Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Revisiting two hypotheses on the “domestication syndrome” in light of genomic data

https://doi.org/10.18699/VJ17.262

Abstract

Domesticated mammals of many different species share a set of physical and physiological traits that are not displayed by any of their wild progenitors. This suite of traits, now termed the “domestication syndrome” (DS), has been a puzzle since Charles Darwin discovered it. Two general explanations of its basis have been proposed, which in principle, could also apply to other vertebrates, such as fish and birds, whose domesticated varieties show some of its elements. The two ideas are termed here, respectively, the thyroid hormone hypothesis or the THH, and the neural crest cell hypothesis, the NCCH. The two ideas make distinctly different genetic predictions. Here, the current relevant evidence from genomics is evaluated and it is concluded that the NCCH has more support. Nevertheless, one set of observations, from chickens, suggest a potentially important role of altered thyroid metabolism in domestication. In addition, recent studies indicate the possibility of additional genetic factors in domestication, affecting tameness and sociality, that may go beyond either hypothesis. The tasks that lie ahead to fully ascertain the genetic bases of the “domestication syndrome” and the behaviors that characterize mammalian domestication are discussed briefly.

About the Author

A. S. Wilkins
Institute of Theoretical Biology, Humboldt Universität zu Berlin
Germany


References

1. Albert F., Carlborg O., Plyushina I., Besnier F., Hedwig D., Lautenschläger S., Lorenz D., McIntosh J., Neumann C., Richter H., Zeising C., Kozhemyakina R., Shchepina O., Kratzsch J., Trut L., Teupser D., Thiery J., Schöneberg T., Andersson L., Pääbo S. Genetic architecture of tameness in a rat model of animal domestication. Genetics. 2009;182(2):541-554.

2. Axelsson E., Ratnakumar A., Arendt M.L., Maqbool K., Webster M.T., Perloski M., Liberg O., Arnemo J.M., Hedhammar A., Lindblad- Toh K. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature. 2013;495:360-364.

3. Behringer C., Deschner T., Murtagh R., Stevens J.M.G., Hohmann G. Age-related changes in thyroid hormone levels of bonobos and chimpanzees indicated heterochrony in development. J. Hum. Evol. 2013;66:83-88.

4. Belteky J., Agnavall B., Johnsson M., Wright D., Jensen P. Domestication and tameness: brain gene expression in red junglefowl selected for less fear of humans suggests effects on reproduction and immunology. R. Soc. Open Sci. 2016;3:160033.

5. Belyaev D. Domestication, plant and animal. Encyclopaedia Brittanica, Edition 15. Ed. H.H. Benton. Chicago: Encylopaedia Brittanica- Helen Hemingway Benton Publ., 1974.

6. Belyaev D. Destabilizing selection as a factor in domestication. J. Heredity. 1979;70:301-308.

7. Benitez-Burraco A., Di Pietro L., Barba M., Lattanzai W. Schizophrenia and human self- domestication: an evolutionary linguistics approach. Brain Behav. Evol. 2017. https://doi.org/10.1159/000468506.

8. Bronchain O.J., Chesneau A., Monsoro-Burq A.-H., Jolivet P., Pailland E., Scanlan T.S., Demeneix B.A., Sachs L.M., Pollet N. Implication of thyroid hormone signaling in neural crest cells migration: Evidence from thyroid hormone receptor beta knockdown and NH3 antagonist studies. Mol. Cell. Endocrinol. 2017;439:233-246. DOI 10.1016/j.mce.2016.09.007.

9. Brüne M. On human self-domestication, psychiatry and genetics. Philosophy, Ethics, and Humanities in Medicine. 2007;2:21-29.

10. Carneiro M., Rubin C.-J., di Palma F., Albert F.W., Alifoldi J. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science. 2014;345:1074-1079.

11. Carneiro M., Piorno V., Rubin C.-J., Alves J.M., Ferrand N., Alves P.C., Andersson L. Candidate genes underlying heritable differences in reproductive seasonality between wild and domestic rabbits. Anim. Genetics. 2015;46:418-425.

12. Crockford S. Animal domestication and heterochronic speciation. Human Evolution Through Developmental Change. Eds. N. Minugh- Purvis, K.J. McNamara. Baltimore: Johns Hopkins Univ. Press, 2002;122-153.

13. Darwin C. The Variation of Animals and Plants under Domestication. London: John Murray, 1868.

14. Diamond J. Guns, Germs and Steel. London: Vintage Books, 1999.

15. Francis R.C. Domesticated: Evolution in a Man-Made World. W.W. Norton, New York, 2015.

16. Frantz L.A.F., Mullin V.E., Pionnier-Capitan M., Lebrasseur O., Ollivier M. Genomic and archaeological evidence suggests a dual origin of domestic dogs. Science. 2016;352:1228-1231.

17. Glazko V., Zybaylov B., Glazko T. Domestication and genome evolution. Int. J. Genet. Genom. 2014;2:47-56.

18. Hammer K. Das domestiationsyndrom. Kulturpflanz. 1984;32:11-34.

19. Hare B., Wobber V., Wrangham R. The self-domestication hypothesis: bonobo psychology evolved due to selection against aggression. Anim. Behav. 2012;83:573-585.

20. Karlsson A.-C., Svemer F., Eriksson J., Darras V.M., Andersson L., Jensen P. The effect of a mutation in the thyroid stimulating hormone receptor (TSHR) on development, behavior and TH levels in domesticated chickens. PLoS ONE. 2015. DOI 101371/journal.pone.0129040.

21. Karlsson A.-C., Fallahshahroudi A., Johnsen H., Hagenblad J., Wright D., Andersson L., Jensen P. A domestication-related mutation in the thyroid stimulating hormone receptor gene (TSHR) modulates photoperiodic response and reproduction in chickens. Gen. Comp. Endocrinol. 2016;228:69-78.

22. Larson G., Piperno D.R., Allaby R.G., Purugganan M.D., Andersson L., Arroyo-Kalin M., Barton L., Climer Vigueira C., Denham T., Dobney K., Doust A.N., Gepts P., Gilbert M.T.P., Gremillion K.J., Lucas L., Lukens L., Marshall F.B., Olsen K.M., Pires J.C., Richerson P.J., Rubio de Casas R., Sanjur O.I., Thomas M.G., Fuller D.Q. Current perspectives and the future of domestication studies. Proc. Natl. Acad. Sci. USA. 2014;111(17):6139-6146.

23. Leach H.M. Human domestication reconsidered. Curr. Anthrop. 2003; 43:349-368.

24. Librado P., Gamba C., Gaunitz C., Der Sarkissian C., Pruvost M., Albrechtsen A., Fages A., Khan N., Schubert M., Jagannathan V., Serres A., Kuderna L.F.K., Povolotskaya I., Seguin- Orlando S., Lepetz S., Neuditschko M., Theves C., Alquaraishi S., Alfarhan A.H., Al-Rasheid K., Rieder S., Samashev Z., Francfort H.P., Beneccke N., Hofreiter M., Ludwig A., Keyser C., Marques-Bonet T., Ludes B., Crubezy E., Leeb T., Willerslev E., Orlando L. Ancient genomic changes associated with domestication of the horse. Science. 2017;356:442-445.

25. Montague M., Li G., Gandolfi B., Khan R., Aken B., Searle S.M.J., Minx P., Hillier L., Kolboldt D.C., Davis B.W., Driscoll C.A., Barr C., Blackistone K., Quilez J., Lorente-Galdos B., Marques- Bonet T., Alkan C., Thomas G.W.C., Hahn M.W., Menotti-Raymond M., O’Brien S.J., Wilson R.K., Lyons L.A., Murphy W.J., Warren W.C. Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication. Proc. Natl. Acad. Sci. USA. 2014;111:17230-17236.

26. Pendleton A.L., Shen F., Taravella A.M., Emery S., Veeramah K.R., Boyko A.R., Kidd J.M. Selective sweep analysis using village dogs highlights the pivotal role of the neural crest in dog domestication. BioRxiv. 2017. dx.doi.org/10.1101/118794.

27. Persson M.E., Wright D., Roth L.S.V., Batakis P., Jensen P. Genomic regions associated with interspecific communication in dogs contain genes related to human social disorders. Sci. Rep. 2016;6:33439. DOI 10.1038/srep 33439.

28. Price E.O. Behavioral development in animals undergoing domestication. Appl. Anim. Behav. Sci. 1999;65:245-271.

29. Rubin C.-J., Megens H.-J., Martinez Barrio A., Maqbool K., Sayyab S., Schwochow D., Wang C., Carlborg Ö., Jern P., Jørgensen C.B., Archibald A.L., Fredholm M., Groenen M.A.M., Andersson L. Strong signatures of selection in the domestic pig genome. Proc. Natl. Acad. Sci. USA. 2012;48:19529-19536.

30. Sanchez-Villagra M.R., Geiger M., Schneider R.A. The taming of the neural crest: a developmental perspective on the origins of morphological co-variation in domesticated mammals. R. Soc. Open Sci. 2016;3:160107.

31. Schubert M., Jonsson H., Chang D., Sarkissian C.D., Ermini L., Ginolhac A., Albrechtsen A. Prehistoric genomes reveal the genetic foundation and cost of horse domestication. Proc. Natl. Acad. Sci. USA. 2014;111(52):e5661-e5669. DOI 10.1073/pnas.1416991111.

32. Theofanopolou C., Gastaldon S., O’Rourke R., Samuels B.D., Messner A., Martins P.T., Delogu F., Alamri S., Boeckx C. Comparative genomic evidence for self-domestication in Homo sapiens. BioRxiv. 2017. doi.org/10.1101/125799.

33. Trut L. Early canid domestication: the farm-fox experiment. Am. Scientist. 1999;87:160-168.

34. Trut L., Oskina I., Kharlamova A. Animal evolution during domestication: the domesticated fox as a model. BioEssays. 2009;31:349-360.

35. Vigne J.D. The origins of animal domestication and husbandry: a major change in the history of humanity and the biosphere. Comptes Rendues Biologies. 2011;334(3):171-181.

36. Wilkins A.S. Epigenetic inheritance: Where does the field stand today? What do we still need to know? Transformations of Lamarckism: From Subtle Fluids to Molecular Biology. Eds. S.B. Gissis, E. Jablonka. Cambridge: MIT Press, 2011;389-393.

37. Wilkins A.S., Wrangham R., Fitch T. The “domestication syndrome” in mammals: a unified explanation based on neural crest cell behavior and genetics. Genetics. 2014;197:795-808.


Review

Views: 18549


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)