stimulates the activity of three
enzymes involved in sphingolipid metabolism: acidic sphin-
gomyelinase (ASM), neutral sphingomyelinase (NSMA),
and neutral sphingomyelinase 2 (NSMAZ2). By enhancing
the activity of these enzymes, TNF-o may facilitate sphin-
gomyelin hydrolysis and promote ceramide formation.

Transforming growth factor-beta (TGF-) plays a crucial
role in various cell types. It initiates cellular signaling cas-
cades that activate downstream substrates and regulatory
proteins, ultimately inducing the transcription of multiple
target genes. Within the regulatory gene network, TGF-f2
has been shown to enhance the activity of sphingosine ki-
nase-1 (SPHK1), a finding supported by Ren et al. (2009).

Vascular endothelial growth factor (VEGF) has been iden-
tified as a component of the tumor microenvironment with
the capacity to activate endothelial cells. VEGF signaling
operates through tyrosine kinase receptors VEGFR1 and
VEGFR2, promoting endothelial cell migration, survival,
proliferation, and differentiation. This process initiates
angiogenesis, tumor growth, and metastasis. Within the
regulatory gene network, VEGF is involved in suppressing
acidic sphingomyelinase (ASM) activity and regulating the
expression of phospholipid phosphatase 3 (PLPP3). Glio-
blastoma is characterized by a high degree of vascularization
and VEGF overexpression, making this gene a compelling
target for glioblastoma therapy (Tea et al., 2020).

Kruppel-like factor 4 (KLF4) is involved in regulating
proliferation, differentiation, apoptosis, and somatic cell
reprogramming. Evidence also indicates that KLF4 functions
as a tumor suppressor in certain cancers (El-Karim et al.,
2013). Within the regulatory gene network, KLF4 modulates
the expression of the ceramide synthase 2 (CerS2) gene.
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Chromatin immunoprecipitation analysis demonstrated
that KLF4 directly binds to the promoter region of CerS2,
activating its expression (Fan et al., 2015).

According to the reconstructed connections in the gene
network, the E2F4 protein regulates the expression of
ASAHI. Literature evidence indicates that E2F4 functions
as a transcriptional repressor, playing a crucial role in sup-
pressing genes associated with proliferation. Mutations and
overexpression of the E2F4 gene have been linked to human
cancers. By binding to the promoter region of the ASAH1
gene, E2F4 suppresses its expression (Melland-Smith et
al., 2015).

Significant biological processes associated
with the gene network
The overrepresented biological processes involving par-
ticipants of the regulatory gene network (Supplementary
Material 5) can be grouped into several categories, includ-
ing programmed cell death, cell mobility, angiogenesis,
and proliferation — all of which are well-documented in
the context of cancer (Hanahan, Weinberg, 2000). Among
these, programmed cell death via pyroptosis has garnered
particular interest in recent years due to its potential role in
the development and progression of glioblastoma (Lin J. et
al., 2022). In the gene network, pyroptosis is represented by
several caspases (CASP1, CASP3, and CASP8) and neu-
trophil elastase, which, under specific conditions, cleaves
Gasdermin D (GSDMD) to activate pyroptosis or cleaves
GSDMB, thereby inhibiting pyroptosis (Kambara et al.,
2018; Oltra et al., 2023). These pyroptosis-related proteins
in the gene network play a significant role in regulating
this process (Rao et al., 2022) (Supplementary Material 5).
Angiogenesis is essential for providing nutrients and
oxygen to glioblastoma, supporting tumor growth (Lara-
Velazquez et al., 2017). Key members of the gene network,
including vascular endothelial growth factor A (VEGFA),
epidermal growth factor (EGF), and the catalytic sub-
unit A of phosphatidylinositol-4,5-bisphosphate-3-kinase
(PIK3CA), have been identified as important genetic mark-
ers of glioblastoma involved in angiogenesis. These genes
are significant drivers of the angiogenic process (Danielsen,
Rofstad, 1998). Glioblastoma is also characterized by a
high capacity for invasion, with tumor cells infiltrating sur-
rounding brain tissue, making complete surgical removal
challenging and often impossible (Vollmann-Zwerenz et
al., 2020). The regulatory gene network highlights proteins
such as thyroid receptor-interacting protein 6 (TRIP6), which
is overexpressed in glioblastoma and promotes tumor cell
invasion (Lai Y.-J. et al., 2010), as well as TGF-B1, integrin
alpha-V (ITAV), and cyclic AMP-responsive element-
binding protein 3 (CREB3). These proteins are associated
with cell migration and contribute to glioblastoma’s invasive
properties.

Conclusion
A targeted metabolomic screening of glioblastoma and
peritumoral tissues from cancer patients was conducted us-
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ing the LC-MS/MS method. Bioinformatic analysis of the
resulting metabolic profiles, employing statistical methods
and gene network reconstruction, provided valuable insights
into the mechanisms underlying glioblastoma development
and progression. The study revealed altered metabolism of
coenzyme A (CoA) and related metabolites in glioblastoma
tissues, distinguishing them from peritumoral cells. Reduced
levels of CoA and malonyl-CoA in glioblastoma tissues
suggest increased p-oxidation of fatty acids and enhanced
resistance to oxidative stress in glioblastoma cells.

Additionally, elevated ceramide levels in tumor tissue
indicate potential modifications in the enzymatic activity
involved in ceramide synthesis and degradation, which
may be linked to tumor growth. These findings suggest that
disruptions in lipid metabolism, particularly involving CoA
and ceramide pathways, play a crucial role in glioblastoma
pathogenesis. Such alterations highlight potential thera-
peutic targets for developing novel treatments aimed at the
disrupted metabolic pathways in tumor cells. In particular,
inhibition of key enzymes, such as serine palmitoyltransfer-
ase and sphingomyelinase, emerges as a promising strategy
to reduce cell viability and potentially prevent further growth
of glioblastoma cells.

Thus, the findings of this study enhance our understand-
ing of the metabolic characteristics of glioblastoma and
offer new opportunities for developing targeted therapeutic
strategies focused on disrupting lipid metabolism in tumor
cells. Future research on specific metabolic alterations across
different glioblastoma subtypes, alongside the development
and evaluation of inhibitors targeting key enzymes, could
contribute significantly to advancing treatment options for
this disease.
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Abstract. Technologies for the production of a range of compounds using microorganisms are becoming increas-
ingly popular in industry. The creation of highly productive strains whose metabolism is aimed to the synthesis of a
specific desired product is impossible without complex directed modifications of the genome using mathematical
and computer modeling methods. One of the bacterial species actively used in biotechnological production is Co-
rynebacterium glutamicum. There are already 5 whole-genome flux balance models for it, which can be used for me-
tabolism research and optimization tasks. The paper presents fluxMicrobiotech, a software module developed at the
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, which implements a se-
ries of computational protocols designed for high-performance computer analysis of C. glutamicum whole-genome
flux balance models. The tool is based on libraries from the opencobra community (https://opencobra.github.io)
within the Python programming language (https://www.python.org), using the Pandas (https://pandas.pydata.org)
and Escher (https://escher.readthedocs.io) libraries . It is configured to operate on a‘file-in/file-out’ basis. The model,
environmental conditions, and model constraints are specified as separate text table files, which allows one to pre-
pare a series of files for each section, creating databases of available test scenarios for variations of the model. Or vice
versa, allowing a single model to be tested under a series of different cultivation conditions. Post-processing tools for
modeling data are set up, providing visualization of summary charts and metabolic maps.
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AHHOTaLusA. TeXHOOrMN NPOU3BOACTBA PA3NIUYHBIX COEAVMHEHWIA C MPUMEHEHEM MUKPOOPraHW3MOB npuobpe-
TaloT BCe 60/bLUYI0 MOMYAAPHOCTb B MPOMbILLIEHHOM Npoun3BoAcTae. Co3aaHme COBPEMEHHbIX BbICOKOMPOLYKTUB-
HbIX LUTaMMOB, MeTab0IM3M KOTOPbIX OPUEHTUPOBAH Ha CUHTE3 KOHKPETHOTO LIefIEBOTO MPOAYKTa, HEBO3MOXHO 6e3
KOMIMJIEKCHOW HanpaBneHHON moanduKaLumm reHoma ¢ npMMeHeHMeM METOAO0B MaTEMaTUUECKOrO U KOMMbIOTEPHO-
ro mogennpoBaHua. OgHUM 13 BUJOB GaKTepui, akTVBHO MCMOMb3yeMblX B GBMOTEXHONIOMMYECKOM MPOU3BOACTBE,
asnaetca Corynebacterium glutamicum. Ana Hero cyLiecTByeT y>Ke NATb NOHOreHOMHbIX MOTOKOBbIX MOAeneln, Ko-
TOpble MOXHO 1CMOJIb30BaTh ANA 3aAay NCCNefoBaHUA 1 ONTUMM3aLMK MeTabonnama. B paboTe npepcTasneH npo-
rpPamMHbIi MOZyb pa3BrBaemoro B MIHctutyTe yutonorum un reHetmkn CO PAH uxctpymeHrTa FluxMicrobiotech, B
pamKax KOTOpOro peanv3oBaHa cepus BbIUUCANUTENbHbIX MPOTOKONOB, MPeAHa3HaYeHHbIX AN MaCCOBOFO KOMMbLO-
TepHOro aHanu3a NoTokoBbix Mogenei C. glutamicum Ha BbICOKOMPOU3BOANTENbHbIX BbIYMCANTENBHbBIX KOMIblOTE-
pax. MporpaMmHbI Moaynb peann3oBaH Ha A3bike Python ¢ npumeHeHnem 6ubnnotek Pandas, cobraPy n Escher n
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HacTpoeH Ha paboTy no NpuHLUNYy «paiin Ha Bxoa/daiin Ha Bbixof». Mogenb, ycnoBusa cpefibl U orpaH1uYeHns mopge-
I 33[210TCA KaK OTAe/IbHblE TEKCTOBbIE TabNnyHble Gpaisibl, 4TO NO3BOMAET 3aroTOBUTL CEPUIo GalIoB A KaXK4oro
13 pa3genos, co3fasas 6a3bl JOCTYMHbIX CLLleHapUeB UCMbITaHWI AN Bapuauuii mogenw. Mnu, HaobopoT, no3sonser
MCMbITbIBATb OfHY MOZESb B CEPUU Pa3HbIX YCIIOBUIA KyNbTUBUPOBaHMUA. HacTpoeHbl MHCTPYMEHTbI MOCTO6PaboTKM
JaHHbIX MOAeNIMPOBaHWs, obecrneyrBaloLvie Br3yanm3aLuyio CBOAHBIX AMarpaMmm 1 MeTabonnyeckrx Kapr.

KntoueBble cnoBa: MOTOKOBbIE MOAENY; MeTabonr3M 6akTepru; ONTMMM3aLya MeTaboNn3ma; paLoHanbHas MeTa-

6onunyeckas NHXeHepuA.

Introduction

Technologies for the production of a range of compounds using
microorganisms are becoming increasingly popular in the
industry. Creation of modern highly productive microorganism
strains, the metabolism of which is focused on synthesis of a
specific target product, is impossible without complex directed
genome modifications. To date, a wide range of rational and
systemic metabolic engineering methods have been developed
to increase the production of target substances (Sheremetieva
et al., 2023, 2024), the use of which, together with computer
modelling approaches, will make it possible to more accu-
rately assess the impact of genome changes on the dynamics
of the system and the yield of the final product (Ananda et al.,
2024). Implementation of the flux-based mathematical model-
ling methods for molecular genetic and metabolic systems
within the computational modelling frameworks (Mendoza
et al., 2019; Mao et al., 2023) and creation of whole-genome
flux-based mathematical models allow in silico prediction of
genetic modifications required to increase culture growth rate
and target product yield under optimal conditions on different
substrates (Gu et al., 2019; Mao et al., 2023).

One of the bacterial species actively used in biotechno-
logical production is Corynebacterium glutamicum. Since its
discovery in 1956 (Kinoshita et al., 1957) until now, the main
application of this bacterial species has been the production of
amino acids and their derivatives (Tsuge, Matsuzawa, 2021),
which is currently the second most economically important
process in industrial biotechnology (Barcelos et al., 2018).
C. glutamicum are non-pathogenic, GC-rich, Gram-positive
soil bacteria. They do not form spores, grow rapidly, do
not require special conditions for growth, do not secrete
proteases, have a relatively stable genome and are resistant
to high concentrations of potentially toxic substances, ma-
king this microorganism an ideal platform for the develop-
ment of industrially relevant strains based on it (Wendisch
etal., 2016).

The main approaches for modifying the genome of biotech-
nologically relevant bacterial strains include: 1) gene knock-
outs (switching off); 2) insertion of additional genes leading
to the creation of new metabolic reaction chains; 3) insertion
of mutations both in the regulatory regions of genes and in
the structure of genes in order to decrease/increase gene ex-
pression and activity of their products, respectively; 4) other
modern methods of C. glutamicum genome editing, without
which it is impossible to realize a large number of directed
modifications necessary for the implementation of rational and
systemic metabolic engineering approaches (Sheremetieva et
al., 2023, 2024). Effective planning, execution and control of
such modifications are difficult without the use of mathemati-
cal and computational modelling techniques.

898

The paper is dedicated to the development of a software
module within the framework of the FluxMicrobiotech toolkit
created at the Institute of Cytology and Genetics SB RAS.
The toolkit was created to assess the metabolic potential of a
bacterium using flux modelling methods, including a set of
computational protocols configured for massive computational
analysis of the metabolism of target bacterial strains when
cultivated on different nutrient media and under different
environmental conditions (aerobic/anaerobic).

Materials and methods

The developed computational protocols are based on the open
source flux modelling methods library opencobra (opencobra.
github.io) within the Python programming language (https://
www.python.org/). The protocols are designed as “notebooks”
in the Jupyter programming environment (https://jupyter.
org/). This structure allows combining computational blocks
with stages of results analysis. The approach of organizing
computations using “notebooks” has become a familiar tool
in big data analysis methodology, implying the creation
of computational pipelines and their regular adjustment to
changing objective conditions. Control of the correct use is
gained by a powerful toolkit of annotations to the calculation
stage. The cobraPy (https://opencobra.github.io/cobrapy/)
and Pandas (https://pandas.pydata.org/) libraries are used to
solve optimization problems. The yEd Graph Editor (https://
yworks.com/products/yed) is used for the raw visualization
of gene networks. Creation of metabolic maps and plotting
of solutions on them during modelling is implemented in the
Escher toolkit (escher.github.io/). The developed protocols
support high-performance computing methods and require
memory to store the results. Thus, it is recommended to carry
out the work on high-performance computers.

The flow modelling techniques (the alternative term is
FBA — Flux Balance Analysis) used in this paper belong to
the linear programming problem domain. It is to address the
challenges of metabolic research that a series of computational
FBA| method libraries are being developed within the open-
cobra community (https://opencobra.github.io). The basis of
this methodology is the representation of the metabolic path-
way as a graph given by an adjacency matrix with the rows
corresponding to metabolites, and the columns, to metabolic
reactions and processes. Matrix elements are stoichiometric
coefficients specifying the proportion of a metabolite and its
role in the selected reaction (reagent or reaction product). Such
matrices can be constructed manually by carefully describing
the target metabolic pathways, or automatically by generating
a matrix from genomic information. Using a well-annotated
bacterial genome sequence and various bioinformatics tools,
potential metabolic pathways and the bacterium’s ability to
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Fig. 1. Metabolic map focused on metabolic pathways for the synthesis of branched-chain amino acids (BCAAs).

The visualization was done in the Escher tool as an extended network of the iCGB21FR model.

synthesize target metabolites can be identified. It is this in-
formation that is processed by software tools for generating
Whole Genome Flux Models (the alternative term is GSM —
genome-scale metabolic models) (Machado et al., 2018;
Kulyashov et al., 2023).

A flux model constructed in the manner mentioned above
is a starting point in the task of assessing the metabolism of a
bacterium and can contain several thousand reactions describ-
ing the full set of functionalities available in the genome. There
is the BiGG database (http://bigg.ucsd.edu/), which is posi-
tioned as a central point for storing and reusing flux models.
This resource contains the largest collection of whole-genome
mathematical models developed for different organisms, and
in addition is being developed as a database of reference bio-
chemical reactions for these types of models as well. Within
BiGG, the Escher metabolic network visualization tool (King
etal., 2015) is being developed in parallel, allowing the same
metabolic maps to be reused for models of different organisms.
The BiGG database contains 108 published and manually
validated whole-genome metabolic models for 40 different
organisms (Norsigian et al., 2019).

Thus, the bundling of genome data, tools for building and
annotating whole-genome flux models, and their integration
within the BiGG approach provide the basis for high-through-
put computational analyses of bacterial metabolism. While

CUCTEMHAA KOMIMbIOTEPHAA BUOJTIOTUA / SYSTEMS COMPUTATIONAL BIOLOGY

the model is whole-genome, only a subset of the metabolic
pathway reactions for key metabolites are used when dis-
playing the metabolic map as a graph (Fig. 1), assuming that
pathways not included in the visualization are also involved
in the analysis.

Results

Flux model of Corynebacterium glutamicum
To date, several mathematical models describing the
metabolism of the bacterium C. glutamicum have been created
and published: iEZ482, iCW773, iCGB21FR, ecCGL1,
iIJM658 (Kjeldsen, Nielsen, 2009; Zelle et al., 2015; Mei et
al., 2016; Zhang et al., 2017; Feierabend et al., 2021; Niu et
al., 2022). These models are based on whole-genome data and
have been verified on experimental data on bacterial growth,
ability to synthesize amino acids on different carbon sources
and under different cultivation medium conditions. The models
were used to analyse the production of glutamate (Mei et al.,
2016; Feierabend et al., 2021), isoleucine (Zhang et al., 2017)
and lysine (Kjeldsen, Nielsen, 2009; Zhang et al., 2017; Niu
et al., 2022).

The iEZ482 model was presented in 2015 and describes the
metabolism of strain ATCC 13032. It contains 475 metabolic
reactions and 408 metabolites. The model was validated by
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Fig. 2. Mathematical models of C. glutamicum metabolism and their main characteristics.

the authors using experimental data on the ability to excrete
20 amino acids. The iCW773 model published in 2017 con-
tains 1,207 reactions and 950 metabolites. Based on iCW773,
the ecCGL1 model was published in 2022. It provides a
mathematical description of the metabolism of the bacterium
C. glutamicum strain ATCC 13032 with enzymatic constraints,
in which not only metabolites and reactions are specified, but
also constraints on the maximum concentration of enzymes in
the bacterium are incorporated. The iJM658 model was built
for strain S9114, published in 2016, and contains 658 genes,
984 metabolites and 1,065 reactions. Further development of
whole-genome modelling for C. glutamicum ATCC 13032
led to the iICGB21FR model, released in 2021. The model
contains 1,496 reactions, 1,030 metabolites, 805 genes and
3 compartments: extracellular space, cytosol and periplasm.
Validation of the model was performed by the authors on the
metabolism of L-glutamate, which in turn is a precursor for
the synthesis of a series of amino acids. Characteristics of the
found models are presented in Figure 2.

The iCGB21FR model was chosen as the base model for
setting up computational protocols, building metabolic maps
and data post-processing tools, as it describes the metabolism
of C. glutamicum bacteria in the most complete and up-to-date
way. It can also serve as a benchmark for model annotation,
as it covers most of the recommendation points in the sys-
tems biology model design standard, including references to
existing databases and ontologies. The iCGB21FR model is
freely available in the BioModels database (https://www.ebi.
ac.uk/biomodels, model identifier MODEL2102050001). The
model demonstrates the ability of the bacterium to grow on
different carbon sources under aerobic and anaerobic condi-
tions on three different culture media: minimal M9 medium,
minimal CGXII medium, and complete lysogenic broth (LB)
medium. These conditions differ in the quantity and quality
(availability of additional carbon or amino acid sources) of
metabolites that the model can consume from the culture
medium for processing into metabolic products.

Computational protocols
The developed software module contains a series of basic
computational scripts, the data flow of which is schematically

represented in Figure 3. This is a prepared Jupyter lab

notebook in which the calculation parameters are set.

The starting conditions for all protocols are the same:

1) itis necessary to specify the flux model (*.json file), which
describes the basic structure and constraints of the model.
This model can be obtained from the BIGG databases or
created using the cobraPy software toolkit;

2) set the cultivation medium parameters as a tabular text
file (*.csv);

3) set additional constraints on model fluxes as a tabular text
file (*.csv).

Then, depending on the task to be solved, the calculation
parameters are set up. Jupyter lab notebook as a computational
protocol allows users to quickly modify each block of
calculations if necessary. As a result, the computational
protocol is actually specified through a set of files: model,
cultivation medium, additional constraints. This provides the
ability to prepare a series of files for each section, creating
databases of available test scenarios for variations of a model
or, conversely, testing a single model under a series of different
cultivation conditions.

The result of the protocol is the vector of resulting velocities
over the entire model structure (or a set of such vectors in the
form of a rectangular matrix). For post-processing tasks, a
toolkit has been set up to display data both as result diagrams
and as a visualization of flows on a metabolic map (Fig. 1).
The task of exporting the results as a series of interactive
metabolic maps was done using the Escher toolkit (https://
escher.readthedocs.io).

Scenario for estimating biomass growth
The bacterial cultivation medium plays a major role in
biotechnological production. The media can be of minimal
biochemical composition or rich in amino acids, so that the
bacterium can consume them from the medium rather than
spending internal resources to synthesize amino acids and
other metabolites. In order to estimate metabolic parameters
of strains using modelling, it is necessary to set the cultivation
conditions as precisely as possible.

The first test of model adequacy is its ability to predict
biomass growth on given substrates in accordance with
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Fig. 3. A data flow diagram of computational protocols.

experimental data. This parameter is usually not difficult
to investigate experimentally: there is plenty of data on
strain growth rates and substrate uptake rates or lack of
growth on selected carbon sources. Comparison of these
values is a key step in the basic evaluation of the model for
correctness. Specifically, the iCGB21FR model was tested for
completeness on multiple media for its ability to synthesize
amino acids under both aerobic and anaerobic conditions.
By varying the conditions of the cultivation medium, the
limiting substrates in the biomass production reaction can
be evaluated. This scenario is also suitable for assessing the
ability to achieve the selected reactions under given cultivation
medium conditions, i. e. to test the sufficiency of metabolites
in the medium to potentially complete the targeted metabolic
reactions.

Scenario for evaluating the optimization

of the space of feasible solutions

The previous scenario tested the implementation of targeted
pathways from the point of substrate uptake to specific
metabolic reactions. The next aspect of the study of such
models is to assess the ability of the bacterium to operate
under given conditions, i. e. the ability to synthesize a
series of metabolites on a given substrate under the applied
constraints in principle. Sampling methods for estimating the
feasible solution space are helpful in this task. The solution
in the “sampling” method is a vector of flux rates through
all metabolic reactions that satisfies the balance conditions
and user-applied constraints on the boundaries of the selec-
ted reaction rates. In contrast to the flux balance analysis
method, “sampling” generates a set of possible feasible
solutions of the reaction system in the model without
specifying target characteristics, which makes this method
convenient for evaluating ways to optimize reactions
(Herrmann et al., 2019).

CUCTEMHAA KOMIMbIOTEPHAA BUOJTIOTUA / SYSTEMS COMPUTATIONAL BIOLOGY

of summary charts

For a more accurate representation of the space of possible
solutions, it is necessary to generate a sufficiently large number
of samples with sizes of dozens/hundreds of thousands of
points in the solution space (taking into account that each
point in this space is described by hundreds or even thousands
of numerical values of flow velocities). As a result, one can
obtain a set of points in the solution space that can indicate the
most frequent solutions under given conditions. The method
uniformly selects points covering the solution space. By
mapping the points to the coordinates of the target velocities,
the expected distribution of values can be obtained. Thus, we
do not get a specific distribution of fluxes on the metabolic
map, but a series of solutions (a series of resultant fluxes/
cloud of points). Each point in this series of solutions can be
mapped onto the rate axis of selected reactions of the metabolic
network. This approach allows comparing flux distributions of
both several models under the same conditions and one model
under different conditions/constraints (Fig. 4).

In particular, a series of computational experiments on the
effect of gene knockouts on metabolite excretion identified
the atpB gene (KEGG cgh:cg1362), the synthesis product of
which is involved in the ATP phosphorylation reaction (Fig. 4).
Knockout of atpB provides potentially greater excretion of
L-valine. Indirect evidence for the importance of this gene
comes from the study (Jensen et al., 1993), which has shown
that mutations in the ATP synthase operon in Escherichia coli
can lead to a higher growth rate on glucose.

Running the calculations for 10 thousand solutions/points
generates about 200 Mb of data in one run. Calculations
and post-processing of such data are recommended to be
performed on high-performance computational machines.

Conclusion
The largest database of whole-genome models, BIGG (http://
bigg.ucsd.edu/models), has 108 models for 40 different or-
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Fig. 4. Comparison result of two variants of the iCGB21FR model: a baseline (“wild type”) model and a “knockout” model where

a knockout of the periplasmic ATP synthase (atpB) gene is introduced.

On the left - representation of lactate, valine and alanine excretion rate values; on the right - representation of the same values in one
three-dimensional space (projections of 10,000 solution points on L-valine, D-alanine and L-lactate axes). Reaction flux rates in the model are

expressed in mmol per gram of biomass dry weight per hour (mmol/(gDW x h)).

ganisms. We found at least five whole-genome mathematical
models on C. glutamicum, indicating a great interest in the
object of study. The methodology of whole-genome modelling
itself is still in the development stage and requires manual
customization of tools for each new object. This gives a wide
space for the development of mathematical and computational
modelling techniques within the systems biologists/rational
metabolic engineers’ community. Studies are now underway
to incorporate transcriptomic and proteomic data into these
types of models, leading to higher predictive power than
simpler flux models.

Although C. glutamicum has been studied since 1956
(Kinoshita et al., 1957), gathering public information on
strains of the bacterium is a challenge in itself. There are
many strains for which the data is commercially available
and may not be in the public domain. The development of
computational pipelines will allow them to be applied to the
metabolism of other strains in the future.

The proposed software module in the form of a series
of computational protocols is configured for mass analysis
of C. glutamicum strain models on cultivation on different
nutrient media and under different environmental conditions
(aerobic/anaerobic). The protocols are configured to run on
a file-as-input/file-as-output basis, where the model, envi-
ronment conditions, and model constraints are specified as
separate files. Methods for visualization of simulation results
have been set up, in particular for displaying data on a series
of user-prepared metabolic maps. The specifics of algorithm
execution require the use of high-performance computers
and access to large amounts of data storage. The module
is a part of the FluxMicrobiotech tool being developed at
ICG SB RAS.
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Abstract. Drought is a critical factor limiting the productivity of bread wheat (Triticum aestivum L.), one of the key
agricultural crops. Wheat adaptation to water deficit is ensured by complex molecular genetic mechanisms, including
the coordinated work of multiple genes regulated by transcription factors and signaling non-coding RNAs, particu-
larly microRNAs (miRNAs). miRNA-mediated regulation of gene expression is considered one of the main mechanisms
of plant resistance to abiotic stresses. Studying these mechanisms necessitates computational systems biology me-
thods. This work aims to reconstruct and analyze the gene network associated with miRNA regulation of wheat adap-
tation to drought. Using the ANDSystem software and the specialized Smart crop knowledge base adapted for wheat
genetics and breeding, we reconstructed a wheat gene network responding to water deficit, comprising 144 genes,
1,017 proteins, and 21 wheat miRNAs. Analysis revealed that miRNAs primarily regulate genes controlling the morpho-
genesis of shoots and roots, crucial for morphological adaptation to drought. The key network components regulated
by miRNAs are the MYBa and WRKY41 family transcription factors, heat-shock protein HSP90, and the RPM1 protein.
These proteins are associated with phytohormone signaling pathways and calcium-dependent protein kinases signi-
ficant in plant water deficit adaptation. Several miRNAs (MIR7757, MIR9653a, MIR9671 and MIR9672b) were identified
that had not been previously discussed in wheat drought adaptation. These miRNAs regulate many network nodes
and are promising candidates for experimental studies to enhance wheat resistance to water deficiency. The results
obtained can find application in breeding for the development of new wheat varieties with increased resistance to
water deficit, which is of substantial importance for agriculture in the context of climate change.

Key words: microRNA; bread wheat; drought; genes; genetic regulation; associative gene networks; plant bioinfor-
matics; Smart crop knowledge base; ANDSystem computer tool.
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AHHoTauuA. HeocTaToK Bnaru — Kputmueckuin daktop, orpaHUYnBaloLLNiA NPOAYKTUBHOCTb MATKOW NweHnubl (Triti-
cum aestivum L.), 0OfHON 13 KNIOYEBbIX CENbCKOXO3ANCTBEHHDBIX KYNbTYp. AfanTauna neHnLbl K BOgHOMY fedbuumnTy
obecneyrBaeTcA KOMMIEKCHbIMY MONEKYNAPHO-TeHETUYECKMUN MEXaHN3MaMK, BKJTIOUAIOLLMMU COTNacoBaHHY!o pa-
60Ty MHOXECTBa reHOB, PErYNPYEMbIX TPAHCKPUMUUOHHBIMUA GaKTopamu U CUTHalbHbIMK Hekogupytowmmn PHK,
B YacTHOCTU MUKPOPHK. MnkpoPHK — onocpefoBaHHanA perynaumna sKCnpeccunmn reHoB — pacCMaTprBaeTCA Kak OAVH
13 OCHOBHbIX MEXaHV3MOB YCTOMUYMBOCTN PacTeHUI K aBMOTUYECKM CTpeccaMm. VI3yueHune 3TUX CIIOXKHbIX MONeKy-
NAPHO-FeHETNYECKMX MEXaHU3MOB TPebyeT MPUMEHEHNA METOL0B KOMMbIOTEPHOW CUCTEMHOW 6uonormu. Lienb aaH-
HOW PaboTbl — PEKOHCTPYKLMA 1 KOMMNbIOTEPHbIN aHaNM3 reHHOW ceTu, CBA3aHHON ¢ MUKPOPHK-perynaumen agan-
Taunm MArKoW MWeHnLbl K YCIOBMAM HeAOCTaTOYHOrO yBRaXKHEHUA. [AnA AOCTUMKEHUA 3TOW Lienn NCNosb30BaHbl
nporpammHo-nHdopmMaLmoHHasa cnctema ANDSystem v cneuvanm3npoBaHHas 6asa 3HaHWI Smart crop, aganTnpo-
BaHHasA 1A 061acTV reHeTUKM 1 CeNEKLUN MLLeHKLbl. Hamuy 6bina peKOHCTPYMPOBaHa reHHas CeTb OTBETa MLLEHNLbl
Ha BOAHbIN aedununt, BKMovaowan 144 reHa, 1017 6enkos 1 21 MmukpoPHK nweHuubl. AHanmM3 cetu BbIABWI, YTO
MUKPOPHK npenmyLiecTBEHHO perynmpytoT reHbl, KOHTponMpytoLme npoLeccbl MopdoreHesa Noberos 1 KopHei
pacTeHuiA, YUTO UrpaeT BaxkHYIo POJib B MOPGONTOrMUYecKrX aganTaumnax K 3acyxe. KnioueBbiMyM KOMMNOHEHTaMM FeHHOW
ceTu, perynupyembimu MUKpPoPHK, okasanncb TpaHCKpunumoHHble dakTopbl cemencts MYB 1 WRKY, a Takxe 6enok
Tennosoro woka HSP90 n 6enok RPM1. 311 6enKkm cBA3aHbl C CUrHanbHbIMM MY TAMU GUTOrOPMOHOB 1 KaslbLniA-3aBu-
CUMbIMU NPOTEVHKUHA3aMK, UFPaOLLMMI CYLLECTBEHHYIO POfb B aAanTaLumn pacTeHunii K BogHomy aeduuunty. bbino
NaeHTMONLMPOBAHO HecKonbko MUKPOPHK (MIR7757, MIR9653a, MIR9671, MIR9672b), paHee He 06CyXAaBLUNXCA B
KOHTEKCTe aganTtaunm nileHnLbl K 3acyxe, KOTopble ABAAIOTCA KaHAUAATaM1 ANA JanbHENLINX SKCNepUMeHTaNTbHbIX
NCCnefoBaHni, HaNpPaBieHHbIX Ha YCUNeHne YyCTONYMBOCTM NIWEHNLbI K HefoCTaTKy Bnaru. [lofiyyeHHble pe3ynbraTbl
MOTYT ObITb MOSIE3HBIMU [J1A CO3AAaHMSA HOBbIX COPTOB MLIEHMLbI C NMOBbILLEHHON YCTONYMBOCTBIO K BOGHOMY Aeduuu-
Ty, UTO UMeEeT CYLLEeCTBEHHOE 3HaYeHe ANA CeNbCKOro X03ANCTBa B YCNOBUAX M3MEHEHNA KNnmara.

KnioueBble cnoBa: MUKPOPHK; mArkaa nweHunua; aedbuumt Bnary; reHbl; reHeTUYeCKana perynaums; accoumatus-
Hble reHHble ceTn; brionHbopmMaTmKa pacTeHunin; 6asa 3HaHUIA Smart crop; NPorpamMMHO-HPOPMaLIMOHHasA cucTeMa

ANDSystem.

Introduction
The productivity of bread wheat (Triticum aestivum L.) —
a crucial agricultural crop — depends on many environmental
factors, including micronutrient availability, temperature,
moisture, and soil salinity. Water deficiency is the most im-
portant factor limiting wheat productivity (Pakul et al., 2018;
Jeyasri etal., 2021). Therefore, studying the physiological and
molecular genetic mechanisms of wheat adaptation to water
deficiency is an urgent task, the solution of which is necessary
for developing new drought-resistant varieties (Langridge,
Reynolds, 2021) and improving agricultural technologies.
Plant resistance to insufficient moisture conditions is en-
sured by several physiological and morphological adaptations,
which include enhanced apical growth and inhibition of lateral
root growth, leaf abscission, changes in development rate,
maintenance of tissue osmotic pressure, reduced transpira-
tion through changes in stomatal apparatus functioning, and
activation of cellular antioxidant defense. The functioning of
these physiological mechanisms is provided by the coordi-
nated work of numerous genes. It has been shown that water
deficiency causes changes in the expression of genes activated
by abscisic acid, genes encoding glutathione S-transferase
(GST), and the dehydrin protein family (Ferdous et al., 2015).
Signal perception by receptors on the cell wall and cell
membrane leads to the activation of intracellular signaling
cascades, mainly due to increased levels of reactive oxygen
species (ROS) and changes in calcium ion levels. Additionally,

CUCTEMHAA KOMIMbIOTEPHAA BUOJIOTNA/ SYSTEMS COMPUTATIONAL BIOLOGY

important mediators coordinating the initiation of signaling
cascades are phytohormones such as abscisic acid (ABA),
jasmonic acid (JA), salicylic acid (SA), and ethylene (ET).
Stress-activated signaling cascades include, in particular,
mitogen-activated protein kinase (MAPK) and calcium-de-
pendent protein kinase (CDPK) signaling pathways. Kinases
and phosphatases activate or suppress various transcription
factors, which in turn regulate the activity of genes controlling
adaptation to adverse conditions (Baillo et al., 2019).

Currently, five gene families are known to encode tran-
scription factors regulating adaptation processes to water de-
ficiency: bZIP (mainly AREB/ABF), DREB (AP2/EREBP),
MYB/MYC, NAC, and WRKY (Gahlaut et al., 2016). Litera-
ture analysis shows that modification of these transcription
factors through genetic engineering methods can enhance plant
resistance to adverse environmental factors. For example,
transgenic wheat plants containing the Arabidopsis (Arabi-
dopsis thaliana) DREB1A gene showed increased resistance to
drought and salt stress without yield reduction (Pellegrineschi
et al., 2004). C.F. Niu and colleagues (2012) obtained trans-
genic wheat plants with increased expression of the TaWRKY?2
and TaWRKY19 genes. These plants demonstrated improved
resistance to drought and oxidative stress.

Besides transcription factors, gene expression can also be
regulated by signaling non-coding RNA molecules. These
include circular RNAs (circRNAs), as well as linear long
non-coding RNAs (IncRNAs) and microRNAs (Li N. et al.,
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2022). These signaling molecules can regulate the expression
of any genes involved in stress response, including transcrip-
tion factors, and the expression of genes encoding signaling
RNAs can also change in response to stress, providing an
additional level of regulation.

MicroRNAs are single-stranded non-coding RNA mole-
cules 20-25 nucleotides in length that regulate gene activity in
plants by binding to the target gene’s messenger RNA, leading
to its degradation and translation inhibition (Ma, Hu, 2023).
It has been revealed that microRNA expression changes in
plants in response to water deficiency, which has been shown
for many plant species, including wheat. In Triticeae species
under drought conditions, the expression of microRNA genes
miR159, miR1137, miR1318, miR168, and others changed,
with the direction of expression changes depending on tissue
type, plant developmental stage, and the duration and inten-
sity of exposure (Alptekin et al., 2017). In response to water
deficiency in wheat root tissues, there were changes in the
expression of microRNA miR1119, its target — transcription
factor MYC2, as well as changes in the expression of numer-
0us stress-response genes, increased abscisic acid content, and
cellular antioxidant system activity (Shamloo-Dashtpagerdi
etal., 2023).

Thus, microRNA impact on transcription factors can lead
to activity changes in entire gene sets. Therefore, microRNAs
can be considered master regulators of gene networks that
form regulatory modules together with transcription factors
and their target genes, including those ensuring plant adapta-
tion to abiotic stress (Zhang et al., 2022) and plant growth
and development (Liebsch, Palatnik, 2020). Consequently,
targeting microRNAs and their regulatory module activity
could become a tool for genetic manipulation of agricultural
crops to achieve optimal growth and development parameters
(Wang H., Wang H., 2015).

Bioinformatic methods for integrating and analyzing large
omics data, including gene network reconstruction methods,
are particularly important in marker-assisted breeding (Chao
etal., 2023). Bioinformatic analysis of gene networks can help
identify regulatory modules involved in plant adaptation to
adverse environmental factors and understand its molecular
mechanisms.

Previously, the ANDSystem software and information sys-
tem was developed for reconstructing gene networks based
on information obtained from factographic databases and
collected through automatic analysis of scientific publication
texts (Ivanisenko V.A. et al., 2015, 2019; Ivanisenko T.V. et
al., 2020, 2022). ANDSystem has been applied to solve prob-
lems in various areas of biology and biomedicine, including
research on molecular genetic mechanisms of asthma deve-
lopment (Bragina et al., 2014; Saik et al., 2018; Zolotareva
et al., 2019), lymphedema (Saik et al., 2019), tuberculosis
(Bragina et al., 2016), hepatitis C (Saik et al., 2016), corona-
virus infection (Ivanisenko V.A. et al., 2022), Huntington’s
disease (Braginaetal., 2023), glioma (Rogachev et al., 2021),
post-operative delirium (lvanisenko V.A. et al., 2023), hepa-
tocellular carcinoma (Antropova et al., 2023), and study of
the proteomic profile of cosmonauts (Larina et al., 2015;
Pastushkova et al., 2019).

In the field of plant biology, ANDSystem has been used for
reconstruction and analysis of the regulatory gene network
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of cell wall functioning in A. thaliana L. leaves in response
to insufficient moisture (Volyanskaya et al., 2023). Based on
ANDSystem, the SOLANUM TUBEROSUM knowledge
base was created, containing information about genetic regu-
lation of potato metabolic pathways (lvanisenko T.V. et al.,
2018), and prioritization of potato genes involved in the for-
mation of agronomically valuable plant traits was conducted
(Demenkov et al., 2019). It should also be noted that the
ANDSystem software and information system was previously
used for reconstructing gene networks describing microRNA
regulation of the external apoptosis pathway (Khlebodarova
et al., 2023).

The aim of this work is to reconstruct and analyze the
gene network that regulates wheat adaptation to insufficient
moisture conditions through microRNAs.

Materials and methods
Search for information about drought response genes.
Information about bread wheat genes experimentally proven
to be associated with plant adaptation to drought conditions
was extracted from full-text experimental and review articles
indexed in PubMed (https://pubmed.ncbi.nlm.nih.gov/) as
of September 2024. The search was conducted using key-
words “wheat”, “Triticum aestivum”, “drought”, “drought
v regulation” and their com-

gene”,

tolerance”, genetic”,
binations.

Additionally, information about genes related to water de-
ficit response was extracted from the AmiGO gene ontology
database for the term “response to water deprivation” (term
ID GO:0009414). Furthermore, genes associated with the term
“response to water deficiency” in the ANDSystem software
and information system were included in the list of drought
response genes. As a result, a list of genes shown to be in-
volved in wheat adaptation to water deficit was compiled. This
list was used as input data for gene network reconstruction.

Smart crop Knowledge Base. This work utilized the Smart
crop knowledge base, which is a specialized version of the
ANDSystem software and information system focused on
rice and wheat genetics and breeding. Three key modules of
ANDSystem were customized for the subject area:

Domain-specific ontology module. This module contains
expanded dictionaries covering various research objects,
such as genes, proteins, metabolites, non-coding RNAs/
microRNAs, biological processes, genetic biomarkers, QTL
polymorphisms, plant varieties, breeding-significant quali-
ties, phenotypic traits, diseases, pathogens, pests, resistance
markers to plant protection products, molecular targets for
chemical plant protection products, biotic and abiotic factors,
plant protection products (herbicides), and others. Various
databases and ontologies were used to form the dictionaries,
including NCBI Gene, ChEBI, MirBase, Gene Ontology,
Wheat Ontology, Rice Ontology, Wheat Trait and Phenotype
Ontology, The International Herbicide-Resistant Weed Da-
tabase, and others. The dictionaries were supplemented with
synonyms and spelling variants of the names to improve object
recognition in texts.

Information extraction module from factographic databases.
This module performs automated data extraction from various
sources, including relational databases (e. g., ChEBI), ontolo-
gies in OBO and OWL formats (using the ROBOT tool), text
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files in tabular formats (CSV, TSV), and PSI-MI XML 2.5 for-
mats. Specialized extractor programs were created to process
information from databases such as NCBI Gene, ToppGene,
GrainGenes, IntAc, and others.

Text mining module using semantic linguistic templates.
This module is designed to extract knowledge from text
sources (scientific articles, patents) using semantic linguistic
templates.

The development of new templates and adaptation of exist-
ing ones in ANDSystem allowed for effective identification
and extraction of various types of interactions between objects.
The templates cover such interaction types as associations,
regulation of gene and protein expression and activity, physi-
cal interactions, catalytic reactions, participation in biological
processes, marker relationships, and others. In total, more
than 2,000 templates were developed and used, significantly
improving the accuracy and completeness of information
extraction.

Customizing ANDSystem for the field of rice and wheat
breeding and genetics allowed for the integration of data from
various sources and ensured effective extraction and analysis
of knowledge necessary for research in this subject area.

Gene network reconstruction and analysis. Gene network
reconstruction and analysis were performed using the Query
Master of the ANDVisio software module (Demenkov et al.,
2012), which serves as the user interface in the ANDSystem
and Smart crop systems.

Proteins and genes important for the reconstructed gene
network functioning were identified using the “NetworkCon-
nectivity” indicator, which characterizes the number of con-
nections between a given network node and other nodes. Genes
and proteins were then ranked according to this indicator to
find the most significant nodes in the network. Functional
annotation of the gene set (analysis of overrepresentation of
Gene Ontology terms and KEGG pathways) represented in
the network was conducted using the Database for Annota-
tion, Visualization and Integrated Discovery (DAVID ver-
sion 2021; https://david.nciferf.gov/) with default settings
(statistical significance was considered at p-value < 0.05 with
Bonferroni correction).

Results and discussion

Analysis of published literature (Nagy et al., 2013; Gupta et
al., 2014; Liu et al., 2015; Gahlaut et al., 2016; Shojaee et
al., 2022) revealed 130 genes involved in wheat adaptation to
moisture deficiency. Additionally, 15 genes were associated
with the Gene Ontology term “response to water depriva-
tion” (term ID GO:0009414). Further, using the Smart crop
knowledge base of the ANDSystem software and information
system, 59 genes involved in wheat adaptation to moisture
deficiency were discovered. The resulting list of 204 genes
shown to be involved in wheat adaptation to insufficient mois-
ture (drought response genes) is provided in Supplementary
Material 11. Using this gene list as input data, we reconstructed
an associative gene network, to which we added microRNAs
that, according to the Smart crop knowledge base, directly
regulate at least one network component. This associative

T Supplementary Materials 1-4 are available at:
https://vavilov.elpub.ru/jour/manager/files/Suppl_Kleshchev_Engl_28_8.xIsx

CUCTEMHAA KOMIMbIOTEPHAA BUOJIOTNA/ SYSTEMS COMPUTATIONAL BIOLOGY

PeKOHCTPYKLMA 1 KOMMNbIOTEPHbIN aHaNN3 reHHOW ceTn, oTpaxkawowen 2024
posnb MUKPOPHK B perynauum oteeTa niueHULbl Ha 3acyxy

288

network (Fig. 1) included 75 genes, 98 proteins, and 14 wheat
microRNAs, as well as 695 interactions between network
components. Of these, the following connection types were
represented: 594 connections — “association”, 39 — “expression
regulation”, 21 — “interaction”, 18 — “expression”, 12 — “activ-
ity regulation”, 7 — “catalysis”, 2 — “expression enhancement”,
and 1 connection each for “expression suppression” and
“coexpression” types. The list of microRNAs and their target
genes included in the drought response network, established
according to Smart crop data, is shown in Table 1.

These microRNAs primarily target genes encoding tran-
scription factors from the GAMYB (MybA, Ta-GAMyb,
MYB3R1), WRKY (WRKY41) families, auxin response fac-
tor (ARF22, LOC123121554, LOC123181091), MADS-box
transcription factor (WM30), and SQUAMOSA family tran-
scription factor (LOC123151797, LOC123159884, SBP16).

GAMYRB transcription factors, which have highly con-
served binding sites with MIR159a (Millar et al., 2019), par-
ticipate in gibberellin-mediated activation of hydrolase gene
expression in the seed aleurone layer (Woodger et al., 2003).
In vegetative plant parts, MIR159 suppresses the expression
of GAMYB transcription factor, which is a growth inhibitor
ensuring normal plant development (Millar et al., 2019).
MIR159 expression changes in response to drought, along
with changes in GAMyb gene expression in potato (Yang J.
et al., 2014) and bread wheat (Liu et al., 2015). Additionally,
the MybA gene product regulates peroxidase gene expression
(Wei et al., 2021), contributing to plant adaptation to adverse
environmental factors. MIR160 targets genes encoding ARF
transcription factor, a key component ensuring plant response
to auxins (Li Y. et al., 2023) — phytohormones that, in par-
ticular, stimulate apical dominance, promoting root length
growth, which is a morphological adaptation of plants to
moisture deficiency.

Besides transcription factors, another microRNA target in
the drought response gene network is the RLK serine/threonine
kinase gene, which interacts with calmodulins and participates
in plant adaptation to abiotic stress (Virdi et al., 2015).

Thus, analysis of the gene network, which includes genes
and proteins, the role of which in drought response has
been experimentally shown, identified several microRNAs
regulating important nodes of this gene network (transcrip-
tion factors), with some microRNAs (MIR1120, MIR1120c,
MIR1130a, MIR444a, MIR444b, MIR7757, MIR9674a,
MIR9677a, MIR9773) not having been previously discussed
in literature in connection with wheat adaptation to drought,
which may be promising for further research.

However, it should be noted that microRNAs often have
many target genes, which may also be components of the
drought response gene network, although their role is not cur-
rently experimentally established. Additionally, microRNAs
can regulate genes controlling stress response not only directly
but also through intermediaries. Therefore, using the Smart
crop knowledge base, the initial gene network was supple-
mented with the following components: 1) all predicted, ac-
cording to Smart crop data, targets of those 14 microRNAs that
directly regulate known drought response genes and are listed
in Table 1; 2) genes and proteins directly connected to drought
response genes, as well as their regulating microRNAs.

907


https://david.ncifcrf.gov/
https://vavilov.elpub.ru/jour/manager/files/Suppl_Kleshchev_Engl_28_8.xlsx
https://vavilov.elpub.ru/jour/manager/files/Suppl_Kleshchev_Engl_28_8.xlsx

M.A. Kleshchev, A.V. Maltseva, E.A. Antropova ...
M. Chen, N.A. Kolchanov, V.A. Ivanisenko

Gene

miRNA

Protein

Activity regulation
Association
Catalyze

Reconstruction and computational analysis of the microRNA
regulation gene network in wheat drought response mechanisms

Coexpression

Expression

Expression downregulation
Expression regulation
Expression upregulation

Interaction

Fig. 1. Associative network of genes and proteins experimentally proven to be involved in wheat adaptation to moisture deficit,

supplemented with microRNAs directly regulating them.

Green frames indicate microRNAs with data linking them to drought, red frames indicate microRNAs without such data.

The resulting associative network is presented in Supple-
mentary Material 2. The list of genes and proteins included
in this network is provided in Supplementary Material 3. The
network includes 144 genes, 1,017 proteins, and 21 wheat
microRNAs, as well as 5,188 connections between network
components. Of these, 4,158 connections correspond to
the “association” type, 372 connections, to “interaction”,
329 connections, to “catalysis”, 180 connections, to “expres-
sion regulation”, 42 connections, to “activity regulation”,
24 connections, to “cleavage”, 21 connections, to “expres-
sion”, 15 connections, to “expression suppression”, 12 con-
nections, to “expression enhancement”, and 7 connections,
to “coexpression”.

Functional annotation of all components (genes and pro-
teins) of the expanded associative gene network is shown in

208

Table 2. As seen from Table 2, gene network components are
significantly enriched with terms characterizing biological
processes related to centriole assembly, shoot morphogenesis
(regulation of morphogenesis of a branching structure), de-
layed post-embryonic development, response to abiotic and
biotic stress factors, and response to abscisic acid. Addi-
tionally, gene network components are involved in mitogen-
dependent protein kinase and phosphatidylinositol signaling
pathways.

Interestingly, the expanded gene network includes genes in-
volved not only in adaptation to water deficit (Gene Ontology
term GO:0009414, “response to water deprivation”) but also in
plant response to other adverse factors, including cold adapta-
tion (Gene Ontology term GO:0009631, “cold acclimation™)
and interaction with pathogens (KEGG pathway taes04626,
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Table 1. List of wheat microRNAs directly regulating drought response genes

microRNA Target gene References
MIR160 ARF22,L0C123121554,L0C123181091 Kumar et al.,, 2015
MIR319 MybA, Ta-GAMyb LiY.-F. etal, 2013
MIR159a MybA, Ta-GAMyb Liuetal, 2015
MIR159b MybA, Ta-GAMyb Liuetal, 2015
MIR1120b FKBP77 -

MIR1120c MYB3R1 -

MIR1130a RLK -

MIR156 LOC123151797,L0C123159884, SBP16 Singroha et al., 2021
MIR444a WM30 -

MIR444b WM30 -

MIR7757 WRKY41 -

MIR9674a TCP-1 -

MIR9677a LOC100037551 -

MIR9773 FKBP77 -

Note. microRNAs that have been experimentally shown to change expression in response to moisture deficiency are highlighted in bold. References to the cor-
responding literature sources are provided for these microRNAs.

Table 2. Functional annotation of the expanded wheat drought response gene network

Term Number of genes  FE p-value

Biological processes

G0:0098534~centriole assembly 4 68.3 0.0065
G0:2000032~regulation of secondary shoot formation 10 23.0 0.0000
G0:0060688~regulation of morphogenesis of a branching structure 10 23.0 0.0000
G0:0048581~negative regulation of post-embryonic development 5 20.3 0.0390
G0:0009631~cold acclimation 10 12.6 0.0000
G0:0009414~response to water deprivation 14 11.4 0.0000
G0:0009737~response to abscisic acid 25 6.2 0.0000
GO0:0009891~positive regulation of biosynthetic process 32 2.6 0.0013
G0:0045935~positive regulation of nucleobase-containing compound metabolic process 32 2.6 0.0018
G0:0098542~defense response to other organism 89 2.5 0.0000
GO0:0051252~regulation of RNA metabolic process 139 17 0.0000
GO0:0010556~regulation of macromolecule biosynthetic process 155 1.6 0.0000

Molecular functions

G0:0043531~ADP binding 95 3.2 0.0000
G0:0043565~sequence-specific DNA binding 103 3.1 0.0000
G0:0000976~transcription cis-regulatory region binding 59 3.0 0.0000
G0:0003690~double-stranded DNA binding 60 2.2 0.0000
KEGG Pathways
taes04016:MAPK signaling pathway - plant 33 44 0.0000
taes04626:Plant-pathogen interaction 32 2.9 0.0000
taes04070:Phosphatidylinositol signaling system 12 4.0 0.0161

Note. FE - fold enrichment; p-value - statistical significance indicator of gene and protein enrichment in the associative network with Bonferroni correction.
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“plant-pathogen interaction”). This is likely due to the fact that
products of the same genes can participate in plant response to
various stress factors, ensuring plant adaptation to a complex
of adverse factors. In particular, genes in our gene network
associated with the term “cold acclimation” (GO:0009631)
belong to the families of dehydrins and cold-shock proteins.

It is known that proteins of the dehydrin family, by par-
ticipating in cell membrane stabilization, contribute to plant
adaptation to various abiotic stress factors, including moisture
deficiency, temperature reduction, and soil salinity (Szlach-
towska, Rurek, 2023). On the other hand, cold-shock proteins,
which are crucial participants in plant cold adaptation, can also
play a certain role in plant response to moisture deficit by regu-
lating the activity of genes, the products of which participate
in cellular antioxidant defense (Yu T.F. et al., 2017; Li C. et
al., 2021a). Additionally, according to literature, such com-
ponents of the drought response gene network as calmodulins
(Cheval et al., 2013) and WRKY transcription factors (Wani
etal., 2021) can also participate in regulating plant immunity
and protecting plants from pathogens.

In the expanded associative gene network, the highest
number of connections with other network components (Net-
work Connectivity) was found for MYB30-like transcrip-
tion factor, calmodulin proteins (CaM13-7A, CaM14-7B-1,
CaM2-1B), APETALAZ2-like protein, which is a member of
the APETALA2 (AP2) subfamily of AP2/Ethylene Respon-
sive Factor (ERF) transcription factors, as well as RHT1 pro-
tein, WRKY41 transcription factor, and cytochrome P450
(CYP71C8v1l). Genes encoding these proteins have already
been discussed in literature as controlling plant response to
moisture deficit.

MYB transcription factors are among the most common
families of transcription factors in plants that participate in
plant development and response to various adverse environ-
mental factors, including moisture deficiency. MYB transcrip-
tion factors, by binding to MYB cis-elements in promoters
of multiple target genes, regulate a number of biological
processes, particularly flavonoid biosynthesis, which is neces-
sary for protection against oxidative stress. Additionally, MYB
transcription factors activate genes controlling epicuticular
wax formation, which reduces moisture evaporation from
plant leaves (Wang X. et al., 2021).

It is known that calcium is a crucial secondary messenger,
the concentration of which changes in response to various
adverse factors, including moisture deficiency. Calmodulins
and calmodulin-like proteins, by binding to calcium ions,
change their conformation and modulate the activity of nu-
merous other proteins, including kinases, transcription factors,
transporters, and enzymes of various metabolic pathways
that ensure plant adaptation to the environment (Ranty et al.,
2016). In particular, increased expression of a gene encoding
one of the calmodulin family proteins in wheat was observed
in response to moisture deficiency and increased salinity,
and expression of this gene in transgenic Arabidopsis plants
increased their resistance to these adverse factors (Li VY. et
al., 2022).

Proteins of the APETALA2 (AP2) subfamily belong to the
AP2/Ethylene Responsive Factor (ERF) family of transcrip-
tion factors, which regulate the expression of genes pro-
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viding adaptation to adverse environmental conditions, in-
cluding drought (Park S.Y., Grabau, 2016; Srivastava, Ku-
mar, 2018). Expression of genes encoding AP2 subfamily
proteins, TaAP2-1-1A, TaAP2-1-1D, was increased in response
to drought in wheat (Yu Y. et al., 2022).

Cytochrome P450 family proteins are enzymes involved
in multiple metabolic pathways for the synthesis of plant se-
condary metabolites, phytohormones, and antioxidants, which
play an important role in plant adaptation to the environment
(Pandian et al., 2020). In the study (Li Y., Wei, 2020), it
was shown that in wheat, in response to drought, there were
changes in the expression of 77 genes encoding cytochrome
P450s, which participate in the biosynthesis of abscisic acid,
an important mediator activating various signaling cascades in
plant stress responses, as well as cytochrome P450s involved
in the synthesis of flavonoids, which play an important role
in plant cell antioxidant defense.

Among the intermediary proteins connected to experimen-
tally found drought response genes, the gene LOC123186119,
encoding the disease resistance protein RPM1, had the highest
number of connections with other network components. It is
connected to all WRKY family transcription factors repre-
sented in the network, as well as to calcium-dependent protein
kinases 7 and 19. Additionally, the RPM1 protein is a target
of microRNA MIR7757. The list of 21 microRNAs associated
with components of the expanded gene network is shown
in Table 3. The complete list of 984 predicted microRNA
targets according to the Smart crop database is presented in
Supplementary Material 4.

The results of functional annotation of microRNA target
genes in the associative network are shown in Table 4. As seen
from Table 4, microRNA targets in the drought response gene
network are involved in morphogenesis processes of plant
lateral shoots and roots, as well as plant immunity, purine
transport and metabolism, and transcription factor functioning.
Genes controlling shoot morphogenesis processes in the ex-
panded gene network (see Supplementary Material 2) mainly
include targets of microRNA miR319, encoding the TEO-
SINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription
factor family, which is involved in forming plant shoot and
root architecture (Tokizawa et al., 2023), including root hair
formation (Wang M.Y. et al., 2013), which is an important
morphological adaptation of plants to moisture deficiency.

The involvement of TEOSINTE BRANCHED/CYCLO-
IDEA/PCF (TCP) family transcription factors in response to
insufficient moisture is discussed in literature (Manna et al.,
2021), although their participation in moisture deficit response
has not been shown for wheat. Knockout of miR319 family
members IbmiR319a and IbmiR319c in transgenic sweet po-
tato plants led to increased sensitivity to moisture deficiency,
increased number of stomata, decreased lignin content, and
disruption of hormonal regulation of plant growth (Renetal.,
2022). The authors suggest that these morphological changes
are caused by changes in the expression of transcription factor
TCP11/17, which is a target of IbmiR319a and 1bmiR319c.

Among the 21 microRNAs in the expanded gene network
(see Table 3), 14 were directly connected to genes, the role of
which in wheat adaptation to moisture deficiency has been ex-
perimentally proven. Seven microRNAs (MIR9668, MIR1121,
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Table 3. List of microRNAs and their target genes with the highest number of connections in the network

microRNA MirBaselD Number of microRNA targets Target with maximum number of connections Number of connections
contained in the network represented in the network the target has in the network
MIR1120b MI0030404 149 FKBP77 4
MIR1130a MI0006192 148 LOC123051594,L0C123091557,LOC123096508 5
MIR159b MI0006171 143 MybA 11
MIR7757 MI0030410 102 LOC123186119 (RPM1) n WRKY41 49
MIR1120c MI0030409 98 LOC123078649 3
MIR444a MI0006178 58 LOC123078649 2
MIR444b MI0016467 58 LOC100037552 2
MIR9773 MI0031525 54 FKBP77 4
MIR9674a MI0030403 47 TCP-1 1
MIR159a MI0006170 36 MybA 11
MIR156 MI0016450 24 SBP16 1
MIR319 MI0016453 22 MybA 1
MIR160 MI0006172 20 ARF22 1
MIR9677a MI0030414 18 LOC100037551 1
MIR9668 MI0030392 2 LOC543328 7
MIRT121 MI0006183 1 UCRIA 3
MIR395b MI0016464 1 LOC123190485 3
MIR9653a MI0030370 1 LOC543111 25
MIR9671 MI0030395 1 LOC543244 36
MIR9672b MI0031526 1 LOC543244 36
MIR9679 MI0030418 1 LOC123114245 5

Note. MicroRNAs and target genes with known significance in drought adaptation in wheat are highlighted in bold. MicroRNAs that directly regulate known
water deficit response genes are underlined.

Table 4. Functional annotation of wheat microRNA target genes in the drought response gene network

Term Number of genes FE p-value
G0:2000032~regulation of secondary shoot formation 10 32.03 0.0000
G0:1905428~regulation of plant organ formation 10 32.03 0.0000
G0:0060688~regulation of morphogenesis of a branching structure 10 32.03 0.0000
G0:0098542~defense response to other organism 87 3.36 0.0000
G0:0015211~purine nucleoside transmembrane transporter activity 6 11.89 0.0216
G0:0043531~ADP binding 95 4.34 0.0000
G0:0043565~sequence-specific DNA binding 48 1.95 0.0027
GO0:0003700~DNA-binding transcription factor activity 60 1.81 0.0006
G0:0032559~adenyl ribonucleotide binding 161 1.48 0.0000
G0:0017076~purine nucleotide binding 172 1.42 0.0000
G0:0032553~ribonucleotide binding 166 1.41 0.0000

Note. FE - foldenrichment, p-value - statistical significance indicator of enrichment with Bonferroni correction.

CUCTEMHAA KOMIMbIOTEPHAA BUOJTIOTNA/ SYSTEMS COMPUTATIONAL BIOLOGY 911



M.A. Kleshchev, A.V. Maltseva, E.A. Antropova ...
M. Chen, N.A. Kolchanov, V.A. Ivanisenko

Gene

miRNA

Reconstruction and computational analysis of the microRNA
regulation gene network in wheat drought response mechanisms

Protein

Association

Interaction

Fig. 2. Associative network of microRNA MIR7757, its targets, and intermediaries connected to the targets.

Large spheres indicate proteins experimentally shown to be involved in drought response.

MIR395b, MIR9653a, MIR9671, MIR9672b, MIR9679) were
connected to drought response genes through an intermediary.
MicroRNAs MIR1120b, MIR1130a, MIR159b, MIR7757 u
MIR1120c had the highest number of connections with other
network components.

In particular, it is interesting to note that not only did
microRNA MIR7757 have connections with many network
nodes (102), but its target, the LOC123186119 gene encod-
ing disease resistance protein RPM1, was connected to the
highest number (49) of other network nodes. These nodes
include a set of WRKY family transcription factors, as well
as calcium-dependent protein kinases 7 (WCDPK) and 19
(CPK 1B), SKP1 and SGT1 proteins, and heat shock protein
HSP80 (Fig. 2).

Numerous data obtained from different plant species indi-
cate that WRKY family transcription factors play a crucial
role in adaptation to various stress factors, including moisture
deficit. Increased expression of WRKY transcription factors
contributes to reduced ion loss, activation of leaf stomatal ap-
paratus, decreased moisture loss, and reduced reactive oxygen
species content (Khoso et al., 2022).

It is known that WRKY transcription factors modulate the
activity of signaling pathways of phytohormones — salicylic
acid, ethylene, abscisic acid, jasmonic acid, mitogen-activated
protein kinase MAPK (Jiang et al., 2017), as well as calmodu-
lins, including through physical interaction with the calcium
domain in calmodulins (Park C.Y. et al., 2005). The activity of
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WRKY transcription factors is controlled by various signaling
pathways and phytohormones, including ethylene (Li J. etal.,
20006), abscisic acid (Chen et al., 2010), and MAPK signaling
pathway (Mao et al., 2011), which ensures changes in WRKY
activity depending on environmental conditions. Thus, WRKY
transcription factors are a crucial regulatory link in plant stress
response, affecting the activity of multiple genes regulating
adaptation, while WRKY activity can change depending on
the nature of the impact, providing flexible plant adaptation
to changing environmental conditions.

Calmodulins and calcium-dependent protein kinases, by
binding to calcium ions, the concentration of which increases
in response to stress factors, change the functioning of abscisic
acid signaling pathways, which in turn causes changes in seed
maturation rate, stomatal closure, and reduced reactive oxygen
species content (Asano et al., 2012).

The SKP1 protein is part of the SCF (Skp1-Cullin 1-F-box)
complex, which is a ubiquitin ligase playing an important role
in hormonal signal transmission, circadian rhythm regulation,
plant growth and development (Hong et al., 2012), and adapta-
tion to adverse factors (Saxena et al., 2023). Thus, MIR7757
may be a crucial master regulator of the moisture deficit
response gene network, acting both directly on the WRKY41
transcription factor and through an intermediary —- RPM1-like
protein, coordinating phytohormone signaling pathways,
MAPK, and calcium-dependent protein kinases. This protein
plays an important role in plant immunity; however, its signifi-
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Fig. 3. Associative network of microRNAs MIR9671, MIR9672b, their targets, and proteins connected to the targets.

Large spheres indicate proteins experimentally shown to be involved in drought response.

cance in wheat response to water deficit is unknown, although
it was reported that PRM1 gene expression was increased in
grape leaves in response to moisture deficiency (Haider et
al., 2017). Additionally, there is no data on changes in wheat
MIR7757 microRNA expression under moisture deficiency;
therefore, this microRNA, as well as other microRNAs with
a high number of network node connections and their target
genes, are promising candidates for experimental investiga-
tion of microRNA regulation of wheat response to water
deficit.

The target of two other microRNAs, MIR9671 and
MIR9672b, heat shock protein 90, encoded by the LOC543244
gene, also has extensive (n = 36) connections with other
gene network nodes, namely calmodulins (CaM14-7B-1,
LOC123104984, etc.), heat shock protein 101, SKP1 and
RPML1 proteins discussed above, heat stress transcription
factor HSfla, and polyubiquitin UBIQ (Fig. 3).

It is known that the HSP90 protein, a highly conserved
chaperone, is a crucial component of eukaryotic cell homeo-
stasis and participates in plant adaptation to various types of
abiotic stress, modulation of plant growth and development by
interacting with auxin and jasmonic acid signaling pathways.
The HSP90 protein, together with its co-chaperones, stabilizes
the auxin receptor complex under conditions of increased air
temperature (an environmental factor that often accompanies
moisture deficiency) and promotes physiological and mor-
phological adaptations induced by auxin, particularly root
elongation (di Donato, Geisler, 2019). Additionally, HSP90,
by interacting with protein ligases, assists in the removal of
damaged proteins.

It should be noted that numerous calmodulin proteins,
by binding to calcium ions during stress, not only activate
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calcium-dependent protein kinase signaling pathways but
also activate HSP90 expression (Virdi et al., 2011), providing
additional heat shock protein-mediated activation of the plant
hormonal system. Thus, microRNAs MIR9671 and MIR9672b,
through their target HSP90, can modulate hormonal signaling
of auxin and jasmonic acid, as well as the functioning of the
protein ubiquitination system during abiotic stress.

Considering the important role of the HSP90 protein in
response to abiotic stress, it can be hypothesized that enhanc-
ing its expression by artificially weakening the activity or
expression of microRNAs MIR9671, MIR9672b may increase
wheat plant resistance to moisture deficiency. However, it
should be noted that HSP90 has a pleiotropic effect, affecting
a significant number of cell signaling pathways (di Donato,
Geisler, 2019), therefore microRNA-mediated weakening of
its expression may be necessary for adaptive changes in some
signaling pathways at a certain stage of plant development or
during environmental changes.

Thus, microRNAs MIR9671, MIR9672b, along with
MIR7757, which were not previously discussed in literature in
connection with wheat response to drought, may be promising
for further experimental investigation of microRNA regulation
of bread wheat response to water deficit.

Several experiments conducted on various plant species
have shown that artificial modulation of microRNA expres-
sion allows changing regulatory gene network functioning,
affecting the expression of genes responsible for adaptation to
adverse environmental conditions or the formation of certain
economically valuable traits. Modern genetic engineering
technologies — RNA interference, creation of special vectors
expressing specific microRNAs, as well as genome editing
methods such as CRISPR/Cas9 and Transcription activator-
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like effector nucleases (TALEN) — make it possible to enhance
or weaken microRNA expression and activity depending on
whether the products of microRNA target genes have a stimu-
lating or weakening effect on target biological processes (Ab-
bas et al., 2022; Raza et al., 2023). For example, an artificial
increase in miR319 expression using special vectors, as well as
an artificial decrease in expression of its targets, TEOSINTE
BRANCHED/CYCLOIDEA/PCF (TCP) transcription fac-
tors, led to increased cold resistance in rice plants (Yang C.
etal.,2013). In another study (Ni et al., 2013), suppression of
miR169 expression increased expression of its target — tran-
scription factor GmNFYA3, which improved soybean plant
drought resistance through changes in expression of genes
related to water deficit adaptation. An artificial increase in
miR172b-3p expression in transgenic potato led to weakened
expression of the ERFRAP2-7-like gene and enhanced carbon
fixation by plants (Raza et al., 2023).

Additionally, patents have been obtained for transgenic
plants, created using microRNAs, that have increased pro-
ductivity and resistance to adverse environmental factors,
demonstrating successful practical use of microRNAs for
creating new plant varieties. For example, transgenic rice with
increased expression of Osa-miR393 microRNA and enhanced
tillering was obtained (patent CN102533760A (Wang S.,
Zhang, 2011)). Transgenic tomato plants with suppressed
expression of miR156e-3p microRNA and increased resistance
to low temperatures were created (patent CN111705077B
(Zhou et al., 2020)).

Thus, modulation of microRNA activity using genetic
engineering may become a promising method of modern
biotechnology aimed at increasing plant resistance to adverse
environmental conditions, including moisture deficiency, and
ultimately their productivity.

Conclusion

Using the Smart crop knowledge base of the ANDSystem
software and information system, reconstruction of the gene
network of microRNA regulation of bread wheat adaptation
to moisture deficiency was performed. Genes in the network
regulate root and shoot morphogenesis processes, response to
abiotic and biotic stress factors, and are involved in signal-
ing pathways of abscisic acid and calcium-dependent protein
kinases.

Twenty-one microRNAs regulating the wheat drought
response gene network were identified, the targets of which
are mainly involved in controlling plant morphogenesis pro-
cesses. The most significant nodes in this network regulated
by microRNAs are MYBa and WRKY41 transcription fac-
tors, HSP90 heat shock protein, and RPM1 protein, which
is connected to WRKY family transcription factor proteins,
calcium-dependent protein kinases, and phytohormone sig-
naling pathways — auxin, jasmonic acid, and abscisic acid,
which are crucial in controlling plant adaptation to moisture
deficiency. Several microRNAs that were not previously dis-
cussed in literature in connection with drought adaptation
(MIR7757, MIR9671, MIR9672b) regulate a significant num-
ber of network nodes and therefore may be promising for
further experimental investigation of microRNA regulation
of bread wheat response to water deficit.
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Abstract. A rhizosphere (a narrow area of soil around plant roots) is an ecological niche, within which benéeficial
microorganisms and pathogens compete with each other for organic carbon compounds and for the opportunity to
colonize roots. The roots secrete rhizodeposits into the rhizosphere, which include border cells, products of root cell
death and liquids secreted by living cells (root exudates). Border cells, which have their name due to their location in
the soil next to the root (at the border of the root and soil), represent terminal differentiation of columella and adjacent
lateral root cap cells. Border cells can detach from the root cap surface both as single cells and as cell layers. Border cells
are constantly supplied to the soil throughout plant life, and the type and intensity of border cells’ sloughing depend
on both plant species and soil conditions. Currently, data on the factors that control the type of border cells’ release
and its regulation have been described in different plant species. Border cells are specialized for interaction with the
environment, in particular, they are a living barrier between soil microbiota and roots. After separation of border cells
from the root tip, transcription of primary metabolism genes decreases, whereas transcription of secondary metabo-
lism genes as well as the synthesis and secretion of mucilage containing these metabolites along with extracellular
DNA, proteoglycans and other substances increase. The mucilage that the border cells are embedded in serves both
to attract microorganisms promoting plant growth and to protect plants from pathogens. In this review, we describe
interactions of border cells with various types of microorganisms and demonstrate their importance for plant growth
and disease resistance.
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ITorpaHnuHbIe KJIEeTKM KOPHEeBOIro uex/anKa
Kak peryasaTop pusocdepHoii MUKPOOMOTbI
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2 HoBocnbrpckmii HaLoHanbHbI NCCefoBaTeNbCKNA FOCYAaPCTBEHHbIN yHUBepcuTeT, HoBoCnbmpcK, Poccna
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AHHoTaumA. Pusocdepa (NouBa, OKpyKalowasa KOPHW PacTeHWs) — 3TO SKONOrMyeckas HULWA, BHYTPU KOTOPOW no-
ne3Hble MAKPOOPraHN3Mbl 1 MaToreHbl KOHKYPUPYIOT APYr C APYroM 3a OpraHu4eckue yrnepofHble CoefiMHeHNs 1
BO3MOXHOCTb KOJTOHM3aLMN KOpHe. [1ns B3aMOAeNCTBUA C MUKPOOMOTOM KOPHYW BbIAENAIOT B pusochepy pusoge-
NO3UTbl, K KOTOPbIM OTHOCAT NOrpaHnUYHbIe KNETKU, NPOAYKTbI rméenn KneTok KOPHA U CeEKPEeTUPYEMbIe XXNBbIMN KNeT-
Kamu XMAKOCTUN (KOPHEBble 3KCCyAaThl). MorpaHmnyHbie KNeTKW, NonyumBLUMe CBOE Ha3BaHWe BBUAY UX NOKanmnsauunm
B MOYBe PAAOM C KOPHeEM (Ha rpaHuue KOPHSA 1 MoYBbI), NPeaCcTaBAAlT cO60M KOHeYHbl 3Tan anddepeHLnpoBKu
KNeTOK KOpHeBOro yexsunka. CnywyBaHme NorpaHnYHbIX KNETOK C MOBEPXHOCTV KOPHEBOrO Yexsika MOXeT Npounc-
XOAUTb KaK OAMHOYHbIMW KNeTKaMu, Tak 1 pAAaMun KneTok. [orpaHnyHble KNeTK/ NOCTOAHHO NOCTaBNAIOTCA B NOUBY
Ha NPOTAXEHUN BCEWN XN3HN pacTeHuna, a TMn N UHTEHCUBHOCTb CJTYLWMBAaHUA NOTPAaHNYHbIX KNTETOK ONpefenarTca Kak
BMAOM PacCTEHUIA, Tak M MOYBEHHbIMM YCIOBUAMK. B HacToswwee Bpema NOABUIUCH AaHHble O dakTopax, KOHTPONu-
pYyOLWMUX TUN CNYLWMBAHUA, @ TakKe UCCefoBaHNA 3TOro NpoLecca 1 ero perynauuy y pasHbix BUAOB pacteHui. Mo-
rpaHMyHble KNEeTKN CMeLnann3npoBaHbl A1 B3aMMOAENCTBAA C BHELLUHEN CPefio, B YaCTHOCTY, OHW CRy»aT »KUBbIM
6apbepom Mexay KOPHEM 1 MOYBEHHOW MUKPOOUOTON. [ocne oTaeneHna OT KOHYMKa KOPHA B MOTPaHMYHbIX KeTKax
CHIKaeTcA YPOBeHb NepBUYHOro MeTabomnr3mMa U MOBbILLAETCSA YNCIIO TPAHCKPUNTOB reHOB BTOPUYHOTO MeTabonv3ma,
YCUIINBAIOTCA CMHTE3 KOMMOHEHTOB Y BblAESIEHUE CNN3U, COAEPKaLLeln BTOPUYHble MeTabonuTbl, BHeKNneTouHyto JHK,
npoTeornvKaHbl 1 apyrue Belectsa. Cnnsb, B KOTOPYIO NMOrpaHnyHbIe KNEeTKN OKa3blBalOTCA MOTPYKEHHbIMU, CITYXUT
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[orpaHnyHble KNeTKy KOPHEBOTO Yexsinka
KaK perynatop pun3ochepHomn MMKpoOroThI

KaK A/1e NpuB/eYeHNs MUKPOOPraHN3MOB, CMOCOOCTBYIOLNX POCTY PAcTEHUS, TaK U AN 3alWMTbl KOPHA OT NaTOreHoB.
B HacTosAwem 0630pe onvcaHbl B3aUMOZAENCTBUA MOMPAHNYHBIX KNETOK C PasfiniyHbIMIA BYAAMU MUKPOOPTraHNU3MOB 1
NPOAEMOHCTPUPOBAHA NX BaXKHOCTb [/1A POCTa PacTeHUI U UX YCTONUMBOCTU K 60M1e3HAM. TU acneKTbl MOryT ObITb UC-
NMOMb30BaHbl B FTEHHON MHXEHePUMN 1 Cenekunn Ana yCUneHna nonesHbix GyHKLM NOrpaHUYHbIX KNETOK, UTO, B CBOIO
ouepefb, OTKPOET HOBbIE FOPU30HTbI /1A MOBbILIEHNA YPOXKANHOCTMN 11 YCTOMYMBOCTU CEIIbCKOXO03ANCTBEHHbBIX KYbTYP.
KntoueBble croBa: KOpeHb; MOrpaHNYHble KNeTKW; OUOTUYECKNI CTPeCC; 3alyuTa PpacTEHUIN OT NAaTOreHOB; NOYBEHHbIE

CUMOVIOHTHbI.

Introduction

Plant roots are surrounded by a large number of microorgan-
isms: in the rhizosphere (the narrow soil zone directly con-
tacting roots), one gram of soil contains ~108-10° bacteria,
10°-108 fungi, and 103-10° algae and protozoa (Mendes et
al., 2013). This metabolically active microbiota modifies soil
properties and influences both root and overall plant growth.
In turn, the root system penetrates deeply into the soil, alter-
ing it by releasing rhizodeposits, living and dead cells, and
various organic compounds that affect the composition and
abundance of microbial populations. A substantial part of rhi-
zodeposits consists of cells regularly sloughed from the surface
of the root cap, a small organ located at the very tip of the
root (Hawes et al., 2011). These sloughed cells, called border
cells, are named for their position at the root-soil boundary
(Hawes, Lin, 1990). Border cells are living cells that secrete
mucilage containing polysaccharides, proteins, and a range of
other substances (Driouich et al., 2021). This mucilage forms
a matrix, in which the border cells become embedded. As the
root grows, border cells interact with the cells located above
the root cap and can be found at considerable distances from
the root tip, where they originated from (Hawes, Lin, 1990;
Driouich et al., 2019).

Border cells have been described in ferns, gymnosperms,
and angiosperms (Vermeer, McCully, 1982; Hawes et al.,
2003; Forino et al., 2012). The number of viable border cells
per root depends on the plant family and also varies with root
growth. In young roots (up to 2 cm), this number ranges from
800 in Bromus carinatus and 11,000 in Cucumis sativus to
17,000 in Zea mays, with a significant reduction in roots longer
than 9 cm, to 70, 300, and 150 cells, respectively (Odell et al.,
2008; Darshan et al., 2020). The number of border cells can
even vary among different ecotypes of the same species and
depends on growth conditions (Zhao et al., 2000; lijimaetal.,
2003; Pankievicz et al., 2022). For example, when pea plants
are exposed to high levels of carbon dioxide, the production
of border cells doubles compared to normal conditions (Zhao
et al., 2000).

Border cells are “renewable”, i.e. they are constantly
supplied to the soil and have a definite lifespan (Driouich
et al., 2019). For example, the root system of a single pea
plant produces approximately 3,000-4,000 border cells per
day. The duration for which border cells remain viable after
being sloughed from the root cap surface varies among plant
species, ranging from several days in Arabidopsis (Vicré
et al., 2005; Plancot et al., 2013) to several weeks in maize
(\Vermeer, McCully, 1982). In many angiosperm families (such
as grasses, legumes, and cucurbits), the outermost layer of
the root cap detaches as individual viable border cells, with
no connections between them (Driouich et al., 2007). In con-
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trast, in some other families, such as Brassicaceae (including
the model species Arabidopsis thaliana L.), living cells are
sloughed off as a single layer (Fendrych et al., 2014). There-
fore, these cells are classified as a distinct group, “border-like
cells” (Vicré et al., 2005; Driouich et al., 2007; Plancot et al.,
2013). Additionally, an alternative term has been proposed
to encompass both border cells and border-like cells: “root
associated, cap-derived cells” (root AC-DC) (Driouich et
al., 2019).

At present, new data have emerged on factors controlling
the sloughing mode of the outer root cap cells and functions of
border cells in different plant species. According to these data,
border cells can be defined as living cells sloughed off from
the root cap into the environment as individual cells, layers
of cells, or multilayered aggregates and serving specialized
functions in supporting plant growth and defense responses
(Darshan et al., 2020). Accordingly, we will use the general
term “border cells” regardless of their sloughing type.

In this review, we examine in detail the factors determining
the sloughing type of border cells, describe the differences
between border cells and other root tip cells, their secretory
function, and the formation of rhizosphere microbiota under
the influence of border cell secretions.

Border cell differentiation
and sloughing modes in diverse plant species
In A. thaliana, the root cap consists of two distinct parts: the
centrally located columella and the lateral root cap (LRC),
which surrounds the columella and root meristem located
above (Dolan et al., 1993). In the transition zone, the outer
LRC cells undergo programmed cell death with rapid autoly-
sis, and these processes progress toward the root tip (Fendrych
et al., 2014). In contrast, the outer columella cells together
with a few adjacent outer LRC cells detach as a single layer
of living cells (Vicré et al., 2005; Durand et al., 2009). Ini-
tially, a gap is formed in the outer LRC layer slightly above
the quiescent center, followed by detachment of cells in this
layer, culminating in separation of the outer columella cell
layer (Fig. 1a) (Shi et al., 2018). The entire process, from the
initial gap to the complete detachment, takes approximately
18 hours, with another 18 hours passing before the new outer-
most layer begins to slough off. It is important to note that the
cells sloughing from the root cap fit the original definition of
border cells —they are located at the boundary between the root
and the soil (Hawes and Lin, 1990). Moreover, in A. thaliana,
up to 12 % of roots of Columbia ecotype seedlings produce
individual, isolated border cells (Karve et al., 2016).

The primary components of middle lamellae — the parts
of the cell walls that “glue” neighboring cells together — are
pectins (polygalacturonans composed of homogalacturonans,

919



N.A. Omelyanchuk, V.A. Cherenko
E.V. Zemlyanskaya

Fig. 1. Sloughing of border cells as a single layer (a) and as individual cells
(b) in A. thaliana seedlings.

a - root tip of a wild-type seedling; b - root tip of an nlp7 mutant. Blue in-
dicates quiescent center, dark green represents columella initials, light green
denotes columella, light brown indicates lateral root cap (LRC), red depicts
epidermis/LRC initials, and dark brown indicates border cells. The schematic
representations are based on data from (Karve et al,, 2016).

rhamnogalacturonans, and substituted galacturonans) (Caffall,
Mohnen, 2009; Albersheim et al., 2010). Pectins are synthe-
sized within the cell and subsequently secreted to the cell wall
predominantly in a methyl-esterified form (Atmodjo et al.,
2013). In the cell wall, pectin methylesterases remove methyl
groups, generating free carboxyl groups on galacturonic
acid residues of polygalacturonans. This leads to a local pH
decrease, and acidification that promotes the activity of poly-
galacturonases, which hydrolyze polygalacturonans (Mous-
tacas et al., 1991; Micheli, 2001). This mechanism explains
disintegration of the border cell layer into individual cells in
A. thaliana in response to low pH stress (Karve et al., 2016).
The role of pectins in border cell sloughing has also been
demonstrated in pea (Wen et al., 1999). When the expression
of a gene encoding pectin methylesterase is inhibited, border
cells fail to detach from the root. In A. thaliana mutants for
the QUASIMODO 1/2 genes, which exhibit reduced produc-
tion of one component of pectin —homogalacturonan (a linear
polymer of galacturonic acid) — root cap cells slough off as
individual cells (Durand et al., 2009).

In A. thaliana, NIN-LIKE PROTEIN7 (NLP7) transcription
factor regulates sloughing of the border cells as a whole layer
(Karve etal., 2016). Loss-of-function mutation nlp7 enhances
sloughing of individual border cells from the root cap surface
(Fig. 1b) (Karve et al., 2016). While only 12 % of wild type
roots exhibited release of individual border cells, it was ob-
served in 44 % of roots in nlp7 mutants. In these mutants, the
levels of cellulose and pectin are reduced, and genes encoding
cellulase (CEL5) and pectin lyases — the enzymes that weaken
the cell wall — are activated. In A. thaliana, CELS5 inactiva-
tion results in a decreased rate of border cell sloughing (Del
Campillo etal., 2004). Similarly, individual border cell slough-
ing occurs upon loss of function of AUTOPHAGY 5 (ATG5),
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one of the key regulators of autophagy (Goh et al., 2022). In
atgb mutants, border cells fail to form autophagosomes and
a central vacuole.

There is significant diversity in the modes of border cells’
sloughing. For example, in Acacia mangium, a tropical tree
of the legume family, LRC-derived border cells slough off
acropetally (towards the root apex) from the root transition
zone as sheets composed of several cell rows, while columella
cells slough as separate border cells (Endo et al., 2011). Among
three leguminous tree species native to sub-Saharan Africa,
Balanites aegyptiaca exhibits separate sloughing of root cap
cells, whereas in Acacia raddiana and Tamarindus indica,
sloughing occurs both as individual cells and in layers (Car-
reras et al., 2020). In Pinus densiflora, individual elongated
border cells are released from the central region of the root
cap, while sheath-shaped long layers of cells slough from the
lateral sides (Shirakawa et al., 2023).

In soybean, three morphotypes of border cells have been
identified: spherical, intermediate, and elongated (Ropitaux et
al., 2020). Spherical border cells are predominantly localized
near the root cap, intermediate cells surround the root in the
meristematic zone, while elongated cells encircle the root in
the elongation and differentiation zones (Fig. 2). Elongated
cells constitute more than 30 % of border cells and can occur
either as single cells or as groups of tens or several dozen
cells tightly attached to one another. Approximately 80 % of
elongated cells and 50 % of spherical border cells are viable.
In maize, spherical cells detach from the columella, whereas
the LRC produces elongated cells (Guinel, McCully, 1987). In
banana, elongated (ellipsoidal) cells make up 92 % of border
cells, with the remaining 8 % being spherical cells containing
amyloplasts (Wuyts et al., 2006). In potato, small spherical
border cells were observed in the root cap region, whereas
elongated cells were primarily localized around the elonga-
tion zone (Koroney et al., 2016). Both cell types contained
starch.

Thus, outer root cap cells can be removed from its surface
via programmed cell death and subsequent rapid autolysis, as
well as through the detachment of interconnected or separated
living cells. Subsequently, death of border cells in the soil
produces cellular debris, which serves as a nutrient source
for the microbiota. Compared to root tip cells, border cells
exhibit reduced primary metabolism and increased expres-
sion of secondary metabolism genes, which encode proteins
for the synthesis of wax, phenylpropanoids, lignin, phenolic
compounds, and flavonoids (Watson et al., 2015).

Large starch reserves in the border cells provide energy and
carbon source necessary for secondary metabolite synthesis.
Additionally, border cells synthesize a unique set of proteins:
13 % of proteins produced in border cells are not detectable
in the root tip (Brigham et al., 1995). Thus, border cells
represent the final stage of the root cap cells differentiation.
Taken together, it is evident that differentiation and slough-
ing of the border cells is an energy-consuming process. This
raises the question: for what significant purposes do plants
release a large number of living cells from the root cap
periphery in a regulated manner. Undoubtedly, this implies
the crucial role of border cells in interactions with the root
environment.
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Composition and functions

of mucilage secreted by border cells

The process of how precursors of the border cells acquire the ability to secrete
mucilage has been described in detail for columella cells in Arabidopsis (Maeda
etal., 2019). Provided that columella initials are designated as the c1 layer, when
cells transit from c5 to ¢6, mucilage begins accumulating along the lateral cell
walls, while the shootward cell walls start degrading (Fig. 3). In ¢7 cells, most
of the mucilage is released into the intercellular space between the c6 and c7
layers. In parallel, a vacuole develops, and amyloplasts undergo degradation.
After the border cells’ separation, the mucilage from the intercellular space
passes into the rhizosphere, while border cells continue its secretion. Thus,
border cells become surrounded by dense, fibrillar mucilage (Ropitaux et al.,
2020). The Golgi apparatus, essential for secretion, develops in the peripheral
columella cells before they separate and become border cells (Poulsen et al.,
2008). Golgi-derived vesicles, including those fusing with the plasma mem-
brane, are characteristic of border cells (Driouich et al., 2007; Wang et al., 2017).
In soybeans, spherical border cells produce the largest quantity of mucilage,
whereas elongated border cells produce the least (Ropitaux et al., 2020).

In most plant species, approximately 94 % of the soluble mucilage fraction
consists of neutral and acidic polysaccharides, with the remaining 6 % being
proteins (Carminati, Vetterlein, 2013). 25 % of the proteins synthesized by
border cells are immediately released into the environment (Brigham et al.,
1995). Similarly, the majority of metabolites produced in the border cells are
secreted promptly after their synthesis. The root cap mucilage in 3- to 4-day-old
maize seedlings contains 2,848 distinct proteins, of which a substantial propor-
tion (25 %) is involved in metabolism. The remaining proteins are functionally
related to the cell wall, reactive oxygen species, nutrient acquisition, and stress
response (Ma et al., 2010). Interestingly, 85-94 % of the mucilage proteins in
A. thaliana and rapeseed have homologs present in maize mucilage. This in-
dicates a certain conservation in the protein composition of mucilage between
monocotyledons and dicotyledons.

Acidic (pectic) polysaccharides impart gel-like properties to mucilage, i.e.
make it a gel with a porous structure. The mucilage secreted by border cells
can retain water up to 1,000 times its weight (Guinel, McCully, 1986). In
soybeans, the primary component of the fibrous structure within mucilage is
the neutral polysaccharide xyloglucan (Ropitaux et al., 2019). Xyloglucan and
cellulose form molecular cross-bridges connecting border cells. It is known
that the primary cell wall of dicotyledons consists of cellulose and xyloglucan
polysaccharides embedded in a matrix of pectins, glycoproteins and proteogly-
cans (Driouich etal., 2012); thus, border cells secrete cell wall polysaccharides
and proteoglycans, which form the matrix and internal structure of mucilage
(Castilleux et al., 2018; Driouich et al., 2019).

Among the protein components of the border cells’ exudate, hydroxyproline-
rich glycoproteins, such as extensin and arabinogalactan proteins, are prominent
(Vicré et al., 2005; Plancot et al., 2013). Arabinogalactan proteins have been
identified in the mucilage of pea, Arabidopsis, rapeseed, and potato (Knee et
al., 2001; Durand et al., 2009; Cannesan et al., 2012; Koroney et al., 2016). In
addition to these components, mucilage contains phenolic acids, phospholip-
ids, antimicrobial peptides/proteins (defensins, pathogenesis-related proteins,
and others), phytoalexins, histone H4, enzymes, extracellular DNA, reactive
oxygen species (ROS) toxic to pathogens, and ROS-producing enzymes (Wen
et al., 2007, 2017; Carminati, Vetterlein, 2013; Plancot et al., 2013; Weiller et
al., 2017).

The mucilage secreted by the border cells and the border cells themselves
form a complex known as the “Root Extracellular Trap (RET)” (Driouich et al.,
2013). RET shares many features with extracellular traps of animals, produced
by phagocytic immune cells (neutrophils, macrophages, mast cells, eosinophils,
heterophils) upon stimulation (Driouich et al., 2019, 2021). In both plants and
animals, extracellular traps exhibit nonspecific activity against a wide range of
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Elongation zone

Meristematic zone

Root cap

Fig. 2. Three morphotypes of soybean border cells.

The root cap, along with spherical, intermediate, and
elongated border cells, are depicted in brown. The
scheme was prepared based on data published by
(Ropitaux et al., 2020).

cl
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c4
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6

c7

Fig. 3. Differentiation of border cells in the colu-
mella of A. thaliana.

Columella cells are shown in light green. The columella
cell layers are numbered sequentially from c1 (colu-
mella initials) to c7. Starch granules are represented by
brown dots, mucilage, by red, and vacuoles, by gray.
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microbial and fungal pathogens. These traps contain similar
defensive components (antimicrobial proteins and extracel-
lular DNA) and perform the same functions — capturing, im-
mobilizing, and destroying pathogens, thereby limiting the
spread of microbes to other tissues.

The mechanism of action of extracellular DNA secreted
by border cells remains unclear (Monticolo et al., 2020).
However, the degradation of extracellular DNA in the border
cell exudate with DNase treatment resulted in a loss of root
resistance to pathogenic fungi (Wen et al., 2009). Mutations in
genes encoding secreted DNases in phytopathogenic bacteria
and fungi led to a decrease in the infectivity of these pathogens
for plant roots (Hawes et al., 2016; Tran et al., 2016). DNase
secretion has been reported in numerous soilborne pathogenic
fungal species and certain bacterial species (Darshan et al.,
2020). Border cells of pea and tomato secrete extracellular
DNA in response to pathogenic bacteria, whereas nonpatho-
genic bacteria do not induce DNA secretion (Tran et al.,
2016).

Human histone H4, which shares 97 % homology with pea
histone H4 secreted by border cells, is lethal for Ralstonia so-
lanacearum, a bacterium infecting pea roots. The toxic activity
of histone H4 is neutralized when the roots are treated with
antibodies against this protein (Tran et al., 2016).

Border cells shape microbiota in the rhizosphere
Border cells protect plants and promote their growth by
preventing root infection with pathogens or stimulating as-
sociations with beneficial microbiota. Co-cultivation of border
cells embedded in mucilage with various bacterial species on
agar surfaces revealed various bacterial responses to border
cells and their exudate (Gochnauer et al., 1990). The observed
effects included strong growth inhibition (Rhizobium sp. and
Escherichia coli), strong stimulation (Pseudomonas fluores-
cens), no effect (Streptomyces sp. and Cytophaga sp.) or initial
inhibition followed by strong stimulation and subsequent spore
formation (Bacillus spp.).

Thus, the composition of the bacterial community in the
rhizosphere is determined by the ability of bacterial species
to respond to the compounds in the border cell exudate. It
can be assumed that, through this mechanism, border cells
actively control not only bacteria but also fungi, protists, etc.
Besides, the exudate of border cells influences the microbiome
composition due to different responses of microbe species to
the carbon sources it contains (Knee et al., 2001; Benizri et
al., 2007).

Rhizospheric bacteria that are beneficial to plants are clas-
sified into a special group called plant growth-promoting
rhizobacteria (PGPR) (Hasan et al., 2024). PGPR are di-
verse in species composition and include representatives of
Agrobacterium, Arthrobacter, Azotobacter, Azospirillum,
Burkholderia, Caulobacter, Chromobacterium, Erwinia,
Flavobacterium, Micrococcous, Pseudomonas, Rhizobium,
Serratia and other genera. By interacting with roots, these
bacteria enhance plant resistance to biotic and abiotic stresses,
increase the availability of various elements (iron, potassium,
phosphorus, etc.) in the soil, synthesize phytohormones and
other metabolites that influence plant growth, and contribute
to soil detoxification from many harmful contaminants. Many
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PGPRs inhibit growth of pathogenic organisms by producing
antibiotics (Ulloa-Ogaz et al., 2015).

Actinomycetes not only promote plant growth by them-
selves, some of their isolates enhance growth and spore
germination of arbuscular mycorrhizal fungi beneficial for
plants, thereby acting also as mycorrhiza helper bacteria
(Franco-Correaetal., 2010). Other actinomycete isolates have
demonstrated strong activity against plant pathogenic fungi
(Lee, Hwang, 2002). The bacteria Herbaspirillum serope-
dicae forms nitrogen-fixing associations with roots of maize
and other cereals (Chubatsu et al., 2012). Notably, humic
acids increase both host border cell sloughing and the density
of these bacteria in the root tip region (Canellas, Olivares,
2017).

Living border cells are the primary producers of muci-
lage, which contains substances that attract plant-beneficial
microorganisms (Hawes et al., 1998). Border cells secrete
compounds, which either stimulate branching of mycorrhi-
zal hyphae or trigger biofilm formation in several beneficial
bacteria (Nagahashi, Douds, 2004; Beauregard et al., 2013).
The degradation of arabinogalactan proteins by specific agents
reduces the colonization of border cells and root tips by
Rhizobium bacteria (Vicré et al., 2005). In Pinus densiflora,
during the early stages of root development (prior to mycor-
rhiza formation), rhizobacteria contacting with border cells
and their exudate protects host roots by inhibiting pathogen
growth (Shirakawa et al., 2023).

Arbuscular mycorrhizae, widespread soil fungi, form sym-
biotic associations with many angiosperms, including most
agricultural crops (Khalig et al., 2022). Mycorrhiza improves
water and nutrient uptake by plants, especially phosphorus,
while plants provide the fungi with 10-20 % of their photo-
synthates. Moreover, the number of border cells produced by
different plant species positively correlates with their ability to
form mycorrhizal associations (Niemira etal., 1996; Arriola et
al., 1997). One strain of the ascomycete fungus Trichoderma,
when colonizing border cells of wheat seedlings, caused ap-
proximately a 40 % increase in stem biomass and suppressed
the growth of pathogenic Fusarium species by more than 90 %
(Jaroszuk-Sciset et al., 2019).

It is now evident that a new field in agricultural biotechno-
logy is emerging — rhizosphere microbiome bioengineering,
which aims to populate the rhizosphere predominantly with
plant-beneficial microorganisms (Mohanram, Kumar, 2019).
For instance, bacterial genera such as Bacillus and Pseudo-
monas are currently used as biofertilizers and for biological
plant protection, including the production of biopreparations
against pathogens, serving as natural enemies of pathogens
or as inducers of systemic resistance in plants (Hasan et
al., 2024). Another promising approach for engineering
the rhizosphere microbiome is modification of border cells
(Mohanram, Kumar, 2019). The effectiveness of this ap-
proach has been demonstrated through the transformation of
Arabidopsis and potato plants with a gene encoding a peptide-
based nematode repellent under the control of the Arabidopsis
MDK4-20 gene promoter (Lilley et al., 2011). This promoter
is specifically expressed in root cap cells and border cells,
and the transformation resulted in transgenic plants that are
resistant to nematodes.
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Border cells interact with soil pathogens

The release of border cells, which secrete various compounds
into the soil, represents one of the mechanisms utilized by
plants to combat pathogens (Hawes et al., 2000). We have
previously mentioned antimicrobial functions of the muci-
lage, mediated by certain proteins, secondary metabolites,
and extracellular DNA, which provide protection against
some fungi and bacteria (Wen et al., 2009; Cannesan et al.,
2011; Koroney et al., 2016; Tran et al., 2016). However, the
interaction of border cells with pathogens is not limited to
the bactericidal and fungicidal properties of their secreted
mucilage. Border cells can perceive specific pathogen signals,
known as pathogen-associated molecular patterns (MAMPs/
PAMPs), and respond to them with typical MAMP-induced
primary immune responses, including the production of reac-
tive oxygen species and reinforcement of cell walls through the
accumulation and modification of extensins and the deposition
of callose (Plancot et al., 2013).

Pathogen attack can enhance border cells’ sloughing, sti-
mulate mucilage production by these cells, or alter its com-
position (Cannesan et al., 2011; Koroney et al., 2016). For
example, treatment of roots with an elicitor derived from
Pectobacterium atrosepticum, a soilborne potato pathogen,
modifies the mucilage composition, including the profile of
arabinogalactan proteins (Koroney etal., 2016). The oomycete
Aphanomyces euteiches causes up to 80 % yield loss in peas
by invading their roots, which leads to root growth arrest and
plant death (Cannesan et al., 2011). Inoculation of pea roots
with A. euteiches increases the number of border cells, and
this increase correlates with the quantity of oospores used
for inoculation. In response to inoculation, border cells in-
duce the synthesis of pisatin, a phenolic phytoalexin that, at
certain concentrations, inhibits hyphal growth and zoospore
production in vitro.

Thus, enhanced synthesis of this compound may contribute
to increased pea root resistance against this infection. More-
over, border cells attract the oomycete via chemotaxis and
subsequently neutralize it using antimicrobial components
of the mucilage (Hawes et al., 2016). Specifically, arabino-
galactan proteins, which are the components of the mucilage
and cell walls of the border cells, have been shown to induce
encystment and prevent germination of the pathogen’s zoo-
spores (Cannesan et al., 2012). Consequently, border cells
and their exude prevent zoospore colonization of root tips by
blocking their entry into root tissues and inducing their lysis
(Ropitaux et al., 2020).

Border cells of rye seedlings neutralize a pathogenic strain
of the fungus Fusarium culmorum by stimulating spore germi-
nation into macroconidia and forming compact clusters with
them around the root cap, referred to as mantle-like structures,
whereas non-pathogenic strains do not form such structures
(Jaroszuk-Sciset et al., 2009). In addition to well-known
mechanisms for suppressing fungal infection (inhibition of
spore germination, suppression of fungal pathogenesis gene
activity, enhancement of plant defense gene expression), the
formation of mantle-like structures on the root tip represents
another type of root—pathogen interaction, where the border
cells’ exude, conversely, induces rapid spore germination fol-
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lowed by border cells death and suppression of fungal growth
(Gunawardena et al., 2005).

The formation of mantle-like structures on the root tip
was also observed during inoculation of pea roots with the
pathogenic fungus Nectria haematococca, with most of the
root tips remaining intact beneath the mantle-like structure
(Gunawardena, Hawes, 2002). In this infection, only about
4 % of the root tips are damaged, whereas in the case of pro-
teolytic degradation of the border cell secretion, all root tips
are affected (Wen et al., 2007).

Conclusion

Thus, border cells are viable components of the root system
that play a key role in root interactions with rhizosphere mi-
croorganisms. After detaching from the root tip, border cells
alter their metabolism, synthesizing and releasing hydrated
mucilage containing proteoglycans, secondary metabolites,
antimicrobial proteins, and extracellular DNA. This mucilage
acts as an active agent for attracting beneficial microorganisms
that promote plant growth. At the same time, border cells serve
as a barrier to pathogens. They secrete various antimicrobial
substances, and their primary immune response is triggered
by different elicitors. All these aspects can be targeted through
genetic engineering and breeding to enhance the beneficial
functions of border cells for plants.
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Abstract. Parkinson’s disease (PD) and vascular parkinsonism (VP) are characterized by similar neurological
syndromes but differ in pathogenesis, morphology, and therapeutic approaches. The molecular genetic me-
chanisms of these pathologies are multifactorial and involve multiple biological processes. To comprehensively
analyze the pathophysiology of PD and VP, the methods of systems biology and gene network reconstruction
are essential. In the current study, we performed metabolomic screening of amino acids and acylcarnitines in
blood plasma of three groups of subjects: PD patients, VP patients and the control group. Comparative statisti-
cal analysis of the metabolic profiles identified significantly altered metabolites in the PD and the VP group. To
identify potential mechanisms of amino acid and acylcarnitine metabolism disorders in PD and VP, regulatory
gene networks were reconstructed using ANDSystem, a cognitive system. Regulatory pathways to the enzymes
converting significant metabolites were found from PD-specific genetic markers, VP-specific genetic markers,
and the group of genetic markers common to the two diseases. Comparative analysis of molecular genetic path-
ways in gene networks allowed us to identify both specific and non-specific molecular mechanisms associated
with changes in the metabolomic profile in PD and VP. Regulatory pathways with potentially impaired function
in these pathologies were discovered. The regulatory pathways to the enzymes ALDH2, BCAT1, AL1B1,and UD11
were found to be specific for PD, while the pathways regulating OCTC, FURIN, and S22A6 were specific for VP. The
pathways regulating BCAT2, ODPB and P4HA1 were associated with genetic markers common to both diseases.
The results obtained deepen the understanding of pathological processes in PD and VP and can be used for ap-
plication of diagnostic systems based on the evaluation of the amino acids and acylcarnitines profile in blood
plasma of patients with PD and VP.

Key words: metabolomics; amino acids; acylcarnitines; gene networks; genetic markers; Parkinson’s disease;
vascular parkinsonism; neurodegeneration; dry plasma stains; biomarker.
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AHHoTauusA. bonesHb MapkuHcoHa (BIM) n cocyaucTbin napkuHcoHn3m (CIM) xapakTeprusyroTca CXOXKUMI HEBPOSIOT -
YeCKMMIM CYHAPOMaMK, HO Pas3NMyaloTca natoreHesom, Mopdonormen n TepanesTnyeckumn nogxogamu. Vix mone-
KyNnsApHO-FeHeTNYECKME MEXaHN3Mbl MHOrO(aKTOPHbI 1 3aeCTBYIOT MHOXECTBO BMONIornyeckrx npoueccos. Ana
KOMMNEKCHOro aHanun3a natoprsnonorum 3tmx 3aboneBaHnii HEO6x0AMMO NPUMeHeHe METOAOB CUCTEMHON 6Uo-
NOTVN 1 PEKOHCTPYKLIMMN FeHHbIX ceTel. B faHHOM uccnefoBaHuny NnpoBeAeH MeTaboNOMHbIA CKPUHWHT aMUHOKMC-
NOT 1 aUUIKAaPHUTUHOB B M1a3Me KPOBW TpeX rpynn NcnbiTyembix: naumeHTos ¢ bl, naunentos ¢ Cl v KOHTponbHOM
rpynnbl. CpaBHUTENbHBIV CTaTUCTUYECKWI aHann3 MeTabooOMHbIX Npodunein rpynn NauMeHToB MO CPaBHEHUIO C
KOHTpOJIEM ONpPefen 3HaYMMO U3MEHEHHbBIE YPOBHU MeTabonmToB npu 6onesHm MNMapKnHCOHa 1 Npy COCYyAnCTOM
NapKMHCOHU3Me. [1n1A BbIABEHUA NMOTEHUMNANbHbBIX MEXaHN3MOB HapyLleHWsA MeTabonn3mMa aMMHOKNCIIOT 1 aunn-
KapHWTMHOB Npwu BIM 1 CIM 6binn PeKOHCTPYPOBaHbI PEryNATOPHbIE FreHHble CeTU C MOMOLLbIO KOTHUTUBHOW CU-
ctembl ANDSystem. Myt perynauun ¢epmeHToB MeTabonm3ma 3HauMMbIX MeTabonuToB 6blIn HaliAeHbl ANA Tpex
rpynn reHeTMYecKkMx MapkepoB: cneunduyecknx ansa b, cneyuduueckux ans CI, a Takxke rpynnbl 06LWMX Map-
KepoB [iByX 3aboneBaHnin. CpaBHUTENbHbIV aHany3 MONeKyIAPHO-FeHEeTUYECKUX NMyTell B FeHHbIX CETAX MO3BOWI
BbIABUTb Kak crneyudurueckue, Tak n obwme ans b n CMN monekynspHble MexaHU3Mbl, aCCOLIMMPOBAHHbIE C U3MeHe-
H1em meTabonomHoro npoduna. ObHapyKeHbl perynatopHble nyTy, QYHKLMA KOTOPbIX MOTEHUMANbHO HapyLleHa
npwv 3Tnx natonoruax. Cneunduyecknmmn ana reHeTUYecknx mapkepos b okasanucb nyTn perynauun pepmeHToB
ALDH2, BCAT1, AL1B1 1 UD11, a ana reHeTuyeckux mapkepos CI — nytn perynaummn pepmentos OCTC, FURIN 1
S22A6. PerynatopHble Nyt K depmeHTam BCAT2, ODPB 1 PAHA1 6binn cBA3aHbI ¢ 061umMmn Anst o6oux 3aboneBaHuin
reHeTUYeCKUMM Mapkepamu. lNonyyeHHble pesynbTaTbl yriy6asioT NOHMMaHKE NaToNOrMYecKrx npoueccos npw bI1
1 CIN 1 MoryT 6bITb MCMONIb30BaHbI AN1A NPUMEHEHWA ANarHOCTUYECKNX CUCTEM Ha OCHOBE OLIeHKM MeTabonoMHOro
npoduna aMMHOKUCNOT 1 aLUIKapHUTVHOB B Nfla3Me KPOBU MaLMEHTOB C 60ne3Hblo MapKMHCOHa 1 COCYANCTbIM
NapKNHCOHN3MOM.

KnioueBble cnoBa: MeTabonomMmKa; aMMHOKNCIOTbI; aUUITKaPHUTVHDI; TeHHble CETU; FTeHeTUYeCKniA MapKkep; 6onesHb
MapKMHCOHa; COCYANCTBIN NAPKMHCOHN3M; HepoLereHepaLus; Cyxue NATHA Miasmbl KPOBY; G1oMapKep.

Introduction

Parkinson’s disease (PD) and vascular parkinsonism (VP)
are complex disorders characterized by bradykinesia, muscle
rigidity, gait disturbances, and balance impairment in patients.
PD is classified as a neurodegenerative disease, while VP,
also known as “small vessel disease”, arises in the context of
cerebrovascular diseases.

In the pathogenesis of PD, disruptions in the nigrostriatal
dopaminergic pathway play a crucial role, including depletion
of dopamine reserves and neuronal loss in the pars compacta
of substantia nigra (Alexander, 2004). Neurodegenerative
processes in PD exhibit a distinct morphological staging of
progression, beginning with the involvement of the olfactory
bulb and the dorsal motor nucleus of the vagus nerve, eventu-
ally culminating in the critical loss of neurons in the substantia
nigra pars compacta (Braak et al., 2003). This stepwise pro-

gression aligns with the gradual clinical manifestation of PD
symptoms, starting from autonomic disturbances and advanc-
ing to core motor symptoms (bradykinesia, tremor, muscle
rigidity) and cognitive deficits. The molecular mechanisms
underlying PD are actively investigated within the scientific
community. Known key factors include proteolytic stress,
impaired energy metabolism in substantia nigra neurons,
mitochondrial dysfunction (Levin et al., 2022), and the ac-
cumulation of alpha-synuclein (Rocha et al., 2018).

The mechanisms underlying vascular parkinsonism (VP)
associated with cerebrovascular diseases (CVD) remain poorly
understood. VP often arises in the context of CVD and chronic
cerebral circulation disorders, leading to dysfunction of the
neurogliovascular unit (Che Mohd Nassir et al., 2021). The
symptoms of vascular parkinsonism develop more rapidly than
in Parkinson’s disease and include lower-body-predominant
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bilateral parkinsonism, absence of tremor, pyramidal signs,
and cognitive impairments (Vale et al., 2012). Unlike PD,
dominated by proteolitic stress, mitochondrial dysfunction
and the impairment energy metabolism of substantia nigra
neurons (Levin et al., 2022), the pathogenesis of which in-
volves the death of dopaminergic neurons and accumulation
of alpha-synuclein (Rocha et al., 2018), VP is primarily driven
by disturbances in microcirculation and hemodynamics. A key
factor in VP development is small cerebral vessels lesion,
often associated with a long history of arterial hypertension
(Che Mohd Nassir et al., 2021) and diabetes mellitus (Thanvi
etal., 2005). Chronic ischemia resulting from cerebrovascular
disorders is accompanied by oxidative stress, inflammation,
and mitochondrial dysfunction. These pathological processes
lead to significant structural and functional changes in the
neurogliovascular unit, including endothelial dysfunction,
impaired blood-brain barrier permeability, and alterations in
astrocytes and pericytes (Narasimhan et al., 2022). Ultimately,
this results in white matter damage (leukoaraiosis) and the for-
mation of multiple lacunar infarcts in strategically important
areas of the basal ganglia (Zijlmans et al., 1995; Chen Y.-F.
et al., 2014; Korczyn, 2015).

Among the common characteristics of these pathological
processes are disruptions in the metabolism of lipids, amino
acids, and energy molecules, highlighting their importance in
the molecular mechanisms of these conditions. Amino acids
and acylcarnitines are involved in numerous processes, in-
cluding neurotransmitter biosynthesis and energy metabolism
(Jones et al., 2010; Dalangin et al., 2020). Studies analyzing
metabolomic profiles in Parkinson’s disease (PD) are available
in the literature (Wuolikainen et al., 2016; Zhao et al., 2018;
Ostrakhovitch et al., 2022), but the role of amino acids and
acylcarnitines requires further investigation. It is also worth
noting that, to date, we have not identified any metabolomic
studies focused on vascular parkinsonism.

To study complex diseases such as Parkinson’s disease
and parkinsonism, gene networks have been utilized. These
networks allow for integration of knowledge and identifica-
tion of regulatory mechanisms underlying pathologies at the
molecular and genetic levels (Mercatelli et al., 2020). To
date, studies on gene networks in Parkinson’s disease are
presented, including protein-protein interaction networks of
PD markers (George et al., 2019a; Tomkins, Manzoni, 2021),
gene co-expression networks (George et al., 2019b), regula-
tory pathways (https://www.kegg.jp/entry/hsa05012), and
others. In contrast to PD, studies on the molecular and genetic
mechanisms of vascular parkinsonism based on gene networks
are sparsely represented in the scientific literature (Chen Y.
et al., 2022).

At the ICG SB RAS, the cognitive system ANDSystem
was developed for reconstructing and analyzing gene net-
works using artificial intelligence methods (Demenkov et al.,
2012; Ivanisenko V.A. et al., 2015, 2019; Ivanisenko T.V. et
al., 2020, 2022). ANDSystem has been used for interpreting
metabolomic (Rogachev et al., 2021; Ivanisenko V.A. et al.,
2022, 2023) and proteomic (Pastushkova et al., 2013, 2019;
Binder et al., 2014; Larina et al., 2015) data. Bioinforma-
tics studies conducted with ANDSystem have expanded the
understanding of molecular and genetic processes associated
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with the development of various diseases and the formation of
comorbid conditions (Bragina et al., 2014, 2016, 2023; Saik
etal., 2016, 2018, 2019; Zolotareva et al., 2019).

The aim of this study was a comparative analysis of the
molecular and genetic mechanisms of PD and VP using the
gene network reconstruction methods based on metabolomic
screening of amino acids and acylcarnitines.

Materials and methods

Characteristics of patients groups. The study included two
groups of patients with confirmed diagnoses of Parkinson’s
disease (PD) and vascular parkinsonism (VP), along with a
control group. Differential diagnosis was based on MRI and
clinical criteria. Blood samples were collected after discon-
tinuation of L-DOPA (L-dihydroxyphenylalanine) treatment.

The PD group consisted of 9 patients (5 women, 4 men) with
a mean age of 72.2 years (age range: 64—88 years). Inclusion
criteria were: clinically confirmed PD, stage IV by Hoehn and
Yahr, disease duration >5 years, and onset age 55—75 years;
symptoms including bradykinesia, resting tremor or muscle
rigidity, and response to L-DOPA therapy. The VP group
included 9 patients (7 women, 2 men) with a mean age of
74.6 years (age range: 60—89 years). Inclusion criteria were:
disease duration >3 years, MRI findings of multi-lacunar
status and leukoaraiosis; symptoms such as lower-body-predo-
minant parkinsonism, bilateral onset, and postural instabil-
ity. The control group consisted of 17 conditionally healthy
individuals (11 women, 6 men) with a mean age of 68 years
(age range: 51-82 years). Background conditions in this
group included chronic arterial hypertension without transient
ischemic attacks or stroke and the absence of neurological
symptoms.

Collection of biological material and HPLC-MS/MS
analysis. Blood samples were collected from a peripheral
vein during daytime, three hours after food intake, using 6 mL
plasma tubes containing lithium heparin (68 IU) (Vacutainer,
BD). Plasma preparation and the analysis of amino acids and
acylcarnitines (the list of the analyzed metabolites is provided
in Supplementary Material 1)! were performed using the
HPLC-MS/MS method as previously described (Kasakin et
al., 2019). The analysis utilized an API 6500 QTRAP mass
spectrometer (AB SCIEX, USA) coupled with an HPLC
LC-20AD Prominence chromatograph (Shimadzu, Japan)
equipped with an SIL-20AC autosampler (Shimadzu, Japan).

Statistical analysis of experimental data. For the statis-
tical analysis of differences in metabolite levels across the
metabolomic profiles of the studied groups, the Mann—Whit-
ney and Kolmogorov—Smirnov tests were applied with a sub-
sequent Benjamini—Hochberg procedure (False Discovery
Rate, FDR) for multiple comparisons. Statistical calculations
were performed using Python 3.11 with functions from the
scipy.stats module.

Formation of lists of enzymes and genetic markers of
PD and VP. For each of the metabolites, the concentrations
of which were statistically significantly altered in patient
groups compared to the control group, lists of biosynthesis
and degradation enzymes were made. The enzymes convert-

T Supplementary Materials 1-9 are available at:
https://vavilov.elpub.ru/jour/manager/files/Suppl_Makarova_Engl_28_8.xIsx
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Gene networks in Parkinson’s disease and vascular
parkinsonism based on metabolomic data analysis

Templates of molecular genetic pathways regulating the biosynthesis and degradation enzymes of significant metabolites

by genetic markers of PD, VP, or common to both diseases

Title Template of regulatory pathway
Protein-protein interactions

Protein function regulation

Genetic markers — protein-protein interactions — Enzymes

Genetic markers — regulation of protein activity/degradation/post-translational modifications/

transport/catalytic reactions — Enzymes

Regulation of expression

Double regulation of expression

Genetic markers — regulation of expression — Genes encoding enzymes — expression — Enzymes

Genetic markers — regulation of expression — Human genes - expression — Human proteins —

regulation of expression — Genes encoding enzymes - expression — Enzymes

Note. Genetic markers - proteins encoded by genetic markers (of PD, VP or common markers of both diseases); Enzymes — enzymes of conversion of significant
metabolites; Enzyme genes — genes encoding enzymes of conversion of metabolomic markers.

ing significant metabolites were extracted from the KEGG
(Kanehisa, 2000) and HMDB (Wishart et al., 2022) databases.

The lists of genetic markers for Parkinson’s disease and
vascular parkinsonism were extracted from the MalaCards da-
tabase (https://www.malacards.org/, accessed on: 25.01.2024)
(Rappaport et al., 2014). The genetic markers of VP included
protein-coding genes annotated in disease terms ‘“Vascular
Parkinsonism” and “Vascular Dementia”. The genetic markers
for PD included protein-coding genes associated with the term
“Parkinson’s Disease”.

Gene networks reconstruction. Gene networks recon-
struction was performed using ANDVisio, a graphical user
interface of the cognitive system ANDSystem (Ivanisen-
ko V.A. etal., 2015). Regulatory pathways of four types were
constructed according to the templates described in the Table.
These templates allow to identify molecular genetic pathways
including protein-protein interactions, regulation of protein
activity, degradation, transport, proteolysis, and also gene
expression regulation. The reconstruction of molecular genetic
pathways regulating the enzymes that convert metabolites was
carried out using the same templates for three sets of genetic
markers (PD, VP, and common markers for both diseases).

Results

Statistical analysis of metabolomic data

The statistical analysis of metabolomic data (Supplementary
Material 1), aimed at identifying differences in metabolite
levels between the PD and VP groups compared to the control
group, revealed that out of 44 metabolites with measured con-
centrations, statistically significant differences (FDR < 0.05)
were observed for 18 metabolites in PD and 21 metabolites
in VP (Supplementary Material 2).

Both the PD and the VP group differed from the control
group in the levels of four out of 14 analyzed amino acids:
alanine, proline, isoleucine, and valine. Notably, methionine
levels were significantly altered in the PD group but did not
distinguish the VP group from the control. Among acylcarni-
tines, significant differences were identified for 13 metabolites
shared between PD and VP (Supplementary Material 2).
Specific acylcarnitines, the levels of which significantly dif-
fered only in the VP group compared to the control, included
acylcarnitines C6, C10, C10:1, and Carnitine.

930

Reconstruction and analysis of gene networks

To investigate the molecular genetic mechanisms potentially
contributing to the altered metabolomic profiles in PD and
VP, we utilized the gene network approach. Gene networks
enabled the integration of knowledge about the molecular
interactions of metabolites with known genetic markers of PD
and VP. Genetic markers were defined as genes associated with
PD and VP according to the MalaCards database (Rappaport
et al., 2014). Lists of 84 genetic markers for Parkinson’s di-
sease and 60 markers for vascular parkinsonism are provided
in Supplementary Material 3. The intersection of the genetic
marker lists for PD and VP showed that 22 genetic markers
were shared between these diseases.

To study the role of genetic markers in the regulation of
enzymes involved in the conversion of significant metabolites,
we applied the gene network approach using the ANDVisio
software (Ivanisenko V.A. et al., 2019). This method is based
on the automated reconstruction of regulatory molecular
genetic pathways using templates specified in the queries to
ANDVisio (see the Table).

We analyzed the regulatory pathway templates that start
with proteins encoded by genetic markers specific to PD,
to VP, and also markers common to both diseases. The lists
of these proteins were used as input data for the “Pathway
Wizard” module of the ANDVisio software. The regulatory
pathways end with the enzymes of biosynthesis and degrada-
tion of metabolites identified as significant in the statistical
analysis. The lists of enzymes used for the analysis are pro-
vided in Supplementary Material 4. The pathways also include
intermediate participants (human proteins) that link genetic
markers to enzymes. These intermediate proteins were not
explicitly specified in the input data, as the software auto-
matically identified such mediators. The regulatory pathways
accounted for major types of molecular genetic interactions,
including gene expression regulation, protein-protein interac-
tions, and regulation of protein activity, degradation, transport,
and catalytic reactions. Illustrations of the gene networks are
provided in Supplementary Materials 5 and 6. The number of
regulatory connections to each enzyme originating from PD,
VP, and shared genetic markers is shown in Supplementary
Materials 7-9.

Histograms illustrating the distribution of regulatory con-
nections among participants of the reconstructed gene net-
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Fig. 1. Distribution of the number of regulatory pathways in the gene network from PD genetic markers to the enzymes of amino

acid and acylcarnitine metabolism.

works are shown in Figures 1 and 2. In the histograms, the
X axis represents the names of genetic markers, while the
Y axis shows the number of regulatory pathways realized
through molecular genetic interactions from the genetic mar-
kers (PD, VP, and shared markers) to the enzymes involved
in reactions with significant metabolites.

The genetic markers of Parkinson’s disease BCL2, TBP,
and TAF1 exert greater regulatory influence on acylcarnitine
metabolism enzymes, while PARP1 equally affects enzymes
involved in both amino acid and acylcarnitine metabolism
(Fig. 1). The genetic markers of vascular parkinsonism such
as TFAM, CASP3, ALBU, and VEGFA have a stronger regula-
tory influence on acylcarnitine metabolism enzymes, whereas
FBX7, NOTC3, and FA12 predominantly affect amino acid
metabolism enzymes (Fig. 2).

Notably, the genetic markers shared between PD and VP
participate equally in regulating enzymes involved in amino
acid and acylcarnitine metabolism (Fig. 3). The genetic marker
LRRK2, according to the gene networks, exerts a greater influ-
ence on the regulation of amino acid metabolism.

For some enzymes involved in metabolite conversion, the
levels of which significantly differed in PD and VP patients
compared to the control group, the regulatory pathways origi-
nating from genetic markers of PD, VP, and common genetic
markers demonstrated varying quantitative proportions. Histo-
grams depicting the number of regulatory impacts from groups
of genetic markers to enzymes of amino acid and acylcarnitine
metabolism were based on the gene networks (Supplementary
Materials 5 and 6) and are shown in Figures 4 and 5.

The regulatory pathways from PD genetic markers are more
prominent for the enzymes ALDH2, BCAT1, AL1BI, and
P5CR1, while pathways to BCAT2 and PAHA1 originate more
from the genetic markers shared between PD and VP (Fig. 4).
Among the enzymes of acylcarnitine metabolism, fatty acid
synthase (FAS) is subject to the most significant regulatory
influence (Fig. 5). For enzymes FAS, ODPA (PDHA1), and
ACACA (ACCl), regulatory pathways are implemented by
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Fig. 2. Distribution of the number of regulatory pathways in the gene
network from VP genetic markers to the enzymes of amino acid and acyl-
carnitine metabolism.
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Fig. 3. Distribution of the number of regulatory pathways in the gene
network from genetic markers shared between PD and VP to the enzymes
of amino acid and acylcarnitine metabolism.

genetic markers specific to both PD and VP. However, in
regulation of the enzyme ODPB, shared genetic markers play
a more prominent role.

Thus, the metabolomic analysis identified 5 amino acids and
17 acylcarnitines with significantly altered concentrations in
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Fig. 4. Distribution of the number of regulatory pathways in the gene networks from genetic markers (PD, VP and shared between

PD and VP) to the enzymes of amino acid metabolism.
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Fig. 5. Distribution of the number of regulatory pathways in the gene networks from genetic markers (PD, VP and shared between PD and VP) to the

enzymes of acylcarnitine metabolism.

the PD and VP patient groups compared to the control group
(Supplementary Material 2). The gene network approach
enabled the reconstruction and analysis of regulatory mo-
lecular genetic pathways from PD and VP genetic markers to
the enzymes involved in amino acid and acylcarnitine meta-
bolism.

Discussion

Specific and non-specific markers of PD and VP

Our results showed that the lists of 18 and 21 significant
metabolites for PD and VP, respectively, had an overlap in
17 common metabolites, which could be considered as non-
specific markers for differential diagnosis. The metabolomic
analysis thus provided a limited insight into distinguishing
between Parkinson’s disease and vascular parkinsonism. We

hypothesized that while potential metabolomic markers over-
lap for PD and VP, the molecular mechanisms underlying their
metabolic disruptions may differ between the two diseases. It
is known that genetic markers play a substantial role in patho-
logical processes. In this regard, the genetic markers may also
influence the metabolism of the potential PD and VP markers
(amino acids and acylcarnitines) identified in our study.

To test this hypothesis, we reconstructed the gene networks
describing regulatory connections from the genetic markers
of these diseases to the enzymes involved in the biosynthesis
and degradation of significant metabolites. The analysis re-
vealed that disease-specific genetic markers actively regulate
enzyme functions and the expression of their encoding genes
(Supplementary Materials 5 and 6). Genetic markers were
grouped into three categories: specific to PD, specific to VP,
and shared between the two diseases. To identify the specific
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Fig. 6. Gene networks of regulation of the enzymes involved in amino acid metabolism by genetic markers of PD, VP and common markers of PD and VP.

The genetic markers are framed: PD (blue frames), VP (green frames), common markers of PD and VP (orange frames).

molecular mechanisms of disrupted metabolism regulation in
PD and VP, we analyzed the regulatory pathways starting from
disease-specific genetic markers. Meanwhile, the pathways
involving genetic markers shared between PD and VP were
hypothesized to define the mechanisms underlying common
metabolomic profile disruptions. In the reconstructed gene net-
works (Supplementary Materials 5 and 6), we highlighted the
regulatory pathways involving enzymes previously studied in
the context of Parkinson’s disease and vascular parkinsonism.

The gene networks of regulation

of the enzymes of amino acids metabolism

ALDH?2 (aldehyde dehydrogenase 2) was identified among the
enzymes with the highest number of regulatory connections
from PD and VP genetic markers (Fig. 6a). ALDH2 partici-
pates in the metabolism of proline, alanine, and fatty acids
and is a key enzyme involved in metabolizing aldehydes and
cytotoxic metabolites. In the brain, ALDH2 plays a crucial role
in preventing “aldehyde load” — the accumulation of aldehydes
that, under oxidative stress, can bind to lipids, nucleic acids,
and proteins, causing neurotoxic effects (Chen C.-H. et al.,
2016). Studies on the association of aldehyde dehydrogenases
with PD have shown increased mitochondrial ALDH2 activity
in the striatum of PD patients (Michel et al., 2014). ALDH2
may protect neurons from the toxic effects of dopamine meta-
bolites (Chiu et al., 2015), and enhanced ALDH2 activity has
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been shown to restore neuronal function impaired by hypoxia
(Lin et al., 2022).

The enzyme AL1B1 (mitochondrial aldehyde dehydroge-
nase X) had the highest number of regulatory connections from
PD genetic markers in the gene network (Fig. 6b). AL1B1 is
involved in proline, alanine, and fatty acid metabolism and
plays a substantial role in acetaldehyde detoxification and
neurotransmitter metabolism (Shortall et al., 2021). It was
suggested that AL1B1 deficiency identified in the brain is
associated with Parkinson’s disease progression (Griinblatt,
Riederer, 2016; Odongo et al., 2023). AL1B1 deficiency may
lead to the accumulation of aldehydes such as 4-hydroxy-2-
nonenal (4-HNE), which can impair mitochondrial function,
induce alpha-synuclein aggregation, and trigger neuroinflam-
mation and apoptosis (Wey et al., 2012; Griinblatt, Riederer,
2016).

According to the gene network analysis, the enzymes
P4HAT1 and P4HA2 were more strongly regulated by the
genetic markers shared between PD and VP (Fig. 6¢). PAHA
(prolyl 4-hydroxylase alpha) enzymes catalyze the forma-
tion of 4-hydroxyproline, essential for the correct folding of
procollagen chains (Song et al., 2023). Additionally, PAHA1
is known to participate in post-ischemic angiogenesis (Xu et
al., 2024).

The enzymes BCAT1 and BCAT?2 catalyze the reversible
transamination of branched-chain amino acids (BCAA) with

933



A.A. Makarova, PM. Melnikova, A.D. Rogachev ...
I.N. Lavrik, N.A. Kolchanov, V.A. lvanisenko

alpha-ketoglutarate to form corresponding branched-chain
alpha-keto acids and glutamate. Our metabolomic analysis
revealed elevated levels of BCAAs, such as valine and isoleu-
cine, in PD and VP patients. Based on our reconstructed gene
networks, BCAT 1 was one of the enzymes highly regulated by
PD genetic markers, while regulatory connections to BCAT2
predominantly originated from shared PD and VP markers
(Fig. 6d). Defective BCAA metabolism, including BCAT1
disruptions, is associated with key PD features, including
motor dysfunction and neurodegeneration (Yao et al., 2018;
Sohrabi et al., 2021). In Parkinson’s disease C. elegans mo-
dels, knockdown of bcatl led to depletion of tricarboxylic acid
cycle metabolites and mitochondrial hyperactivity, resulting
in oxidative damage to neurons (Mor et al., 2020). Further-
more, a genome-wide association meta-analysis has linked
PD to genes encoding BCAA metabolism enzymes (Nalls et
al., 2014). Disruptions in BCAA metabolism enzymes have
also been observed in vascular dementia. Increased mRNA
expression of cytosolic and mitochondrial BCAT was found
in cortical samples from patients with vascular dementia,
possibly protecting cells from the neurotoxic effects of excess
glutamate (Ashby et al., 2017).

The gene networks of regulation

of the enzymes of acylcarnitines metabolism

In both patient groups, we identified alterations in the acylcar-
nitine profile, which plays a critical role in the cellular energy
metabolism. As acylcarnitines are the primary carriers of fatty
acids to the inner mitochondrial membrane, their metabolism
is closely linked to fatty acid metabolism. Fatty acid synthase
(FAS) catalyzes the elongation of fatty acids starting from
acetyl-CoA and malonyl-CoA. In the gene network regulating
acylcarnitine metabolism enzymes, the FASN gene had the
highest number of “expression regulation” connections from
genetic markers of PD and VP (Fig. 7a). Notably, the genetic
marker PINK1, associated with mitochondrial dysfunction in
PD (Narendra et al., 2010), has been implicated in this path-
way. Mutations in PINK1 lead to its deficiency in PD (Valente
etal., 2004). It has been shown that FAS repression in PINK1-
mutant models restores mitochondrial metabolic processes and
reduces palmitate levels (Vos et al., 2017). Additionally, FAS
is known to play a role in central nervous system myelination
and remyelination processes (Dimas et al., 2019).

The gene network analysis revealed numerous regulatory
connections to CPT1 (carnitine palmitoyltransferase 1) from
the genetic markers specific to both PD and VP (Fig. 7b).
CPT1 is a transporter protein located on the outer mitochon-
drial membrane; CPT1 exists in three isoforms in mammalian
cells: CPT1A, CPT1B, and CPT1C. CPT1A is more specific
to lipogenic tissues (e. g., liver), while CPT1B predominates
in tissues with high fatty acid oxidation capacity (e.g., heart
and skeletal muscle), and CPT1C is predominantly expressed
in neuronal tissue (Wang Muyun et al., 2021). CPT1 enzymes
catalyze the transfer of acyl-CoA groups (chain lengths C12—
C18) to L-carnitine, forming acylcarnitines (Schlaepfer, Joshi,
2020). Inhibition of lipid metabolism regulated by CPT1A
in mouse models of Parkinson’s disease has shown promis-
ing results, improving motor and sensorimotor functions
(Trabjerg et al., 2023). CPT1 has also been implicated in the
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development of insulin resistance, a condition associated with
impaired function of substantia nigra in the brain (Virmani et
al., 2015). In early-stage PD patients, reduced levels of long-
chain acylcarnitines (C14—-C18) were identified, potentially
associated with CPT1 deficiency (Saiki et al., 2017).

Regulatory connections to the enzymes ACC1 and ODPA
(PDHA1) were characteristic for both PD and VP (Fig. 7¢, d).
ACCI1 (acetyl-CoA carboxylase 1, ACACA) is the rate-li-
miting enzyme in de novo fatty acid synthesis, converting
acetyl-CoA to malonyl-CoA (Wang Y. et al., 2022). In
Parkinson’s disease models, interaction of phosphorylated
alpha-synuclein and ACC1 has been associated with low ATP
levels, oxidative stress, and mitochondrial dysfunction (Gras-
si et al., 2018). PDHA1 (pyruvate dehydrogenase E1 alpha,
ODPA) is a key component of the complex that catalyzes the
decarboxylation of pyruvate to acetyl-CoA (Berglum et al.,
1996). Under stress conditions, PDHA1 suppression enables
astrocytes to rely on anaerobic glycolysis, increasing lactate
consumption by neurons, conserving glucose, and protecting
against oxidative stress (de Holanda Paranhos et al., 2024).
Thus, PDHA1 acts as a mediator between cytosolic glycolysis
and mitochondrial oxidative phosphorylation (Pavli-Pereira
et al., 2023). Research by Miki Y. et al. (2017) demonstrated
that PDHA1 is a component of Lewy bodies in idiopathic PD
and PARK 14-linked parkinsonism (a familial PD form). Ad-
ditionally, reduced PDHA1 protein levels have been observed
in brain regions such as the striatum and substantia nigra in
idiopathic PD patients.

According to the analysis of gene networks, regulatory
connections to the enzymes OCTC and FURIN were found
to be more specific to VP genetic markers (Fig. 7e, f). OCTC
(peroxisomal carnitine octanoyltransferase), encoded by the
CROT gene, is involved in the transport of medium- and
long-chain acyl-CoA from peroxisomes, which are critical
for B-oxidation of fatty acids. OCTC has been associated with
calcification of arterial smooth muscle cells, as high OCTC
levels were detected near calcified plaque areas (Okui et
al., 2021).

Furin (PACE) is a serine convertase involved in atherogen-
esis. Increased furin activity is associated with cardiovascular
disease progression (Wichaiyo et al., 2024), and its inhibition
has been shown to slow atherosclerotic lesion progression in
mice (Yakala et al., 2019). Furin also affects neuronal tissue
by promoting the conversion of brain-derived neurotrophic
factor (BDNF) from pro-BDNF to its mature form, potentially
influencing neurodegenerative diseases (Wang Mingyue et al.,
2021). Furin inhibitors may prevent neuronal damage induced
by NMDA signaling (Yamada et al., 2018) and facilitate the
conversion of pro-nerve growth factor (pro-NGF) to B-NGF,
which influences vascular smooth muscle cells (Urban et al.,
2013). Studies on the Parkinson’s disease models showed that
furin modulates disease progression. For instance, knock-
down of Furinl in D. melanogaster reduced dopaminergic
neuron loss caused by mutations in Lrrk2 (Maksoud et al.,
2019). Furthermore, furin is required for cap-dependent
LRRK?2 translation, impacting postsynaptic signaling (Pen-
ney et al., 2016).

Regulatory connections to the enzyme UD11 were predo-
minantly driven by PD genetic markers (Fig. 7g). UDP-glu-
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Fig. 7. Gene networks of regulation of the enzymes involved in acylcarnitines metabolism by genetic markers of PD, VP and common markers of PD
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The genetic markers are framed: PD (blue frames), VP (green frames), common markers of PD and VP (orange frames).
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curonosyltransferases are enzymes involved in detoxifica-
tion by glucuronidating substrates, facilitating their excre-
tion (Tukey, Strassburg, 2000). While these enzymes are
understudied in the context of PD and VP, the link of UDP-
glucuronosyltransferase 1A9 genotype to adverse reactions
to catechol-O-methyltransferase inhibitors in PD patients
was reported (Ferrari et al., 2012).

The altered metabolomic profiles of amino acids and acyl-
carnitines in PD and VP may result from distinct molecular
genetic mechanisms. In this study, the regulatory pathways
specific to PD included the enzymes ALDH2, BCAT1,AL1BI,
and UDI1. The pathways specific to VP were identified for
OCTC, FURIN, and S22 A6. For genetic markers shared by PD
and VP, regulatory influences were prominent on the enzymes
BCAT2, ODPB, and P4HA1. The gene networks analysis for
both PD and VP revealed disruptions in lipid metabolism,
valine and isoleucine pathways, and mechanisms associated
with oxidative stress and mitochondrial dysfunction.

Conclusion

To identify disease-specific molecular genetic mechanisms,
we reconstructed gene networks describing the regulation
of enzymes involved in the metabolism of potential PD and
VP markers identified by HPLC-MS/MS, including several
amino acids (alaning, proline, valine, isoleucine, methionine)
and 17 acylcarnitines. A comparative analysis of regulatory
pathways within these networks revealed both specific and
non-specific molecular mechanisms associated with the altered
metabolomic profiles of these pathologies. The results ob-
tained highlight the molecular genetic distinctions between PD
and VP and may be useful for the development and application
of diagnostic systems based on plasma metabolomic profiles
of' amino acids and acylcarnitines. Notably, this study was the
first to apply the gene network analysis to the metabolomic
profiles of amino acids and acylcarnitines in patients with
vascular parkinsonism and Parkinson’s disease, representing
a significant step forward in the comparative investigation of
these disorders.
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Abstract. To systematize and effectively use the huge volume of experimental data accumulated in the field of bio-
informatics and biomedicine, new approaches based on ontologies are needed, including automated methods for
semantic integration of heterogeneous experimental data, methods for creating large knowledge bases and self-in-
terpreting methods for analyzing large heterogeneous data based on deep learning. The article briefly presents the
features of the subject area (bioinformatics, systems biology, biomedicine), formal definitions of the concept of onto-
logy and knowledge graphs, as well as examples of using ontologies for semantic integration of heterogeneous data
and creating large knowledge bases, as well as interpreting the results of deep learning on big data. As an example of a
successful project, the Gene Ontology knowledge base is described, which not only includes terminological knowledge
and gene ontology annotations (GOA), but also causal influence models (GO-CAM). This makes it useful not only for
genomic biology, but also for systems biology, as well as for interpreting large-scale experimental data. An approach
to building large ontologies using design patterns is discussed, using the ontology of biological attributes (OBA) as
an example. Here, most of the classification is automatically computed based on previously created reference ontolo-
gies using automated inference, except for a small number of high-level concepts. One of the main problems of deep
learning is the lack of interpretability, since neural networks often function as“black boxes” unable to explain their deci-
sions. This paper describes approaches to creating methods for interpreting deep learning models and presents two
examples of self-explanatory ontology-based deep learning models: (1) Deep GONet, which integrates Gene Ontology
into a hierarchical neural network architecture, where each neuron represents a biological function. Experiments on
cancer diagnostic datasets show that Deep GONet is easily interpretable and has high performance in distinguish-
ing cancerous and non-cancerous samples. (2) ONN4MST, which uses biome ontologies to trace microbial sources of
samples whose niches were previously poorly studied or unknown, detecting microbial contaminants. ONN4MST can
distinguish samples from ontologically similar biomes, thus offering a quantitative way to characterize the evolution
of the human gut microbial community. Both examples demonstrate high performance and interpretability, making
them valuable tools for analyzing and interpreting big data in biology.
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AHHoTauuA. Ana cuctematnsauum u 3GpGEKTUBHONO UCMONb30BAHUS OrPOMHONO 06beMA SKCMEPUMEHTANIbHBIX AaH-
HbIX, HAKOMJIEHHbIX B 0611acTyi 6uonHdopMaThKi 1 BromeanLViHbI, HeOOXO4MMbI HOBbIE NMOAXOAbl, OCHOBAHHbIE HA OH-
TONOrWAX, BKNOYas aBTOMATM3MPOBaHHbIE METOLbl CEMAHTUUECKOW VHTErpaLuy reTeporeHHbIX SKCnepuMeHTasbHbIX
JaHHbIX, METOAbI CO3[aHVA 6oNbLUKX 633 3HAHWUI U CAMOUHTEPNPETMPYEMbIE METOAbI aHaNM3a 60MbLINX Pa3HOPOLHbIX
[laHHbIX Ha OCHOBE ry6oKoro obyueHus. B cTaTbe KpaTKo NpeacTaBfieHbl 0CO6EHHOCTU NpeaMeTHON obnacTy (6LUovH-
dopmaTrKa, cuctemMHas bronorus, bromennunHa), bopmManbHble onpefeneHrs NOHATAA OHTONOT 1 rPad OB 3HAHWA,
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OHTonorun B moaennpoBaHMnM N aHanmse
60/bLLNX FEHETUYECKIMX AaHHbIX

npviBefieHbl NPYMepPbl MPUMEHEHWA OHTONOTNI A1A CEMaHTUYECKON UHTErpaLum reTeporeHHbIX AaHHbIX 1 CO3AaHNA
6onbluMX 6a3 3HAHWN, A TaKXKe MHTEPMPETALMN Pe3yNbTaToB MyOOKOro obyuyeHns Ha 60NblMX AaHHbIX. B KauecTBe
npriMepa YCrneLHOro NpoeKTa onucaHa 6a3a 3HaHuin Gene Ontology, KOTopas MOMUMO TEPMUHONOTMUYECKNX 3HAHWUIA 1
aHHoTauum reHos (GOA) BkNoyaeT Mmogeny NpuunHHbIX BAnaHun (GO-CAM). 3To genaeT ee None3HoN He TONbKO AnA
reHoOMHoI 61MonorMK, HO M ANA CUCTEMHON BUONOTK, a TaKXKe ANA MHTepMpeTaummn KpyrnHOMacLITabHbIX SKCnepumeH-
TanbHbIX AaHHbIX. O6CYy»KAaeTCA NOAXOA K CO3AaHMI0 60MbLUMX OHTONIOMMIA C UCMONb30BaHMeEM LWabNOHOB NPOEKTMPOBa-
HVA Ha NpuMepe oHToNorMm 6uonornyeckunx atpubytos (OBA). 3gech 6onbluasn YacTb KnaccrdrKaLmy aBTOMaTUYeCKn
BbIYMCIIAETCA HAa OCHOBE PaHee CO3[aHHbIX 3TaSIOHHbIX OHTONIOMMI C MOMOLLbI aBTOMATU3UPOBAHHOIO NIOTMMYECKOro
BbIBOJA, 32 UCK/IOYEHMEM HEOOSBLIONO YMCSIa BbICOKOYPOBHEBbLIX MOHATUI. OfHON 13 OCHOBHbIX MPo6iem riny6oKkoro
06yyeH A ABNAETCA OTCYTCTBME NHTEPNPETUPYEMOCTH, MOCKOSbKY HEMPOHHbBIE CETY YacTo QYHKLMOHMPYIOT KaK «yep-
Hble ALWMKN», He CNOCO6HbIe 0OBACHNTL CBOY pelleHus. B Halel cTaTbe onucaHbl MOAXOAbl K CO3[aHMNI0 METOLOB WH-
TepnpeTauun mofeneii rmyboKoro obyyeHus 1 NpeAcTaBeHbl ABa NpYMepa CamoobbACHAEMbIX MOAeNei rmyboKoro
obyueHna Ha ocHose oHTonoruii. Mogens Deep GONet, koTopas nHTerprpyet Gene Ontology B nepapxuyeckyio apxu-
TEKTYpPY HENPOHHOW CETY, FAE KaXAblil HENPOH NpeAcTaBiseT 6MONOrnyYecKyto GyHKUMIO. IKCMEPUMEHTbI C Habopamm
[aHHbIX ANAarHOCTUKM paKka nokasbiBatoT, uto Deep GONet fierko MHTeprnpeTnpyeTca 1 0bnafaeT BbICOKOW NPOV3BOAU-
TeSIbHOCTbIO ANA Pas3fInyeHnsa PakoBbiX U HepakoBbix 06pa3sLos. Mogenb ONN4AMST, ncnonb3ytowan oHTonorny 6noma
LNA OTCNEXMBaHNA MUKPOOHBIX NCTOYHNKOB 06Pa3L0B, HULIM KOTOPbIX paHee Obliv Mano nsyyeHbl Uy HEU3BECTHbI,
1 0BHapyXeHUst MUKPOOHbIX 3arpsasHuTenein. ONN4AMST MoxKeT oTnnyaTb 06pasLibl OT OHTONOTMYECKU 6I3KKX 61Oo-
MOB 1, TaKM 06pa3om, MpeasiaraeT KONMUYECTBEHHDBIN CNOCO6 OXapaKTepU3oBaTb Pa3BMTME MUKPOOHOIo coobLyecTBa
KULWeYHrKa yenoseka. O6a nprMmepa 4EMOHCTPUPYIOT BbICOKY NPOV3BOAUTENIBHOCTb U MHTEPMPETUPYEMOCTb, YTO
[enaet UX LeHHbIMY MHCTPYMEHTaMy Af1A aHanm3a 1 MHTeprpeTauuy 60blUnX JaHHbIX B 61onormu.

KnioueBble cnosa: oHTONOMMY; 6MonHGoOpmMaTrKa; cmctemHaa 61Monorus; aHanms 6onblKX AaHHbIX; Fybokoe obyuye-

HIIE; IHTEPNPEeTNPYEeMOCTb.

Introduction

The term “Big Data” refers to voluminous datasets that are
characterized by significant size, diversity, and complexity,
making them difficult to process and analyze using tradi-
tional methods. Moreover, such data are often incomplete
and uncertain, which complicates the task of controlling their
quality and accuracy (Qaiser, Ghulam, 2023).

The emergence of qualitatively new research opportunities
based on high-throughput experimental technologies such
as massively parallel DNA sequencing, multilocus genotyp-
ing, multiparametric gene expression profiling using DNA
chips, ChIP-on-chip technology, as well as proteomic and
metabolomic technologies, has led to the accumulation of
unprecedentedly large volumes of experimental data and
knowledge (Stephens et al., 2015). The heterogeneity of mo-
lecular biological information and its complexity complicate
the analysis, systematization and application of these data
to solve specific problems in bioinformatics, biotechnology,
pharmacology and personalized medicine.

New approaches to big data processing are required to
master, systematize and effectively use huge amounts of
data. In particular, this includes automated methods for the
semantic integration of heterogeneous data, one of the key
stages of which is the harmonization of domain concepts,
as well as methods for describing and using them. A coordi-
nated description of a specific domain is called an ontology.

Ontologies allow concepts to be represented in a format
suitable for machine processing and act as an intermediary
between the user and the information system, as well as
between members of the scientific community when ex-
changing data. Thus, ontologies are becoming an important
tool in bioinformatics and systems biology, facilitating the
semantic integration of experimental data and knowledge

CUCTEMHAA KOMIMbIOTEPHAA BUOJTIOTUA / SYSTEMS COMPUTATIONAL BIOLOGY

in order to create a “unified picture of the world”. In addi-
tion, they help solve problems arising in the analysis of big
data, overcoming heterogeneity and deficiencies in data
quality, and improving the interpretation of deep learning
results. Ontologies increase the scalability and efficiency of
processing large amounts of information, which makes them
indispensable in modern scientific research.

Earlier, the review (Podkolodnyy et al., 2016) presented
examples of ontologies describing biological systems at
various levels of organization of living systems. This article
will present examples of the application of ontologies for
the integration of heterogeneous data and the creation of
large knowledge bases, as well as the interpretation of data
analysis results.

Formal representation of ontologies

In computer science, the term “ontology” refers to a concep-
tual model that represents objects, their properties, and the
relationships between them (Chandrasekaran et al., 1999).
An ontology includes a set of concepts (terms) of a particular
subject area and their definitions, as well as all the infor-
mation associated with these concepts, such as properties,
relations, constraints, axioms, and assertions. This informa-
tion is necessary for describing and solving problems in the
chosen subject area (Podkolodnyy et al., 2016).

Thus, a formal model of an ontology is represented as an
ordered triple of finite sets O =<T, R, F>, where T is a finite
and non-empty set of classes and concepts (concepts, terms)
of the subject area considered in a certain context (in our
case: bioinformatics, systems biology, biotechnology, and
biomedicine); R is a finite set of relations between concepts
of a given subject area; F is a finite set of interpretation
functions defined by concepts and/or relations of the onto-
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logy O, as well as axioms used to model statements that are
always true. This constrains the interpretation and ensures
the correct use of concepts.

One of the most effective approaches to describing and
using domain knowledge is descriptive logics (DL), which
define a formal language for describing concepts (concepts,
classes, categories, or entities) and relationships between
them (called roles), as well as for formulating statements
of facts and queries about them, including satisfiability and
inclusion checking. In addition, DL includes constructors
(operations) for creating conceptual expressions, such as
conjunction, disjunction, and relation definition.

From the point of view of descriptive logic, two main
categories of knowledge can be distinguished in the domain
knowledge base. The first category includes general know-
ledge about a set of classes of concepts, their properties, and
relationships between them, which is referred to as termino-
logical knowledge, or T-Box. The second category covers
knowledge about individual objects (instances of classes),
their properties, and relationships with other objects, known
as assertional knowledge, or A-Box. Thus, the T-Box de-
scribes the subject area at the level of abstract concepts,
while the A-Box focuses on specific data, representing a
database. It is important to note that both components of
the knowledge base are interconnected and complement
each other.

Knowledge graphs (KGs) are often used to systematically
model complex systems, organisms, and diseases, as well
as to represent knowledge in bioinformatics and systems
biology. According to the definition presented in (Callahan
et al. 2024), a knowledge graph is a data structure that re-
presents multiple heterogeneous entities and different types
of relationships between them. This structure serves as an ab-
stract framework capable of generating new knowledge and
identifying and resolving discrepancies or contradictions,
making it useful for a variety of problems and scenarios.

There are three types of knowledge graphs, depending on
the complexity of the representation and the functionality
of use:

Simple graphs are the most common and basic type of
graphs. In such graphs, entities are represented as nodes,
and edges are used to model the relationships between them.
Simple graphs usually lack formal semantics for edges and
nodes, which makes them easy to use, but limits the pos-
sibilities for deeper analysis and interpretation of data.

Hybrid graph or property graph. Hybrid graphs are
designed to model entities and their relationships using a
combination of standard network representations and for-
mal semantics, such as Resource Description Framework
(RDF: https://www.w3.org/RDF) and RDF Schema (RDFS:
https://www.w3.org/TR/rdf11-mt). Unlike simple graphs,
hybrid graphs based on these standards facilitate integration
with other resources and provide greater opportunity for
automated knowledge inference. This makes them a more
powerful tool for representing and processing complex in-
formation.
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Complex graphs, such as those in the KaBOB system
(Livingston et al., 2015; Podkolodnyy et al., 2016), are
often built on top of the Web Ontology Language (OWL).
Complex graphs are highly expressive, allowing for ef-
ficient knowledge generation through deductive inference
(Podkolodnyy et al., 2012). Due to its explicit semantics,
OWL offers significant advantages over RDF/RDFS in
integrating large amounts of biomedical data, making it
particularly useful for complex problems in bioinformatics
and systems biology.

As an example, Figure 1 provides a high-level network of
the core interrelated biomedical concepts needed to model
knowledge about pathways, genetic variants, diseases, and
pharmaceutical treatments. At the top level are anatomical
entities such as tissues, cells, and biological fluids (com-
partments) containing genomic entities such as DNA,
RNA, mRNA, and proteins. DNA encodes genes, which are
transcribed into mRNA and translated into proteins, which
have molecular functions, can interact with each other, and
participate in pathways and biological processes.

Recently, several software systems have been developed,
such as KG-HUB (Caufield et al., 2023), Clinical KG
(CKG) (Santos et al., 2022), RTX-KG2 (Wood et al., 2022),
BioCypher (Lobentanzer et al., 2023), and Knowledge Base
Of Biomedicine (KaBOB) (Livingston et al., 2015; Pod-
kolodnyy et al., 2016), which provide broad functionality
for creating and using knowledge graphs in bioinformatics
and biomedicine, including the integration of large hetero-
geneous data.

The work (Callahan et al., 2024) describes the semantic
ecosystem PheKnowLator (Phenotype Knowledge Trans-
lator) for automating the construction of ontological KGs
with a fully customizable knowledge representation. The
ecosystem includes various components for creating and
using KGs to solve various applied problems, as well as
pre-built KGs.

Integration of big data and creation

of knowledge bases based on ontologies

Currently, in the field of bioinformatics, systems biology,

agrobiology, biomedicine, more than a thousand ontologies

have been developed that can be used to describe and in-
tegrate knowledge, analyze data, and infer new knowledge

(https://bioportal.bioontology.org/ontologies).

As an example of one of the most successful projects for
creating ontologies and, based on this, creating a know-
ledge base, we can cite the Gene Ontology (GO) project
(http://www.geneontology.org/). GO describes current
knowledge about the types of functional characteristics
(more than 40 thousand concepts in total) that a gene pro-
duct may have.

GO consists of 3 sections:

1. Molecular function — an elementary molecular activity or
role that a gene or gene product can play in any biological
processes. A total of 10,365 terms are described (https://
geneontology.org/stats.html. Accessed 2024-09-08).
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Fig. 1. Representation of knowledge about the levels of biological organization underlying the description of human diseases (Callahan, et al., 2024).

\S]

. Biological process (a total of 26,552 terms are described.
Accessed 2024-09-08) — a “biological program” that
includes a set of molecular events or activities that act
in a coordinated manner to achieve a specific result and
relate to the functioning of integrated living units: cells,
tissues, organs, and organisms. Unlike a function, a
process must have several different stages with a defined
beginning and end.

. Cellular component — a part of the anatomical structure
that describes the localization of a gene or its product in
an organism, at the levels of cellular structures and mac-
romolecular complexes or groups of gene products. A total
of 4,022 terms are described (accessed 2024-09-08).
The main relationships between concepts used in GO

include the simple class-subclass relationship (is_a), the

part-whole relationship (part_of), the regulates, positi-
vely regulates, and negatively regulates relationships
that describe relationships between biological processes,
molecular functions, or biological properties. The transiti-
vity property of the relationships used in GO allows one to
construct a lattice of relationships between concepts and
perform logical inference about the properties of concepts

and their relationships (Podkolodnyy et al., 2016).

A knowledge base has been created based on GO, which
in addition to terminological knowledge (GO gene ontology)
includes the results of GOA gene annotation (Gene Ontology
Annotation — http://www.ebi.ac.uk/GOA), i.e. knowledge
about individual objects — genes and their products (Huntley
etal., 2015). Currently, GOA includes more than 7.6 million
GO annotations for almost 1.54 million proteins and more
than 4.4 thousand species of organisms.

Initially, at the early stage of GO development, annotation
of a gene or its product (protein or RNA) was carried out
independently by molecular functions, biological processes
or cellular components. In order to obtain information about
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the function of a gene or its product (RNA, protein) in a par-
ticular biological process and a particular cellular structure,
it was necessary to develop another component of the GO
knowledge base — the GO-CAM model of causal influences
between gene products (Thomas et al., 2019).

GO-CAM links several GO annotations together to create
models of biological processes that connect the activities of
more than one gene product together into causal networks
and allow specification of the biological context (e.g. cell/
tissue type) in which the activities occur. As an example,
the same biological model describing how the E3 ubiquitin-
protein ligase NEDD4 represses RNA transcription in
response to UV-induced DNA damage can be represented
in two ways: as a set of disparate GO annotations, each cap-
turing a partial description of the overall function (Fig. 2a),
and as a GO-CAM scheme linking the GO annotations
into a structured model of NEDD4 function, including the
effect of NEDD4 activity on the activity of the RNA poly-
merase II macromolecular complex (Fig. 2b) (Thomas et
al., 2019).

The basic unit of GO-CAM is the gene product activity
unit, which combines the GO MF (molecular activity) an-
notation, together with the GO CC (cellular component) and
GO BP (biological process) annotations, which provide the
biological context of the activity. The context can be further
specified by other ontologies, including Cell Type Onto-
logy (Diehl et al., 2016), tissue/anatomical location (using
several different ontologies depending on the species, e. g.
the integrated cross-species anatomy ontology covering
animals and merging several species-specific ontologies —
Uberon (https://obophenotype.github.io/uberon/) (Mungall
et al., 2012), or non-animal ontologies such as Plant ontol-
ogy (https://planteome.org/) (Cooper, Jaiswal, 2016), or a
description of a time period (e.g. biological phase GO).
Activity units are related to each other by cause-and-effect
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Fig. 2. The same biological model of how NEDD4 represses RNA transcription in response to UV-induced DNA damage described in two ways: a - as a
set of disparate GO annotations, each capturing a partial description of the overall function; b - as a GO-CAM schema linking the GO annotations into a
structured model of NEDD4 function, including the effect of NEDD4 activity on the activity of the RNA polymerase Il macromolecular complex (Thomas

etal., 2019).

relationships from the Relationship Ontology (Smith et al.,
2005).

Causal networks in GO-CAM models also enable entirely
new applications, such as network analysis of genomic data
and logical modeling of biological systems. In addition, the
models may also prove useful for pathway visualization.
For example, the activity-based GO-CAM representation is
compatible with the “activity flow diagrams” of the Systems
Biology Graphical Notation (SBGN) standard (Bergmann
etal., 2020).

GO-CAM thus provides the opportunity to use the massive
GO and GOA knowledge base accumulated over the last
20 years as a basis not only for genomic biology representa-
tion of gene function, but also for a broader representation of
systems biology and its novel applications to the interpreta-
tion of large-scale experimental data.

An example of GO analysis of genes

of the associative gene network

of rheumatoid arthritis

Earlier, the Institute of Cytology and Genetics SB RAS
developed the ANDSystem software and information sys-
tem for the automated extraction of medical and biological
knowledge from scientific publications and a large number
of biological and biomedical factual databases (Ivanisenko

et al., 2015, 2019). The ANDSystem knowledge base is a
unique resource containing formalized information in the
form of associative gene networks (knowledge graphs) with
almost 44 million interactions of various types between
molecular genetic objects.

The original ontology underlying ANDSystem pro-
vides a very detailed description of the subject area. The
ANDSystem knowledge base describes molecular genetic
objects (proteins, genes, metabolites, microRNA), biologi-
cal processes, phenotypic traits, drugs and their side effects,
diseases, etc., as well as more than 25 types of interactions
between these objects, including: physical interactions with
the formation of molecular complexes (protein/protein,
protein/DNA, metabolite/protein); catalytic reactions and
proteolytic events involving a substrate/enzyme/product;
regulatory interactions, functions/activities, transport and
stability of proteins, metabolites and drugs, regulation of
protein translation involving miRNA, regulation of bio-
logical processes and phenotypic traits involving proteins,
metabolites and drugs; associative interactions of genes,
proteins, metabolites, biological processes, phenotypic traits
with diseases, etc.

An example of a typical task using ANDsystem is the
reconstruction of an associative gene network (knowledge
graph) of theumatoid arthritis (RA) containing 1,025 genes/
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proteins and more than 20 thousand interactions between
them. Analysis of the overrepresentation of biological pro-
cess terms in Gene Ontology for many rheumatoid arthritis
genes, performed using the DAVID system (https://david.
nciferf.gov/tools.jsp) revealed 376 biological processes sta-
tistically significantly associated with rheumatoid arthritis
(see the Table). The p-values were calculated based on the
hypergeometric distribution. The Bonferroni correction was
used to account for multiple testing.

Let us consider in more detail the GO:0006955~immune
response process, which has the lowest p-value, i.e. is
most significantly associated with rheumatoid arthritis.
Gene Ontology describes 420 genes associated with the
“G0:0006955~immune response” term. 158 of them are
present in the association network of rheumatoid arthritis
(Fig. 3). For random reasons, such a large number of genes
can be expected with a very low probability (p-value with
Bonferroni correction <4.69 - 10-7%), which indicates a high
significance of the relationship between rheumatoid arthritis
and the immune response process and indicates the most
important role of the immune system in the pathogenesis
of this disease.
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Fig. 3. Venn diagram describing the intersection of genes of the rheuma-
toid arthritis network and immune response genes (associated with the
term GO:0006955~immune response).

The Table presents the list of the first 21 biological pro-
cesses associated with rheumatoid arthritis and sorted by
statistical significance ( p-value with Bonferroni correction).
Most of these terms are somehow related to the immune
response and inflammation processes, which play an impor-
tant role in the pathogenesis of rheumatoid arthritis. These
processes are not independent.

List of the first 21 biological processes statistically most significantly associated with rheumatoid arthritis

Biological process (Gene Ontology)

GO:0006955~immune response

G0:0006954~ inflammatory response
G0:0060326~chemotaxis

G0:0007267~cell-cell signaling

G0:0032496~response to lipopolysaccharide
G0:0070098~chemokine-mediated signaling pathway
G0:1990256~signal transduction

G0:0071222~cellular response to lipopolysaccharide
G0:0050729~positive regulation of inflammatory response
G0:2001023~regulation of response to drug
G0:0070374~positive regulation of ERK1 and ERK2 cascade
GO0:0001666~response to hypoxia

G0:0071864~positive regulation of cell proliferation
G0:0042102~positive regulation of T cell proliferation
GO0:0045087~innate immune response
G0:0032729~positive regulation of interferon-gamma production
GO0:0045766~positive regulation of angiogenesis
G0:0043066~negative regulation of apoptotic process
GO0:0050731~positive regulation of peptidyl-tyrosine phosphorylation
GO0:0007166~cell surface receptor signaling pathway
G0:0007568~aging

CUCTEMHAA KOMIMbIOTEPHAA BUOJTIOTUA / SYSTEMS COMPUTATIONAL BIOLOGY

p-value with Bonferroni correction
469-107°

2.13-1077°

2.49-107%
8.59-10728
7.41-107%
3.91.10%
2911072
5.45.107%*
6.31-107%
1.70-1073
8.26-107%
9.11.1073
2521072
6.90-10722
2.09-107'8
2381078
2.90-107"8
57210718
8.13-107'8
8.40-107'8

1.28-107"7
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Thus, the term “GO:0006955~immune response” is asso-
ciated with such terms from this table as “GO:004508 7~innate
immune response”, “G0:0032729~positive regulation of in-
terferon-gamma production”, “G0:0060326~chemotaxis”,
“G0:0042102~positive regulation of T cell proliferation”,
“G0:1990256~signal transduction” and others.

Similarly, the process “G0O:0006954~inflammatory
response” is associated with the terms “G0O:0032496~re-
sponse to lipopolysaccharide”, “G0O:0050729~positive
regulation of inflammatory response”, “G0:1990256~
signal transduction”, “G0O:0001666~response to hypoxia”,
“G0:0045766~positive regulation of angiogenesis”. And
even the term “G0O:0007568~aging” is related to the term
“G0:0006954~inflammatory response”, since one of the
mechanisms of aging is chronic non-infectious inflamma-
tion.

These results on the example of rheumatoid arthritis indi-
cate that the approach to identifying genes associated with a
specific disease using ANDsystem and further GO analysis
of this group of genes allows us to identify key biological
processes involved in the pathogenesis of this disease.

Using ontology design patterns to integrate
phenotype and biological attributes ontologies
Ontologies with logically rich axiomatization provide pow-
erful capabilities such as automated reasoning, classifica-
tion, and logical queries. However, manually creating such
ontologies is extremely expensive and requires annotators
to be not only domain experts but also have knowledge of
logical modeling (Slater et al., 2020).

A popular approach to solving this problem is to use
design patterns and template systems for logical axioms
(Osumi-Sutherland et al., 2017). This allows separating the
curation of reference terms used for logical definitions from
their precise axiomatic picture. The central idea is to use a
small number of axiom templates that implement design
patterns, which can be created and maintained by logic
experts, and for content curators to focus on selecting ap-
propriate filler terms (e. g., terms from the Uberon ontology
for defining anatomical attributes).

The Biological Attributes Ontology (OBA) is a stan-
dardized framework for observable attributes that are char-
acteristics of organisms or parts of organisms (Stefancsik et
al., 2023). Unlike most phenotypic ontologies, in OBA, the
logical axioms define general attributes without reference
to any specific phenotypic changes or states.

OBA was created using the Entity-Quality (EQ) design
pattern, in which a phenotypic quality (Q), such as “height”,
“mass”, or “amount” from the Phenotype and Trait Ontolo-
gy (PATO) (Gkoutos et al., 2005), is combined with an en-
tity (E), such as an anatomical or chemical entity, to form the
concept of a “biological attribute” called a “trait”. For exam-
ple, the concept “blood glucose amount” (OBA:VT0000188)
includes the class “amount” (PATO:000070), which defines
the glucose characteristic — “glucose” (CHEBI:17234) in the
blood — “blood” (UBERON:0000178).
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Currently, OBA uses ten feature patterns from the Dead
Simple OWL Design Patterns (DOS-DP) (Osumi-Sutherland
et al., 2017). They were chosen because they cover most
of the anatomical, chemical and cellular attributes that are
central to genomics data integration.

A rich logical axiomatization based on design patterns
is needed to ensure compatibility with existing phenotype
ontologies and other data types, such as anatomical, chemi-
cal and biological data on metabolic pathways and gene
networks.

Most attributes in OBA are inferred using OWL. These
inferred definitions use terms from relevant reference ontolo-
gies such as Uberon (Mungall et al., 2012) or Chebi (Has-
tings et al., 2016). Except for a small number of high-level
concepts, most of the classification in OBA is automatically
computed based on the classifications of various reference
ontologies, using automated inference. There are two advan-
tages to this approach: first, no concepts need to be manually
classified, which significantly reduces the cost of curating
the classification while increasing its completeness. Second,
multiple links to reference ontologies can be used for a wide
variety of applications, including querying (e. g., retrieving
all data where the morphology of a part of the renal system
is affected), knowledge graph integration (e.g., automatic
linking to phenotypic anomalies from widely used ontologies
such as the human phenotype ontology (HPO) or mammalian
phenotype ontologies (MP)), and knowledge inference (e. g.,
inferring missing data) (Dececchi et al., 2015).

Application of ontologies

to interpret deep learning

Deep learning (DL) has clearly demonstrated its effective-
ness in solving problems in the field of genomics, pro-
teomics, biomedicine, including analysis and automatic
functional annotation of DNA, RNA and protein sequences,
search for DNA/RNA targets of regulatory RNAs and pro-
teins, prediction of properties and functions of biomolecules,
search for 3D protein structure, reconstruction of structures
of biomolecules with given properties, prediction of inter-
actions of biomolecules and identification of potential drug
candidates on this basis, image processing and analysis, in-
tegration of omics data, analysis of complex, heterogeneous
and interconnected biological networks (including protein-
protein interaction networks, gene regulatory networks
and metabolic pathways, semantic networks), modeling of
biological systems and processes, etc. (Li et al., 2019; Sa-
poval et al., 2022).

One of the key problems of deep learning in bioinforma-
tics, systems biology and modern biomedicine is the lack
of interpretability of neural network models, which often
function as “black box” models.

Interpretability of machine learning algorithms in bio-
informatics and biomedicine is important for three main
reasons. First, when analyzing complex systems, when
there is no theory and a clear decision-making algorithm, it
is necessary to understand why the model predicts a given
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phenotype. Second, it is important to ensure that the model
bases its predictions on a reliable representation of the data
and does not focus on irrelevant artifacts. Finally, a model
with highly accurate predictions may have revealed interest-
ing patterns that biologists would like to study.

In the formal logical sense, interpretation is the mapping
of a formal construct onto the entities and their relation-
ships that it represents. In this sense, one can say that one
understands a formal construct if one can relate it to relevant
entities and propositions in the real world and reason about
the consequences. However, it is important to distinguish
the understandability of a model from the understandabili-
ty of why the model is true or how the model was derived
from the data, which raises questions about the validity of
the model and the understandability of the learning algo-
rithm.

Two main approaches to interpreting black boxes can
be distinguished: a posteriori methods and self-explaining
models (Adadi, Berrada, 2018). In the a posteriori method,
the black box model is first learned and then an interpretive
method is used to explain the predictions. However, explana-
tions often do not match how the deep learning algorithm
arrives at a solution. In addition, the explanation procedure
is a separate method with its own errors that affect the quali-
ty of decisions made. Therefore, such an explanation is not
always suitable for biomedicine.

It should be noted that interpretability is a concept spe-
cific to a particular domain, so there cannot be a universal
definition. Very often, in an interpretable machine learning
model, constraints are added to the model form so that it
is either useful to someone or obeys structural knowledge
of the domain, such as monotonicity (Gupta et al., 2015),
causality, structural (generative) constraints, additivity (Lou
et al., 2013), or physical constraints that come from know-
ledge of the subject domain (ontologies).

Currently, several works have been published on building
self-explanatory neural networks based on gene expression
data using Gene Ontology (GO) knowledge. For example,
in the work (Bourgeais et al., 2021), a self-explanatory deep
learning model called Deep GONet is proposed, integrating
Gene Ontology into a hierarchical neural network architec-
ture. This model is based on a fully connected architecture
constrained by Gene Ontology annotations, so that each
neuron represents a biological function. Experiments on
cancer diagnostic datasets show that Deep GONet is easy
to interpret and has high performance in distinguishing
cancerous and non-cancerous samples.

Another example of an ontology-based self-explanatory
neural network is ONN4MST, a generalization of the Onto-
logy-based Neural Network (ONN) computational model for
microbial source tracing (Zha, Ning, 2022). The ONN model
uses a novel ontology-based approach that rewards predic-
tions that satisfy the “biome” ontology. In other words, the
ONN model can use biome ontology information to model
dependencies between biomes and estimate the proportion
of different biomes in a community sample.

CUCTEMHAA KOMIMbIOTEPHAA BUOJTIOTUA / SYSTEMS COMPUTATIONAL BIOLOGY
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The knowledge discovery capability of ONN4MST has
been demonstrated in various source tracking applications.
It enables source tracking of samples, the niches of which
were less studied previously or unknown, detection of mi-
crobial contaminants, and identification of similar samples
from ontologically distant biomes, demonstrating the unique
importance of ONN4MST in knowledge discovery from a
vast number of microbial community samples from hetero-
geneous biomes.

ONN4MST can distinguish samples from ontologically
similar biomes, thus offering a quantitative way to charac-
terize the evolution of the human gut microbial community.
In particular, it is shown that the gut microbiome of centena-
rians differs from that of normal elderly people and shows
a youthful pattern (Zha, Ning, 2022).

Conclusion

The rapid development of experimental technologies in the
field of molecular biology has led to the fact that ontological
modeling is becoming a basic method in bioinformatics and
systems biology for integrating and analyzing heterogeneous
experimental data and using them to build mathematical
models of molecular genetic systems and processes. The
creation of several hundred basic reference ontologies and
their verification allows using these ontologies as sources
of knowledge for integrating and building complex domain
models and knowledge bases aimed at solving specific
problems of biomedicine.

Ontologies are of particular importance for interpreting
the results of computer predictions obtained using deep
learning methods. In order for scientists to trust deep learn-
ing, which is often presented as “black box” models, special
interpretation methods based on additional knowledge about
the subject area or ontologies should be used. Ontologies,
patterns of their construction, integration of big data and
creation of knowledge graphs play a key role in increasing
the interpretability of deep learning models. These tools
not only improve the understanding of the results, but also
provide higher quality data analysis. With the rapid growth
of information volumes and the complexity of deep learning
models, the use of ontologies is becoming a necessary step
towards creating more transparent and explainable systems.

It can be expected that the new generation of interpreta-
tion systems will be able not only to explain the obtained
solutions in a way understandable to humans, indicating
the quantitative level of uncertainty, but also to suggest ad-
ditional steps (e. g., additional experiments, clinical studies,
etc.) necessary to clarify or reliably confirm their decisions.
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Abstract. The description of the path from a gene to a trait, as the main task of many areas in biology, is currently
being equipped with new methods affecting not only experimental techniques, but also analysis of the results. The
pleiotropic effect of a gene is due to its participation in numerous biological processes involved in different traits.
A widespread use of genome-wide sequencing of transcripts and transcription factor (TF) binding regions has made
the following tasks relevant: unveiling pleiotropic effects of TFs based on the functions of their target genes; compiling
the lists of TFs that regulate biological processes of interest; and describing the ways of TF functioning (their primary
and secondary targets, higher order targets, TF interactions in the process under study). We have previously deve-
loped a method for the reconstruction of TF regulatory networks and proposed an approach that allows identifying
which biological processes are controlled by these networks and how this control is exerted. In this paper, we have
implemented the approach as PlantReg, a program available as a web service. The paper describes how the program
works. The input consists of a list of genes and a list of TFs — known or putative transcriptional regulators of these
genes. As an output, the program provides a list of biological processes enriched for these genes, as well as informa-
tion about by which TFs and through which genes these processes are controlled. We illustrated the use of PlantReg
deciphering transcriptional regulation of processes initiated at the early salt stress response in Arabidopsis thaliana L.
With PlantReg, we identified biological processes stimulated by the stress, and specific sets of TFs that activate each
process. With one of these processes (response to abscisic acid) as an example, we showed that salt stress mainly af-
fects abscisic acid signaling and identified key TFs in this regulation. Thus, PlantReg is a convenient tool for generating
hypotheses about the molecular mechanisms that control plant traits.
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PlantReg: peKOHCTPYKIIVS CBSI3€i MeXY PeryasiTOPHbIMI CETIMU
TPAaHCKPUIILMOHHBIX (paKTOPOB
11 KOHTPOJIMPYEMBIMU MU IIPU3HaAKaMM
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! MepepanbHbI NCCNef0BATENbCKUIA LEHTP VIHCTUTYT yutonorum n reHetnkn Cubrpckoro otaeneHnsa Poccuinckon akagemmi Hayk, Hosocnbupck, Poccus
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AHHoTauuA. OnrcaHve NyTV OT reHa K NPU3HaKy Kak OCHOBHas 3afjauya MHOTMX oTpacsieli G1onorum B HacTosLLee Bpe-
M$ OCHALLAETCS HOBbIMU METOAAMM HE TONIbKO B TEXHMKE SKCMEPVMEHTOB, HO 1 B CUCTEMHOM aHasM3e VX pe3ynbTaTos.
MnenoTponHbii SPEKT reHa OCyLLeCcTBAAETCA 3a CYET ero y4acTA BO MHOTMX G1OMOrMYecKmnx npoLieccax, BOBIeYeH-
HbIX B pa3Hble NpusHaku. Lnpokoe pacnpocTpaHeHne NoNIHOreHOMHOMO CEKBEHMPOBAHMS TPAHCKPUMNTOB 1 PalioHOB
CBA3bIBaHNA TPAHCKPUMLMOHHbIX PpakTopoB (TM) caenano akTyanbHbIMU 3afjayn YCTAHOBIEHUA NIEAOTPOMHbIX 3¢-
dekToB TO 3a cUeT 3HaHU 0 GYHKLUMAX UX MULLEHeN, cocTaBneHre cnuckoB TM, perynmpyioLwmx NHTepecyoLmne nuc-
cnefoBaTtena 61onorMyecKmne NPOLECChl, ONUCcaHne NyTel X 4eNCTBUSA (MEPBUYHbIE 1 BTOPUYHbIE MULLEHN, MULLEHN
cnefyowmx nopsaKos, Bzanmogenctame mexay TO B nccnegyemom npouecce). PaHee Mbl paspaboTtanu meTop pe-
KOHCTPYKLIMUN PErynatopHbix ceteit TO 1 npefnoXxunm noaxoa, No3BonsioLWmii BbIABAATb, Kakre 61uonornyeckme npo-
Liecchbl U Kakum o6pas3om 3TU CeTu perynupytoT. B faHHo paboTe Mbl peann3oBany 3TOT NOAXO[ B BUAE NPOrpaMmbl
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PlantReg: pekoHCTPyKLMA CBA3E MeXay perynaTopHbIMU
cetaMU TO 11 KOHTPONMPYEMbIMY MU MPU3HAKaMK

PlantReg, noctynHoii nonb3oBatenam yepes Beb-nHTepdenic. B ctatbe onmncaH npuHUmMn paboTbl nporpammbl. Ha Bxoa
NoJaTCA CNNCOK reHOB 1 CNUCOK TM — N3BECTHbIX UK NpeAnonaraeMblX PeryisTopoB TPAaHCKPUMLUKY 3TUX reHoB. Ha
BbIXOZe MporpamMma BbiJaeT CMMCOK BMONOrMUYecKrX NPOoLIeCCOB, KOTOpble 0bOoraLleHbl B 3TVX FeHax, a Takxke UHdop-
Mauuio o ToM, Kakummn TO 1 yepes Kakuve reHbl 3T npoueccl perynnpytotca. Pabota PlantReg npowvnnioctpuposaHa
Ha npriMepe NCCNeAoBaHNA PerynaLmMm NPoLeccoB, MHULMMPYEMbIX Ha HayasbHbIX STarnax OTBeTa Ha CONeBOW CTpecc
y Arabidopsis thaliana L. C nomolybto nporpammbl PlantReg Hamu BbiiBIeHbl Grionornyeckmne NpoLecchl, CTuMynupye-
Mble B paHHEM OTBEeTe Ha COMeBOI CTpecc, 1 creundudeckmnii Habop TO, akTMBUPYIOLLMX KaXKAbIA U3 STUX MPOLIECCOB.
Ha nprimepe ofHOro 13 Takrx NPoLeccoB — OTBeTa Ha GUTOrOPMOH abCLM30BYIO KNCIOTY — Mbl MOKa3asu, YTo cose-
BOW CTPeCC akTBMPYET B OCHOBHOM CUTHaJIbHbIV MYTb 3TOrO FOPMOHa, 1 BblAenunu kntouesble T B 3TON perynayumu.
Takum obpasom, nporpamma PlantReg — yoo6HbIN MHCTPYMEHT Af1A CO34aHUA FMNOTE3 O MOSIEKYNAPHbIX MeXaHU3Max

perynaumm npusHaKkoB pacTeHNIA.

KnioueBble croBa: reHHas OHTOJNOrs; G1oNTornyecKre NPOLLeCChl; PerynaTopHble reHHble cetu; Arabidopsis thaliana.

Introduction

The efficient development of transcriptome sequencing
methods has opened up wide opportunities not only to study
changes in gene expression at the level of transcription, but
also to track the regulation of these changes by transcrip-
tion factors (TFs) and their impact on biological processes
(Chen J.W. et al., 2023). In this regard, methods for compila-
tion of TF lists based on the presence of their binding sites in
the promoters of differentially expressed genes (DEGs) and
methods for gene ontology (GO) terms enrichment analysis
of gene lists (i. e., their functional annotation) are now widely
used. Nevertheless, identification of the relationship between
the outputs of these methods (i.e., determination of TFs that
affect specific biological processes, their stages influenced by
these TFs, common and specific TFs among the processes)
remains a poorly worked out part in the analysis of transcrip-
tomic data. The development of computer programs for this
purpose will make this analysis more systematic and build a
connection between alterations in gene expression and changes
in biological processes.

If TFs regulate each other at the transcription level, their
interactions are often represented as graphs — transcription fac-
tor regulatory networks (TFRNS), which can be reconstructed
using various methods (Hecker et al., 2023). TFRNs allow
establishing hierarchy in their architecture and identifying
hubs — TFs that are most connected to other TFs. Altering
the expression of genes encoding hubs is likely to change
the functioning of the entire TFRN, and consequently affects
downstream biological processes (He, Zhang, 2006).

We have previously developed a methodology and a soft-
ware for reconstruction of TFRNs. We have also proposed
a bioinformatics approach to identify biological processes
under control of TFRNSs and regulatory links between TFRN
components and the processes (Omelyanchuk et al., 2024). It
is based on the following steps. The first step is compilation of
a list of TFs enriched in DEG promoters. The TF list is then
used for TFRN reconstruction. The second step is functional
annotation of the DEG list, after which within every biological
process potential regulators of each of its DEGs are extracted
from the TF list composed at the first step. After this, the genes
are arranged in the order in which they function during a bio-
logical process, and the TFs that control the individual stages
of'this process can be identified. The use of this approach was
illustrated in (Omelyanchuk et al., 2024) with the examples
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of auxin regulation of chlorophyll and lignin biosynthesis,
abscisic acid signaling, and ribosome biogenesis.

In this work, we implemented this approach as a PlantReg
program, available to users via a web interface (https://
plamorph.sysbio.ru/fannotf/). We used PlantReg to investigate
the regulation of processes during an early salt stress response
in Arabidopsis thaliana L., using transcriptomic data from
(Wu et al., 2021a). With PlantReg, we found that processes
involved in the early reaction to salt stress and coordinated
by all TFs within the TFRN include responses to heat, red
and far-red light, and salicylic acid. The largest number of
processes (programmed cell death, leaf senescence, and
responses to blue light, hypoxia, reactive oxygen species,
dehydration, abscisic acid, and jasmonic acid) are regulated
by at least 70 % of TFs from the TFRN. In the control of the
endoplasmic reticulum (ER) unfolded protein response, bio-
synthesis of indole-containing compounds and S-glucosides,
as well as water transport, less than 50 % of the TFRN is
involved.

Next, we examined the PlantReg results on the regulation
of the abscisic acid (ABA) response during early salt stress in
more detail and found that this regulation is primarily medi-
ated through the control of ABA signaling, and its last stage,
activation of the master TFs, is modulated most strongly.
Both TFRN hubs (WRKY8 and DEAR2) are involved in this
activation, and DEAR2 also controls ABA reception. Thus,
the PlantReg program is an effective tool for analyzing data
on differential gene expression in transcriptomes and creat-
ing hypotheses about the molecular mechanisms operating in
regulation of biological processes.

Materials and methods

PlantReg implementation. PlantReg workflow is shown in
Figure 1. The program takes a list of genes (in this work, we
focus on DEG lists) and a list of TFs that are known or putative
transcriptional regulators of these genes as input. The FuncAn-
not function performs functional annotation of the gene list
using the clusterProfiler R package (Yu et al., 2012; Wu et
al., 2021b). The result is a file containing information about
the GO terms enriched in the DEG list, as well as sublists of
genes from the input annotated with the enriched GO terms.
The next step is the search for the overlaps between the bind-
ing peaks of the input TFs and 5’ regulatory regions of genes
from the sublists. For this purpose, the TF-targets function,
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Fig. 1. The PlantReg workflow.

which we developed earlier as part of the CisCross-FindTFnet
program (Omelyanchuk et al., 2024), is applied. As output,
the user receives a file containing enriched GO terms and their
associated DEGs, evidence codes, and TFs, the binding peaks
of which are mapped to the 5’ regulatory regions of DEGs
associated with the enriched GO terms.

The core of the PlantReg software is implemented in Perl
and recruits the clusterProfiler R package. PlantReg is ac-
cessible through a web interface (https://plamorph.sysbio.ru/
fannotf/). In the web version of PlantReg, two collections of
TF binding profiles are available for identifying target genes of
TFs. The first collection (GTRD-MACS?2) includes 306 sets of
ChlIP-seq peaks for 131 A. thaliana TFs downloaded in BED
format from the GTRD database (https://gtrd.biouml.org/#!)
(Kolmykov et al., 2021). The second collection (CisCross-
MACS?2) was obtained by large-scale profiling of A. thaliana
TF binding sites using DAP-seq (O’Malley et al., 2016) and
represents the result of re-processing of raw data from the
original study (Lavrekhaetal., 2022). This collection contains
608 peak sets for 404 TFs of A. thaliana. The ARAPORT11
annotation of A. thaliana genome (https://bar.utoronto.ca/
thalemine/begin.do) is used to identify 5’ regulatory regions
of genes (500, 1,000, 1,500, 2,000, or 2,500 bp upstream of
the transcription start) in the PlantReg web version.

Reconstruction of the TFRN for early response to salt
stress. To reconstruct the TFRN for early response to salt
stress, we used publicly available RNA-seq data for seven-
day-old A. thaliana seedlings (ecotype Col-0) grown in the
light, before and after salt treatment (100 mM NaCl) for 1 h
(Wu et al., 2021a). To extract DEGs, we set the FDR thresh-
old at 0.05; among them, we distinguished upregulated and
downregulated DEGs (uDEGs and dDEGs, respectively).
The TFRN was reconstructed using the CisCross-FindTFnet
program (Omelyanchuk et al., 2024) with the following
parameters. For mapping of TF binding regions, we used
the CisCross-MACS2 collection of peaks, and set the length
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of the 5’ regulatory regions to 1,000 bp. The positions of
transcription start sites were determined according to the
ARAPORTI11 A. thaliana genome annotation. In TF binding
peak enrichment analysis of 5’ regulatory regions of uDEGs
and dDEG, we controlled FDR at 0.001 using the Benjamini—
Hochberg method. To reconstruct “TF-regulator—TF-target”
pairs within the TFRN, we used the peak sets corresponding
to the binding of TFs to the native leaf genomic DNA pos-
sessing methylation marks.

Reconstruction of the links between the TFRN for early
response to salt stress and the biological processes it con-
trols. Using PlantReg, we reconstructed the links between
the TFRN for early response to salt stress and downstream
biological processes. As input, we used a list of TFs from the
TFRN, as well as a list of DEGs responding to salt treatment
(uDEGs and dDEGs were analyzed separately). The length
of the 5' regulatory regions was set to 1,000 bp, and the
CisCross-MACS?2 collection was used to map TF binding
peaks. For further analysis and interpretation, we only used
“TF-regulator-Target gene” pairs reconstructed based on
DAP-seq TF binding profiles captured in leaf genomic DNA
possessing methylation marks.

Results and discussion

Biological interpretation of PlantReg output data

The PlantReg program is designed to reconstruct molecular
mechanisms operating in genetic regulation of traits. To get
started, the user needs to have a list of known or putative
regulators of differential gene expression. PlantReg performs
a functional annotation for the list of DEGs, then searches for
potential targets of TFs among DEGs associated with enriched
biological processes. The mapping of TF binding peaks in the
5' regulatory regions of genes is performed using a representa-
tive collection of whole-genome TF binding profiles for the
species being studied. In the web version, two collections of
TF binding profiles for A. thaliana, from ChIP-seq or DAP-
seq data, are available. The user can choose one of them.
The program outputs the relationships between DEGs, the
upstream TFs, and the enriched GO terms.

For convenient biological interpretation and subsequent
analysis, PlantReg output is organized in five blocks. The
first four blocks offer four alternative representations of the
same results. So, block (1) characterizes genes. It contains a
sublist of DEGs annotated with the enriched GO terms, the
list of potential TFs (with an indication of TF family) and the
number of TFs for each DEG (Fig. 2a). Each DEG is also
characterized with the total number and the list of enriched
GO terms (with an indication of the evidence code), which
facilitates identification of DEGs involved in a wide range of
biological processes as well as DEGs specific to particular
processes.

Biological processes are the focus of block (2). In this block,
for each enriched GO term, a sublist of associated DEGs
with the evidence codes is created, as well as a sublist of TFs
potentially regulating the expression of these DEGs with an
indication of TF family (Fig. 2b). This output block allows
reconstructing the mechanism of genetic regulation for each
biological process.
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Fig. 2. The PlantReg output representations.

Panels a, b and c correspond to output blocks 1, 2 and 3. The central output element is highlighted in gray.

Block (3) characterizes transcriptional regulators of dif-
ferential gene expression. It contains a list of TFs, for which
the target genes associated with enriched GO terms were found
among DEGs (Fig. 2¢). This output representation is useful for
planning the experiments to verify the predicted mechanisms
for genetic regulation of biological processes.

Block (4) holds a table where each row contains one DEG,
one of the TFs potentially regulating its expression, its family,
and one of the GO terms with the evidence codes. This output
can be used for further analysis with software tools.

The auxiliary block (5) accommaodates the results of func-
tional annotation of DEGs by clusterProfiler with the signifi-
cance of GO term enrichment.

Functional annotation of the TFRN

for early response to salt stress in A. thaliana

We used the PlantReg program to investigate the mecha-
nisms that regulate the response to salt stress in the model
plant species A. thaliana. A list of DEGs that respond to high
salt concentration was extracted from publicly available
transcriptome data (Wu et al., 2021a). In order to generate
a list of potential TF regulators for these genes, we used the
previously developed CisCross-FindTFnet tool. Based on the
combined analysis of DEGs and TF binding profiles, this tool
identifies potential TF regulators of DEGs, classifies them by
regulation type, determines the relationships between them and
reconstructs a TFRN (Omelyanchuk et al., 2024).
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TF regulation types are distinguished based on a set of rules
and correspond to the following properties of the regulators.
US (upregulated suppressor) is a suppressor induced by the
stimulus (in our case, high salt concentration). It suppresses
the expression of target genes that were active before the sti-
mulus application. UA (upregulated activator) is induced by
the stimulus and activates expression of its target genes. DA
(downregulated activator) and DS (downregulated suppres-
sor) are active in the absence of the stimulus. The application
of the stimulus inhibits DA expression and, consequently,
expression of its target genes. DS suppresses activity of its
target genes in the absence of the stimulus; under the stimulus
exposure, DS expression is reduced and the activity of its
targets is unblocked.

The structure of the early salt stress response TFRN re-
constructed with the CisCross-FindTFnet program is shown
in Figure 3a, and consists only of TFs, the binding sites of
which were enriched in uDEGs, i. e., the response to salt stress
begins with transcription activation, and TFs in the TFRN
are related only to the DS and UA types, i. e., gene activation
occurs passively due to stress-induced downregulation of the
suppressor (DS) or actively due to stimulation of the activator
(UA). Among UA-encoding genes, increased activity under
salt stress was previously experimentally shown for CBF4/
DREB1D (Sakuma et al., 2002), ERF37/DREB A-4 (Hos-
sain et al., 2016), RAP2.1/DEARG6 (Ghorbani et al., 2019),
WRKY25 (Jiang, Deyholos, 2009), ABI5 (Yuan et al., 2011),
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Fig. 3. The reconstructed TFRN for the early salt stress response in A. thaliana (a) and its participation in the regulation of processes that compose the
salt stress response: ER unfolded protein response (b), biosynthesis of indole-containing compounds (c) and S-glycosides (d).

The nodes of the graphs correspond to transcription factors. TF1 and TF2 are connected by an edge directed from TF1 (regulator) to TF2 (target) if the TF1 binding
peak is mapped in the 5'regulatory region of the TF2-encoding gene. The green block highlights the group of TFs (UAs) that are activated and activate their tar-
gets in response to salt stress. The yellow block highlights the group of TFs (DSes) that repress genes normally and are themselves repressed by salt stress, which
results in passive activation of the DS targets. The nodes and edges involved in the regulation of the process are highlighted in panels b-d. DSes and UAs denote
downregulated suppressors and upregulated activators according to (Omelyanchuk et al., 2024).

GBF3 (Zhang L. et al., 2012, 2017) and WRKY8 (Hu et al.,
2013). Wherein, ABI5 (Yuan et al., 2011), GBF3 (Zhang L.
etal., 2012, 2017), and WRKY8 (Hu et al., 2013) play a key
role in response to salt stress.

For DSes we identified, it was previously demonstrated
that inactivation of WRKY70 increased plant tolerance to salt
stress (Li J. etal., 2013), and bZIP3 expression was inhibited
by salt stress (Liu Y. et al., 2013). Notably, longer salt stress
(4 h) activated WRKY3 (Li P. etal., 2021). Thus, the composi-
tion of our reconstructed TFRN is in good accordance with
the published data. At the same time, only four TFs out of 18
(22 %) have been previously identified as the key players in
salt stress, and only 10 (56 %) have been described to respond
to salt stress, i. e., the TFRN contains new potential regulators
of this process.

Functional annotation of DEGs showed that the early re-
sponse to salt stress is accompanied by the ER unfolded protein
response, as well as activation of the following processes:
programmed cell death, leaf senescence, water transport, bio-
synthesis of indole-containing compounds and S-glycosides,
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response to heat, red and far-red light, abscisic, salicylic and
jasmonic acids, blue light, hypoxia, reactive oxygen species,
and dehydration. A link between the response to salt stress
and heat has been shown previously, as heat shock proteins
enhance resistance to salt stress and, conversely, overexpres-
sion of salt stress proteins provides resistance to heat stress
(Azameti et al., 2024; Chaffai et al., 2024; Chang et al., 2024).
The relationship of salt stress response to leaf senescence,
hypoxia, water transport, responses to blue, red, and far-red
light, reactive oxygen species, dehydration, abscisic acid,
salicylic acid, and jasmonic acid has also been demonstrated
in experiments (Serraj et al., 1994; Szepesi et al., 2009; Khan
etal.,2012; Kumar et al., 2014; Joseph, Jini, 2010; Sharma et
al., 2022; Kesawat et al., 2023; Lu, Fricke, 2023; Tan et al.,
2023; Peng et al., 2024).

Salt stress leads to disruption of protein folding in the en-
doplasmic reticulum (so-called endoplasmic reticulum stress),
and the response to this is optimization of protein folding,
resulting in a decrease in unfolded proteins (Liu et al., 2007;
Wang et al., 2011). There is evidence for the involvement of
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biosynthesis of an indole-containing compound such as mela-
tonin in the response to salt stress (Qi et al., 2020; Shamloo-
Dashtpagerdi et al., 2022). Enrichment of salt stress response
genes with the gene ontology term “S-glycoside metabolism”
has been detected previously (Rodriquez et al., 2021).

We found that all TFs in the TFRN are involved in the
regulation of the response to heat, red and far-red light, and
salicylic acid. The remaining biological processes fell into two
groups: those controlled by at least 70 % of the network TFs
and those controlled by less than 50 % of the network TFs. The
first group included programmed cell death, leaf senescence,
and responses to blue light, hypoxia, reactive oxygen species,
dehydration, abscisic acid, and jasmonic acid. The second
group comprised the ER unfolded protein response (Fig. 3b),
biosynthesis of indole-containing compounds (Fig. 3c) and
S-glycosides (Fig. 3d), and water transport (the latter was
regulated by only three TFs: BIM2, bZIP3, and WIND3).
Thus, using PlantReg, we have shown that the response to
salt stress is composed of both processes regulated by the
entire TF network and processes controlled by distinct parts
of this network.

Among the TFs we have identified as controlling the ER
unfolded protein response, only WRKY70 has been shown
as a regulator of this process to date (Wang L.Y. et al., 2023),
and bZIP3 has been indicated as a possible candidate for this
role (Ko et al., 2023).

Glucosinolates, the most diverse and studied group of
S-glycosides, are the secondary metabolites of Brassicaceae
involved in plant defense (Halkier, Gershenzon, 2006). Cur-
rently, they are intensively studied due to their therapeutic and
preventive properties against cancer, cardiovascular or neu-
rological diseases. Glucosinolates are categorized into three
groups depending on the amino acids from which they are
derived: aliphatic glucosinolates (methionine, alanine, leucing,
isoleucine, and valine), aromatic glucosinolates (phenylala-
nine and tyrosine), and indole glucosinolates (tryptophan). For
at least three out of seven TFs that we found to control glu-
cosinolate biosynthesis, this function was previously known.
CBF4 triggers the synthesis of aliphatic glucosinolates, which
also increases salt stress tolerance (Defoort et al., 2018), while
WRKY?70 suppresses indole-3-ylmethyl glucosinolate bio-
synthesis (Li J. etal., 2006). GBF3 expression is significantly
reduced in mutants for the SUR2/CYP83B1 gene that controls
the metabolic switch between auxin and indole glucosinolate
biosynthesis (Morant et al., 2010).

Regulation of abscisic acid signaling pathway

under salt stress in A. thaliana

In addition to determining the composition of TFs that control
specific processes, PlantReg allows determination of TFs that
regulate the activity of individual genes in these processes. The
latter provides an opportunity to identify modulators of gene
expression consistently at each stage of the process. In this
paper, we demonstrate this on the example of reconstructing
the mechanism for transcriptional regulation of ABA response
under salt stress. According to PlantReg results, all TFs within
the salt stress response TFRN except for WRKY21 control
ABA response. This regulation starts with the control of ABA
level in the cell.
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At this stage (stage 1 in Figure 4), the targets of the TFRN
include the ABCG25 and ATAF1 genes encoding, respectively,
the ABA exporter from the cell (Park et al., 2016) and the
TF that activates both the ABA biosynthesis gene NCED3
(Jensen et al., 2013) and the ABA importer gene ABCG40
(Kang et al., 2015).

In the next stage (stage 2 in Figure 4), ABA binds to and
activates the PYRABACTIN RESISTANCE1/PYR1 LIKE/
REGULATORY COMPONENTS OF ABA RECEPTORS
(PYR/PYL/RCAR) group of receptors (Fidler et al, 2022),
among which the salt stress response TFRN controls PYL7.
It is the most tightly TFRN-controlled gene in ABA signal-
ing, since its expression is managed by half of the TFRN TFs
(9 of 18). Under normal conditions, PYL7 activity is sup-
pressed by bZIP3 and WIND3. Whereas bZIP3 inhibits the ac-
tivity of 11 ABA signaling genes in addition to PYL7, WIND3
is a specific suppressor of PYL7. Salt stress activates PYL7
through seven TFs that form a regulatory loop with DEAR2
being a hub, directly activated by five TFs (CBF4, DEAR3,
ERF19, ERF37, RAP2.1), while the sixth TF (WRKY22)
stimulates it through ERF19.

In ABAssignaling, PYR/PYL/RCAR receptors inhibit PP2C
phosphatase activity, thereby preventing dephosphorylation
of SnRK2 kinases (Fidler etal., 2022). Here, the direct TFRN
targets are genes encoding the following: PP2C phosphatases
PP2C5, ABI2 and HAI/2, as well as the SNRK2.6 activator
RPK1 (Shang et al., 2020), PP2C phosphatase regulators
EDL3 (Koops et al, 2011), LOG2 (Pan W. et al., 2020), and
phospholipase PLDALPHA1, the product of which (phospha-
tidic acid) inhibits the activity of some PP2C phosphatases
(Ndathe, Kato, 2024).

The third stage of ABA signal transduction (stage 3 in
Figure 4) begins with the activation of ABA response master
TFs by SnRK2 kinases. Notably, one of them, ABI5, is also
represented in the TFRN. Except for ABI5 and MAPKKK17/18
(initiators of the MAPK cascade) (Zhou M. et al., 2021; Zhao
et al., 2023), all other TFRN targets at this stage represent
regulators of ABA response master TFs. These include genes
encoding kinases CPK4/6, PKS5, EDR1 (Zhu et al., 2007;
Wawrzynska et al., 2008; Zhou X. et al., 2015; Zhang H. et
al., 2020), transcription factors ABR1 (Sanyal, Pandey, 2024)
and HFR1 (Wang Z. et al., 2024), transcriptional regulators
VQ18 (Pan J. et al., 2018) and PRN1 (Warpeha et al., 2007),
components of the protein degradation complexes PUB9
(Samuel et al., 2008), AFP1 (Lopez-Molina et al., 2003), and
RHAZ2B (Li H. et al., 2011).

Interestingly, within the TFRN, half of DSes and all UAs
are involved in the control of the third step of ABA signal-
ing. Both TFRN hubs, DEAR2 and WRKY8, have targets at
this stage. Moreover, while DEAR2 has targets at stage 2 as
well, WRKYS is specific for stage 3. WRKY8 and DEAR2
enhance transcription of seven and six activators, respectively.
During viral infection, WRKY 8 controls ABA signaling as an
infection-suppressed activator of ABI4 (Chen L. etal., 2013).
We showed that under salt stress, WRKY8 controls ABA
signaling by upregulating CPK6. CPK®6 kinase stimulates
ABF4 and ABIS through their phosphorylation (Zhang H. et
al., 2020). This suggests that the same TF may have different
targets in ABA signaling under various stresses.
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Fig. 4. Transcriptional regulation of ABA level and signaling under early salt stress.

Green and orange rectangles denote uDEGs that encode repressors and activators of the ABA level and signaling pathway, respectively, and are potential TFRN
targets. White rectangles in green and orange frames correspond to repressors and activators of ABA level and signaling that are not potential TFRN targets. Num-
bers in blue rectangles denote the following stages: 1 — control of ABA level; 2 - ABA perception by receptors; 3 - activation of master TFs of ABA response. Abbre-
viations for the names of ABA transport, biosynthesis and signaling genes: ATP-BINDING CASETTE G25/40 (ABCG25/40), PYR1 LIKE 7 (PYL7), PROTEIN PHOSPHATASES
TYPE 2C (PP2Cs), ABA INSENSITIVE1/2/3/4/5 (ABI1/2/3/4/5), SNF1-RELATED PROTEIN KINASE (SnRKs), ABSCISIC ACID RESPONSIVE ELEMENT-BINDING FACTOR1/3/4
(ABF1/3/4), CALCIUM-DEPENDENT PROTEIN KINASE 4/6 (CPK4/6), ABI FIVE BINDING PROTEIN 1 (AFP1), KEEP ON GOING (KEG), ENHANCED DISEASE RESISTANCE 1 (EDR1),
NUCLEAR FACTOR Y9 (NF-YC9), PLANT U-BOX/ARM-REPEAT (ATPUB-ARM) E3 LIGASE 9 (PUB9), ABA REPRESSOR 1 (ABRT1), VQ PROTEIN 18 (VQ18), HIGHLY ABA-INDUCED
PP2C GENE 1/2 (HAI1/2), ARABIDOPSIS THALIANA ACTIVATING FACTORT (ATAF1), EID1-LIKE 3 (EDL3), LONG HYPOCOTYL IN FAR-RED 1 (HFRT), LOSS OF GDU2 (LOG2),
MITOGEN-ACTIVATED PROTEIN KINASE KINASE KINASE 17/18 (MAPKKK17/18), PHOSPHOLIPASE D ALPHA 1 (PLDALPHAT), PIRIN 1 (PRNT), RING-H2 FINGER PROTEIN 2B
(RHA2B), RECEPTOR-LIKE PROTEIN KINASE 1 (RPKT), CALCINEURIN B-LIKE PROTEIN-INTERACTING PROTEIN KINASEs/SOS2-LIKE PROTEIN KINASE (PKS5), MYB DOMAIN

PROTEIN 30 (MYB30), NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3).

Thus, PlantReg demonstrated that within ABA response,
the targets of the salt stress response TFRN belong to the
genes involved in ABA signaling, in which the most stringent
control occurs at the regulation of the master TFs, ABF1/3/4
and ABI3/4/5. Moreover, ABIS, one of the master TFs in
ABA signaling, is also one of the TFs within the TFRN of
the salt stress response, where its activity is suppressed by
bZIP3 before stress and stimulated by BIM2 during stress.
ABI5 itself activates GBF3, which, like BIM2, is repressed
by bZIP3 before stress. At the same time, GBF3 and BIM2
mutually activate each other. Thus, BIM2, bZIP3, GBF3,
and ABI5 form a clear regulatory circuit in our reconstructed
TFRN (Fig. 3a, 4).

Interestingly, in the ABA response gene network in (Aerts
etal., 2024), the TFs that make up this regulatory loop (BIM2,
bZIP3, GBF3, and ABIS) belong to the group of the earliest
regulators and share a large number of common targets, i.e.
control the same genes. In addition to BIM2, bZIP3, GBF3,
and ABI5, our reconstructed TFRN for the salt stress response
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overlaps with the abscisic acid response gene network from
(Aerts et al., 2024) for three other TFs: CBF4, DEAR2, and
WRKY3. We identified DEAR2 as a TFRN hub. Moreover,
CBF4, DEAR2, and WRKY 3 are components of the network
connecting its central activating regulatory circuit (BIM2,
GBF3, and ABIS) to the second TFRN hub, WRKY&.
WRKY3, along with bZIP3, suppresses WRKY8 before
stress (Fig. 3a). Under stress conditions, sequential activation
of BIM2, CBF4, DEAR2, and WRKYS8 occurs. Thus, com-
parison of the PlantReg results with the abscisic acid response
gene network (Aerts et al., 2024) identified TFs that are the
key regulators of ABA response. The remaining TFs, RAP2.1,
ERF19/37, DEAR3, TCP21, WRKY8/22/25/70, are possibly
involved in the control of ABA signaling only under salt stress.

Conclusion

The PlantReg program has shown its efficiency in systematic
analysis of the results of whole-genome experiments on dif-
ferential gene expression. It allows, along with functional
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annotation of DEGs, identifying TF targets among them and,
based on this, identifying TFs regulating certain biological
processes. Combination of PlantReg results with those of
programs that reconstruct TFRNSs (e. g., CisCross-Find TFnet)
allows subdividing a TFRN into subnetworks, which control
distinct processes, to identify key TFs in these processes and
even at their certain stages. The approaches and methods
developed for PlantReg implementation can be successfully
used to reconstruct the mechanisms of transcriptional regula-
tion of biological processes in various species.
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Abstract. Although nitrogen fertilizers increase rice yield, their excess can impair plant resistance to diseases, particularly
sheath blight caused by Rhizoctonia solani. This pathogen can destroy up to 50 % of the crop, but the mechanisms underly-
ing reduced resistance under excess nitrogen remain poorly understood. This study aims to identify potential marker genes
to enhance rice resistance to R. solani under excess nitrogen conditions. A comprehensive bioinformatics approach was
applied, including differential gene expression analysis, gene network reconstruction, biological process overrepresenta-
tion analysis, phylostratigraphic analysis, and non-coding RNA co-expression analysis. The Smart crop cognitive system,
ANDSystem, the ncPlantDB database, and other bioinformatics resources were used. Analysis of the molecular genetic
interaction network revealed three potential mechanisms explaining reduced resistance of rice to R. solani under excess ni-
trogen: the OsGSK2-mediated pathway, the OsMYB44-OsWRKY6-OsPR1 pathway, and the SOG1-Rad51-PR1/PR2 pathway.
Potential markers for breeding were identified: 7 genes controlling rice responses to various stresses and 11 genes modu-
lating the immune system. Special attention was given to key participants in regulatory pathways under excess nitrogen
conditions. Non-coding RNA analysis revealed 30 miRNAs targeting genes of the reconstructed gene network. For two
miRNAs (Osa-miR396 and Osa-miR7695), about 7,400 unique long non-coding RNAs (IncRNAs) with various co-expression
indices were found. The top 50 IncRNAs with the highest co-expression index for each miRNA were highlighted, opening
new perspectives for studying regulatory mechanisms of rice resistance to pathogens. The results provide a theoretical
basis for experimental work on creating new rice varieties with increased pathogen resistance under excessive nitrogen
nutrition. This study opens prospects for developing innovative strategies in rice breeding aimed at optimizing the balance
between yield and disease resistance in modern agrotechnical conditions.
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AHHOTaLUuA. A30THble yOOOpeHNs, NOBbILLAIOLLME YPOXKANHOCTb pPrca, MPU N3ObITKE MOTYT CHUXKATb YCTOMYMBOCTb pac-
TeHWI K 3a60neBaHNAM, B YaCTHOCTU K PU3OKTOHMO3Y, Bb3biBaeMOMy Rhizoctonia solani. 9ToT naToreH cnoco6eH yHUYTo-
XKnTb 10 50 % ypokas, OfHAKO MeXaHM3Mbl, eXalle B OCHOBE CHUXKEHMA YCTONUMBOCTY NpW M36bITKE a30Ta, OCTaloTcA
ManiousyyeHHbIMU. [laHHOe nccnefoBaHrie HanpasieHo Ha BbiABIEHME NOTEHLMaNIbHbIX FTEHOB-MapKePOoB AJ1A NOBbILLe-
HMA YyCTONUMBOCTY puca K R. solani B ycnoBmax n3bbiTka asoTa. [pumeHeH KOMMIEKCHbIN 61onHbOpMaTUUECKINii MOAXOA,
BKJIIOYatoWwmii aHanu3 anddepeHumanbHOM SKCNPeCccu reHoB, PEKOHCTPYKLMIO FTeHHbIX CEeTel, aHanm3 nepenpeacTas-
NEHHOCTN BUONOrMYECKNX NPOLLeccoB, dunoctpatnrpaduyeckmnii aHanms n aHaam3 KosKcnpeccum Hekogupyowmx PHK.
Mcnonb3oBaHbl KOrHUTUBHAA cuctema Smart crop, ANDSystem, 6a3a faHHbIx ncPlantDB u gpyrvie 6nonHdopmaTyeckme
pecypcbl. AHann3 MoNeKYNAPHO-TeHETUYECKON CETW B3aUMOLENCTBUI BbIABW TPU NMOTEHLMANbHbIX MEXaH13Ma, 06bAC-
HAIOLLNX CHUKEHVE YCTONUMBOCTY purca K R. solani npu n3bbiTke azota: OsGSK2-onocpepoBaHHbI nyTh, NyTe OsMYB44-
OsWRKY6-OsPR1 1 nytb SOG1-Rad51-PR1/PR2. U peHTndULMPOBaHbI NOTeHLManbHble MapKepbl ANA cenekunmn: 7 reHoB,
KOHTPONMPYIOLLNX OTBETbI PUCA Ha LUIMPOKMIA KPYT CTPECCOB, U 11 reHOB-MOZYyNATOPOB MMMYHHOW ccTeMbl. Ocoboe BHU-
MaHue yaeneHo KIoUYeBbIM YYacTHUKaAM PEryNATOPHbIX NyTel B yCNOBUAX U3ObITKa a3oTa. AHanum3 Hekogupytowmx PHK
BbIABM 30 MUKPOPHK, MULLEHAMYN KOTOPbIX ABMAIOTCA FeHbl 3 PEKOHCTPYMPOBAHHOW reHHOM ceTu. Ana AByx MUKpoPHK
(Osa-miR396 1 Osa-miR7695) obHapyxeHo okoo 7400 TbiC. yHUKanbHbIX AfMHHbIX Hekoanpytowmux PHK (aHPHK) ¢ pas-
JINYHBIMU UHAEKCaMKN Ko3Kcnpeccun. Boigenerbl Ton-50 gHPHK ¢ Hanbonbwmm MHAEKCOM KOIKCMpeccun ANa Kaxaomn
MUKPOPHK, uTo OTKpbIBaeT HOBble NepCreKTVBbI B M3YyYEHNUN PEryNAaTOPHbIX MeXaHU3MOB YCTOMYMBOCTY prca K NaTo-
reHam. MonyyeHHble pe3ynbTaThl CO3Lal0T TEOPETUYECKYIO OCHOBY ANS SKCMEPVMEHTANbHbIX PaboT MO CO3A4aHNI0 HOBbIX
COPTOB pKiCa C NMOBbILLEHHON YCTONYMBOCTBIO K MaTOreHaM B YCNOBUAX M36bITOYHOrO a30THOIO NUTAHUA.

KnioueBblie cnosa: Oryza sativa; Rhizoctonia solani; 6nonHdopmaTnka pacteHunii; oudpdepeHumanbHo sKcnpeccupyemble
reHbl; reHeTMYecKas perynaums; accoumaTnBHbIe reHHble ceTu; 6a3a 3HaHMI Smart crop; NPorpaMmMHo-MHGOPMaLMOHHaA

cuctema ANDSystem; a3oTHble ynobpeHus; OTBET Ha FprOHYI0 MHbEKLMIO.

Introduction

Rice (Oryza sativa L.) is one of the most economically va-
luable crops in the world, constituting the main part of the diet
for about half of the world’s population. Nitrogen fertilizers
are widely used in rice production in agricultural enterprises.
They account for about 80-90 % of the yield increase obtained
from mineral fertilizers (Kumeiko et al., 2013). However,
along with the positive effect, nitrogen fertilizers reduce
rice resistance to diseases. Excess nitrogen fertilization is
one of the main factors contributing to the development of
sheath blight disease in rice, caused by the fungus Rhizoc-
tonia solani Kiihn. Sheath blight causes serious damage to
this crop’s yield, leading to losses of up to 50 % (Senapati
etal., 2022).

Plant susceptibility to pathogenic infections under excess
nitrogen fertilization is caused by a complex of factors related
to both rapid growth and development, as well as changes
in plant defense responses. Excess nitrogen leads to a series
of physiological changes that can increase plant susceptibil-
ity to pathogens. In particular, accelerated growth can cause
weakening of cellular structures, including reduced cell wall
strength and decreased cuticle thickness, which facilitates
pathogen penetration (Hickelhoven, 2007; Rose et al.,
2018). Furthermore, excessive nitrogen nutrition can cause
changes in the plant microbiome and stimulate the growth
of pathogenic microorganisms in the rhizosphere (Xiong et
al., 2021).

CUCTEMHAA KOMIMbIOTEPHAA BUOJTIOTUA / SYSTEMS COMPUTATIONAL BIOLOGY

At the molecular genetic level, complex regulatory net-
works including phytohormones, transcription factors, and
non-coding RNASs play a key role in forming pathogen
resistance. These components participate in complex stress
response mechanisms affecting plant immune processes.

Phytohormones, such as salicylic acid, brassinosteroids,
jasmonic acid, gibberellins, abscisic acid, auxins, and ethylene,
have special significance in response to pathogenic infections
(YangJ. etal., 2019). Notably, some of these phytohormones,
particularly salicylic and abscisic acids, are also involved in
nitrogen compound metabolism, regulating the expression
of genes related to nitrogen exchange (Xing et al., 2023).
This observation suggests that interference in phytohormone
signaling pathways may serve as a mechanism through which
excess nitrogen affects plant resistance to pathogens.

Non-coding RNAs (ncRNASs) represent a diverse group of
RNA molecules that are not translated into proteins but per-
form important regulatory functions in the cell. Among them,
several main types are distinguished: microRNAs (miRNA),
small interfering RNAs (siRNAs), piRNAs (Piwi-interacting
RNAS), ribosomal RNAs (rRNAS), transfer RNAs (tRNAS),
and long non-coding RNAs (IncRNAs). Long non-coding
RNAs are of particular interest as they play a significant role
in gene regulation, affecting mRNA stability and translation,
and participating in signaling pathways. In particular, the work
of Supriya et al. (2024) shows that IncRNAs are involved in
rice response to the fungus R. solani.
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Despite their importance, InNcRNAs remain the least studied
among non-coding RNAs (Statello et al., 2021). This is due
to their diversity, complexity of functions and mechanisms of
action, as well as technical difficulties in their identification
and characterization. One approach to studying the functional
role of non-coding RNAs is to analyze their co-expression with
protein-coding genes, as well as with other types of non-coding
RNAs, the function of which has been established. The most
comprehensive resource for non-coding RNA co-expression,
including rice long non-coding RNAs, is the ncPlantDB da-
tabase (https://bis.zju.edu.cn/ncPlantDBY/).

The study of interactions between these various regulatory
elements — phytohormones, transcription factors, and non-
coding RNAs — in the context of nitrogen metabolism and
pathogen resistance represents a promising research direction.
It may lead to a deeper understanding of the mechanisms
underlying nitrogen-induced plant disease susceptibility and
potentially reveal new ways to enhance crop resistance under
intensive nitrogen nutrition.

Awidely used approach in computational systems biology
for studying complex molecular genetic processes is the gene
network method (Kolchanov et al., 2013). For automatic re-
construction of gene networks, the Institute of Cytology and
Genetics of SB RAS has developed the ANDSystem cognitive
system, which uses artificial intelligence methods to extract
knowledge from databases and scientific publication texts
(Ivanisenko V.A. et al., 2015, 2019). ANDSystem has been
successfully applied to reconstruct associative gene networks
and interpret genomic, proteomic, and metabolomic data in
various fields of biomedicine and agrobiology. In particular,
this software system has been used to reconstruct important
molecular genetic mechanisms of various pathological pro-
cesses and biological phenomena, including asthma (Bra-
gina et al., 2014; Saik et al., 2018; Zolotareva et al., 2019),
lymphedema (Saik et al., 2019), tuberculosis (Bragina et al.,
2016), hepatitis C (Saik et al., 2016), coronavirus infection
(Ivanisenko V.A. et al., 2022), Huntington’s disease (Bragina
et al., 2023), glioma (Rogachev et al., 2021), post-operative
delirium (lvanisenko V.A. et al., 2023), and others.

In the field of plant biology, ANDSystem has enabled new
discoveries about the molecular mechanisms of cell wall
functioning in Arabidopsis thaliana L. leaves in response to
drought (Volyanskaya et al., 2023). Adapting ANDSystem’s
knowledge extraction methods to potato biology led to the
creation of the specialized SOLANUM TUBEROSUM
knowledge base, containing information about genetic regu-
lation of potato metabolic pathways (Ivanisenko T.V. et al.,
2018), which was used to prioritize potato genes involved in
the formation of agronomically valuable traits (Demenkov
etal., 2019).

The aim of this study was to conduct a comprehensive bioin-
formatic analysis of molecular mechanisms of rice response to
R. solani under excess nitrogen conditions. The study included
gene network reconstruction using the Smart Crop knowledge
base —a specialized version of ANDSystem configured for rice
biology, as well as the application of bioinformatic methods
for analyzing the overrepresentation of biological processes,
phylostratigraphic analysis of gene evolutionary age, and
analysis of non-coding RNA co-expression.
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Identification of markers associated with reduced
rice resistance to R. solani under excess nitrogen fertilization

Materials and methods

The study was conducted in several sequential stages (Fig. 1).
In the first stage, based on transcriptome data analysis,
genes that had been differentially expressed during R. solani
infection were identified, as well as genes, the differential
expression of which had been observed under excess nitrogen
conditions. The second stage included the reconstruction of
regulatory gene networks involving the identified genes. In
the third stage, a structural and functional analysis of the
obtained networks was conducted, including assessment of
node centrality measures, analysis of biological process en-
richment, and determination of gene evolutionary age. Next,
analysis of network gene translation regulation by miRNAs
was performed, and long non-coding RNA co-expression
was investigated. The final stage was aimed at identifying
potential markers of resistance to R. solani under excess
nitrogen conditions.

Publicly available gene expression data. Publicly avail-
able transcriptomic data on O. sativa response to excess ni-
trogen fertilization, as well as to the pathogen R. solani, were
collected from the NCBI GEO (Gene Expression Omnibus)
and NCBI SRA (Sequence Read Archive) databases (https://
www.nchi.nlm.nih.gov/sra) (Table 1). For the analysis of
O. sativa transcriptome under excess nitrogen conditions, one
study containing three experiments was found. In this work,
plants were treated with excess fertilizer —ammonium nitrate
(NH4NO3) —at concentrations exceeding the normal level by
4,16, and 64 times.

The differential expression analysis of O. sativa during
R. solani infection included data from five time-series studies,
containing a total of 21 experiments.

Transcriptomic data analysis. SRA Toolkit (v3.1.0) was
used to extract FASTQ format files. Read quality control was
performed using FastQC (v0.12.0). Filtering and removal of
low-quality nucleotides was conducted using Trimmomatic
(https://github.com/usadellab/Trimmomatic). Aread length of
15 bp and Phred sequence quality score < Q20 were used as
thresholds. Reads were mapped to the reference genome of
O. sativa Japonica Group (IRGSP-1.0), deposited from the En-
semblPlants database (https://plants.ensembl.org/index.html)
using the HISAT2 (v2.2.1) tool. SAMtools (v1.20) was used
to convert SAM format mapping output files to binary BAM
format. HTSeq (v2.0.2) was used for quantification. Read
count normalization and differential gene expression analysis
were performed using the edgeR (4.0.16) tool implemented
in the Bioconductor project (https://www.bioconductor.org/).
The TMM (Trimmed Mean of M-values) method was used for
normalization. Multiple testing correction was applied using
FDR (false discovery rate).

For DNA microarray data analysis, the limma (v3.58.1)
package from the Bioconductor project was used. Raw Agilent
platform DNA microarray files were read using read.images.
Background noise correction and quantile normalization of
the data were then performed. The biomaRt (v2.58.2) pack-
age (https://bioconductor.org/packages/release/bioc/html/
biomaRt.html) was used to map DNA microarray probe
identifiers to Ensembl gene identifiers. Differential gene ex-
pression analysis was performed using the limma package. An
FDR threshold of < 0.05 was used to identify differentially
expressed genes.
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PRINA702874 PRINA725619
PRGEB24521 PRJNA886841
PRINA551731

Transcriptomic data O. sativa
under infection conditions R. solani

211 DEGs with unidirectional expression
changes in 6 or more of 19 experiments

Analysis

of overrepresentation
of biological processes
Subnetworks describing the regulation
of biological processes by components
of the gene network

Fig. 1. Research stage diagram.

Table 1. List of publicly available RNA-seq and DNA microarray data used in the study
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Regulatory pathways
linking rice responses
to excess nitrogen
and R. solani infection

Expanded gene network
of rice response to R. solani
infection under nitrogen
excess conditions

miRNAs targeting genes
from a reconstructed
gene network

IncRNAs co-expressed
with identified
miRNAs

Potential markers of resistance
to R. solani under nitrogen
excess conditions

288

GSE73768

Transcriptomic data O. sativa under

nitrogen excess conditions

112 DEGs with unidirectional expression
changes in 2 of 3 experiments

Phylostratigraphic

analysis

Distribution of genes
by evolutionary age

Stress

Excess nitrogen
(NH4NO3)

R. solani
infection

R. solani
infection

R. solani
infection

R. solani
infection

R. solani
infection

Smart Crop knowledge base. This study used the special-
ized Smart Crop knowledge base, which is an adapted version
of the ANDSystem software and information system, focused
on rice and wheat genetics and breeding. System adaptation
included configuring three key ANDSystem modules for effec-

Design

3 experiments:

3 concentrations

(x64, x16, and x4 normal
concentration

3 experiments:
3 time points (1,2 and 5 days
post-infection)

4 experiments:
2 time points for 2 varieties
(1 and 2 days post-infection)

2 experiments:
1 time point for 2 varieties
(3 days post-infection)

6 experiments: 3 time points
for 2 varieties (1, 3 and 5 days
post-infection)

6 experiments: 3 time points
for 2 varieties (1, 2 and 3 days
post-infection)

Project ID Subfamily
GSE73768 ssp. japonica
PRINA725619 ssp. indica
PRINA886841 ssp.japonica
PRINA551731 ssp. japonica
PRJEB24521 ssp. japonica
PRINA702874 ssp.indica

Genotype

cv. Nipponbare

var. BPT- 5204

var. Lemont,
var. GD66

cv. Yanhui-888,
cv. Jingang-30

var. Cocodrie,
line MCR

Line PAU-ShBS,
line PR114

Organ

Shoot

Leaves

Leaves

Leaves

Leaves

Leaves

Data type

Microarray

RNA-seq

RNA-seq

RNA-seq

RNA-seq

RNA-seq

tive task solving. The first module was the domain-specific on-
tology module, which was expanded with special dictionaries.
These dictionaries covered a wide range of research objects
that can be divided into molecular genetic objects (genes,
proteins, metabolites, non-coding RNAs, and miRNAS),
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No Template scheme

expres. . act.reg., ass., transcr.reg., .
T Geney P Proteiny vreg g Proteingg

PPi, cleav., deg.reg.

T2 Geney P Proteiny expr.reg, ass. PPi Geneg,

expres. : actreg, ass., transcr.reg., : act.reg, ass., transcr.reg., .
IE Geney Proteiny PPi, cleav., deg.reg. Proteiny PPi, cleav., deg.reg. Proteings

expres. ) actreg, ass. transcrreg, o4 o ppi

rotein expr.reg., ass., PPi

T4 Geney Proteiny PPi, cleav., deg.reg. M Genegg

expres. . : . act.reg., ass., transcr.req., .
T5 Geney Proteiny expr.reg., ass., PPi Gene,, &Pres. Proteiny, ol C/Zav,, veures g Proteing,

. .reg., ., PPi expres. . expr.reg., ass., PPi

T6 Geney P Proteiny Xprreg. ass. FH Geney, ™ Proteiny, prreg Geneg,

Fig. 2. Template scheme used for searching for molecular genetic pathways in the Smart Crop knowledge base.

Notation: T - template; Geney — DEGs of rice under excess nitrogen fertilization; Proteiny - protein products of DEGs under excess
nitrogen fertilization; Gene), - genes encoding mediator proteins; Proteiny, — mediator proteins; Geneg — rice DEGs in response
to R. solani; Proteing, — protein products of rice DEGs in response to R. solani; expres. — expression; act.reg. — regulation of activity;
expr.reg. - regulation of expression; ass. — association; transcr.reg. - regulation of transcription; deg.reg. - regulation of degradation;

cleav. - cleavage; PPi - protein-protein interaction.

their functional characteristics (biological processes, genetic
biomarkers, QTL polymorphisms), phenotypic characteristics
(plant varieties, breeding-significant qualities, phenotypic
traits, diseases), biotic and abiotic factors (pathogens, pests,
and others). Various databases and ontologies were used to
form these dictionaries, such as NCBI Gene (https://www.ncbi.
nim.nih.gov/gene/), ChEBI (https://www.ebi.ac.uk/chebi/),
MirBase (https://www.mirbase.org/), Gene Ontology (https://
cropontology.org/), Wheat Ontology, Rice Ontology, and
others (Chao et al., 2023). For example, the gene dictionary
from the molecular genetic objects group contains names of
approximately 627 thousand genes, including their conven-
tional names and synonyms. Biological processes, belonging
to functional characteristics, contain more than 122 thousand
names. The pathogen dictionary, included in the biotic factors
group, contains about 755 names.

The second important component was the information
extraction module from factographic databases, which was
configured for automated data extraction from specialized
sources in plant biology. These sources included Oryzabase
(https://shigen.nig.ac.jp/rice/oryzabase/), GrainGenes (https://
wheat.pw.usda.gov/GG3/), ASPNet, and others. The third
module was the text-mining module using semantic-linguistic
templates and artificial intelligence methods. It was adapted
for effective knowledge extraction from text sources, such
as scientific articles and patents in plant biology. Based on
the analysis of scientific publications performed using this
module, more than 4 million interactions between objects
represented in the dictionaries were extracted.

Gene network reconstruction and analysis. Gene network
reconstruction was performed using the “Query Wizard”
and “Pathway Wizard” of the ANDVisio software module
(Demenkov et al., 2011), which serves as the user interface
in the ANDSystem and Smart Crop systems. The structure of
templates used for searching for regulatory pathways in the
Smart Crop knowledge base using the “Pathway Wizard” is
shown in Figure 2.

Node centrality assessment in the gene network. Node
centrality in the gene network was evaluated using the network
connectivity measure, defined as the number of connections
between a given node and other network nodes.

964

Biological process enrichment analysis. Gene Ontology
biological process enrichment analysis was performed using
the PANTHER resource (https://pantherdb.org/).

Long non-coding RNA analysis. Co-expression analysis
between miRNAs and IncRNAs was conducted using the
ncPlantDB database (https://bis.zju.edu.cn/ncPlantDBY/).

Phylostratigraphic analysis. The evolutionary age
of genes was determined using the GenOrigin database
(http://chenzxlab.hzau.edu.cn/) (Tong et al., 2021), which
contains information about the evolutionary age of genes from
various organisms, established through phylostratigraphic
analysis. To assess the statistical significance of differences in
the distribution of genes of different ages between the complete
set of rice protein-coding genes and genes in the reconstructed
network, a hypergeometric test was applied. The probability
of observing m or more genes of a certain age interval among
M network genes was calculated using the hypergeom.pmf
function from the scipy library. The analysis was conducted
for 17 age intervals represented in the GenOrigin database.
The following parameters were used in calculations: N — to-
tal number of rice protein-coding genes, n — number of rice
genes inagiven age interval, M —number of genes in the gene
network, m — number of network genes in the analyzed age
interval. Differences were considered statistically significant
at p-value < 0.05.

Results and discussion

Identification of stable differentially

expressed genes

To identify differentially expressed genes (DEGs) in rice under
excess nitrogen conditions, 3 experiments were analyzed,
while under R. solani fungus influence, 21 experiments were
analyzed using transcriptomic data found in open sources.
We considered genes with unidirectional expression changes
across different experiments (simultaneous decrease or
increase), which we will further refer to as stable DEGs.

In the case of excess nitrogen, only 5 genes were found to
be stable DEGs across all three experiments (Os09g0538000,
0s05g0162000, Os09g0537700, Os04g0664900,
0s0690113800). When considering DEGs present in two
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Reply to R. solani (DEG)
Gene

Pathway

Protein

Activity downregulation
Activity upregulation
Association

Catalyze

Cleavage

Degradation upregulation
Downregulation
Expression

Expression regulation
Expression upregulation
Interaction

Regulation

Transport regulation
Upregulation

Fig. 3. Regulatory pathways describing the connection between DEGs in rice response to excess nitrogen and R. solani infection.

out of three experiments, the number of such genes was 112,
which were taken for further analysis.

Analysis of differential gene expression under R. solani
infection showed that in two out of 21 experiments, no
statistically significant DEGs were identified. Analysis of the
remaining 19 experiments revealed no genes that were DEGs
in every experiment. Only 2 genes were found to be stable
DEGs in half or more of the experiments (Os04g0180500
and 0s09g0255600). When considering one-third of the
experiments (6 or more out of 19), the number of stable DEGs
included 211 genes. The number of stable DEGs for a quarter
of the experiments (5 or more out of 19) was 463 genes. For
further analysis, we chose a threshold value for determining
stable DEGs equal to one-third of the experiments (6 or more
out of 19), as at this value, the samples of stable DEGs under
excess nitrogen and fungal influence were comparable in size.

Reconstruction of molecular genetic pathways

describing the relationship between rice responses

to excess nitrogen and infection

Using the ANDVisio program, which serves as the user
interface for the Smart Crop and ANDSystem knowledge
bases, a search was conducted for molecular genetic pathways
in the global Smart Crop gene network (Fig. 2), connecting
the group of the selected 112 stable DEGs in response to
excess nitrogen and 211 stable DEGs in response to R. solani
fungus. This search resulted in the identification of several
regulatory pathways that included 3 proteins encoded by
DEGs in response to excess nitrogen, 4 DEGs and their
encoded proteins in response to R. solani infection, as well
as 4 proteins acting as mediators in interactions between the
considered DEGs (Fig. 3).

OsABI2-0OsGSK2-OsJAZ1 molecular genetic pathway

An important reconstructed pathway (Fig. 3) potentially
explaining the mechanism of deteriorated rice resistance
to fungus under excess nitrogen is the OsABI2-OsGSK2-
OsJAZ1 pathway. The OsABI2 protein (PP2C06, protein
phosphatase 2C6) is a product of the Os01g0583100 gene

CUCTEMHAA KOMIMbIOTEPHAA BUOJTIOTUA / SYSTEMS COMPUTATIONAL BIOLOGY

that is differentially expressed under excess nitrogen: its
expression decreases at 16- and 64-fold excess of nitrogen
fertilizer concentration (Supplementary Material 1)1,

It is known that ABI2 is one of the main participants
in the ABA (abscisic acid) signaling pathway (Sun et al.,
2011), which is an important plant hormone necessary for
regulating stomatal closure, leaf senescence, bud dormancy,
seed germination inhibition, growth inhibition, and stress
responses to drought, salinity, and toxic metals (Chen et
al., 2020; Kumar S. et al., 2022). Literature has shown that
OsABI2 participates in rice response to excess iron (Junior
et al., 2015), in sunflower, its expression increases during
drought (Shen et al., 2023), and in rice, during drought, its
expression is also noted in roots and stem (Sircar et al., 2022).
The presence of this protein in the reconstructed regulatory
pathway may indicate its involvement in modulating rice
response to the pathogen under excess nitrogen. OsABI2 can
exert regulatory influence on OsJAZ1 (jasmonate-Zim-domain
protein 1), an important factor in pathogen response, through
the mediator OsGSK2.

According to our analysis, OsJAZ1 (0s10g0392400) is
a DEG with increased expression levels in 7 out of 19 ex-
periments studying R. solani influence on rice transcriptome
(Supplementary Material 2). In Arabidopsis and cotton, it
was shown that the fungus Verticillium dahliae, which causes
Verticillium wilt, induces JAZ1 phosphorylation through
GSK2, and this promotes further JAZ1 degradation (Song Y.
et al., 2021). The authors note that in this action, GSK2 is a
negative regulator of fungal resistance — its constitutive ex-
pression weakened resistance, while GSK2 gene knockdown
increased resistance to V. dahliae. Interestingly, OsGSK2
(0s05g0207500) is a DEG in 2 out of 19 analyzed experi-
ments studying R. solani influence on transcriptome, where
its expression was decreased (Supplementary Material 2).
Also, OsGSK2 is a DEG in response to excess nitrogen in the
experiment with the highest nitrogen fertilizer concentration
(64 times higher than normal concentration).

1 Supplementary Materials 1-5 are available at:
https://vavilov.elpub.ru/jour/Suppl_Antropova_Engl_28_8.xlsx
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In our network, the connection between ABI2 and
GSK2 is of the “interaction” type (physical interaction). In
Arabidopsis, it was shown that ABI1 and ABI2 interact with
the GSK2 protein (Glycogen synthase kinase 2, also known
as: brassinosteroid insensitive 2, BIN2) and dephosphorylate
it, leading to suppression of its kinase activity and decreased
stability. The examined interactions between regulatory
pathway participants are consistent with literature data
showing that the abscisic acid signaling pathway suppresses
the brassinosteroid signaling pathway (Wang H., 2018).
In particular, in O. sativa, it was demonstrated that ABA
acts oppositely to BR (brassinosteroids) in regulating leaf
inclination through the BR biosynthesis gene OsD11 and
signaling genes OsGSK?2 and OsDLT (Li et al., 2019).

It should be noted that BR represents an important group
of plant hormones, in some cases playing an antagonistic role
to ABA action. For example, it was shown that BR stimulates
seed germination, while ABA promotes their dormancy
(Steber, McCourt, 2001).

MYB44-WRKY6-PR1 molecular genetic pathway

Another important regulatory pathway begins with the
OsMYB44 protein —a product of the 0s09g0106700 gene that
is differentially expressed under excess nitrogen. Notably, it
is a DEG in two out of three experiments (gene expression
is decreased at 16- and 64-fold excess of nitrogen fertilizer
concentration, Supplementary Material 1). The transcription
factor MYB44 is known to be an important participant in plant
life regulation (root development, somatic embryogenesis, leaf
senescence, etc.) and response to biotic and abiotic stresses,
such as reactions to drought, cold, phosphate and nitrogen
deficiency, and pathogenic organism infection (Wang F. et al.,
2023). Interestingly, MYB44 has opposing effects on plant
defense reactions. Shim et al. (2013) showed that it enhanced
the defensive response to pathogenic bacteria Pseudomonas
syringae pv. tomato induced by salicylic acid but reduced
the defensive response against the black spot disease fungus
Alternaria brassicicola, which is dependent on jasmonic acid.
In the pathway under consideration, M'YB44 forms a regulatory
complex with another TF, WRKY6 (0Os03g0798500), which
regulates inorganic phosphate transport, as shown in potato
(Zhou et al., 2017). The transcription factor WRKY?®6, like
MYB44 in A. thaliana, acts as a positive regulator of abscisic
acid signaling. The WRKY TF family participates in protecting
plants from a wide range of stresses, in particular, OSWRKY6
is necessary for rice protection from Xanthomonas oryzae
pv. oryzae (bacterial leaf blight) (Im et al., 2024). It has been
shown that OSWRKY®6 activates OsPR1 expression (Im et
al., 2022), the final link in the regulatory pathway under
consideration.

SOG1-Rad51-PR1/PR2 molecular genetic pathway

This pathway includes three links: SOG1 (suppressor of
gamma responsel), RAD51 (DNA repair protein RAD51),
and the PR1 (pathogenesis-related protein 1) and PR2
(pathogenesis-related protein 2) genes (Fig. 3). SOG1 is
a plant transcription factor, analogous to the animal p53
protein, playing a crucial role in regulating transcription
of genes involved in programmed cell death, DNA damage
repair, as well as responses to abiotic stresses and pathogenic
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infections (Ogita et al., 2018; Yoshiyama, Kimura, 2018).
According to our transcriptional data analysis, SOG1
(0s06g0267500) is a DEG under excess nitrogen (expression
level increases in two out of three experiments — at 16- and
64-fold excess of nitrogen fertilizer concentration, Supple-
mentary Material 1).

SOG1 is known to be a transcriptional regulator of OsRad51
(Ogita et al., 2018; Yoshiyama, Kimura, 2018), acting as a
mediator in the pathway under consideration. RAD51 is a
regulatory protein of plant immune response, and among its
direct targets are members of the pathogenesis-related protein
family, such as PR1 and PR2 (Wang S. et al., 2010). These
genes were among the DEGs in response to R. solani fungus
(Supplementary Material 2).

PR1 (Os079g0129200) expression increased in 6 out of
19 experiments studying R. solani influence on transcriptome.
Seven genes named PR2 have been found in the rice genome
(Yokotani et al., 2014). According to our data, expression
of three of them (Os07g0539900, Os01g0940700, and
0Os01g0940800) increased in 7 out of 19 experiments.

It should be noted that the PR1 and PR2 genes were also
among the DEGs based on our analysis of transcriptomic
data from a series of experiments studying excess nitrogen.
Their expression changed significantly in one out of three
experiments, where the concentration of nitrogen fertilizers
was maximal.

Reconstruction of extended gene network of rice response
to R. solani infection under excess nitrogen

To identify a broader range of potential participants in the
mechanisms of deteriorating rice resistance to R. solani fungus
under excess nitrogen, we reconstructed an extended gene
network based on the regulatory pathways discussed above.
Gene network reconstruction was performed automatically
using the functional module of the ANDVisio program. This
tool allows expanding the initial network by adding new
components (genes, proteins, metabolites, etc.) based on data
about their interactions contained in the Smart Crop knowledge
base. For 15 participants of the initial regulatory pathways
(Fig. 3), the knowledge base contained information about their
interactions with 358 new proteins and genes. The network
reconstructed in this way contained 61 genes, 271 proteins,
and 2,359 interactions (Fig. 4). To identify key participants
in the reconstructed network, node centrality analysis was
conducted using the “Network connectivity” index, indicating
the number of nearest neighbors. The highest index value
belonged to the OsGSK2 protein, which is a participant in the
initial regulatory pathways, mediating interactions between
differentially expressed genes. Jazl was also among the top
three in terms of the “Network connectivity” index. It should
be noted that the gene encoding Jazl was a stable DEG in
response to R. solani fungus.

Identification of IncRNAs potentially regulating

the identified molecular genetic pathways

To search for INcRNAs potentially involved in regulating the
rice gene network response to fungus under excess nitrogen
conditions, we analyzed the ncPlantDB database. This
database contains information about INcCRNA co-expression
with miRNAs, obtained from single-cell data analysis.
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Fig. 4. Extended gene network of rice response to R. solani infection under excess nitrogen conditions.

The network includes both initial regulatory pathways and newly identified components (genes and proteins). The JAZ1 and GSK2 proteins are highlighted
with yellow and white squares, respectively. Gene and protein designations and their interaction types are similar to those shown in Figure 3.

According to the Smart Crop knowledge base, we found
30 miRNAs that target genes from the reconstructed gene
network (Table 2). In the ncPlantDB database, co-expression
connections were found for Osa-miR396 and Osa-miR7695
with IncRNAs, with various co-expression degree indices.
For two variants of Osa-miR396 (Osa-miR396b and Osa-

miR396c¢), the number of such non-coding RNAs was
around 4,000. For Osa-miR7695, about 3,500 co-expression
connections with IncRNAs were identified. The total number
of unique IncRNAs was approximately 7,400.

Among the identified IncRNAs, special attention should
be paid to those with the highest co-expression index. These

Table 2. miRNAs regulating stress response genes in the reconstructed gene network

No. miRNA Target gene

1-3 Osa-miR156 OsMPKs, OsSPL14
4 Osa-miR159 OsGAMYB

5 Osa-miR162 OsDCL1

6-8 Osa-miR166 EIN2

9 Osa-miR167 ARF12

10 Osa-miR319 OsTCP21

11-12 Osa-miR393 AFB2/TIR

13-21 Osa-miR396 OsGRFs

22 Osa-miR398 SOD, CSD1,CSD2
23 Osa-miR408 OsAAE3

24-29 Osa-miR444 MADS23/27a/57

30 Osa-miR7695 OsNramp6

Note. miRNAs of the same family are grouped together.
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include the top 50 IncRNAs ranked by co-expression index,
particularly the group of IncRNAs identified in rice metaxylem
that have the same co-expression index with Osa-miR396b, the
target genes of which are GFR1 and GFR3: LNC-0s08g15450,
LNC-0s04961735, LNC-0s05¢g27975, LNC-0s05¢62500,
and others (Supplementary Material 3).

The search for functions of these INcRNAs in literature data
yielded no results. Therefore, the connection of INcRNAs with
the gene network may have special significance for further
characterization of their functions.

Phylostratigraphic analysis

The application of phylostratigraphic analysis methods to
assess the evolutionary age of genes is a promising approach
to studying the evolution patterns of gene networks and
identifying their key components (Mustafin et al., 2021). In
this work, this approach was used to analyze the evolutionary
stages at which genes participating in the reconstructed
network of response to fungal infection under elevated
nitrogen fertilizer concentrations emerged.

Analysis of the evolutionary age distribution of genes
showed that the reconstructed network contains genes of
different ages, among which several most represented groups
can be distinguished (Fig. 5). Age intervals within which
the number of genes statistically significantly exceeded
the one expected by chance corresponded to the following
time points shown in the graph (Fig. 5): (1) 132 million
years (p = 1.85-1073), (2) 170 million years (p = 9.16-107%),
and (3) 1,578 million years (p = 5.41-107).

The first group, including 11 genes about 132 million years
old, likely emerged at the evolutionary stage of monocot
plant appearance (Friis et al., 2004). Representatives of this
group include the transcription factor OFP3 (ovate family
protein 3). The OFP family is plant-specific, participating
in regulation of cellular pluripotency, morphogenesis, and
growth in A. thaliana (Wang F. et al., 2016). Moreover, it
is suggested that changes in transcription factor regulatory
networks are an essential feature of monocot plant evolution
(Vincentz et al., 2004).

Identification of markers associated with reduced
rice resistance to R. solani under excess nitrogen fertilization

Within the second interval under consideration (170 million
years), the age of 12 genes was found. This period is
associated with the emergence of flowering plants (van der
Kooi, Ollerton, 2020). Members of the WRKY transcription
factor family (WRKY®6, 40, and 46), involved in molecular
mechanisms of flowering regulation (Song H. et al., 2024), fell
into this interval. Importantly, WRKY6 is also a participant
in the initial regulatory pathways.

The third group included 20 genes, the age of which fell
within the third interval (1,578 million years), corresponding
to the emergence of red and green algae (Zhang S. etal., 2021).
One representative of this group is the PHT1 (PHOSPHATE
TRANSPORTER1) gene, the product of which participates
in inorganic phosphate uptake and transport (Wang X. et
al., 2014). The development of phosphorus assimilation
mechanisms could have been significant in plant evolution,
as increased phosphate availability in oceans is associated
with the growth of larger eukaryotic organisms (Zhang S. et
al., 2021).

Another feature of the gene network can be noted: the
proportion of “young” genes (less than 1 million years old)
was lower than their proportion in the complete genome. The
“young” genes falling into this interval include 12 genes, many
of which are related to immune responses to varying degrees:
OsPR5 (0S01G0122000), OsNAC6 (0s01g0672100), similar
to histone H4 (0S01G0835900), OsMPK3 (0S02G0148100),
R2R3-MYB (0S02G0641300), R2R3-MYB (0S06G0205100),
OsPR1b (0S07G0127700), histone H4 (0S07G0549900),
R2R3MYB-domain protein (0S12G0564100).

The obtained data can contribute to a deeper understanding
of the reconstructed gene network functioning mechanisms
and serve as a basis for further selection of markers in breeding
plants resistant to pathogens under elevated nitrogen fertilizer
concentrations.

Search for potential marker-oriented selection targets

To search for potential marker-oriented selection targets,
analysis of gene functional significance at the biological
process level was conducted. Using the PANTHER resource,
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Fig. 5. Distribution of gene evolutionary age in the reconstructed gene network.

The X-axis shows the central points of age intervals (million years) according to the GenOrigin database, the Y-axis shows the proportion of genes in each age
interval. Blue shows the distribution for the complete set of rice protein-coding genes, red shows the distribution for genes in the reconstructed network. Aste-
risks mark age intervals with statistically significant differences in gene representation: * p=1.85-10-3, ** p=9.16- 104, *** p = 5.41-10~7, hypergeometric test.
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Table 3. Results of biological process enrichment analysis for genes in the extended network of rice response

to R. solani infection under excess nitrogen conditions

Term from Gene Ontology p-value

Response to hormone 1.09E-38
Hormone-mediated signaling pathway 2.08E-37
Response to chemical 2.15E-30
Response to stress 1.41E-22
Regulation of defense response 4.12E-16
Seed germination 5.17E-10
Response to water deprivation 4.47E-09
Defense response 3.36E-07
Cellular response to abiotic stimulus 3.70E-06
Defense response to fungus 1.81E-03

FDR Number of genes
2.87E-36 44
4.75E-35 38
3.38E-28 47
1.69E-20 50
441E-14 13
3.76E-08 6
2.74E-07 8
1.51E-05 18
1.46E-04 5
3.96E-02 4

Note. Analysis was performed using the PANTHER resource. The most significant biological processes related to response to various biotic and abiotic factors

are presented.

Gene Ontology term enrichment analysis was performed for the
extended gene network. The analysis revealed 239 statistically
significant biological processes (Supplementary Material 4),
including key signaling pathways and responses to abiotic and
biotic stresses, including fungal infections (Table 3).

Although the biological process enrichment analysis pro-
vides important information about the functional significance
of the gene network, the understanding of specific regulatory
mechanisms is necessary for selecting effective markers. The
Smart Crop knowledge base contains information about regu-
latory interactions between genes and biological processes,
which allows identifying potential markers not only by their
association with key processes but also by their regulatory
potential.

To search for potential markers, the gene network was
supplemented with regulatory connections to biological pro-
cesses using ANDVisio (Supplementary Material 5). Regu-
latory connections between genes and processes were clas-
sified as positive (upregulation), negative (downregulation),
or without direction (regulation). Figure 6 shows regulatory
networks for the processes “response to stress” and “innate
immune system”, which play key roles in stress response
mechanisms.

It should be noted that “response to stress” was found to
be overrepresented among genes in the extended network
of rice response to R. solani infection under excess nitrogen
conditions (Table 3). Three proteins are important regulators
of this process (Fig. 6a): BZR1 (brassinazole resistant 1),
serine-threonine protein kinase SAPK4 (shown in Fig. 6a
as Ser/Thr protein kinase), and transcription factor SOG1
(shown in Fig. 6a, b as OsSOG1). BZR1 is known to mediate
brassinosteroid signaling by suppressing the transcription
of stress response genes (Yang Y.X. et al., 2015; Cao et al.,
2024). SAPK4 regulates gene expression in response to salt
stress in rice (Diédhiou et al., 2008). SOGL1 controls plant
response to DNA damage-inducing stresses (Ogita et al.,
2018; Yoshiyama et al., 2018). SOG1 is a component of the
initial regulatory pathways, which allows it to be classified as
a particularly important potential marker. All the considered

CUCTEMHAA KOMIMbIOTEPHAA BUOJTIOTUA / SYSTEMS COMPUTATIONAL BIOLOGY

Fig. 6. Regulation of biological processes “response to stress” (a) and
“innate immune response” (b) by proteins that are components of the
rice gene network response to pathogenic fungus under excess nitrogen
conditions.

Connections between objects marked with black lines indicate association;
purple arrows indicate regulatory effects. Blue rectangles highlight proteins
discussed in the text.

proteins can be classified as markers controlling responses to
a wide spectrum of stress effects. This characteristic makes
them especially valuable for further research and potential
application in plant biotechnology.

The “innate immune system” process is interesting because
it is regulated by thirteen gene network participants that can
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be considered as promising markers associated with pathogen
resistance (Fig. 6b). Key regulators of this process are proteins
WRKT114 and AGO?2, as well as components of the molecular
genetic pathways described above (GSK, PR1, PR2, JAZ1,
and SOG1). WRKT114 activates immune response during
Xanthomonas oryzae pv. oryzae infection (Son et al., 2020).
AGO?2 regulates innate immunity through miRNA-mediated
suppression of target genes during Pseudomonas syringae
pv. tomato infection (Zhang X. et al., 2011). The remaining
components also make significant contributions to plant
immune response regulation (Song Y. et al., 2021; Johnson
et al., 2023; Javed et al., 2024).

Characterization of marker genes by evolutionary age
Assessment of gene evolutionary age can provide important
information for planning breeding programs, allowing predic-
tion of specificity, functional conservation, and phenotypic
effects of candidate genes. The application of gene evolu-
tionary age analysis in experiment planning is illustrated by
work on the introgression of the rice Xa21 gene. This gene
provides resistance to rice bacterial blight caused by X. oryzae
pv. oryzae. Xa21 was isolated from the wild species Oryza
longistaminata and is an evolutionarily young gene specific to
the Oryza genus. Introduction of the Xa21 gene into cultivated
rice varieties led to the creation of lines with high disease
resistance without negative effects on yield and grain quality
(Song W.Y. et al., 1995; Wang G.L. et al., 1996).

Another example is the modification of the ERF922 gene
to increase rice resistance to fungal pathogens using CRISPR/
Cas9. ERF922 is an evolutionarily young gene involved in
regulating rice immune response. Its knockout led to increased
resistance to rice blast without negative effects on plant growth
(Wang F. et al., 2016).

Our phylostratigraphic analysis of the gene network
revealed that the average evolutionary age of potential marker
genes in the “innate immune response” group is 605 million
years, which is significantly less than the corresponding value
for the “response to stress” group (1,270 million years). These
data confirm the understanding of the evolutionary youth of
immune mechanisms (Han, 2019). In the “innate immune
response” group, the age range extends from OsPR1a (less
than 1 million years) to OsGSK2 (more than 2,101 million
years), while in the “response to stress” group, from OsSOG1
(306 million years) to Ser/Thr protein kinase (1,714 million
years).

It is known that genes with a greater evolutionary age
participate in the functioning of more fundamental processes
(Wolf et al., 2009; Domazet-LoSo, Tautz, 2010). Variations
in these genes can affect multiple phenotypic traits, which
may complicate selection for target properties. In this regard,
evolutionarily young network genes appear most promising
for marker-oriented selection: OsPR5, OsNAC6, OsMPK3,
R2R3-MYB, OsPR1b, and histone H4.

Conclusion

In this work, a systems approach incorporating a wide range
of bioinformatic methods was applied to search for potential
marker genes aimed at increasing rice resistance to R. solani
under excess nitrogen conditions. Methods implemented in
the Smart Crop cognitive system, ANDSystem, and other
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well-known bioinformatic resources were used. The sys-
tems analysis, implemented as a data processing pipeline,
included: (1) investigation of differential gene expression;
(2) reconstruction and analysis of gene networks; (3) analysis
of biological process enrichment; (4) analysis of gene network
evolution using phylostratigraphic analysis; (5) analysis of
omics data on non-coding RNA co-expression.

Analysis of the molecular genetic interaction network
connecting rice responses to excess nitrogen and R. solani
infection allowed us to propose mechanisms explaining
the deterioration of rice resistance to fungus under elevated
nitrogen fertilizer concentrations. Three potential pathways
were identified: (1) the OsGSK2-mediated pathway: OsGSK2
may be a participant in the pathway linking plant responses to
excess nitrogen and R. solani fungus. At elevated levels, it can
worsen plant resistance to fungus, as shown with Verticillium
dahliae affecting Arabidopsis and cotton. According to
our data, active OsGSK2 levels may be elevated under
excess nitrogen due to decreased expression of its inhibitor
(OsABI2); (2) the OsMYB44-OsWRKY6-OsPR1 pathway:
all participants in this pathway are related to plant protection
from biotic stresses; (3) the SOG1-Rad51-PR1/PR2 pathway:
from transcription factor SOG1 through immune response
gene transcription regulator Rad51 to the PR1 and PR2 genes,
essential participants in pathogen response.

Reconstruction of the extended gene network allowed
identification of potential markers for breeding aimed at
increasing resistance to pathogens (such as R. solani) under
excess nitrogen conditions. The found markers are divided
into two groups: markers controlling rice responses to a
wide range of stresses (7 genes) and markers modulating the
immune system (11 genes).

Among the most important markers are genes that are key
participants in regulatory pathways underlying the rice gene
network response to R. solani pathogen under excess nitrogen
conditions (OsGSK2, JAZ1, PR1/PR2, SOG1).

The obtained theoretical results can serve as a foundation
for further experimental work on creating new rice varieties
with increased pathogen resistance under excess nitrogen
fertilizer conditions. The conducted research opens prospects
for developing innovative strategies in rice breeding aimed at
optimizing the balance between yield and disease resistance
in modern agrotechnical conditions.
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Abstract. Gene regulatory networks (GRNs) — interpretable graph models of gene expression regulation - are a pivotal
tool for understanding and investigating the mechanisms utilized by cells during development and in response to vari-
ous internal and external stimuli. Historically, the first approach for the GRN reconstruction was based on the analysis
of published data (including those summarized in databases). Currently, the primary GRN inference approach is the
analysis of omics (mainly transcriptomic) data; a number of mathematical methods have been adapted for that. Ob-
taining omics data for individual cells has made it possible to conduct large-scale molecular genetic studies with an
extremely high resolution. In particular, it has become possible to reconstruct GRNs for individual cell types and for
various cell states. However, technical and biological features of single-cell omics data require specific approaches for
GRN inference. This review describes the approaches and programs that are used to reconstruct GRNs from single-cell
RNA sequencing (scRNA-seq) data. We consider the advantages of using scRNA-seq data compared to bulk RNA-seq,
as well as challenges in GRN inference. We pay specific attention to state-of-the-art methods for GRN reconstruction
from single-cell transcriptomes recruiting other omics data, primarily transcription factor binding sites and open chro-
matin profiles (scATAC-seq), in order to increase inference accuracy. The review also considers the applicability of GRNs
reconstructed from single-cell omics data to recover and characterize various biological processes. Future perspectives
in this area are discussed.
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MeToabl pEKOHCTPYKIIVI '€ HHBIX PEryASITOPHbBIX ceTeli
Ha OCHOBE TPAHCKPUIITOMHBIX ITAaHHBIX OTAEIbHbIX KJIETOK
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2 HoBocrbrpcKkmii HaLoHanbHbI NCCefoBaTeNbCKUIA FOCYAAPCTBEHHbIN yHUBepcuTeT, HoBOCM6MpCK, Poccna
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AHHoTauusA. [eHHble perynaTopHble CETV — UHTEPNpeTMpYyeMble rpadoBble MOAENU PETYNALMM SKCMPECCUN TEHOB — AiB-
NATCA BaXXHbIM IHCTPYMEHTOM [1A MOHMMaHMA 1 NCCIIeA0BAHNA MEXaH3MOB, KOTOPbIE KITETKU peanun3yioT B NpoLiec-
Ce Pa3BUTKA 1 MPU OTBETE Ha PA3/INYHBIE BHYTPEHHVE 1 BHELHWE CTUMYJIbI. ICTOPMYECK NepBbI MOAXOA AJ1 PEKOH-
CTPYKLMV TeHHbIX PETYNIATOPHbIX CETel OCHOBbIBAMICA HA aHanM3e NUTepaTypHbIX CBEAEHWIA, B TOM Yncsie 0606LeHHbIX
B 6a3ax AaHHbIX. B HacToswwee Bpema OCHOBHOW CNOCO6 CUCTEMHOWN PEKOHCTPYKLUM TeHHbIX PEryNATOPHbIX ceTen —
aHanmn3 OMUKCHbIX (B MepByto ouepeb TPAaHCKPUMNTOMHbIX) [aHHbIX; pa3paboTaH psaj MaTeMaTMYecKmnx NoAxXonoB Ans
pelleHus 3Tol 3afjaun. Pa3BuTre TEXHONOTUIA MOMYYEHVs OMUKCHBIX AAaHHBIX ANS OTAENbHbIX KNETOK cenano Bo3-
MOXXHbIM NMPOBefieHNE LINPOKOMACLUTAGHBIX MOSIEKYNIAPHO-TEHETUYECKMX NCCNeoBaHWi ¢ 6ecnpeLeieHTHO BbICOKUM
YPOBHEM paspelleHns. B yacTHOCTH, NOsABMMACh BO3MOXKHOCTb PEKOHCTPYUPOBATb FeHHblE PErynsTopHble CETU ANiA
OTAESbHbIX KNETOYHbIX TUMOB 1 ANA PA3INYHbIX CTaZNiA Pa3BnTUA KneTok. OgHaKo TeXHNYEeCKre 1 61onornyeckmne oco-
6EeHHOCTN OMUKCHbIX JaHHbIX OTAENbHbIX KNETOK TPeBYIOT CreumanbHbIX Nporpamm Ans pelleHus 1ol 3agaun. B o6-
30pe onucaHbl NOAXOLbl U MPOrPaMmbl, KOTOpble pa3paboTaHbl 1 UCMOSb3YIOTCA AN MOCTPOEHUSA reHHbIX PerynaTop-
HbIX CeTeil Mo TPAHCKPUMTOMHbIM AaHHBIM OTAENbHbIX KNeToK (scCRNA-seq). Pa3bupatoTca npenmyLiecTBa NprMeHeHNs
TPAHCKPUMTOMHbIX JAHHbIX 4J11 OTAENbHbIX KETOK MO CPAaBHEHWIO C TPAHCKPUMNTOMAaMM MHOTOK/IETOUHbIX 06pa3LoB,
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MeTopbl PEKOHCTPYKLM FEHHbIX PETYNIATOPHBIX CETEN
Ha OCHOBE TPaHCKPUMTOMHbIX JaHHbIX OTAEbHbIX KNEeTOK

a TakXe UX HeAoCTaTKN B PamMmKax peLleHrA 3a4aun PEKOHCTPYKLNM PErynaTOPHbIX reHHbIx ceTel. CylecTBeHHOE BHU-
MaHue yaensaeTcA NOBbILEHWIO TOYHOCTU FeHHbIX PErynATOPHbIX CeTel, MOCTPOEHHbIX MO TPAHCKPUNTOMHbLIM JaHHbIM
OTAENbHbIX KNETOK C MOMOLLbIO NPUBSIEYEHMA APYTMX OMUKCHBIX AaHHbIX, B MEPBYI0 ovepefib AaHHbIX MO caiTam CBA-
3blBaHMA TPAHCKPUMNUMOHHbIX GAaKTOPOB 1 NPOodUANPOBaHNA PaioHOB OTKPbLITOro XpomaTtuhHa (SCATAC-seq). Paccmat-
PVBaIOTCA BOMPOCHI MPUMEHMMOCTU NOJTyYaeMblX CeTell B MONEeKYNAPHO-TeHeTUYEeCKNX NCCefoBaHNAX, NPUBOAATCA
npUMepbl YCNeLHOro NCMnoJib30BaHNA FeHHbIX PErynaTOPHbIX CeTel, PeKOHCTPYMPOBAHHbIX PAa3INYHbIMU MeTOAAMK C
NPVIMEHEHVEM OMUKCHbIX fldHHbIX OTAENbHBIX KJIETOK ANA PeLueHnsa KOHKPETHbIX 6ruonornyeckux 3agad. Obcyxaatorca
nepcrneKkTVBHbIE HaMNPaBNEHNUA Pa3BUTKA STON 06nacTu.

KntoueBble crioBa: perynatopHas reHHas ceTb; JaHHble ANA OTAeNbHbIX KNeTok; cekBeHupoBaHue PHK; scRNA-seq;

scATAC-seq.

Introduction

Agene network is a group of coordinately expressed genes that
interact with each other through the RNAs and proteins they
encode, as well as the products of protein activity (Kolchanov
et al., 2013). Gene networks are a central object of systems
biology. To explore specific aspects more deeply, specialized
types of gene networks are distinguished. Among them, gene
regulatory networks (GRNs) hold a special place, as they
describe the regulation of gene expression by transcription
factors (TFs) — a key mechanism for a flexible implementa-
tion of genetic information (Huynh-Thu, Sanguinetti, 2019).
GRNs are visualized as graphs of interactions between TFs
and the genes they regulate (Fig. 1a) (Badia-i-Mompel et al.,
2023). Each node in a GRN represents a gene (some of which
encode TFs), while edges correspond to regulatory relation-
ships between TF-encoding genes and other genes (these re-
lationships may reflect true molecular interactions between
TFs and promoters of their target genes or merely their
statistical correlation). An edge may have a sign indicating
whether it describes activation or inhibition of transcription,
and a weight reflecting the strength of the regulator’s influ-
ence. Thus, GRNs represent models of the logic of regulatory
events between genes during execution of cellular programs
(Tieri, Castiglione, 2021). They provide a viable alternative
to classical modeling with differential equations when kinetic
information is unavailable.

GRNs can be constructed based on information about TFs
and their target genes from publications or inferred de novo
from transcriptomic data (Badia-i-Mompel et al., 2023).
Bulk RNA-seq results in expression levels for each gene
aggregated across all cells in a tissue or organ sample. Bulk
RNA-seq data can be presented as a so-called expression
matrix, which provides the expression values for each gene
(depicted in lines) across different samples (depicted in co-
lumns) (Fig. 1b). Given that gene expression levels in these
matrices result from regulation mediated by TF binding to
gene promoters, a mathematical model can be constructed
to explain the observed gene expression levels (Mercatelli et
al., 2020; Nguyen et al., 2021). Most GRN inference methods
designed for transcriptomic data are based on this premise
(Mercatelli et al., 2020). Currently, GRN reconstruction from
RNA-seq data is one of the topics in systems biology, within
which a large number of methods and software programs
have been developed (Nguyen et al., 2019; Mercatelli et al.,
2020).

At the same time, the approach described above has draw-
backs. First, transcriptomic data do not contain explicit infor-
mation about specific regulatory events (e. g., TF binding to

CUCTEMHAA KOMIMbIOTEPHAA BUOJTIOTUA / SYSTEMS COMPUTATIONAL BIOLOGY

the promoters of the genes they regulate); all TF-target links
are mathematically inferred from gene expression levels. As
a result, non-existent (erroneous) connections may be recon-
structed. Incorporating data that directly describe transcrip-
tional regulation (e. g., genome-wide open chromatin profiles
or TF binding sites) can significantly improve GRN accuracy
(Sonmezer et al., 2020; Isbel et al., 2022). Second, RNA-seq
data do not account for the heterogeneity of cell populations,
whereas gene expression can vary dramatically among differ-
ent cell types. This issue is addressed by scRNA-seq (Tang
et al., 2009).

Single cell transcriptomic data represent an expression ma-
trix where lines correspond to genes and columns correspond
to cells (Fig. 1c), which can be grouped by cell types using
special approaches (Luecken, Theis, 2019). scRNA-seq opens
up opportunities to investigate biological processes at the level
of individual cell types and provides new perspectives for
GRN reconstruction and analysis (Nguyen et al., 2021). GRNs
for individual cell types will allow the discovery of regulatory
circuits specific to cell states or degrees of differentiation.

In this review, we discuss methods for GRN inference from
scRNA-seq data, with a detailed focus on the incorporation of
other omics data, primarily TF binding sites and open chro-
matin profiles. Special attention is given to biological results
that have been achieved through GRN analysis.

Single-cell transcriptomes

as a data source for GRN inference

Besides enabling inference of cell-type specific GRNs,
scRNA-seq data offer other advantages over bulk RNA-seq.
Since the number of interactions within a GRN is typically
quite large, a substantial number of transcriptomic profiles
(columns in the expression matrix, Fig. 1) is required for
their accurate reconstruction. This is not always achievable
with bulk RNA-seq data (Fig. 1b) (Altay, 2012), whereas
scRNA-seq data contain a representative set of transcriptomes
(ranging from several hundred to several thousand) (Fig. 1c)
(Luecken, Theis, 2019).

The ultimate purpose of GRNSs is to outline the dynamics
of gene expression regulation in biological processes, includ-
ing cell differentiation and responses to various internal and
external stimuli. For the most accurate GRN inference from
bulk RNA-seq data, time series experiments are required. In
contrast, sScRNA-seq data from one sample can contain infor-
mation about gene expression changes over time if cells within
the sample participate in the same biological process (e.g.,
differentiation) and are undergoing different stages (Saelens
et al., 2019; Hou et al., 2023). In such cases, computational
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a b c
Samples Cells
@ s1 s2 s3 s4 cde f gh
/ GeneTFT 3 2 2 3 Gene TF1 00 O0OTO
GeneTF2 6 4 5 6 Gene TF2 01100 2
@ @ @ GeneTF3 6 3 4 5 Gene TF3 000120
GeneTF4 3 2 3 4 Gene TF4 01 00O00O0
Gene A 2 1 2 2 Gene A 0100 01
Gene B 2 1 1 3 Gene B 011000
Gene C 1T 1 2 1 Gene C 00O0T1TO0O
GeneB GeneD 1 1 1 0 Gene D 000000

Fig. 1. Gene regulatory network and transcriptomic data behind its construction.

a - visualization of a GRN graph model; b - gene expression matrix constructed from bulk RNA-seq data for several samples (s1-s4); ¢ — gene expression matrix
constructed from scRNA-seq data for a single sample. The graph nodes denote genes, edges reflect regulatory links, including their direction, type (activation or
inhibition of transcription), and magnitude (the larger the weight of the edge, the stronger the regulator’s influence on transcription). Red nodes correspond to
TF-coding genes, white nodes correspond to other genes. In the GRN, edges originate only from TF-coding genes. In panel (c), different colors denote different

cell types.

positioning of cells along a pseudotime trajectory (with the
order of cells defined by the distance between their transcrip-
tomes) allows for a good approximation of gene expression
dynamics throughout the process.

However, it is important to remember that, in some samples,
cells may be in the same state or they can participate in numer-
ous independent processes, making reconstruction of biologi-
cally meaningful pseudotime trajectories impossible (Pratapa
et al., 2020). Therefore, when selecting a method for GRN
inference, it is crucial to determine whether pseudotime infor-
mation is present in the single-cell transcriptome dataset, as
some methods are designed specifically for data with cellular
dynamics, while others are only suitable for static data. There
are also methods that can be applied to both types of data.

At the same time, sScCRNA-seq data have some features that
complicate their analysis, in particular, GRN reconstruction
(Wagner et al., 2016; Nguyen et al., 2021). These concern
transient activation or low expression of certain genes, gene
expression changes during cell cycle, and other factors. The
widespread use of scRNA-seq technology in biology has
led to development of multiple algorithms for analyzing the
data it generates, each addressing these challenges in dif-
ferent ways.

Reconstruction of GRNs from scRNA-seq data

In this section, we describe the main categories of popular
algorithms used for GRN inference from scRNA-seq data
(correlation- and mutual information-based methods, regres-
sion, Bayesian and logical networks, mathematical modeling
with differential equations) (Fig. 2). It is worth noting that
in benchmarking of GRN inference tools on both simulated
and real scRNA-seq data, no single method has proven to be
universally superior (Chen, Mar, 2018; Blencowe et al., 2019;
Pratapa et al., 2020). Such variability may be attributed to the
fact that each method is suitable for specific types and sources
of data for which it was developed.

Correlation-based algorithms

Pearson correlation, a widely recognized statistical index for
calculating the association between two variables, has been

976

applied to measure the co-expression of TF-coding genes and
their potential targets in RNA-seq and scRNA-seq datasets
(Hong et al., 2013; Nguyen et al., 2021). Being symmetric in
its arguments, correlation does not predict the directionality
of regulatory interactions. It can identify associations between
pairs of genes that do not necessarily have a direct regulatory
relationship. Methods such as PPCOR (Kim, 2015) account
for the influence of other genes by calculating semi-partial
correlation coefficients. LEAP (Specht, Li, 2017), an algo-
rithm specifically designed for the analysis of single-cell data,
computes the maximum Pearson correlation between each pair
of genes over varying lag-windows, given that the cells were
arranged in a pseudotime order. Since this type of correlation
is not symmetric, LEAP is capable of reconstructing directed
gene regulatory networks. As a result of testing this program
on transcriptomes from 564 individual mouse dendritic cells,
LEAP identified several thousand previously unknown links
between genes (Shalek et al., 2014).

Mutual information-based algorithms
Information-theoretic approaches utilize mutual information,
which measures the reduction in entropy for one variable
(e.g., the expression level of one gene) given the value of
another variable (e.g., the expression level of another gene)
(Chan et al., 2017; Qiu et al., 2020; Chang et al., 2024). To
reduce false positives arising from indirect interactions be-
tween two genes, methods such as PIDC (Chan et al., 2017)
use partial information decomposition (PID) to compute the
proportional unique contribution (PUC) for a pair of genes that
cannot be explained by the expression of a third gene. Since
this relationship is symmetric, the reconstructed edges are
undirected.

PIDC has been successfully applied to reconstruct GRNs
from single-cell transcriptomes for three processes in mice:
differentiation of megakaryocytes and erythrocytes from a
common precursor, early embryogenesis, and embryonic he-
matopoiesis. In all three examples, PIDC identified previously
unknown links, effectively highlighted gene modules at dif-
ferent stages of differentiation, and suggested gene interac-
tions that facilitate transitions between stages. In a systematic
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Regression (SINCERITIES)
Bayesian networks (GRNVBEM)
Logical networks (SCNS)
Differential equations (GRISLI, WASABI)

Fig. 2. The main categories of popular algorithms used for GRN inference from scRNA-seq data.

evaluation of 12 different GRN inference tools, PIDC was
identified as one of the most effective (Pratapa et al., 2020).

Scribe (Qiu et al., 2020) uses pseudotime to compute re-
stricted directed information (RDI). This measure assesses the
mutual information between the preceding expression level
of a TF-coding gene and the current expression level of a
target gene, which is conditioned by the regulator expression
earlier in the pseudotime series. Since the mutual information
between preceding and current expression is asymmetric,
Scribe can infer directed edges. Scribe has been applied both
for verifying the existence of individual connections in various
gene networks and for inferring the GRN of early embryoge-
nesis in Caenorhabditis elegans, where the known hierarchy
of transcriptional regulation of genes was reproduced.

The third program, SINUM, which also evaluates mutual
information between any two genes and determines whether
they are dependent or independent in a specific cell, has been
tested on various types of data and has shown high effective-
ness in identifying cell types, their marker genes, and gene
connections, as well as in studying changes in gene associa-
tions during the differentiation of human embryonic stem cells
into endoderm (Chang et al., 2024).

Regression-based algorithms

GRNs can be reconstructed by modeling the expression of
each gene as a function of the expression levels of other
genes and solving the resulting system of equations by using
regression-based methods (Huynh-Thu et al., 2010; Gao et
al.,2017; Moerman et al., 2018). GENIE3 employs a random
forest method, which is based on an ensemble of regression
trees (Huynh-Thu et al., 2010). The weight of the edge from
a TF to a target gene arises from the significance of the TF
in predicting the expression of the target gene, averaged
across all regression trees in the random forest. GENIE3 was
developed and has been widely used for bulk RNA-seq data
analysis. The GRNBoost2 software enhances the scalability
of GENIE3, particularly in terms of efficiently processing
large datasets from single cells (Moerman et al., 2018). Both
GENIE3 and GRNBoost2 have demonstrated their effective-
ness in reconstructing GRNs from single-cell transcriptomes,
showing good overlap with known biological interactions
(Kang et al., 2021).

CUCTEMHAA KOMIMbIOTEPHAA BUOJTIOTUA / SYSTEMS COMPUTATIONAL BIOLOGY

The SINCERITIES algorithm was specifically designed
for single-cell transcriptomes and solves a regression model,
which is based on temporal or pseudo-temporal changes in
the distributions of gene expression levels (Gao et al., 2017).
GRNBoost2 and SINCERITIES have been identified among
the most effective algorithms for GRN inference in bench-
marking of 12 programs based on different types of modeling
(Pratapaetal., 2020). However, a recent comparative analysis
of performance across different datasets and metrics revealed
that GRNBoost2 generally outperforms SINCERITIES
and more accurately identifies hubs in GRNs (Stock et al.,
2024).

Bayesian networks

Another GRN inference approach models regulatory interac-
tions within a Bayesian network. The GRNVBEM algorithm
works with time samples, i.e. it requires that cells be sorted
according to pseudotime beforehand (Sanchez-Castillo et al.,
2017). Then it models the fold changes in gene expression
between successive time points as a linear combination from
the expression of gene regulators at the immediate previous
time sample within the Bayesian network. The reconstruction
of GRNs for early embryogenesis in mice and kidney cells of
Danio rerio using this method allowed for the identification
of hubs and the formation of hypotheses about differentiation
regulators.

The HBFM method is based on gene co-expression analysis
that employs a sparse hierarchical Bayesian factor model to
reduce the impact of high intercellular variability and noise
in single-cell datasets on the predicted network (Sekula et
al., 2020). When analyzing single-cell transcriptomes from
mouse brains, the program identified a significant number
of known and putative protein-protein interactions from the
STRING database.

Logical networks

While the previously presented methods infer networks that
describe the regulatory effects of individual TFs, they do
not account for the logical rules governing the combinato-
rial effect of multiple TFs on the expression of a target gene
(Nguyen et al., 2021). For example, regulatory mechanisms
may involve the activation of a gene only in the presence of
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several specific TFs or, alternatively, its inhibition by another
TF regardless of additional factors. Boolean networks are ca-
pable of characterizing these combinations of interactions by
representing the active or inactive state of a gene as a binary
variable, discretized using a gene expression threshold, and
combining these states using AND, OR, and NOT operations
to explain the expression of all genes in the system.

The SCNS program computes logical rules that explain the
progression of gene expression from one pseudotime point
to another (Woodhouse et al., 2018). Application of this pro-
gram to transcriptomes from early-stage human embryo cells
resulted in reconstruction of a core GRN for preimplantation
embryonic development. The LogicNet algorithm employs
probabilistic continuous logic to build a Boolean network, in
which gene expression is modeled as a continuous rather than
binary variable between 0 and 1, allowing for the construc-
tion of GRNs with directed and signed edges (Malekpour et
al., 2020). Using LogicNet, GRNs for early embryogenesis
in mice were constructed.

Differential equations

The presence of pseudotime information in sScRNA-seq data
allows for modeling gene expression using ordinary dif-
ferential equations (ODEs) (Nguyen et al., 2021). Here, the
rate of expression changes for a target gene is a function of
expression of the gene encoding its TF regulator. By solv-
ing this system of equations, regulatory relationships can be
determined based on the weight of each TF in the function,
which describes changes in gene expression. The SCODE al-
gorithm makes a simplifying assumption that changes in gene
expression can be defined as a linear combination of reduced
dimensional spaces to effectively solve a less complex system
of equations using linear regression (Matsumoto et al., 2017).
Alternatively, GRISLI estimates the rate at which the expres-
sion of each gene changes according to the dynamic process
in each cell (Aubin-Frankowski, Vert, 2020). It subsequently
simplifies the system of equations based on the assumption
that the inferred GRN has few regulatory edges compared
to the number of genes in the network, thereby reducing the
problem to sparse regression.

A valuable feature of GRISLI is that it allows cells to
follow multiple differentiation trajectories, whereas most
methods permit only a linear, non-branching trajectory. The
DynGENIE3 algorithm applies the random forest approach of
GENIES3 to solve a system of ODEs, where the change in the
expression of one gene is defined as a potentially nonlinear
combination of the expression of other genes (Huynh-Thu,
Geurts, 2018).

Another class of approaches is based on the observation
that variations in gene expression from cell to cell may arise
from the stochastic nature of molecular regulatory interactions
(Nguyen et al., 2021). The piecewise-deterministic Markov
process (PDMP) defines ODEs for gene expression as a
function of a stochastic two-state Markov process indicating
whether the transcription of the gene is activated, rather than
directly as a function of the expression of regulating TFs
(Herbach et al., 2017).

For each gene, the probability function representing transi-
tions between active and inactive states includes a weight for
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each potential regulator. PDMP uses maximum likelihood
estimation to determine these weights and thus infers the edges
of the GRN. The WASABI algorithm implements an alterna-
tive maximum likelihood estimation based on the concept that
observed increases or decreases in gene expression should
precede transitions between active and inactive states in an
earlier time window (Bonnaffoux et al., 2019). The applica-
tion of WASABI for reconstructing the GRN of erythrocyte
differentiation in birds revealed its unusual properties of this
GRN - absence of hubs, a distributed network structure, and
control of the expression of most genes directly by the factor
inducing differentiation.

Refinement of GRNs reconstructed

from scRNA-seq data through the recognition

of TF binding sites

Despite the widespread use of scRNA-seq data for inferring
GRNSs, the accuracy of reconstructing the actual regulatory
mechanisms based on these data remains unsatisfactory (Chen,
Mar, 2018; Pratapa et al., 2020). This issue arises because pro-
grams for GRN inference from transcriptomic data are based
on the assumption that the identified associations between
the expression levels of TF-coding genes and their potential
target genes imply direct transcriptional regulation. However,
the observed associations may be caused by other biological
phenomena or even random factors. Transcriptomic data do
not contain direct information about regulatory events (e.g.,
TF binding to gene regulatory regions). Thus, it is challenging
to distinguish between direct and indirect regulation based
solely on scRNA-seq data.

To address these issues and enhance the effectiveness of
GRN inference, it is necessary to incorporate additional data
that directly characterize the factors involved in transcriptional
regulation. For example, genome sequences bearing regulatory
codes can be used to identify potential TF binding sites. In
this case, the presence of a TF binding motif in the regulatory
region of the target gene testifies in favor of direct TF-target
gene regulation.

Accordingly, SCENIC utilizes a database of TF binding
motifs to refine GRNs inferred with GENIE3 (Aibar et al.,
2017). It keeps the links in the network only if the motifs,
which correspond to the TF binding sites, are enriched in
the promoter regions of the target genes. A later version,
pySCENIC, employs parallelization to improve SCENIC ef-
ficiency (Van de Sande et al., 2020). In both studies, SCENIC
successfully identified cell types in mouse and human brains
(including those represented by as few as two to six cells),
as well as stages of tumor development that are more dif-
ficult to distinguish than cell types (Aibar et al., 2017; Van
de Sande et al., 2020). It also found a specific set of TFs for
each cell type and tumor stage, including previously unknown
oncological markers. The role of some of these markers in
tumor progression was experimentally validated in the same
studies.

Integration of scRNA-seq and scATAC-seq data

for GRN reconstruction

In the genome, DNA is packaged into nucleosomes — the
basic structural units of chromatin, which hinder TF bind-
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ing to DNA, thereby preventing gene transcription (Parmar,
Padinhateeri, 2020). Activation of genes is only possible
when their regulatory regions are free from nucleosomes. The
nucleosomal packaging of DNAis a regulated process and va-
ries depending on conditions and cell types. The SCATAC-seq
(single-cell Assay for Transposase-Accessible Chromatin
using sequencing) technology allows for identification of
open chromatin areas, i.e., DNA regulatory regions that are
accessible for TF binding, in individual cells (Buenrostro et
al., 2015). Thus, scATAC-seq data can contribute to a more
accurate reconstruction of direct regulatory relationships
between TFs and their targets in GRNSs.

It has been shown that integrating bulk RNA-seq and
ATAC-seq (or other epigenomic data) significantly enhances
the accuracy of GRN inference (Qin et al., 2014; Wang et
al., 2015; Ackermann et al., 2016). This methodology is also
applicable to single-cell sequencing data. However, due to
the specificity of transcriptomic and epigenomic profiles
by cell type and conditions, combining RNA-seq data with
ATAC-seq or ChIP-seq data typically requires that both da-
tasets be obtained from cells of the same type under identical
conditions.

Current technologies allow for simultaneous sequencing
of the transcriptome and epigenome in the same cell (Anger-
mueller et al., 2016; Hu et al., 2016; Chen et al., 2019). An
alternative is the integration of sScRNA-seq and scATAC-seq
data obtained from different biological samples of the same
nature. In this case, an additional challenge for GRN recon-
struction is establishing the correspondence between cell
clusters representing the same type, condition, or state across
two types of sequencing data. So-called diagonal integration
methods are being developed to address this challenge (Ar-
gelaguet et al., 2021).

Since scATAC-seq is most frequently used for epigenome
profiling in individual cells, several bioinformatics tools have
been developed to integrate scRNA-seq and scATAC-seq
data for GRN inference (Loers, Vermeirssen, 2024). GRNs
reconstructed based on these data are specifically referred to
as enhancer GRNs (eGRNs). STREAM reconstructs eGRNs
based on jointly profiled scRNA-seq and scATAC-seq data,
using a Steiner tree problem model, a hybrid biclustering
pipeline, and submodular optimization to infer gene networks
(Lietal., 2024). STREAM has been tested on single-cell data
from human organs with pathologies (Alzheimer’s disease and
lymphocytic lymphoma) and has demonstrated its effective-
ness in reconstructing TF—open binding site—gene connections
along a pseudotime trajectory and in identifying transcriptional
regulations specific to these diseases.

There are also programs that utilize the results of prelimi-
nary separate analyses of sScRNA-seq and scATAC-seq data.
For example, scMTNI takes as input a cell differentiation
scheme, scRNA-seq results, and prior networks based on
scATAC-seq for each cell type (Zhang et al., 2023). The ap-
plication of scMTNI to scRNA-seq and scATAC-seq data
on cell reprogramming in mice and differentiation of human
hematopoietic cells allowed for the construction of eGRNs
for both linear and branching lineages and the identification
of regulators and other components of eGRNs specific to their
fate transitions.
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Conclusion

The identification of gene relationships in regulation of their
expression is a key to understanding the mechanisms that
ensure the realization of genetic information into specific
phenotypic traits. The reconstruction of GRNs based on omics
data from individual cells provides a unique opportunity to
systematically investigate the mechanisms of cellular dif-
ferentiation, as it theoretically allows for the reconstruction
of regulatory gene networks for specific cell types and even
at distinct stages of their development. To date, a number of
methods have been worked out for reconstructing such GRNSs,
many of which are available to users as a software. However,
despite the promising nature of this approach, its potential
has not yet been fully realized. Not all available methods are
user-friendly or easy to interpret.

The shortage of methods for verifying the reconstructed
GRNs is also an ongoing challenge. Perhaps for this reason,
the use of these models in specific biological studies remains
limited, and there are only a handful of successful applications
of single cell GRNs to address biological questions. Further
advancements in molecular genetic technologies for studying
individual cells and computational methods for analyzing the
data they generate (particularly for the purpose of reconstruct-
ing and analyzing GRNs) will significantly narrow the gap
between our knowledge of the molecular determinants of traits
(including at the cellular level) and the transcriptional cas-
cades triggered by external or internal stimuli. Breakthrough
discoveries made with GRNSs reconstructed from single cell
omics data are likely awaiting us in the future.
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Abstract. Neurocomputing technology is a field of interdisciplinary research and development widely applied in mo-
dern digital medicine. One of the problems of neuroimaging technology is the creation of methods for studying human
brain activity in socially oriented conditions by using modern information approaches. The aim of this study is to de-
velop a methodology for collecting and processing psychophysiological data, which makes it possible to estimate the
functional states of the human brain associated with the attribution of external information to oneself or other people.
Self-reference is a person’s subjective assessment of information coming from the external environment as related to
himself/herself. Assigning information to other people or inanimate objects is evaluating information as a message
about someone else or about things. In modern neurophysiology, two approaches to the study of self-referential pro-
cessing have been developed: (1) recording brain activity at rest, then questioning the participant for self-reported
thoughts; (2) recording brain activity induced by self-assigned stimuli. In the presented paper, a technology was tested
that combines registration and analysis of EEG with viewing facial video recordings. The novelty of our approach is the
use of video recordings obtained in the first stage of the survey to induce resting states associated with recognition
of information about different subjects in later stages of the survey. We have developed a software and hardware mo-
dule, i.e. a set of related programs and procedures for their application consisting of blocks that allow for a full cycle of
registration and processing of psychological and neurophysiological data. Using this module, brain electrical activity
(EEG) indicators reflecting individual characteristics of recognition of information related to oneself and other people
were compared between groups of 30 Chinese (14 men and 16 women, average age 23.2 + 0.4 years) and 32 Russian
(15 men, 17 women, average age 22.1 + 0.4 years) participants. We tested the hypothesis that differences in brain acti-
vity in functional rest intervals between Chinese and Russian participants depend on their psychological differences in
collectivism scores. It was revealed that brain functional activity depends on the subject relevance of the facial video
that the participants viewed between resting-state intervals. Interethnic differences were observed in the activity of
the anterior and parietal hubs of the default-mode network and depended on the subject attribution of information.
In Chinese, but not Russian, participants significant positive correlations were revealed between the level of collecti-
vism and spectral density in the anterior hub of the default-mode network in all experimental conditions for a wide
range of frequencies. The developed software and hardware module is included in an integrated digital platform for
conducting research in the field of systems biology and digital medicine.

Key words: neurocomputing technologies; hardware-software module; data processing methods; self-referential pro-
cesses; resting-state EEG; default-mode network; interethnic differences; collectivism.

For citation: Si Q,, Tian J., Savostyanov V.A., Lebedkin D.A., Bocharov A.V., Savostyanov A.N. Comparison of brain activity
metrics in Chinese and Russian students while perceiving information referencing self or others. Vavilovskii Zhurnal
Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2024;28(8):982-992. doi 10.18699/vjgb-24-105

Funding. The development of the hardware-software module was carried out within the framework of the budgetary
project ICG SB RAS No. FWNR-2022-0020. The part of the study concerning the preparation of psychological tests and
selection of experimental groups was carried out with the financial support of the Development Program of Tomsk
State University (Priority-2030).

CorrocTaByieHUe T10Ka3aTejieil MO3roBOil aKTYBHOCTI
V KUTANCKNX U POCCUNCKUX CTYIEHTOB

B VCJIOBUSIX pacIiO3HaBaHUS MHGOpMaInm,
OTHECEHHOI1 K cebe U Ipyrum JIasIM

L. Corl, 1. Taupl, B.A. Caocrbsnos (D13, A A. Ae6eaxun (D14, A B. Bouapos (9% 3, A.H. CaBoctbsnos (D123 @)

© Si Q, Tian J., Savostyanov V.A., Lebedkin D.A., Bocharov A.V., Savostyanov A.N., 2024

This work is licensed under a Creative Commons Attribution 4.0 License


https://orcid.org/0009-0002-4355-1374
https://orcid.org/0000-0002-4356-9067
https://orcid.org/0000-0003-2841-3280
https://orcid.org/0000-0002-3514-2901
https://orcid.org/0009-0002-4355-1374
https://orcid.org/0000-0002-4356-9067
https://orcid.org/0000-0003-2841-3280
https://orcid.org/0000-0002-3514-2901

L. Cbl, L. TaHb, B.A. CaBocTbaAHOB, [1.A. JlebeakuH
A.B. bouapos, A.H. CaBocTbsAAHOB

lMoka3saTenn Mo3roBow akTUBHOCTMN Y KUTAMCKNX U POCCUNCKNX 2024
CTYAEHTOB NPU pacrno3HaBaHUM HGOPMaLUM NPo ceba 1 ApYrrx 28.8

T HoBOCMGMPCKMIN HALMOHAMbHBINM NCCNE[O0BATENbCKII FOCYAaPCTBEHHDIN yHuBepcuteT, HoBocmbupck, Poccna

2 DepepanbHblii NCCNefoBaTENbCKUIA LeHTP VHCTUTYT umTonorum u reHetrkn Cnbrnpckoro otaeneHns Poccuinckoli akagemun Hayk, Hosocnbupck, Poccus
3 HayuHo-nccnefoBaTenbCKuin MIHCTATYT HEMPOHayK 1 MefuUmMHbl, HoBocnbupck, Poccus

4 HawLmoHanbHbIi UccenoBaTenbckuin TOMCKII FoCyAapCTBEHHDIN yHuBepcuteT, Tomck, Poccua

@ a.savostianov@g.nsu.ru

AHHOTauuA. HellpoBbIUNCINTENBbHBIE TEXHOMOTMM — 06MacTb MeXANCLMIMIIMHAPHBIX NCCefoBaHniA 1 pa3pabo-
TOK, KOTOpasA HaxoAuT WMPOKOe NpUMeHeHre B cCoBpeMeHHOW LudpoBon meaguumHe. OaHa 13 3aay HelpoBbI-
YNCINTENBHBIX TEXHONOMUIA COCTOUT B CO3AAHMUN METOLAMK M3YUYEHNA MO3TrOBOI aKTUBHOCTYM YeIOBEKA B YC/TOBUAX
COLMaNIbHO-OPVEHTVPOBAHHON AEATENIbHOCTM MPU NMOMOLLM COBPEMEHHbIX MHGOPMALMOHHbIX noaxogos. Llenb
npegnaraemMoro uccnefoBaHua — paspaboTaTb MeToguky c6opa 1 06paboTKM NCUXOPU3NONOTMUECKNX OaHHbIX,
No3BONALLYI0 N3yyaTb QYHKLMOHANbHbIE COCTOAHMA FONIOBHOMO MO3ra YenioBeKa, acCoLMUPOBaHHbIe C OTHece-
HUeM BHeLHel nHbopmaLnn K camomy cyobekTy nnm apyrum ntoasam. Mo camooTHeceHneMm (camopedepeHumein)
NMOHMMAETCA CyObEKTBHAA OLIEHKA YESIOBEKOM MOCTYMAKOLEN 13 BHELLHEN cpefbl MHPOPMaLMM Kak UMetoLLeit
OTHOWEHNE K HEMY CaMOMy. OTHeceHune VIHd)OpMaLll/IVI K Apyrum niogam mnm HeogylesneHHbIM O6'beKTaM — 3TO
oLeHKa MHbopMaLUM Kak CoobLLEeHMS O KOM-TO APYFOM UK O BeLlax. B coBpeMeHHON HenpodU3monorum cioxu-
NUCb iBa NOAXOAA K MCCnefoBaHUo camopedepeHumm: 1 — pernctpauma MO3roBo akTUBHOCTM B YCJIOBUAX NMOKOsA
C NnocsefyoLWmm ONpPoCoOM YYacTHMKa Ha NpeameT BbiABNEHNA CaMOOTHECEHHDBIX MbICIel; 2 — perncTpaumna mos-
roBOW akKTMBHOCTY, BbI3BaHHOW CAMOOTHECEHHbIMY CTUMYynamu. B npefcTtaBneHHon paboTe 6bina anpobrposaHa
TEXHOJNIOMUSA, COUeTaloWan pPerncTpauuio 1 aHanms 331 ¢ NPOCMOTPOM BULEO3ANMUCEN N30OPAXKEHUIA VLA CaMOro
MCMbITYEMOTO MM HE3HAKOMOTO eMy YenoBeka. HoBM3Ha Hallero nogxoaa COCTOUT B MCMONb30BaHMM BUAeO3anu-
cell YenioBeYeCKoro nnua, NofyyYeHHbIX Ha NepBOM STare 06cnefoBaHNUA, ANA UHAYKLUM COCTOAHMIA NMOKOA, acco-
LMMPOBaHHbIX C pacno3HaBaHeM nHbopMaLmy O pasHbix cyobekTax, Ha 6onee No3aHMX 3Tanax obcnefoBaHUA.
Hamu 6bin pa3paboTaH nporpaMmHO-annapaTHbI MOAYSb, T.€. KOMMEKT CBA3aHHbIX APYr C 4PYrOM MPOrpamMm v
npoueayp vx NPYMeHeHVs, COCTOALWMIN 13 6NOKOB, MO3BONAIOLMX NPOBOANTL MOJHbIN LMK perncTpauum n ob-
PaboTKM NCUXONOTMYECKMX N HENPODU3NONOTMUECKMX AaHHbIX. [Py MOMOLLM 3TOrO MOZY/NA NOKa3aTeNnu NeKTpu-
YeCKOW aKTVBHOCTU rofloBHOro Mo3sra (33[), oTpaxatowme UHANBUAYaNbHbleE OCOOEHHOCTM Pacno3HaBaHWsA UH-
dopmaLuy, OTHECEHHON K camoMy cebe 1 Apyrum Nioaam, Obinv conocTaBieHbl Mexay rpynnamu 13 30 KUTanckmx
(14 My>UnH 1 16 XeHLWKH, cpeaHni Bo3pacT 23.2+0.4 roga) n 32 poccninckimx (15 My>kumH, 17 XeHWWH, cpeaHniA
BO3pacT 22.1+0.4 ropa) y4acTHUKOB. Mbl NpOBepWv FrMNoTesy, YTo Pasnnuma B MO3roBoli akTUBHOCTU B MHTEPBa-
nax GYHKLMOHAIbHOTO MOKOA MEXAY KUTANCKUMU 1 POCCUACKUMM YHaCTHUKaMM 3aBUCAT OT MX NCUXONOTNYECKMX
pa3nnunii B NoKasaTensax Konnektnsmama. boino BbiABNeHO, UTo GYHKLMOHaNbHAA akTUBHOCTb MO3ra 3aBUCUT OT
CYyObEKTHOM OTHECEHHOCTU NIMLEBOIO BUAEO, KOTOPOE YUYACTHMKU NPOCMATPVBaNN MeXAy UHTEpBanamu nokos.
Me>kHaumnoHanbHble pa3nnumsa Habnoaanucb B aKTUBHOCTN NepeHEro 1 3agHero xabos fedonT-cuctembl 1 3aBu-
cenuv oT Cy6bbeKTHOWN OTHECEHHOCTUN MHPOPMaLMK. Y KUTANCKIX, HO HE Y POCCUICKUX YYaCTHUKOB BbIAIBIEHbI JOCTO-
BepHble MONOXMUTENbHbIE KOPPENALMUY MEXAY YPOBHEM KOSINIEKTUBU3MA U CMEKTPASIbHOW NIOTHOCTbIO B NepeHeMm
xabe nedonT-cmcTeMbl BO BCEX IKCMEPUMEHTANTbHBIX YCIOBUAX ANA WMPOKOro pAfAa YacTOTHbIX Anana3oHoB. Pas-
paboTaHHbIM NPOrPaMMHO-anMapPaTHbLIA MOAY/b BKIOUEH B MHTErPUPOBaHHYO LndpPOoBYo niatdopmy Ans npo-
BeJeHUA UCCNefoBaHuil B 0651aCTh CUCTEMHON Gronorum 1 udpoBo MeanLUHbI.

KnioueBble crnoBa: HENPOBbLIYNCAUTENbHbIE TEXHOMOTUI; MPOrPaMMHO-annapaTHbIi MOAYsb; MeTofAbl 06pPaboTKM
[aHHbIX; CAMOOTHEeCEHHble npoLecchl; I3 nokos; AedoNT-ccTemMa MO3ra; MeXXHaALMOHasbHbIE PA3NNUnA; KOeK-
TUBM3M.

Introduction

Neurocomputing technology is a technical field aimed at the
development of methods for collection and computer analysis
of neurophysiological data, which is widely used in digital
medicine to create new approaches to diagnosis and therapy
of diseases. The purpose of neurocomputing technologies is
to develop programs and devices for obtaining information
about the anatomo-functional organization of the nervous
system in the norm and in pathologies.

The theory of reference was proposed in the works of
logicians and linguists of the first half of the 20th cen-
tury (for an overview, see Yakovleva, 2011). Information
referencing is the evaluation of incoming information as
being related to a particular object or subject. The term
“self-reference” refers to the evaluation of an event as be-
ing related to the very subject perceiving information about

CUCTEMHAA KOMIMbIOTEPHAA BUOJTIOTUA / SYSTEMS COMPUTATIONAL BIOLOGY

that event (Northoff et al., 2005; Neff, McGehee, 2010).
The term “self-reference” is fundamentally different in its
content from the terms “reflection” (thinking about oneself)
and “self-control” (controlling one’s actions), as it does not
refer to behavior management or self-assessment, but to the
domain of analyzing the incoming information from the
external environment as relevant or irrelevant to oneself. To
date, two fundamentally different approaches to the study of
neurophysiological markers of subjective attribution of in-
formation have emerged. In the first approach, brain activity
(recorded via EEG, MEG, or fMRI) is recorded in conditions
of functional rest, i. e., without performing experimental tasks
(Knyazev et al., 2012, 2016). After completing the recor-
ding of brain activity, participants are surveyed about their
focus on self-referential events. Another approach is to pres-
ent participants with several sets of stimuli with unambiguous
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attribution to self, familiar or unfamiliar people, or inani-
mate objects (Quevedo et al., 2018; Knyazev et al., 2020,
2024).

The goal of our study is to develop a new experimental
model that combines both approaches described above to
study the self-referential activity of the human brain, i. e.,
those neurophysiological processes that underlie the self-
reference of information. In this model, the participant is
presented with external information (viewing video images)
about him/herself or another person versus observing an
inanimate object. In the intervals between viewing the video
images, the participant closes their eyes and does not receive
external stimulation for some time. The proposed technology
includes a technique for organizing data collection based on
combining EEG recording with video recording of human
faces (Savostyanov et al., 2022), a technique for preprocess-
ing EEG data to clean the target signal from irrelevant noise
(Delorme, Makeig, 2004), a technique for localizing the
sources of brain signals on the cortical surface and search-
ing for statistical relationships between neurophysiological
activity and psychological characteristics of the survey par-
ticipants (Pascual-Margui, 2002). In addition, our approach
includes psychological testing to identify participants’ per-
sonality traits and severity of depression symptoms. Within
the framework of the proposed article, we will test the cre-
ated technology to search for neurophysiological differences
caused by different attitudes toward the self in groups of
Russian and Chinese students. We hypothesize that Russians
are more inclined to individualistic definition of their own
personality, whereas the Chinese are more characterized by
collectivistic ways of self-definition. The developed methods
and computer programs for data collection and processing,
as well as the actual data collected in this study, are included
as one of the modules of the integrated digital platform
“Bioinformatics and Systems Computational Biology”,
which is being developed at the Institute of Cytology and
Genetics of the Siberian Branch of the Russian Academy
of Sciences.

Materials and methods
Software module for data collection and processing. We
have created a software module for data collection and pro-
cessing, which is included in the integrated digital platform
“Bioinformatics and Systems Computational Biology” that
is being developed at ICG SB RAS. The module consists
of both software products developed by the staff of ICG
SB RAS and software tools from open sources. In total, all
the blocks of the module allow us to carry out a complete
cycle of collection and processing of psychological and
neurophysiological data, starting from preliminary inter-
viewing of participants to obtain their consent to be exam-
ined, and ending with statistical processing of the obtained
results. The list of programs included in the module is given
in Table 1.

Subjects. 30 undergraduate and PhD students from China
(14 males and 16 females, mean age 23.2 + 0.4 years) and
32 Russian undergraduate and PhD students (15 males,
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17 females, mean age 22.1 + 0.4 years), all studying at No-
vosibirsk State University, were invited. Before beginning
the experiment, all participants completed a questionnaire
that included questions about the presence of neurological
or psychiatric diseases and alcohol or other psychoactive
substance use. In addition, all participants gave informed
consent to undergo the experimental examination in accor-
dance with the Helsinki Declaration on Biomedical Ethics.
The experimental protocol was approved by the ethical com-
mittee of the Scientific Research Institute of Neurosciences
and Medicine.

Psychological evaluation. Participants filled out psycho-
logical questionnaires for trait-dependent and state-dependent
anxiety (STAI: State-Trait Anxiety Inventory, Spielberger et
al., 1970; Russian-language adaptation by Khanin, 1976), a
questionnaire to assess the severity of depression symptoms
(BDI: Beck’s Depression Inventory, Beck et al., 1996), the
Collective and Individual Self-Concept Test (SCS: Self
Construal Scale, Singelis, 1994), and the Relationally-Inter-
dependent Self-Construal (RISC: Relational-interdependent
self-construal, Cross et al., 2000). The survey was conducted
using a special Internet application developed on the Yandex
platform. Russian participants filled out questionnaires in
Russian; Chinese participants, in Chinese.

Experiment design, stages of data acquisition and pro-
cessing. The experiment method and data processing steps
are presented in the form of a flowchart in Figure 1. EEG
was recorded in a sound- and light-isolated room. During
the course of the experiment, three conditions were fulfilled.
In the first experimental condition, EEG was recorded for
12 minutes without functional load (3 intervals of 2 minutes
each with eyes closed and 3 intervals of 2 minutes each with
eyes open). During the intervals when the subject opened
their eyes, they saw a black screen of a computer monitor.
During this period, the subject had a video image of their
face recorded together with the EEG for all 12 minutes. The
second and third conditions differed from the first in that in
the second condition, with eyes open, the subject saw the
video of their face obtained during the first condition, and in
the third condition, they were presented with a video of an
unfamiliar person’s face (always a male for a male subject
and a female for a female subject). The order of the second
and third task was randomly switched. For about half of the
subjects, the second task came first, followed by the third
task; for the other half, vice versa.

EEG recording. EEG was recorded using an NVX-132
amplifier, Russia. 128 EEG channels were arranged accord-
ing to the international 5-5 % system with reference electrode
Cz, ground electrode AFz, and additional channels for EOG
and ECG. Bandwidth was set at 0.1-100 Hz, signal sampling
frequency, at 1,000 Hz. The EEG recording was done using
the NeoRec recorder software.

EEG preprocessing. Re-reference to the average was
performed to remove artifacts of tonic scalp muscle ten-
sion. Oculomotor and other artifacts were removed from
the EEG using Independent Component Analysis (ICA)
from the EEGLAB software package version 14.1.2b for the
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Table 1. List of hardware and software blocks included in the module for registration

and processing of neurophysiological data

with Internet connection

Bioelectric signal amplifier

Video camera connected

Bioelectric signal amplifier

Block purpose

Conducting remote psychological
testing of participants to assess
their personality traits and severity
of depression symptoms

Recording of brain bioelectrical
activity under conditions
of functional rest

Registration of human
face video recordings

Presentation of facial video recordings
to the subject with simultaneous
recording and annotation of EEG
into resting and stimulation segments

Pre-processing of EEG recordings,
including frequency filtering, signal
re-reference, Independent Component
Analysis, and removal of extracerebral
noise from the EEG signal

Module Name of the software product Hardware required
block and its developer for the software to run
number

1 A special online form implemented Digital mobile device
on the Yandex platform
by ICG SB RAS employees

2 NeoRec Program,

Medical Computer Systems, NVX-132
https://mks.ru/

3 Open Broadcaster Software,

OBS Studio, to a recording computer
https://obsproject.com/

4 A program for markup of EEG
recordings based on facial NVX-132, Steam Tracker
video. Implemented by ICG SB RAS for synchronization
staff on the Inquisit platform, of event marks
https://www.millisecond.com/

5 EEGlab_toolbox, Swartz Center Personal computer
for Computational Neuroscience,
https://sccn.ucsd.edu/eeglab/index.php

6 elLoreta: low resolution brain Personal computer

electromagnetic tomography,
The KEY Institute for Brain-Mind

7 Research,
https://www.uzh.ch/keyinst/loreta.htm

9 IBM SPSS software, IBM,
https://www.ibm.com/spss

MATLAB environment (Delorme, Makeig, 2004). ICA is a
widely used data analysis technique that allows, among other
things, to separate signal from noise. The EEG recordings
were then divided into periods when the participant had their
eyes closed and periods when their eyes were open. Further
analysis was performed only for those EEG intervals that
were recorded with closed eyes but were enclosed by the
periods of the corresponding stimulus observation. Once
these EEG segments were extracted, they were divided into
two-second time intervals.

Brain activity sources localization on the cortex sur-
face. Further analysis was performed using the eLoreta
software package (Pascual-Margui, 2002). eLoreta is a
mathematical model and a software product based on this
model, aimed at solving the inverse problem of EEG, i. e. at
reconstructing the sources of functional processes in the brain
based on computer analysis of the distribution of electrical
signals on the surface of the head. eLoreta allows localization

CUCTEMHAA KOMIMbIOTEPHAA BUOJTIOTUA / SYSTEMS COMPUTATIONAL BIOLOGY

Personal computer

Computation of spectral density
in different frequency ranges

Localization of brain activity sources
on the surface of the cerebral cortex

Conducting regression and correlation
analyses to look for associations between
participants’ psychological traits and their
neurophysiological characteristics

Statistical analysis of the obtained results

of brain activity sources based on interpolation of data from
numerous EEG electrodes.

For each two-second interval, spectral density values
were calculated in the frequency bands of delta (2—4 Hz),
theta (4-8 Hz), alpha-1 (8-10 Hz), alpha-2 (10-12 Hz),
beta-1 (12—16 Hz), beta-2 (16-20 Hz), beta-3 (20-25 Hz),
and gamma (25-35 Hz) rhythms. Then, for each par-
ticipant, the total spectrum over the entire EEG trial inter-
val was calculated separately for each of the three ex-
perimental conditions (150 to 170 two-second intervals
were used for each participant). Spectra were computed
independently for each of the 128 EEG channels included
in the data processing. Source-level analysis of spectral den-
sity comparisons between different conditions (“blank
screen”, “own face”, and “other’s face”) was carried out
in the eLoreta software. A 3,000 ms segment of the EEG
recording with a sampling rate of 1,000 Hz after the onset
of the block was used to calculate the spectral density
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1. Psychological tests \ 2. EEG + facial video recording
for trait anxiety, depression risks, during resting-state

collectivism level via with eyes opened/closed

Yandex platform via NeoRec
%
3. EEG recording during “own face” \ 3. EEG recording during
video demonstration, with eyes Random “other’s face” video demonstration,
opened/closed via choice with eyes opened/closed via
NeoRec / NeoRec

A

4. EEG recording during “other’s face”
video demonstration, with eyes

Y

4. EEG recording during “own face”
video demonstration, with eyes

opened/closed via
NeoRec

.
J

opened/closed via
NeoRec

)

A

/

R

5. EEG preprocessing,
denoising, segmenting via
EEGLAB

6. Cortical spectral
density (SD) estimation via
eloreta

7. Source localization
for SD via
eloreta

8.Statistics for experimental
conditions, psychological traits
and SD via elLoreta

Fig. 1. Flowchart of data collection and processing stages with references to the computer programs used in our study.

of the sources in the eLoreta program (Pascual-Margui,
2002).

Statistical analysis of the results. Statistical analysis
of the psychological assessment results was performed in
the IBM SPSS software program. Comparisons were per-
formed using one-way ANOVA with psychological traits
as an independent variable, and intergroup factors “group”
(Russian or Chinese), “gender” (male or female) and age as
segregating variables.

Dependencies between experimental conditions and EEG
metrics, and between psychological and ethnic characteris-
tics and EEG metrics were assessed in the eLoreta package.
The statistical significance of comparison results between
different conditions was assessed using t-statistics for paired
groups, with a randomization method of statistical nonpara-
metric mapping (SnPM) that includes correction for multiple
comparisons. The SnPM randomization method in eLoreta
is based on a bootstrapping approach and is performed by
multiple nonparametric permutation comparisons. A total
of 5,000 randomizations were used to correct for multiple
comparisons. Correlation analysis was performed to find the
dependency of the spectral density on measures of personality
traits and depression symptoms severity.

Results
Statistically significant results of the study and methods of
their acquisition are presented in Table 2.

Results of psychological assessment

For the index of the anxiety trait according to the STAI test,
the main effect of the “ethnicity” factor was not reliable
(p > 0.3). A significant effect of the “gender” factor was
found, F(1; 62) = 6.47, p=0.014, n?> = 0.100, mean anxiety
in women (30.6 £ 1.6) was higher than in men (24.8 £ 1.7).
The BDI test revealed a statistically significant value of the
“ethnicity” factor, F(1; 62) = 18.62, p < 0.0001, > = 0.243.
The mean depression symptoms severity index was higher
in the Chinese group (9.2 + 1.1) than in the Russian group
(2.8 £1.0).

The RISC questionnaire revealed statistically significant
differences between the ethnic groups, F(1; 62) = 7.27,
p = 0.009, n> = 0.111 in the importance of family values.
The value of family was higher for Chinese participants
(5.1+£0.2) than for Russian participants (4.3 £0.2). The SCS
questionnaire also revealed a highly significant value for the
“ethnicity” factor, F(1; 62)=23.41,p<0.0001,7>=0.288 for
the collectivism indicator. For participants from the Chinese
group, the collectivism index was higher (5.0 = 0.1) than
for participants from the Russian group (4.5 +0.1) (Fig. 2).
There was a significant interaction between the factors
“gender” and “nationality” for this indicator, F(1; 62)=5.87,
p=0.019,1>=0.092. Russian (4.6 £ 0.1) and Chinese women
(4.9£0.1) did not differ significantly in this respect, whereas
for Russian (4.3 + 0.1) and Chinese (5.2 £ 0.1) men, the dif-
ferences were more substantial.
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Table 2. The main statistical results of the study, methods and software products

used for obtaining them

Result Significance
level

Psychological differences in the level p < 0.0001

of collectivism between Russian

and Chinese subjects

Psychological differences in the severity p < 0.0001

of depression symptoms between Russian

and Chinese subjects

Differences in spectral density for different p <0.01

experimental conditions in both groups

Differences in spectral density between p < 0.05

the Russian and Chinese groups

Correlations between spectral density p <0.05

and measures of personality traits
including the collectivism level

Results of eLoreta when comparing different

experimental conditions for a generalized group

(62 subjects, both Chinese and Russian participants)

Using the eLoreta software package, spectral density metrics
were compared for EEG intervals with eyes closed, which
followed intervals of observing one’s own face, another
person’s face, or a blank screen. It was found that spectral
density in the frequency ranges of delta (2—4 Hz), alpha-2
(10-12 Hz), and gamma (25-35 Hz) rhythms was higher
with eyes closed after observing one’s own face than with
eyes closed after observing a blank screen. It should be
specifically noted that muscle artifacts were removed from
the EEG recordings using independent component analysis.
According to Delorme and Makeig (2004), this method gives
the ability to remove more than 80 % of all muscle noise.
This suggests that the amplitude of electrical potentials in
the delta and gamma bands was not simply due to surface
tonic EMG. The statistically most reliable differences
(p=10.0036) were recorded for areas of the prefrontal cortex
of both hemispheres (medial frontal area, 11 Brodmann’s
area, and orbitofrontal cortex, 47 Brodmann’s area) in the
range of the alpha-2 rhythm (Fig. 3a). Similar results were
found when comparing the “other’s face” and “blank screen”
conditions (Fig. 3b). Also, as in the first comparison, spectral
density in the prefrontal cortex in the alpha-2 rhythm band is
shown to be higher for the “other’s face” condition compared
to the “blank screen” condition (p=0.002). When comparing
EEG intervals recorded after observing a stranger’s face, it
was found that the spectral densities in the frequency bands
of alpha-1 (8-10 Hz) and alpha-2 (10-12 Hz) rhythms in
EEG intervals with eyes closed after observing a videotape
of one’s own face were higher than in intervals with eyes
closed after observing a stranger’s face. Significant differ-
ences in spectral density for these conditions (p = 0.0104)
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Statistics method Statistics software

One-way analysis of variance IBM SPSS
(ANOVA)
One-way analysis of variance IBM SPSS
(ANOVA)
t-statistics for dependent eloreta
samples
t-statistics for independent eloreta
samples
Regression analysis eloreta
with an independent variable
>2r F(1;62) = 23.41
T p <0.0001
50} T n2=0.288
Q
©
A 48+
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Russian
participants

Chinese
participants

Fig. 2. Differences between Chinese and Russian participants in terms
of the collectivism score from the SCS questionnaire.

were found for the parietal cortex (superior parietal lobe,
7 Brodmann’s area, Fig. 3C).

Results of eLoreta when comparing

different experimental conditions

for Chinese and Russian participants

Comparison of spectral density indices between the groups
of Chinese and Russian subjects in intervals with eyes
closed following the observation of a blank screen did not
reveal any statistically significant intergroup differences. In
this condition, both groups showed similar spectral density
distributions in all cortical areas and all frequency bands.
Cross-ethnic comparisons in the eyes-closed condition fol-
lowing observation of a videorecording of one’s face revealed
significant differences in the alpha-2 and gamma rhythms
(p=0.044) (Fig. 4). Chinese participants in comparison with
Russian participants showed increased spectral density in the
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Screen vs own face Screen vs other face

Brain activity in the Chinese and Russian students
under recognition of self- and other-related information

Own face vs other face

Fig. 3. Comparison of spectral density in the alpha-2 (10-12 Hz) rhythm when comparing intervals with eyes closed
between conditions (a) blank screen vs own face; (b) blank screen vs other’s face; (c) own face vs other’s face.

The cortical regions in which spectral density is significantly higher for the “face” conditions than for the blank screen condition
are marked in blue. Red color indicates cortical regions in which spectral density is significantly higher for the “own face”

condition compared to the “other’s face” condition.

alpha-2 band in the parietal and temporal cortex (38 Brod-
mann’s area), whereas Russian participants in comparison
with Chinese participants showed increased spectral density
in the medial frontal cortex in the gamma rhythm band (3,
4, and 6 Brodmann’s areas).

Cross-ethnic comparisons in the eyes-closed condition
between the observation of a stranger’s face video also
revealed reliable differences in the ranges of alpha-2 and
gamma rhythms (p = 0.0002), but they differed significantly
from the results obtained for the own-face condition both
in the topography of the effect and in the directionality of
the cross-ethnic differences. Chinese participants in com-
parison to Russian participants showed significantly higher
spectral density in the right inferior temporal cortical area
(38 Brodmann’s area) in the gamma band, whereas Russian

alpha-2-band gamma-band

Fig. 4. Comparison of spectral density in the alpha-2 (10-12 Hz) and
gamma (25-35 Hz) bands when comparing Chinese and Russian groups
for EEG intervals with eyes closed between the participants’ observation
of their own face. This figure shows the superior surface of the cerebral
cortex.

Chinese participants are characterized by a greater, when compared to
Russian participants, spectral density of the alpha-2 rhythm in the posterior
(parietal and temporal) cortical regions (areas marked in red), whereas Russian
participants were found to have significantly greater values of gamma rhythm
spectral density in the medial frontal cortical regions (marked in blue).

participants in comparison to Chinese participants showed
higher spectral density values in both bands (alpha-2 and
gamma rhythms) in the prefrontal cortical areas (medial
frontal area, 11 Brodmann’s area and orbitofrontal cortex,
47 Brodmann’s area) (Fig. 5).

Results of eLoreta in identifying

the effects of psychological measures

dependent on participants’ ethnicity and gender

The correlations between the SCS collectivism score
for the combined group of Russian and Chinese sub-
jects were statistically insignificant. There was no sig-
nificance for the “blank screen” condition (p = 0.1954).
For the “own face” (p = 0.0968) and “other’s face”
(p = 0.0664) conditions for both groups, the p-levels were

alpha-2-band gamma-band

Fig. 5. Comparison of spectral density in the alpha-2 (10-12 Hz) and
gamma (25-35 Hz) bands when comparing the Chinese and Russian
groups for EEG of “eyes closed” intervals between the intervals of the
participants’ observation of a stranger’s face. This figure shows the inferior
surface of the cerebral cortex.

The Chinese group is characterized by a greater, when compared to the
Russian group, spectral density of gamma rhythms in the right inferior
temporal cortex (areas marked in red), whereas the Russian group showed
significantly greater values of spectral density of both alpha-2 and gamma
rhythms in the prefrontal cortex (marked in blue).
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delta-band

Fig. 6. Correlations between the collectivism level
and delta rhythm spectral density in the group
of Russian participants in the “eyes closed” intervals
following the observation of a stranger’s face.

The cortical areas in which reliable positive correlations
of the collectivism level with EEG spectral density
measures were found are marked in red. The figure
shows the convexital surface of the brain.

close to, but did not reach, a significant
value.

In the Russian sample for the collectiv-
ism index, no significant correlations were
found for the “blank screen” or “own face”
conditions. Significant correlations were
found only for the spectral density in the
delta band for the “other’s face” condition
(p = 0.043) in the right temporal cortex
(Brodmann’s area 22) (Fig. 6).

In contrast to the Russian sample, for
the Chinese participants, statistically
significant correlations with the collectiv-
ism score were found for all three condi-
tions (for “blank screen” p = 0.001, for
“own face” p = 0.0032, for “other’s face”
p = 0.0334). One can also notice that
positive correlations with the collectivism
score in the Chinese group were found for
a wide range of delta, theta, alpha, and beta
rhythms. These correlations are mainly
found within the anterior cluster of the de-
fault-mode network (medial sections of the
frontal and prefrontal cortex), and partially
in the right parieto-temporal cortex (Fig. 7).

Discussion

Development of a hardware-software
module for data collection and analysis
The aim of this work was to create a neuro-
computing technology and develop a hard-
ware and software module for collecting
and analyzing data to study brain processes
underlying personal self-reference. We had
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Blank screen

delta-band theta-band alpha-1-band
Own face
delta-band theta-band alpha-1-band beta-1-band
Other face
theta-band alpha-1-band

Fig. 7. Correlations between the collectivism index and spectral density for the blank screen
(first row), own face (second row), and other person’ face (third row) conditions in different
frequency bands for Chinese participants.

The cortical areas that showed positive correlations between the level of collectivism and spectral
density on EEG are marked in red. The figure shows the convexital surface of the brain.

previously proposed an approach that combines the analysis of resting EEG
with the analysis of facial mimetic muscle activity recorded under the same
conditions (Savostyanov et al., 2022). The main result of the new work is
the demonstration of the possibility of using facial video recordings obtained
at the initial stage of the experiment to initiate the participants’ processes of
referencing information to themselves or others. Such data collection model
is combined with well-known approaches for cleaning the EEG signal from
noise (Delorme, Makeig, 2004) and localizing sources of brain activity on
the surface of the cortex (Pascual-Margui, 2002).

One of the results of the study is the development of a hardware-software
module that includes several sequentially connected blocks for experiment
planning, data collection, preprocessing and analysis, as well as for intergroup
statistical comparisons. In the future, this module can be used to conduct
a wide range of neurophysiological studies, including the identification of
markers of affective diseases such as depression, anxiety disorder, or autism
spectrum disorders.

Neurophysiological correlates

of self-referential information processing

Researchers’ interest in studying the neurophysiological mechanisms of self-
referential information processing is driven, firstly, by the fundamental role
of self-reference in the formation of human personality, and secondly, by
the presence of a wide range of psychiatric diseases, the symptoms of which
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are various disorders in personal self-assessment (Bradley
et al., 2016; Quevedo et al., 2018). In modern neurophysi-
ology, there is a debate about the presence or absence of a
specific anatomical substrate for self-referential processes in
the brain (Northoff, Bermpohl, 2004; Northoff et al., 2005;
Hu et al., 2016). The default-mode network, i. e., several
interconnected cortical areas that show a decrease in the
level of physiological activity when a person transitions
from a resting state to performing cognitive tasks, is often
considered as the main self-referential structure of the brain
(Raichle, 2015; Knyazev et al., 2020, 2024).

The construction of a model of one’s own personality is
significantly determined by the subject’s sociocultural speci-
ficity. In a classic study by Markus and Kitayama (1991),
it was shown that representatives of Western (American)
and Oriental (Japanese) cultures differ fundamentally in the
criteria of the so-called “self-concept”, i. e. the way of self-
identification. Most Americans demonstrated individualistic
personal attitudes, whereas collectivism was characteristic
of the Japanese. In a cross-cultural study by G.G. Knyazev
et al. (2012), a comparison of EEG correlates reflecting
default-mode network activity at rest in representatives of
Russian and Chinese (Taiwan) cultures was conducted. It was
shown that most participants from Taiwan were characterized
by dominance of the anterior (medial prefrontal cortex) hub
of the default-mode network of the brain, whereas Russian
participants showed dominance of the posterior (precuneus)
part of this system (Knyazev et al., 2012). A hypothesis was
proposed that interethnic differences in electrophysiological
processes in the default-mode network may be caused by
differences in self-concept according to the individualism-
collectivism criterion, characteristic of representatives
of Russian (predominantly individualistic) and Chinese
(collectivistic) cultures. In our case, we experimentally tested
the hypothesis of Knyazev et al. (2012) using data from the
psychological questionnaires SCS and RISC.

Results of interethnic comparisons

The present study compared two samples of non-clinical sub-
jects living in Russia at the time of the survey — Russian and
Chinese. The examination included filling out psychological
tests to identify the personality traits of the participants and
the severity of their depression symptoms. The neurophysio-
logical part of the examination consisted of EEG recording
in three experimental conditions: (1) in the intervals between
observation of a blank screen, (2) in the intervals between
viewing a video of the participant’s own face, and (3) in the
intervals between viewing a video of the face of a person
unfamiliar to the participant.

Psychological comparisons showed that Russian and Chi-
nese subjects did not differ in the anxiety trait (STAI test).
As for the severity of depression (BDI test), it was found
that Chinese subjects expressed depression symptoms more
strongly than Russian participants. This difference can be
explained by the fact that Chinese participants had been away
from their home for a long time, whereas Russian partici-
pants were in more familiar conditions. In the measures of
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collectivism for both tests we used (RISC and SCS), highly
reliable differences were found between Chinese and Russian
participants. As expected, significantly higher collectivism
scores were found for Chinese participants than for Russian
participants.

Spectral density comparisons between the condition pairs
“blank screen” vs “own face”, “blank screen” vs “other’s
face”, “own face” vs “other’s face” for a generalized group
of all participants regardless of their ethnicity and gender
revealed statistically significant differences, predominantly
in the alpha-2 rhythm range. Differences between neutral
(blank screen) and both social (both own and other’s face)
conditions were localized within the anterior hub of the
default-mode network (medial prefrontal cortex). In both
cases, the spectral density of the alpha rhythm was higher for
the social than for the neutral condition. Differences between
own and strangers’ faces were localized within the posterior
hub of the default-mode network (medial parietal cortex)
and were expressed in higher spectral density for own than
for strangers’ faces.

Interethnic differences, without accounting for sex and
psychological differences, were not detected in the EEG
recorded in the intervals between blank screen observations,
but were detected for the intervals between observations of
both own and strangers’ faces. For the “own-face” condition,
differences were found in the range of the alpha-2 rhythm
in the posterior hub of the default-mode network (Chinese
participants had higher spectral density than Russian partici-
pants), and in the range of the gamma rhythm in the anterior
hub of the default-mode network (Russian participants had
higher spectral density than Chinese participants). For the
“foreign face” condition, a higher density of both alpha and
gamma rhythm sources was detected in the anterior hub of the
default-mode network in Russian participants, whereas for
Chinese participants, a higher spectral density was detected
in the temporal cortex. Thus, our result generally confirms the
conclusion of G.G. Knyazev et al. (2012) about the presence
of interethnic differences in the operation of the anterior and
posterior hubs of the default-mode network.

In the group of Russian subjects, assessments of col-
lectivism correlated with brain activity indices only for the
“stranger’s face” condition. These correlations involved the
posterior hub of the default-mode network. In contrast, in
Chinese subjects, collectivism appeared to be a psychologi-
cal metric for which multiple valid correlations were found
for all three experimental conditions and several frequency
ranges simultaneously. Most of the significant correlations
in the Chinese group were found for brain structures from
the anterior (medial frontal, medial prefrontal cortex) hub of
the default-mode network. Thus, we confirm the hypothesis
that the differences in default-mode network activity between
Russian and Chinese subjects are mainly due to their differ-
ences in the collectivism index.

In general, thanks to the new experimental model proposed
in this study, we were able to confirm G.G. Knyazev’s hy-
pothesis that cross-cultural differences in default-mode net-
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work activity between Chinese and Russian participants are
associated with their differences in collectivism indicators.

As a result of the study, we carried out the initial stage of
development of a complex neurocomputing technology for
collecting and analyzing psychological and physiological
data, which allows to investigate the dynamics of process-
ing self-referential information depending on the cultural
features of the survey participants. The hardware-software
module that we have developed is included in the integrated
digital platform “Bioinformatics and Systems Computational
Biology” being developed at ICG SB RAS under the budget
project No. FWNR-2022-0020. It can be expected that the
obtained approach will be further combined with the results
of neurocomputer studies based on fMRI processing (Haxby
et al., 2001) or with the data from psychogenetic studies.
For example, for a portion of our subjects, data concern-
ing their single-nucleotide polymorphisms in loci of brain
neurotransmitter systems have been collected (Ivanov et
al., 2022). Therefore, the results of psychological and neu-
rophysiological studies can be compared with the genetic
characteristics of the participants. In addition, convolutional
neural networks using EEG metrics as input parameters can
be used to classify participants into subgroups associated
with different levels of stress (Fu et al., 2023).

Conclusion

1. Brain electrical activity recorded during the intervals of
functional rest following stimulation differs for conditions
after presentation of neutral, self-referential, or other-
referential information to participants. This dependence is
evident in measures of the spectral density of the alpha-2
rhythm in cortical regions that are part of the brain’s
default-mode network.

2. Functional activity of the default-mode network in Chinese
and Russian subjects differs in resting intervals following
the observation of subject-referencing stimuli, but does not
differ for intervals following the observation of a blank
screen. Functional activity in the anterior and posterior
hubs of the default-mode network depends significantly
on the ethnicity of the participants.

3. Functional activity in the anterior hub of the default-mode
network is associated with collectivism in Chinese par-
ticipants but not in Russian participants.

Limitations

1. During EEG recording, scalp EMG, which measures
psychoemotional load, was not recorded. Although we
performed the procedure of computing and applying the
average reference, we can assume that the effects of per-
sonality traits and ethnicity in the gamma and beta bands
are related not only to cerebral but also to muscular activity.

2. We chose standard rather than personalized frequency
range boundaries, which may reduce the accuracy of
identifying personalized EEG correlates of cognitive pro-
cesses, especially for the alpha rhythm. Unfortunately, the
software package we chose does not allow us to analyze
spectral density in personalized ranges.
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3. Although all female participants were interviewed before
the experiment to establish the week of their menstrual
cycle, we did not consider the psychoendocrinological
factor of hormonal fluctuation in women when analyzing
the EEG results, which may have reduced the accuracy
of the findings.

We acknowledge all the limitations listed above and will
strive to address them in future studies.
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Abstract. In this part of the study, the first component of the concept of “natural genome reconstruction” is being
proven. It was shown with mouse and human model organisms that CD34+ hematopoietic bone marrow progenitors
take up fragments of extracellular double-stranded DNA through a natural mechanism. It is known that the process
of internalization of extracellular DNA fragments involves glycocalyx structures, which include glycoproteins/protein
glycans, glycosylphosphatidylinositol-anchored proteins and scavenger receptors. The bioinformatic analysis con-
ducted indicates that the main surface marker proteins of hematopoietic stem cells belong to the indicated groups of
factors and contain specific DNA binding sites, including a heparin-binding domain and clusters of positively charged
amino acid residues. A direct interaction of CD34 and CD84 (SLAMF5) glycoproteins, markers of hematopoietic stem
cells, with double-stranded DNA fragments was demonstrated using an electrophoretic mobility shift assay system.
In cells negative for CD34, which also internalize fragments, concatemerization of the fragments delivered into the
cell occurs. In this case, up to five oligonucleotide monomers containing 9 telomeric TTAGGG repeats are stitched to-
getherinto one structure. Extracellular fragments delivered to hematopoietic stem cells initiate division of the original
hematopoietic stem cell in such a way that one of the daughter cells becomes committed to terminal differentiation,
and the second retains its low-differentiated status. After treatment of bone marrow cells with hDNAY, the number
of CD34+ cells in the colonies increases to 3 % (humans as the model organism). At the same time, treatment with
hDNA9" induces proliferation of blood stem cells and their immediate descendants and stimulates colony formation
(mouse, rat and humans as the model organisms). Most often, the granulocyte-macrophage lineage of hematopoiesis
is activated as a result of processing extracellular double-stranded DNA. The commitment process is manifested by
the appearance and repair of pangenomic single-strand breaks. The transition time in the direction of differentiation
(the time it takes for pangenomic single-strand breaks to appear and to be repaired) is about 7 days. It is assumed that
at the moment of initiation of pangenomic single-strand breaks, a “recombinogenic situation” ensues in the cell and
molecular repair and recombination mechanisms are activated. In all experiments with individual molecules, recom-
binant human angiogenin was used as a comparison factor. In all other experiments, one of the experimental groups
consisted of hematopoietic stem cells treated with angiogenin.

Key words: hematopoietic stem cells; extracellular DNA; internalization; terminal differentiation; single-strand
breaks.
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AHHOTauusA. B HacToALen yacTn nccnefoBaHna AOKa3biBaeTCA NepBas COCTaBAOLWAA KOHLENLUN «MPUPOJHON pe-
KOHCTPYKLMY reHoMa». Ha MofienbHbIX OpraHi3max Mbillb 1 YenoBek nokasaHo, 4to CD34+ remonoatuyeckune npeg-
LIeCTBEHHMKM KOCTHOIO MO3ra 3aXxBaTblBalOT GparmeHTbl SKCTpaKkneToyHom aAByuenodyeyHon [IHK ectectBeHHbIM Npu-
POAHbIM MeXaH13MOM. MI3BeCTHO, UTO B MpoLiecce MHTePHaNM3aLmm SKCTPaKNeTouHbix pparmeHTos JHK npuHumatoT
yyacTre CTPYKTYpbl FIMKOKaNIMKCa, B COCTaB KOTOPbIX BXOAAT MMKOMPOTEUHbI/MPOTEOrNKaHbI, rnKko3undochatn-
LVIIMHO3NTOS-3aAKOPeHHble BenKkn 1 cKaBeHKep-peuentopbl. MpoBeaeHHbIN 6MOMHGOPMALIMOHHbIM aHann3 CBU-
[ETeNbCTBYET, UTO OCHOBHbIE NMOBEPXHOCTHbIE MapKepPHbIe BENKM reMOMNOo3TUYECKUX CTBOJOBbIX KJIETOK OTHOCATCA K
yKa3saHHbIM rpynnam ¢akTopos 1 coaepxart crneuunduryeckme canTbl ceasbiaHna [IHK, BknioyatoLme renapuH-cBA3bl-
BalOLLNIN [OMEH 1 KNnacTepbl NOIOXKNTENbHO 3apAMXEeHHbIX aMUHOKUCNOTHBIX OCTaTKOB. C NCNONIb30BaHMEM CUCTEMbI
Electrophoretic mobility shift assay nokasaHo npamoe B3aumopgeiictsre CD34 n CD84 (SLAMF5) rmmkonpoTenHos,
MapKepoB reMono3TUYeCKMX CTBOMOBbIX KNETOK, ¢ dparmeHTamu fByLenoyeyHorn [HK. B kneTkax, HeratusHbIX Mo
CD34, Takke MHTepHanm3yoLWwmx GparmeHTbl, NPONCXOANT KOHKaTeMepr3aLuma AOCTaBAEHHbIX BHYTPb KNeTku ¢par-
MeHTOB. [1py 3TOM B OfiHY CTPYKTYPY CLUMBAETCA A0 NATU MOHOMEPOB ONIMIOHYKNEOTUAOB, COAepKaluMX AeBATb Te-
nomepHbix NoBTopoB TTAGGG. [locTaBneHHble B reMOMo3TMYeCKre CTBOSIOBbIE KNETKM SKCTPAKNIETOYHble GparMeHTbl
VNHULUUPYIOT AeNeHNe NCXOLHOW reMomno3TMYECKOW CTBONIOBOW KNETKM TakM 06pa3oM, UTo OfHa U3 OYEPHUX Kiie-
TOK yX0AWT B TepMUHanbHY0 AnddepeHLMpPOBKyY, a BTopasa COXpaHAeT CBOWN Hu3KoanddepeHUpoBaHHbIN CTaTyC.
B cocTaBe konoHun nocne 06paboTky Knetok KoctHoro mo3sra npenapatom hDNA9Y" konnyectBo CD34+ KeTok Bo3-
pactaeT fo 3 % (MogenbHbIN opraHn3mM — yenosek). OgHoBpeMeHHO ob6paboTka npenapatom hDNAY nHgyumnpyet
nponudepaunio CTBOSIOBbLIX KETOK KPOBU 1 X BNMMXKaLLMX MOTOMKOB U CTUMYNIMPYeT KoNnoHneobpasoBaHme (Mo-
JeNbHble OpraHM3mbl — Mbillb, Kpbica, yenosek). Hanbonee yacto B pesynbrate 06paboTKM SKCTPAKNETOUYHON ABY-
yenoyeyHor [HK akTrBrpyeTca rpaHynoLuTapHo-MakpodarasbHbI POCTOK KPOBETBOPeHHUS. [poLecc KoMMUTMPO-
BaHUA MaHNbeCTMPYyeTCA NOABNEHNEM 1 penapaLlmell NaHFreHOMHbIX OfHOLIENOYEYHbIX Pa3pbiBOB. Bpemsa nepexoaa
B HanpasneHun gudpdepeHUnpPoBKM (BpeMsa NOABNEHUA U penapaumm NaHreHOMHbIX OAHOLENOYeYHbIX Pa3pblBOB)
coCTaBnAeT OKono 7 cyTok. [pegnonaraerca, 4TO B MOMEHT MHULMALMM NaHTEHOMHbIX OfHOLIENOYeYHbIX Pa3pbiBOB
B K/eTKe CO3[aeTcA «PeKOMOVHOreHHan CUTyaLma» 1 akTUBMPYIOTCA MOSIEKYIAPHbIe pernapaTMBHO-PeKOMOVHALMOH-
Hble MexaHM13Mbl. Bo Bcex NpoBefeHHbIX SKCMeprMeHTax No aHann3y MHAMBMAYaNbHbIX MONEKY B KayecTse dpakTopa
CpaBHEHVA NCMOJb30BANICA aHTMOTEHNH PEKOMOUHAHTHBIV YeloBeYeCKMin. Bo Bcex Apyrnx SKCnepruMeHTax O4HOM 13
CpaBHMBaeMbIX Py ABAAANCL FEMOMO3TNYECKME CTBOOBbIE KNETKM, 06paboTaHHble aHMMOreHUHOM.

KnioueBble cnoBa: reMonosTyecKmne CTBONOBblE KNeTKW; IKCTpakneTouHana [HK; nHtepHanusauna; TepmnHanbHasa
anddepeHUNPOBKa; OAHOLENOYEYHbIe Pa3pbiBbl.

Introduction

Hematopoietic stem cell (HSC) and its bone marrow (BM)
niche constitute a unique cell system, which maintains
the balance of blood cell elements and repairs tissue and
organs throughout life. The HSC concept is complex; it
characterizes a number of cellular states and various cell
types of different anatomical localization, developing into
different cell lineages. Three HSC classes are distinguished:
myeloid-biased, lymphoid-biased, and balanced cells; all of

994

them vary in their differentiation capacity, which is fixed
epigenetically. Clonal analysis indicates that these cell
classes are comprised of two populations: short-lived HSCs
and long-lived progenitors. The first cell population enters
the differentiation and proliferation phase within a few
weeks, while long-lived progenitors remain in the quiescent
GO phase for a long time (Muller-Sieburg, Sieburg, 2008).

It is generally believed that long-lived quiescent mouse
HSCs have the following phenotype: Lin— Kit+ Sca-1+
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CD150+ CD34- Flk2— CD48—. There are 30,000 BM
mononuclear cells per one HSC, and about 80 % of HSCs
remain quiescent throughout life (in humans), preserving
their stemness (Morita et al., 2010; Zhang, Sadek, 2014;
Wilkinson et al., 2020).

The HSC is surrounded by different cell types; these
cells create a niche for the implementation of HSC func-
tions. The stem cell niche is composed of endothelial cells,
multiple mesenchymal cells (adipocytes, CXCL12+, ad-
ventitial reticular [CAR] cells, osteoclast-like cells [OLCs],
leptinR+ and nestin+ cells, and NG2+ arteriolar wall cells),
non-myelin-forming Schwann cells, and hematopoietic
cells (macrophages and megakaryocytes) (Lévesque et al.,
2010; Mendelson, Frenette, 2014; Kumar, Geiger, 2017;
Szade et al., 2018; Lucas, 2019).

Two types of HSC niches are currently distinguished in
the adult human BM. The osteoblastic niche is responsible
for the quiescent state of early primitive progenitors that
retain stemness for a long time. Once activated, HSCs dif-
ferentiate into blood precursors located within a vascular
niche, adjacent to sinusoid endothelial cells (Redondo et
al., 2017).

The fundamental characteristic of the primitive HSC
is its immanent choice: to either maintain the quiescent
state and divide symmetrically into two identical HSCs or
divide asymmetrically and give rise to a committed cell
with further development of a certain cell lineage.

The HSC function is directly associated with the balance
between quiescence and activation. A decreased ability of
the HSC to exit quiescence results in insufficient blood cell
reproduction. At the same time, if an unreasonably high
number of cells exit quiescence and do not return to this
state after activation, the HSC pool is depleted, resulting in
BM function failure (Scharf et al., 2020). HSCs of a young
organism are known to divide symmetrically and proli-
ferate more often, while progenitors in adult and aging
organisms are mainly quiescent (Desterke et al., 2021).

The establishment of the HSC state involves numerous
factors. First of all, these are the anatomical localization
of HSCs and the stem niche preserving them, and the
local hypoxia level. Hypoxia is one of the key factors
determining the HSC state, and the majority of quiescent
and primitive HSCs are located in hypoxic BM areas with
reduced blood perfusion (Forristal, Levesque, 2014; Zhang,
Sadek, 2014). Factors secreted by the stem niche and
HSCs, so-called membrane-associated factors (Winkler et
al., 2012; Forristal, Levesque, 2014; Goncalves et al., 2016;
Silberstein et al., 2016; Redondo et al., 2017; Chen T.L.
et al., 2018; Scharf et al., 2020; Desterke et al., 2021), are
important participants of the processes determining the
HSC biological state. Furthermore, the same factor can
induce quiescence in one HSC type and transition to the
cycle and commitment in another type, as it was shown for
angiogenin (Goncalves et al., 2016). Migrating peripheral
leukocytes, histamine and TNF-a secreted by them, and
other BM and peripheral blood cells induce activation of
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quiescent progenitors (Lucas, 2019; Pinho, Frenette, 2019).
Different pharmacological agents, inflammation, starvation,
environmental xenobiotics, and radiation also determine
the HSC’s fate (Chen T.L. et al., 2018; Scharf et al., 2020;
Kiang et al., 2021; Wang et al., 2021).

Unsymmetrical division with subsequent commitment
and proliferation is the basic mechanism of replenish-
ment of blood cell populations. This process presents a
finely regulated sequence of events, involving a diverse
and abundant set of inducers. As previously mentioned,
terminal differentiation, proliferation, and mobilization of
HSCs can be activated by such environmental factors and
body physiological systems as integral stimuli forming the
common response vector of the HSC and its environment
(the stem niche). This process results in activation of mo-
lecular signaling cascades and gene platforms determining
the fate of the HSC and its committed progenitor (Kulkarni,
Kale, 2020). Inflammation is one of the initiating factors
in this process. As a result of the inflammatory response,
a huge variety of active molecules are released into the
bloodstream and lymphatic system, including a palette
of pro-inflammatory cytokines, glucocorticoids (Pierce et
al., 2017), granulocyte-macrophage colony-stimulating
factor (GM-CSF), etc., which are the trigger releasing the
resting HSC into the cycle. In addition, a large amount of
apoptotic cell DNA (self-DNA) and pathogen-associated
double-stranded DNA (dsDNA) and RNA appears in the
bloodstream during both sterile and pathogen-induced
inflammation (Jiang, Pisetsky, 2005; Saitoh et al., 2010;
Laukova et al., 2019; Korabecna et al., 2020; Kananen et
al., 2023). The involvement of the inflammatory process
in HSC terminal differentiation indicates that all factors
released into the blood during inflammation, including
fragments of extracellular self/pathogen-associated DNA,
affect the decision-making of primitive progenitors in a
transient, competitive or restricted manner (Seita, Weiss-
man, 2010). The inflammation is considered to shift dif-
ferentiation of hematopoietic progenitors in the myeloid
direction (Kovtonyuk et al., 2016).

Our recent studies have shown that stem cells of dif-
ferent genesis, cancer stem cells (Ritter et al., 2022), and
HSCs (Potter et al., 2024) internalize extracellular dsSDNA
fragments through a natural mechanism. We propose that
this newly discovered feature of poorly differentiated cells,
including HSCs, is a transitional intermediary element in
understanding the processes that take place in hematopoi-
etic precursors, including the exit to terminal differentiation
and proliferation upon their interaction with extracellular
dsDNA fragments circulating in the blood.

There is another phenomenon that is the cornerstone of
the concept proposed in the first part of the study. It is the
presence of single-strand breaks (nicks) in the stem cell
genome and their association with terminal differentiation
of progenitors.

This phenomenon was first reported in studies conducted
on a series of eukaryotic models at the end of the previous
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century. To analyze the events occurring in the nuclear
chromatin during commitment, the following inducers
were used: DMSO, sodium butyrate, butyrylcholine, and
retinoic acid. Single-strand breaks were detected using
sedimentation assay (Jacobson et al., 1975; Scher, Friend,
1978), hydroxyapatite chromatography (Pulito et al., 1983),
alkaline filter elution (McMahon et al., 1984; Boerrigter
et al., 1989; Kaminskas, Li, 1989), in situ nick translation
(Iseki, 1986; Patkin et al., 1995), and alkaline electropho-
resis (McMabhon et al., 1984; Vatolin et al., 1997). It turned
out that formation and repair of single-strand breaks is a
dose- and time-dependent process that does not correlate
with the direction of differentiation (Scher, Friend, 1978;
Farzaneh et al., 1982).

Chromatin nicking was shown to be associated with the
activity of calcium/magnesium-dependent DNases, i.e. it
is an enzymatic process, and single-strand breaks occur
randomly (McMahon et al., 1984; Kaminskas, Li, 1989).
Repair of single-strand breaks involves ADP-ribosyl trans-
ferase, which, in turn, is also believed to regulate differen-
tiation through stimulation of ligase activity (Farzaneh
et al., 1982; Johnstone, Williams, 1982). Quite peculiar
and complex results were obtained in the study (Patkin et
al., 1995). In this work, using in situ nick translation, the
authors established that metaphase chromosomes in stem
cells contain numerous nicks in the phase of transition to
a committed state.

Thus, the presence of single-strand breaks was shown
to closely correlate with terminal differentiation of stem
cells. This event is considered the earliest manifestation of
initiated commitment. These breaks are not associated with
apoptosis, they do not result in cell death, and chromatin
integrity is restored after a certain time. A possible explana-
tion for this phenomenon is activation of genes necessary
for commitment at this point in time (Jacobson et al., 1975;
Farzaneh et al., 1982). We believe that this phenomenon
is the cornerstone of the entire differentiation process: a
biological, supramolecular, and large-scale manifestation
of a change in the cell biological status. It is pangenomic
single-strand breaks that allow the cell, apparently with
minimal energy costs, to reorganize the chromatin topology
ofthe undifferentiated state into a new architecture required
for cell specialization (which, naturally, is associated with
a fundamental change in the platform of expressed genes,
as follows from the reasoning in the work (Jacobson et al.,
1975; Farzaneh et al., 1982)). This is the phenomenon we
attempted to characterize in the current part of the study
within the new experimental framework, where extracel-
lular dsSDNA fragments act as the inducer.

Unfortunately, we did not manage to find studies on the
presence and repair of single-strand breaks in hematopoietic
stem cells in the available literature for the past 20 years. It
is absolutely unclear why this area characterizing terminal
transition of poorly differentiated stem cells of various
origin has not received further development.

Therefore, in the second part of the work cycle, we ana-
lyzed internalization of dsDNA fragments in cells and their
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induction of terminal differentiation of progenitors, which
manifests itself in the formation and repair of pangenomic
single-strand breaks.

Materials and methods

Experimental animals. The following animals were
used in the study: male CBA/Lac mice aged 2—5 months,
9-12 months old male CBA/Lac mice, male Wistar rats
aged 2—6 months, and 18-22 months old male Wistar rats.
All animals were bred at the Conventional Vivarium of the
Institute of Cytology and Genetics of the Siberian Branch
of'the Russian Academy of Sciences (Novosibirsk, Russia).
Animals were kept in groups of 6—10 mice and 3—4 rats
per cage with free access to food and water. All animal
experiments were approved by the Animal Care and Use
Committee of the Institute of Cytology and Genetics of
the Siberian Branch of the Russian Academy of Sciences.
Mice were withdrawn from the experiment by cervical
dislocation, and rats were either euthanized using CO, or
decapitated.

Human bone marrow cells. Cryopreserved bone mar-
row cells from patients with Hodgkin lymphoma were
used in the study. Cells were provided by the Cryobank
of the Research Institute of Fundamental and Clinical
Immunology.

hDNAUY". The hDNAY" preparation (DNA genome recon-
structor) was isolated from placentas of healthy women.
Total genome DNA was fragmented to 1-20 nucleosome
monomers (200-2,000 bp) by ultrasonic disintegration,
deproteinized using proteinase K, and extracted with phe-
nol-chloroform.

Angiogenin. Recombinant human angiogenin was
provided by Angiopharm Laboratory LLC (Novosibirsk,
Russia). Angiogenin was labeled with Cy5 according to
the manufacturer’s instructions (Lumiprobe, Germany).

TAMRA-labeled DNA probe. Human Alul repeat DNA
was labeled with the fluorescent dye TAMRA by PCR using
TAMRA-5'-dUTP (deoxyuridine triphosphate) as described
in (Dolgova et al., 2014).

Assessment of change in gel mobility of the complex
of CD34 and SLAMF5 proteins and DNA probes. To
analyze the interaction of the CD34 and SLAMFS5 pro-
teins with TAMRA-labeled DNA probe and P32-labeled
double-stranded (TTAGGG), telomeric repeat, protein
and DNA samples were incubated at different ratios and
for different time periods in 10 mM PBS buffer at 37 °C
(see Figure 1 caption). Incorporation of yP32-ATP and na-
tive polyacrylamide gel electrophoresis were performed
according to standard procedures (Maniatis et al., 1984;
DNA Cloning..., 1985).

Isolation of bone marrow cells. To isolate the BM,
animals were withdrawn from the experiment, femurs and
tibias were isolated, epiphyses were removed, and BM
cavity was washed with IMDM + 2 % FBS. The resulting
cell suspension was passed through a 21-gauge needle
several times to eliminate BM rosettes and then through a
40-um filter. Cells were pelleted for 10 minutes at 400 g
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and resuspended in red blood cell lysis buffer containing
130 mM ammonium chloride for 3—5 min. The buffer was
then diluted 10-fold with PBS, cells were re-pelleted, re-
suspended in IMDM medium, and counted in a Goryaev
chamber.

Internalization of DNA and angiogenin by human and
mouse HSCs. To stain HSC colonies, mouse anti-Sca-1 and
anti-c-Kit antibodies and 0.1 pg of TAMRA-labeled DNA
were added to cells in 100 pl of IMDM medium using the
manufacturer’s protocol. The resulting mixture was care-
fully plated in 35-mm Petri dishes with HSC colonies by
avoiding the contact with methylcellulose and colonies
and then spread over a small surface area. A laser scanning
confocal microscope LSM 780 NLO (Zeiss) and ZenLight
software were used for data collection and imaging.

To quantify TAMRA-positive (TAMRA+) cells in BM
cells and colony cell suspension, 1> 10° cells were incu-
bated in 400 ul of IMDM supplemented with 0.1 ug of
TAMRA-labeled DNA for 30 min at room temperature in
the dark. Cells were pelleted for 5 min at 400 g and 25 °C,
washed in a small medium volume, and resuspended in
the final medium volume. The same protocol was used for
staining and analysis of c-Kit+/Sca-1+/TAMRA+ cells.

For fluorescence confocal microscopy analysis, 5 pg of
Cy5-labeled angiogenin with and without antibodies was
added to 3 x 10° BM cells and colonies resuspended in 1 ml
of cell culture medium in a 12-well plate. After 30—60-min
incubation, cells were analyzed on a laser scanning con-
focal microscope LSM 780 NLO (Zeiss) using ZenLight
software. FACS analysis of cells was performed on a BD
FACSAria III flow cytometer at the Flow Cytometry Center
for Collective Use of the Institute of Cytology and Genetics
of the Siberian Branch of the Russian Academy of Sciences.

DNA quantification in HSCs. For incubation of HSC
colony cells with the human Alu repeat, colonies obtained
after BM cell induction with hDNAY" were collected from
two 35-mm Petri dishes on day 10 by adding 8 ml of
IMDM. Cells were pelleted by centrifugation at 400 g for
8 min, washed with 2 ml of the medium, and re-pelleted.
A fragment of the human Alu repeat was added to cells to
a concentration of 0.23 pg per 1x10° cells; the mixture
was incubated for 30 min. Cells were washed, pelleted
by centrifugation at 400 g for 5 min, and resuspended in
1 ml of PBS.

Real-time PCR was conducted using the BioMaster
RT-qPCR kit (SYBR Green dye) (#RM03-200, Biolabmix,
Russia). Standard M 13 primers (M 13 forward: 5'-GTAAA-
ACGAC-GGCCA-G-3', M13 reverse: 5'-CAGGA-AAC
AG-CTATG-AC-3') and different amounts of Alu repeat
DNA (0-5,000 pg) were used to obtain the calibration
curve. Each concentration was used in triplicate. The linear
dependence of Ct on Alu DNA load was constructed using
Bio-Rad CFX Manager v3.1 software.

Treatment of BM cells with inducers. BM cells iso-
lated from old animals and BM sections from patients with
Hodgkin lymphoma were incubated with inducers (hDNA"
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or angiogenin or two inducers simultaneously) for one hour
in the 5 % CO, atmosphere with 95 % humidity at 37 °C
at the following ratio: 500 pg of hDNAY" or 500 ng of an-
giogenin or 500 pg of hDNAgr and 500 ng of angiogenin
in 1 ml in serum-free MDM medium per 3 x 10 cells.
Control (untreated) BM cells were incubated in serum-free
IMDM complimented with the PBS volume equal to that
of the inducer added to activate BM cells. We use the term
“inducer”, which designates both DNA and angiogenin in
the current study, to characterize any intended and expected
HSC response induced by exposure to them.

Cultivation of BM cells in methylcellulose medium.
BM cells with/without inducer activation were pelleted
for 10 min at 400 g and resuspended in IMDM +2 % FBS.
To quantify and analyze myeloid precursors, we placed
mouse BM cells in the MethoCult M3434 methylcellulose
medium, and rat and human bone marrow cells, in the
MethoCult H4034 methylcellulose medium (Stem Cell
Technologies). Methylcellulose analysis, colony counting,
and cell isolation from methylcellulose after cultivation
were carried out according to the manufacturer’s instruc-
tions. The analysis was performed in 35-mm Petri dishes,
which were stored in a Petri dish of a larger diameter with
additional humidification of the internal atmosphere during
colony formation.

Comet tail assay for analysis of single- and double-
strand breaks. BM cells isolated from old mice and BM
sections from patients with Hodgkin lymphoma after
incubation in the presence/absence of inducers (hDNAY',
angiogenin, and hDNA9%+angiogenin) were cultured for
10—12 days in methylcellulose medium. Colonies isolated
from methylcellulose were pooled and washed from the
medium according to the manufacturer’s instructions. The
resulting colony cells were counted in a Goryaev chamber
and incubated with inducers. Cells were re-pelleted for
10 min at 400 g, resuspended in IMDM +2 % FBS, placed
in methylcellulose, and seeded into 24-well plates. A cell
sample was collected every day at the same time (24, 48,
72, 96, 120, and 144 hrs after the start of treatment with
inducers) and washed from methylcellulose. Colony cells
were embedded into slow-melting 1 % agarose blocks
in the amount of 5x103 cells per 1 block. Blocks were
stored in 0.5 M EDTA at 4 °C prior to analysis. The zero
point presents colony cells prior to repeated treatment
with inducers.

Prior to electrophoresis, blocks were rinsed in TE buffer,
incubated with a lysis buffer (50 mM EDTA, 1 % sarcosyl
(Serva, Heidelberg, Germany), and 1 mg/ml proteinase K
(Thermo Fisher Scientific, Waltham, USA)) for 20 min at
50 °C.

Prior to native electrophoresis, blocks were stained for
10 min in TAE buffer containing 0.5 pg/ml ethidium bro-
mide (Medigen, Novosibirsk, Russia). Blocks were fixed on
an agarose support, native electrophoresis was performed in
1xTAE buffer at 36 V and 299 mA (Model H4 Horizontal
Gel Electrophoresis System (BRL, USA)) for 30 min.

BUOMEANLUMNHA / BIOMEDICINE 997



V.S. Ruzanova, S.G. Oshikhmina, A.S. Proskurina ...
N.A. Kolchanov, E.V. Dolgova, S.S. Bogachev

Alkaline electrophoresis was carried out in a buffer con-
taining 300 mM NaOH and 1 mM EDTA (pH > 13).
Prior to alkaline electrophoresis, blocks were rinsed in the
electrophoretic buffer and fixed on an agarose support.
The support with blocks was placed in the electrophoretic
buffer for 30 minutes. Alkaline electrophoresis was per-
formed at 36 V and 299 mA (Model H4 Horizontal Gel
Electrophoresis System chamber (BRL, USA)) for 30 min.
After electrophoresis, the support with blocks was trans-
ferred to a neutral buffer containing 0.4 M Tris (pH 7.5)
for 15 min. The neutral buffer was then replaced with a
new one, 1 pg/ml of ethidium bromide was added, and the
support with blocks was stained for 30 min.

The support with blocks was rinsed with distilled water.
Preparations were obtained and dried at 37 °C for 24 hrs.
After drying, preparations were washed in distilled water
for 0.5—1 h. Microscopic analysis was performed on a Zeiss
Axio Imager M2 (Carl Zeiss Microscopy, Oberkochen,
Germany) at the Center for Collective Use for Microscopic
Analysis of Biological Objects of the Institute of Cytology
and Genetics of the Siberian Branch of the Russian Aca-
demy of Sciences. Comet tail values were assessed using
CASP (CASP, Wroctaw, Poland) and ImageJ software.

Statistical analysis. Statistical analysis was performed
using Statistica 8 software (StatSoft, USA). The reliabil-
ity of differences was assessed using the Mann—Whitney
U-test. Statistical significance is indicated in figure legends
(p<0.050rp<0.01).

Results

HSC capability to internalize dsDNA fragments

Our recent studies (Dolgova et al., 2014; Petrova et al.,
2022; Ritter et al., 2022) report a new general biological
property of stem cells of various genesis. We confirmed
experimentally that mouse HSCs, as well as all poorly
differentiated cells of higher eukaryotes analyzed by us,
including cancer stem cells, can capture dsSDNA fragments
from the environment through a natural mechanism. The
interaction of extracellular DNA molecules with the cell
and their internalization are mediated by the glycocalyx
elements of glycoproteins/proteoglycans, glycosylphospha-
tidylinositol-anchored proteins, and the scavenger receptor
system through the caveolae/clathrin-dependent mecha-
nism. The most important and characteristic feature is the
uniqueness of the pattern of glycoproteins/proteoglycans,
glycosylphosphatidylinositol-anchored proteins, and sca-
venger receptors located on the surface of an individual cell
type. This uniqueness is determined and limited by three
functional domains composed of their different representa-
tives, namely, molecules of glycoproteins/proteoglycans,
glycosylphosphatidylinositol-anchored proteins, and sca-
venger receptors. In other words, each stem cell can have
at least three functional domains that determine its interac-
tion with extracellular double-stranded nucleic acids and
internalization of the latter. For dSDNA molecules, the
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heparin-binding domain, which is presented in various cell
surface proteins either by the C1q domain, heparin-binding
domain or the domain of positively charged amino acids,
is the main binding site (Petrova et al., 2022; Ritter et al.,
2022).

Is this work, we also carried out FACS and immuno-
fluorescence analysis of the capability of human HSCs to
internalize extracellular dSDNA fragments in comparison
with mouse HSCs. Recombinant human angiogenin was
used as a reference factor, since its effect on the cell is
well-studied. We also quantified extracellular dsDNA inter-
nalized in human CD34+ HSCs.

As mentioned above, glycocalyx factors (glycoproteins/
proteoglycans, glycosylphosphatidylinositol-anchored
proteins, and scavenger receptors) play a major role in
DNA internalization into stem cells. We analyzed the re-
cent literature, presenting an atlas of human HSC surface
markers, for the presence of these types of proteins (Rix
et al., 2022). We found that specific domains determining
internalization of extracellular dSDNA fragments (clusters
of positively charged amino acid residues and the heparin-
binding domain) are located in the sequences of the selected
proteins. The analysis results are presented in the Table. We
found that several surface glycoproteins characteristic of
HSCs, mainly CD34, contain domains required for inter-
nalization.

Characterization of direct molecular interaction
between dsDNA Alu-TAMRA/telomeric repeat (n = 9)
and HSC marker proteins CD34 and CD84 (SLAMFS5).
In our studies (Petrova et al., 2022; Ritter et al., 2022),
we propose and confirm the hypothesis that dsSDNA inter-
nalization in various stem cells is mediated by the deve-
loped glycocalyx structure on these cell membranes. The
glycocalyx is composed of proteinglycans-glycoproteins,
glycosylphosphatidylinositol-anchored proteins, and sca-
venger receptors. The interaction with these proteins is con-
sidered to have a complex physical and molecular hierar-
chy, and the physical contact between dsDNA and the above
factors is believed to be the basis for “dragging” dsDNA
into the cell.

In the current series of experiments, we attempted to
assess the possibility of a direct physical interaction
between the two types of molecules: dsDNA and HSC
marker proteins. The following repeats were used as the
dsDNA substrate: TAMRA-labeled Alul probe, which is
commonly used in the laboratory, and a telometic repeat
(n =9) in the form of P32-labeled 54-bp double-stranded
oligonucleotide. CD34 and CD84 (SLAMFS5) were selected
as response factors. The main characteristics of the interac-
tion between these proteins and dsDNA are presented in
the Table. Experimental results are shown in Figure 1 and
described in detail in the figure caption. In this part of the
study, in a direct experiment, we first demonstrated the
possibility of the chemical/molecular/physical interaction
between dsDNA and specific HSC surface markers CD34
and SLAMFS.
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Specific human HSC surface proteins containing domains of positively charged amino acids

and the heparin-binding domain

Surface HSC Name Positively charged Heparin/DNA-binding sites

markers amino acids

CD90 Thy-1 membrane glycoprotein -FSLTRETKKHVLFGTVG- -

CD34 CD34 molecule -LVRRGARAGPRMPRGW- -EVRPQCLLLVLANRTE-
-ISSKLOLMKKHQSD-

KIT KIT proto-oncogene, receptor tyrosine kinase -FLRRKRDS- -
-ADKRRSVRIG-

VNN2 (GPI-80) Vanin 2 -EGKLVARYHKVC- -

SPN (CD43) Sialophorin -LLLWRRRQKRRTGA- -RQKRRTGALVLSRGGKRN-
-FGRRKSRQGS-

CD44 CD44 molecule -ILAVCIAVNSRRRCGQKKKLV- -

cbo CD9 molecule -AIRRNREM- -

CD48 CD48 molecule -FESKFKGRVRLD- -
-GDKRPLPKEL-

CD84 CD84 molecule -TTKRYNLQIYRRLGKPKITQ- -LFKRRQGRIF- (a-helix)

ITGA6 (CD49f) Integrin subunit alpha 6 -ESHNSRKKREI- -TLKRQKQK-

-FFKRSRYD-

GPRC5C G-protein coupled receptor class C group 5 member C~ -CGRYKRWRKHGV- -

PROCR (EPCR) Protein C receptor - -

RET Ret proto-oncogene -VSRRARRFA- -ALRRPKCA-

PROM1 (CD133) Prominin 1 -QVRTRIKRSRKLA- -DCKKNRGT

CD59 CD59 molecule - -

PTPRC Protein tyrosine phosphatase receptor type C -DLHKKRSC- -LRRQRCL- (a-helix)
-ELRHSKRKDS-

Note. Clusters of positively charged amino acids are highlighted in green, DNA-binding sites are indicated in red, and heparin-binding sites are denoted

in blue.

Demonstration of internalization of extracellular
dsDNA fragments in HSCs (Scal+ for mouse and CD34+
for human). Using fluorescence microscopy and FACS,
we demonstrated the presence of labeled dsDNA probe in
human CD34+ BM cells and mouse Scal BM cells. Mouse
primitive Scal hematopoietic cells and human CD34+ stem
cells also internalize the reference factor human recombi-
nant angiogenin (Supplementary Material 1)'. Analysis of
the amount of dSDNA probe delivered into human CD34+
HSCs indicates that ~0.02 % of extracellular fragments (in
terms of the haploid genome) are found in the internal space
of this cell type. The calculations obtained are in agreement
with our numerous estimates, indicating that stem cells of
various genesis, depending on their origin and state, capture
~0.01-3.0 % of extracellular dsDNA fragments (in terms
of the haploid genome) (Dolgova et al., 2013, 2016, 2019;
Potter et al., 2018, 2024).

T Supplementary Materials 1-6 are available at:
https://vavilov.elpub.ru/jour/manager/files/Suppl_Ruzanova_Engl_28_8.pdf

We carried out a series of experiments that directly
demonstrated internalization of extracellular DNA frag-
ments in HSCs (Scal+ for mouse and CD34+ for human)
derived from BM cells (Fig. 2A, B). Molecule internaliza-
tion in the cell includes the following phases: mobiliza-
tion on the cytoplasmic membrane, internalization, and
the presence and processing stage. In this regard, in order
to avoid speculations on whether DNA molecules mobi-
lized on the cytoplasmic membrane are detected in the
experiment, we developed and applied a protocol of cell
sample preparation, which is described in Supplementary
Material 2.

It can be seen that original dsDNA probe molecules
developed into forms containing up to 67 repeats (300—
350 bp) of the original fragment (54 bp) (indicated with
black arrows) in cells negative for both mouse and human
HSC markers (Fig. 2C). This fact is in good agreement
with our previous results (Dolgova et al., 2013; Potter
et al., 2018, 2024). In addition, the presence of labeled
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Fig. 1. Analysis of direct molecular interaction between Alu-TAMRA/telomeric repeat dsDNA (n = 9) and HSC marker proteins CD34
and CD84 (SLAMF5).

A - electrophoresis of analyzed factors in 10 % SDS (1) and 10 % native tris-borate horizontal (2) polyacrylamide gel. HSC markers do not have
electrophoretic mobility in native conditions and thus do not enter the gel. The part of the gel with a dark field on the right panel demon-
strates migration of the Alul dsDNA probe. B — change in electrophoretic mobility of factor samples after formation of complexes with the
TAMRA-labeled Alul DNA probe. The migrating fraction of proteins (CD34 and SLAMF5) is clearly seen, which indicates that protein molecules
are charged; the charge is apparently due to the DNA molecule the protein has formed a physical bond with (indicated with arrows). No
changes in protein migration are detected in BSA. C - evaluation of some parameters of TAMRA Alul DNA probe-SLAMF5 complex formation.
The left panel presents an electropherogram of the DNA probe-SLAMF5 complex in a native 6 % polyacrylamide gel. The amount of protein
loaded on the gel is the same in control and experimental samples. The formation of a migrating protein fraction and a simultaneous decrease
in its amount at the start are clearly visible. The right panel (10 % native tris-borate gel) shows the results for several modes of the DNA-
SLAMF5 complex formation (indicated with arrows). It was found that the protein and DNA binding is not determined by time and the factor
molar ratio. This fact indicates the absence of a stoichiometry between the TAMRA Alul DNA probe and SLAMF5. D - DNA-protein interactions
between CD34, SLAMF5, and BSA using P32-labeled double-stranded oligonucleotide containing 9 telomeric repeats (54 bp). Specific interac-

tions between DNA and proteins are clearly detected in the CD34 and SLAMF5 samples (indicated with arrows).

material in the genomic DNA fraction is clearly noted in
the mouse model.

The present study was not intended to provide a deep
analysis of cell populations capable of capturing extracel-
lular DNA. This study is focused exceptionally on inter-
nalization. Similar to our previous works, the study results
show that CD34+ cells capture extracellular DNA. In ad-
dition, we also showed that a population of CD34- cells,
which is also present in the BM, is capable of internaliz-
ing extracellular dSDNA fragments; this population may
include any variants of both multipotent progenitors and
committed progeny.

Terminal differentiation, HSC proliferation,

and formation of colonies induced by angiogenin,

hDNAY", and (angiogenin+hDNA?")

Deproteinized human genomic dsDNA fragmented to
1-10 nucleosome monomers, namely hDNA?Y, or ge-
nome reconstructor, was used in the study. The length of

1-10 nucleosome monomers is the physiological size of
DNA molecules (self-DNA) in apoptotic cells, which are
always present in the peripheral blood. The inducer human
recombinant angiogenin was used as a comparison factor.

We performed a series of experiments on analysis of the
stimulation of colony formation and proliferative activity
of BM HSCs after treatment with the selected inducers in
three models: mouse BM cells, rat BM cells, and cryopre-
served human BM cells. We found that cell treatment with
angiogenin, hDNAY", and angiogeninthDNAY" stimulates
colony formation (an increase in the total number) in the
studied models. The number of new colonies in mouse and
human models in some cases increased by 20-30 % when
using hDNAY" (Supplementary Material 3, Fig. 1A, C).
A significant increase in the number of colonies was noted
in the mouse model after treatment with both angiogenin
and angiogeninthDNAY".

Angiogenin reliably stimulates cell proliferation in grow-
ing colonies in the mouse model. CFU-GM is the main
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Fig. 2. Direct experiment on internalization of extracellular dsDNA fragments.

A - DNA probe structure; B — FACS analysis of mouse and human BM cell samples using the CD34 marker; C - Gel electrophoresis and
autoradiography of DNA found in the internal compartments of sorted mouse and human HSCs. Arrows indicate bands corresponding to
the DNA probe, concatemeric (circle?) form, and genomic DNA label.

responsive lineage, which is reliably confirmed in the hu-
man model. Treatment of BM cells with activators neither
induces apoptosis nor stimulates CD34+ cell survival.
Addition of hDNAY" and angiogenin+thDNAY" to freshly
thawed human samples enhances CD34+ cell proliferation.
At the same time, angiogenin neither shows any stimulatory
effect nor affects the ability of hDNAY" to enhance CD34+
cell proliferation (Supplementary Material 3, Fig. 1).

A comparison was also made of the proliferative activity
of CD34+ HSCs for the synthesis of the proliferative fac-
tor Ki-67 after treatment with inducers before seeding on
methylcellulose and the proliferative activity of these cells,
expressed in the number of cells per colony after incuba-
tion on methylcellulose for 11-15 days. No correlation
was found between the two parameters (Supplementary
Material 3, Fig. 2).

Assessment of the ability of colony cells selected
on days 7 and 15 of culturing in methylcellulose
to internalize a TAMRA-labeled 500 bp PCR fragment
The main keynote of all our studies is the confirmed
statement that extracellular DNA fragments are captured
by primitive stem progenitors. In humans, these cells are
CD34+ progenitors. In the study performed in a mouse
model (Potter et al., 2024), we showed that the number of
primitive hematopoietic progenitors increases significantly
in colonies formed after induction of terminal differen-
tiation by extracellular dsDNA fragments. This makes
it possible to use these progenitors to analyze various
events occurring in HSCs, which is impossible in case of
BM HSCs.

Asimilar study was conducted in a human cryopreserved
BM cell model. We estimated the percentage of CD34+
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stem cells in colonies formed by HSCs after their induction
in BM by angiogenin, hDNAY', and angiogenin+hDNAY".
Treatment of HSCs in BM by hDNAY" on day 15 of cul-
turing resulted in an increase in the number of cells in the
colony to 2.7 % versus 1.56 % in an individual experiment
(GM-CSF-stimulated BM cells). This indicates that colo-
nies contain a sufficient number of cells able to internalize
extracellular genetic material in an amount required for
reliable detection of extracellular DNA in the cell. At the
same time, neither angiogenin nor angiogeninthDNAY in-
creased the number of hematopoietic precursors in colonies
(Supplementary Material 4).

Analysis of formation of pangenomic single-strand

breaks in the cells of colonies of primitive progenitor
descendants treated by hDNA9" as part of BM cells

Early studies analyzed in the Introduction section showed
that the genome of embryonic stem cells is exposed by
pangenomic single-strand breaks during commitment upon
induction of terminal differentiation. These single-strand
breaks are repaired without causing cell death. We believe
that this process is important for the change in chromatin
architecture characterizing undifferentiated blood stem
cells to the spatial organization of expressing genes cha-
racteristic of committed progeny (Jacobson et al., 1975;
Scher, Friend, 1978; Farzaneh et al., 1982; McMahon et
al., 1984; Boerrigter et al., 1989; Kaminskas, Li, 1989;
Vatolin et al., 1997).

We hypothesized that this process is common for all
types of primitive progenitors, including HSCs. The ana-
lysis performed in the first part of our study and in the
work (Potter et al., 2024) demonstrated that the selected in-
ducers cause colony formation and terminal differentiation
of activated BM HSCs in mice, rats, and humans. This
means that formation of pangenomic single-strand breaks
may also be an integral part of HSC biology. The content
of HSC colonies in mice was 12—15 % (Potter et al., 2024).
In human, the cell content is ~3 % (Supplementary Mate-
rial 4). This indicates that there will be a sufficient number
of cells retaining the undifferentiated state and undergo-
ing terminal differentiation in the colony formed by BM
HSCs after a single induction of BM cells and repeated
induction of colony cells on day 15 for identification of
single-strand breaks.

The work was performed in mouse and human models
using the following inducers: hDNAY", angiogenin, and
angiogeninthDNAY. We also quantified single-strand
breaks in the DNA of colony cells on day 15 after all the
procedures described above.

The analysis revealed significant and reliable differences
in the studied parameters between different sample and
control points (Fig. 3). An increase in the number of cells
with the maximum level of tail DNA after 72-96 hrs and
96 hrs of incubation of hDNAY'-treated cells was noted
in the human and mouse models, respectively. The use of
angiogenin alone has virtually no effect on the induction

Effect of extracellular double-stranded DNA fragments
on hematopoietic stem cells

of single-strand breaks and increase in the tail DNA con-
tent. Apparently, complete repair of single-strand breaks
takes place on days 7-9 of incubation in the human model
(Supplementary Material 5).

The obtained results on changes in comet tail lengths
at specific time points made it possible to estimate the ap-
proximate number of induced pangenomic single-strand
breaks (Fig. 4).

Several assumptions were made to estimate the number
of single-strand breaks. One DNA strand of a chromosome
was considered to break as a nick by forming two equal
parts. Any other scenario required the use of a powerful
mathematical framework, which did not correspond to the
study goals. The smallest chromosome size is ~50 x 10 bp.
In this regard, we calculated the number of breaks based
on this length. This simplest scenario suggested that, if
the DNA strand breaks into two equal parts forming a nick
(alkaline conditions), then the length of the tail formed by
one strand decreases by half. In case there are two nicks,
each of the previous parts decreases by another half, etc.
That is, if the tail length is considered 10 in scale units
at the first point, it corresponds to either the absence of
breaks or their native number. In that case, the tail length
twice as long (20) corresponds to the formation of one
break per the initial molecule length (chromosome). Thus,
transfer to the next interval requires all DNA fragments
formed at the previous stage to have another break. Hence,
the number of breaks is estimated using the formula
2n + 1, where n is the number of breaks for the previous
interval. The box thickness on the graph shows the num-
ber of cells in the specific interval. The number of breaks
calculated for the interval was multiplied by the number of
cells in the same interval. The average number of breaks
per cell was calculated for the specified time point. Based
on these data, a graph of the change in the number of breaks
depending on time was constructed.

The conducted analysis demonstrated that, using the
above calculation protocol, the maximum number of
single-strand breaks is ~2.5-3.5 nicks per 5x10¢ chro-
matin bp and takes place at the time point of 72-96 hrs
(for two independent experiments). The number of nicks
in the control sample is in the range of 1.0—1.5 nicks per
5x 106 chromatin bp (Fig. 4).

In a sample treated with angiogenin, a slightly higher
number of nicks compared to the control sample can be
detected in cells at the time point of the maximum chro-
matin perturbation. This does not contradict the results on
colony stimulation, which demonstrate a positive effect of
angiogenin on the formation of several types of colonies.

Discussion

The discovered fact of dsDNA fragment internalization
in HSCs with subsequent induction of terminal differen-
tiation and colony formation suggested that, similar to
embryonic stem cells (Vatolin et al., 1997), single-strand
breaks are also induced in hematopoietic stem cells at the
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Fig. 3. Human model. A - cells and comet tails in native and alkaline electrophoresis. B, C - content of cells with a tail in native (B) and alkaline (C) elec-
trophoresis. D, E - diagrams showing the number of cells with different tail DNA levels in native (D) and alkaline (E) electrophoresis.

The bold dashed line indicates the median value, the thin dashed line shows the interquartile range. The percentage of cells with the tail DNA level of 0-20 %,
20-40 % and >40 % is indicated in red (the corresponding ranges are highlighted with red lines). * Significant differences compared to the control group, p < 0.01,

Mann-Whitney test.

state of terminal differentiation. The analysis performed
in the two selected models indicated a similar biological
phenomenon in HSCs. Pangenomic single-strand breaks
are formed, developed, and repaired in HSCs at the phase
of terminal differentiation. Together with the experimental
data presented in the literature, the obtained result indicates
that this is a general biological process. Pangenomic single-
strand breaks are a necessary condition for reorientation
of the activity of gene platforms determining the undif-
ferentiated state to gene platforms characteristic of the
committed cell state.

For the past two decades, the main attention of re-
searchers was focused on double-strand breaks and the va-
riety of processes associated with their formation, as well as
repair and recombination events mediated by these breaks
in cells (So et al., 2017). Nevertheless, the scientific com-
munity has renewed its interest in nicks, or single-strand
chromosome breaks, in the past years, as shown in some
reviews (Xu, 2015; Vriend, Krawczyk, 2017; Maizels,

Davis, 2018; Zilio, Ulrich, 2021). The keynote of the new
surge of interest in nicked chromatin DNA is the forgot-
ten concept of nick-initiated homologous recombination.
The performed analysis indicates that nicks are no less
important as intermediates of chromatin DNA metabolism,
inducing repair and recombination processes in the cell,
than double-strand breaks. However, unlike double-strand
breaks, repair of single-strand breaks (nicks) much less
frequently leads to fatal changes in the genome structure.
Homologous recombination is the main mechanism of
single-strand break repair.

The above indicates that single-strand breaks are in-
ducers of recombinogenic state of the cell. The idea of
the recombinogenic state is most fully described in our
pioneering review (Likhacheva et al., 2008). The term
“recombinogenic state” characterizes the activity of the
cell molecular machine launched by a change in the higher-
order chromatin architecture. Single-strand breaks are one
of the inducers of such a change.
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Fig. 4. Results of two independent experiments in the human model (A, B).

Diagrams for control and hDNAY-treated cells are presented; they show the comet tail length in arbitrary units (Y axis) and time intervals with a 24-h
step (X axis). The percentage of cells with the comet tail length within the corresponding interval is shown in red. * Reliable differences compared to
the control group, p < 0.01, Mann-Whitney test. Graphs on the right show dependence of the calculated number of nicks per 50 x 10° bp (Y axis) on

the time interval (X axis).

The main thesis in the review is that, if there are inter-
nalized extracellular dsSDNA fragments in the cell in the
activated recombinogenic state, these fragments become
natural participants in the repair-recombination process
activated by molecular mechanisms. This means that these
fragments can participate in the recombination process as
a natural recombination substrate. Hence, a general bio-
logical mechanism explaining the presence of extrachro-
mosomal genetic information in the recipient genome as a
result of either direct homologous integration of extracel-
lular dsDNA fragments or formation of stable, genetically
active extrachromosomal complexes has been found.

We characterized two phenomena with the involvement
of dsDNA fragments in the repair-recombination process
in our studies. In the work (Likhacheva et al., 2007), we
demonstrated the participation of exogenous human DNA
in the rescue of mouse BM progenitors from a lethal dose of
gamma radiation, resulting in the survival of experimental
animals. The mechanism of HSC rescue is associated with
internalization of dsDNA fragments into the blood stem
cell and repair-recombination correction of double-strand
chromatin breaks induced by severe irradiation. In a series
of other studies, we showed the involvement of extracel-
lular dsDNA in suppressing the repair of interstrand cross-
links in tumor stem cells. The outcome of this participation
is inability of the tumor stem cell to complete the repair

of cytostatic-induced chromatin damage resulting in its
further apoptotic death (Ruzanova et al., 2022). Numer-
ous other studies indicate that single-strand breaks induce
homologous recombination of the genetic material in the
cell nucleus (Vriend, Krawczyk, 2017; Maizels, Davis,
2018).

Conclusion
Thus, extracellular dsSDNA fragments are internalized in
HSCs through a natural mechanism, induce terminal dif-
ferentiation of blood stem cells, and stimulate colony for-
mation. Pangenomic single-strand breaks are the molecular
manifestation of these processes. The formation of pange-
nomic single-strand breaks induces the recombinogenic
state of the blood stem cell. During this process, extracel-
lular dsDNA fragments can integrate into the recipient
HSC genome. From a theoretical standpoint, a series of in-
tegration scenarios are possible: the ends-in/ends-out me-
chanism, reciprocal homologous recombination, gene con-
version or single-strand annealing, and non-homologous in-
tegration (Rubnitz, Subramani, 1984; Hastings et al., 1993;
Li et al., 2001; Langston, Symington, 2004; Chen J.M. et
al., 2007; Rass et al., 2012).

In the following parts of our research series, we present
experimental evidence of both integration of extracellular
dsDNA fragments into the HSC genome and formation of
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circular structures complexing with chromosomal DNA
preserved under sever fractionation conditions. Comments
on events associated with HSC terminal differentiation
after extracellular dsSDNA internalization are presented
in Supplementary Material 6. In addition, an apparent
discrepancy with the flow cytometry data, indicating that
CD34+ HSCs do not disappear but, on the contrary, increase
their number in colonies compared to the original BM cell
sample, is discussed (Supplementary Material 4).
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Abstract. Data on the genetics and molecular biology of diabetes are accumulating rapidly. This poses the chal-
lenge of creating research tools for a rapid search for, structuring and analysis of information in this field. We have
developed a web resource, GlucoGenes®, which includes a database and an Internet portal of genes and proteins
associated with high glucose (hyperglycemia), low glucose (hypoglycemia), and both metabolic disorders. The data
were collected using text mining of the publications indexed in PubMed and PubMed Central and analysis of gene
networks associated with hyperglycemia, hypoglycemia and glucose variability performed with ANDSystems, a bio-
informatics tool. GlucoGenes® is freely available at: https://glucogenes.sysbio.ru/genes/main. GlucoGenes® enables
users to access and download information about genes and proteins associated with the risk of hyperglycemia
and hypoglycemia, molecular regulators with hyperglycemic and antihyperglycemic activity, genes up-regulated
by high glucose and/or low glucose, genes down-regulated by high glucose and/or low glucose, and molecules
otherwise associated with the glucose metabolism disorders. With GlucoGenes®, an evolutionary analysis of genes
associated with glucose metabolism disorders was performed. The results of the analysis revealed a significant in-
crease (up to 40 %) in the proportion of genes with phylostratigraphic age index (PAl) values corresponding to the
time of origin of multicellular organisms. Analysis of sequence conservation using the divergence index (DI) showed
that most of the corresponding genes are highly conserved (DI < 0.6) or conservative (DI < 1). When analyzing single
nucleotide polymorphism (SNP) in the proximal regions of promoters affecting the affinity of the TATA-binding pro-
tein, 181 SNP markers were found in the GlucoGenes® database, which can reduce (45 SNP markers) or increase
(136 SNP markers) the expression of 52 genes. We believe that this resource will be a useful tool for further research
in the field of molecular biology of diabetes.

Key words: gene; protein; diabetes mellitus; hyperglycemia; hypoglycemia; glucose variability; database; phylo-
stratigraphic index; single nucleotide polymorphism.
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B.B. KnumoHnTos, K.C. LUnwwuH, PA. ViBaHOB
M.M. MoHomapeHKo, K.A. 3onotapesa, C.A. JlawmH

leHbl 1 GenKK, acCoLMNPOBaHHbIE
C HapyLIeHNAMMN MeTaboNM3Ma rKO3bl

AHHoTaumA. [laHHble B 06N1acTV reHeTUKN 1 MONeKynapHol bronorun caxapHoro anabeTta CTpeMUTeNIbHO HaKar-
NNBAIOTCA. ITO CTaBUT 3aavy CO3AaHNA NCCNef0BaTENbCKIX MHCTPYMEHTOB ANs ObICTPOro Novcka, CTPyKTypupo-
BaHWA 1 aHanm3a nHoopmaumm B 3To obnact. Mbl paspaboTtanu 6asy AaHHbIX O reHax 1 Gefikax YenoBeka, ac-
COLMMNPOBAHHBIX C BbICOKMM YPOBHEM FOKO3bl (rMNeprivkeMmen), HU3KUM YPOBHEM FHOKO3bl (rMnornukemuent)
n oboummn HapyweHuamn. CBegeHNA Gbinm cobpaHbl C MOMOLLbIO TEKCT-MaHMHIA HayUHbIX NyOAMKaLunii, NPOWH-
nekcnpoBaHHbIx B PubMed n PubMed Central, n aHanu3a reHHbix ceTel runepriamkeMmm, rmnorinkemny 1 Bapua-
6eNbHOCTU TNIMKEMWW, BbINMOSHEHHOTO C MOMOLbD BronHpopmaTuueckolr cuctembl ANDSystems. Co3faHHbIN
pecypc (GlucoGenes®) poctyneH no agpecy: https://glucogenes.sysbio.ru/genes/main. Pecypc npepocrtasndaer
nHbopMaLMio 0 reHax 1 6esikax, CBA3aHHbIX C PUCKOM Pa3BUTUA TUMAEPTIKEMUAN U TUNOFINKEMUNY; PETYAATOPHbIX
MofeKyfiax C rMneprivkeMnYeckon 1 aHTUMMNEPIIMKEMUYECKON aKTUBHOCTBIO; FeHaX, SKCNpPeccus KOTopbIX Mo-
BbILLAETCA MNPV BbICOKOM W/WAN HN3KOM YPOBHE [IIOKO3bl; reHax, SKCNpeccmsa KOTOPbIX CHUXKAETCA NPU BbICOKOM
W/VNn HA3KOM YPOBHE TJTI0KO3bl, @ TaKXe 0 MOJIEKYaXx, CBA3aHHbIX C HapPyLIeHNAMN MeTabonmnama roKo3bl NHbIM
obpasom. Ha ocHoBe pecypca NpoBeAeH 3BOMOLMOHHBIN aHaNn3 reHOB, aCCOLMUPOBAHHbIX C HAPYLIEHUAMMN Me-
Tabonv3ma rnoKo3sbl. PesynbTaTbl aHaM3a BbIABUAN 3HAUNTENbHOE yBenmueHmne (8o 40 %) [oNN reHOB, MELNX
dunoctpaturpadudecknii nHaekc (phylostratigraphy age index, PAl), cooTBeTCTBYIOLWMI BPEMEHU MPOUCXOXKAEHMSA
MHOFOKJIETOYHbIX OpraH13moB. AHanM3 KOHCePBaTUBHOCTN MNOCNeA0BaTeNbHOCTEN 6eNKOB MO NHAEKCY AMBEpreH-
uun (divergency index, DI) nokasan, 4to 60NbLUNHCTBO COOTBETCTBYIOLMX FEHOB BbICOKOKOHCEPBaTMBHbI (DI < 0.6)
nnu KoHcepsaTtueHbl (DI < 1). Mpu aHann3e ogHoHyKneoTuaHoro nonumopdrama (SNP) B npoKcrmanbHbIX paiioHax
NPOMOTOPOB, BAMAOWMX Ha cpofcTBO TATA-cBA3bIBatoLlero 6enka, B 6ase faHHbIx GlucoGenes® HaipgeH 181 SNP-
MapKep, KOTOPbIA MOXET CHMKaTb (45 SNP-mapkepoB) unu nosbiwathb (136 SNP-mapkepoB) akcnpeccuio 52 reHoB.
Mbl nonaraem, 4to paspaboTaHHbI PECYPC CTAHET MOME3HbIM UHCTPYMEHTOM ANs AaNbHENLWMX NCCNefoBaHUA B
06nacT MonekynapHon bronornv guabeTa.

KnioueBble cnoBa: reH; 6e5oK; caxapHblil AnabeT; runeprankemMms; rmnorivkeMus; BapruabenbHoCTb rioKo3bl; 6asa
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JaHHbIX; unocTpatUrpadpruecknin UHAEKC; O[AHOHYKNEOTUAHBIN NONMMOPOU3M.

Introduction

Diabetes is one of the most common and socially significant
human diseases. According to experts from the International
Diabetes Federation, the number of people living with diabe-
tes worldwide reached 537 million in 2021 and is expected to
rise to 783 million by 2045. In addition, more than 540 mil-
lion people have impaired glucose tolerance (International
Diabetes Federation, 2021).

In recent years, significant progress has been made in
understanding the molecular mechanisms underlying the de-
velopment of diabetes and its complications. Genome-wide
association studies have identified a number of novel genetic
loci that modulate the risk of diabetes and diabetic complica-
tions in European and Asian populations. Proteomics, me-
tabolomics and multiomics studies have shed light on the
molecular basis of disease pathogenesis (Langenberg, Lotta,
2018; Lyssenko, Vaag, 2023; Shojima et al., 2023).

At the same time, the effects of exposure to high glucose
concentrations on the regulation of gene expression in dif-
ferent tissues have been identified (Vaulont et al., 2000;
Hall et al., 2018; Vega et al., 2020; Zhang S. et al., 2021).
It has been shown that the effects of high glucose levels on
gene expression can be prolonged and exacerbated by epi-
genetic modifications. This mechanism is considered to be
important for the phenomenon of metabolic memory and
the development of diabetic complications (Dhawan et al.,
2022). Abnormally low glucose levels are also associated
with a number of biochemical shifts. These shifts are pri-
marily related to the response of the cardiovascular and
nervous systems to hypoglycemia (Hanefeld et al., 2016;
Rehni, Dave, 2018).

The molecular effects of repeated episodes of high and
low glucose levels, which characterize the phenomenon of

high glycemic variability (GV), attract increasing attention.
Elevated GV has been found to increase the risk of micro-
vascular and macrovascular diabetic complications and
is associated with increased all-cause and cardiovascular
mortality (Ceriello et al., 2019; Wilmot et al., 2019). At the
molecular level, the pathophysiological changes associated
with high GV are realized through increased or decreased
expression of a large number of genes and altered activity
of signaling pathways such as PI3K/Akt, NF-xB, MAPK
(ERK), JNK and TGF-B/Smad (Klimontov et al., 2021b).

Given the vast number and diversity of molecular changes
in diabetes, advanced analytical tools are necessary to form
acomprehensive and holistic understanding of the disease’s
pathogenesis. Artificial intelligence, bioinformatics, and
integrative systems biology provide new opportunities for
studying complex diseases such as diabetes (Nielsen, 2017;
Klimontov et al., 2021a; Orlov et al., 2021; Putra et al.,
2024).

A promising approach in this field is the analysis of gene
networks, i. e. groups of genes that function in a coordinated
manner, interact with each other, and determine specific
phenotypic traits of an organism (Kolchanov et al., 2013).
Previously, using text mining of scientific publications in-
dexed in the PubMed and PubMed Central (PMC) databases,
along with bioinformatic analysis, we reconstructed gene
networks associated with glucose metabolism disorders
(GMDs): hyperglycemia, hypoglycemia, and GV, gathering
a large amount of data on molecules and proteins related to
these metabolic disorders in some way (Saik, Klimontov,
2020-2022).

Based on the obtained data, a database was created con-
taining information about genes and proteins associated with
GMDs: hyperglycemia, hypoglycemia, and both conditions.
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In this article, we present a description of the database’s
capabilities and provide the results of two bioinformatics
studies conducted using it. The first study involved an evo-
lutionary analysis of GMD genes, and the second involved
an analysis of single nucleotide polymorphisms (SNPs) in
90 base-pair proximal regions of human gene promoters
associated with GMDs.

Materials and methods

Development of the web resource. The material for creating
the GlucoGenes® web resource was previously accumulated
during the reconstruction and analysis of gene networks for
hyperglycemia, hypoglycemia, and GV, conducted using
ANDSystem, a bioinformatics tool (developed at Institute
of Cytology and Genetics SB RAS; access: https://anddigest.
sysbio.ru/index.php). ANDSystem constructs associative
gene networks based on text mining of scientific publications
indexed in the PubMed and PMC databases (Ivanisenko et
al., 2015, 2019). The details of the analysis of GMD gene
networks generated using ANDSystem were described pre-
viously (Saik, Klimontov, 2020-2022).

A relational data model and the PostgreSQL database
management system (https://www.postgresql.org/) were
chosen for the software implementation of the database.

For the design of the web resource, a client-server archi-
tecture was chosen, consisting of three main components:
client, server and database. The Vue.js and Flask frameworks
were used for development, and access management to the
database is implemented through programmatic access based
on REST technology.

Phylostratigraphic analysis and divergence analysis of
genes associated with GMDs. Phylostratigraphic analysis
is a method aimed at determining the evolutionary origin of
genes by analyzing the presence of their orthologs, which
are genes encoding homologous proteins that have diverged
through speciation in the genomes of different species. This
approach identifies key points in genome evolution, where
a sharp increase occurred in the number of new genes, and
helps to identify genes unique to specific taxa (Domazet-
Loso, Tautz, 2010).

We performed evolutionary analysis of genes included
in the GlucoGenes® database using the phylostratigraphy
age index (PAI) and divergency index (DI). The PAI value
indicates how far the taxon reflecting the gene’s age is from
the root of the phylogenetic tree (Mustafin et al., 2021). The
taxon reflecting the gene’s age is considered as the taxon
where the studied species diverged from the most distantly
related taxon in which an ortholog of the gene has been
found. The higher the PAI value of a gene, the younger
it is. The Orthoweb software package (https://orthoweb.
syshio.cytogen.ru/run.html) was used for phylostratigraphic
analysis. For PAI calculation, the method based on KEGG
orthology groups was used (Kanehisa et al., 2016).

Dl isanindicator of a gene’s evolutionary variability. DI is
calculated based on the dN/dS ratio, where dN is the propor-
tion of nonsynonymous substitutions in the DNA sequences
of the studied gene and its ortholog; dS is the proportion of

Genes and proteins associated
with glucose metabolism disorders

synonymous substitutions. This index was calculated by
comparing human genes with genes from closely related
organisms in the Hominidae family, specifically orthologs
found in the western lowland gorilla Gorilla gorilla gorilla,
Sumatran orangutan Pongo abelii, and common chimpanzee
Pan troglodytes. The LPB93 model (Yang, 2007) was used
to calculate dN/dS values. A DI value ranging from 0 to 1
indicates that a gene is undergoing stabilizing selection, a
value of 1 indicates neutral evolution, and a value greater
than 1 indicates positive selection.

Analysis of SNPs in 90-bp proximal regions of hu-
man gene promoters associated with GMD. In the
Human_SNP_TATAdb knowledge base (Filonov et al.,
2023), we searched for SNP variants in 90-bp proximal
regions of human gene promoters associated with GMD
that could statistically significantly decrease or increase the
affinity of TATA-binding protein (TBP) to these promoters
and consequently affect gene expression levels. Among
all these SNPs, only those with clinical manifestations de-
scribed in the publicly available ClinVar database (Landrum
et al., 2014) were selected for further work. Finally, using
the PubMed database, we performed curated annotations
of how polymorphic changes in gene expression affected
glucose levels in patients carrying these SNPs for all clini-
cally relevant SNP markers located in promoters of genes
associated with glucose metabolism disorders.

Results

GlucoGenes® web resource

The GlucoGenes® web resource is freely available at: https://

glucogenes.sysbio.ru/genes. The interface of the resource is

shown in Fig. 1.

The GlucoGenes® database consists of six components
(tables). The Genes table contains gene names, descriptions
and NCBI identifiers. The Proteins table includes protein
names, descriptions, UniProt database identifiers, and links
to the corresponding genes in the GlucoGenes® database.
The Glycemia_related conditions table provides informa-
tion on glycemic disorders (hyperglycemia and hypogly-
cemia). The Types_of glycemia gene association table
contains information on the types of associations between
molecules and glycemic disorders. The References table
contains article identifiers in PubMed or PubMed Central
with brief data extracts. The Glycemia gene association
table is a summary table that aggregates information from
all of the above-mentioned tables. The structure of the da-
tabase is shown in Fig. 2. The database currently includes
561 genes associated with GMDs and 2,115 references to
literature sources.

The GlucoGenes® web portal consists of four functional
sections.

1. Homepage: The homepage provides general information
about the resource and the terms used. We define hyper-
glycemia or high glucose levels in the culture medium
as High Glucose (HG) and hypoglycemia or low glucose
levels in the culture medium as Low Glucose (LG).
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Fig. 1. GlucoGenes® website interface.

Fig. 2. Entity-relationship diagram of the GlucoGenes® database.

2. Disorders page: This page presents lists of genes associ- 3. Genes/Proteins catalog: This section allows users to

ated with HG, LG, as well as with high and low glucose
levels (HLG). For each gene, the type of association with
glycemic disorders is indicated. The following categories
of associations with glycemic disorders are highlighted:
SNPs associated with HG, LG, or HLG; proteins with
hyperglycemic activity; proteins with antihyperglycemic
effects; genes up-regulated by HG; genes up-regulated by
LG; genes down-regulated by HG; genes down-regulated
by LG; and other associations with HG, LG, or HLG.
For each gene and its association, references to relevant
publications in PubMed are provided.

find gene names and NCBI gene identifiers, names of
protein(s) encoded by the gene, and types of associations
with GMD.

4. Downloads page: From this page, users can download
lists of genes associated with HG, LG, and HLG, as well
as all associated genes in Excel format. Search within the
system is available by gene name, NCBI gene identifier,
or type of GMD.

Data from the portal can also be accessed without using
the graphical user interface viaa REST application program-
ming interface (API). This interface allows users to retrieve

BUOMEAWLIVHA / BIOMEDICINE 1011



V.V. Klimontov, K.S. Shishin, R.A. Ivanov
M.P. Ponomarenko, K.A. Zolotareva, S.A. Lashin
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Table 1. Lists of human protein-coding genes analyzed through phylostratigraphic analysis

Gene group Description Number of genes
All genes in the Homo sapiens genome  All human protein-coding genes for which PAl and DI values were calculated 19,566

Genes associated List of genes from GlucoGenes associated with high glucose levels 430

only with hyperglycemia

Genes associated List of genes from GlucoGenes associated with low glucose levels 140

only with hypoglycemia

Genes associated List of genes from GlucoGenes associated with both high and low 151

with both high and low glucose levels  glucose levels

Hyperglycemia genes

34
313 62

39

44

63

High and Low Glucose related genes

Fig. 3. Venn diagram showing intersections of gene groups.

required information by sending a request to the web server
in the form of a URL string. In response to such a request,
the server returns results as a text page or file, where the
information is structured according to the JavaScript Object
Notation (JSON) format (http://json.org/). The resulting text
file can be opened with any text editor. It can also be pro-
cessed using various software tools, including user-written
programs in general-purpose modeling environments (e. g.,
Matlab, Scilab) or high-level programming languages (e. g.,
Python, R, C++, Java).

An example of a REST request is given below (the result
is a text file in structured JSON format): https://glucogenes.
syshio.ru/api/genes/<geneid> — returns a card with a descrip-
tion of the gene <geneid>.

Evolutionary characteristics of genes associated with
GMDs. We calculated PAI indices and plotted their distribu-
tion both for the list of protein-coding genes in the Homo sa-
piens genome and for genes represented in the GlucoGenes®
database including those associated with hyperglycemia,
hypoglycemia and glucose fluctuations (Table 1). Please,
note that some genes were associated with more than one
GMD (Fig. 3).

The distribution of PAI values for all genes in the human
genome is multimodal, with two pronounced peaks at the
levels of Cellular Organisms, Metazoa and Vertebrata-
Euteleostomi (Fig. 4). The first peak is the largest; almost

Hypoglycemia genes

55 % of genes in the H. sapiens genome have a PAI between
1 and 3. The second peak covers 32 % of the genes.

The results of the analysis showed a significant increase
(up to 40 %) in the proportion of genes involved in glucose
regulation with a PAI index = 3 in all three categories
(Fig. 4). In particular, this group includes the TCF7L2,
PPARG, GCGR, IRS1 and MTNR1B genes, the products
of which are important regulators of glucose metabolism.

Sequence conservation analysis for the same gene lists
(Fig. 5) showed that most of the genes studied are highly
conserved (DI < 0.6) or conserved (DI < 1). This indicates
the conservation of their functions during evolution and
highlights their critical role in biological processes related
to glucose regulation. However, several genes with a DI
greater than 1 were identified, indicating recent exposure
to positive selection. These genes include SPP1, CALCA,
CD33, SULT2A1, TNF, ECM1, CYP3A4 and EDNL1.

Analysis of SNPs in 90-bp proximal regions of human
gene promoters associated with GMD. A total of 181 SNP
markers were identified in the GlucoGenes® database, which
may either decrease (45 SNP markers) or increase (136 SNP
markers) the expression of 52 human genes, thereby altering
glucose levels in patients carrying minor alleles of these
SNPs. Table 2 provides an example of 10 SNPs located in
the promoters of the human ABCC8, INSR, and PGM1 genes,
available in the ClinVar database (Landrum et al., 2014).
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Fig. 4. Distribution of protein-coding genes associated with GMDs by PAl values.

Here and in Fig. 5: a — all human protein-coding genes (All_CDS) as a control group compared to genes associated with high glucose levels
(Hyperglycemia); b - all human protein-coding genes (All_CDS) as a control group compared to genes associated with low glucose levels
(Hypoglycemia); ¢ — all human protein-coding genes (All_CDS) as a control group compared to genes associated with both high and low
glucose levels (High and Low Glucose-related genes). Columns marked with asterisks indicate statistically significant differences between
gene samples from the database and the sample of all human protein-coding genes: *p-value < 0.05, ***p-value < 0.001. Statistical testing

was performed using the chi-square test.

According to the data presented in Table 2, minor alleles
of the ABCC8, INSR, and PGM1 gene promoters exhibit
altered affinity for TBP, which may affect the expression
levels of these genes and explain their association with
GMDs. More detailed information on the identified SNP
markers can be found in Supplementary Material®.

" Supplementary Material is available at:
https://vavilov.elpub.ru/jour/manager/files/Suppl_Klimontov_Engl_28_8.pdf

Discussion

Advances in the study of the molecular biology of diabetes
open up broad opportunities for the implementation of preci-
sion medicine technologies in the treatment of this disease.
In particular, the identification of disease-specific biomarkers
offers new prospects for diagnosis, monitoring, prognosis of
the disease and its outcomes, pharmacogenetics of modern
glucose-lowering drugs, as well as the search for new thera-
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peutic agents (Chung et al., 2020). The rapid accumulation
of data on the molecular basis of genetic predisposition to
diabetes and the molecular mechanisms of its complications
underscores the need for research tools to facilitate structured
information retrieval in this field.

We have developed a database of genes and proteins
that have demonstrated associations with GMDs, includ-
ing hyperglycemia, hypoglycemia, or both. The web-based
resource, named GlucoGenes® (https://glucogenes.sysbio.
ru/genes/main), can be utilized to collect, search, and vi-
sualize information on genes and proteins associated with
GMDs. Access to the database integrated into GlucoGenes®
is provided via a REST-based API for record browsing.
A graphical user interface allows users to view records and

Genes and proteins associated
with glucose metabolism disorders

export their content in Excel format. The database contains
catalogs of genes and proteins associated with GMDs, in-
cluding information on the types of associations and links
to abstracts of relevant publications in PubMed or full-text
articles in PMC. Gene and protein lists are available for
download. A limitation of this resource is that it accumulates
data only from articles indexed in the PubMed and PMC.
Regular information updates are evidently required.

The developed resource may prove useful for addressing
research challenges in bioinformatics and the molecular
biology of diabetes. Specifically, it can be applied to select
genes and proteins for studying genetic predisposition to
diabetes in various populations, investigating the molecular
aspects of pathogenesis, searching for potential biomarkers
of diabetic complications, identifying potential therapeutic
targets, and other tasks. In this study, we present examples
of using the developed resource to solve research tasks in
bioinformatics studies.

The first task focuses on the evolutionary origin of genes
associated with GMDs. Evolutionary analysis of genes using
phylostratigraphy is a key tool in biology, enabling an un-
derstanding of the fundamental mechanisms underlying the
diversity of life on Earth. The evolutionary history of genes
provides insights into how various functions and structures
have evolved and adapted to environmental changes. This
knowledge not only aids in reconstructing phylogenetic
trees but also helps to identify genes responsible for adap-
tive changes and specific physiological processes, such
as glucose metabolism. The conducted phylostratigraphic
analysis revealed that among genes associated with glucose
metabolism, a significant proportion (up to 40 %) are genes
with PAI = 3, corresponding to the origin of multicellular
organisms (Maloof et al., 2010). Most of the studied genes
were found to be highly conserved (DI < 0.6) or conserved
(DI < 1). The obtained results emphasize the importance of
GMD-associated genes in regulating specialized metabolic
processes characteristic of complex organisms.

During the second task, data from the web resource were
used to analyze SNPs in proximal regions of human gene
promoters that affect the affinity for TBP. The integration
of GlucoGenes® data with information on SNP associations
with various human diseases from other databases, on the
one hand, and bioinformatic assessments of changes in
glucose levels in patients carrying these SNPs, on the other
hand, reflects the molecular mechanisms through which
GMDs may influence the progression of these diseases.

Conclusion

GlucoGenes® is a resource that combines a graphical user
interface with a database of genes and proteins associated
with hyperglycemia, hypoglycemia, and both metabolic
disorders. The resource has been utilized for bioinformatic
analysis of the evolutionary characteristics of genes asso-
ciated with these disorders, as well as for the analysis of
SNPs in proximal promoter regions of genes that affect the
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affinity for TBP. It has been demonstrated that a significant
proportion of genes associated with GMDs are evolutionari-
ly ancient and conserved. SNP markers that can decrease
(45 SNP markers) or increase (136 SNP markers) the expres-
sion of 52 genes have been identified.
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Abstract. A software information module of the experimental computer platform “EEG_Self-Construct” was deve-
loped and tested in the framework of this study. This module can be applied for identification of neurophysiological
markers of self-referential processes based on the joint use of EEG and facial video recording to induce the brain’s
functional states associated with participants’ personality traits. This module was tested on a group of non-clinical
participants with varying degrees of severity of autistic personality traits (APT) according to the Broad Autism Phe-
notype Questionnaire. The degree of individual severity of APT is a quantitative characteristic of difficulties that a
person has when communicating with other people. Each person has some individual degree of severity of such
traits. Patients with autism are found to have high rates of autistic traits. However, some individuals with high rates
of autistic traits are not accompanied by clinical symptoms. Our module allows inducing the brain’s functional states,
in which the EEG indicators of people with different levels of APT significantly differ. In addition, the module includes
a set of software tools for recording and analyzing brain activity indices. We have found that relationships between
brain activity and the individual level of severity of APT in non-clinical subjects can be identified in resting-state con-
ditions following recognition of self-referential information, while recognition of socially neutral information does
not induce processes associated with APT. It has been shown that people with high scores of APT have increased
spectral density in the delta and theta ranges of rhythms in the frontal cortical areas of both hemispheres compared
to people with lower scores of APT. This could hypothetically be interpreted as an index of reduced brain activity as-
sociated with recognition of self-referential information in people with higher scores of autistic traits. The software
module we are developing can be integrated with modules that allow identifying molecular genetic markers of
personality traits, including traits that determine the predisposition to mental pathologies.

Key words: information-digital platforms in medicine; neurocomputation technologies; resting-state EEG; autistic
personality traits; Broad Autism Phenotype; self-referential processing; default-mode network.
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Accoumayma ayTUCTUYECKNX YePT Y HEKIIMHUYECKMX UCTIbITYeMbIX
c nokasatensamu 331 Npy NpocMoTpe Buaeo3anuncen niua

AHHOTaLuA. B pamkax NpoBOANMOro NccnefaoBaHnA pa3paboTaH 1 anpobrpoBaH NPOrpaMmHO-MHGOPMALIMOHHDIN
MOZyNb 3KCnepuMeHTanbHO-KoMMbloTepHol nnatdopmbl “EEG_Self-Construct’, nossonaowmii BbIABNATL HeNpo-
dusmonornyeckme mapkepbl camopedepeHTHbIX MPOLLeCCOB Ha OCHOBE COBMECTHOTO MCronb3oBaHna 31 un peru-
cTpauun Braeo3anucen nuua Aa MHAYKUUM GYHKLMOHANbHbBIX COCTOAHUIA FOIOBHOTO MO3ra, aCCOLMMPOBaHHbIX C
NIMYHOCTHBIMY OCOBEHHOCTAMM YUaCTHUKOB. ITOT MOAY b Gblf1 anpobrpoBaH Ha rpynne HEKMUHUYECKNX YYaCTHUKOB
C pa3HOW CTENEHbIO BbIPAaXKEHHOCTN ayTUCTUYECKNX INYHOCTHBIX YepT (AJ1Y), M3MepeHHbIX C MOMOLLbIO OMPOCHKKA
pacwmpeHHoro ¢deHoTmna aytnama. CreneHb MHANBMAYaNbHON BblpaXeHHOCTM AJTY — 3TO KONMYeCTBEHHbIV NoKa-
3aTenNb, KOTOPbIN XapakTepun3yeT 3aTPYyAHEHNA, BO3HMKAIOLWWME Y YesloBeKa Npy KOMMYHUKaLUN ¢ 4pyrumm IoabMun.
Y Ka)Kporo yenoBeka UMeeTCA HeKoTopasa MHAMBUAYaNbHaA CTeNeHb BbIPaXKeHHOCTU TaknxX YepT. Boicokne 3Haue-
HUA ayTUCTUYECKNX YepT onpefenAtoTca y nauneHToB ¢ aytuamom. OfHaKO CyLLeCcTBYIOT Takxe Nofu, Y KOTOpbIX
BbICOKME 3HauyeHna AJ1Y He CONPOBOXAAIOTCA KIMHUYECKOW CMMATOMATUKON. Pa3paboTaHHbI HaMK MOAYb AaeT
BO3MOXHOCTb MHAYLMPOBaTb GYHKLMOHANbHbIE COCTOSHUA FONIOBHOMO MO3ra, B KOTOPbIX D3I-noKasaTenu fogein ¢
pasHbiM ypoBHem AJTY focToBEPHO pasnmyatoTcs. Kpome Toro, Mogy b BKIOYAET KOMMIEKT NPOrpaMmmHoOro obecrne-
YeHnA ANa perncTpaumm n aHann3a MHAEKCOB MO3roBOWM akTMBHOCTU. HaMun yCTaHOBIEHO, YTO 3aBUCMMOCTU MeXay
MO3rOBOV aKTUBHOCTbIO U NHAMBUAYabHBIM YPOBHEM BblpaxeHHOCTU AJTY y HEKNMHNYECKUX UCMbITYyeMbIX MOTYT
6bITb BblAABMEHbI B YC/I0BUAX GYHKLMOHANbHOIO NOKOSA, CiefyioLmnxX 3a pacno3HaBaHWeM cCaMOOTHECEHHON NHOop-
MaLuu, TOFAa Kak pacrno3HaBaHme CoLumanbHO HENTPanbHON MHGOPMaLMIN He MHAYLMPYET NPOLIECCh], CBA3aHHbIE C
ayTUCTMYHOCTBI0. [ToKa3aHo, UTo y ntofeli ¢ BbICOKMMY 3HauYeHuaMU AJTY HabnoaaoTcAa NOBbILLEHHbIE NOKa3aTenu
CMeKTpanbHON NNOTHOCTW B AManasoHax fenbTa- U TeTa-pUTMOB B JTIOGHBIX OTAenax 0boux nosylapuin B cpaBHe-
HUV C JTIIOAbMU C HU3KOW CTEMEHDBIO Ay TUCTUYHOCTU. DTO MOXKET ObITb MMMNOTETUYECKN MHTEPMNPETUPOBAHO KaK MHAEKC
CHVXEHHOW MO3roBOW akKTMBHOCTU, aCCOLMMPOBAHHON C pacno3HaBaHeM CaMOOTHECEHHOW MHbopMaLmmn y noaei
C BbICOKOW ayTUCTUYHOCTbI0. Pa3pabaTbiBaemblii Hamy NPOrPaMMHbI MOAY/ b MOXET ObITb UHTEFPUPOBaH C MOAYIA-
MU, NO3BONAOLWMMU BbIABMATL MONEKYIAPHO-TEHETUYECKME MapKepbl IMYHOCTHBIX YepT, BKAoYaa yepTbl, onpeje-
nAawoLme NpeapacnonoXeHHOCTb K NCUXMATPUYECKMM NaToNOTUAM.

KnioueBble cnoBa: MHPopMaLOHHO-LdPOBbIe NNaTGOopMbl B MeANLMHE; HENPOBbLIYNCIUTENbHbIE TexHONorK; 331
NOKOA; ayTUCTUYECKME YePTbl; PacLUMPEHHbIN ayTUCTUYecKnii deHoTun; camopedepeHuns; aedonT-cuctema Mosra.

Introduction

The development of new approaches to identifying predis-
position to certain types of behavior, including an increased
risk of developing mental disorders, is based on testing in-
dividuals using genetic, neurophysiological and behavioral
methods, accumulating experimental information in data-
bases and analyzing it using a wide range of information
technologies (lvanov et al., 2022; Lin et al., 2022).

According to modern concepts, autism is a disease that is
associated with disturbances in the brain and manifests itself
in the social sphere (Baron-Cohen, 2002; Lavenne-Collot et
al., 2023). This disease manifests itself in three domains of
behavior: social interaction, communication (use of verbal
and non-verbal stimuli), as well as limited and repetitive
patterns in behavior, interests and activities (Baron-Cohen,
2009; Murray et al., 2017). In the 1980s, autism was re-
cognized as a spectrum of conditions (disorders), which can
be individual for each patient (Lovaas, 1987).

There is no strict boundary between a “healthy person”
and an “autistic person”, since each person can be assigned
a certain rate of some autistic personality traits (APT) mea-
sured by the Broad Autism Phenotype Questionnaire, BAPQ
(Pivenetal., 1997). The higher the rate of APT, the more the
subject’s behavior resembles that of an autistic person. It is
believed that the manifestation of APT is clinical in nature
if its rate exceeds a certain threshold. However, there is a
phenomenon of “non-clinical autism”, when a person with an
expressed APT does not consider it necessary to seek medical
help. At the same time, a significant part of such “non-clinical
autistic persons” turn out to be adapted people who, during
their lives, demonstrate a level of social success that is no
different from individuals with low rates of autistic traits. It is

assumed that there are some compensatory mechanisms that
may be formed depending on the influence of the environ-
ment and can both weaken and strengthen the manifestation
of APT in subjects (Frith, 1991; Georgiades et al., 2017).

Since autism and APT are associated with behavioral dif-
ficulties in social communication, most neurophysiological
(Tsai et al., 2013; Tseng et al., 2015) and genetic (Geno-
vese, Butler, 2023) studies compare the brain responses of
individuals with different degrees of autistic traits to the
presentation of external stimuli, the recognition of which is
essential for the regulation of interpersonal communication.
For experimental research of the phenomenon of autism, ap-
proaches such as psychological testing using questionnaires,
recording and analysis of EEG under stimulation conditions
are used. Facial photographs (Harms et al., 2010; Tseng et al.,
2015) or speech tasks (Tsai et al., 2013) are usually used as
stimuli. However, some studies demonstrate the association
of the severity of autism with brain activity under resting-
state conditions without recognition of external stimuli
(Harikumar et al., 2021).

An effective method is the registration of a facial video to
induce psychological states that differ in participants with
different degrees of expression of personality traits (Si et
al., 2024).

Another approach used is to record the EEG without any
additional stimulation. It is based on the hypothesis about
the functional role of the default mode network of the brain
in organizing self-reference processes. The default mode
network is a set of cortical areas that demonstrate increased
activation under resting-state conditions, but decrease the
level of activation when performing tasks associated with
attention to external stimulation. The default mode network is
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considered as a brain structure involved in the assessment of
socially significant stimuli that the subject attributes to one-
self (Northoff et al., 2005). It is assumed that clinical forms
of autism are accompanied by a decrease in the activity of
the default mode network (Ronde et al., 2024). The function-
ing of the default mode network can be associated not only
with the characteristics of individuals’ social behavior, but
also with the characteristics of their genome (Fanelli et al.,
2024).

Previously, we proposed an approach for joint registra-
tion and processing of EEG and facial video that allows
combining brain activity analysis with assessment of facial
muscle dynamics (Savostyanov et al., 2022). In this study,
we propose a methodology based on the use of video frag-
ments obtained at the first stage of the study to stimulate
participants at later stages of the study. As shown below, this
approach provides useful information for identifying markers
of autistic traits in non-clinical subjects.

To provide information support for the conducted research,
we are developing the “EEG_AutisticTrait” software infor-
mation module, which is an important component of the
“EEG_Self-Construct” experimental computer module. It
provides a full cycle of information support for research,
including: (a) accumulation and storage of the results of
examining people using psychological, heurophysiological
and genetic methods that make it possible to identify indi-
vidual characteristics of social communication associated
with autism; (b) computer processing of experimental data
using regression, correlation and factor analysis methods
that compare behavioral and neurophysiological indicators

Association of autistic personality traits with the EEG scores
in non-clinical subjects during the facial video viewing

(Si et al., 2024); (c) visualization of primary experimental
data and results of data analysis.

The fundamental novelty of the proposed approach is
that time intervals of EEG recordings under resting-state
conditions in the intervals between recognition of self-
referential or non-self-referential stimuli are used to identify
neurophysiological markers of APT. This approach allows
inducing mental states associated with self-reference in the
intervals of functional rest.

Materials and methods

The sequence of stages of the experimental computer
module “EEG_Self-Construct” and the list of software tools
required for the implementation of these stages are presented
in Table 1. The module contains both software products
developed by ICG SB RAS staff and programs taken from
open sources. All modules allow for a full cycle of data
collection and processing required to establish markers of
autistic personality traits.

Study participants. The study involved volunteers,
among which students of Novosibirsk State University
prevailed. The sample included 43 participants aged from
18 to 48 years (19 males and 24 females). All participants
had no neurological or mental disorders at the time of
the study and did not use any psychoactive substances or
pharmacological drugs. Participants gave informed consent
to undergo the experimental study in accordance with the
Helsinki Declaration on Biomedical Ethics. The experimental
protocol was approved by the Ethics Committee of the
Research Institute of Neuroscience and Medicine.

Table 1. List of stages of module operation and software tools required to perform each stage

Name of the module operation stage

Software packages
required to

The result of passing the stage
of the module’s work

implement the stage

Stage 1. Extracting lists of candidate genes
and brain structures associated with personality
traits from natural language texts

Stage 2. Planning the experimental design EventIDE

and data processing

Stage 3. Development of experimental EventIDE,

paradigms for psychophysiological studies Millisecond
Software

Stage 4. Registration of EEG/ECG signals

Stage 5. Development ICBrainDB

of an experimental database
Stage 6. Preprocessing of EEG/ECG signals

Stage 7. Localization of signal sources

on the surface of the brain cortex eloreta

Stage 8. Statistical processing of behavioral,

physiological and genetic data GNU PSPP

ANDSystem Software

NeoRec System

EEGIab_toolbox

EEGLab_toolbox,

IBM SPSS Statistics,

List of candidate genes for behavioral genetics
studies, lists of brain structures for neurophysiological
studies

Protocols of behavioral and neurophysiological
experiments, protocols of data processing

Software scripts for conducting experiments

EEG and ECG signal recordings with event tagging

Network database of psychological,
neurophysiological and genetic data

Neurophysiological signals cleared of irrelevant noise

Maps of localization of brain activity sources

Results of statistical comparisons of experimental
samples, list of neurophysiological and genetic
markers of personality traits
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Psychological testing was performed using a special
Internet form implemented on the Yandex platform by ICG
SB RAS staff. All participants filled out the Russian-language
version of the BAPQ to assess the severity of autistic traits
according to the Broad Autism Phenotype Questionnaire
(Hurley et al., 2007, translated by M.S. Vlasov). This test
includes 36 questions concerning a person’s ability to control
one’s behavior in social situations. In addition, the partici-
pants filled out psychological questionnaires on personal and
situational anxiety by C. Spielberger (Spielberger, 1970;
Russian adaptation by (Khanin, 1976)), a questionnaire for
assessing personality traits by L. Goldberg “Markers of the
Big Five Factors” (translated and validated by G.G. Knyazev
etal. (2010), a questionnaire on affiliation with one’s family
(Cross et al., 2000), and a questionnaire on emotional intel-
ligence (Knyazev et al., 2012).

Experiment. The program for conducting the experiment
is implemented on the Inquisit platform (https://www.
millisecond.com/). In the experiment, the participants
fulfilled three conditions. In the first condition, the EEG
was recorded for 12 minutes without a functional load. The
subject had three 2-minute intervals with closed eyes and
three 2-minute intervals with open eyes. During the intervals
when the subject opened one’s eyes, a black computer screen
was presented to the subject. During this period, the subject’s
face was recorded along with the EEG for all 12 minutes. The
second and third conditions differed from the first in that in
the second condition, with open eyes, the subject watched
a video recording of his or her own face, obtained from the
first condition, and in the third condition, he/she was shown
a video recording of a stranger’s face (always a man for a
male subject, and a woman for a female subject). The order
of the second and third tasks was changed randomly.

EEG registration and processing. The NeoRec software
(by “Medical Computer Systems”, https://mks.ru/) was used
to register neurophysiological data. EEG was registered using
a 130-channel amplifier NVX-132, Russia, 128 EEG channels
located according to the international 5-5 % scheme with a
reference electrode Cz, ground electrode AFz, bandwidth
0.1-100 Hz, signal sampling frequency 1000 Hz. In addition
to EEG, EOG and ECG were additionally registered.

Muscle and other artifacts were removed from the
EEG using independent component analysis with the
EEGIab_toolbox software package (Delorme, Makeig, 2004;
https://sccn.ucsd.edu/eeglab/index.php). Then, fragments
corresponding to periods when the participant sat with eyes
closed were extracted from the EEG recordings. Further
analysis was performed only for those intervals of the EEG
recordings in which the participant did not see either video
recordings or a blank screen, but which were recorded
immediately after observing the corresponding stimuli. After
extracting these EEG fragments, they were divided into
two-second time intervals. Further analysis was performed
using the eLoreta software package (Pascual-Margui, 2002;
https://www.uzh.ch/keyinst/loreta.htm).

In our case, the neurophysiological states detected
using eLoreta were compared with the psychological
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characteristics of the subjects to determine the markers of
APT. For each two-second interval, the spectral density
values were calculated in the frequency of delta (2-4 Hz),
theta (4-8 Hz), alpha-1 (8-10 Hz), alpha-2 (10-12 Hz),
beta-1 (12-16 Hz), beta-2 (16-20 Hz), beta-3 (20-25 Hz)
and gamma (25-35 Hz) bands. Then, for each participant, the
total spectrum indicator was calculated for the entire EEG
testing interval separately for each of the three experimental
conditions (for each participant, from 150 to 170 two-second
intervals were used for this). The spectra were calculated
independently for each of the 128 EEG channels included in
data processing. A 3000 ms EEG recording segment with a
sampling frequency of 1000 Hz after the onset of the block
was used to calculate the spectral density of the sources in
eLoreta (Pascual-Margui, 2002).

Statistical analysis. The validity of psychological tests
was assessed using the IBM SPSS software package, IBM,
https://www.ibm.com/spss. Regression analysis was per-
formed in the eLoreta package to find the dependence of
spectral density on the indicators of individual BAPQ score
independently for each of the three experimental condi-
tions. Additional correction for multiple comparisons was
not performed.

Results

Results of psychological testing

To assess the reliability of the Russian version of the BAPQ
test, we determined the internal consistency of responses
to 36 items of this questionnaire using Cronbach’s alpha.
The Cronbach’s alpha value was 0.838, which indicates a
fairly high internal consistency. In addition, we assessed
the correlation of individual BAPQ scores with scores on
various scales of well-validated psychological measures.
Table 2 shows the correlation between autistic traits (BAPQ
scores) and other personality traits assessed in this study. The
BAPQ score correlates reliably positively with anxiety and
negatively with extroversion, the ability to express positive
emotions and affiliation with the family.

eLoreta results for detecting effects of autistic traits
Correlations between BAPQ autistic traits scores were
statistically significant only for the “own face” condition
(p =0.0340) in the delta (2-4 Hz) and theta (4—-8 Hz) bands
(see the Figure). For both bands, eLoreta revealed a positive
association between the spectral density scores and individual
severity of autistic traits in the frontal cortex of both hemi-
spheres, i.e. higher BAPQ autistic traits scores corresponded
to higher spectral density scores. There was no significance
for the “blank screen” condition (p = 0.28640). For the
“another person’s face” condition (p = 0.0932), the p-value
was close to, but did not reach, significance.

Discussion

Identification of neurophysiological markers of personali-
ty traits, including traits associated with predisposition to
diseases, involves the use of complex multicomponent tools
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Table 2. Correlation between autistic traits (BAPQ score) and other personality traits

BAPQ Anxiety Extroversi Affiliation Ability to express
with the family positive emotions

Person correlation 0.407** -0.524%* -0.351%* -0.278*

2-tailed p-value 0.002 0.003 0.007 0.036

N 43 43 43 43

* Significant correlation, p-value < 0.05 (two-tailed).
** Significant correlation, p-value < 0.01 (two-tailed).

Delta-band Theta-band

Correlation of the spectral density in the delta (2-4 Hz) and theta (4-8 Hz)
bands with the severity of autistic traits (measured by BAPQ) in a group of
43 participants for EEG intervals with eyes closed between viewing one’s
own face.

The cortical areas showing positive correlations of autistic traits with spectral
density (p < 0.04) are marked in red. A significantly positive association is
observed between autistic traits and spectral density in the frontal areas of
both hemispheres.

for planning experiments, collecting, storing and analyzing
data, comparing the results of different studies and organizing
access to different programs and the data obtained with their
help. Animportant component of such tools is the opportunity
to develop and implement new paradigms for conducting
neurophysiological research. For example, in (Si et al., 2024),
a software module was developed to identify cross-national
characteristics in the processes of self-attribution of informa-
tion to the subject oneself or to other people, which is crucial
for the search for markers of depression.

In the search for markers of predisposition to psychiatric
disorders, an important task is the reconstruction and analysis
of gene networks underlying the regulation of psycho-emo-
tional states in humans and animals (Savostyanov, Makarova,
2024). An example of a module aimed at reconstructing and
comparing gene networks of anxiety in mice and humans
is described in (Savostyanov, Makarova, 2024). Using this
module, it is possible to identify brain structures in which
differential gene expression is detected in animals that differ
in their level of anxiety. In the future, such structures can be

considered as areas of interest for identifying neurophysio-
logical markers of anxiety disorder in humans.

The software-information module “EEG_AutisticTrait”
was tested to identify neurophysiological markers of autistic
personality traits. Using a special Yandex platform, compre-
hensive testing of participants was conducted using several
questionnaires, including a test for individual expression of
autistic personality traits (the Russian version of BAPQ). The
Cronbach’s alpha for the Russian version of BAPQ was 0.83,
which indicates a fairly high internal consistency of this
questionnaire. Negative correlations of autistic personality
traits with extroversion, emotional intelligence and affiliation
with the family, and positive correlations between autistic
personality traits and anxiety were also found, which is in
good agreement with the general understanding of psycholo-
gists about autistic traits.

At the neurophysiological level, positive correlations
were found between BAPQ scores and the spectral density
in the delta and theta bands for the experimental condition
associated with self-referential visual information, but no
reliable relationships were found for the conditions follow-
ing viewing a socially neutral stimulus (blank screen) or
information related to other individuals. According to the
literature (Knyazev, 2007), high values of the spectral den-
sity of the delta and theta rhythm under resting-state condi-
tions are most often interpreted as an indicator of reduced
functional brain activity. With this approach, our results
can be hypothetically explained as a correlate of reduced
brain activity in conditions following the presentation of
self-referential information in individuals with more vivid
autistic traits compared to individuals with lower levels of
autistic traits.

Significantly, we identified neurophysiological correlates
of autistic traits only for the self-referential condition. In the
socially neutral condition, there was no tendency for BAPQ
scores to be related to brain activity, whereas for the “another
person’s face” condition, there was a marginal statistical
tendency for the result to be significant. It can be assumed
that resting-state EEG activity in non-clinical subjects is
weakly associated with their level of autism, which explains
the failure of previous attempts to identify any relationships
between autistic traits and resting-state EEG in such par-
ticipants. However, viewing video recordings related to the
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participant oneself (and to a lesser extent, to other people)
activates processes in the brain associated with the recogni-
tion of socially significant information, which makes EEG
indices more dependent on autistic traits than in the case of
viewing socially neutral stimuli.

Conclusion

The approach we propose is based on the integration of
psychological and neurophysiological methods of data col-
lection and analysis. In the future, it is planned to evaluate
the dependence of autistic traits on the genetic characteristics
of the subjects. It is also desirable to evaluate the effect of
the expression level of various genes in the brain on the
severity of personality traits. The assessment of the level of
gene expression in the brain cannot be performed on a living
person, which suggests the need to combine data obtained
on people and on experimental animals (Savostyanov, Ma-
karova, 2024). Such a study requires the development of spe-
cial tools for the accumulation, storage and analysis of data,
which will be created on the basis of the Bioinformatics and
Systems Computational Biology platform. In the future, this
tool can be used to assess the neurophysiological correlates
of various personality traits in healthy controls and subjects
with different pathologies, which will make it possible to
conduct new comprehensive studies within the framework
of system neurobiology.
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